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Abstract

We consider integrated modified least squares estimation for systems of cointe-

grating multivariate polynomial regressions, i. e., systems of regressions that include

deterministic variables, integrated processes and products of these variables as re-

gressors. The errors are allowed to be correlated across equations, over time and

with the regressors. Since, under restrictions on the parameters or in case of non-

identical regressors across equations, integrated modified OLS and GLS estimation

do not, in general, coincide, we discuss in detail restricted integrated generalized

least squares estimators and inference based upon them. Furthermore, we develop

asymptotically pivotal fixed-b inference, available only in case of full design and for

specific hypotheses.

JEL Classification: C12, C13, C32

Keywords: Integrated modified estimation, cointegrating multivariate polynomial re-

gression, fixed-b inference, generalized least squares

∗The authors gratefully acknowledge financial support from the Jubiläumsfonds of the Oesterreichische
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1 Introduction

We discuss integrated modified least squares estimation for systems of cointegrating

multivariate polynomial regressions (SCMPRs), i. e., for systems of regressions that con-

tain deterministic variables, integrated processes and products of (non-negative) integer

powers of these variables as regressors. The stationary errors are allowed to be serially

correlated and the integrated regressors are allowed to be endogenous. The paper, thus,

extends the analysis of Vogelsang and Wagner (2024) from the single equation to the

system of equations case.

We use and extend the integrated modified (IM) estimation principle introduced for

cointegrating linear regressions in Vogelsang and Wagner (2014). IM estimation has

several key advantages: First, estimation is tuning parameter-free and only for inference

a conditional long-run covariance (matrix) needs to be estimated. Second, IM estima-

tion allows to perform fixed-b inference, designed to capture the impact of kernel and

bandwidth choices in long-run covariance estimation on the sampling distribution of test

statistics.1 Third, as discussed in detail in Vogelsang and Wagner (2024), IM estima-

tion can be straightforwardly extended to include not only integer powers of integrated

regressors, but arbitrary non-negative integer products of these regressors.2 One im-

portant application of regressions involving cross-products of integrated regressors are

Translog functions, see, e. g., Christensen et al. (1971). A second important application

is performing RESET-type specification testing including cross-products of (original)

regressors, as discussed in detail for the single equation case in Vogelsang and Wagner

(2024, Sections 2.4 and 3).

The consideration of systems of equations adds some additional aspects compared to

the single equation case: First (see also the corresponding discussion in Wagner, 2023),

systems of equations require a detailed consideration of generalized least squares esti-

mators, here integrated modified generalized least squares (IM-GLS). This stems from

1Fixed-b analysis of spectral estimators has been introduced by Neave (1970). It has been developed
into an alternative framework for (robust) inference for stationary regressions in Kiefer and Vogelsang
(2005).

2Effectively, the paper fulfills a similar extension-to-systems role as Wagner (2023) has for Wagner and
Hong (2016). These two earlier papers – discussing fully modified least squares estimation – only
consider (systems of) cointegrating polynomial regressions where cross-products of the regressors are
excluded.
Note that Wagner (2023) contains a typo in the definition of M̂+ below equation (7). The u and v
subscripts in the ∆̂-terms in the definition of M̂u need to be switched, e. g., in the i-th row ∆̂uivj

need to be replaced by ∆̂vjui for j = 1, . . . ,m. The sentence should then continue with: “and M̂v

defined analogously, with ∆̂vjui , i = 1, . . . , n, j = 1, . . . ,m replaced by ∆̂vjvi , i, j = 1, . . . ,m.”
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the fact that OLS- and GLS-type estimators only necessarily coincide (for any positive

definite symmetric weighting matrix) in systems with identical regressors in all equa-

tions and without parameter constraints. Second, the scope of fixed-b inference needs

to be investigated in more detail than in the single equation case. It turns out that – in

addition to full design, required also in Vogelsang and Wagner (2024) – fixed-b inference

is only feasible for hypotheses that are (essentially) identical across equations. Whilst

this is restrictive, it does include, e. g., fixed-b RESET-type specification testing with

identical null and auxiliary regressors.3

2 Theory

2.1 Setup and Assumptions

We start with considering unrestricted systems of cointegrating multivariate polynomial

regressions (SCMPRs) where all equations include the same set of regressors:

yt = ΘZt + ut, t = 1, . . . , T, (1)

xt = xt−1 + vt,

with yt := (y1t, . . . , ynt)
′, Zt := (z1t, . . . , z|I|t)

′, with zit = ti0xi11t · · ·x
im
mt and ij non-

negative integers for j = 0, . . . ,m, Θ ∈ Rn×|I| and xt := (x1t, . . . , xmt)
′. The regressors

zit, i = 1, . . . , |I| are ordered, e. g., by lexicographic ordering of the multi-indices i :=

(i0, . . . , im) from a multi-index set I indexing all regressors. To avoid perfect multi-

collinearity by construction, we assume that no multi-index i is contained more than

once in I.

The results in this paper can be established under the same assumptions, adapted to

multivariate yt, as in, e. g., Vogelsang and Wagner (2024) and we, therefore, abstain from

positing a detailed set of assumptions. As is common in the cointegrating regression

literature, we also exclude cointegration amongst the m integrated regressors {xt}t∈Z.

Defining {ηt}t∈Z := {(u′t, v′t)′}t∈Z, a functional central limit holds:

T−1/2

brT c∑
t=1

ηt ⇒ B(r) =

(
Bu(r)

Bv(r)

)
= Ω1/2W (r), (2)

3The restricted scope of fixed-b inference, however, implies that one need not consider fixed-b inference
for IM-GLS estimators, since in the considered setting IM-OLS and IM-GLS coincide.
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for 0 ≤ r ≤ 1, with W (r) denoting standard Brownian motion and by assumption

positive definite long-run covariance matrix:

Ω =

(
Ωuu Ωuv

Ωvu Ωvv

)
:=

∞∑
j=−∞

E(ηt−jη
′
t), (3)

partitioned conformably with ηt. In the case Ωuv 6= 0, the regressors are endogenous and

the setting also allows for relatively unrestricted forms of serial correlation of the errors

{ηt}t∈Z. Using, e. g., the Cholesky decomposition of Ωvv = Ω
1/2
vv (Ω

1/2
vv )′, we can write (2)

more specifically as:(
Bu(r)

Bv(r)

)
:=

(
Ω

1/2
u·v Ωuv(Ω

−1/2
vv )′

0 Ω
1/2
vv

)(
Wu·v(r)

Wv(r)

)
, (4)

with Ωu·v := Ωuu−ΩuvΩ−1
vv Ωvu the (innovation) covariance matrix of Bu·v(r) := Bu(r)−

ΩuvΩ−1
vv Bv(r).

2.2 Estimation and Inference

IM-OLS estimation is simply OLS estimation of the partial sum version of equation (1)

that is augmented by the original integrated regressors:

Sy
t = ΘSZ

t + Γxt + Su
t , t = 1, . . . , T, (5)

= ΦS̃Z
t + Su

t ,

with Sy
t :=

∑t
j=1 yj , S

Z
t , Su

t defined analogously, S̃Z
t := (SZ′

t , x
′
t)
′ and Φ := (Θ, Γ) ∈

Rn×(|I|+m). Stacking all observations, equation (5) can be written as:

Sy = ΘSZ + ΓX + Su, (6)

= ΦS̃Z + Su,

with Sy := (Sy
1 , . . . , S

y
T ), SZ := (SZ

1 , . . . , S
Z
T ), X := (x1, . . . , xT ), Su := (Su

1 , . . . , S
u
T ) and

S̃Z := (S̃Z
1 , . . . , S̃

Z
T ). Exactly as discussed in a closely related context in Wagner (2023),

see, in particular, Remark 1, and known since Zellner (1962), for systems of equations

(that are linear in parameters) with identical regressors in all equations, OLS estimation

coincides (algebraically) with GLS estimation for any (regular) weighting matrix. Con-

sequently, without parameter restrictions and with identical regressors in all equations,
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it suffices to consider the system version of the single equation IM-OLS estimator for

CMPRs discussed in Vogelsang and Wagner (2024).4 The IM-OLS estimator Φ̂ is defined

as the OLS estimator of Φ in (6), i. e.,:

Φ̂ := (SyS̃Z′)(S̃Z S̃Z′)−1. (7)

The discussion of the asymptotic properties of the IM-OLS estimator requires the def-

inition of two quantities: First, the scaling matrix sequence AIM := diag(AIM,Θ, Im)

with AIM,Θ a diagonal matrix with the entry corresponding to regressor ti0xi11t · · ·x
im
mt

given by T−(i0+(
∑m

j=1 ij)/2+1/2). Second, the limit process corresponding to the regres-

sors Z(r) := limT→∞ T
1/2AIM,ΘZbrT c for 0 ≤ r ≤ 1, with Z(r) := (z1(r), . . . , z|I|(r))

′,

zi(r) := ri0Bv1(r)i1 · · ·Bvm(r)im for 0 ≤ r ≤ 1, i = 1, . . . , |I| and Bvj (r) denoting the

j-th component of Bv(r).

Proposition 1. Let the data be generated by (1) with appropriate assumptions in place.

Define Φ∗ := (Θ,ΩuvΩ−1
vv ), then as T →∞ it holds that:5

(Φ̂− Φ∗)A−1
IM ⇒ Ω

1/2
u·v

∫ 1

0
Wu·v(s)f(s)′ds

(∫ 1

0
f(s)f(s)′ds

)−1

(8)

= Ω
1/2
u·v

∫ 1

0
dWu·v(s)[F (1)− F (s)]′

(∫ 1

0
f(s)f(s)′ds

)−1

,

where:

f(r) :=

[ ∫ r
0 Z(s)ds

Bv(r)

]
, F (r) :=

∫ r

0
f(s)ds. (9)

As indicated in Footnote 4, for hypothesis testing and estimation under restrictions, it

is convenient to consider the vectorized (by equation) version of the IM-OLS estimator

Φ̂ defined in (7). Defining φ := vec(Φ′) and φ∗ := vec(Φ∗′), this leads to:

φ̂ := vec
(

(S̃Z S̃Z′)−1(S̃ZSy′)
)

= (In ⊗ (S̃Z S̃Z′)−1)(In ⊗ S̃Z)vec(Sy′) (10)

4Later, when discussing hypothesis testing and estimation under restrictions, it is convenient to consider
vectorized version(s) of (6), either vectorized by observation, i. e., vec(Sy) = (S̃Z′ ⊗ In)vec(Φ) +
vec(Su) or vectorized by equation, i. e., vec(Sy′) = (In ⊗ S̃Z′)vec(Φ′) + vec(Su′).

5To detail notation: The (i, j)-element of
∫ 1

0
dWu·v(s)[F (1) − F (s)]′ is equal to

∫ 1

0
[Fj(1) −

Fj(s)]dWu·v,i(s).
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and:

(In ⊗A−1
IM )

(
φ̂− φ∗

)
(11)

⇒ (Ω
1/2
u·v ⊗ I|I|+m)vec

((∫ 1

0
f(s)f(s)′ds

)−1 ∫ 1

0
[F (1)− F (s)]dWu·v(s)′

)
.

Conditional upon Wv(r), the limiting distribution given in (11) is normal with zero mean

and (conditional) covariance matrix:

VIM := Ωu·v ⊗

((∫ 1

0
f(s)f(s)′ds

)−1

(12)

×
(∫ 1

0

[
F (1)− F (s)

][
F (1)− F (s)

]′
ds

)(∫ 1

0
f(s)f(s)′ds

)−1
)
.

Given a consistent estimator Ω̂u·v of Ωu·v, based on η̂t := (û′t, v
′
t)
′, with ût the OLS

residuals of (1), an – up to scaling – estimator of VIM immediately follows by simply

using the sample counterparts of the expressions appearing in the limit given in (12),

i. e.,:

V̂IM := Ω̂u·v ⊗ (S̃Z S̃Z′)−1CC ′(S̃Z S̃Z′)−1, (13)

with C := (c1, . . . , cT ), ct := SS̃Z

T −SS̃Z

t−1 for t = 1, . . . , T , SS̃Z

t :=
∑t

j=1 S̃
Z
j and SS̃Z

0 = 0.

By construction, (In ⊗A−1
IM )V̂IM(In ⊗A−1

IM )⇒ VIM.

The limiting distribution given in (11), in conjunction with the estimator V̂IM given

in (13), directly allows for asymptotic standard inference for testing (linear) restrictions

on φ under two assumptions on the restrictions matrix, R say, that are detailed (for the

single equation case) in Vogelsang and Wagner (2024, Section 2.2): The first relates to

the fact that the parameter vector φ̂ contains elements that converge at different rates,

which has some implications for hypotheses that lead to standard inference (encoded

in the matrix AR below). The second assumption on R is that none of the hypotheses

tested involves elements of Γ, which is not estimated consistently.6

6More formally, with K denoting the so-called commutation matrix, this means that for φ = vec(Φ′) =
Kvec(Φ) = K(vec(Θ)′, vec(Γ)′)′ it has to hold that Rφ = RK(vec(Θ)′, vec(Γ)′)′ is of the form
RK = (Rvec(Θ), 0s×nm).
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Proposition 2. Let the data be generated by (1) with appropriate assumptions in place

and assume that long-run covariance estimation is performed consistently. Consider s

linearly independent linear restrictions collected in:

H0 : Rvec(Φ′) = Rφ = r, (14)

with R ∈ Rs×(|I|+m)n of full row rank, r ∈ Rs and suppose that there exists a matrix

sequence AR ∈ Rs×s such that:

lim
T→∞

A−1
R R(In ⊗AIM) = R∗, (15)

with R∗ ∈ Rs×(|I|+m)n of full row rank s. Then, it holds under the null hypothesis for

T →∞ that the Wald-type statistic:

TW := (Rφ̂− r)′
(
RV̂IMR

′
)−1

(Rφ̂− r)⇒ Os, (16)

with V̂IM as defined in (13) and Os denoting a chi-squared distributed random variable

with s degrees of freedom.

In the special case s = 1, it holds under the null hypothesis for T → ∞ that the t-type

statistic:

Tt :=
Rφ̂− r√
RV̂IMR′

⇒ Z, (17)

with Z denoting a univariate standard normally distributed random variable.

2.3 Estimation and Inference under Restrictions

As discussed in Wagner (2023, Section 2.3), the cointegrating regression literature rarely

considers restricted least squares estimation, with one exception being the seemingly

unrelated regressions (SUR) cointegration literature, see, e. g., Moon (1999), Moon and

Perron (2005), Park and Ogaki (1991) or Wagner et al. (2020). In the case not all

equations include the same set of regressors, OLS- and GLS-type estimation in general

cease to be algebraically (and asymptotically) equivalent.7 Potential choices concerning

7We refer to GLS estimation for any variant of weighted least squares estimation and not – as in,
e. g., the classical Zellner (1962) setting – when weighting takes place with the inverse of the error
covariance matrix.
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weighting matrices in seemingly unrelated cointegrating regression systems are discussed

in Park and Ogaki (1991), see also Wagner (2023). IM-GLS estimation adds one ad-

ditional formal aspect to the discussion: The errors in the partial sum regression are

integrated and, therefore, weighting matrices cannot be directly related to covariance or

long-run covariance matrices of the error process, but rather to the first differences of

the errors, motivating the Park and Ogaki (1991) choices W = Ω−1
uu or W = Ω−1

u·v also in

the IM setting. Clearly, restricted IM-OLS estimation is contained as the special case

with Ŵ = W = In.8

To obtain a closed-form solution for the restricted estimator we consider, analogously to

hypothesis testing above, only affine restrictions on the parameter vector, i. e.,:

φ = Dϕ+ d, (18)

with D ∈ R(|I|+m)n×g of full column rank, ϕ ∈ Rg and d ∈ R(|I|+m)n.9 Given the

mentioned fact that only the parameters in Θ are estimated consistently, we consider

only restrictions on Θ and do not impose restrictions on Γ. Using, as in Footnote 6, that

φ = Kvec(Φ), this implies that D = Kdiag(Dvec(Θ), Inm) and d = K(d′vec(Θ), 01×nm)′.

Also as above, we need to posit an asymptotic rank condition on the constraint matrix,

i. e., we need to assume that there exists a matrix sequence AD ∈ Rg×g such that:

lim
T→∞

(In ⊗A−1
IM )DAD = D∗, (19)

with D∗ ∈ R(|I|+m)n×g of full column rank.

Proposition 3. Let the data be generated by (1) with appropriate assumptions in place

and φ fulfilling the (explicit) restrictions posited in (18). Furthermore, assume that there

exists a matrix sequence AD such that condition (19) holds. The restricted integrated

8To be precise, the nT × nT weighting matrices considered in these cases are Ω−1
uu ⊗ IT , Ω−1

u·v ⊗ IT and
In ⊗ IT , respectively. Note that all GLS results presented in this paper consider weighting matrices
of the form Ŵ ⊗ IT . From an algebraic perspective, one could consider, in principle, also “full”
Ŵ ∈ RnT×nT weighting matrices.

9As is well known, the explicit formulation of restrictions used in (18) is equivalent to the implicit for-
mulation Rφ = r used in the discussion of the Wald-type test. Starting from the explicit formulation,
denote with D⊥ ∈ R(|I|+m)n×((|I|+m)n−g) a matrix of full column rank that fulfills D′⊥D = 0. Then
R = D′⊥, r = D′⊥d and s = (|I|+m)n− g.

8



modified generalized least squares (IM-GLS) estimator φ̂R of φ with symmetric weighting

matrix sequence Ŵ is defined as:

φ̂R := Dϕ̂+ d, (20)

with:

ϕ̂ :=
(

(D′(Ŵ ⊗ S̃Z S̃Z′)D
)−1

(21)

×
(
D′
(

vec
(
S̃ZSy′Ŵ

)
− (Ŵ ⊗ S̃Z S̃Z′)d

))
.

With ϕ∗ such that φ∗ = Dϕ∗ + d, it holds for T →∞ and Ŵ →W > 0 that:

A−1
D (ϕ̂− ϕ∗)⇒

(
D∗′
(
W ⊗

∫ 1

0
f(s)f(s)′ds

)
D∗
)−1

(22)

×
(
D∗′vec

(∫ 1

0

[
F (1)− F (s)

]
dBu·v(s)′W

))
.

The limiting distribution of ϕ̂ given in (22) is – conditional upon Wv(r) – normal with

zero mean and covariance matrix:

VIM,R := A−1BA−1, (23)

with:

A := D∗′
(
W ⊗

∫ 1

0
f(s)f(s)′ds

)
D∗, (24)

B := D∗′
(
WΩu·vW ⊗

∫ 1

0

[
F (1)− F (s)

][
F (1)− F (s)

]′
ds

)
D∗. (25)

An estimator of VIM,R is readily available, analogously to (13) and, therefore, asymp-

totically chi-squared or standard normal inference on ϕ follows, under conditions (19)

and (27), similarly to Proposition 2:10

Proposition 4. Let the data be generated by (1) with appropriate assumptions in place

and assume that long-run covariance estimation is performed consistently. Let the pa-

10Note that the limiting distribution of φ̂R is, by construction, singular unless D is square.
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rameter vector φ = Dϕ + d with condition (19) in place fulfill sϕ linearly independent

restrictions, i. e.,:11

H0 : Rϕϕ = rϕ, (26)

with Rϕ ∈ Rsϕ×g with full row rank sϕ and rϕ ∈ Rsϕ. Furthermore, assume that there

exists a matrix sequence Aϕ ∈ Rsϕ×sϕ such that:

lim
T→∞

A−1
ϕ RϕAD = R∗ϕ (27)

exists and has full row rank sϕ and that Ŵ → W > 0. Then, it holds under the null

hypothesis for T →∞ that the Wald-type statistic:

TW,R := (Rϕϕ̂− rϕ)′
(
RϕÂ

−1B̂Â−1R′ϕ

)−1
(Rϕϕ̂− rϕ)⇒ Osϕ , (28)

with Osϕ denoting a chi-squared distributed random variable with sϕ degrees of freedom

and:

Â := D′(Ŵ ⊗ S̃Z S̃Z′)D, (29)

B̂ := D′(Ŵ Ω̂u·vŴ ⊗ CC ′)D. (30)

In the case sϕ = 1, a t-type statistic that is asymptotically standard normally distributed

can be defined analogously to Proposition 2.

Remark 1. Note that, exactly as discussed in Wagner (2023, Remark 1), for restrictions

of the form D = In ⊗ D, with an asymptotic rank condition of the form (19) holding

for a full rank limiting matrix D∗ = In ⊗D∗, the IM-GLS estimator coincides with the

IM-OLS estimator for any symmetric weighting matrix Ŵ →W > 0.

2.4 Fixed-b Inference

One advantage of the IM-OLS estimator introduced for single-equation cointegrating

linear regressions in Vogelsang and Wagner (2014) and extended to the single-equation

CMPR setting in Vogelsang and Wagner (2024) is that it can be used for asymptotically

11Since Γ is not estimated consistently, the last nm columns of the restrictions matrix Rϕ need to equal
zero.
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pivotal fixed-b inference. In the CMPR setting, see Vogelsang and Wagner (2024, Corol-

lary 1 and Proposition 3), asymptotically pivotal fixed-b inference requires full design of

the regression. Full design means that the limit process Z(r) = ΠZZW (r), with ΠZ a

regular matrix and ZW (r) a functional of standard Brownian motions.12

The system CMPR setting considered in this paper adds another complexity to asymp-

totically pivotal fixed-b inference: The key quantity in fixed-b inference is a modified

estimator Ω̂u·v,M of Ωu·v constructed from modified residuals Ŝu
t,M as defined below. In

the system case considered, this long-run covariance matrix is now, obviously, an n× n
matrix rather than, as in Vogelsang and Wagner (2014, 2024), a scalar. With respect

to VIM, this implies that (using a lower case letter for a scalar quantity) the variance

scaling factor in the test statistic is not of the form ωu·v times a matrix but, see (12),

given by the Kronecker product of Ωu·v and a matrix,M say. This implies, see the proof

of Proposition 5, that a sufficient condition for asymptotically pivotal fixed-b inference

is that the restrictions matrix R ∈ Rs×(|I|+m)n – in Rφ = r – fulfills R = In ⊗R, with

R ∈ Rs/n×(|I|+m), with sR := s
n a (positive) integer. Whilst this is clearly restrictive, it,

e. g., includes RESET-type specification testing with identical auxiliary regressors in all

equations (see Vogelsang and Wagner, 2024, Section 2.4 for the n = 1 case).13

Proposition 5. Let the data be generated by (1) and assume that full design prevails.

Consider s = sRn linearly independent restrictions collected in:14

H0 : Rvec(Φ′) = (In ⊗R)φ = r, (31)

with R ∈ RsR×(|I|+m) of full row rank sR, r ∈ RsRn and suppose that there exists a

matrix sequence AR ∈ RsR×sR such that:

lim
T→∞

A−1
R RAIM = R∗, (32)

12Full design of SCMPRs can always be achieved by adding regressors, see the (single-equation) discus-
sion in Vogelsang and Wagner (2024).

13Since no additional restrictions are required for r, fixed-b inference is effectively available for testing the
same set of hypotheses for every equation allowing for equation- (and restriction-) specific intercept
terms.

14As in Proposition 2, we assume that none of the hypotheses tested involves elements of Γ, compare
Footnote 6. This requires that the last m columns of R are zero.
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with R∗ ∈ RsR×(|I|+m) of full row rank sR. Then, it holds under the null hypothesis for

T →∞ that the fixed-b Wald-type statistic:

TW,b := (Rφ̂− r)′
(
RV̂IM,MR

′
)−1

(Rφ̂− r)⇒ Z ′sRn(Q(P )−1 ⊗ IsR)ZsRn, (33)

with V̂IM,M defined similarly as V̂IM in (13), but with Ω̂u·v replaced by Ω̂u·v,M, defined

in (34) below, and ZsRn an sRn-dimensional standard normally distributed random vec-

tor independent of Q(P ). The precise form of Q(P ) depends on the specification of the

SCMPR (1), the kernel function k(·) and the bandwidth-to-sample size ratio 0 < b ≤ 1.15

It is key for asymptotically pivotal fixed-b inference, that ZsRn and Q(P ) in (33) are in-

dependent random variables. Achieving independence requires (for exactly the same

reason as discussed in detail in Vogelsang and Wagner, 2014, 2024) that, as indi-

cated above, Ωu·v cannot be estimated using the IM-OLS residuals Ŝu
t := Sy

t − Φ̂S̃Z
t

and Ŝu := (Ŝu
1 , . . . , Ŝ

u
T ). Instead, orthogonalized modified residuals, Ŝu

t,M, have to

be used to annihilate (nuisance parameter-dependent) correlation. These are given

by Ŝu
M := Ŝu

(
IT −M⊥′(M⊥M⊥′)−1M⊥

)
, with M⊥ := M(IT − S̃Z′(S̃Z S̃Z′)−1S̃Z),

M := (M1, . . . ,MT ) and Mt := t
∑T

j=1 S̃
Z
j −

∑t−1
j=1

∑j
s=1 S̃

Z
s for t = 1, . . . , T . The

required modified estimator of Ωu·v is now defined as:

Ω̂u·v,M := T−1
T∑
i=2

T∑
j=2

k

(
|i− j|
B

)
∆Su

i,M∆Su′
j,M, (34)

⇒ Ω
1/2
u·vQ(P )Ω

1/2′
u·v ,

with kernel function k(·) and bandwidth B = bT for some 0 < b ≤ 1.

Remark 2. Note that in the case the restrictions considered in this subsection are not

rejected, the discussion in Footnote 9 clarifies that the corresponding restricted estima-

tion problem is, unsurprisingly, under the type of restrictions discussed in Remark 1.

This is a situation in which IM-GLS coincides with IM-OLS, or in other words, the

fixed-b discussion in this paper is (algebraically) confined to IM-OLS.

15Given the comparably limited scope for fixed-b inference in the SCMPR setting, we abstain from
explicitly stating and defining all necessary quantities. The stochastic process P (r) is the multivariate
analogue of P (r) as defined in Vogelsang and Wagner (2024, Proposition 3). The key difference is
that Wu·v(r) is now an n-dimensional rather than a scalar process. The other elements constituting
P (r) – g(r), G(r), h(r) and H(r) – are exactly as in Vogelsang and Wagner (2024, Corollary 1
and Proposition 3). Furthermore, the form of the functional(s) Q(P ) is exactly as given above
Proposition 3 in Vogelsang and Wagner (2024), conveniently defined there already for the multivariate
case.
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Code for IM-OLS estimation and inference, including fixed-b inference – which neces-

sitates (the generation of) fixed-b critical values that, as discussed, depend upon the

specification of the SCMPR, the kernel function k(·) and the value of b – is available

upon request.
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Appendix: Proofs

Proof of Proposition 1. The result presents the system version of the IM-OLS estimator

and its asymptotic properties derived for the single equation CMPR setting with n = 1 in

Vogelsang and Wagner (2024, Proposition 1) and follows upon combining the individual

equation results.

Proof of Proposition 2. Under the null hypothesis and condition (15) on AR, it holds

that:

A−1
R (Rφ̂− r) =

(
A−1

R R(In ⊗AIM)
) (

(In ⊗A−1
IM )(φ̂− φ∗)

)
⇒ R∗Y,

with Y denoting the random variable (limiting distribution) given in (11). R∗Y is

under the null hypothesis – conditional upon Wv(r) – normally distributed with zero

mean and covariance matrix R∗VIMR
∗′. Under condition (15), it furthermore holds that

A−1
R RV̂IMR

′A−1′
R ⇒ R∗VIMR

∗′. Combining the two results now immediately leads to the

asymptotic chi-squared distribution for TW as defined in (16) by noting that conditional

convergence to a chi-squared distribution that is (by definition) independent of Wv(r)

amounts to unconditional convergence.

Proof of Proposition 3. Centering of the IM-OLS estimator, compare Proposition 1,

takes place around Φ∗. Therefore, considering:

D′vec
(
S̃Z S̃Z′Φ∗′Ŵ

)
= D′(Ŵ ⊗ S̃Z S̃Z′)φ∗ = D′(Ŵ ⊗ S̃Z S̃Z′)(Dϕ∗ + d),

14



implies:

ϕ̂− ϕ∗ =
(
D′(Ŵ ⊗ S̃Z S̃Z′)D

)−1 (
(D′vec

(
S̃Z(Sy − Φ∗S̃Z)′Ŵ

))
(35)

=
(
D′(Ŵ ⊗ S̃Z S̃Z′)D

)−1 (
D′vec

(
S̃Z(Su − ΩuvΩ−1

vv X)′Ŵ
))

.

With condition (19) and Ŵ → W > 0 in place, it follows from straightforward calcula-

tions that:

A−1
D (ϕ̂− ϕ∗)⇒

(
D∗′
(
W ⊗

∫ 1

0
f(s)f(s)′ds

)
D∗
)−1

(36)

×
(
D∗′vec

(∫ 1

0
f(s)Bu·v(s)′dsW

))
,

with the result as given in the main text in (22) following by partial integration.

Proof of Proposition 4. The result follows analogously to the result for the Wald-type

statistic for linear hypotheses on φ derived in Proposition 2. An additional complication

is that two asymptotic full rank conditions, one related to the matrix D relating ϕ and

φ, given in (19), and one related to the restrictions matrix Rϕ, given in (27), have to

hold. Also, of course, Â and B̂ need to be properly scaled to converge.

Proof of Proposition 5. As in the proof of Vogelsang and Wagner (2014, Lemma 2),

it is easiest to establish the asymptotic behavior of the modified residuals Ŝu
brT c,M by

noting that they are equivalently given as the OLS residuals of the regression of Sy
t

on S̃Z
t and Mt. Based on this observation, it can be shown that T 1/2

∑brT c
t=2 ∆Ŝu

t,M ⇒
Ω

1/2
u·vP (r), with P (r) defined similarly to (28) in Vogelsang and Wagner (2024), with the

only difference being that Wu·v(r) is now an n-dimensional process rather than a scalar

process.16 The second important ingredient for asymptotically pivotal fixed-b inference

is independence of P (r) – as input in Q(P ) – and ZsRn = (R∗VIMR
∗′)−1/2(R∗Y). This

can be shown analogously as in the n = 1 case in the proof of Vogelsang and Wagner

(2024, Proposition 3), in particular (57)–(59).17 Write VIM as defined in (12) for brevity

as VIM = Ωu·v ⊗M and consider – to conclude the proof – the asymptotic behavior of

16To be precise, P (r) :=
∫ r

0
dWu·v(s) −

∫ 1

0
dWu·v(s)[H(1) − H(s)]′

(∫ 1

0
h(s)h(s)′ds

)−1

h(r). Note that

H(r) is – which requires full design – a functional of standard Brownian motions.
17Since Y, as given in (11), can – in case of full design – be written as(

Ω
1/2
u·v ⊗Π−1′(

∫ 1

0
g(s)g(s)′ds)−1

)
vec
(∫ 1

0
[G(1)−G(s)]dWu·v(s)′

)
, with Π := diag(ΠZ ,Ω

1/2
vv ),

the relevant component for showing independence is vec
(∫ 1

0
[G(1)−G(s)]dWu·v(s)′

)
.
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the modified covariance estimator which is the central term in the fixed-b Wald-type

statistic TW,b defined in (33):

A−1
R RV̂IM,MR

′A−1′
R ⇒ (In ⊗R∗)

(
Ω

1/2
u·vQ(P )Ω

1/2′
u·v ⊗M

)
(In ⊗R∗′) (37)

= Ω
1/2
u·vQ(P )Ω

1/2′
u·v ⊗ (R∗MR∗′)

= (Ωu·v ⊗R∗MR∗′)1/2 (Q(P )⊗ IsR) (Ωu·v ⊗R∗MR∗′)1/2′

= (R∗VIMR
∗′)1/2 (Q(P )⊗ IsR) (R∗VIMR

∗′)1/2′.

Combining the parts defining TW,b establishes the result.
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