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Appendix

A.1 Proofs

Derivation of identified set in (2.2). Following Uhlig (2005), we reparameterize A

via the Cholesky matrix �tr and a rotation matrix Q = ( cosρ − sinρ
sinρ cosρ

)
with spherical coordi-

nate ρ ∈ [0, 2π]. We can then express α as a function of φ and the nonidentified param-
eter ρ indexing a rotation matrix:

A−1 = �trQ =
(

σ11 cosρ −σ11 sinρ
σ21 cosρ+ σ22 sinρ −σ21 sinρ+ σ22 cosρ

)

and the parameter of interest is α = α(ρ, φ) ≡ σ11 cosρ. We impose the sign normaliza-
tion restrictions throughout by constraining the diagonal elements of A to being non-
negative,

σ22 cosρ− σ21 sinρ≥ 0 and σ11 cosρ ≥ 0. (A.1)

The sign restrictions a12 ≥ 0 and a21 ≤ 0 are expressed as

σ11 sinρ ≥ 0, (A.2)

−σ22 sinρ− σ21 cosρ ≤ 0. (A.3)

Given φ, the identified set for α = σ11 cosρ is given by its set as ρ varies over the set
characterized by the restrictions (A.1)–(A.3). Since the second constraint in (A.1) and
(A.2) imply ρ ∈ [0, π/2], we focus on how the other two restrictions (the first constraint
in (A.1) and (A.3)) tighten up ρ ∈ [0, π/2].
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Assume σ21 > 0. Then, they imply arctan(−σ21/σ22 ) ≤ ρ ≤ arctan(σ22/σ21 ). Intersect-
ing this interval with ρ ∈ [0, π/2] leads to [0, arctan(σ22/σ21 )] as the identified set for ρ.
Hence, the identified set for α in the σ21 > 0 case follows. A similar argument leads to
the α identified set for the σ21 ≤ 0 case.

Proof of Lemma 3.1. (i) By the construction of the φ-prior (3.2), the marginal likeli-
hood for M ∈ Ms can be rewritten as

p(Y |M ) =
∫
�
p(Y |φ, M )dπφ|M (φ)

=
∫
�
p(Y |φ) · 1

{
ISα(φ|M ) �= ∅}

π̃φ

(
ISα(φ|M ) �= ∅) dπ̃φ(φ)

= p̃(Y )
∫
φ

1
{
ISα(φ|M ) �= ∅}

π̃φ

(
ISα(φ|M ) �= ∅) dπ̃φ|Y (φ)

= p̃(Y )
π̃φ|Y

(
ISr(φ|M ) �= ∅)

π̃φ

(
ISr(φ|M ) �= ∅) = p̃(Y )OM ,

where the second line uses the assumption that the set-identified models admit an
identical reduced-form and the third line follows from the Bayes theorem for the
reduced-form parameters, p(Y |φ)π̃φ(φ) = p̃(Y )π̃φ|Y (φ). Plugging this expression of
the marginal likelihood into (3.1) leads to the claim.

(ii) Under the additionally imposed assumptions, the marginal likelihood of model
Mp ∈ Mp is given by p̃(Y )OMp . Hence, combined with p(Y |Ms ) = p̃(Y )OMs shown in
part (i), (3.5) follows.

(iii) The claim follows immediately by noting that the imposed assumptions imply
OM = 1 for all M ∈ M and setting OM , M ∈ M, to one in (3.5).

Derivation of 	α|Ms ,Y in equation (3.7). We derive 	α|Ms ,Y in the next lemma.

Lemma A.1. For a set-identified model Ms with the structural parameters θMs ∈ �Ms

and reduced-form parameters φMs = gMs (θMs ) ∈ �Ms = gMs (�Ms ), let a prior for φMs ,
πφMs |Ms be given. Define the class of priors of θMs by

	θMs |Ms ≡ {
πθMs |Ms : πθMs |Ms

(
�Ms ∩ g−1

Ms (B)
)= πφMs |Ms (B), ∀B ∈ B(�Ms )

}
.

Updating 	θMs |Ms prior-by-prior with the likelihood p̃(Y |θMs , Ms ) and marginalizing
the resulting posteriors via α = αMs (θMs ) leads to the following set of posteriors for α:

	α|Ms ,Y ≡
{
πα|Ms ,Y =

∫
�M

πα|Ms ,φMs dπφMs |Ms ,Y : πα|Ms ,φMs

(
ISα

(
φMs |Ms

))= 1,

πφMs |Ms-a.s.
}

. (A.4)
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Proof of Lemma A.1. The prior-by-prior updating rule updates 	θMs |Ms to

	θMs |Ms ,Y ≡ {
πθMs |Ms ,Y : πθMs |Ms ,Y

(
�Ms ∩ g−1

Ms (B)
)= πφMs |Ms ,Y (B), ∀B ∈ B(�Ms )

}
.

Since πθMs |Ms ,Y (�Ms ∩ g−1
Ms (B)) can be written as

πθMs |Ms ,Y
(
�Ms ∩ g−1

Ms (B)
)=

∫
B
πθMs |φMs ,Ms

(
�Ms ∩ g−1

Ms (φMs )
)
dπφMs |Ms ,Y (φMs ),

the φMs -marginal constraints for πθMs |Ms ,Y are equivalent to∫
B
πθMs |φMs ,Ms

(
�Ms ∩ g−1

Ms (φMs )
)
dπφMs |Ms ,Y (φMs ) = πφMs |Ms ,Y (B).

This equality holds for all B ∈ B(�Ms ) if and only if πθMs |φMs ,Ms (�Ms ∩ g−1
Ms (φMs )) = 1,

πφMs |Ms ,Y -a.s. Accordingly, an equivalent representation of the class of posteriors for
θMs is

	θMs |Ms ,Y =
{∫

�Ms

πθMs |φMs ,Ms dπ�Ms |Y : πθMs |φMs ,Ms

(
�Ms ∩ g−1

Ms (φMs )
)= 1,

πφMs |Ms ,Y -a.s.
}

. (A.5)

Note that we have

πα|φMs ,Ms

(
ISα

(
φMs |Ms

))= πθMs |φMs ,Ms

(
α−1
Ms

(
ISα

(
φMs |Ms

)))
= πθMs |φMs ,Ms

(
�Ms ∩ g−1

Ms (φMs )
)
,

where the second equality follows by the definition of the identified set of α. Hence,
πθMs |φMs ,Ms (�Ms ∩ g−1

Ms (φMs )) = 1, πφMs |Ms ,Y -a.s. holds if and only if πα|φMs ,Ms (ISα(φMs |
Ms )) = 1, πφMs |Ms ,Y -a.s. The class of marginalized posteriors for α (A.4) therefore fol-
lows.

Proof of Proposition 3.1. Let πθ,M be a prior of (θ, M ) belonging to the proposed
	θ,M . The corresponding posterior for θ with M integrated out can be computed as fol-
lows: for any measurable subset H ⊂�,

πθ|Y (H ) =

∑
M∈M

∫
H
p̃(Y |θ, M )dπθ|M (θ)πM

∑
M∈M

[∫
�M

p̃(Y |θ, M )dπθ|M (θ)

]
πM

=

⎛
⎜⎜⎜⎜⎝

∑
Mp∈Mp

πθ|Mp,Y (H )p
(
Y |Mp

)
πMp

+
∑

Ms∈Ms

[∫
�Ms

πθ|φMs ,Ms (H )p
(
Y |φMs , Ms

)
dπφMs |Ms (φMs )

]
πMs

⎞
⎟⎟⎟⎟⎠

∑
Mp∈Mp

p
(
Y |Mp

)
πMp +

∑
Ms∈Ms

[∫
�Ms

p
(
Y |φMs , Ms

)
dπφMs |Ms (φMs )

]
πMs
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=
∑

Mp∈Mp

πθ|Mp(H )πMp|Y

+
∑

Ms∈Ms

[∫
�Ms

πθ|φMs ,Ms (H )dπφMs |Ms ,Y (φMs )

]
πMs|Y ,

where the second line uses∫
H
p̃(Y |θ, M )dπθ|M (θ) =

∫
�M

[∫
�

1{θ ∈H}p̃(Y |θ, M )dπθ|φM ,M (θ)

]
dπφM |M (φM )

=
∫
�M

[∫
�

1{θ ∈H}dπθ|φM ,M (θ)

]
p(Y |φM , M )dπφM |M (φM )

=
∫
�M

πθ|φM ,M (H )p(Y |φM , M )dπφM |M (φM ).

The class of posteriors for θ can be therefore represented as

	θ|Y ≡
{ ∑
Mp∈Mp

πθ|Mp,YπMp|Y +
∑

Ms∈Ms

πθ|Ms ,YπMs|Y : πθ|Ms ,Y ∈	θ|Ms ,Y , ∀Ms ∈ Ms

}
,

where 	θ|Ms ,Y is as defined in (A.5). As shown in the proof of Lemma A.1 above,
marginalizing 	θ|Ms ,Y to α leads to 	α|Ms ,Y defined in (3.7). We therefore conclude that
marginalizing 	θ|Y to α results in 	α|Y shown in (3.8).

Proof of Proposition 3.2. (i) Since there is no constraint across the posteriors be-
longing to different posterior classes, it holds that

inf
πα|Y∈	α|Y

Eα|Y (α) =
∑

Mp∈Mp

Eα|Mp,Y (α)πMp|Y +
∑

Ms∈Ms

inf
πα|Ms ,Y∈	α|Ms ,Y

{
Eα|Ms ,Y (α)

} ·πMs|Y .

By the construction of 	α|Ms ,Y , an application of Theorem 2 of Giacomini and Kitagawa
(2021) shows the set of posterior means is convex with the lower bound

inf
πα|Ms ,Y∈	α|Ms ,Y

{
Eα|Ms ,Y (α)

}=EφMs |Ms ,Y
(
l
(
φMs |Ms

))
,

and the upper bound

sup
πα|Ms ,Y∈	α|Ms ,Y

{
Eα|Ms ,Y (α)

}=EφMs |Ms ,Y
(
u
(
φMs |Ms

))
.

(ii) Note that

inf
πα|Y∈	α|Y

πα|Y (H ) =
∑

Mp∈Mp

πα|Mp,Y (H ) ·πMp|Y

+
∑

Ms∈Ms

inf
πα|Ms ,Y∈	α|Ms ,Y

{
πα|Ms ,Y (H )

} ·πMs|Y ,
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sup
πα|Y∈	α|Y

πα|Y (H ) =
∑

Mp∈Mp

πα|Mp,Y (H ) ·πMp|Y

+
∑

Ms∈Ms

sup
πα|Ms ,Y∈	α|Ms ,Y

{
πα|Ms ,Y (H )

} ·πMs|Y .

Theorem 1 of Giacomini and Kitagawa (2021) shows

inf
πα|Ms ,Y∈	α|Ms ,Y

{
πα|Ms ,Y (H )

}= πφMs |Ms ,Y
(
ISα

(
φMs |Ms

)⊂H
)
,

sup
πα|Ms ,Y∈	α|Ms ,Y

{
πα|Ms ,Y (H )

}= πφMs |Ms ,Y
(
ISα

(
φMs |Ms

)∩H �= ∅),
so the conclusion follows.

(iii) By setting H to [−∞, a], the lower probability obtained in part (ii) yields
the lower bound of the cdfs, since the event ISα(φMs |Ms ) ⊂ [−∞, a] is equivalent to
u(φMs |Ms ) ≤ a. The upper bound follows by noting

sup
πα|Ms ,Y∈	α|Ms ,Y

πα|Ms ,Y
(
[∞, a]

)= πφMs |Ms ,Y
(
ISα

(
φMs |Ms

)∩ [∞, a] �= ∅)

= πφMs |Ms ,Y
(
l
(
φMs |Ms

)≤ a
)
.

The set of quantiles then follows by inverting these cdf bounds.

Next, we show two lemmas to be used to prove Proposition 3.3. We denote the set
of candidate models satisfying condition (A) of Assumption 3.2(i) by MA and the set of
those satisfying condition (B) by MB. Under Assumption 3.2(i), M = MA ∪ MB holds.
Note that through these lemmas and the proof of Proposition 3.3, M is assumed to admit
an identical reduced form with reduced-form parameter dimension d ≥ 1.

Lemma A.2. Suppose Assumption 3.2 holds. For M ∈ MA,

nd/2 det
(
Hn(φ̂)

)1/2
p
(
Yn|M

)
(2π )d/2p

(
Yn|φ̂

) − fφ|M (φ̂) = O
(
n−1/2),

with PY∞|φtrue -probability one.

Proof of Lemma A.2. Denote the reduced-form parameter vector by φ = (φ1, � � � , φd )
and the third-derivative of ln(·) by hijk(·) ≡ ∂3

∂φi∂φj∂φk
ln(·), 1 ≤ i, j, k ≤ d. By Assumptions

3.2(i), (ii) and (iv), there exists B∗ an open neighborhood of φtrue such that B∗ ⊂ �M

holds for all M ∈ MA, and

sup
φ∈B∗

max
1≤i,j,k≤d

∣∣hijk(φ)
∣∣< ∞, (A.6)

and

lim sup
n→∞

sup
φ∈�\B∗

{
ln(φ) − ln(φtrue )

}
< 0, with PY∞|φtrue -probability one (A.7)
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hold. Since Assumptions 3.2(iii) and (iv) imply the strong convergence of φ̂, for all suffi-
ciently large n, φ̂ ∈ B∗ holds. Given φ̂ ∈ B∗, consider the third-order mean value expan-
sions of nln(φ):

nln(φ) = nln(φ̂) − n

2
(φ− φ̂)′Hn(φ̂)(φ− φ̂)

+ n

6

∑
1≤i,j,k≤d

hijk(φ̃)(φi − φ̂i )(φj − φ̂j )(φk − φ̂k )

= nln(φ̂) − 1
2
u′Hn(φ̂)u+ 1√

n
R1n(u),

where φ̃ is a convex combination of φ and φ̂, u ≡ √
n(φ − φ̂), and R1n(u) = 1

6 ×∑
1≤i,j,k≤d hijk(φ̃)uiujuk, where ui is the ith entry of vector u. By the boundedness of

hijk on B∗, R1n(u) can be bounded by a third-order polynomial of u with bounded co-

efficients on
√
n(B∗ − φ̂), where

√
n(B∗ − φ̂) is the subset in R

d that translates B∗ by φ̂

and scales up by
√
n. Plugging this expansion in p(Yn|φ) = exp(nln(φ)) and combin-

ing it with the first-order expansion of fφ|M (φ), we obtain on φ ∈ B∗ (or equivalently on

u ∈ √
n(B∗ − φ̂)):

p
(
Yn|φ

)
fφ|M (φ) = exp

{
nln(φ̂) − 1

2
u′Hn(φ̂)u

}{
1 + 1√

n
R1n(u) + 1

2n
R1n(u)2 + · · ·

}

×
{
fφ|M (φ̂) + 1√

n
R2n(u)

}

= exp
{
nln(φ̂) − 1

2
u′Hn(φ̂)u

}{
fφ|M (φ̂) + 1√

n
R3n(u)

}
, (A.8)

where the first equality invokes the expansion of exp(x) = 1 + x + 2−1x2 + · · · , R2n =
f ′
φ|M (φ̃)u, and R3n collects the residual terms that can be bounded uniformly on√
n(B∗ − φ̂) by a finite order polynomial of u with bounded coefficients.

Integration of p(Yn|φ)fφ|M (φ) over φ ∈ B∗ is equivalent to integrating (A.8) in u over√
n(B∗ − φ̂):∫

B∗
p
(
Yn|φ

)
fφ|M (φ)dφ

= n−d/2 exp
{
nln(φ̂)

}(∫
√
n(B∗−φtrue )

(
fφ|M (φ̂) +R3n(u)

)
exp

{
−1

2
u′Hn(φ̂)u

}
du

)

= (2π )d/2p
(
Yn|φ̂

)
n−d/2 det

(
Hn(φ̂)

)1/2

× (
fφ|M (φ̂)EHn

[
1√

n(B∗−φ̂)(u)
]+ n−1/2EHn

[
R3n(u) · 1√

n(B∗−φ̂)(u)
])

= (2π )d/2p
(
Yn|φ̂

)
n−d/2 det

(
Hn(φ̂)

)1/2(
fφ|M (φ̂) +O

(
n−1/2)), (A.9)

where EHn(·) is the expectation taken with respect to u ∼ N (0, Hn(φ̂)−1 ). Note that the
third equality follows since the replacement of

√
n(B∗ − φ̂) with R

d incurs an error of
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exponentially decreasing order and EHn(R3n(u)) is finite, that is, the multivariate normal
distribution has finite moments at any order.

Consider now integrating p(Yn|φ)fφ|M (φ) over �M \B∗:

∫
�M\B∗

p
(
Yn|φ

)
fφ|M (φ)dφ

= (2π )d/2p
(
Yn|φ̂

)
n−d/2 det

(
Hn(φ̂)

)1/2

×
(

(2π )−d/2nd/2 det
(
Hn(φ̂)

)−1/2
∫
�M\B∗

exp
{
n
(
ln(φ) − ln(φ̂)

)}
fφ|M (φ)dφ

)

≤ (2π )d/2p
(
Yn|φ̂

)
n−d/2 det

(
Hn(φ̂)

)1/2

×
(

(2π )−d/2nd/2 det
(
Hn(φ̂)

)−1/2
f̄φ|M sup

φ∈�\B∗

{
exp

{
n
(
ln(φ) − ln(φtrue )

)}})
, (A.10)

where by Assumption 3.2(v), f̄φ|M ≡ supφ∈� fφ|M (φ) < ∞. Assumptions 3.2(iii) and (iv)
imply that the term in the parentheses of (A.10) converges to zero faster than n−1/2-rate
with PY∞|φtrue -probability one. Summing up (A.9) and (A.10) gives the following asymp-
totic approximation of the marginal likelihood in model M ∈ MA:

p
(
Yn|M

) =
∫
B∗

p
(
Yn|φ

)
fφ|M (φ)dφ+

∫
�M\B∗

p
(
Yn|φ

)
fφ|M (φ)dφ

= (2π )d/2p
(
Yn|φ̂

)
n−d/2 det

(
Hn(φ̂)

)1/2(
fφ|M (φ̂) +O

(
n−1/2)), (A.11)

with PY∞|φtrue -probability one. Bringing the multiplicative terms in the right-hand side
of (A.11) to the left-hand side completes the proof.

Lemma A.3. Suppose Assumption 3.2 holds. For model M ∈ MB,

nd/2 det
(
Hn(φ̂)

)1/2
p
(
Yn|M

)
(2π )d/2p

(
Yn|φ̂

) = o
(
n−1/2),

with PY∞|φtrue -probability one.

Proof of Lemma A.3. Let B∗ be an open neighborhood of φtrue as defined in the proof
of Lemma A.2.

Consider the marginal likelihood of model M ∈ MB divided by (2π )d/2p(Yn|φ̂) ×
n−d/2 det(Hn(φ̂))1/2:

nd/2 det
(
Hn(φ̂)

)1/2
p
(
Yn|M

)
(2π )d/2p

(
Yn|φ̂

)
= nd/2 det

(
Hn(φ̂)

)1/2

(2π )d/2

∫
�M

exp
{
n
(
ln(φ) − ln(φ̂)

)}
fφ|M (φ)dφ
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≤ nd/2 det
(
Hn(φ̂)

)1/2

(2π )d/2
f̄φ|M sup

φ∈�M

exp
{
n
(
ln(φ) − ln(φ̂)

)}

≤ nd/2 det
(
Hn(φ̂)

)1/2

(2π )d/2
f̄φ|M sup

φ∈�\B∗
exp

{
n
(
ln(φ) − ln(φtrue )

)}
, (A.12)

where f̄φ|M = supφ fφ|M (φ) < ∞, and the third line follows since B∗ ⊂ �c
M implies �M ⊂

� \ B∗. Note that by Assumption 3.2(iv), the upper bound shown in (A.12) converges to
zero faster than the polynomial rate of n−1/2 with PY∞|φtrue -probability one.

Proof of Proposition 3.3. (i) Under Assumption 3.2(i), the posterior model proba-
bility of model M ∈ M can be written as

πM|Yn = p
(
Yn|M

)
πM∑

M ′∈MA

p
(
Yn|M ′)πM ′ +

∑
M ′∈MB

p
(
Yn|M ′)πM ′

.

By dividing both the numerator and denominator by (2π )d/2p(Yn|φ̂)n−d/2 det(Hn(φ̂))1/2

and applying Lemmas A.2 and A.3, we have

πM|Yn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fφ|M (φ̂)πM∑
M ′∈MA

fφ|M ′(φ̂)πM ′
+O

(
n−1/2), for M ∈ MA,

o
(
n−1/2), for M ∈ MB,

with PY∞|φtrue -probability one.
Since fφ|M (·) is assumed to be continuous and Assumptions 3.2(iii) and (iv) imply

almost sure convergence of φ̂ to φtrue, πM|Y∞ of the current proposition follows.
(ii) With the given specifications of the φ-prior, fφ|M (φtrue ) is proportional to

π̃(�M )−1 up to the model-independent constant (the Lebesgue density of π̃φ evalu-
ated at φ = φtrue). Hence, (i) of the current proposition is reduced to the asymptotic
model probabilities of (ii).

(iii) This trivially follows from Lemma 3.2(iii).

A.2 Computing plausibility ratios for sign-restricted SVARs

This Appendix provides details on how to compute the posterior-prior plausibility ratios
OM for SVAR models subject to underidentifying zero restrictions and sign restriction.
The crucial step is to check if the identified set ISα(φ) is empty at φ drawn from π̃φ|Y .
The first proposal (Algorithm A.1), which is a special case of Algorithm 1 in Giacomini
and Kitagawa (2021), uses random draws of the impulse responses and assesses whether
any of these satisfies the sign restrictions. The second proposal (Algorithm A.2) directly
checks a necessary and sufficient condition for nonemptiness of the identified set. The
first algorithm is simple to implement but can give a wrong conclusion if the identified
set is tiny. The second algorithm is guaranteed to give the right answer, but can become
cumbersome if the number of sign restrictions is large.



Supplementary Material Uncertain identification 9

A.2.1 Notation We generalize the representations of the SVAR in (4.1) and the

reduced-form VAR in (4.3) to have n endogenous variables and p ≥ 0 lags. Let Q ∈ O(n)
be an n × n orthonormal matrix and O(n) be the set of n × n orthonormal matrices.

We first transform the structural parameters (A0, a, A1, � � � , Ap ) into (φ′, vec(Q)′ )′ ∈
�̃× vec(O(n)):

B =A−1
0 [a, A1, � � � , Ap],

� =A−1
0

(
A−1

0

)′
,

Q = �−1
tr A−1

0 ,

where �tr denotes the lower-triangular Cholesky factor of � with nonnegative diag-

onal elements. We then set θ = (φ′, vec(Q)′ )′ with domain � = {(φ′, vec(Q)′ )′ ∈ � ×
vec(O(n)) : diag(Q′�−1

tr ) ≥ 0}. Here, diag(Q′�−1
tr ) ≥ 0 is the sign normalization restric-

tions:

(
σi
)′
qi ≥ 0 for all i = 1, � � � , n, (A.13)

where [σ1, σ2, � � � , σn] are the columns of �−1
tr and [q1, q2, � � � , qn] are the columns of Q.

Assuming the lag polynomial (In − ∑p
j=1 BjL

p ) is invertible (which is the domain

restriction on �̃) the VMA(∞) representation of the model is

yt = c +
∞∑
j=0

Cjut−j

= c +
∞∑
j=0

Cj�trQεt−j , (A.14)

where Cj is the jth coefficient matrix of (In −∑p
j=1 BjL

j )−1.

We denote the hth horizon impulse response by the n× n matrix IRh, h = 0, 1, 2, � � �

IRh =Ch�trQ. (A.15)

The scalar parameter of interest α is a single impulse-response, that is, the (i, j)-element

of IRh, which can be expressed as

α= IRh
ij ≡ e′

iCh�trQej ≡ c′
ih(φ)qj , (A.16)

where ei is the ith column of the identity matrix In and c′
ih(φ) is the ith row of Ch�tr.

Zero restrictions can be imposed on off-diagonal elements of A0, lagged coefficients

{Al : l = 1, � � �p}, contemporaneous impulse responses IR0 = A−1
0 , or cumulative long-

run responses. All these restrictions can be viewed as linear constraints on the columns
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of Q. For example,(
(j, i)th element of A0

)= 0 ⇐⇒ (
�−1

tr ei
)′
qj = 0,(

(j, i)th element of Al

)= 0 ⇐⇒ (
�−1

tr Blei
)′
qj = 0,(

(i, j)th element of A−1
0

)= 0 ⇐⇒ (
e′
i�tr

)
qj = 0,(

(i, j)th element of IRh
)= 0 ⇐⇒ [

e′
iCh�tr

]
qj = 0.

(A.17)

We restrict our analysis to the case that the imposed zero restrictions constrain only one
column vector of Q. Ordering the variables in such way that q1 becomes the constrained
column vector of Q, we can represent a collection of zero restrictions as

F(φ)q1 = 0, (A.18)

where F(φ) is an f × n matrix. F(φ) stacks all the coefficient vectors that multiply q1

into a matrix. Hence, f is the number of imposed zero restrictions. We consider underi-
dentifying zero restrictions, so we assume f ≤ n− 2.

We suppose there are sign restrictions on the responses to the first structural shock.
Sign restrictions are linear constraints on the first column of Q: Sh(φ)q1 ≥ 0, where
Sh(φ) ≡ DhCh�tr is an sh × n matrix, and Dh is an sh × n matrix that selects the sign-
restricted responses from the n × 1 impulse-response vector Ch�trq1. The nonzero ele-
ments of Dh equal 1 or −1 depending on whether the corresponding impulse responses
are positive or negative.

Stacking Sh(φ) over multiple horizons gives the set of sign restrictions

S(φ)q1 ≥ 0, (A.19)

where S(φ) is a s × n matrix S(φ) = [S0(φ)′, � � � , Sh̄(φ)]′, where s =∑h̄
h=0 sh is the num-

ber of sign constraints and 0 ≤ h̄ ≤ ∞ is the maximal horizon in the impulse-response
analysis.1

A.2.2 Algorithms For multiple posterior models, the plausibility ratio OM can be com-
puted by plugging into (3.5) numerical approximations of the prior and posterior prob-
abilities for nonemptiness of the identified set. Specifically, the denominator of OM can
be computed by drawing many φ’s from the prior and finding the fraction of draws that
yield a nonempty identified set. The numerator of OM can be computed similarly except
that the φ’s are drawn from the posterior.

Our first algorithm to approximate OM draws many q1’s from a distribution sup-
ported only on the unit sphere, and checks if any of the draws satisfies the model’s as-
sumptions given φ.

Algorithm A.1. Suppose the identifying restrictions of model M consist of F(φ) and
S(φ) be the zero and sign restrictions as defined in (A.18) and (A.19), respectively. The

1If there are no sign restrictions on the h̃th horizon responses, h̃ ∈ {0, � � � , h̄}, s
h̃

= 0 and S
h̃(φ) is not

present in S(φ).
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following algorithm can be used to approximate p̃φ(�M ), where p̃φ is a probability mea-
sure on �̃, which can be π̃φ or π̃φ|Y :

1. Draw φ from p̃φ.

2. Let z ∼ N (0, In ) be a draw of an n-variate standard normal random variable. Let
q̃1 = Mz be the n × 1 residual vector in the linear projection of z onto the n × f

regressor matrix F(φ)′. Set q1 = sign((σ1 )′q̃1 ) q̃1
‖q̃1‖ . If (σi )′q̃i is zero for some i, set

sign((σi )′q̃i ) equal to 1 or −1 with equal probability.

3. Check if q1 satisfies the sign restrictions S(φ)q1 ≥ 0. If it does, we conclude
ISα(φ) �= ∅. Otherwise, repeat Step 2 a maximum of L times until q1 satisfying
S(φ)q1 ≥ 0 is obtained. If none of the L draws of q1 satisfies S(φ, Q) ≥ 0, approxi-
mate ISα(φ) as being empty and return to Step 1 to obtain a new draw of φ.

4. Repeat Steps 1–3 for K times. The proportion of drawn φ’s that gives nonempty
ISα(φ) in Step 3 approximates p̃φ(�M ).

This procedure is simple to implement and can be applied where the number of sign
restrictions is large. It however only delivers an approximate assessment of the identified
set nonemptiness, and the approximation can be poor if the set of q’s satisfying the sign
restrictions is so thin that the finite number of q1 draws misses it.

The next algorithm exploits the linear structure of the identifying restrictions and
does not rely on approximations. The algorithm is based on the observation that any
nonempty identified set for q1 contains a vertex on the unit sphere on which at least
n − 1 equality and inequality constraints are binding. We can exhaust all the possible
candidates for such vertex by selecting any combination of n − 1 constraints and set-
ting them binding. If we could find a vertex that satisfies the f + s − (n − 1) constraints
ruled out in the selection, we can claim this vertex is contained in the identified set for
q1, allowing us to conclude that it is nonempty. If we cannot find any such vertex, we
conclude that the identified set is empty.

Algorithm A.2. Suppose the identifying restrictions of model M consist of F(φ) and
S(φ) be the zero and sign restrictions as defined in (A.18) and (A.19), respectively. The
following algorithm can be used to approximate p̃φ(�M ), where p̃φ is a probability mea-
sure on �̃, which can be π̃φ or π̃φ|Y .

1. Draw φ from p̃φ.

2. Find unit length vectors q∗
1 and −q∗

1 satisfying the system of “active constraints” (in
the language of Gafarov, Meier, and Olea (2018)):{

F(φ)q = 0,

S̃(φ)q = 0,
(A.20)

where S̃(φ) is s̃ × n matrix of active sign restrictions. It is set by picking s̃ rows
from S(φ) matrix, where f + s̃ = n− 1. Check if q∗

1 or −q∗
1 satisfy the “inactive con-

straints,” namely the rest of sign restrictions and the sign normalization restriction
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for q1. If so, ISα(φ) is nonempty. Otherwise, keep constructing S̃(φ) with different
combinations of s̃ active constraints and verify if the corresponding solution satisfy
the inactive constraints. If none of the solutions satisfies the inactive restrictions,
ISα(φ) is empty.

3. Repeat Steps 1–2 K times.

4. Approximate p̃φ(�M ) by the proportion of K draws of φ that delivers nonempty
identified set in Step 2.

While this algorithm does not suffer from approximation error, it can become com-
putationally burdensome when there are many sign restrictions, as the number of com-
binations of the active constraints to be checked in Step 2 becomes very large. The algo-
rithm of Amir-Ahmadi and Drautzburg (2020) (Section 3.2) works without approxima-
tion error and can be applied to the current context. The main difference is that they
solve a constrained optimization problem to detect nonemptiness. They check that the
Chebychev center of the constrained set (prior to normalization) is nondegenerate: the
existence of a Chebychev center with a ball of radius strictly positive around it is equiv-
alent to an identified set with positive measure.
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