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Alfred Galichon
Departments of Economics and of Mathematics, New York University and Department of Economics,

Sciences-Po

This supplement contains two additional sections. The first presents results on how
to deal with missing data on transfers, whereas the second introduces the associated
concentrated maximum likelihood function.

Appendix C: Extension to randomly missing transfers

In some applications, data will come from surveys where typically nonresponse to ques-
tions about earnings are frequently encountered. Our proposed estimation strategy ex-
tends to the case where, for some random matches, transfers are missing. The log-
likelihood expression presented in Theorem 1 offers a very intuitive way of understand-
ing how missing transfers for some random observations will impact the estimation. To
formalize ideas, let p be the probability that for any arbitrary match the transfer is miss-
ing. The sample is still representative of the population of matches, but a random part
of the sample consists of matches with observed transfers, that is, (Xi, Yi, Wi )n

o

i=1, and
the other part of matches with missing transfers, that is, (Xi, Yi, ·)ni=no+1 where no is the
number of matches with observed transfers and n is as before the size of our sample of
matches (we have reordered the observations such that those matches with observed
transfers are indexed first). The log-likelihood in this situation is therefore

log L̂(θ) = log L̂1(θ) + log L̂2(θ) + no logp+ (
n− no

)
log(1 −p),

where log L̂1(θ) is given as in equation (3.11) and log L̂2(θ) reads now as

log L̂2(θ) = −
no∑
i=1

(
Wi −wi(θ)

)2

2s2 − no

2
log s2 (C.1)

thus p = n0/n. As no tends to 0, and hence p tends to 0, the log-likelihood function tends
to log L̂1(θ). In contrast, when no tends to n, and hence p tends to 1, the expression of
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log L̂2(θ) in equation (C.1) tends to that of log L̂2(θ) in equation (3.12) such that the log-
likelihood function tends to equation (3.10).

Appendix D: Concentrated likelihood

In most applications, the parameters of primary interest are those governing workers’
deterministic values of amenities and firms’ deterministic values of productivity, that
is, A and �, respectively. The remaining parameters (σ1, σ2, t, s2 ) are auxiliary, and the
focus of attention is the concentrated log-likelihood, which is given by

log l(A, �) := max
σ1,σ2,t,s2

log L̂(θ) = log L̂1(�) + max
σ1,σ2,t,s2

log L̂2
(
A, �, σ1, σ2, t, s2),

where as usual, � = A + �. Denoting σ∗
1 , σ∗

2 , t∗ and s∗2 the optimal value of the corre-
sponding parameters given A and �, one gets

(
σ∗

1 , σ∗
2 , t∗

) = arg min
σ1,σ2,t

n∑
i=1

(
Wi −wi(θ)

)2
, (D.1)

which is the solution to a nonlinear least squares problem which is readily implemented
in standard statistical packages, and s∗2 = n−1 ∑n

i=1(Wi −wi(θ∗ ))2. The partial derivative
of the concentrated log-likelihood with respect to Ak is given by

∂ log l(A, �)
∂Ak

= ∂ log L̂1(�)
∂�k

+ ∂ log L̂2
(
A, �, σ∗

1 , σ∗
2 , t∗, s∗2)

∂Ak

and a similar expression holds for ∂ log l/∂�k. These formulas are derived in the following
proof.

Proof. Recall θ = (A, �, σ1, σ2, t, s2 ). The maximum likelihood problem can be written
as

max
θ

log L̂(θ) = max
A,�

log l(A, �),

where log l(A, �) = maxσ1,σ2,t,s2 log L̂(θ) is the concentrated log-likelihood, which can be
rewritten as

log l(A, �) = log L̂1(θ) + max
σ1,σ2,t,s2

log L̂2(θ), (D.2)

where

max
σ1,σ2,t,s2

log L̂2(θ) = −min
s2

(
n

2
log s2 + 1

2s2 min
σ1,σ2,t

n∑
i=1

(
Wi −wi(θ)

)2

)
(D.3)
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The second minimization in equation (D.3) is an ordinary least squares problem whose
solution given A, �, denoted (σ∗

1 , σ∗
2 , t∗ ), is the vector of coefficients of the OLS regres-

sion of W on (γ − b, a− α, 1). The value of s2, denoted s∗2, is given by

s∗2 =

n∑
i=1

(
Wi −wi

(
θ∗))2

n
.

The envelope theorem yields an expression for the gradient of the concentrated log-
likelihood with respect to the concentrated parameters A and �, that is,

∇A,� log l(A, �) = ∇A,� log L̂1
(
θ∗) + ∇A,� log L̂2

(
θ∗).

The elements of the first part of the gradient are given in Theorem 2 part (i) whereas
parts (ii), (iv), and (v) of Theorem 2 provide the building blocks for the elements of the
second part of the gradient.
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