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Abstract 
 
To gain insights into the mechanisms that shape the interaction between economic growth and 
climate change, we analyze the simplified DICE through the lens of growth theory. We 
analytically show that this model exhibits a continuum of saddle-point stable steady states, a 
property that carries over to a large set of (analytical and numerical) IAMs. This novel insight is 
important because it implies initial conditions of stock variables, notoriously difficult to calibrate, 
matter for the ultimate steady state, i.e. for the long-run economic and climate outcomes. 
However, we also show that a lack of information about the stock of global capital is considerably 
less consequential than a lack of information about GHG in the atmosphere. These properties have 
important implications for understanding the consequences of delayed climate policy 
implementation and the optimal carbon tax. We employ numerical techniques to show how a 
postponement of optimal climate policy implementation leads to a higher long-run temperature. 
We also show that the SCC-to-GDP ratio is in fact largely constant, despite transitional dynamics. 
However, its level depends strongly on the point in time the policy is implemented. Finally, we 
employ the setup to better understand the consequences of stronger TFP growth for the climate. 
JEL-Codes: E100, H400, O440. 
Keywords: economic growth, climate change, IAM, DICE, continuum of steady states, delayed 
climate policy, TFP growth, peak temperature. 
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1 Introduction

Integrated assessment models (IAM) enable a theory-based and quantitative analysis of
economic growth and climate change. They also provide an important foundation for ra-
tional climate policy. The probably most prominent IAM is the Dynamic Integrated model
of Climate and the Economy (DICE).1 To gain insights into the mechanisms that shape the
interaction between economic growth and climate change, we analyse a simplified DICE
through the lens of growth theory. Viewed this way, this dynamic general equilibrium
climate-economy model represents a growth model with two endogenous stock variables
and two control variables, with a structure similar to many endogenous growth models
(e.g., Lucas, 1988).

We analytically show that the simplified DICE exhibits a continuum of saddle-point
stable steady states. We also identify exogenous technological change that drives the emis-
sion intensity asymptotically to zero as the critical assumption underlying this implication.
This property carries over to a large set of (analytical and numerical) IAMs, given that
many IAMs share this assumption. A continuum of steady states implies that the ultimate
steady state depends on the initial stock of global capital and greenhouse gases (GHG) in
the atmosphere. In general, we argue, it is important to fully understand the steady state
determination as the long run has implications for the medium and short run.

The novel finding of a continuum of steady states is important for two reasons. First,
calibrating IAMs requires to specify initial conditions of the stock variables. Given that
the stock of global capital and the stock of GHG in the atmosphere in a given historical
year are notoriously difficult to calibrate, this task is all but trivial. For instance, the IPCC
(2023a) report states ”Historical CO2 emissions between 1850 and 2014 have been esti-
mated at about 2180± 240 GtCO2 (1-sigma range), ...” Similarly, the initial stock of global
capital (K0) is neither easily measured or calibrated. Most calibration strategies choose K0

such that an empirically plausible capital-output ratio or real return on capital is matched.
It is not surprising that the employed values vary by about 20% to 30%, as laid out be-
low. Given the considerable uncertainty about initial stock variables, one would like to
know how sensitive the final economic and climate outcome (e.g. in terms of consumption
and temperature) is with respect to initial conditions. We show that a lack of information
about the initial stock of capital is considerably less consequential than a lack of informa-
tion about the initial stock of GHG. The reason is that the DICE inherits the neoclassical
convergence mechanism from the Ramsey growth model, implying that an economy with
a given initial capital stock accumulates capital faster than its hypothetical twin that has
more capital to begin with. A similar mechanism does not apply to CO2. Second, and
related, shocks to the stock of global capital or GHG in the atmosphere that occur along
the transition to the steady state may exert a permanent impact.2 In this sense, the global
economy is stumbling into the future. We point to this implication, although we do not

1For the latest version of the DICE, see Barrage and Nordhaus (2023).
2Examples comprise volcanic eruptions, wildfires, permafrost thawing (IPCC, 2023b) or a sudden drop of

emissions in a pandemic. Liu et al. (2020) report an abrupt 8.8% decrease of global CO2 emissions in the first
half of 2020 compared to the same period in 2019.
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model shocks explicitly.
We apply these insights to discuss three questions. 1) What are the long-term conse-

quences of delayed climate policy implementation for economic and climate outcomes?
Postponing the implementation of the (optimal) climate policy effectively means the so-
cial planner’s solution starts in the future from those values of stock variables (capital
and CO2) the market economy has produced so far. We numerically show that the delay
of optimal climate policy implementation has comparably small economic consequences
(damages, consumption). However, the long-term consequences for the climate are sub-
stantial. 2) How does a delay of climate policy implementation affect the optimal carbon
tax and the SCC-to-GDP ratio? We numerically show that the point in time of optimal cli-
mate policy implementation has substantial consequences for the optimal carbon tax. The
SCC-to-GDP ratio is in fact largely constant over time. However, its level increases with
the delay time. 3) What is the consequence of stronger future TFP growth for the climate?
We show that stronger future TFP growth shifts the entire continuum of steady states out-
wards. The dynamic response of GHG to an exogenous change in TFP growth is subject to
opposing general equilibrium effect, implying that stronger TFP growth may in fact be a
blessing for the climate.3

Although the finding of a continuum of steady states in prototype IAMs appears a
novel insight, it is in fact not very surprising as it occurs frequently (albeit for different
reasons) in growth models.4 However, the property of a continuum of steady states is
often either immaterial or not of first-order importance, as explained in section 2. In the
DICE, a continuum of steady states is of first-order importance. The steady state deter-
mines final (peak) temperature and, therefore, the temperature path along the transition.
The importance of the temperature level has been stressed prominently by, among others,
Cai and Lontzek (2019). They investigate the consequences of climate tipping points, de-
fined as a critical threshold at which a tiny perturbation can qualitatively alter the state
or development of the climate system, for the process of economic growth and climate
change.

There are two strands of related literature. First, numerical IAMs (e.g. DICE, FUND
and PAGE models) are employed for policy evaluation and to provide forecasts under al-
ternative assumptions. We contribute to this literature by clarifying how and to which
extent the calibration of the initial stock of global capital and GHG in the atmosphere af-
fect the ultimate steady state. We also show that the final steady state is more sensitive to
changes of initial GHG than to changes of the initial stock of global capital. Second, ana-
lytical Integrated Assessment Models (A-IAMs) are designed to provide more transparent
results than numerical IAMs. Prominent examples comprise Golosov, Hassler, Krusell, and
Tsyvinski (2014), van den Bijgaart, Gerlagh, and Liski (2016), Lemoine and Rudik (2017),
Gerlagh and Liski (2018), Dietz and Venmans (2019), van der Ploeg and Rezai (2019), and

3Forecasts on future TFP growth are extremely fragile, in contrast to population projections. Therefore, one
would like to understand the implications of more or less future TFP growth.

4Section 4.2 elaborates on the structural sources which give rise to a continuum of steady states. It also
explains why some other IAMs exhibit a unique steady state.
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Traeger (2023).5 We contribute to this literature by showing which modeling elements give
rise to either a unique steady state (e.g, Dietz & Venmans, 2019; van den Bijgaart et al.,
2016) or a continuum of steady states (e.g, Barrage, 2014; van der Ploeg & Rezai, 2019).
This enables a better understanding of the mechanisms that shape the interaction between
economic growth and climate change. Finally, Gerlagh and Keyzer (2004), employing an
analytical Ramsey model augmented by a non-renewable resource with amenity value,
demonstrate that delaying the implementation of an efficient resource use policy may im-
pact the steady state resource stock, yet economic outcomes remain unaffected. Their pa-
per comes closest to our analysis of the consequences of delayed climate policy imple-
mentation. We, in contrast, employ an explicit analytical IAM to show to which extent
and how a postponement of optimal climate policy implementation further into the future
affects the climate and economic outcomes.

The paper is structured as follows. Section 2 sketches the mathematical concepts which
are helpful understanding the properties and implications of this class of models. Section 3
sets up the simplified DICE and provides the dynamic system that governs the evolution of
the economy. Section 4 characterises analytically the continuum of steady states, identifies
the critical assumption, and provides an analytical stability analysis. Section 5 employs
a calibrated model, solved numerically for the big transition, to provide the foundation
for the subsequent discussion. Section 6 discusses the importance of alternative initial
conditions. It also investigates the consequences of delayed climate policy implementation
and the consequences of stronger TFP growth for economic growth and climate change.
Finally section 7 summarizes and concludes.

2 Continuum of Steady States in Growth Models

In growth theory, a continuum of steady states occurs frequently (Trimborn, 2018). How-
ever, in many cases this finding is of minor importance. To illustrate, consider the Solow
growth model with exponential population growth but constant level of technology. This
model exhibits a continuum of steady states for aggregate capital and GDP. The initial
level of population determines to which steady state level of aggregate capital and GDP
the economy converges. However, capital per capita and GDP per capita are unique in any
steady state.

In contrast, a continuum of steady states may have important implications in endoge-
nous growth models, as the steady states typically differ with respect to the level of GDP
per capita (e.g., Lucas, 1988). The existence of a continuum of steady states is even more
important in many climate growth models, such as the DICE, as the steady states may dif-
fer with respect to GDP per capita and temperature. We elaborate briefly, in a non-rigorous
manner, on the implications of a continuum of steady states for transitional dynamics and
the main economic implications.

5One may also count in this category the older growth models with a stock pollution and abatement as
control variable (Tahvonen & Kuuluvainen, 1991; Van Der Ploeg & Withagen, 1991).
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For analyzing local transitional dynamics in models exhibiting a continuum of steady
states, one can apply an extension of the Hartman-Grobman theorem, namely the Cen-
ter Manifold (CM) theorem (e.g., Guckenheimer & Holmes, 2002, pp. 123-128). Consider
a continuum of steady states (CSS) forming a curve, labelled a (one-dimensional) mani-
fold. We apply the CM theorem to one of these points. Consider a fixed point x̃ ∈ Rn

of a dynamic system ẋ = f(x). In short, the theorem states that at a fixed point the n-
dimensional space can be decomposed according to the real parts of the eigenvalues of the
Jacobian matrix. According to the Hartman Grobman theorem, the eigenvectors associ-
ated with eigenvalues with negative (positive) real part span an Eigenspace tangent to a
stable (unstable) manifold of that fixed point. In addition, the CM theorem states that the
eigenvectors associated with an eigenvalue with zero real part span a space tangent to the
center manifold.6

The CM theorem is usually applied to more general cases, in which the CM need not
be unique and the dynamics on the CM cannot be derived from the linearized system.
However, in the specific case at hand the CM is identical to the CSS. This implies the CM
is unique and there is no movement along the CM.

Assume there are ns and nu eigenvalues with negative and positive real part, respec-
tively, and one zero eigenvalue associated with a one-dimensional manifold of steady
states, ns + nu + 1 = n. Then, we can focus on the CSS as a whole or on one point in
isolation and conclude:7

• Stability of the CSS. There exist a locally unstable and stable manifold of the CSS,
W u and W s, of dimension nu + 1 and ns + 1, respectively, tangent to the subspace
spanned by the corresponding eigenvectors.

• Submanifolds of the unstable and stable manifolds. W u and W s are fibered by sub-
manifolds (leaves) W uu

x̃ and W ss
x̃ with x̃ on the CSS. W uu

x̃ and W ss
x̃ are of dimension

nu and ns, respectively, and tangent to the subspace spanned by the corresponding
eigenvectors. All points on W uu

x̃ converge to x̃ as t → −∞, while all points on W ss
x̃

converge to x̃ as t → ∞.

The first bullet point, a generalization of the Blanchard and Kahn (1980) conditions
adapted for continuous-time systems, determines the number of initial conditions required
for a unique solution. The second bullet point holds that each point (x̃) on the CSS is
associated with a stable submanifold describing a convergence to that point (x̃). Taking
the structure of the optimization problem into account, this implies that the (initial) state
variables determine to which steady state the economy is converging.

Regarding the DICE, we show below that each steady state exhibits a different capital
stock, K̃, and carbon stock in the atmosphere, S̃. This implies that the asymptotic temper-

6Loosely speaking, the CM is defined as the set of points x ∈ Rn such that the system stays within this
set forever. The stable (unstable) manifold is the set of points x ∈ Rn such the system converges to (diverges
from) the CM. See Guckenheimer and Holmes (2002) for a formal definition

7These conclusion can either be derived by applying the CM theorem to each point from the continuum
of steady states simultaneously or by applying the Fundamental theorem of normally hyperbolic invariant
manifolds (e.g., Hirsch, Pugh, & Shub, 1977; Trimborn, 2018)
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ature is different for each steady state. Which steady state is ultimately realized depends
on initial conditions, K0 and S0.

Moreover, assume an economy is converging along fibre W ss
x̃1 to the steady state x̃1

on the CSS. Any shock or temporary policy which diverts the economy from W ss
x̃1 and

relocates it to another fibre, say W ss
x̃2 , will have a permanent impact, since the economy

converges to x̃2 instead of x̃1. Thus, the implications for the steady state are fundamentally
different to a standard neoclassical economy.

3 Model Setup

We set up a simplified DICE. The simplification concern the climate module. The modeling
strategy follows the A-IAM literature (Dietz & Venmans, 2019; Golosov et al., 2014).

3.1 Social planner’s problem

The social planner’s problem is as follows

max
[ct,µt]

∞∫
0

c1−φ
t − 1

1− φ
Lte

−ρtdt s.t. (P1)

K̇t = Qt − δKt − ctLt, K0 : given

Qt = e−
γ
2
T 2
t

(
1− θ1,tµ

θ2
t

)
Yt with Yt = AtK

α
t L

1−α
t

Tt = ζSt

Ṡt = Et, S0 : given

Et = (1− µt)σtYt,

where t denotes the continuous time index, ρ > 0 the discount rate, φ > 0 the elas-
ticity of marginal utility w.r.t. consumption, δ > 0 the rate of capital depreciation, γ ≥ 0

the damage function coefficient, θ1,t ≥ 0 the fraction of output required to reduce emis-
sions to zero, θ2 > 1 the abatement convexity parameter, 0 < α < 1 the capital elasticity,
ζ ≥ 0 the temperature response coefficient, and σt ≥ 0 the emissions intensity. The two
control variables are per capita consumption (ct) and the emission control rate (µt). The
two state (or stock) variables are the stock of global capital (Kt) and the stock of C02 in
the atmosphere (St). Both population and TFP follow exogenous and bounded processes,
i.e. limt→∞At = Ã and limt→∞ Lt = L̃ (Barrage & Nordhaus, 2023). Moreover, the abate-
ment cost parameter (θ1,t) and the emission intensity (σt) both converge to zero as time
approaches infinity, i.e. limt→∞ θ1,t = 0 and limt→∞ σt = 0.

Two cases can be distinguished. Assuming θ1,t, σt converge exponentially to zero, the
model described by (P1) is referred to as the Nordhaus case of the DICE model (Barrage &
Nordhaus, 2023). Assuming θ1,t, σt are constant, the model described by (P1) is referred to
as the Dietz and Venmans (2019) case.
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3.2 Hamiltonian and First-order Conditions

The (current-value) Hamiltonian for (P1) and the associated first-order conditions may be
expressed as follows

H =
c1−φ
t − 1

1− φ
Lt + λK

t (Qt − δKt − ctLt) + λS
t (1− µt)σtYt (1)

c−σ
t = λK

t (2)

−σtλ
S
t = λK

t e−
γ
2
(ζSt)2θ1,tθ2µ

θ2−1
t (3)

λ̇K
t = −λK

t e−
γ
2
(ζSt)2

(
1− θ1,tµ

θ2
t

)
α
Yt
Kt

+ λK
t (δ + ρ)− λS

t (1− µt)σtα
Yt
Kt

(4)

λ̇S
t = λK

t γζ2Ste
− γ

2
(ζSt)2

(
1− θ1,tµ

θ2
t

)
Yt + λS

t ρ (5)

K̇t = e−
γ
2
(ζSt)2

(
1− θ1,tµ

θ2
t

)
Yt − δKt − ctLt (6)

Ṡt = (1− µt)σtYt. (7)

Two points should be noticed. First, to simplify the analysis we do not impose the
constraint µt ≤ 1.8 We obtain very similar results if this constraint is imposed. Second,
the market economy is described by ignoring the FOC for µt, setting µt = 0, and setting
λS
t (1− µt)σt

∂Yt
∂Kt

= 0 in (4). The transversality conditions are given as9

lim
t→∞

e−ρtλK
t Kt = 0, lim

t→∞
e−ρtλS

t = 0. (8)

The above stated system (complemented by appropriate boundary conditions) constitutes
a dynamic algebraic system (DAS).10 Its properties can be analysed by applying analytical
and numerical techniques, usually applied to models of economic growth (Trimborn, 2018;
Trimborn, Koch, & Steger, 2008).

4 The Long Run

Where does the economy converge to in the long run? What is the critical assumption for
a possible continuum of steady states? Are these steady states saddle-point stable? This
section discusses the preceding questions.

4.1 Continuum of Steady States

From the Ramsey Model we know that, given limt→∞At = Ã and limt→∞ Lt = L̃, there
cannot be unbounded growth in economic variables. The stock of St is also bounded under
the assumptions of the DICE, as explained below. However, there is not a unique steady
state but rather a continuum of steady states. Given initial conditions (K0, S0) the economy

8Examples for DICE with negative emissions comprise Nordhaus (2018) and Hänsel et al. (2020).
9On the transversality condition on cumulative emissions see Dietz and Venmans (2019).

10More precisely, the underlying dynamic system represents a non-autonomous DAS due to the time-
varying parameters, σt, At,Lt.

7



converges to a point on the following curve in (K,S) plane

e−
γ
2
(ζS̃)2α

Ỹ

K̃
= δ + ρ, (CSS)

where Ỹ = ÃK̃αL̃1−α. Condition (CSS) describes the continuum of steady states. This can
be seen as follows. Let gx := ẋt

xt
denote the growth rate of any variable xt. Then (CSS)

results from gλK = 0 together with (4), noting limt→∞ σt = 0 and limt→∞ θ1,tµ
θ2
t = 0. This

generic and well-known steady state condition states that, in the long run, the marginal
product of capital (net of depreciation) must equal the time preference rate.11

What is the crucial assumption which gives rise to a continuum of steady states? The
answer is limt→∞ σt = 0. As a result, the RHS of the Ṡt equation vanishes, i.e.

lim
t→∞

Ṡt = lim
t→∞

(1− µt)σtYt = 0. (9)

Notice that the RHS vanishes due to an exogenous process, σt. In fact, it is assumed σt

converges sufficiently fast to zero such that St is bounded.12 Hence, system (2) to (7) is
under-determined. There are 6 endogenous variables (c, µ, λK , λS ,K, S) and 5 equations
for the determination of a steady state. What about µt? To see this, rewrite (3) to get

e−
γ
2
(ζSt)2 θ1,tθ2µ

θ2−1
t

σt
= − λS

t

λK
t

. (10)

Given that Kt and St converge to constants, the RHS (the SCC in units of Qt) must ap-

proach a constant.13 From θ1,tθ2µ
θ2−1
t

σt
approaching a constant, it follows gθ1 − gσ = −(θ2 −

1)gµ. Hence, the asymptotic constant growth rate of µt reads

lim
t→∞

gµ =
gθ1 − gσ
1− θ2

. (11)

The long-run evolution of µt depends on θ1,t
σt

, i.e. on the outcome of the race between the
cost parameter (θ1,t) and the benefit parameter (σt) as can be seen from (3). Assume θ1,t

converges faster to zero than σt, in line with standard DICE calibrations. Plugging the
numbers from Barrage and Nordhaus (2023) in, one gets gθ1 − gσ = −0.017 − (−0.015) =

−0.002. Hence, noting 1 − θ2 < 0, we have gµ > 0. What about the abatement cost
term θ1,tµ

θ2
t as t approaches infinity? Noting (11), the growth rate of θ1,tµθ2

t reads as gθ1 +

θ2
gθ1−gσ
−(θ2−1) = −0.017 − 2.6

1.6(−0.02) < 0. Hence, limt→∞ θ1,tµ
θ2
t = 0. Despite the emission

control rate (µt) increasing to infinity, the abatement cost multiplier (1− θ1,tµ
θ2
t ) converges

to one, i.e. abatement cost converge to zero.

11The economic module of the simplified DICE , given by (P1), differs only from the DICE in that it is time-
continuous rather than time-discrete and in the shape of the damage function (Barrage & Nordhaus, 2023).
Therefore, one can expect that a condition similar to (CSS) must hold in the DICE as well.

12To illustrate, integrate Ṡt = egσt(1 − egµt)Ỹ with Ỹ = const. over t from 0 to ∞. Noting gσ < 0, gµ > 0,
and gσ + gµ < 0 one sees that limt→∞ St is bounded.

13Recall from dynamic programming that shadow prices equal derivatives of the value function w.r.t. the
corresponding state variable.
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4.2 Constant Emission Intensity & Full Abatement: Unique Steady State

To better understand the reason for the continuum of steady states, assume both σ and θ1

are constant. Given that exploding St paths are not optimal, noting σ = const., an optimal
solution requires limt→∞ µt = µ̃ = 1.14 From (4) and (5), noting µ̃ = 1, one obtains the SCC
in the steady state to read as

− λ̃S

λ̃K
=

γζ2S̃e−
γ
2
(ζS̃)2(1− θ1)Ỹ

ρ
. (12)

This equation specifies the carbon tax (in steady state) required to achieve full abatement
in a decentralized economy. The unique steady state in terms of Kt and St is determined
by the two following conditions

θ1θ2︸︷︷︸
marginal cost of µ at µ̃ = 1

= σ
γζ2S̃(1− θ1)Ỹ

ρ︸ ︷︷ ︸
marginal benefit of µ at µ̃ = 1

(FA)

e−
γ
2
(ζS̃)2(1− θ1)α

Ỹ

K̃
= δ + ρ. (MPK)

Condition (FA) results from the combination of (12) with the FOC on µ, noting µ̃ = 1. It
describes the combinations of (K, S) such that µ̃ = 1 (full abatement) is indeed optimal.
Condition (MPK) is basically the CSS from the simplified DICE, equation (CSS), noting
that limt→∞ θ1,tµ

θ2
t = 0 does not hold and, given limt→∞ µt = 1, this term approaches θ1.

In the Nordhaus case, given limt→∞ σt = 0, µ̃ = 1 is not required to rule out exploding St

paths. Therefore, condition (FA) does simply not exist.15

To sum up, under σ = const. the simplified DICE exhibits a unique steady state. Opti-
mality in this case requires that emissions endogenously land at zero asymptotically. This
implies a unique long term combination of stock variables. The A-IAMs mentioned above
can be categorized as follows. 1) A-IAMs with a continuum of steady states (due to exoge-
nous and exponentially declining emission intensity): the numerically solved version of
Golosov et al. (2014) model (Barrage, 2014), and the van der Ploeg and Rezai (2019) model.
2) A-IAMs with unique steady state: Dietz and Venmans (2019), van den Bijgaart et al.
(2016), Li (2018).

4.3 Lessons from Eigenvalues

To analyze transitional dynamics using eigenvalue calculation, we consider the underly-
ing dynamic system an autonomous eight-dimensional system, (4) to (7) plus dynamic
equations for the time-varying variables (Lt, At, σt, θ1,t), with two associated algebraic

14Under σ, θ1 = const., the simplified DICE is isomorphic to the model in Dietz and Venmans (2019), as-
suming no temperature delay, i.e. Tt = ζSt. Dietz and Venmans (2019) show that exploding St paths violate
the transversality condition on cumulative emissions. This requires, in their setup, emissions (a direct control
variable) to vanish asymptotically, limt→∞ Et = 0, which is equivalent to limt→∞ µt = 1.

15Comparing the Nordhaus case (limt→∞ σt = 0) and the Dietz & Venmans case (σ = const.) shows there is
bifurcation. The critical parameter is σ.
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equations, (2) and (3). We focus on the special case gθ1 = gσ such that limt→∞ µt = const.16

The eigenvalues of the linearized system, evaluated at the CSS, read as (cf. appendix A.2)

λ1 = 0, λ2 = ρ > 0 (13)

λ3 =
1

2

(
ρ+

√
ρ2 + 4

ρ+ (1− α)δ

α
(ρ+ δ)(α− 1)(− 1

φ
)

)
> 0 (14)

λ4 =
1

2

(
ρ−

√
ρ2 + 4

ρ+ (1− α)δ

α
(ρ+ δ)(α− 1)(− 1

φ
)

)
< 0 (15)

λ5 = gA < 0, λ6 = gL < 0, λ7 = gθ1 < 0, λ8 = gσ < 0, (16)

where gA, gL, gθ1 and gσ are the asymptotic rates of convergence of TFP (At), labor (Lt),
the backstop technology (θ1,t), and the emission intensity (σt). All eigenvalues are con-
stant along the CSS, as one would expect (Trimborn, 2018). The key takeaways can be
summarized as follows:

1. Zero eigenvalue and CSS. The zero eigenvalue (λ1) indicates the existence of a CSS,
as explained in section 2. It results directly from limt→∞ Ṡt = 0 due to limt→∞ σt = 0.

2. Stable manifold and convergence speed. The 5 negative eigenvalues (λ4, λ5, λ6, λ7,
λ8) indicate a (stable) manifold of dimension 6 (ns+1 with ns = 5) along which the
system converges towards the CSS (cf. section 2). They also determine the speed at
which the system converges, discussed numerically in section 5.3.

3. Saddle-point stability. There are as many jump variables (λK , λS) as unstable eigen-
values (λ2, λ3). Stationary equilibria on the CSS represent unique asymptotic end-
point of the transition process, conditional on K0, S0 and appropriate λK

0 , λS
0 . That

is, every point on the CSS satisfies the Blanchard and Kahn (1980) conditions, imply-
ing that indeterminacy of (privately or socially) optimal solutions does not occur.

The eigenvalues are independent of the damage parameter (γ) and the temperature-
carbon relation (ζ). This changes if one models a delayed temperature response by em-
ploying Ṫt = ε(ζSt − Tt) instead of Tt = ζSt. Dietz and Venmans (2019) assume ε = 0.5. In
this case, there is an additional negative eigenvalue equal to (proportional to) −ε. More-
over, each of the stable (negative) eigenvalues can be related to a separate convergence
mechanism. Specifically, eigenvalues λ5, λ6, λ7, and λ8 capture the convergence speed of
TFP (gA), labor (gL), technological change of the backstop technology (gθ1), and emission
intensity (gσ), respectively. Eigenvalue λ4 is the Ramsey eigenvalue describing the speed
of convergence from capital accumulation.

16The more general case gθ < gσ such that limt→∞ gµ = const. is considered in appendix A.1.
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5 Transitional Dynamics

5.1 Calibration

The simplified DICE Model is calibrated at an annual frequency. The calibration of the
economic module largely follows Barrage and Nordhaus (2023). The calibration of the
simplified climate module follows Dietz and Venmans (2019) and Campiglio, Dietz, and
Venmans (2022).

Parameter / Variable Value Source / Comment
ρ 0.01 per year Barrage & Nordhaus (2023)
φ 1.35 Campiglio, Dietz & Venmans (2023, Table A1)
θ1,t 0.11× e−0.017t Barrage & Nordhaus (2023)
θ2 2.6 Barrage & Nordhaus (2023)
γ 0.0077 Campiglio, Dietz & Venmans (2023, Table A1)
ζ 0.0006 Campiglio, Dietz & Venmans (2023, Table A1)
σt 0.291× e−0.015t Barrage & Nordhaus (2023)
α 0.3 Barrage & Nordhaus (2023)
δ 0.04 Campiglio, Dietz & Venmans (2023)
ELand

t 5.9× e−0.02t Barrage & Nordhaus (2023)
S2020 2000 Gt CO2eq Campiglio, Dietz & Venmans (2023, Table A1)
K2020 300 trillion US$ matching K

Q
≈ 3.53

Q2020 85 trillion US$ Campiglio, Dietz & Venmans (2023, p. 18)

Lt = L
(1−0.145)t

2020 L
1−(1−0.145)t

∞ L2020 = 7753× 106, L∞ = 10825× 106 Barrage & Nordhaus (2023)
A2020 0.0279 matching Q ≈ 85× 1012 US$, given K, L, α, S, γ
At+1 = At

1−0.0385×exp(−0.036×t)
A∞

A2020
≈ 3 process: Barrage & Nordhaus (2023)

Table 1: Baseline calibration.

Notes: a) Barrage and Nordhaus (2023) employ At+1 = At
1−0.082×exp(−0.0072×5×t)

and five year time steps,
implying A∞

A2020
≈ 10 and a slower rate of convergence of TFP. b) The simulation takes exogenous emissions

according to ELand
t into account.

5.2 Big Transition

Figure 1 displays two trajectories, projected in (K, S) plane, starting from identical initial
conditions according to the baseline calibration: K2020 = 300, S2020 = 2000. The solid
(dashed) curve displays the social planner solution (market economy). Both trajectories
converge to different endpoints on the same CSS, displayed by the downward sloping
(blue) curve on the right. The trajectories are calculated by solving the underlying dynamic
system, (2) to (7) together with appropriate boundary conditions, employing the relaxation
algorithm (Trimborn et al., 2008). 17

As one would expect, the market economy (dashed) produces a higher level of cumu-
lative CO2. This goes hand in hand with a higher global temperature, measured on the
right vertical axis. Moreover, close to the CSS the market economy experiences a rising
temperature and a decline of capital. It is shown below that GDP does decline as well.18

17This global solution procedure is especially suited for big transitions. Considering the first best solution,
labor increases by roughly 40%, TFP by 200%, capital by 1180%, and CO2 by 110%. The relaxation algorithm
is also well-suited for cases where the final steady state is not pre-determined but results as the endpoint of
the transition. The algorithm is implemented in Mathematica and Matlab. The code is available at Relaxation
website.

18The fact that the trajectory of the market economy crosses the CSS means λK = const. in the respective
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Figure 1: First-best solution & market economy.

Notes. Solid line: First-best solution. Dashed line: Market economy. Both start at K2020 = 300 trillion US$

and S2020 = 2000 Gt CO2eq according to baseline calibration. Terminal conditions employed for numerical

solution are λ̇K
∞ = λ̇S

∞ = 0. Downward sloping (blue) curve: continuum of steady states (CSS).

5.3 Speed of Convergence

How fast does the economy converge to the steady state? Figure A.1 in appendix A.3
shows the instantaneous rates of convergence of Kt, St, Qt. The initial convergence speed
is about 1% (a half life of about 70 years), increases to 2.3% (half life: 23 years) and fi-
nally settles down to 1.5% (half life: 46 years). These observations are consistent with the
numerical evaluations of the stable eigenvalues19

λ4 ≈ −0.052, λ5 ≈ −0.036, λ6 ≈ −0.157, λ7 = −0.015, λ8 = −0.015. (17)

The respective eigenvalues, in general, describe movements in different directions, de-
termined by the corresponding eigenvectors. The impact of the larger (in absolute terms)
eigenvalues vanishes quickly, while the smaller (in absolute terms) eigenvalues dominate
the convergence speed as time proceeds. Therefore, the smallest (in absolute terms) eigen-
value together with the associated eigenvector describe the speed at which and the direc-
tion from which the system converges asymptotically towards the CSS. The asymptotic
rate of convergence, according to the calibration, is jointly determined by the speed of the
backstop technology and decline rate of the emission intensity (gθ1 = gσ = −0.015).

period. However, other variables have not reached a constant such that this point does not constitute a steady
state.

19Notice that λ7 = λ8 = −0.015 results directly from the calibration. Moreover, λ4 is the stable
Ramsey eigenvalue. The asymptotic rates of convergence At and of Lt can be shown to read as λ5 =

limt→∞ − Ȧt
At−A∞

= −0.036 and λ6 = limt→∞ − L̇t
Lt−L∞

= Log(1− 0.145) ≈ −0.157.
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6 Discussion

6.1 Importance of Initial Conditions

Section 2 has demonstrated that the ultimate steady state does in general depend on the
initial stock of global capital and GHG in the atmosphere. We employ empirically plausible
initial conditions to see the quantitative consequences of alternative initial conditions.

The initial stock of global capital (K2020) as well as the initial stock of GHG in the
atmosphere (S2020) are notoriously difficult to quantify. For instance, the IPCC (2023a)
report states ”Historical CO2 emissions between 1850 and 2014 have been estimated at
about 2180±240 GtCO2 (1-sigma range), ...” Similarly, the stock of global capital is difficult
to measure. It is therefore not surprising that global capital in a given year differs across
data sources and calibrations. Barrage and Nordhaus (2023) set K2020 = 302 trillion US$
and state this value is ”calibrated to give smooth interest rate path”.20 Campiglio et al.
(2022, Table A1) set K2020 = 348 trillion US$, assuming the economy grows along a BGP
and a capital-output ratio of 3.7. When calibrating the generalized Golosov et al. (2014)
model, Barrage (2014) sets K0 = α Y0

r+δ to match, given Y0, α and δ, an annual net rate of
return on capital of r = 0.05. As an alternative value, employed in the sensitivity analysis,
she considers a K0 that is roughly 30 % higher.

For the initial stock of GHG in the atmosphere, we consider one and two standard devi-
ations below and above our baseline calibration, i.e. S2020 ∈ {1520, 1760, 2000, 2240, 2480}.
Regarding the initial stock of global capital, we assume K2020

Q2020
∈ {2.5, 3, 3.53, 4, 4.5}.21 This

gives K2020 ∈ {212, 255, 300, 340, 383}.22

Figure 2 shows 25 trajectories starting from 25 different initial conditions (K2020, S2020).
The pattern is remarkable. The simulation experiment traces out some stable fibres, labeled
W ss

x̃ in section (2), of the stable manifold, W s. The graph illustrates that, holding S2020

constant, changes in K2020 have almost no long-run effect. In contrast, changes in S2020,
holding K2020 constant, have a strong impact, especially on S̃.

The economic intuition behind this pattern can be understood in two steps. First, imag-
ine a Solovian version of the simplified DICE (constant saving rate and emission control
rate). Given that the RHS of the capital accumulation equation is concave in Kt, there is the
well-known neoclassical convergence mechanism. An economy with a given initial capital
stock accumulates capital faster than its hypothetical twin that has more capital to begin
with. Hence, there is convergence in terms of capital. In contrast, St does not enter the
RHS of the equation of motion for CO2 such that there is no convergence in terms of St.
This would be different if emissions were proportional to GDP net of damages. However,

20Source: DICE supplement, DICE2023-Excel-b-4-3-10-v18.3
21Feenstra, Inklaar, and Timmer (2015) report the median capital-output ratio across 142 countries (PWT

8.1) to fluctuate between 2.5 and 3.1 (1980-2011). Capital comprises structures, machinery, transport equip-
ment, computers communication equipment, software. According to PWT 10, the capital-output ratio
(rnna/rgdpna) varies between 3.3 and 4.3 (1950-2019). WID reports the global (national) wealth-to-income
ratio to fluctuate between 3.7 and 6 (1995-2020); WID accessed: February 8, 2024. National wealth comprises
agricultural land, housing, other domestic capital goods, net foreign assets.

22When changing K2020
Q2020

, we adjust A2020 to keep Q2020 = 85 US$ trillion.
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even if Qt instead of Yt were to appear on the RHS of the Ṡt equation, the effect would be
small, given that γ is small. Moreover, additional effects kick in under endogenous con-
trols. For instance, a higher level of St unfolds additional incentives to increase µt. This
effect explains why an increase in S0 by one unit results in a less-than-one unit permanent
effect.23

1000 2000 3000 4000
Kt

1000

2000

3000

4000

St

CSS

Figure 2: First-best solutions starting from grid of initial conditions.

Notes. The grid of 25 different initial conditions, i.e. values of stock variables in t = 2020, com-

prises the elements of the Cartesian product of the two sets K2020 ∈ {212, 255, 300, 340, 383} and S2020 ∈

{1520, 1760, 2000, 2240, 2480}. Terminal conditions employed for numerical solution are λ̇K
∞ = λ̇S

∞ = 0.

Downward sloping (blue) curve: continuum of steady states (CSS).

To sum up, changing initial Kt has a small long-run effect. The reverse holds for
changes in initial St. This insight is important when it comes to the consequences of de-
layed climate policy implementation to which we turn in the next section.

6.2 Delayed Climate Policy Implementation

Postponing the implementation of the (optimal) climate policy effectively means the so-
cial planner’s solution starts in the future from those values of stock variables (K, S) the
market economy has produced so far. Technically speaking, the economy starts on another
fibre (labeled W ss

x̃ in section 2) on the stable manifold (W s) of the social planner’s solution.
Hence, postponing the implementation of climate policy means the economy converges

23The SCC, − λS
0

λK
0

, increases. This triggers an increase of µ0, as can be seen from (3). This effect is weak,

given γ ≈ 0.0077 and θ2 = 2.6. A given increase in S0 has a lower effect on S̃ under a higher γ (not shown).
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to another steady state. This implication represents an important property of this class of
IAMs. In contrast, as explained in section 4.2, a CSS does not exist in the Dietz and Ven-
mans (2019) model, implying that postponing climate policy does not affect the ultimate
steady state.

The dashed curve in Figure 3 shows the trajectory the market economy follows, starting
at K2020 = 300, S2020 = 2000. The solid trajectories, starting from different positions on the
market trajectory, display the social planner’s solution, provided that the optimal climate
policy is implemented in t ∈ {2020, 2035, 2050, ..., 2155}.

1000 2000 3000 4000
Kt

2000

4000

6000

8000

10000

St

CSS

Figure 3: Delayed climate policy; trajectories in (K, S) plane.

Notes. Dashed curve: Market economy starting at K2020 = 300, S2020 = 2000 according to base-

line calibration. Solid curves: First-best solutions, assuming optimal climate policy is implemented in

t ∈ {2020, 2035, 2050, ..., 2155}. Terminal conditions employed for numerical solution are λ̇K
∞ = λ̇S

∞ = 0.

Downward sloping (blue) curve: continuum of steady states (CSS).

Figure 4 shows the corresponding time paths for a set of endogenous variables. Again,
the dashed curves depict the market economy. The solid curves show the social planner’s
solution, implemented in 15 year time steps. Consumption drops at the respective points
in time when the (unexpected) climate policy is implemented. This is associated with
a faster capital accumulation driven by a jump in λK

t (not shown) due to a higher than
previously expected marginal product of capital. The consequences for consumption (Ct)
and GDP (Qt) are comparably small. The consequences for the temperature path (Tt) in
response to delayed climate policy implementation is, however, substantial.
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Figure 4: Delayed climate policy; time paths.

Notes. Dashed curve: Market economy starting at K2020 = 300, S2020 = 2000 according to base-

line calibration. Solid curves: First-best solutions, assuming optimal climate policy is implemented in

t ∈ {2020, 2035, 2050, ..., 2155}.

To sum up, delayed climate policy in effect means that the regulated economy starts
from alternative initial conditions. If there were a unique steady state, a delay would be
immaterial in the long run. However, a delay of the climate policy has long-run conse-
quences in the simplified DICE. By backward induction, it also has consequences for the
medium term. In the next section we consider the consequences of a delay for the optimal
carbon tax.

6.3 Social Costs of Carbon

The social costs of carbon (SCC) provide an estimate for the optimal carbon tax. Numerical
IAMs have been employed to produce numerical values for the optimal carbon tax over
time (e.g., Barrage & Nordhaus, 2023). Moreover, A-IAMs have been employed to develop
simple rules for the SCC.24 A prominent example is Golosov et al. (2014) who derive a
closed-form expression for a constant SCC-GDP ratio. Under a set of four assumptions,
this ratio is constant despite transitional dynamics (Barrage, 2014).

24For an overview see Withagen (2022).
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Given the existence of a CSS, one would like to know how the SCC evolve over time,
assuming alternative initial conditions. We motivate the latter by considering the alterna-
tive initial conditions resulting from the experiment on delayed climate policy.
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t
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Carbon Tax
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SCC-to-GDP Ratio (%)
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Figure 5: Optimal carbon tax (left panel) and SCC-to-GDP ratio (right panel).

Notes. a) The social costs of carbon may be defined as SCCt := − λS
t

λK
t

. Given the calibration in Table 1, it

has units of measurement 1012 2019 US$
109 tCO2 . The left panel shows − λS

t

λK
t

× 103 with units 2019 US$
tCO2 . b) The SCC-GDP

ratio ( SCCt
Qt

) has units 1
GtCO2 . If, say, SCCt

Qt
= 0.0005 1

GtCO2 , emission of one additional GtCO2 comes with social

costs of 0.05% of GDP. c) Barrage (2014) shows the benchmark in Golosov et al. (2014), abbreviated GHKT,

implies a ratio of SCC to decadal gross world output equal to 8.07 × 10−5. That is, SCCt
Qt

= 8.07 × 10−4 for

annual gross world output Qt.

Fig. 5 (left panel) shows the time paths of the optimal carbon tax (US$ per tCO2),
assuming the optimal policy is implemented in t ∈ {2020, 2035, 2050, ..., 2155}. The upper
dashed line does not depict an optimal carbon tax, it is merely an auxiliary line showing
the SCC along the market trajectory. Starting in t = 2020, the optimal CO2 tax starts at
around 80 US$ and increases smoothly. This is somewhat higher compared to the DICE
(Barrage & Nordhaus, 2023). One possible reason is that the simplified DICE assumes no
delay between carbon emissions and warming.25 Postponing the implementation of the
optimal carbon tax does, however, require a substantially higher carbon tax, which may be
followed by either a smooth further increase or even decrease over time, depending on the
point in time of the implementation. This pattern is easily explained. The later the optimal
carbon tax is implemented, the higher is St and Kt from which the first-best solution starts.
Both variations of initial conditions imply a higher λS

t and a lower λK
t .

Fig. 5 (right panel) depicts the ratio of SCC to GDP. Golosov et al. (2014) have stressed
that the SCC relative to GDP can be expressed by a simple rule and is constant over time.
For comparison, the GHKT benchmark value is depicted in Fig. 5 (right panel). The
paths of the SCC-to-GDP ratio illustrate that the constancy of this ratio over time appears
largely consistent with the model considered here. Importantly, however, the level de-
pends strongly on the point in time of the policy implementation, which is associated with

25However, Dietz and Venmans (2019) argue the slow temperature response implied by DICE is at odds
with the evidence from climate science.
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differing starting conditions, as explained above.
To sum up, delayed optimal climate policy implementation in effect means that the

regulated economy starts from alternative initial conditions. This has important and first-
order implications for the temperature path and the optimal carbon tax. In the final section
we pose the opposite question. What are the consequences of a parameter change that
shifts the CSS, holding initial conditions constant?

6.4 Future TFP Growth: Curse or Blessing?

What is the consequence of stronger future TFP growth for the climate? We compare our
simulation results, based on the calibration in Table 1, to Barrage and Nordhaus (2023)
who assume A∞

A2020
≈ 10.26 The answer to the preceding question has two steps.

First, in the uncontrolled market economy, stronger TFP growth is a curse for the cli-
mate. This results immediately from emissions being a side product of production, as
captured by Ṡt = σtYt. Moreover, given that σt declines over time, future TFP growth is
less harmful than current TFP growth.

Second, the answer is more nuanced for the optimally controlled economy for which
Ṡt = (1− µt)σtYt applies. In this case, the mechanical pollution effect described above is
counteracted by more abatement of stronger future TFP growth, including possible nega-
tive emissions due to µt > 1. That is, whether stronger TFP growth is good or bad for the
climate depends on the relative importance of the mechanical pollution effect vis-a-vis the
endogenous abatement effect.

Figure A.3 in appendix A.5 illustrates that stronger TFP growth may in fact be a bless-
ing. To see why, consider the linearized FOC for µt

27

µ̂ =

(
aµµ
aµ/µ̃

)−1
(
λ̂S + σ̂ − λ̂K − dSS̃

d
Ŝ

)
. (18)

Future TFP growth affects µt via two forward-looking variables, namely λS and λK .
Stronger future TFP growth increases λS , the NPV of marginal damages. This is the
damage valuation effect. Similarly, stronger future TFP growth increases λK , the NPV
of marginal products of capital (net of depreciation). The capital valuation effect.28 Given
that stronger TFP growth triggers additional capital accumulation, the capital valuation
effect is counteracted by a decline in the marginal product of capital, which lowers the
resulting rise in λK . This is a well-known neoclassical mechanism. The effect of a change
in the SCC, λ̂S − λ̂K , on µt depends on (the inverse of) the elasticity of marginal abatement

26Their calibration of the process of future TFP is based on estimates from Christensen, Gillingham, and
Nordhaus (2018).

27We focus, again, on the special case gθ = gσ such that limt→∞ µt = const. A hat above a variable denotes
proportional deviation from steady state. The following short-hand notation is employed d := e−

γ
2
(ζS)2 , a :=

1− θ1µ
θ2 . Moreover, yx := dy

dx
. For instance, aµ = −θ1,tθ2µ

θ2−1
t .

28Notice that neither σ̂ nor dS S̃
d

Ŝ are affected by stronger future TFP growth.

18



cost w.r.t. µt, given by
(

aµµ
aµ/µ̃

)−1
= (θ2 − 1)−1 > 0. For instance, θ2 = 2.6 implies a 1%

increase in the SCC triggers a 1/1.6 = 0.625% increase in the emission control rate.
To sum up, changes in Ã, L̃ or ρ shift the continuum of steady states, as can be seen from

(CSS). The same applies to the introduction of a (distortionary) capital income tax.29 Our
analysis helps understand the response of the climate-growth model to such parameter
changes.

7 Conclusions

The simplified DICE exhibits a continuum of steady states. The critical assumption un-
derlying this implication is exogenous technological change that drives emissions to zero
asymptotically, a feature shared by many IAMs. Hence, this property carries over to other
(analytical and numerical) IAMs, including the numerical DICE (Barrage & Nordhaus,
2023). Experimenting with the numerical DICE, employing the provided GAMS code,
supports this conclusion.

Initial conditions of stock variables, notoriously difficult to calibrate, matter for the
ultimate steady state, i.e. for long-run economic and climate outcomes. However, a lack of
information about the stock of global capital is considerably less consequential than a lack
of information about GHG in the atmosphere. This asymmetry is rooted in the concavity
of the capital accumulation equation. There is neoclassical convergence with regard to
physical capital. An economy with a given amount of capital accumulates capital faster
than its hypothetical twin with a larger amount of capital. A similar mechanism does not
apply to the stock of CO2.

Postponing the implementation of optimal climate policy further into the future, im-
plying the socially controlled economy starts at a later date under more capital and CO2,
has comparably small economic consequences (damages, consumption). However, the
long-term consequences for the climate are substantial. This would be very different in
IAMs that exhibit a unique steady state. The delay of optimal climate policy implementa-
tion also has strong consequences for the optimal carbon tax. We numerically show that
the SCC-to-GDP ratio is in fact largely constant over time. However, its level increases
substantially with the delay time.

29Barrage (2019) investigates optimal carbon taxes in a dynamic general equilibrium climate-economy
model with distortionary fiscal policy.

19



References

Barrage, L. (2014). Supplemental material, econometrica, to: Golosov et al. (2014) “optimal
taxes on fossil fuel in general equilibrium”. Econometrica, 82(1), 41-88. Retrieved from
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA10217 doi:
https://doi.org/10.3982/ECTA10217

Barrage, L. (2019, 10). Optimal Dynamic Carbon Taxes in a Climate–Economy Model with
Distortionary Fiscal Policy. The Review of Economic Studies, 87(1), 1-39. Retrieved from
https://doi.org/10.1093/restud/rdz055 doi: 10.1093/restud/rdz055

Barrage, L., & Nordhaus, W. D. (2023, April). Policies, projections, and the social cost of
carbon: Results from the dice-2023 model [Working Paper]. (31112). Retrieved from
http://www.nber.org/papers/w31112 doi: 10.3386/w31112

Blanchard, O. J., & Kahn, C. M. (1980). The solution of linear difference models under
rational expectations. Econometrica, 48(5), 1305–1311. Retrieved 2024-02-15, from
http://www.jstor.org/stable/1912186

Cai, Y., & Lontzek, T. S. (2019). The social cost of carbon with economic and climate risks.
Journal of Political Economy, 127(6), 2684-2734. Retrieved from https://doi.org/

10.1086/701890 doi: 10.1086/701890
Campiglio, E., Dietz, S., & Venmans, F. (2022, May). Optimal climate pol-

icy as if the transition matters [Working Paper]. (10139). Retrieved from
https://www.cesifo.org/en/publications/2022/working-paper/

optimal-climate-policy-if-transition-matters doi: 10.3386/w31112
Christensen, P. O., Gillingham, K., & Nordhaus, W. D. (2018). Uncertainty in forecasts

of long-run economic growth. Proceedings of the National Academy of Sciences, 115,
5409-5414. doi: 10.1073/pnas.1713628115

Dietz, S., & Venmans, F. (2019). Cumulative carbon emissions and economic policy: In
search of general principles. Journal of Environmental Economics and Management,
96, 108-129. Retrieved from https://www.sciencedirect.com/science/

article/pii/S0095069618302122 doi: https://doi.org/10.1016/j.jeem.2019
.04.003

Feenstra, R. C., Inklaar, R., & Timmer, M. P. (2015, October). The next generation of
the penn world table. American Economic Review, 105(10), 3150-82. Retrieved from
https://www.aeaweb.org/articles?id=10.1257/aer.20130954 doi: 10
.1257/aer.20130954

Gerlagh, R., & Keyzer, M. A. (2004). Path-dependence in a ramsey model with
resource amenities and limited regeneration. Journal of Economic Dynamics and
Control, 28(6), 1159-1184. Retrieved from https://www.sciencedirect.com/

science/article/pii/S0165188903000782 doi: https://doi.org/10.1016/
S0165-1889(03)00078-2

Gerlagh, R., & Liski, M. (2018). Carbon prices for the next hundred years. The
Economic Journal, 128(609), 728-757. Retrieved from https://onlinelibrary

.wiley.com/doi/abs/10.1111/ecoj.12436 doi: https://doi.org/10.1111/

20

https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA10217
https://doi.org/10.1093/restud/rdz055
http://www.nber.org/papers/w31112
http://www.jstor.org/stable/1912186
https://doi.org/10.1086/701890
https://doi.org/10.1086/701890
https://www.cesifo.org/en/publications/2022/working-paper/optimal-climate-policy-if-transition-matters
https://www.cesifo.org/en/publications/2022/working-paper/optimal-climate-policy-if-transition-matters
https://www.sciencedirect.com/science/article/pii/S0095069618302122
https://www.sciencedirect.com/science/article/pii/S0095069618302122
https://www.aeaweb.org/articles?id=10.1257/aer.20130954
https://www.sciencedirect.com/science/article/pii/S0165188903000782
https://www.sciencedirect.com/science/article/pii/S0165188903000782
https://onlinelibrary.wiley.com/doi/abs/10.1111/ecoj.12436
https://onlinelibrary.wiley.com/doi/abs/10.1111/ecoj.12436


ecoj.12436
Golosov, M., Hassler, J., Krusell, P., & Tsyvinski, A. (2014). Optimal taxes on fossil

fuel in general equilibrium. Econometrica, 82(1), 41-88. Retrieved from https://

onlinelibrary.wiley.com/doi/abs/10.3982/ECTA10217 doi: https://
doi.org/10.3982/ECTA10217

Guckenheimer, J., & Holmes, P. (2002). Nonlinear oscillations, dynamical systems, and bifurca-
tions of vector fields (7th ed.) (No. 42). New York: Springer.

Hirsch, M., Pugh, C., & Shub, M. (1977). Invariant manifolds. Springer-Verlag. Retrieved
from https://books.google.de/books?id=3YGsDAEACAAJ

Hänsel, M. C., Drupp, M. A., Johansson, D. J. A., Nesje, F., Azar, C., Freeman, M. C., . . .
Sterner, T. (2020, 08 01). Climate economics support for the un climate targets. Na-
ture Climate Change, 10(8), 781–789. Retrieved from https://doi.org/10.1038/

s41558-020-0833-x doi: 10.1038/s41558-020-0833-x
IPCC. (2023a). Climate change 2021 – the physical science basis: Working group i con-

tribution to the sixth assessment report of the intergovernmental panel on climate
change.
doi: 10.1017/9781009157896

IPCC. (2023b). Global carbon and other biogeochemical cycles and feedbacks. , 673–816.
Lemoine, D., & Rudik, I. (2017, October). Steering the climate system: Using inertia to

lower the cost of policy. American Economic Review, 107(10), 2947-57. Retrieved from
https://www.aeaweb.org/articles?id=10.1257/aer.20150986 doi: 10
.1257/aer.20150986

Li, C.-Z. (2018, February). An explicit formula for optimal carbon taxes under gen-
eral economic settings [Working Paper]. (2018:1). Retrieved from https://nbn

-resolving.de/urn:nbn:se:uu:diva-341099%0A

Liu, Z., Ciais, P., Deng, Z., Lei, R., Davis, S. J., Feng, S., . . . others (2020). Near-real-
time monitoring of global co2 emissions reveals the effects of the covid-19 pandemic.
Nature communications, 11(1), 5172. Retrieved from https://doi.org/10.1038/

s41467-020-18922-7 doi: 10.1038/s41467-020-18922-7
Lucas, R. E. (1988). On the mechanics of economic development. Journal of Mone-

tary Economics, 22(1), 3-42. Retrieved from https://www.sciencedirect.com/

science/article/pii/0304393288901687 doi: https://doi.org/10.1016/
0304-3932(88)90168-7

Nordhaus, W. (2018, August). Projections and uncertainties about climate change in an
era of minimal climate policies. American Economic Journal: Economic Policy, 10(3),
333-60. Retrieved from https://www.aeaweb.org/articles?id=10.1257/

pol.20170046 doi: 10.1257/pol.20170046
Tahvonen, O., & Kuuluvainen, J. (1991). Optimal growth with stock pollution. Envi-

ronmental Policy and the Economy, 206, 47–60. Retrieved 2024-01-06, from https://

doi.org/10.1016/B978-0-444-88975-1.50009-8

Traeger, C. P. (2023, August). Ace—analytic climate economy. American Economic Jour-

21

https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA10217
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA10217
https://books.google.de/books?id=3YGsDAEACAAJ
https://doi.org/10.1038/s41558-020-0833-x
https://doi.org/10.1038/s41558-020-0833-x
https://www.aeaweb.org/articles?id=10.1257/aer.20150986
https://nbn-resolving.de/urn:nbn:se:uu:diva-341099%0A
https://nbn-resolving.de/urn:nbn:se:uu:diva-341099%0A
https://doi.org/10.1038/s41467-020-18922-7
https://doi.org/10.1038/s41467-020-18922-7
https://www.sciencedirect.com/science/article/pii/0304393288901687
https://www.sciencedirect.com/science/article/pii/0304393288901687
https://www.aeaweb.org/articles?id=10.1257/pol.20170046
https://www.aeaweb.org/articles?id=10.1257/pol.20170046
https://doi.org/10.1016/B978-0-444-88975-1.50009-8
https://doi.org/10.1016/B978-0-444-88975-1.50009-8


nal: Economic Policy, 15(3), 372-406. Retrieved from https://www.aeaweb.org/

articles?id=10.1257/pol.20210297 doi: 10.1257/pol.20210297
Trimborn, T. (2018). On the analysis of endogenous growth models with a balanced growth

path. Journal of Mathematical Economics, 79, 40-50. Retrieved from https://www

.sciencedirect.com/science/article/pii/S0304406818301150 doi:
https://doi.org/10.1016/j.jmateco.2018.09.003

Trimborn, T., Koch, K.-J., & Steger, T. (2008). Multidimensional transitional dynamics: A
simple numerical procedure. Macroeconomic Dynamics, 12(3), 301–319. doi: 10.1017/
S1365100507070034

van den Bijgaart, I., Gerlagh, R., & Liski, M. (2016). A simple formula for the so-
cial cost of carbon. Journal of Environmental Economics and Management, 77, 75-94.
Retrieved from https://www.sciencedirect.com/science/article/pii/

S0095069616000061 doi: https://doi.org/10.1016/j.jeem.2016.01.005
van der Ploeg, F., & Rezai, A. (2019). Simple rules for climate policy and integrated assess-

ment. Environmental and Resource Economics, 72(1), 77–108. Retrieved from https://

doi.org/10.1007/s10640-018-0280-6 doi: 10.1007/s10640-018-0280-6
Van Der Ploeg, F., & Withagen, C. (1991). Pollution control and the ramsey prob-

lem. Environmental and Resource Economics, 1, 215–236. Retrieved from https://

link.springer.com/article/10.1007/BF00310019#citeas doi: https://
doi.org/10.1007/BF00310019

Withagen, C. (2022, Jun 01). On simple rules for the social cost of carbon. Environmental and
Resource Economics, 82(2), 461-481. Retrieved from https://doi.org/10.1007/

s10640-022-00686-x doi: 10.1007/s10640-022-00686-x

22

https://www.aeaweb.org/articles?id=10.1257/pol.20210297
https://www.aeaweb.org/articles?id=10.1257/pol.20210297
https://www.sciencedirect.com/science/article/pii/S0304406818301150
https://www.sciencedirect.com/science/article/pii/S0304406818301150
https://www.sciencedirect.com/science/article/pii/S0095069616000061
https://www.sciencedirect.com/science/article/pii/S0095069616000061
https://doi.org/10.1007/s10640-018-0280-6
https://doi.org/10.1007/s10640-018-0280-6
https://link.springer.com/article/10.1007/BF00310019#citeas
https://link.springer.com/article/10.1007/BF00310019#citeas
https://doi.org/10.1007/s10640-022-00686-x
https://doi.org/10.1007/s10640-022-00686-x


A Appendix

A.1 Linearized system

Employing the short-hand notation d := e−
γ
2
(ζS)2 , a := 1 − θ1µ

θ2 , f := AKαL1−α, the
Hamiltonian and first-order conditions may be expressed as

H = u+ λK(daf − δK − cL) + λS(1− µ)σf (19)

uc = λK , λKdaµ = λSσ (20)

λ̇K = −λK(dafK − δ)− λS(1− µ)σtfK + ρλK (21)

λ̇S = −λKdSaf + ρλS (22)

Ṡ = (1− µ)σf (23)

K̇ = daf − δK − cL, (24)

where fK := ∂f
∂K etc. Noting that A,L, σ, θ1 are time-varying parameters, the above system

constitutes a non-autonomous differential-algebraic system. When determining the eigen-
values, the processes governing these time-varying parameters must be taken explicitly
into account.

Case gθ = gσ: limt→∞ µt = const. Linearizing and simplifying at the steady state, the set
of FOC may be expressed as

ĉ ∼= φcλ̂
K

µ̂ ∼= ηµλ̂
S + ηµσ̂ − ηµλ̂

K − ηµκSŜ

˙̂
λK ∼= − (dafK − δ − ρ) λ̂K − dSafK S̃Ŝ − dafKKK̃K̂ − dafKAÃÂ− dafKLL̃L̂

˙̂
λS ∼= − λ̃K

λ̃S
dSafK λ̂K + ρλ̂S − λ̃K

λ̃S
dSafS̃Ŝ − λ̃K

λ̃S
dSafKK̃K̂ − λ̃K

λ̃S
dSafAÃÂ− λ̃K

λ̃S
dSafLL̃L̂

˙̂
S ∼= 0

˙̂
K ∼= − c̃L̃

K̃
φcλ̂

K + dSaf
S̃

K̃
Ŝ + (dafK − δ) K̂ + dafA

Ã

K̃
Â+ (dafL − c̃)

L̃

K̃
L̂

˙̂
A ∼= gAÂ,

˙̂
L ∼= gLL̂,

˙̂
θ1 ∼= gθθ̂1, ˙̂σ ∼= gσσ̂,

where gx = ẋt
xt

, x̂ := x−x̃
x , ηµ :=

aµ
aµµµ̃

> 0, κS := dS S̃
d < 0, φc :=

uc
uccc̃

< 0.
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Case gθ < gσ: limt→∞ µt = ∞. We define ε := (1−µ)σ and substitute µ from the dynamic
system. Linearizing and simplifying at the steady state now gives

˙̂
λK ∼= − (dafK − δ − ρ) λ̂K − dSafK S̃Ŝ − dafKKK̃K̂ − dafKAÃÂ− dafKLL̃L̂

˙̂
λS ∼= − λ̃K

λ̃S
dSafK λ̂K + ρλ̂S − λ̃K

λ̃S
dSafS̃Ŝ − λ̃K

λ̃S
dSafKK̃K̂ − λ̃K

λ̃S
dSafAÃÂ− λ̃K

λ̃S
dSafLL̃L̂

˙̂
S ∼= 0

˙̂
K ∼= − c̃L̃

K̃
φcλ̂

K + dSaf
S̃

K̃
Ŝ + (dafK − δ) K̂ + dafA

Ã

K̃
Â+ (dafL − c̃)

L̃

K̃
L̂

˙̂
A ∼= gAÂ,

˙̂
L ∼= gLL̂,

˙̂
θ1 ∼= gθθ̂1, ˙̂ε ∼=

(
σ̇

σ
+

µ̇

µ

)
ε̂ =

(
gσ +

gθ1 − gσ
1− θ2

)
ε̂,

This system is identical to the system above except for the last equation. That is, instead of
a differential equation for σ̂ there is an equation for ε̂.

A.2 Eigenvalues

Case gθ = gσ: limt→∞ µt = const. The eigenvalues of the linearized system, evaluated at
the CSS, read as

λ1 = 0, λ2 = ρ > 0 (25)

λ3 =
1

2

(
ρ+

√
ρ2 + 4c̃L̃dafKKφc

)
> 0 (26)

λ4 =
1

2

(
ρ−

√
ρ2 + 4c̃L̃dafKKφc

)
< 0 (27)

λ5 = gA < 0, λ6 = gL < 0, λ7 = gθ < 0, λ8 = gσ < 0 (28)

The constancy of c̃L̃
K̃

and adfKKK̃ results from the following observations. 1) Noting
ηfK := fKK

f , the CSS can be expressed as daηfK
f
K = ρ + δ ⇔ da f

K = ρ+δ
ηfK

. From K̂ = 0,

we have c̃L̃
K̃

= daf

K̃
− δ and therefore c̃L̃

K̃
=

ρ+(1−ηfK)δ
ηfK

. 2) Noting ηfKK := fKKK
fK

< 0 we

have fK = fKKK
ηfKK

. Together with da f
K = ρ+δ

ηfK
, one gets dafKKK

ηfKK
= ρ + δ ⇔ dafKKK =

(ρ + δ)ηfKK < 0. 3) From ηfK := fKK
f = α > 0, ηfKK := fKKK

fK
= α − 1 < 0, one obtains

(14) and (15) in the main text.

Case gθ < gσ: limt→∞ µt = ∞. The eigenvalues are the same as before except for λ8,
which now reads as λ8 = gσ +

gθ1−gσ
1−θ2

.
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A.3 Speed of Convergence
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Figure A.1: Instantaneous rates convergence for Kt, St, Qt.

Notes. The instantaneous rates of convergence are defined as ROC := − ẋt
xt−x̃

for xt ∈ {Kt, St, Qt}. The

plot is based on the numerical simulation of the dynamic system. We focus, again, on the case gθ = gσ =

−0.015 as the baseline calibration implies (minor) overshooting of Kt, St, Qt.

A.4 Delayed Climate Policy: Emission Control Rate
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Figure A.2: Delayed climate policy: emission control rate.

Notes. The black (smooth) curve shows the emission control rate according to the social planner’s solution

starting right from the beginning in t = 2020. The remaining curves depict the emission control rates when

implemented in t ∈ {2020, 2035, 2050, ..., 2155}.
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A.5 Future TFP Growth
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Figure A.3: Trajectories under alternative TFP growth assumptions

Notes. The solid trajectory is based on the baseline calibration, assuming A∞
A2020

≈ 3. The dashed

trajectory assumes A∞
A2020

≈ 10. Barrage and Nordhaus (2023) assume TFP is governed by At+1 =

At
1−0.082×exp(−0.0072×5×t)

with A2020 = 5.842. Time step is five years. This process describes less than ex-

ponential growth, the overall increase in TFP is A∞
A2020

≈ 10. The growth rate over the first five year period is

about 0.082 (an annual growth rate of about 0.082/5). It declines at a speed of 0.0072× 5 (an annual speed of

0.0072) to zero.
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