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Transparent Matching Mechanisms∗

Markus Möller

January 4, 2024

Abstract
I study a central authority’s ability to commit to a publicly announced

mechanism in a one-to-one agent-object matching model. The authority an-
nounces a strategy-proof mechanism and then privately selects a mechanism to
initiate a matching. An agent’s observation in form of the final matching has
an innocent explanation (Akbarpour and Li, 2020), if given the agent’s reported
preferences, there is a combination with other agents’ preferences leading to
an identical observation under the announced mechanism. The authority can
only commit up to safe deviations (Akbarpour and Li, 2020)—mechanisms
that produce only observations with innocent explanations. For efficient or
stable announcements, I show that no safe deviation exists if and only if the
announced mechanism is dictatorial. I establish that the Deferred Acceptance
(DA) Mechanism (Gale and Shapley, 1962) implies commitment to stability.
Finally, I show that group strategy-proof and efficient announcements allow
commitment to efficiency only if they are dictatorial.
Keywords: Matching, Transparency, Partial Commitment, Strategy-Proof,
Stability, Efficiency, DA, TTC.
JEL Codes: C78, D47, D82.

1 Introduction

In matching theory the central authority usually appears as an honest and faultless
operator of the matching mechanism. In practice, however, the authority’s conduct

∗Thanks to Alexander Westkamp, Yiqiu Chen, Aram Grigoryan, two anonymous referees and
the co-editor for providing valuable feedback. I acknowledge financial support from the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy
– EXC 2126/1– 390838866. University of Bonn. E-mail: mmoelle2@uni-bonn.de
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can be in conflict with announcements made to participants in advance. For instance,
as a part of a recent bribery affair at U.S. colleges, some officials have used fake
athletic credentials to influence the admissions process in favor of certain applicants.1

Also in the context of public school assignment, dozens of students were wrongly
denied entry to Boston’s most prestigious exam schools in 2020. The assignment
is conducted by Boston Public Schools (BPS), whose officials declared the instance
resulted from failed internal communication. Apparently overseen by BPS’s internal
audit, the deviation was detected by a student’s tutor.2 In spite of an external audit,
a similar case occurred in 2023.3,4

This paper asks to what extent participants can be confident that the authority
sticks to the announcements made. I employ a one-to-one object allocation model
without monetary transfers, where an authority makes a public announcement in form
of a strategy-proof direct mechanism.5 Then, upon receiving agents’ preferences, the
authority privately selects a mechanism to induce a publicly observable matching. I
then adapt the notions of innocent explanations and safe deviations of Akbarpour and
Li (2020). Concretely, an observation in form of the final matching has an innocent
explanation for the observing agent if, given her own preferences, there is a possible
combination of other agents’ preferences that would lead to an identical observation
under the announced mechanism. Furthermore, a mechanism is a safe deviation with
respect to an announcement, if for each agent, each observation produced by the
mechanism has an innocent explanation. An announcement is transparent if it has
no safe deviations. Neither the agents nor the authority are strategic players in my
model. Therefore, different from the commitment criteria studied in Akbarpour and
Li (2020), transparency covers unintentional deviations.6

1https://www.justice.gov/usao-ma/pr/arrests-made-nationwide-college-admissions-scam-alleged
-exam-cheating-athletic.

2https://www.bostonglobe.com/2020/08/31/metro/boston-public-schools-announces-error-exa
m-school-admissions-that-kept-dozens-out-recent-years/

3https://www.bostonglobe.com/2023/04/12/metro/bps-miscalculated-student-gpas-wrongly-inf
orming-students-they-were-eligible-apply-exam-schools/.

4Similarly, in Chicago, various public school officials did not follow announced admissions rules
in the admission year 2016-2017, including instances of privileged treatment, documentation errors
and screening of applicants (Grigoryan and Möller, 2023; Schuler, 2018). Furthermore, in 1995,
the famous National Residency Matching Program (NRMP) failed to follow its promise to use a
mechanism that is not manipulable by residents (Williams, 1995; Roth and Peranson, 1997).

5Strategy-proof direct mechanisms are still highly prevalent in practice and serve as an important
benchmark.

6However, there are interesting cases that go beyond the scope this framework. This applies
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I consider an informational benchmark where agents’ preference rankings over
objects are private information while market features that are harder to hide from
outsiders are common knowledge. Specifically, the set of agents, the set of objects
and all scores are publicly known and each agent observes the final matching. In
fact, while a student’s reported ranking over schools typically remains confidential
even after the matching has been determined, her final assignment and traits such as
her walk-zone, or particular abilities can be hard to conceal. Furthermore, whereas
students may not know their exact rank number on a school’s or college’s priority
list, they can have a good idea about their relative ranking. Except Proposition 2
all results for priority-based allocation transfer to a setting that is closer to common
features of public school assignment (Abdulkadiroğlu and Sönmez, 2003) and college
admission (Balinski and Sönmez, 1999).7

I show that the unique strategy-proof and stable mechanism, known as the Deferred
Acceptance (DA) mechanism (Gale and Shapley, 1962), is transparent if and only
if it is a serial dictatorship (Satterthwaite and Sonnenschein, 1981; Svensson, 1994)
(Proposition 1). I then establish that strategy-proof and efficient mechanisms are
transparent if and only if they are equivalent to a sequential dictatorship (Pápai, 2001;
Ehlers and Klaus, 2003; Pápai, 2000) (Theorem 2). It is well-known that sequential
dictatorships satisfy various desirable properties. For instance, Pycia and Troyan
(2023) recently established that sequential dictatorships are among the few candidates
that achieve high standards for strategic simplicity.

I also ask whether weaker forms of transparency can be achieved for non-dictatorial
mechanisms. Specifically, I explore whether the authority can commit to desirable
properties of her announcement. For example, in applications such as public school
assignment or college admission properties such as stability or efficiency are usually
perceived as desirable. Yet whether the authority can commit to induce a particular
property has not been explicitly studied. I show that a deviation from DA is safe
if and only if the deviation is a stable mechanism with respect to the underlying
priorities of the market (Theorem 1). Furthermore, a group strategy-proof8 and

in particular to certain forms of bribery that affect the agents’ private information or where the
authority can pay bribes to agents.

7More concretely, these results apply in a setup, where each agent knows her own scores at each
object and only observes her own assignment along with a set of object-specific cutoffs disclosed by
the authority. Given a final assignment, the cutoff at an object is the score of the agent with lowest
score assigned to this object.

8A mechanism is group strategy-proof if there is no group of agents that can generate weakly
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efficient mechanism has no inefficient safe deviation if and only if it is a sequential
dictatorship (Theorem 3).

Finally, I consider a special case of my model where the authority commits to use
a strategy-proof mechanism and agents are strategic. I compare the transparency
of DA and the Top Trading Cycles (TTC) mechanism (Shapley and Scarf, 1974;
Abdulkadiroğlu and Sönmez, 2003) that have both been touted as candidates for
assigning students to Boston Public Schools in 2005.9 I show that while DA is
transparent in this setup, TTC is transparent if the priority structure satisfies an
acyclicity condition. The condition is weaker than similar conditions that characterize
TTC regarding various desirable properties. I also provide necessary conditions for
TTC to be transparent in this setup.

Related Work

This paper is among the first to relax the authority’s full commitment assumption in
the context of matching markets. However, there are some recent studies that offer
complementary perspectives on the topic.

Independent from this work, Grigoryan and Möller (2023) follow a non-binary
approach to study auditability in allocation problems. They introduce an auditability
index based on the minimum-sized group of individuals whose information is sufficient
to detect any deviation. While under the Immediate Acceptance (IA) mechanism
there are two agents whose information is enough to detect any deviation, under the
DA and TTC some detections need access to all agents’ information. Interestingly, in
Grigoryan and Möller (2023) sequential dictatorships can be hard to audit. However,
the results on sequential dictatorships are not logically connected.

Hakimov and Raghavan (2023) introduce a form of transparency in allocation
problems that is always achievable through sequential public disclosure of interim
cutoffs and private feedback.10 They show that DA, TTC and IA can be induced
in a transparent way with a simple sequential protocol that asks each agent to only
report one object at a time. A key difference is that in the current paper, mechanisms
are static, communication between agents and authority remains private and that

better assignments for all members in the group by misrepresenting their preferences such that at
least one agent in the group strictly profits from the misrepresentation.

9The committee ultimately chose DA, arguing that ”the behind the scenes mechanized trading [in
TTC] makes the student assignment process less transparent.” (Leshno and Lo, 2020).

10However, neither the private feedback nor the cutoffs alone are sufficient for transparency.
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no information is disclosed by the authority. Thus, transparency is a feature of the
mechanism, whereas in Hakimov and Raghavan (2023) transparency is a consequence
of designing the general information structure.11 More generally, different from these
concurrent works, I identify necessary and sufficient conditions for entire classes of
strategy-proof direct mechanisms and examine commitment to desirable properties.
Moreover, I consider a special case of my model where agents’ strategic behavior is
taken into account.12

Akbarpour and Li (2020) and Woodward (2020) study partial commitment in the
context of auctions. Akbarpour and Li (2020) develop a general partial commitment
framework with sequential private communication between the authority and agents
and focus on Bayes-Nash implementation with imperfect information. The key
difference to the notions of Akbarpour and Li (2020) and Woodward (2020) is that
transparency does not require incentive compatibility for the authority with respect
to a known objective function. In fact, in their works, all deviations are intentional
by design.13

More broadly this paper contributes to our understanding of the structure and
verifiability of matching mechanisms (Gonczarowski and Thomas, 2023; Hakimov
and Raghavan, 2023; Gangam et al., 2023) and connects to the literature which
models limited commitment as measurable with respect to agents’ observations on
final outcomes (Dequiedt and Martimort, 2015; Baliga et al., 1997; Bester and Strausz,
2000, 2001).

The rest of this paper is organized as follows. Section 2 introduces the basic model
along with the partial commitment framework. Section 3 analyzes the transparency
characteristics of stable mechanisms. Section 4 contains the analysis of efficient
mechanisms. Section 5 studies priority-based allocation with partial commitment and
strategic agents.

11Note that in both Grigoryan and Möller (2023) and Hakimov and Raghavan (2023) no agent has
ex-ante information about the scores of the other agents and only observes her own assignment.

12In the context of Arrovian efficiency, Pycia and Ünver (2023) show that for group strategy-proof
and Pareto efficient mechanisms any deviation could be unveiled by comparing a single agent’s
relative ranking of the outcome and a challenger alternative. Yet the identity of the agent and
the challenger alternative are usually not known. Thus, their notion is substantially weaker than
transparency.

13The notions of Akbarpour and Li (2020) and Woodward (2020) are very natural for the context
of auctions, since auctioneers are often interested in maximizing revenue. Thus, a sophisticated
bidder may have a clear picture of the auctioneer’s incentives.
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2 Preliminaries

2.1 The Model

Let I be a set of agents and X ∪ {∅} a set of indivisible objects, where ∅ denotes the
outside option for agents. Throughout the paper, I fix the set of agents and objects
and assume |X| ≥ 2 and |I| ≥ 2. Let i, j, k denote generic agents in I and let x, y, z

refer to generic objects in X ∪ {∅}.
Each object x ∈ X has a vector of scores sx = {sxi }i∈I , where sxi ∈ R++ is i’s score

at object x. We assume that sxi 6= sxj for any i, j ∈ I and any x ∈ X, and we say that
for each pair of agents i, j ∈ I, i has higher priority at x than j if and only if sxi > sxj .
That is, for each object x, the object’s scores induce a strict priority ranking over I.
For each i ∈ I, let si = {sxi }x∈X be the vector of scores assigned to agent i. Let a
score (or priority) structure s = (si)i∈I be a collection of scores for each agent and let
s−i = (sj)j∈I\{i} be a collection of scores for agents in I \ {i}. Set ℘ as the domain of
all possible priority structures. For the rest of this paper, fix an arbitrary priority
structure s ∈ ℘.

Each agent i ∈ I has a strict preference relation Pi over X ∪ {∅}, where Ri is
the corresponding weak preference relation.14 For each x ∈ X and i ∈ I, object x is
acceptable if xPi∅ for i and x is unacceptable for i if it is not acceptable. I refer to
Pi as agent i’s preferences and to P ≡ (Pi)i∈I as a preference profile. For each i ∈ I,
let Pi be the domain of all possible preferences and let P = ×i∈IPi be the domain of
all preference profiles. For any J ⊂ I, PJ = (Pj)j∈J is a preference profile for agents
J , where PJ ≡ ×j∈JPj is the corresponding domain. Denote with −i the set of all
agents except agent i.

A matching is a function µ : I → X ∪ {∅} under which each object x ∈ X ends up
with at most one agent and any agent i ∈ I, who is not assigned to some object x ∈ X,
is assigned to ∅. Let M collect the set of all possible matchings and for each µ ∈ M,
denote with µi the object that is assigned to agent i ∈ I. For any µ ∈ M, let µX be
the set of objects from X assigned to agents under µ and define µI symmetrically.

Consider some matching µ ∈ M and some preference profile P ∈ P . The matching
µ is non-wasteful if there exists no i ∈ I and no object x ∈ X such that xPiµi and x

is unassigned under µ. Call the matching µ individually rational if, for each i ∈ I,
14Hence Ri is a complete, transitive and anti-symmetric binary relation. For each pair of objects

x, y ∈ X ∪ {∅}, I write xRiy if either xPiy or x = y.
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µiRi∅. The matching µ is blocked if there exists a pair of agents i, j ∈ I and an object
x ∈ X such that xPiµi, µj = x and sxi > sxj . A matching µ is stable (with respect
to priority structure s) if it is not blocked, individually rational and non-wasteful.
Let Σs(P ) be the set of stable matchings for preference profile P (with respect to s).
Next, let a matching ν ∈ M weakly Pareto dominate matching µ if, for each i ∈ I,
νiRiµi, and say that ν strictly Pareto dominates µ, if ν weakly Pareto dominates µ

and there exists an agent j ∈ I with νjPjµj. The matching µ is (Pareto) efficient if
there exists no matching that strictly Pareto dominates it.

A mechanism is a function g : P → M from preference profiles into matchings.
Throughout, we restrict attention to direct mechanisms. For each P ∈ P, let gi(P )

denote the assignment of agent i ∈ I under g(P ). Let D be the set of all direct
mechanisms. Consider the following standard properties given any mechanism g ∈ D.
The mechanism g is individually rational, whenever it only leads to individually
rational outcomes. If g produces only non-wasteful matchings then g is said to be
non-wasteful. The mechanism g is stable (with respect to s) if it produces a stable
matching with respect to s for each preference profile. A mechanism g is (Pareto)
efficient if it only induces efficient matchings.

I proceed with two standard incentive notions. Formally, define a mechanism
g ∈ D as strategy-proof if, for all P ∈ P, there is no i ∈ I and P ′

i ∈ Pi such that
gi(P

′
i , P−i)Pigi(P ). Denote with SP ⊂ D the set of strategy-proof direct mechanisms.

A mechanism g ∈ D is group strategy-proof if, for all P ∈ P, there exists no J ⊆ I

and P ′
J ∈ PJ such that gi(P

′
J , P−J) Ri gi(P ) for each i ∈ J , and gj(P

′
J , P−J) Pj gj(P )

for at least one j ∈ J .

2.2 A Transparency Framework

Consider a central matching authority that makes an announcement g ∈ SP to agents
I. Given announcement g, the authority privately selects a mechanism g̃ from a given
set of mechanisms G ⊆ D. Then, given any preference profile P ∈ P , the induced final
matching g̃(P ) is observable for all agents. Formally, given a preference profile P ∈ P
and an agent i ∈ I, observation oi(g̃(P )) consists of agent i’s preference ranking Pi

and the final matching g̃(P ). That is, for each i, preferences P−i are not revealed to
agent i. Refer to g̃ as a deviation from announcement g, if there exists a preference
profile P ′ ∈ P such that g̃(P ′) 6= g(P ′).

7



Next, I formalize when an agent can infer that the authority has deviated from its
announcement. From now on, I assume that agents know I,X, s, and how g maps
preference profiles into matching outcomes. Then, given preference profile P ∈ P , we
say that observation oi has an innocent explanation for i, if there exists P ′

−i ∈ P−i

such that oi = oi(g(Pi, P
′
−i)) (Akbarpour and Li, 2020). Hence agent i’s observation

has an innocent explanation if i can make the same observation under announcement
g. A deviation g̃ ∈ G is safe if, for each i ∈ I and each P ∈ P, observation oi(g̃(P ))

has an innocent explanation for i (Akbarpour and Li, 2020). In words, a deviation is
safe if each observation produced by the deviation has an innocent explanation for the
agent who makes the observation. The main analysis will be based on the following
criterion.

Definition 1. Announcement g is transparent if it has no safe deviations.

In other words, transparency requires that any deviation can be detected by at
least one agent. Until Section 5, G is the set of direct mechanisms.

3 Stable Mechanisms

This section explores transparency of stable mechanisms. It is well known that any
such mechanisms can be induced with the (agent-proposing) DA. Denote the DA

mechanism that operates on s with DAs.
As a preliminary work, I first show that stability can be verified by agents

independently—a feature that does not apply for the efficiency criterion studied in
Section 4. Fix a matching µ ∈ M and a preference profile P ∈ P . Given any agent
i ∈ I, let Σs(Pi) =

⋃
P̃−i∈P−i

Σs(Pi, P̃−i). Thus, the following lemma is immediate.

Lemma 1. For each P ∈ P, Σs(P ) =
⋂

i∈I Σ
s(Pi).

We are ready for the first main result of this paper.

Theorem 1. A deviation from DAs is safe if and only if it is stable with respect to s.

Proof. To prove the only if part of the statement, we rely on Lemma 1. Given
announcement DAs, consider an arbitrary deviation g̃ that is not stable with respect
to s. To show that g̃ is not safe, take any P ∈ P for which g̃(P ) /∈ Σs(P ). By
Lemma 1, there exists i ∈ I such that g̃(P ) is not in Σs(Pi). Now consider agent
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i’s observation oi(g̃(P )). By Lemma 1 and the stability of DAs with respect to s,
for any P ′

−i ∈ P−i, we have DAs(Pi, P
′
−i) ∈ Σs(Pi). Thus, i cannot have an innocent

explanation for oi(g̃(P )). Hence, g̃ is not safe.
Moving to the if part of the statement, consider an arbitrary deviation g̃ from

DAs that is stable with respect to s. One has to show that g̃ is safe by constructing
an innocent explanation for each agent and each of her observations under g̃. Take an
arbitrary i ∈ I, an arbitrary P ∈ P and consider the associated observation oi(g̃(P ))

under the deviation. To show that oi(g̃(P )) has an innocent explanation, consider the
preference profile P ′

−i ∈ P−i where for each j 6= i, j’s top choice on P ′
j is g̃j(P ). Since

g̃(P ) ∈ Σs(P ) also g̃(P ) ∈ Σs(Pi, P
′
−i). For each agent j 6= i, g̃j(P ) is the top-choice

and thus, since DAs implements the agent-optimal stable matching, we must have
g̃(P ) = DAs(Pi, P

′
−i). Thus, oi(g̃(P )) has an innocent explanation.

As i and P were chosen arbitrarily, each agent has an innocent explanation for
each of her observations under g̃. Thus, g̃ is a safe deviation. Finally, since the choice
of g̃ among the stable mechanisms was arbitrary, the proof is complete.

Interestingly, Theorem 1 is useful to unveil further transparency features of DAs

(see Section 5). For instance, a direct consequence of Theorem 1 is that DAs is
transparent if and only if there exists a unique stable matching in Σs(P ) for each
P ∈ P. However, as shown in the following, this implies that DAs is a serial
dictatorship from Satterthwaite and Sonnenschein (1981) and Svensson (1994).15

Clearly, in case of DAs, this means that each object’s priority scores must induce the
same priority ranking over agents.

Proposition 1. DAs is transparent if and only if DAs is a serial dictatorship.

Proof. See Appendix A.

However, Theorem 1 also implies that the authority’s scope to deviate is substan-
tially limited even if DAs is no serial dictatorship.

Theorem (Lone Wolf Theorem (McVitie and Wilson, 1970)). For any given preference
profile P , the set of assigned objects and agents is the same across all matchings in
Σs(P ).

15A mechanism g ∈ D is a serial dictatorship if there exists a fixed ordering over agents, such that
upon following the ordering, each agent is assigned to the most preferred object that is still available.
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Thus, together with Theorem 1 we reach the following corollary.

Corollary 1. Any safe deviation from DAs assigns the same agents and the same
objects as DAs.

In the remainder of this section, I provide a brief intuition on how the results
generalize to a setup closer to the features of public school assignment (Balinski and
Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003). Specifically, I assume that each
agent’s observation consists of her own assignment, there is no ex-ante information on
other agents’ scores and the objects’ capacities are publicly known. In addition, the
authority publicly discloses a score that is promised to correspond to the object’s cutoff
(score).16,17 First, disclosing scores ensures that agents can verify that the possible
underlying final matchings are not stable given the agents’ individually known scores.
Thus, any such deviation would be detected. Second, an object’s disclosed score
cannot be higher than its cutoff, since otherwise the agent with the lowest score
assigned to this object has no innocent explanation. Finally, if an object’s disclosed
score is lower than its cutoff, then every agent has an innocent explanation if and
only if no agent blocks any matching compatible with the disclosed scores. Thus, the
arguments in the proof of Theorem 1 apply and as such the remaining results follow
immediately.

4 Efficient Mechanisms

This section studies the transparency features of efficient mechanisms. I first illustrate
that there exist inefficient safe deviations for some efficient announcements. As
a motivation for such a deviation, consider an authority in the context of public
school assignment that wants to satisfy certain distributional constraints (e.g., equal
distribution of different genders, meeting some regional quota, or other socioeconomic
considerations) that are at odds with efficiency.18 Thus, a reasonable scenario might

16However the authority discloses a score for an object, if and only if, the object has filled its
capacity. For a given matching, the cutoff (score) at an object is the lowest object-specific score
among all agents assigned to this object.

17Alternatively, the results hold, if agents know the set of agents’ feasible scores without personal
identifiers and the authority promises to disclose cutoffs for all objects. The cutoff at an object is
zero, if it does not fill its capacity. A reasonable example is a setting where agents’ scores correspond
to the agents’ ranks in the objects’ ranking.

18See, for instance, the work on matching under regional constraints (Kamada and Kojima, 2015),
affirmative action (Abdulkadiroğlu and Sönmez, 2003); (Abdulkadiroğlu et al., 2005); (Kojima, 2012);
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be that the authority initially advertises an efficient mechanism to boost participation,
but then deviates in order to comply with its hidden distributional objectives. For
illustrative purposes, I keep the size of the following example small.

Example 1. Let I = {i, j} and X = {x, y} and consider s such that i has highest
priority for y and j has highest priority for x. The authority announces the TTC

mechanism g that operates on priority structure s. This mechanism is known to be
efficient and strategy-proof (Roth, 1982). Consider the following preferences:19

Pi P ′
i Pj P ′

j

x y y x
y x x y
∅ ∅ ∅ ∅

Given announcement TTCs, the authority selects mechanism g̃ ∈ G, where

• g̃(P ) = {(i, y), (j, x)} and;

• g̃(P̃ ) = TTCs(P̃ ), for all P̃ ∈ P \ {P}.

Note that g̃ is a deviation from TTCs and that g̃ is not efficient, since TTCs(P ) 6= g̃(P )

and agents prefer to swap their assigned objects given P .
To show that g̃ is a safe deviation, consider the following innocent explanations:

First, preferences P ′
j provide an innocent explanation for oi(g̃(P )) = oi(TTC

s(Pi, P
′
j)).

Symmetrically, P ′
i leads to an innocent explanation for oj(g̃(P )) = oj(TTC

s(P ′
i , Pj)).

Finally, under any other preference profile the matchings under TTCs and g̃ coincide.
Thus, g̃ is safe and not efficient.20

Next, I introduce sequential dictatorship mechanisms—a class of Pareto efficient
and strategy-proof mechanisms known from Pápai (2001), Ehlers and Klaus (2003) and
Pápai (2000) that is central for the main result of this section. For each X̃ ⊆ X ∪ {∅}
let X̃C be the complement of X̃. For any X̃ ⊆ X ∪ {∅}, i ∈ I and Pi ∈ Pi, let

Hafalir et al. (2013), matching under complex constraints (Westkamp, 2013), or diversity constraints
(Ehlers et al., 2014).

19The preference relations in the table are read vertically. Thus, for example, Pi as stated means
that i prefers x to y and y to the outside option.

20Note that g̃ is not strategy-proof. For instance, if agent i ranks only x acceptable, then i is
assigned to y, whenever j reports Pj . Thus, in a setting where the authority deviates intentionally, i
has an incentive to misreport her preferences under g̃. I address related questions in Section 5.
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Topi(Pi, X̃) = {x ∈ X̃C ∪ {∅}| ∀x′ ∈ X̃C ∪ {∅}, xRix
′}

be agent i′s most preferred object in X̃C ∪ {∅}. Let bijection π : {1, . . . , |I|} → I be
an ordering over agents I and collect in Π the set of all possible orderings on I. Given
any π ∈ Π, let for each m ∈ {1, . . . , |I|}, be π(m) the mth-dictator at π.

Definition 2. A mechanism g ∈ D is a sequential dictatorship, if there is a set of
orderings Πg ⊆ Π such that the following conditions are satisfied:

(a) For each P ∈ P , πP ∈ Πg is an associated ordering such that

gπP (1)(P ) = TopπP (1)(PπP (1), ∅)

and for each n ∈ {2, . . . , |I|}

gπP (n)(P ) = TopπP (n)(PπP (n),∪n−1
l=1 gπP (l)(P )).

(b) Given each pair P ′, P̃ ∈ P ,

(b1) we have πP ′(1) = πP̃ (1).

(b2) if m′ < |I| is such that for each n′ ∈ {1, . . . ,m′}, πP ′(n′) = πP̃ (n
′) and

gπP ′ (n′)(P
′) = gπP̃ (n′)(P̃ ), then πP ′(m′ + 1) = πP̃ (m

′ + 1).

In words, condition (a) recursively defines the matchings such that, for each
preference profile, the mth-dictator is assigned to her most preferred object still left
after all previous dictators have been assigned. Condition (b1) ensures that the first
dictator is the same under each ordering and condition (b2) requires that the identity
of the next dictator only depends on the assignments of previous dictators.

We are ready for the first result of this section.

Theorem 2. Take any efficient g ∈ SP. Then, g is transparent if and only if it is a
sequential dictatorship.

Proof. See Appendix C.

Intuitively, under a sequential dictatorship, at each step, at most one agent has
the guarantee to select her favorite object among the remaining ones. Observing the
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assignment of the first dictator reveals the identity of the second dictator, whose
assignment then reveals the identity of the third dictator and so forth. If the authority
deviates from some preference profile, then following the correct ordering of dictators,
there must be a first agent who infers the stage she must have been the dictator
while she is not assigned to her favorite choice of objects she should have been able
to choose from. This agent cannot have an innocent explanation for her observation.
Accordingly, the deviation is not safe.

The proof to reach necessity is divided into arguments for those candidates are that
group strategy-proof and those that are strategy-proof but not group strategy-proof.
Since the arguments for group strategy-proof candidates are central to the next result
as well, I briefly explain the basic line of reasoning here. Concretely, consider again how
I constructed the safe deviation in Example 1. One can essentially use the general idea
of the construction for all efficient mechanisms which are group strategy-proof and not
equivalent to a sequential dictatorship. I rely on a characterization by Pycia and Ünver
(2017) saying that any efficient and group strategy-proof mechanism is equivalent to
a Trading Cycles (TC) Mechanism. Each TC mechanism can be implemented via
the TC Algorithm. Under each step of this algorithm, each unmatched object points
to an unmatched agent and each unmatched agent points to an unmatched object.
Once a cycle forms, agents in the cycle are assigned to the object they point to.21

If a TC mechanism is not a sequential dictatorship, then at some step of the TC
algorithm, two different agents are pointed by objects. Being pointed by an object
is essentially a guarantee to not getting an object that is worse, than the one being
pointed by. Thus, once reaching this step, the authority can then exploit agents’
guarantees. In particular, consider the case where the two agents prefer each others’
guaranteed objects most and the own guarantee is the second choice. Specifically,
instead of honestly assigning agents to their top choices the authority assigns them to
their second choices, whereas innocent explanations follow from other agents’ possible
preference for their own guarantees. I refer to Appendix B for the formal statement
of the characterization by Pycia and Ünver (2017) along with a description of the TC
algorithm.

The just outlined arguments provide an intuition for the proof of the following
result.

21The idea of the TC algorithm builds on the idea of the Top Trading Cycles (TTC) Algorithm.
However, pointing rules are more complex under TC compared to TTC.
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Theorem 3. If g ∈ SP is efficient and group strategy-proof, then the following three
statements are equivalent:

1. g is transparent.

2. g is a sequential dictatorship.

3. g has only efficient safe deviations.

Proof. See Appendix C.

With very similar arguments, a characterization akin to Theorem 2 and Theorem 3
holds for the entire class of TC mechanisms in the many-to-one framework. Also, any
efficient mechanism that is not group-strategy-proof is not transparent.22 The example
below illustrates that group strategy-proofness cannot be relaxed to strategy-proofness
in the statement of Theorem 3.

Example 2. Let I = {i, j, k} and X = {x, y}. Denote P̂ = {P̂ ∈ P | P̂i = Pi}, where
Pi : x, y, ∅ and consider g such that:

1. Given any P ′ ∈ P \ P̂ , agents select their favorite objects among the remaining
ones according to ordering i,j,k.

2. Given any P ∈ P̂ , agents select their favorite objects among the remaining ones
according to ordering i,k,j.

Clearly, g strategy-proof and efficient. To see that g is not group-strategy proof,
consider a preference profile P̂ ∈ P̂ such that P̂i′ : x, y, ∅ for all i′ ∈ I, and a preference
profile P ′ /∈ P̂ such that P ′

i = x, ∅, y and where j and k have the same preferences
as under P . Then, gi(P̂ ) = gi(P

′) with P̂i 6= P ′
i , while gk(P̂ ) = y, gj(P̂ ) = ∅ and

gj(P
′) = y, gk(P ′) = ∅. Thus, i is assigned to x for both preference profiles and j is

strictly better of under preference profile P ′. Since only the preferences for i have
changed across P̂ and P ′, g is not group strategy-proof.

Next, I show that there is no safe deviation from g that is inefficient. First, it
is clear that no deviation g̃ is safe, if there exists P ∈ P such that gi(P ) 6= g̃i(P ),
since i must always get her top-choice. Second, for every profile P ∈ P , under which

22TC mechanisms remain efficient and group strategy-proof in the many-one environment (Pycia
and Ünver, 2011; Abdulkadiroğlu and Sönmez, 2003).
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i does not rank x as her top-choice, similar arguments imply that j cannot have an
innocent explanation for oj(g̃(P )), whenever gj(P ) 6= g̃j(P ). Therefore, g̃ is safe only
if g̃(P ) = g(P ), for all P ∈ P \ P̂ .

Hence, if g̃ is not efficient, then there must exist P ′ ∈ P̂ such that g̃(P ′) is not
efficient: Now, recall that g̃ can only be safe, if g̃ is non-wasteful and individually
rational and if j and k would agree on their relative ranking of y and ∅, then any
non-wasteful g̃(P ′) is efficient. It is also clear that g̃(P ′) cannot be individually
rational if j and k both rank y unacceptable. Thus, in the remaining case exactly one
of j and k must rank y unacceptable. However, this also means that for j or k, the
matching g̃(P ′) is not individually rational.

As a remark, one can show that if |X| < |I|, similar arguments work for markets of
any size and with mechanisms that are not dictatorial. By contrast, if |X| ≥ |I|, then
for different variants of TC mechanisms that are not group strategy-proof, inefficient
safe deviations can be easily found by extending the key ideas sketched for the proof
of the main results.

5 Strategic Agents

In this final section, the authority ex-ante commits to use a strategy-proof mechanism.
This means that given announcement g, any deviation g̃ from g is strategy-proof
itself (i.e the set of feasible deviations G is the set of strategy-proof mechanisms).
From now on, all deviations by the authority are intentional and agents are strategic.
The latter assumption is motivated by the idea that if all deviations are intentional,
sophisticated agents might take the authority’s incentives into account. Within this
section, I focus on the transparency features of DAs and TTCs. Starting with DAs,
the following result is immediate.

Corollary 2. DAs is transparent.

The result follows from Theorem 1 and the fact that DAs is outcome equivalent
to any mechanism that is strategy-proof and stable with respect to s.23

23Corollary 2 describes sufficient conditions for TTCs to be transparent given the well-known
equivalence between DAs and TTCs for Kesten-acyclic priority structures (Kesten, 2006). A priority
structure is Kesten-acyclic (Kesten, 2006), if there exist no three agents i, j, k ∈ I and no two objects
x, y ∈ X all distinct, such that: sxi > sxk > sxj and syj > syi , s

y
k. This also holds in the many-to-one

framework of Abdulkadiroğlu and Sönmez (2003) by adding the scarcity condition of Kesten (2006).

15



Next, I provide necessary conditions for TTCs to be transparent. We need the
following definition.

Definition 3. A full replacement cycle consists of four agents i, j, k, l ∈ I and two
objects x, y ∈ X all distinct, such that:

(1) sxi > sxk > sxj , s
x
l and syj > syl > syi , s

y
k, or

(2) sxi > sxk, s
x
l > sxj and syj > syl , s

y
k > syi .

As stated below, a full replacement cycle in s means that TTCs has a strategy-proof
safe deviation.

Proposition 2. If s has a full replacement cycle, then TTCs is not transparent.

Proof. See Appendix D.

Basically, if s contains a full replacement cycle as described in Definition 3, then
there are situations under the TTC algorithm, where a trading cycle forms between i

and j for the objects x,y and the authority can deviate to a strategy-proof g̃ as follows:
Under deviation g̃ from TTCs there are preference profiles, where i is assigned to x

and j to y although they would prefer to swap their assignments. The full replacement
cycle ensures that k and l have scores at x and y high enough to replace i and j at x

and y, in case that i ranks only y and j ranks only x acceptable. By contrast, if no
such full replacement cycle would exists, i and j could force the authority to assign i

to y and j to x as done under TTCs. Otherwise, g̃ would be wasteful and hence not
safe. Accordingly, deviation g̃ is not strategy-proof for i or j.

Next, the condition introduced below ensures that there are no full replacement
cycles in s.

Definition 4. Priority structure s has the imperfect replacement property if, for any
three agents i, j, k ∈ I, there exist no two objects x, y ∈ X, all distinct such that:

(1) sxi > sxk, s
x
l > sxj ,

(2) syl > syi , s
y
j , s

y
k or syi , s

y
j , s

y
k > syl .

The condition is weaker than some acyclicity notions that characterize TTCs

with regard to various desirable properties (Kesten, 2006; Ergin, 2002). Furthermore,
if the imperfect replacement property is satisfied, no safe deviation from TTCs is
strategy-proof.
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Proposition 3. If s has the imperfect replacement property, then TTCs is transparent.

Proof. See Appendix D.

Interestingly, the domain of priority structures with the imperfect replacement
property is richer than the domains for other acyclicity notions on a natural dimension.
In particular, the acyclicity conditions of Kesten (2006) and Mandal and Roy (2022)
are not satisfied, if TTCs allows for top-trading-cycles that contain strictly more
than two agents.24 This is not true for the imperfect replacement property, since
Proposition 3 implies that it is satisfied for all markets with three agents and three
objects.

Appendix A Proof of Proposition 1

(⇐) If DAs is a serial dictatorship then for given any pair of agents i, j and objects
x,y, we have sxi > sxj if and only if syi > syj . Given any P ∈ P , following the ordering
of the induced score ranking for some x ∈ X, for each n ∈ {1, . . . , |I|}, the nth-ranked
agent is guaranteed her top choice among the remaining objects after all previous
agents in line have left.25 Hence for each P ∈ P it is clear that Σs(P ) is a singleton.
Therefore, Theorem 1 implies that there exists no safe deviation from DAs and thus
DAs is transparent.
(⇒) Suppose that DAs is not a serial dictatorship. By definition, this means that
there exist two agents i, j ∈ I and two objects x,y such that sxi > sxj and syj > syi .

Denote I ′ = I \ {i, j} and let preference profile PI′ ∈ PI′ be such that for each
k ∈ I ′, Pk ranks ∅ as the top choice and the ranking below ∅ is specified arbitrarily.
Consider the following preferences for agents i and j.

Let Pi, P
′
i ∈ Pi be described by

• xPiy and for all x′ ∈ X ∪ {∅} \ {x, y}: yPix
′ and

24A priority structure is strongly-acyclic (Mandal and Roy, 2022), if there exist no three agents
i, j, k ∈ I and three objects x, y, z ∈ X all distinct, such that sxi > sxk, s

x
j as well as syj > syi , s

y
k

and szk > szi , s
y
j . Strong acyclicty characterizes priority structures for which TTCs is obviously

strategy-proof (Li, 2017; Mandal and Roy, 2022; Troyan, 2019). Yet a violation of the imperfect
replacement property is neither weaker nor stronger than the acyclicity conditions from Mandal and
Roy (2022).

25The first ranked agent must receive her top choice under any stable matching in Σs(P ). Next,
the second ranked agent receives, under any stable matching in Σs(P ), her top choice among objects
once the first agent left, and so forth.
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• yP ′
ix and for all x′ ∈ X ∪ {∅} \ {x, y}: xP ′

ix
′.

Similarly, for agent j let the preferences Pj, P
′
j ∈ Pj be

• yPjx and for all x′ ∈ X ∪ {∅} \ {x, y}: xPjx
′ and

• xP ′
jy and for all x′ ∈ X ∪ {∅} \ {x, y}: yP ′

jx
′.

Next, I construct a safe deviation g̃ ∈ G from DAs. For profile P = (Pi, Pj, PI′)

suppose that g̃(P ) yields g̃i(P ) = y, g̃j(P ) = x, and for all k ∈ I ′, g̃k(P ) = ∅. Now
consider g̃ such that

∀P ′ ∈ P \ {P} : g̃(P ′) = DAs(P ′).

It is simple to check that the DA algorithm yields DAs
i (P ) = x, DAs

j(P ) = y, and
for all k ∈ I ′, DAs

k(P ) = ∅. Thus, g̃ is a deviation.
It remains to show that g̃ is safe. Thus, each observation possibly made under the

deviation g̃ must have an innocent explanation for the observing agent. Except for
preference profile P , any observation has an innocent explanation for the respective
agent, since observations produced by the deviation are identical to those under the
announcement DAs.

To complete the proof, we need for each i′ ∈ I an innocent explanation for her
observation oi′(g̃(P )). It is easily checked that one reaches

DAs(P ′
i , Pj, PI′) = DAs(Pi, P

′
j , PI′) = g̃(P ).

from which one can see that for each agent i′ ∈ I, the observation oi′(g̃(P )) has an
innocent explanation. Hence g̃ is a safe deviation and DAs is not transparent.

Appendix B Trading Cycles and Characterizations
of Group Strategy-Proofness

In this section, I introduce Trading Cycles (TC) Mechanisms (Pycia and Ünver, 2017)
and Pycia and Ünver (2014) together with the main characterization of group strategy-
proof and Pareto efficient mechanisms.26 I provide an additional characterization

26I augment the description of Pycia and Ünver (2017) to the setting with outside options
as described in (Pycia and Ünver, 2017, Supplement, p.5) and Pycia and Ünver (2014). The
characterization of group strategy-proof and Pareto efficient mechanisms presented at the end of this
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of group strategy-proof mechanisms by Pápai (2000) that has been extended to the
setting with outside options by Pycia and Ünver (2014) that will be useful for the
proofs of Theorem 2 and Theorem 3.

Starting with some necessary terminology, a submatching for J ⊆ I is a matching
σ : J → X ∪ {∅} restricted to agents J . The set of possible submatchings is S and let
M̂ ≡ S \M. Denote with σI the set of agents assigned under submatching σ ∈ S and
with σX the set of objects from X that are matched under submatching σ. Moreover,
let Îσ ≡ I \ σI and let X̂σ ≡ X \ σX be the set of unmatched agents and objects from
X under σ, respectively. Note that an agent does not belong to the set of unmatched
agents if she is assigned to the outside option. Denote the empty submatching with
σ∅. The set of submatchings is ordered if one associates each submatching with its
graph: for any σ, σ′ ∈ S, σ ⊂ σ′ if and only if each agent-object pair matched under
σ is also matched under σ′.

The TC algorithm operates on a well-defined control right structure on the set of
submatchings, which is defined as follows.

Definition 5. A structure of control rights is a collection of mappings

(c, b) ≡ {(cσ, bσ) : X̂σ → Îσ × {owner, broker}}σ∈M̂

That is, for a given submatching σ and an unmatched object x, the mapping cσ

appoints the unmatched agent cσ(x) as the unique controller of x. The type of control
is determined by bσ. The agent cσ(x) owns x at σ if bσ(x) = owner and cσ(x) brokers
x at σ if bσ(x) = broker. In the former case, call an agent an owner of x and in the
latter case call an agent a broker of x. Refer to x as the owned object or brokered
object, respectively. Note that the outside option is neither owned nor brokered.

The control right structure has to satisfy several consistency conditions to ensure
that the induced mechanism is group strategy-proof and efficient. I will discuss
some of these conditions when explicitly needed in the proof of Theorem 3. The
interested reader is kindly referred to an excellent discussion and interpretation of
these conditions in Pycia and Ünver (2017) and Pycia and Ünver (2014). The version
depicted below is from Pycia and Ünver (2014).

section extends to the setting with outside options according to (Pycia and Ünver, 2017, Supplement,
p.6) and Pycia and Ünver (2014).
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Definition 6. A control right structure (c, b) is consistent if each of the following
conditions is satisfied. For any σ ∈ M̂

(C1) there is at most one brokered object at σ.

(C2) if i is the only unmatched agent at σ, then i owns all unmatched objects at σ.

(C3) if agent i brokers an object at σ, then i does not control any other object at σ.

For any two submatchings σ, σ′ ∈ M̂ such that |σ′| = |σ| + 1 and σ ⊂ σ′ with an
agent i ∈ Îσ′ who controls an object x ∈ X̂σ′ at σ it holds that

(C4) If i owns x at σ, then i owns x at σ′.

(C5) Assume that at least two agents from Îσ′ own objects at σ. If i′ brokers object
x′ at σ, then i brokers x′ at σ′

(C6) If agent i′ ∈ Îσ′ controls x′ ∈ X̂σ′ at σ, then i′ owns x at σ ∪ {(i, x′)} and if i′

brokers x′ at σ but not at σ′, then i owns x′ at σ′.

Let the domain of consistent control right structures be C and in the following
take any (c, b) ∈ C. I now describe the TC algorithm operating on (c, b), where TC(c,b)

denotes the induced TC mechanism.27

The TC algorithm For any P ∈ P , one calculates TC(c,b)(P ) as follows: There is
a finite sequence of steps t = 1, 2, .... Denote with σt−1 the submatching of agents and
objects matched before step t. Prior to the first step, the submatching is empty, i.e.
σ0 = ∅. The algorithm terminates with σt−1 if each agent is matched to an object,
that is, if σt−1 ∈ M. If σt−1 ∈ M̂ , then the algorithm proceeds with the following
substeps in Step t:

Step t(a): Pointing Let each object x ∈ X̂σt−1 point to its controller cσt−1(x).
If there is a broker in Îσt−1 for whom the brokered object is the only acceptable object,
let the broker point to the outside option. Otherwise, let the broker point to her most
preferred object among all objects that are owned. Each agent i ∈ Îσt−1 that is not a
broker points to her top choice x among objects X̂σt−1 ∪ {∅}.

27To keep the notation of a common outside option throughout the paper, the description of the
algorithm is slightly modified compared to Pycia and Ünver (2014). However, a quick glance reveals
that the descriptions are equivalent.
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Step t(b): Trading Cycles Given n ∈ N, there is a cycle at σt−1

x1 → i1 → . . . xn → in → x1

in which agents il ∈ Îσt−1 point to xl+1 ∈ X̂σt−1 , and objects xl point to agents il (here
l = 1, ..., n and superscripts are added modulo n).

Step t(c): Matching Collect all cycles which do not contain a broker and match
each agent in a cycle to the object she points to. Match agents in a cycle with a broker
if and only if there is at least one owner who points to the brokered object. Assign
each owner who points to the outside option to the outside option. Let σt be the
union of σt−1, the set of just assigned agent-object pairs and assigned owner-outside
option pairs.

No pair of cycles intersect, there is at least one pair matched at each step and the
number of steps is thus finite. Given a consistent control-right structure (c, b), we
define a submatching σ ∈ S as on-path on TC(c,b), if there exists a preference profile
P ∈ P such that there exists some step t ∈ N, where σ = σt−1 while running the TC
algorithm with input P on control-rights structure (c, b).

The proof of Theorem 3 presented in Appendix C builds on the following result.

Theorem (Pycia and Ünver (2017, 2014)). A mechanism g ∈ D is group strategy-
proof and Pareto efficient if and only if it is equivalent to a TC mechanism TC(c,b)

with some consistent control right structure (c, b) ∈ C.

Finally, TC(c,b) satisfies the following property of non-bossiness as defined by
Satterthwaite and Sonnenschein (1981).A mechanism g ∈ D is non-bossy if for
all P ∈ P, there is no i ∈ I, and P ′

i ∈ Pi, such that gi(P ) = gi(P
′
i , P−i), but

g(P ) 6= g(P ′
i , P−i). More specifically, as known from Pápai (2000), the domain of

group strategy-proof mechanisms is characterized through the collection of strategy-
proof and non-bossy mechanisms.

Lemma 2 (Pápai (2000); Pycia and Ünver (2014)). A mechanism is group strategy-
proof if and only if it is strategy-proof and non-bossy.
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Appendix C Proofs of Theorem 2 and Theorem 3

This section contains all results needed to obtain Theorem 2 and Theorem 3. Specifi-
cally, Lemma 3 presented first, implies the sufficiency parts of the statements. Necessity
for Theorem 2 follows from applying Lemma 4 and Lemma 5, whereas the necessity
parts of Theorem 3 only require Lemma 4.

Lemma 3. If announcement g ∈ SP is a sequential dictatorship, then g is transparent.

Proof. Suppose that announcement g is a sequential dictatorship and let g̃ ∈ G be an
arbitrary deviation from g. I aim to show that there exists at least one agent who has
no innocent explanation for one of her observations she makes under deviation g̃.

To start, by definition of a deviation, there must exist a preference profile P ∈ P
such that g̃(P ) 6= g(P ). Let I ′ = {i′ ∈ I| gi′(P ) 6= g̃i′(P )}. Next, select i ∈ I ′

such that, for all i′ ∈ I ′ \ {i}, we have π−1
P (i) < π−1

P (i′). Thus, since for all k ∈
I with π−1

P (k) < π−1
P (i), g̃k(P ) = gk(P ) and since Definition 2 (a) implies that

gi(P ) = Topi(Pi,∪
π−1
P (i)−1

l=1 gπP (l)(P )), we have gi(P )Pig̃i(P ).
I now show that agent i has no innocent explanation for her observation oi(g̃(P )).

Note that Definition 2 implies that π−1
P (i) = π−1

(Pi,P̃−i)
(i), if P̃−i ∈ P−i is such that

gk(P ) = gk(Pi, P̃−i) for all k ∈ I with π−1
P (k) < π−1

P (i). Thus, since for all k ∈ I with
π−1
P (k) < π−1

P (i), we have g̃k(P ) = gk(P ), we obtain gi(P ) = gi(Pi, P̃−i). However,
since gi(P ) 6= g̃i(P ), the previous arguments then imply that agent i cannot have an
innocent explanation for oi(g̃(P )). We thus conclude that g̃ is not safe and therefore
g is transparent.

I now turn to two additional lemmas for the necessity parts of Theorem 2 and
Theorem 3. The next lemma shows that a non-efficient safe deviation exists for an
efficient and group strategy-proof mechanism which is no sequential dictatorship.

Lemma 4. Let announcement g ∈ SP be efficient and group-strategy-proof. If g is
not a sequential dictatorship, then there exists a safe deviation from g, which is not
efficient.

Proof. Let the authority announce a group strategy-proof mechanism g which is no
sequential dictatorship. Thus, g is equivalent to a TC mechanism with some consistent
control right structure.
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We first derive an equivalent definition of sequential dictatorships (Definition 2
in terms of TC mechanisms. First, as has been shown by Pycia and Ünver (2017)
(Theorem 6) and Pycia and Ünver (2014) (Proposition 3), given any consistent (c′, b′)

and any submatching σ ∈ M̂, if there is a single agent who owns all objects in X̂σ,
then there is no broker at σ. Second, given any consistent control right structure
(c′, b′), if there is a single owner at each on-path submatching on TC(c′,b′), then as
can be easily shown TC(c′,b′) is equivalent to a sequential dictatorship according to
Definition 2.

Conversely, since g is not a sequential dictatorship, there is a submatching σ∗ ∈ M̂
such that given any consistent (c, b) for which TC(c,b) is equivalent to g, σ∗ is on-path
on TC(c,b). Moreover, there exist two agents i and j such that given any such (c, b),
both agents i, j each own at least one object at σ∗.

Now fix an arbitrary consistent (c, b) such that TC(c,b) is equivalent to g. To
prove the result, it is sufficient to show that there exists a non-efficient safe deviation
from TC(c,b). We construct the deviation as follows: Since σ∗ is on-path and TC(c,b)

non-bossy, we can select Pσ∗
I

such that for each k ∈ σ∗
I , σ∗(k) is k’s top choice under

Pk, so that under any profile (Pσ∗
I
, P̃Îσ∗ ) ∈ P , where P̃Îσ∗ is chosen arbitrarily, the TC

algorithm arrives at submatching σt∗−1 = σ∗ in some Step t∗.
Now consider Step t∗ and the two agents i, j ∈ Îσ∗ who we know are both owners at

σ∗. Let i own object x ∈ X̂σ∗ and let j own object y ∈ X̂σ∗ . The following preferences
of agent i and j will be central. Let Pi, P

′
i ∈ Pi be described by

• yPix and for all x′ ∈ X ∪ {∅} \ {x, y}: xPix
′ and

• xP ′
iy and for all x′ ∈ X ∪ {∅} \ {x, y}: yP ′

ix
′.

Similarly, for agent j let the preferences Pj, P
′
j ∈ Pj be

• xPjy and for all x′ ∈ X ∪ {∅} \ {x, y}: yPjx
′ and

• yP ′
jx and for all x′ ∈ X ∪ {∅} \ {x, y}: xP ′

jx
′.

Denote K = I \ {σ∗
I ∪ {i, j}} and let PK ∈ PK be specified arbitrarily.

I now construct the candidate deviation g̃ ∈ G as follows:

• For all P̃ ∈ P \ {(Pσ∗
I
, Pi, Pj, PK)}, suppose that g̃(P̃ ) = TC(c,b)(P̃ ) and,

• let g̃(Pσ∗
I
, Pi, Pj, PK) = TC(c,b)(Pσ∗

I
, P ′

i , P
′
j , PK).
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I first establish that g̃ is indeed a non-efficient deviation from TC(c,b). As argued
before, under any profile where each k ∈ σ∗

I reports Pk, we eventually arrive at
submatching σt∗−1 = σ∗ in Step t∗. Hence, for all k ∈ σ∗

I ,

g̃k(Pσ∗
I
, Pi, Pj, PK) = TC

(c,b)
k (Pσ∗

I
, P ′

i , P
′
j , PK) = TC

(c,b)
k (Pσ∗

I
, Pi, Pj, PK).

Next, under preference profile (Pσ∗
I
, Pi, Pj, PK) at Step t∗, there is a cycle consisting

only of owners, namely
x → i → y → j → x,

and as such, we must have that

TC
(c,b)
i (Pσ∗

I
, Pi, Pj, PK) = y,

TC
(c,b)
j (Pσ∗

I
, Pi, Pj, PK) = x.

However, if agents report (Pσ∗
I
, P ′

i , P
′
j , PK), then there are two cycles only of owners

at Step t∗, namely:
x → i → x, y → j → y,

and thus,

TC
(c,b)
i (Pσ∗

I
, P ′

i , P
′
j , PK) = x,

TC
(c,b)
j (Pσ∗

I
, P ′

i , P
′
j , PK) = y,

which implies that

TC(c,b)(Pσ∗
I
, Pi, Pj, PK) 6= TC(c,b)(Pσ∗

I
, P ′

i , P
′
j , PK).

Hence, g̃ is a deviation from TC(c,b) and g̃ is not efficient since agent i and j would
both prefer to swap their assignments.

It remains to be shown that g̃ is safe. First, it is clear that for all preference
profiles P̃ ∈ P \ (Pσ∗

I
, Pi, Pj, PK), since g̃(P̃ ) = TC(c,b)(P̃ ), innocent explanations for

observations are immediate. Second, for each i′ ∈ I, we need an innocent explanation
for observation oi′(g̃(Pσ∗

I
, P ′

i , P
′
j , PK)). Again, innocent explanations are immediate
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for each k ∈ σ∗
I ∪K, since

g̃k(Pσ∗
I
, Pi, Pj, PK) = TC

(c,b)
k (Pσ∗

I
, P ′

i , P
′
j , PK).

Note that this holds irrespective of whether agents in K have been affected by the
deviation or not.

I proceed with considering agents i and j and the pair of candidate profiles
(Pσ∗

I
, P ′

i , Pj, PK) and (Pσ∗
I
, Pi, P

′
j , PK). I aim to show that

oi(TC
(c,b)(Pσ∗

I
, Pi, P

′
j , PK)) = oi(g̃(Pσ∗

I
, Pi, Pj, PK)), (1)

oj(TC
(c,b)(Pσ∗

I
, P ′

i , Pj, PK)) = oj(g̃(Pσ∗
I
, Pi, Pj, PK)). (2)

We already know that for each k ∈ σ∗
I the assignment is identical to the one under

the deviation and that under both candidate profiles above we have to arrive at sub-
matching σ∗ at Step t∗. Now consider Step t∗ under candidate profile (Pσ∗

I
, Pi, P

′
j , PK),

where cycle
y → j → y

exists and hence j must be assigned to y. This implies that i is assigned to x, since
i owns x at σ∗ = σt∗−1 and it is her favorite choice among the remaining objects
according to Pi.28 Symmetrically, at Step t∗ with candidate profile (Pσ∗

I
, P ′

i , Pj, PK),
there is a cycle

x → i → x.

This implies that j is assigned to y, since j owns y at σ∗ = σt∗−1 and it is her favorite
remaining choice according to Pj. Thus, for both i′ ∈ {i, j}, we have

TC
(c,b)
i′ (Pσ∗

I
, P ′

i , P
′
j , PK) = TC

(c,b)
i′ (Pσ∗

I
, P ′

i , Pj, PK) = TC
(c,b)
i′ (Pσ∗

I
, Pi, P

′
j , PK)

Using non-bossiness of TC(c,b) (See Lemma 2), it must be true that, for all k ∈ K,
we have that

TC
(c,b)
k (Pσ∗

I
, P ′

i , P
′
j , PK) = TC

(c,b)
k (Pσ∗

I
, P ′

i , Pj, PK) = TC
(c,b)
k (Pσ∗

I
, Pi, P

′
j , PK)

28Note that ownership rights persist according to Condition (C4) of a consistent control rights
structure, as long as the owner is not yet assigned to a different object.
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and as such conditions (1) and (2) are satisfied and each agent has an innocent
explanation for any of her observations under g̃. The choice of TC(c,b) was arbitrary
among TC mechanisms that are equivalent to g. Finally, since g is equivalent to
TC(c,b), the same conclusion holds for announcement g. We conclude that g̃ is a
safe deviation from g and hence that g does not allow to commit to efficiency. This
completes the proof of the lemma.

To complete the argument, I next establish that each efficient mechanism allows
safe deviations if it is strategy-proof but not group strategy-proof.

Lemma 5. Let announcement g ∈ SP be efficient and not group strategy-proof. Then,
there exists a safe deviation from g.

Proof. Since g is not group strategy-proof but strategy-proof, g is bossy by Lemma
2. If g is bossy then, by definition, there exists an agent i ∈ I with Pi, P

′
i ∈ Pi and

P−i ∈ P−i such that g(Pi, P−i) 6= g(P ′
i , P−i) and gi(Pi, P−i) = gi(P

′
i , P−i). Second,

since g is strategy-proof, for any P ∗
i ∈ Pi, where gi(Pi, P−i) is ranked as i′s top choice,

it must hold

gi(P
∗
i , P−i) = gi(Pi, P−i) = gi(P

′
i , P−i).

Thus, since g(Pi, P−i) 6= g(P ′
i , P−i), it is either true that g(P ∗

i , P−i) 6= g(Pi, P−i) or
g(P ∗

i , P−i) 6= g(P ′
i , P−i) or both. Assume in the following that g(P ∗

i , P−i) 6= g(Pi, P−i)

(a symmetric argument will apply for the case, where g(P ∗
i , P−i) 6= g(P ′

i , P−i) and not
g(P ∗

i , P−i) = g(Pi, P−i)).
Next, consider a deviation g̃ with g̃(P ∗

i , P−i) = g(Pi, P−i) and g̃(P̃ ) = g(P̃ ) for
all P̃ ∈ P \ {(P ∗

i , P−i)}. Since all observations under g and g̃ coincide except under
preference profile (P ∗

i , P−i), in order to obtain that g̃ is safe, it remains to show that
each agent k ∈ I has an innocent explanation for her observation ok(g̃(P

∗
i , P−i)).

First, note that for each j 6= i, the preference profile of other agents P−j provides
an innocent explanation for observation oj(g̃(P

∗
i , P−i)). Second, for agent i consider

preference profile P ∗
−i such that for each agent j 6= i, P ∗

j ranks gj(Pi, P−i) as the
top choice. Now note that under preference profile (P ∗

i , P
∗
−i), the unique Pareto

efficient matching is g(Pi, P−i) and since g is Pareto efficient, we thus must have
g(P ∗

i , P
∗
−i) = g(Pi, P−i). Thus, P ∗

−i provides an innocent explanation for oi(g̃(P ∗
i , P−i)).

Hence g̃ is a safe deviation from g.
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Appendix D Proof of Proposition 2 and Proposi-
tion 3

Proof of Proposition 2. In the following, denote g = TTCs. Suppose that s has a full
replacement cycle. That is, s either satisfies condition (1) or condition (2) of the
definition of a full replacement cycle. Let s satisfy condition (1). The same arguments
will apply if s satisfies condition (2). That is, there exist four agents i, j, k, l ∈ I and
two objects x, y ∈ X all distinct, such that:

(1’) sxi > sxk > sxj , s
x
l ,

(2’) syj > syl > syi , s
y
k.

Now consider the following preferences that will be central for the construction of
the strategy-proof safe deviation g̃ from g. Denote I ′ = I \{i, j, k, l} and let preference
profile PI′ ∈ PI′ be such that for each m ∈ I ′, Pm : ∅, . . . where the ranking below ∅
is specified arbitrarily. Consider the following preferences for agents in I ′:

• Consider the set of preferences P̃i ⊆ Pi such that, for each Pi ∈ P̃i, we have
yPix

′ for all x′ ∈ X ∪ {∅} \ {y}. Also, for each Pi ∈ P̃i, let P̄i rank y last and
all other objects in the same order as under Pi.

• Similarly, for j, let the set of preferences P̃j ⊆ Pj be such that, for each Pj ∈ P̃j ,
we have xPjx

′ for all x′ ∈ X ∪ {∅} \ {x}. For each Pj ∈ P̃j, the preferences P̄j

rank x last and all other objects in the same order as under Pj.

• For agent k, consider the set of preferences P̃k ⊆ Pk such that, for each Pk ∈ P̃k,
we have yPkx

′ and xPkx
′ for all x′ ∈ X ∪ {∅} \ {x, y}.

• For agent l, consider the set of preferences P̃l ⊆ Pl such that, for each Pl ∈ P̃l,
we have yPlx

′ and xPlx
′ for all x′ ∈ X ∪ {∅} \ {x, y}.

Next, I construct a safe deviation g̃ ∈ SP from g. For any profile (Pi, Pj, Pk, Pl, PI′)

with Pi ∈ P̃i, Pj ∈ P̃j Pk ∈ P̃k and Pl ∈ P̃l, let g̃(Pi, Pj, Pk, Pl, PI′) = g(P̄i, P̄j, Pk, Pl, PI′).
For all other preference profiles P̂ ∈ P , let g̃(P̂ ) = g(P̂ ) and hence for these preference
profiles each agent has an innocent explanation for her respective observation under g̃.
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To see that g̃ is a safe deviation, take any four preference rankings for agents
i, j, k, l, where Pi ∈ P̃i, Pj ∈ P̃j , Pk ∈ P̃k, Pl ∈ P̃l and note that g(Pi, Pj, Pk, Pl, PI′) 6=
g(P̄i, P̄j, Pk, Pl, PI′).

Thus, g̃ is a deviation. To verify that g̃ is safe, note that for all i′ /∈ I \ {i, j},
(P̄i, P̄j, P−{i,j}) is an innocent explanation for oi′(g̃(P̄i, P̄j, Pk, Pl, PI′)). Moreover,

• (P̄j, Pk, Pl, PI′) is an innocent explanation for oi(g̃(Pi, Pj, Pk, Pl, PI′)), and

• (P̄i, Pk, Pl, PI′) is an innocent explanation for oj(g̃(Pi, Pj, Pk, Pl, PI′)).

It remains to show that g̃ is strategy-proof. To start, note that for all agents in
I ′, g̃ produces exactly the same assignments as g. Since g is strategy-proof, no such
agent can get a strictly better assignment by misreporting her preferences. Consider
the following arguments for agents not in I ′:

• For agent l and each P ′ ∈ P, either gl(P
′) = g̃l(P

′) or g̃l(P
′) Pl gl(P

′).
First, for each P ′ such that g(P ′) = g̃(P ′), we have gl(P̂l, P

′
−l) R′

l g̃l(P̂l, P
′
−l)

for all P̂l ∈ Pl. Second, for each P ′ such that g(P ′) 6= g̃(P ′), we have
g̃l(P

′) R′
l g̃l(P̂l, P

′
−l) R

′
l gl(P̂l, P

′
−l) for all P̂l ∈ Pl. Together this implies that, l

has no incentive to deviate under g̃. Similar arguments apply to k.

• For agent i and each P ′ ∈ P , either gi(P ′) = g̃i(P
′) or gi(P ′) Pi g̃i(P

′). First, for
each P ′ such that g(P ′) = g̃(P ′), we have gi(P̂i, P

′
−i) R

′
i g̃i(P̂i, P

′
−i) for all P̂i ∈ Pi.

Also, for each P ′ such that gi(P
′) 6= g̃i(P

′), we have g̃i(P
′) R′

i g̃i(P̂i, P
′
−i) for all

P̂i ∈ Pi. Similar arguments apply to j.

Thus, g̃ is strategy-proof and safe. This completes the proof.

Proof of Proposition 3. In the following, denote g = TTCs and suppose that s satisfies
the imperfect replacement property. One needs to show that there is no safe deviation
that is strategy-proof. Let g̃ be an arbitrary deviation from g. First, if g̃ would
be wasteful, then it is not a safe deviation by efficiency of g. Thus, g̃ must be
non-wasteful. Second, regarding all preference profiles in P, find the smallest step
t ∈ N and preference profile P ∈ P , such that σt(P ) implies that g(P ) 6= g̃(P ) in the
TTC algorithm. From now on, we call the pair (t, P ) the earliest branch-off of g and
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g̃ and given any P ′ ∈ P, we say that we are at (t, P ), when we reach submatching
σt−1(P ) while we run the TTC algorithm with input P ′.

Next, consider input P and suppose that we are at (t, P ). Then, let I t be the set of
agents that are pointed by an object from X̂σt−1(P ). Let I ′t =: {i′ ∈ I t|gi′(P ) 6= g̃i′(P )}
and be Î t ⊆ I ′t such that i′ ∈ Î t if and only if i is assigned at step t with input P .
Since we are at (t, P ), this implies that for each i′ ∈ Î t, gi′(P )Pig̃i′(P ).

It is clear that |I t| ≤ 3, if s satisfies the imperfect replacement property. Further-
more, if gi′(P ) 6= g̃i′(P ) and i′ ∈ Î t is pointed by and points to gi′(P ) at (t, P ) at step
t, then similar arguments as in the proof of Lemma 3 imply that g̃ is not safe. This
means that 2 ≤ |I t| ≤ 3. The same arguments imply that we must have |Î t| > 1. In
the following, given any i′ ∈ I, consider a preference ranking P ∗

i′ : gi′(P ), ∅, . . . , In the
following, take input P as given in the TTC algorithm.

Case 1 Let |Î t| = 2. Thus, there are two agents i and j both in Î t and a
top-trading cycle gj(P ) → i → gi(P ) → j at (t, P ). W.l.o.g. let g̃i(P ) 6= gi(P ).
First, it must be g̃i(P

∗
i , P−i) 6= gi(P ), as otherwise g̃ would not be strategy-proof

for i. Thus, g̃i(P
∗
i , P−i) = ∅. Next, assume that gj(P ) = g̃j(P

∗
i , P−i) and recall

that gj(P ) must point to i at (t, P ). However, this implies that there cannot be
l ∈ Îσt−1(P ), with l 6= i and gi(P ) = g̃l(P

∗
i , P−i), while gj(P

∗
i , P−i) = g̃j(P ) = gj(P ).

Thus, gj(P ) 6= g̃j(P ). Also, g̃j(Pi, P
∗
j , P−{i,j}) = ∅, as otherwise g̃ cannot be

strategy-proof again. Using a symmetric argument as above, it is also not possi-
ble that g̃i(Pi, P

∗
j , P−{i,j}) = gi(P ). Then, strategy-proofness for g̃ would require

that g̃i(P
∗
i , P

∗
j , P−{i,j}) = g̃j(P

∗
i , P

∗
j , P−{i,j}) = ∅. Thus, by non-wastefulness of g̃ and

since (t, P ) is the earliest branch-off, there must exist l,l′ ∈ Îσt−1(P ) \ {i, j} such that
g̃l(P

∗
i , P

∗
j , P−{i,j}) = gi(P ) and g̃l′(P

∗
i , P

∗
j , P−{i,j}) = gj(P ). However, this means that

l 6= k or l′ 6= k. W.l.o.g let l 6= k and since s satisfies the imperfect replacement
property, there is no x ∈ X such that sxl > sxi . Hence, i cannot have an innocent
explanation for oi(g̃(P

∗
i , P

∗
j , P−{i,j})) since l can never be assigned to gi(P ), as long

as gi(P ) is i’s top choice.

Case 2 Let |Î t| = 3. First, recall that there cannot be an agent in Î t that is assigned
to an object she points to at (t, P ). Thus, w.l.o.g, we have a cycle with three agents
at the earliest branch-off (t, P ), i → gi(P ) → j → gj(P ) → k → gk(P ) → i at (t, P ).
Let g̃i(P ) 6= gi(P ). Strategy-proofness requires again that g̃i(P ∗

i , P−i) 6= gi(P ). Hence
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g̃i(P
∗
i , P−i) = ∅. However, since |Î t| = |I t| and g̃ is non-wasteful, there must exist

l ∈ Îσt−1(P ) \ I t such that g̃l(P
∗
i , P−i) = gi′(P ) for at least one i′ ∈ Î t. However, this

means that gi′(P )Pi′ g̃i′(P ) and because s satisfies the imperfect replacement property,
there is no x ∈ X such that sxl > sxi . Therefore, i′ cannot have an innocent explanation
for observation oi′(g̃(P

∗
i , P−i)), since l can never be assigned to gi′(P ) under g, as long

as gi′(P ) prefers it to all objects in X̂σt−1(P ).
Thus, if g̃ is a safe deviation, then it cannot be strategy-proof. As we selected g̃

arbitrarily, this complete the proof.

References

Atila Abdulkadiroğlu and Tayfun Sönmez. School choice: A mechanism design
approach. American Economic Review, 93(3):729–747, 2003.

Atila Abdulkadiroğlu, Parag A Pathak, Alvin E Roth, and Tayfun Sönmez. The
boston public school match. American Economic Review, 95(2):368–371, 2005.

Mohammad Akbarpour and Shengwu Li. Credible auctions: A trilemma. Econometrica,
88(2):425–467, 2020.

Sandeep Baliga, Luis C Corchon, and Tomas Sjöström. The theory of implementation
when the planner is a player. Journal of Economic Theory, 77(1):15–33, 1997.

Michel Balinski and Tayfun Sönmez. A tale of two mechanisms: student placement.
Journal of Economic Theory, 84(1):73–94, 1999.

Helmut Bester and Roland Strausz. Imperfect commitment and the revelation principle:
the multi-agent case. Economics Letters, 69(2):165–171, 2000.

Helmut Bester and Roland Strausz. Contracting with imperfect commitment and the
revelation principle: the single agent case. Econometrica, 69(4):1077–1098, 2001.

Vianney Dequiedt and David Martimort. Vertical contracting with informational
opportunism. American Economic Review, 105(7):2141–82, 2015.

Lars Ehlers and Bettina Klaus. Coalitional strategy-proof and resource-monotonic
solutions for multiple assignment problems. Social Choice and Welfare, 21:265–280,
02 2003.

30



Lars Ehlers, Isa E Hafalir, M Bumin Yenmez, and Muhammed A Yildirim. School
choice with controlled choice constraints: Hard bounds versus soft bounds. Journal
of Economic theory, 153:648–683, 2014.

Haluk I Ergin. Efficient resource allocation on the basis of priorities. Econometrica,
70(6):2489–2497, 2002.

David Gale and Lloyd S Shapley. College admissions and the stability of marriage.
The American Mathematical Monthly, 69(1):9–15, 1962.

Rohith R. Gangam, Tung Mai, Nitya Raju, and Vijay V. Vazirani. A Structural
and Algorithmic Study of Stable Matching Lattices of Multiple Instances. arXiv
preprint:2304.02590, 2023.

Yannai A. Gonczarowski and Clayton Thomas. Structural Complexities of Matching
Mechanisms. arXiv prepint: 2212.08709, 2023.

Aram Grigoryan and Markus Möller. A theory of auditability for allocation and social
choice problems. Technical report, Working paper, 2023.

Isa E Hafalir, M Bumin Yenmez, and Muhammed A Yildirim. Effective affirmative
action in school choice. Theoretical Economics, 8(2):325–363, 2013.

Rustamdjan Hakimov and Madhav Raghavan. Improving transparency and verifiability
in school admissions: Theory and experiment. Technical report, Working paper,
2023.

Yuichiro Kamada and Fuhito Kojima. Efficient matching under distributional con-
straints: Theory and applications. American Economic Review, 105(1):67–99,
2015.

Onur Kesten. On two competing mechanisms for priority-based allocation problems.
Journal of Economic Theory, 127(1):155–171, 2006.

Fuhito Kojima. School choice: Impossibilities for affirmative action. Games and
Economic Behavior, 75(2):685–693, 2012.

Jacob D Leshno and Irene Lo. The Cutoff Structure of Top Trading Cycles in School
Choice. The Review of Economic Studies, 88(4):1582–1623, 11 2020.

31



Shengwu Li. Obviously strategy-proof mechanisms. American Economic Review, 107
(11):3257–87, 2017.

Pinaki Mandal and Souvik Roy. On obviously strategy-proof implementation of fixed
priority top trading cycles with outside options. Economics Letters, 211:110239,
2022.

David G McVitie and Leslie B Wilson. Stable marriage assignment for unequal sets.
BIT Numerical Mathematics, 10(3):295–309, 1970.

Szilvia Pápai. Strategyproof assignment by hierarchical exchange. Econometrica, 68
(6):1403–1433, 2000.

Szilvia Pápai. Strategyproof and nonbossy multiple assignments. Journal of Public
Economic Theory, 3(3):257–271, 2001.

Marek Pycia and Peter Troyan. A theory of simplicity in games and mechanism
design. Econometrica, 91(4):1495–1526, 2023.

Marek Pycia and M Utku Ünver. Trading cycles for school choice. Technical report,
Working paper, 2011.

Marek Pycia and M Utku Ünver. Incentive compatible allocation and exchange of
discrete resources. Technical report, Working paper, UCLA and Boston College,
2014.

Marek Pycia and M Utku Ünver. Incentive compatible allocation and exchange of
discrete resources. Theoretical Economics, 12(1):287–329, 2017.

Marek Pycia and M Utku Ünver. Ordinal simplicity and auditability in discrete
mechanism design. Available at SSRN, 2023.

Alvin E Roth. Incentive compatibility in a market with indivisible goods. Economics
letters, 9(2):127–132, 1982.

Alvin E Roth and Elliott Peranson. The effects of the change in the nrmp matching
algorithm. JAMA, 278(9):729–732, 1997.

Mark A Satterthwaite and Hugo Sonnenschein. Strategy-proof allocation mechanisms
at differentiable points. The Review of Economic Studies, 48(4):587–597, 1981.

32



Nicholas Schuler. CPS OIG Uncovers Widespread Admissions Irregularities in K-8
Options for Knowledge Program. Office of Inspector General, Chicago Board of
Education. Press Release, February 21, 2018.

Lloyd Shapley and Herbert Scarf. On cores and indivisibility. Journal of Mathematical
Economics, 1(1):23–37, 1974.

Lars-Gunnar Svensson. Queue allocation of indivisible goods. Social Choice and
Welfare, 11(4):323–330, 1994.

Peter Troyan. Obviously strategy-proof implementation of top trading cycles. Inter-
national Economic Review, 60(3):1249–1261, 2019.

Alexander Westkamp. An analysis of the german university admissions system.
Economic Theory, 53(3):561–589, 2013.

Kevin Jon Williams. A reexamination of the nrmp matching algorithm. national
resident matching program. Academic medicine: journal of the Association of
American Medical Colleges, 70(6):470–6, 1995.

Kyle Woodward. Self-auditable auctions. Technical report, Working paper, 2020.

33


	1 Introduction
	2 Preliminaries
	2.1 The Model
	2.2 A Transparency Framework

	3 Stable Mechanisms
	4 Efficient Mechanisms
	5 Strategic Agents
	A Proof of Proposition 1 
	B Trading Cycles and Characterizations of Group Strategy-Proofness
	C Proofs of Theorem 2 and Theorem 3
	D Proof of Proposition 2 and Proposition 3 

