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Supplementary Material

Supplement to “The environmental cost of land-use
restrictions”

(Quantitative Economics, Vol. 13, No. 1, January 2022, 179–223)

Mark Colas
Department of Economics, University of Oregon

John M. Morehouse
Department of Economics, University of Oregon

This supplement contains two Appendices. Appendix A contains additional details
on the data and on the theoretical details of the model. Appendix B contains additional
empirical and simulated results.

Appendix A: Data and theory appendix: For online publication only

A.1 Demographic groups

We drop households living in group quarters and whose household head is over age 65.
A demographic group in our model is defined by the household head’s level of educa-
tion, marital status, age, minority status, and whether or not there are children in the
household. We split education by those that have a college degree. Marital status is de-
fined as either being married or single. Minority status is characterized by whether the
individual is white or not. Lastly, very few single individuals in our sample have children.
Therefore, we do not differentiate between single households with and without children.
In total, this gives us 24 distinct demographic groups.

To better understand which demographic characteristics play the most important
role in determining household level emissions, we run the following regression of house-
hold level emissions on the demographics of a household using data from the 2017 ag-
gregated ACS:

Emissionsij = βXi + γj + εi, (A.1)

whereXi is the vector of demographic variables, and γj is a CBSA level fixed effect.
The results are displayed in Table A.1. Being married, having children, and having an

older household head are associated with large values of emissions, while the other de-
mographic variables only play a small role in dictating a household’s carbon emissions.
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Table A.1. Regression estimates of (A.1).

White
−183.4
(24.23)

College plus
423.3

(18.27)

Old
3487

(24.92)

Married
2286

(23.30)

Has children
3378

(22.06)

Constant
19,347
(33.21)

Observations 2,709,529
R-squared 0.126
CBSA FE YES

Note: Standard errors in parentheses.

A.2 Energy prices

We obtain data on average residential electricity, natural gas, and fuel oil prices by state
for 1990, 2000, 2010, and 2017 from the Energy Information Association. For each en-
ergy type and year, we assign the average residential price to all CBSAs within a state.
Furthermore, for electricity prices, we use the prices given from “full-service providers.”
Fuel oil prices are reported at a weekly level. We average across weeks to obtain yearly
average fuel oil prices. Additionally, as fuel oil is used primarily in the Northeast, many
states do not report average prices. For states that do not have fuel oil prices in the EIA’s
dataset, we assign the yearly average of all states that do have prices.

A.3 NERC regions

We calculate the emissions factor for each region as a weighted average of the average
CO2 emissions rate in each NERC region. We weight the average by each plant’s total
yearly MWh generation as a fraction of the total MWh generation in the region. Fig-
ure A.1 is a map of the NERC regions for the contiguous United States with the conver-
sion factors.

A.4 Correction for rented homes and multifamily homes

One concern is that rented homes and multifamily homes are less likely to pay for energy
themselves and the proportion of renters and multifamily homes varies across cities. As
the ACS and Census only contain information on energy costs, not energy usage, this
may lead us to understate under usage in cities with high amounts of renters of residents
in multifamily homes. Similar to Glaeser and Kahn (2010), we correct for this using data
from the 2015 Residential Energy Consumption Survey (RECS), which contains data on
energy usage for a sample of over 5,0000 households.
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Figure A.1. Map of NERC region with regional conversion factors. In the model, there is an
additional NERC region for Hawaii—HICC—with an emissions factor of 1522.10.

We use these data to estimate the following regression, which compares the energy
usage of renters and those who live in multifamily homes to owners of single-family
homes:

log
(
Emi

) = βmMFMultiFamilyi +βmRentRenti + controls + emi , (A.2)

where controls include controls for household size, number of children, age of house-
hold head, whether the household head is white, and division dummies. We then use the
coefficients βmMF and βmRent to impute energy usage for households who are renters and
who live in multifamily homes. For example, if we estimate that owners of single-family
homes in San Francisco use 8 MWh of electricity and estimate βmMF = 0.1, we would im-
pute that owners of multifamily homes use 8 × 1.1 = 8.8 MWh of electricity. Finally, we
estimate the fraction of renters of single-family homes, renters of multifamily homes,
owners of single-family homes, and owners of multifamily homes using data from the
ACS and Census, and calculate the predicted usage as the weighted average of the esti-
mated predicted usage of owners of single-family homes, and the imputed usage of the
other three groups.

A.5 Fuel consumption and population

We assume that the marginal benefit of fuel consumption is exogenous to the popula-
tion of a given city. As a simple test of the relationship between population and energy
consumption, we estimate

log
(
Êmj + 1

) = αm + αm1 log(Populationj ) + εj , (A.3)
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Table A.2. Heteroskedastic robust standard errors are in parenthesis. As the selection-
correction usages predict zero fuel consumption in certain CBSAs, we use log(Êmj + 1). Each
observation is a CBSA.

Dependent variable:

Electricity Gas Fuel
Consumption Consumption Consumption

(MwH) (1000 ft3) (gal)

log(Population)
−0.012 −0.413 0.049
(0.136) (0.310) (0.036)

Constant
4.276 8.428 2.232

(1.809) (4.088) (0.484)

Observations 70 70 70

where m ∈ {Elec, Gas, Fuel} and Êmj is the predicted per-household, selection-corrected
energy consumption of type m in city j. Since the selection-correction usages predict
zero fuel consumption in certain CBSAs, we use log(Êmj + 1). The results presented here
are not sensitive to this choice. Table A.2 provides estimates for (A.3).

The coefficients on all of the regressions for the energy consumption variables are
statistically insignificant. This suggests population increases do not lead to significant
changes in the benefits of energy usage.

A.6 Equilibrium definition

In this environment, an equilibrium is characterized by household and firm optimiza-
tion, and market clearing in the housing and labor markets.1

More specifically, as we have shown in Section 4.1, given prices, household i’s opti-
mal choice maximizes utility.

Household optimization defines housing demand, energy demand, and labor sup-
ply. Housing demand in a city j is given by the sum of housing demand of all agents
living in that city. We can write this as

HD
j =

∑
d

Njd
αHd Ijd

Rjαjd
, (A.4)

where, as before, Njd is the total number of workers of demographic d who choose to
live in city j, and where we allow D and S superscripts to denote demand and supply
quantities, respectively. Similarly, energy demand is the sum of energy demand of all
individuals living in a city:

XmD
j =

∑
d

Njd
αmjdIjd

Pmj αjd
. (A.5)

1In Section 8.2, we consider the case when energy prices are determined in equilibrium. In this case, an
equilibrium is also defined by market clearing in the energy markets.
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Labor supply is the sum of efficiency units of labor supplied by all agents of a given
skill level in city j:

SSj =
∑
d′∈dS

Njd�d′

for skilled workers and

US
j =

∑
d′∈dU

Njd�d′

for unskilled workers where dS and dU are the sets of demographic groups with a college
degree and without a college degree, respectively.

Labor demand for skilled and unskilled workers are implicitly defined by the first-
order conditions of the production firms.

Housing supply is given by the marginal cost curve of housing.
Finally, an equilibrium is defined by the two market clearing conditions:

1. Housing market clearing:HS
j =HD

j , for all cities, j.

2. Labor market clearing: SSj = SDj for skilled workers and US
j = UDj for unskilled

workers in all cities.

A.7 Hedonic rents

A major concern about producing a measure of housing costs across CBSAs is that it
reflects user cost of housing. To accommodate this, we only use data on renters as home
prices reflect both the current cost and expected future costs. Second, it is difficult to
compare housing units across CBSAs. Thus, we estimate hedonic regressions of log gross
rent on a set of housing characteristics and CBSA fixed effects. Specifically, we control for
the number of units in the structure containing the household, number of bedrooms,
number of total rooms, and household members per room. To generate the rent index,
we utilize the predicted values from the hedonic regressions, holding constant the set of
housing characteristics and CBSA fixed effects.

A.8 Estimation: Production parameters

Let x ∈ {s, u} index worker skill levels. Income for workers of demographic d living in
location j is Ijd =Wjx�d , where �d is the amount of efficiency units supplied by workers
from demographic group d.

We specify efficiency units as the demographic-specific probability of being em-
ployed multiplied by the productivity conditional on being employed. We therefore write

�d = Ed�̂d ,

where Ed is the national employment-to-population ratio of workers in demographic
group d.
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We parameterize �̂d as

log(�̂d ) = β1
xWhite(d) +β2

xOver35(d),

where White(d) is an indicator variable indicating workers of demographic group d are
white and Over35(d) indicates workers of demographic d are over age 35. Therefore, �̂d
of nonwhite workers below age 35 is normalized to one.

Conditional on working, the log income of workers of demographic group d and skill
level x living in city j is given by

log(Ijd ) = log(Wjx ) +β1
xWhite(d) +β2

xOver35(d).

We therefore estimate the city level wage rates and parameters of the efficiency unit
parameters using the following individual level income regression of individuals condi-
tional on working:

log Iijd = γxj + β̂1
xWhite(d) + β̂2

xOver35(d) + εij ,
where Iijd is the income level of individual i, γxj is a city by skill level fixed effect which is
an estimate of log(Wjx ), and εij is an individual level error term.

The remaining unknown parameters of the production function are the elasticity of
substitution, ς, the vector of city level total factor productivities, Aj , and the vector of
factor intensities, θj . We calibrate the elasticity of substitution, ς = 2.

Note that the log wage ratio in a given city j is given by

log
(
Wjs

Wju

)
= −1

ς
log

(
Sj

Uj

)
+ log

(
θj

1 − θj
)

.

As wage levels, labor quantities, and the elasticity of substitution, ς, are already known,
the factor intensities θj can be solved by using the above equation.

The final set of parameters are the total factor productivity, Aj . These are chosen so
that wage levels are equal to those in the data.

A.9 Calibration: Housing supply

We know that total demand for housing in city j is given by

Hj =
∑
d

Njd
αHd Ijd

Rjαjd
, (A.6)

whereNjd is the total number of workers of demographic d living in city j. Plugging this
equation for housing demand into the housing supply curve and rearranging yields the
following reduced-form relationship:

log(Rj ) = kj

1 + kj log
(∑

d

Njd
αHd Ijd

αjd

)
+ ζj , (A.7)

where ζj = logzj
1−kj .
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Saiz (2010) estimated the role of physical and regulatory constraints in determin-
ing the role of local housing supply elasticities by using labor demand shocks and in-
struments for housing demand. As in this paper, we set ψWRI

j to the log of the Wharton
Regulation Index plus 3, and use Saiz’s measure of the unavailable land share (due to
geography) for ψGEO

j . We calibrate ν1, ν2 and ν3 based on the estimates in Saiz (2010).2

We then choose the values of ζj to match the rent levels observed in the data.

A.10 InMAP and derivation of the SR matrix

In this section, we provide a broad overview of InMAP and our process for deriving our
pollution-transfer matrix that maps electricity generation in a given NERC region to am-
bient concentration in a given CBSA.

InMAP and ISRM The Intervention Model for Air Pollution (InMAP, Tessum, Hill, and
Marshall (2017)), is a reduced-complexity air transport model that allows users to es-
timate how changes in emissions impact concentration nationally. InMAP takes into
account atmospheric chemistry, local meteorological conditions (i.e., wind), and vari-
ables regarding the point of emission—such as stack height and velocity at which the
particle was emitted. To estimate particulate matter concentration, InMAP uses data on
emissions of primary PM2.5 and secondary pollutants that react with gasses in the air
and form PM2.5. The secondary pollutants InMAP uses are Volatile Organic Compounds
(VOC), Nitrogen Oxides (NOx), Ammonia, (NH3), and Sulfur Oxides (SOx). InMAP es-
timates concentrations for grid cells that vary by population; for urban areas, the grid
cells are small, and for rural areas, they are large—making the model computationally
expedient.

In Goodkind, Tessum, Coggins, Hill, and Marshall (2019) InMAP is run over 150,000
times to obtain average transfer coefficients for each grid cell—resulting in the InMAP
SR matrix (ISRM). Furthermore, ISRM has 3 “height” layers for each of the grid cell; 0 to
57 m, 57–379 m, and >379 m. The Python code provided by Goodkind et al. (2019) uses
information about a plant’s stack height and the velocity at which the particle is emitted
to estimate which of these three height layers the plume of the emissions at any given
point fall into.

Derivation of the pollution transfer matrix Let δPM2.5
R,j be the conversion factor of elec-

tricity produced in region R to concentrations of PM2.5 in city j. We calculate δPM2.5
R,j as

an emissions weighted average of conversion factors for each individual power plant in
regionR. Let s index an individual source (power plant) and S(R) be the set of all sources
within NERC regionR. Let δPM2.5

s,j be source s’s conversion factor between electricity pro-
duction and PM2.5 concentration in city j. This is given by

δPM2.5
s,j = PM2.5,s,j

xelec
s

, (A.8)

2Specifically, we use the estimates from Column (4) of Table III in Saiz (2010), as it is the closest to our
specification. As the estimate of the interaction between housing supply constraints is quite similar across
specifications in Saiz (2010), we do not suspect that our results will be sensitive to the specific estimates we
choose.
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where PM2.5,s,j is the ambient air pollution in city j originating form source s (in NERC

region R) and xelec
s is the total electricity produced by source s. Then we compute δPM2.5

R,j
as the emissions weighted average of these source-level conversion factors:

δPM2.5
s,j =

∑
s∈S(R)

xelec
s δPM2.5

s,j

∑
s∈S(R)

xelec
s

. (A.9)

Plugging (A.8) into (A.9) yields

δPM2.5
s,j =

∑
s∈S(R)

PM2.5,s,j

∑
s∈S(R)

xelec
s

, (A.10)

where
∑
s∈S(R) PM2.5,s,j is the average ambient PM2.5 concentration in city j, originat-

ing from region R and xelec
s is total electricity production in region R.3

∑
s∈S(R) PM2.5,s,j

is estimated via ISRM by setting pollutant emissions in all regions R′ �= R to zero, and
computing the resulting ambient concentration in all cities for emissions from just re-
gion R. We note that ISRM only has coefficients for the contiguous United States; thus
for Hawaii, we set all transfer coefficients to zero. In the model, this means that the level
of particulate matter in Honolulu is fixed and no particulate matter from Honolulu is
transferred to the rest of the United States.

A.11 Derivation of mean utility estimating equation

Mean utility is given by

μjdt =

(
1 + αHd +

∑
m

αmjd

)

σd
log Ijdt −

αHd
σd

logRjt −
∑
m

αmjd

σd
logPmjt + ξ̂jdt .

Recall that we have defined α̃mjd = αmjd

1+αHd +∑
m α

m
jd

. Therefore, it is fairly straightforward

to show that

∑
m′
αm

′
jd =

∑
m′
α̃m

′
jd

(
1 + αHd

)

1 −
∑
m′
α̃m

′
jd

and, therefore, that

αmjd = α̃mjd
(
1 + αHd

)
1 −

∑
m′
α̃m

′
jd

.

3In practice, we calculate PM2.5,s,j as population-weighted averages within a CBSA.
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Plugging these identities into the mean utility expression yields

μjdt =

⎛
⎜⎜⎝1 + αHd +

∑
m

α̃mjd
(
1 + αHd

)

1 −
∑
m

α̃mjd

⎞
⎟⎟⎠

σd
log Ijdt −

αHd
σd

logRjt

−
(
1 + αHd

)
1 −

∑
m′
α̃m

′
jd

∑
m

α̃mjd

σd
logPmjt + ξ̂jdt .

We can rearrange this to yield

μjdt =
(
1 + αHd

)
σd

log Ijdt −
∑
m

α̃mjd logPmjt

1 −
∑
m

α̃mjd

−
(
αHd

)
σd

logRjt + ξjdt .

Defining Ĩjdt =
log Ijdt−

∑
m(α̃mjd logPmjt )

1−∑
m α̃

m
jd

, βwd = (1+αHd )
σd

and βrd = (αHd )
σd

, we arrive at the esti-

mating equation:

μjdt = βwd Ĩjdt +βrd logRjt + ξjdt .

Appendix B: Results appendix: For online publication only

B.1 Comparisons of specification of control function

Table B.1 compares various specifications of the selection control function in estimat-
ing (3), which we use to generate selection-corrected predicted emissions. For each
specification, we estimate the predicted emissions in each CBSA. Then we calculate the
population-weighted mean, standard deviation, and correlation with the Wharton Reg-
ulation Index across CBSAs.

Panel I gives the predicted emissions without any selection correction. Row I(a) sim-
ply gives the mean emissions without including any demographic controls and I(b) es-
timates (3) without any selection correction but with demographics controls.

Panel II includes the results with different specification of the control functionM(·).
Subpanel II(a) present estimates in whichM(·) is a function of the probability of choos-
ing the state in question, and the probabilities of choosing the three largest states. Row
II(a.i) present our preferred specification, where the selection controls function consists
of the probability of choosing the state in question entering linearly, the probabilities
of choosing the three largest states entering linearly, and the interactions between the
probability of choosing the state in question and each of the three largest state choice
probabilities.

The following rows give alternative specifications in which state choice probabil-
ities enter as a quadratic, in which the probability of choosing the state in question
also enters as a quadratic, and in which the interaction terms are omitted. Subpanel
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Table B.1. Comparisons of various specifications of selection control function. See text for de-
tails.

Correlation w/
Standard Land Use

Mean Deviation Restrictions

I. No selection correction
a. Raw means 24,946 5729 −0.18
b. OLS 23,711 5526 −0.21

II. Selection correction
a. Choice location and 3 biggest states

i. Linear choice, linear states, choice × state interactions 25,518 5740 −0.28
ii. Linear choice, quadratic states, choice × state interactions 26,815 6622 −0.22
iii. Linear choice, linear states, no interactions 23,934 5652 −0.28
iv. Linear choice, quadratic states, no interactions 24,107 5488 −0.28
v. Quadratic choice, linear states, choice × state interactions 33,185 12,114 −0.21
vi. Quadratic choice, quadratic states, choice × state interactions 32,300 11,747 −0.24
vii. Quadratic choice, linear states, no interactions 32,581 11,328 −0.27
viii. Quadratic choice, quadratic states, no interactions 31,199 10,508 −0.23

b. Choice location and 5 biggest states
i. Linear choice, linear states, choice × state interactions 27,635 6801 −0.17
ii. Linear choice, quadratic states, choice × state interactions 27,339 7073 −0.19
iii. Linear choice, linear states, no interactions 23,940 5654 −0.28
iv. Linear choice, quadratic states, no interactions 24,203 5483 −0.26
v. Quadratic choice, linear states, choice × state interactions 32,277 11,283 −0.17
vi. Quadratic choice, quadratic states, choice × state interactions 30,837 11,252 −0.20
vii. Quadratic choice, linear states, no interactions 32,679 11,563 −0.28
viii. Quadratic choice, quadratic states, no interactions 31,150 10,662 −0.23

c. Choice location and birth states
i. Linear choice, linear birth state 25,327 6147 −0.32
ii. Linear choice, quadratic birth state 25,467 6202 −0.32
iii. Quadratic choice, linear birth state 30,878 9608 −0.22
iv. Quadratic choice, quadratic birth state 30,416 9308 −0.23

d. Controls for climate in birth state
i. Linear choice, linear states, choice × state interactions 23,418 5667 −0.12
ii. Linear choice, quadratic states, choice × state interactions 25,281 6524 −0.19
iii. Linear choice, linear states, no interactions 20,369 6609 −0.15
iv. Linear choice, quadratic states, no interactions 22,764 6262 −0.25

II(b) considers the same specification except where we include the probabilities of
choosing the 5 largest states. Finally, Subpanel II(c) consider a control function writ-
ten as a function of choosing the state in question and choosing the individual’s birth
state.

Subpanel II(d) compare estimates when we also include controls for the average
yearly temperature in the state of birth. The specifications are otherwise identical to
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those in Subpanel II(a.i) through II(a.iv), in which we include controls for the three
largest states by population, and the probably of choosing the state in question.

In general, the estimates are relatively similar across specifications. The exception is
when the choice probability of the state in question enters as quadratic. In these cases,
the standard deviation of the predicted emissions increases. As mentioned before, es-
timating the intercept of the energy usage equation relies on extrapolating the control
function to Pis(j) = 1. For smaller states, the probability of choosing the state in question
is further from one, so this extrapolation becomes more sensitive to the choice of the
control function.

B.2 Additional summary statistics: No selection correction

In this section, we replicate our Table 1 and our main descriptive scatterplots without
demographic controls and the selection correction.

Table B.2 gives estimates of energy usage and emissions by CBSA, where estimates
of energy use are simply given by the unconditional mean for households living in the
CBSA. There are no controls for demographic and no selection-correction is imple-
mented.

The next figures are replicates of Figures 1 and 2 without selection-corrected energy
usage. Figure B.1 plots household carbon emissions against the Wharton Index. In the
scatterplot on the left, we predict household energy use with a simple OLS regression
that controls for demographic groups. In the scatterplot on the right, we predict house-
hold energy use with CBSA-level means. Overall, the pattern is qualitatively quite similar
regardless of the specification; California cities have low household carbon emissions
and relatively tight land-use restrictions.

Figure B.2 plots household natural gas usage against January temperature and elec-
tricity usage against August temperature. In the two scatterplots in the top row, we pre-
dict household energy use with a simple OLS regression that controls for demographic
groups. In the scatterplots on the bottom row, we predict household energy use with
CBSA-level means.

B.3 PM2.5: Additional results

This section provides additional summary information about PM2.5. Figure B.3 plots the
distribution of total PM2.5 concentrations across cities and Figure B.4 the estimated con-
tribution of household electricity to total PM2.5.

From Figure B.3, there are a few key takeaways. First, the histogram demonstrates
considerable variation across CBSAs in terms of total PM2.5. Second, California cities are
relatively dispersed throughout the distribution—some are relatively clean, while others
have high concentrations of PM2.5.

Next, Figure B.4 with the city-level ratios of household electricity contribution to to-
tal PM2.5 illustrates two things. Overall, household electricity contributes fairly little to
overall PM2.5. Second, the amount by which household electricity use contributes to to-
tal PM2.5 varies across cities; Portland gets near zero percent of its particulate matter
emissions from electricity, while Dallas gets roughly 6.5%.
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Table B.2. Predicted CBSA level CO2 emissions by fuel type for the six lowest emissions cities,
the six median cities, and the six highest emissions cities in 2017. The third column (“Emissions”)
shows the unconditional mean CO2 emissions from natural gas, fuel oil, and electricity for the
CBSA. The next two columns show emissions from gas and fuel oil, respectively, which are equal
to predicted usage multiplied by the appropriate emissions factor. The last three columns show
predicted electricity usage, the electricity emissions factor, and predicted electricity emissions,
equal to predicted electricity usage multiplied by the emissions factor.

Gas Fuel Electricity Electricity Electricity
Emissions Emissions Emissions Use Conversion Emissions

CBSA Rank (1000 lbs) (1000 lbs) (1000 lbs) (MwH) (1000 lbs/MwH) (1000 lbs)

Lowest
Honolulu, HI 1 12.83 0.47 0.07 8.08 1.52 12.29
Oxnard, CA 2 12.85 5.80 0.17 8.61 0.80 6.89
Riverside, CA 3 13.64 5.59 0.17 9.85 0.80 7.88
Los Angeles, CA 4 14.41 6.06 0.09 10.32 0.80 8.26
San Diego, CA 5 14.87 6.42 0.23 10.27 0.80 8.22
Sacramento, CA 6 15.84 7.28 0.40 10.20 0.80 8.16

Middle
Atlanta, GA 33 25.24 6.46 0.17 17.97 1.04 18.61
Pittsburgh, PA 34 25.77 11.43 1.35 11.74 1.11 12.98
Akron, OH 35 25.85 12.05 0.58 11.95 1.11 13.21
Birmingham, AL 36 26.10 5.42 0.17 19.81 1.04 20.51
Virginia Beach, VA 37 26.19 6.12 0.71 18.70 1.04 19.36
Houston, TX 38 26.37 4.62 0.08 21.35 1.01 21.67

Highest
Oklahoma City, OK 65 32.29 8.26 0.20 18.76 1.27 23.84
Detroit, MI 66 32.48 18.72 0.36 12.12 1.11 13.40
Philadelphia, PA 67 33.32 11.39 3.12 17.02 1.11 18.81
Memphis, TN 68 34.45 8.37 0.19 25.01 1.04 25.89
Milwaukee, WI 69 35.22 16.71 0.52 16.28 1.11 17.99
Omaha, NE 70 35.98 15.79 0.28 16.31 1.22 19.91

Figure B.1. Additional scatterplots in which CO2 emissions are plotted against the Wharton
Index. An observation is a CBSA; a larger circle represents a larger population.
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Figure B.2. Additional scatterplots in which natural gas and electricity use are plotted against
January and August temperatures, respectively. January and August temperature refers to the
midpoint between average daily highs and lows for the given month. An observation is a CBSA;
a larger circle represents a larger population.

Figure B.3. The distribution of 2017 mean PM2.5 across CBSAs in our sample.
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Figure B.4. This figure plots the ratio of PM2.5 coming from electricity to total PM2.5 as mea-
sured by the EPA.

Next, Figure B.5 plots a histogram of PM2.5 changes from the baseline when we set
land-use restrictions to the level faced by the median urban household in all cities.

B.4 Robustness of main parameter estimates

Table B.3 gives estimates that vary by age of the household head. The first three columns
give estimates for single households, married households without children, and mar-
ried households with children for which the head of the households is under 35 years
old. The next three columns present estimates for single households, married house-
holds without children, and married households with children for which the head of the
households is over 35 years old. The estimates of βw and βr are slightly larger in magni-
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Figure B.5. Histogram of CBSA level differences in particulate matter concentration from elec-
tricity relative when land-use restrictions in all cities are relaxed relative to the baseline.

tude for households with older household heads conditional on marital status and the
presence of children.

Table B.4 gives estimates using alternative instrumental variables. The first panel
presents our baseline estimates. Panel II uses estimates where we use the measure of
land-use availability from Saiz (2010) in place or the Wharton Land Use Index. Panel III
presents estimates when we use both measures as instruments.

Table B.3. Parameter estimates. Standard errors in parentheses.

Head under 35 years experience Head over 35 years experience

Married Married

Single No children With children Single No children With children

βw: Adjusted income
13.37 9.96 7.35 16.81 13.45 7.37
(3.48) (2.62) (2.16) (4.45) (3.58) (2.01)

βr : Rent
−7.27 −5.02 −5.13 −10.77 −8.76 −4.56
(2.99) (2.27) (1.92) (3.79) (3.09) (1.74)

σ : Idiosyncratic component
0.16 0.20 0.45 0.17 0.21 0.36

(0.04) (0.05) (0.20) (0.06) (0.07) (0.12)

αH : Housing parameter
1.19 1.02 2.30 1.79 1.87 1.62

(0.56) (0.51) (1.37) (0.83) (0.90) (0.79)
Cragg–Donald Wald F Statistic 3.92 4.04 4.27 4.16 4.24 4.29
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Table B.4. Parameter estimates. Standard errors in parentheses.

Married

Single No children With children

I. Baseline estimates

βw: Adjusted income
15.09 11.72 7.33
(2.80) (2.19) (1.47)

βr : Rent
−9.03 −6.90 −4.82
(2.40) (1.89) (1.29)

σ : Idiosyncratic component
0.17 0.21 0.40

(0.03) (0.04) (0.11)

αH : Housing parameter
1.49 1.44 1.92

(0.48) (0.48) (0.73)
Cragg–Donald Wald F Statistic 8.09 8.28 8.57

II. Available land instrument

βw: Adjusted income
19.39 18.36 16.14
(4.66) (4.52) (4.07)

βr : Rent
−9.99 −9.06 −9.22
(3.00) (2.88) (2.62)

σ : Idiosyncratic component
0.11 0.11 0.14

(0.03) (0.03) (0.04)

αH : Housing parameter
1.06 0.98 1.33

(0.28) (0.26) (0.36)
Cragg-Donald Wald F Statistic 5.41 5.14 5.05

III. Both instruments

βw: Adjusted income
15.42 12.40 9.08
(2.36) (1.90) (1.46)

βr : Rent
−8.43 −6.46 −5.61
(1.73) (1.39) (1.09)

σ : Idiosyncratic component
0.14 0.17 0.29

(0.02) (0.03) (0.06)

αH : Housing parameter
1.20 1.09 1.61

(0.26) (0.24) (0.38)
Cragg–Donald Wald F Statistic 7.91 8.10 8.21

B.5 New power plant development

Table B.5 gives the full distribution of emissions and percent of plants that are renew-
ables, split on whether they were constructed before or after 2000.

B.6 Counterfactual results with model extensions

Endogenous electricity pricing Table B.6 displays the counterfactual results when elec-
tricity pricing is endogenous.
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Table B.5. NERC regional mean carbon emissions from plants built before 2000 and after 2000.
Emissions rates are measured in lbs/MWh.

Mean emissions Percent renewables

NERC Pre-2000s Post-2000s Pre-2000s Post 2000s

ASCC 935.55 842.37 37.38 15.50
FRCC 935.66 857.27 3.65 2.90
HICC 1649.43 461.88 9.22 70.62
MRO 1566.42 188.09 9.49 80.18
NPCC 410.31 747.15 24.42 14.71
RFC 1176.69 850.51 2.18 14.75
SERC 1055.78 941.07 6.16 5.25
SPP 1741.86 521.45 5.93 46.90
TRE 1135.47 620.07 1.18 29.53
WECC 858.24 597.01 40.48 36.47

Table B.6. Counterfactual results with endogenous electricity pricing. Each panel shows the
simulated total energy usage, total emissions, average log income, and fraction of total popula-
tion living in various geographic areas in each specification. See text for details on each simula-
tion.

Baseline Relax Cali Relax All

I. Percent total population
California cities 9.1 10.9 7.3
Other West 13.6 13.1 17.1
Midwest 22.2 21.8 10.0
South 37.3 36.6 25.3

Northeast 17.9 17.6 40.3

II. Mean usage
Gas (1000 cubic feet) 74.4 74.2 75.1
Electricity (MW h) 17.1 17.0 15.5
Fuel oil (gallons) 60.4 59.5 133.0

III. Mean emissions (lbs of CO2)
Gas 8711 8688 8792
Electricity 16,331 16,267 14,030
Fuel oil 1622 1599 3572

Total 26,664 26,553 26,394
(%) 100.00 99.6 99.0

IV. Average log income
Skilled 100.0 100.5 112.3
Unskilled 100.0 100.0 100.1

All 100.0 100.2 104.4
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Table B.7. Counterfactual results with pollution in the utility function. Each panel shows the
simulated total energy usage, total emissions, average log income, and fraction of total popula-
tion living in various geographic areas in each specification. See Section 8.3 for details.

Baseline Relax Cali Relax All

I. Percent total population
California cities 9.1 11.0 7.2
Other West 13.6 13.1 17.8
Midwest 22.2 21.7 9.3
South 37.3 36.6 23.1
Northeast 17.9 17.6 42.6

II. Mean usage
Gas (1000 cubic feet) 74.4 74.2 74.9
Electricity (MW h) 17.1 17.0 15.8
Fuel oil (gallons) 60.4 59.5 138.6

III. Mean emissions (lbs of CO2)
Gas 8711 8686 8771
Electricity 16,331 16,211 13,246
Fuel oil 1622 1598 3722

Total 26,664 26,495 25,738
(%) 100.0 99.4 96.5

IV. Average log income
Skilled 100.0 100.5 113.0
Unskilled 100.0 100.0 100.4

All 100.0 100.2 104.8

Local pollutants in utility Next, Table B.7 presents counterfactual results in the case
where PM2.5 enters the utility function. As noted in the text, the results are very similar
to the baseline specification, as changes in household electricity are the only component
of the model that changes PM2.5—and electricity contributes little to overall PM2.5.

B.7 Birth state premium parameters

Tables B.8 through B.11 display parameters governing the birth state premium for each
of the years we use in estimation. In all years, households receive a large utility premium
for choosing a location in their home state and the amenity value of a location is de-
creasing and convex in distance from the household head’s birth state.

B.8 Demographic group city ranks

Table B.12 provides selected estimated of ξjdt , the shared unobservable component of
amenities, for the year 2017 for households with heads over the age of 35.
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Table B.8. Parameter estimates for 1990 data. Standard errors multiplied by 1000 in parenthe-
ses.

Young Old

Married Married

Single w/o children w/ children Single w/o children w/ children

Unskilled, Nonwhite

Birthstate premium
3.14 2.77 2.77 2.94 2.52 2.85

(0.08) (0.6) (0.14) (0.07) (0.27) (0.1)

Distance
−1.78 −1.22 −1.71 −1.78 −1.75 −1.71
(0.07) (0.31) (0.09) (0.07) (0.21) (0.08)

Distance squared
0.3 0.21 0.29 0.2 0.21 0.19

(0.01) (0.03) (0.01) (0.01) (0.03) (0.01)

Unskilled, White

Birthstate premium
3.15 3.03 2.94 3.15 3.08 3.13

(0.02) (0.06) (0.02) (0.01) (0.02) (0.01)

Distance
−1.03 −1.41 −2.05 −1.06 −1.03 −1.38
(0.02) (0.06) (0.02) (0.01) (0.02) (0.01)

Distance squared
0.21 0.31 0.54 0.17 0.09 0.25

(0.00) (0.01) (0.01) (0.00) (0.00) (0.00)

Skilled, Nonwhite

Birthstate premium
2.3 2.17 2.43 2.38 2.16 2.37

(0.47) (1.99) (1.1) (0.4) (1.21) (0.46)

Distance
−1.19 −1.04 −1.11 −1.48 −1.09 −1.12
(0.27) (0.93) (0.63) (0.24) (0.56) (0.25)

Distance squared
0.16 0.12 0.14 0.2 0.11 0.09

(0.03) (0.08) (0.06) (0.02) (0.05) (0.02)

Skilled, White

Birthstate premium
2.02 2.04 2.1 2.13 1.92 2.11

(0.05) (0.1) (0.06) (0.04) (0.05) (0.02)

Distance
−2.17 −2.16 −2.35 −1.96 −2.05 −2.11
(0.04) (0.08) (0.06) (0.03) (0.04) (0.02)

Distance squared
0.62 0.6 0.64 0.52 0.5 0.54

(0.01) (0.02) (0.02) (0.01) (0.01) (0.00)
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Table B.9. Parameter estimates for 2000 data. Standard errors multiplied by 1000 in parenthe-
ses.

Young Old

Married Married

Single w/o children w/ children Single w/o children w/ children

Unskilled, Nonwhite

Birthstate premium
3.11 2.62 2.69 2.89 2.66 2.73

(0.06) (0.52) (0.13) (0.04) (0.14) (0.07)

Distance
−1.59 −1.3 −1.55 −1.75 −1.34 −1.71
(0.05) (0.29) (0.09) (0.03) (0.11) (0.05)

Distance squared
0.27 0.23 0.26 0.27 0.16 0.24

(0.01) (0.03) (0.01) (0.00) (0.01) (0.01)

Unskilled, White

Birthstate premium
3 3.03 3.16 2.8 2.67 2.9

(0.02) (0.08) (0.03) (0.01) (0.01) (0.01)

Distance
−1.34 −1.37 −1.05 −1.84 −2.07 −1.92
(0.02) (0.08) (0.03) (0.01) (0.02) (0.01)

Distance squared
0.29 0.32 0.19 0.45 0.49 0.47

(0.00) (0.02) (0.01) (0.00) (0.00) (0.00)

Skilled, Nonwhite

Birthstate premium
2.22 2.02 2.33 2.37 2.15 2.33

(0.25) (1.27) (0.81) (0.18) (0.54) (0.28)

Distance
−1.13 −1.12 −1.19 −1.37 −1.06 −1.02
(0.14) (0.65) (0.45) (0.11) (0.27) (0.15)

Distance squared
0.17 0.15 0.18 0.2 0.12 0.09

(0.01) (0.06) (0.04) (0.01) (0.02) (0.01)

Skilled, White

Birthstate premium
2.08 2.15 2.2 2.21 2.01 2.13

(0.04) (0.1) (0.07) (0.03) (0.03) (0.02)

Distance
−2.04 −2.01 −2.3 −1.73 −1.96 −2
(0.03) (0.08) (0.07) (0.02) (0.03) (0.02)

Distance squared
0.59 0.55 0.63 0.46 0.51 0.53

(0.01) (0.02) (0.01) (0.00) (0.01) (0.00)
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Table B.10. Parameter estimates for 2010 data. Standard errors multiplied by 1000 in parenthe-
ses.

Young Old

Married Married

Single w/o children w/ children Single w/o children w/ children

Unskilled, Nonwhite

Birthstate Premium
3.09 2.57 2.57 2.87 2.76 2.85

(0.07) (0.75) (0.2) (0.03) (0.11) (0.09)

Distance
−1.61 −1.19 −1.49 −1.65 −1.3 −1.27
(0.06) (0.41) (0.13) (0.03) (0.09) (0.06)

Distance Squared
0.28 0.22 0.25 0.25 0.16 0.15

(0.01) (0.04) (0.01) (0.00) (0.01) (0.01)

Unskilled, White

Birthstate Premium
2.83 2.85 2.72 2.77 2.63 2.74

(0.02) (0.1) (0.04) (0.01) (0.01) (0.01)

Distance
−1.79 −1.36 −2.12 −1.8 −2.17 −2.02
(0.02) (0.09) (0.04) (0.01) (0.01) (0.01)

Distance Squared
0.41 0.31 0.5 0.45 0.57 0.49

(0.01) (0.02) (0.01) (0.00) (0.00) (0.00)

Skilled, Nonwhite

Birthstate premium
2.31 1.99 2.16 2.44 2.18 2.21

(0.19) (0.95) (0.58) (0.12) (0.31) (0.2)

Distance
−1.03 −1.06 −1.51 −1.25 −1.13 −1.1
(0.11) (0.48) (0.35) (0.07) (0.17) (0.1)

Distance squared
0.15 0.15 0.24 0.18 0.13 0.11

(0.01) (0.05) (0.03) (0.01) (0.02) (0.01)

Skilled, White

Birthstate premium
2.15 2.19 2.37 2.2 2.02 2.09

(0.04) (0.08) (0.06) (0.02) (0.02) (0.01)

Distance
−2.04 −2.03 −2.02 −1.8 −1.89 −2.16
(0.03) (0.07) (0.06) (0.01) (0.02) (0.01)

Distance squared
0.57 0.55 0.51 0.48 0.49 0.6

(0.01) (0.02) (0.02) (0.00) (0.00) (0.00)
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Table B.11. Parameter estimates for 2017 data. Standard errors multiplied by 1000 in parenthe-
ses.

Young Old

Married Married

Single w/o children w/ children Single w/o children w/ children

Less than College, Nonwhite

Birthstate premium
3.14 2.34 2.68 2.98 2.75 2.94

(0.07) (0.68) (0.25) (0.03) (0.11) (0.09)

Distance
−1.58 −1.22 −1.31 −1.62 −1.54 −1.17
(0.06) (0.33) (0.16) (0.03) (0.09) (0.06)

Distance squared
0.27 0.22 0.21 0.24 0.22 0.12

(0.01) (0.03) (0.02) (0.00) (0.01) (0.01)

Less than College, White

Birthstate premium
2.89 2.84 2.84 2.7 2.66 2.82

(0.02) (0.11) (0.04) (0.01) (0.01) (0.01)

Distance
−1.8 −1.42 −1.6 −2.04 −2.16 −1.87
(0.03) (0.11) (0.04) (0.01) (0.01) (0.01)

Distance squared
0.43 0.34 0.34 0.52 0.56 0.43

(0.01) (0.04) (0.01) (0.00) (0.00) (0.00)

College or More, Nonwhite

Birthstate premium
2.35 2.01 2.38 2.53 2.04 2.26

(0.15) (0.74) (0.54) (0.09) (0.24) (0.16)

Distance
−0.91 −0.91 −1.09 −1.25 −1.38 −1.05
(0.08) (0.36) (0.32) (0.06) (0.13) (0.08)

Distance squared
0.14 0.13 0.15 0.18 0.19 0.11

(0.01) (0.04) (0.03) (0.01) (0.01) (0.01)

College or More, White

Birthstate premium
2.21 2.23 2.37 2.3 2.02 2.13

(0.03) (0.07) (0.05) (0.02) (0.02) (0.01)

Distance
−1.99 −1.92 −2.3 −1.8 −1.94 −2.2
(0.02) (0.06) (0.06) (0.01) (0.02) (0.01)

Distance squared
0.58 0.52 0.62 0.5 0.51 0.61

(0.01) (0.02) (0.02) (0.00) (0.00) (0.00)



Supplementary Material The environmental cost of land-use restrictions 23

Table B.12. Demographic group city ranks according to the shared, unobservable component
of amenities for households with older household heads.

College or more Less than College

Rank Single (no kids) Married (with kids) Single (no kids) Married (with kids)

Panel (a): White
1 Miami, FL Portland, OR San Diego, CA Seattle, WA
2 Portland, OR Miami, FL Miami, FL Portland, OR
3 Los Angeles, CA Seattle, WA Portland, OR Los Angeles, CA
4 San Diego, CA Los Angeles, CA Seattle, WA Honolulu, HI
5 Orlando, FL San Diego, CA Oxnard, CA San Diego, CA

66 Youngstown, OH Memphis, TN Springfield, MA Memphis, TN
67 Bridgeport, CT Worcester, MA Worcester, MA Springfield, MA
68 Memphis, TN Springfield, MA Albany, NY Worcester, MA
69 Worcester, MA Syracuse, NY Rochester, NY Albany, NY
70 Syracuse, NY Youngstown, OH Syracuse, NY Syracuse, NY

Panel (b): Nonwhite
1 Los Angeles, CA Los Angeles, CA Los Angeles, CA Los Angeles, CA
2 San Francisco, CA Honolulu, HI Miami, FL Honolulu, HI
3 Miami, FL Miami, FL San Francisco, CA Seattle, WA
4 Honolulu, HI San Francisco, CA San Diego, CA San Francisco, CA
5 San Diego, CA San Diego, CA Seattle, WA Portland, OR

66 Albany, NY Knoxville, TN Springfield, MA Springfield, MA
67 Memphis, TN Syracuse, NY Syracuse, NY Albany, NY
68 Syracuse, NY Springfield, MA Albany, NY Syracuse, NY
69 Rochester, NY Scranton, PA Milwaukee, WI Rochester, NY
70 Milwaukee, WI Youngstown, OH Rochester, NY Milwaukee, WI

B.9 Methane emissions

As an alternative to carbon-dioxide emissions, we also explore the relationship between
land-use regulation on methane emissions. Methane is a global issue; while it is odor-
less, and thus not considered a local pollutant, it is considered a greenhouse gas. Ac-
cording to the Bernstein et al. (2008), pound for pound, methane has 25 times the global
warming potential over a 100-year period compared to carbon dioxide.

The relationship between the Wharton Index and methane emissions is quite similar
to that of carbon dioxide emissions. Cities with higher land-use restrictions tend to have
lower methane emissions.

Methane emissions come from two sources: natural gas and electricity generation.
Unlike carbon-dioxide, burning natural gas does not emit methane; however, natural
gas is composed of 70% methane. Furthermore, natural gas leakages are estimated to
be 1.4% according to the EPA. To impute the amount of methane emitted from natural
gas emissions, we use a conversion factor of 0.7 ∗ 0.014 = 0.0098. As with carbon diox-
ide, methane emissions from electricity vary by NERC region. We compute the weighted
emissions rate for methane in the same manner as we did with carbon dioxide. Ta-
ble B.13 provides an array of city-level energy consumption, ranked on methane emis-
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Figure B.6. Methane emissions regressed on Wharton Index. Each observation is a CBSA. Size
of each observation reflects population of CBSA.

sions. Figure B.6 presents the relation between methane emissions and land-use restric-
tions. Figure B.7 presents this relationship when we calculate city-level methane usage
via OLS and as the raw average methane emissions.

Our main counterfactual was to relax land-use restrictions in California cities to the
national median. To do this, we simulated how demand for energy services changed as
a result of the changes in rental prices from the relaxation of the land-use restrictions.
To estimate average CBSA level emissions, we multiplied the respective usages by the

Figure B.7. Methane emissions regressed on Wharton Index. Each observation is a CBSA. The
size of each observation reflects the population of CBSA.
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Table B.13. Predicted CBSA level methane emissions by fuel type for the six lowest emissions
cities, the six median cities, and the six highest emissions cities. The third column (“Emissions”)
shows the sum of selection-corrected methane emissions from natural gas, fuel oil, and elec-
tricity for the CBSA. The next two columns show emissions from gas and fuel oil, respectively,
which are equal to predicted usage multiplied by the appropriate emissions factor. The last three
columns show predicted electricity usage, the electricity emissions factor, and predicted elec-
tricity emissions, equal to predicted electricity usage multiplied by the emissions factor. Use is
measured in 1000 pounds per megawatt hour.

Emissions Gas Electricity Electricity Electricity
Emissions Use Conversion Emissions

CBSA Rank (1000 lbs) (1000 lbs) (MwH) (1000 lbs per MwH) (1000 lbs)

Lowest
Hartford, CT 1 1.06 0.29 13.48 0.06 0.77
New Haven, CT 2 1.11 0.29 14.32 0.06 0.82
Worcester, MA 3 1.15 0.39 13.33 0.06 0.76
Oxnard, CA 4 1.25 0.56 10.26 0.07 0.69
Bridgeport, CT 5 1.28 0.42 15.06 0.06 0.86
Springfield, MA 6 1.30 0.56 12.83 0.06 0.73

Middle
New Orleans, LA 33 2.00 0.41 21.38 0.07 1.59
Jacksonville, FL 34 2.01 0.06 25.92 0.08 1.96
Birmingham, AL 35 2.02 0.52 20.15 0.07 1.50
Atlanta, GA 36 2.03 0.36 22.45 0.07 1.67
Austin, TX 37 2.04 0.34 22.00 0.08 1.70
Salt Lake City, UT 38 2.09 1.26 12.36 0.07 0.83

Highest
Memphis, TN 65 3.32 0.95 31.89 0.07 2.37
Tulsa, OK 66 3.44 1.12 21.60 0.11 2.32
Oklahoma City, OK 67 3.56 1.06 23.21 0.11 2.50
Indianapolis, IN 68 3.68 2.08 18.26 0.09 1.60
Milwaukee, WI 69 3.86 1.96 21.72 0.09 1.90
Omaha, NE 70 4.10 1.55 22.84 0.11 2.55

Table B.14. Counterfactual results for methane emissions. Each column shows the amount of
methane emitted from each energy source under various counterfactual scenarios.

Baseline Relax Cali Relax All

II. Emissions (lbs of Methane)
Gas 0.78 0.78 0.79
Electricity 1.33 1.32 1.16
Fuel oil 0.00 0.00 0.00

Total 2.11 2.10 1.95
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local emissions factors for each type of carbon dioxide. We can use the same simulation
to examine the changes in methane emissions by using conversion factors for methane
emissions. Table B.14 demonstrates how methane emissions change as a result of our
simulation.
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