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Modeling time varying risk of natural resource assets:
Implications of climate change

Anke D. Leroux
Department of Economics, Monash University

Vance L. Martin
Department of Economics, University of Melbourne

Kathryn A. St. John
Department of Economics, University of Melbourne

A multivariate GARCH model of natural resources is specified to capture the ef-
fects of time varying portfolio risk. A special feature of the model is the inclusion
of realized volatility for natural resource assets that are available at multiple fre-
quencies as well as being sensitive to sudden changes in climatic conditions. Nat-
ural resource portfolios under climate change are simulated from bootstrapping
schemes as well as being derived from global climate model projections. Both ap-
proaches are applied to a multiasset water portfolio model consisting of reser-
voir inflows, rainwater harvesting, and desalinated water. The empirical results
show that while reservoirs remain the dominant water asset, adaptation to climate
change involves increased contributions from rainwater harvesting and more fre-
quent use of desalinated water. It is estimated that climate change increases an-
nual water supply costs by between 7% and 44% over a 20-year forecast horizon.

Keywords. RV-DCC, realized variance, natural resource portfolio, climate change.

JEL classification. C32, C53, Q35, Q54.

1. Introduction

Understanding risk is important in constructing optimal portfolios of financial (Merton
(1969)) as well as natural assets. In the latter case, examples include the optimal com-
position of energy (Humphreys and McClain (1998)), water (Leroux and Martin (2016),
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Leroux, Martin, and Zheng (2018)), fisheries (Sanchirico, Smith, and Lipton (2008)), and
habitat portfolios (Ando and Mallory (2012), Mallory and Ando (2014), Shah and Ando
(2015), Duran Vinent, Johnston, Kirwan, Leroux, and Martin (2019)) to assure supply
or conservation objectives. Time variations in risks and corisks require frequent rebal-
ancing of portfolios, which is common practice in financial asset portfolios (Baillie and
Myers (1991) and Tischbirek (2019)), but is less common in the case of natural asset port-
folios.1 Yet, the efficient rebalancing of portfolios involving climate dependent assets is
essential to achieving least cost adaptation in the face of accelerating climatic change
(Stocker et al. (2014), WWAP (2012)).

The aim of this paper is to propose a framework that circumvents the restriction of
constant volatility risk, imposed by previous approaches to modeling natural assets. To
capture the effects of time varying climate risks on natural assets, a multivariate class of
volatility models is specified based on augmenting the dynamic conditional correlation
(DCC) model of Engle (2002) with the realized GARCH volatility (RV GARCH) model of
Hansen, Lunde, and Voev (2012).2 The DCC component of the model captures the time
variations in the corisks of the natural assets, thereby allowing for time variations in the
resource portfolios. This class of models is referred to as the RV DCC model. There are
two reasons for augmenting the DCC model by realized volatility. First, when data are
available at multiple frequencies for some, but not necessarily all natural assets, real-
ized volatility measures provide a framework for combining all available information to
improve the precision of the time varying estimates of risk. Second, realized measures
of volatility are known to be more effective in capturing rapid movements in the under-
lying latent volatility process than standard GARCH models (Hansen, Lunde, and Voev
(2012)). This is especially important in modeling natural resources that are affected by
sudden changes in climatic conditions.

The RV DCC model is applied to modeling a set of water supply assets consisting
of two climate sensitive water assets, reservoirs, and rainwater harvesting, as well as a
risk-free asset based on desalinated water.3 Using nearly 100 years of monthly data for
Melbourne, Australia, the empirical results provide strong evidence of time variations in
volatility risk and corisks of the water assets. Realized volatility estimates based on the
availability of higher frequency data for harvested water are found to help predict future
movements in volatility of the water assets.

The estimated empirical model is used to construct optimal water supply portfolios
under various climate conditions and scenarios for the water assets.4 Under historical

1An exception is Humphreys and McClain (1998), who adopt a conventional financial framework based
on energy assets.

2For a review of multivariate GARCH models, see Bauwens, Laurent, and Rombouts (2006).
3Water rights are well-defined in Australia and water assets are typically owned and managed by a com-

bination of government, government agencies as well as private partners. Melbourne Water is the statutory
authority owned by the Victorian government that is tasked with overseeing and protecting Melbourne’s
water supply and water assets. The term rainwater harvesting as used in this paper refers to the harvesting
of urban rain and storm water in small-scale, decentralized systems that are designed to capture urban run-
off from impermeable surfaces in rainwater tanks, ponds, urban wetlands, and swales (Ahammed (2017))
and is distinct from capturing water in large-scale, centralized reservoirs.

4Following Merton (1969, 1971), an optimal portfolio jointly optimizes the consumption path from a
portfolio of assets with stochastic returns and the composition (asset shares) of the portfolio over time.
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conditions, the major contribution to the optimal water portfolio is from reservoirs, with
the remainder coming from rainwater harvesting and desalination. While rainwater har-
vesting contributes almost continuously to the water stock, the contributions from de-
salination are infrequent under normal conditions and increasing to around 25% of the
time under recent millennium drought conditions.5 The effects of climate change on the
future water portfolio are captured by adopting two bootstrapping schemes. The first
involves increasingly restrictive sampling from the upper and lower tails of the resid-
ual distribution to capture the joint effects of unexpected floods and droughts on the
water cycle, while the second involves sampling from the residuals of the millennium
drought. These two methods are complemented by applying the RV DCC model to pro-
jected climate data from up to 42 global climate models. The empirical results are con-
sistent and predict for reservoirs to have a relatively smaller contribution in the water
portfolio, whereas rainwater harvesting and desalination have increasing roles. It is esti-
mated that climate change leads to an annual increase in water supply costs of between
7% and 44% over a 20-year forecast horizon.

The rest of this paper is organized as follows. The statistical effects of climatic condi-
tions on water assets are discussed in Section 2. The RV DCC empirical model of water
assets with time varying risks is specified in Section 3. A quasi-maximum likelihood es-
timator is presented in Section 4, which is applied in Section 5 to estimate the RV DCC
water asset model. The empirical results in Section 5 are used to construct an optimal
portfolio of water assets in Section 6. Implications of the optimal water portfolio in the
presence of climate change are discussed in Section 7, with concluding comments con-
tained in Section 8.

2. The statistical effects of climatic conditions

To motivate the structure of the empirical model of water assets presented in Section 3,
the statistical effects of climatic conditions on natural resources is now presented for the
case of water. The data consist of monthly reservoir inflows and precipitation for rain-
water harvesting for the city of Melbourne from January 1925 to December 2010, which
are presented in Figure 1 with descriptive statistics given in Table 1.6 The descriptive
statistics of the two water assets reveal significant differences. The average inflow into
reservoirs is 45 mm, with a median inflow of 34 mm and a standard deviation of 36 mm.
For rainwater harvesting the mean is 66 mm with a median of 63 mm and a standard de-
viation of 31 mm. As a result rainwater harvesting has a higher mean and a lower stan-
dard deviation than reservoir inflows, reflecting the greater geographical dispersion of
rainwater harvesting systems compared to the small number of large scale reservoirs.

5The millennium drought represents a period of below average reservoir inflows in Melbourne from 1997
to 2009.

6Precipitation is measured using gridded (5 km × 5 km) monthly data (Raupach, Briggs, Haverd, King,
Paget, and Trudinger (2009, 2012), obtained from the Bureau of Meteorology and averaged according to the
geographical overlap with the Melbourne greater city area. Monthly reservoir inflows are obtained by ag-
gregating monthly inflows over the four major reservoirs: Maroondah, O’Shannassy, Thomson, and Upper
Yarra, which lie outside Melbourne’s greater capital city boundary.
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Figure 1. Water assets (mm per month), 1925–2010.

The climatic effects on water flows are highlighted in Table 2, which gives the 10 dri-
est and wettest months for reservoir and rainwater harvesting over the sample period.
The z-statistic reported represents the number of standard deviations from the mean
using the residuals from the seasonal dummy variable regression model. A comparison
of the standard deviations reported in the table suggests the driest months are compar-
atively less extreme than the wettest months. The three driest months for reservoir in-
flows occur during the Millennium Drought between July and September of 2006, with
2.3 to 2.4 standard deviations below the mean. In contrast, the wettest month is May
1952, representing nearly 8 standard deviations above the mean in the case of reservoir
inflows and just under 5 standard deviations above the mean for rainwater harvesting.

Figure 2 provides the empirical distributions of reservoir inflows and rainwater har-
vesting. The strong positive skewness in reservoir inflows is highlighted in panel (a)
where the peak of the distribution occurs between 10 and 15 mm per month. The rain-
water harvesting empirical distribution presented in panel (b) exhibits less skewness
than reservoir inflows with the peak occurring between 45 and 50 mm per month. By
expressing reservoir inflows in logarithms, panel (c) yields an empirical distribution that
is more symmetrical. A similar result occurs for the logarithm of rainwater harvesting in
panel (d), although the distribution has a thin, left tail.

Table 1. Descriptive statistics on water assets (mm per month),
1925–2010.

Statistic Reservoir Inflows Rainwater Harvesting

Mean 45.374 66.483
Median 34.025 63.388
Minimum 3.525 3.614
Maximum 245.675 204.942
Standard Deviation 35.962 31.203
Skewness 1.410 0.464
Kurtosis 5.090 3.054
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Table 2. Extreme events of water assets, 1925–2010. Based on the residuals from a linear regres-
sion of the water assets on a set of monthly seasonal dummy variables. The z-statistic reported
represents the number of standard deviations from the mean.

Driest Months Wettest Months

Reservoirs Rainwater Reservoirs Rainwater

Date z-stat Date z-stat Date z-stat Date z-stat

2006, Aug. −2.424 1934, Apr. −2.421 1955, Dec. 3.667 1949, Sep. 2.776
2006, Jul. −2.412 1982, July −2.268 1952, Oct. 3.903 1970, Feb. 2.926
2006, Sep. −2.332 1932, Apr. −2.129 1960, Apr. 4.093 1946, Jan. 2.993
1982, Jul. −2.288 2006, Sep. −2.092 1935, Mar. 4.151 1968, Apr. 3.053
1997, Jul. −2.175 1944, July −2.075 1944, Apr. 4.209 1960, Apr. 3.099

1982, Aug. −2.091 2008, Sep. −1.972 1939, Aug. 4.359 1939, Jul. 3.244
1938, Sep. −1.993 2005, Apr. −1.886 1934, Nov. 4.407 1939, Jan. 3.496
2008, Sep. −1.921 1976, Jun. −1.862 1953, Sep. 4.535 1935, Mar. 3.807
1967, Jun. −1.896 1938, Sep. −1.854 1952, Nov. 4.764 1973, Jan. 4.009
1928, Jul. −1.890 1967, Sep. −1.847 1952, May 7.584 1952, May 4.559

Figure 2. Empirical distributions of water assets (mm per month), 1925–2010.
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Table 3. Seasonal factors for reservoir inflows and rainwater har-
vesting, 1925–2010. Based on a linear regression of the water as-
sets on a set of monthly seasonal dummy variables.

Month Reservoir Inflows Rainwater Harvesting

January 0.507 0.651
February 0.352 0.646
March 0.338 0.753

April 0.450 0.995
May 0.696 1.133
June 0.996 1.200

July 1.413 1.277
August 1.861 1.310
September 1.810 1.122

October 1.582 1.116
November 1.168 0.959
December 0.827 0.838

The monthly seasonal patterns for the water assets are given in Table 3. The seasonal
factors are the average flows for each month relative to the annual average. A test of no
seasonal patterns is rejected for both water assets with p-values of 0.000. A compari-
son of the seasonal factors for the two water assets shows that reservoir inflows exhibit
stronger seasonal variations than rainwater harvesting. Nonetheless, water from from
both assets peak in August with water flows being nearly twice the average for reser-
voirs and just over 30% higher in the case of rainwater harvesting. The lowest inflows for
reservoirs occur in March, whereas for harvesting it is one month earlier in February.

Preliminary tests of time varying volatility in the water assets based on the ARCH
test of Engle (1982) are given in Table 4. The results of the tests provide strong evidence
of time varying volatility in reservoir inflows and rainwater harvesting, with all p-values
less than 0.05. To highlight the time variations in the corisks between the two water as-
sets, Figure 3 provides time varying estimates of the correlation using a 12 month rolling
window. The dashed line represents the correlation for the total sample period, equal to
0.594. All of the correlations are less than 1.0, providing preliminary evidence that wa-
ter assets could be combined into a water portfolio to diversify some of the individual
asset’s risks. Most of the correlations between the two water assets are positive, falling
between 0.4 and 0.8. However, there are some periods when the correlations are less
than 0.2, and even negative, especially around 1970.

Precipitation data for rainwater harvesting are also available daily from the Bu-
reau of Meteorology for six high quality climate sites: Lovely Banks, Meredith, Portar-
lington, Toorourrong, Yan Yean, and Wallaby Creek. A monthly realized variance esti-
mate is obtained by integrating the daily variance over each month. Formally, this is
achieved by summing the squared daily deviations of each observation from its mean
for each month (see Andersen, Bollerslev, Diebold, and Ebens (2001), Barndorff-Nielsen
and Shephard (2002), and Aït-Sahalia and Jacod (2014) for a review of realized variance).
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Table 4. Preliminary tests of time varying volatility in reservoir
inflows and rainwater harvesting. Based on tests of ARCH for se-
lected lags 1 to 12 months applied to the residuals from a linear
regression of the water assets (in logs) on a constant and a set of
seasonal (monthly) dummy variables, with p-values reported in
parentheses.

Statistic Reservoir Inflows Rainwater Harvesting

ARCH(1)
215.268 11.741
(0.000) (0.001)

ARCH(2)
231.184 14.345
(0.000) (0.001)

ARCH(6)
244.245 18.542
(0.000) (0.005)

ARCH(12)
251.044 24.174
(0.000) (0.019)

The monthly realized volatility estimates for rainwater harvesting are given in Figure 4
from 1925 to 2010, by taking the square root of the realized variance estimates. The aver-
age realized volatility over the period is 20.909 mm, which is less than the corresponding
estimate for rainwater harvesting of 31.203 mm reported in Table 1.

Figure 3. Time-varying estimates of the correlation between reservoir and rainwater harvesting
assets based on a 12-month rolling window, 1925–2010. The dashed line represents the uncon-
ditional correlation for the total sample period, equal to 0.594.
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Figure 4. Realized volatility of rainwater harvesting (mm per month), 1925–2010.

3. An empirical model of water assets

A bivariate model of water assets with time varying comoments is specified in this sec-
tion, where the water assets consist of the monthly reservoir inflows and rainwater har-
vesting given in Figure 1. Time varying variances are modeled using the class of GARCH
volatility models of Engle (1982) and Bollerslev (1986). As data on rainwater harvesting
are also available daily, the GARCH volatility component of the model for rainwater har-
vesting is augmented using the realized volatility estimates in Figure 4 based on the RV
GARCH model of Hansen, Lunde, and Voev (2012). To capture time variations in the cor-
relations linking the two water assets the Dynamic Conditional Correlation (DCC) model
of Engle (2002) is adopted. This class of models is referred to as the RV DCC model.

Let y1,t and y2,t represent respectively logged reservoir inflows and logged rainwater
harvesting at time t. The multivariate model of water assets consists of three compo-
nents. The first component is the model of reservoir inflows specified as

y1,t = φ1,0 +
11∑
i=1

φ1,idi,t + u1,t ,

h1,1,t = α1,0 + α1,1u
2
1,t−1 +β1,1h1,1,t−1, (1)

u1,t ∼ N(0, h1,1,t ),

where di,t , i = 1, 2, � � � , 11, are monthly seasonal dummy variables beginning with Jan-
uary, defined as

di,t =
{

1 : Month i,

0 : Otherwise,
(2)
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in order to capture the seasonal pattern in reservoir inflows, and h1,1,t is the conditional
variance of logged reservoir inflows. The disturbance term u1,t captures deviations from
expected reservoir inflows corresponding to periods of high inflows (u1,t > 0), or dry
periods where inflows are below normal levels (u1,t < 0). The unexpected movements
in reservoir inflows are assumed to have zero mean, with conditional variance h1,1,t .
Higher volatility in reservoir inflows arises from inflows exhibiting abnormal move-
ments relative to normal levels.

The second component is the rainwater harvesting model, which is specified as

y2,t = φ2,0 +
11∑
i=1

φ2,idi,t + u2,t ,

h2,2,t = α2,0 + α2,1u
2
2,t−1 +β2,1h2,2,t−1 +β2,2 log RVt−1,

log RVt = δ0 + δ1h2,2,t + et , (3)

u2,t ∼ N(0, h2,2,t ),

et ∼ N
(
0, σ2

e

)
,

where di,t are monthly seasonal dummy variables as defined in (2), h2,2,t is the con-
ditional variance of (logged) harvesting, and RVt is the realized variance of harvesting.
The disturbance u2,t captures excess harvesting levels relative to normal levels, which
is assumed to have zero mean and conditional volatility h2,2,t . The rainwater harvest-
ing conditional variance is represented by a GARCH model augmented by the log of
its lagged realized variance. In the empirical finance literature, the realized variance is
found to be a good predictor of the latent volatility process, especially during periods
where there are large changes in volatilities and correlations (Hansen, Lunde, and Voev
(2012)). In the natural resource literature, it is the effects of changing climatic condi-
tions that can result in extreme movements in volatilities and correlations arising from
dramatic changes in water flows from periods of floods to periods of droughts. The third
expression in (3) represents a measurement equation linking the observed (logged) real-
ized variance log RVt , and the unobserved latent variance process of rainwater harvest-
ing h2,2,t , with et representing the measurement error which is assumed to have zero
mean and constant variance σ2

e (Hansen, Lunde, and Voev (2012)).7

The third component of the model captures time variations in the covariances and
correlations between logged reservoir inflows (y1,t ) and logged rainwater harvesting

(y2,t ). Let Ht represent the conditional covariance matrix between y1,t and y2,t given
by

Ht =
(
h1,1,t h1,2,t

h1,2,t h2,2,t

)
, (4)

7A number of extensions of the empirical model will be investigated in Section 5, including allowance
for seasonality and leverage effects in the conditional variance equations.
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where h1,2,t is the conditional covariance between the two water assets. Let the stan-
dardized disturbances be defined as

z1,t = u1,t√
h1,1,t

, z2,t = u2,t√
h2,2,t

, (5)

where u1,t is defined in (1) and u2,t defined in (2). The conditional covariance matrix in
(4) is expressed as

Ht = StRtSt , (6)

with

St =
(√

h1,1,t 0
0

√
h2,2,t

)
, Rt =

(
1 ρ1,2,t

ρ1,2,t 1

)
, (7)

where St is a diagonal matrix containing the conditional standard deviations of y1,t and
y2,t , on the main diagonal, and Rt is the correlation matrix with ρ1,2,t representing the
time varying conditional correlation between y1,t and y2,t . To model the time variation
in the conditional correlation, the DCC model of Engle (2002) is adopted by specifying
the following pseudo-GARCH covariance matrix

Qt = (1 − αc −βc )Q+ αcztz
′
t +βcQt−1, (8)

where ac and βc are scalar parameters, zt = (z1,t , z2,t )′, and

Q = 1
T

T∑
t=1

ztz
′
t , (9)

is the unconditional covariance matrix of the standardized disturbances.8 The time vary-
ing correlation is given by

ρ1,2,t = q1,2,t√
q1,1,tq2,2,t

, (10)

where qi,j,t is the i, j element at time t of Qt .

4. Quasi maximum likelihood estimation

This section provides the details of a quasi maximum likelihood estimator for estimat-
ing the parameters of the RV DCC model presented in Section 3. The log-likelihood of
the RV DCC model of water assets consists of three components. The first term of the
log-likelihood is based on the GARCH conditional volatility model of reservoir inflows.
Assuming u1,t in (1) is conditionally normal with zero mean and variance h1,1,t , the log-
likelihood at observation t is

logL1t(θ1 ) = −1
2

log 2π − 1
2

logh1,1,t − 1
2

u2
1,t

h1,1,t
, (11)

8An alternative approach for combining multivariate GARCH models with realized volatility is Hansen,
Huang, and Shek (2012). For recent approaches to modeling multivariate realized volatility, see Bollerslev,
Meddahi, and Nyawa (2019) and Bollerslev, Patton, and Quaedvlieg (2020).
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with unknown parameters

θ1 = {φ1,0, φ1,1, � � � , φ1,11, α1,0, α1,1, β1,1}. (12)

The second term of the log-likelihood is based on the RV GARCH conditional volatil-
ity model of rainwater harvesting, where u2,t and et in (2) are assumed to be inde-
pendent with conditional normal distributions.9 The log-likelihood at observation t is
(Hansen, Lunde, and Voev (2012))

logL2t(θ2 ) = − log 2π − 1
2

logh2,2,t − 1
2

logσ2
e − 1

2

u2
2,t

h2,2,t
− 1

2
e2
t

σ2
e

, (13)

with unknown parameters

θ2 = {
φ2,0, φ2,1, � � � , φ2,11, α2,0, α2,1, β2,1, β2,2, δ0, δ1, σ2

e

}
. (14)

The third term of the log-likelihood corresponds to the time varying correlations
between reservoir inflows and rainwater harvesting based on the DCC log-likelihood
(Engle (2002))

logL3t(θ1, θ2, θ3 ) = −1
2

log |Rt | − 0.5z′
tR

−1
t zt + 0.5z′

tzt , (15)

where Rt is the correlation matrix in (7) and zt = (z1,t , z2,t )′ is the vector containing the
standardized disturbances in (5), and the unknown parameters

θ3 = {αc , βc }. (16)

The unknown parameters θ1 and θ2 from (12) and (14), respectively, enter the log-
likelihood in (15) via the standardized disturbances in zt .

For a sample of T observations, the full quasi log-likelihood for the RV DCC model is
obtained by combining the separate log-likelihoods in (11), (13), and (15), as

logLT (θ) = 1
T

T∑
t=1

(
logL1t(θ1 ) + logL2t(θ2 ) + logL3t(θ1, θ2, θ3 )

)
= logL1(θ1 ) + logL2(θ2 ) + logL3(θ1, θ2, θ3 ), (17)

where

θ = {θ1, θ2, θ3},

represents the full set of unknown parameters, and

logL1T (θ1 ) = 1
T

T∑
t=1

logL1t(θ1 ),

9The normality assumption for et is supported by Andersen et al. (2001), Andersen, Bollerslev, Diebold,
and Labys (2003), who provide empirical evidence that realized variance is approximately log-normal.
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logL2T (θ2 ) = 1
T

T∑
t=1

logL2t(θ2 ),

logL3T (θ1, θ2, θ3 ) = 1
T

T∑
t=1

logL3t(θ1, θ2, θ3 ).

The quasi maximum likelihood estimator is given as the solution of

θ̂T = arg max
θ

logLT (θ), (18)

where the asymptotic standard errors are based on the “sandwich” estimator. Under

standard regularity conditions, the QMLE is asymptotically distributed as

√
T (θ̂T − θ0 )

d→N(0, �), (19)

where θ0 is the population parameter vector and

� = I−1(θ0 )J(θ0 )I−1(θ0 ), (20)

is the covariance matrix, I(θ0 ) is the information matrix, and J(θ0 ) is the outer product

of gradients (OPG) matrix.

The quasi maximum likelihood estimator is computed using the Broyden, Fletcher,

Goldfarb, and Shanno iterative gradient algorithm available in the MAXLIK procedure

in GAUSS, with all gradients computed numerically. As the log-likelihood in (17) has

a recursive structure this property is exploited in computing the maximum likelihood

estimates by adopting a three-step estimation procedure to maximize each component

of the total log-likelihood separately. This estimation sequence involves maximizing (11)

with respect to θ1 in (12) in the first step. In the second step, (13) is maximized with

respect to θ2 in (14). In the third and final step, (15) is maximized with respect to θ3

in (16) with zt replaced by the standardized residuals ẑt = (ẑ1,t , ẑ2,t )′ from the first two

stages.

The parameter estimates from the first two steps of the estimation procedure are

asymptotically efficient as a result of the block-diagonality structure of the information

matrix (Engle (2002)). This is not the case for the parameter estimates of θ3 in the third

step, which are consistent, but not asymptotically efficient as the correct standard errors

are a function of all of the parameters in the model. To generate asymptotically efficient

parameter estimates of the θ3 parameters in (16), the following approach is adopted,

which extends the approach proposed by Engle (2002).10 Let the gradient vector for the

10An alternative strategy to achieve asymptotic efficiency is to iterate the full log-likelihood model once
using the three-step parameter estimates as starting values (Martin, Hurn, and Harris (2013)).



Quantitative Economics 13 (2022) Modeling time varying risk of natural resource assets 237

three-step estimator be given by

GT (θ) =

⎛⎜⎜⎜⎜⎜⎜⎝

∂ logL1(θ1 )
∂θ1

∂ logL2(θ2 )
∂θ2

∂ logL3(θ1, θ2, θ3 )
∂θ3

⎞⎟⎟⎟⎟⎟⎟⎠ . (21)

The information matrix has the following block diagonal structure:

IT (θ) =E

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂2 logL1(θ1 )
∂θ1∂θ

′
1

0 0

0
∂2 logL2(θ2 )

∂θ2∂θ
′
2

0

∂2 logL3(θ)
∂θ3∂θ

′
1

∂2 logL3(θ)
∂θ3∂θ

′
2

∂2 logL3(θ3 )
∂θ3∂θ

′
3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

(
Ia 0
Ic Id

)
, (22)

where the partitioned matrices are

Ia = E

⎛⎜⎜⎜⎝
∂2 logL1(θ1 )

∂θ1∂θ
′
1

0

0
∂2 logL2(θ2 )

∂θ2∂θ
′
2

⎞⎟⎟⎟⎠ ,

Ic = E

(
∂2 logL3(θ)

∂θ3∂θ
′
1

∂2 logL3(θ)
∂θ3∂θ

′
2

)
, (23)

Id = E

(
∂2 logL3(θ3 )

∂θ3∂θ
′
3

)
.

From the properties of partitioned inverses,

I−1
T (θ) =

(
Ia 0
Ic Id

)−1

=
(

I−1
a 0

−I−1
d  I−1

d

)
, (24)

where

 = IcI
−1
a . (25)

Letting JT (θ) represent the outer product of gradients matrix associated with (21), the

quasi-maximum likelihood covariance matrix is

�T (θ) = I−1
T (θ)JT (θ)I−1

T (θ)′. (26)
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Using (24) in (26) gives

�T (θ) =
(

I−1
a 0

−I−1
d  I−1

d

)(
Ja Jb
Jc Jd

)(
I−1
a −′I−1

d

0 I−1
d

)

=
(
ωa ωb

ωc ωd

)
, (27)

where Ja, Jb, Jc , Jd are the conformable elements of the OPG matrix JT (θ), and

ωa = I−1
a JaI

−1
a ,

ωb = −I−1
a Ja

′I−1
d + I−1

a JbI
−1
d ,

ωc = ω′
b,

ωd = I−1
d

(
Jd − Jc

′ −Jb +Ja
′)I−1

d .

The QMLE covariance matrix of θ̂ is

cov(θ̂T ) = 1
T
�T (θ̂), (28)

with standard errors computed as the square roots of the diagonal elements of this ma-
trix. In evaluating �T (θ̂) in the empirical analysis in Section 5, the information matrix
is approximated by the Hessian and the OPG matrix JT (θ) is evaluated by taking the
average of the cross-products of the gradients in (21) over the sample.

5. Empirical results

The quasi-maximum likelihood parameter estimates of the RV DCC time varying risk
model of water assets in equations (1) to (10) are given in Table 5 using the monthly
data on reservoir inflows and rainwater harvesting in Figure 1, and the realized volatility
estimates in Figure 4.11 As a basis of comparison Table 5 also contains the results of a
constant risk benchmark model by restricting the variances and covariances to be time
invariant. Comparison of the joint AIC for the two models given in Table 5, computed as
AIC = −2 logL(θ̂)+2N/T where N is the dimension of θ̂, provides strong support for the
time varying risk model. Comparing the AICs for the each of the three subcomponents
of the two models further confirms this result with the AIC being minimized for all three
submodels of the time-varying risk model.

Inspection of the conditional mean parameter estimates of φ1 to φ11, suggests
strong evidence of seasonality in the mean of both water assets. Reservoirs have the
greatest inflows on average in September (φ9 ), closely followed by August (φ8 ) and Oc-
tober (φ10 ). The lowest average inflows occur in February (φ2 ), followed by March (φ3 )

11Diagnostic tests for first-order ARCH applied to the standardized residuals show no evidence of mis-
specification of the conditional volatility. In the case of reservoir inflows the ARCH applied to ẑ1,t , yields a
p-value of 0.712, whereas for rainwater harvesting the pertinent p-value of the ARCH test is 0.887. A similar
qualitative result applies for the covariance of the standardized residuals, which yields a p-value of 0.382.
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Table 5. Maximum likelihood parameter estimates of the time varying risk model in equations
(1) to (10) of reservoir inflows and rainwater harvesting water assets, with QMLE standard errors,
1925–2010. For comparison, the results of estimating a constant risk model are presented by
restricting the variances and covariances to being time invariant.

Param.

Time Varying Risk Model Constant Risk Model

Reservoirs Rainwater Reservoirs Rainwater

Est. SE Est. SE Est. SE Est. SE

Conditional Mean
φ0 3.557 0.041 3.900 0.064 3.473 0.059 3.896 0.057
φ1 −0.498 0.043 −0.268 0.092 −0.467 0.079 −0.276 0.086
φ2 −0.919 0.054 −0.401 0.099 −0.826 0.080 −0.380 0.098
φ3 −0.915 0.061 −0.158 0.090 −0.851 0.078 −0.136 0.085
φ4 −0.793 0.074 0.118 0.087 −0.649 0.086 0.179 0.079
φ5 −0.324 0.080 0.302 0.080 −0.240 0.089 0.306 0.081
φ6 0.101 0.071 0.428 0.073 0.174 0.085 0.424 0.068
φ7 0.530 0.066 0.499 0.072 0.561 0.082 0.497 0.067
φ8 0.818 0.060 0.510 0.074 0.853 0.079 0.510 0.069
φ9 0.829 0.056 0.389 0.073 0.850 0.075 0.367 0.067
φ10 0.654 0.054 0.335 0.080 0.682 0.082 0.318 0.076
φ11 0.347 0.050 0.190 0.078 0.354 0.084 0.180 0.072

Conditional Variance
α0 0.088 0.016 0.053 0.045 0.522 0.013 0.489 0.014
α1 0.484 0.069 0.150 0.059 0.000 0.000
β1 0.205 0.089 0.381 0.007 0.000 0.000
β2 0.014 0.007 0.000 0.000

Realized Variance
δ0 5.533 0.183 5.707 0.038
δ1 0.724 0.764 0.000
σe 1.233 0.042 1.234 0.042

Conditional Covariance
αc × 10−6 4.170 1.757 0.000 0.000
βc 0.628 0.005 0.000 0.000

logL1 = −0.669 AIC1 = 1.366 logL1 = −0.770 AIC1 = 1.565
logL2 = −2.318 AIC2 = 4.673 logL2 = −2.333 AIC2 = 4.696
logL3 = 0.181 AIC3 = −0.359 logL3 = 0.156 AIC3 = −0.311
logL= −2.805 AIC = 5.680 logL= −2.947 AIC = 5.950

and April (φ4 ). Rainwater harvesting peaks in August (φ8 ), while the lowest harvesting
occurs in February (φ2 ) on average.12

12Extending the reservoir inflows and rainwater harvesting conditional variance equations through the
inclusion of seasonal dummy variables reveals weak evidence of seasonality in the water assets volatilities.
For reservoir inflows, all of the parameter estimates on the seasonal dummy variables conditional variance
are statistically insignificant. In the case of rainwater harvesting, 8 of the 11 parameter estimates on the
seasonal dummy variables are statistically insignificant. Moreover, sensitivity analysis from allowing for
seasonality in the conditional variance equations presented in footnote 19 suggests no qualitative change
in the empirical results.
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The parameter estimates of the volatility equations given by α1, β1, and β2, pro-
vide strong evidence of time variation in volatility in the two water assets.13 A compar-
ison of the memory properties of the two volatility processes is given by the half-life
of a shock, which is the time it takes for a process to return halfway back to its long-
run equilibrium volatility after a shock. The half-life of the reservoir inflows variance
is log((α1,1 + β1,1 )/2)/ log(α1,1 + β1,1 ).14 The estimate of the half-life is log((0.481 +
0.205)/2)/ log(0.481 + 0.205) = 2.839, or just under 3 months. For rainwater harvesting
the half-life is log((α2,1 +β2,1 +β2,2δ1 )/2)/ log(α2,1 +β2,1 +β2,2δ1 ), which takes into ac-
count realized volatility.15 The half-life estimate for rainwater harvesting is log((0.150 +
0.381 + 0.014 × 0.724)/2)/ log(0.150 + 0.381 + 0.014 × 0.724) = 2.129, or just over 2
months. These properties of the volatilities of the two water assets are highlighted in
Figure 5, which contains estimates of the time varying volatilities of reservoir inflows
and rainwater harvesting, as well as the corisk as given by the conditional covariance
and correlation.

The parameter estimates for the rainwater harvesting asset also provide strong evi-
dence of the important role of the realized variance in predicting the conditional vari-
ance h2,2,t , as the parameter estimate of β2,2 in (3) is statistically significant. The slope
parameter estimate of the measurement equation in (3) is δ̂1 = 0.724, suggesting a pos-
itive relationship between log RVt and h2,2,t , although this estimate is not statistically
significant.

The covariance parameter estimates αc and βc of the DCC model in equation (8)
are both statistically significant. The estimate of αc is numerically small suggesting very
little random variations in the pseudo covariance Qt , which combined with the estimate
of 0.628 for βc , yields a half-life between the half-lives obtained for the variances of the
two water assets.

Figure 5 contains the time varying risk estimates of reservoir inflows and rainwa-
ter harvesting, as well as the corisk as given by the conditional covariance and corre-

13Tests for asymmetries in the conditional variance equations for reservoirs and rainwater harvesting
are also conducted. The leverage tests for reservoirs are based on specifying the GJR model of Glosten,
Jagannathan, and Runkle (1993) and testing for the leverage effect. The empirical results yield a test statistic
of 2.167, with a p-value of 0.141, showing that the null of no leverage effect is not rejected. In testing for a
leverage effect in the rainwater harvesting conditional variance equation the approach is based on Hansen,
Lunde, and Voev (2012), by including powers of the standardized residuals in equation (3). The empirical
results yield a test statistic of 0.727, with a p-value of 0.695, showing no evidence of leverage effects in
rainwater harvesting.

14Engle and Patton (2001) defined the half-life as |Etht+k − h| = 0.5|Etht+1 − h|, where h is the long-run
variance.

15The half-life of the rainwater harvesting variance equation is obtained by using the realized variance
equation in (3) to rewrite the conditional variance equation for h2,2,t as

h2,t = α2,0 +β2,2δ0 + α2,1u
2
2,t−1 + (β2,1 +β2,2δ1 )h2,t−1 + et−1.

For k≥ 2, the conditional forecast is

Et (ht+k − h) = (α2,1 +β2,1 +β2,2δ1 )k−1Et (ht+1 − h),

which from the Engle and Patton (2001) definition of the half-life and assuming the parameters are positive,
is (α2,1 + β2,1 + β2,2δ1 )k−1 = 0.5. Taking natural logarithms and solving for k gives the expression used in
the paper.
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Figure 5. Empirical estimates of the time-varying measures of risk between reservoir inflows
and rainwater harvesting (in logs), 1925–2010. Based on the estimated bivariate RV-GARCH
model in Table 5.

lation, based on the estimated bivariate RV DCC model in Table 5. A comparison of the
time varying estimates of the two variances suggests that reservoir inflows exhibit higher
volatility than rainwater harvesting. This feature of the empirical results is important as
it suggests that even though the capacity of reservoir inflows is much higher than it is for
rainwater harvesting, the latter water asset exhibits lower volatility, which can dampen
volatility movements of a water portfolio containing both of these water assets.

6. Estimating an optimal water portfolio

The empirical results, presented in Section 3, are now used to generate time varying opti-
mal portfolios of water supply. The portfolio consists of the two climate sensitive assets,
reservoir inflows, and rainwater harvesting, as well as a third, risk-free asset, desalinated
water. The optimal share equations are derived from the water portfolio model of Ler-
oux and Martin (2016) (see Appendix A in the Online Supplementary Material (Leroux,
Martin, and St. John (2022)). This is a stochastic dynamic programming model, where
a water manager chooses time paths for future water consumption and portfolio allo-
cations from alternative water sources to maximize a discounted intertemporal utility
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function subject to a set of constraints representing dynamic equations of water flows
from the alternative sources.16 In this model, reservoir inflows and rainwater harvest-
ing are treated as stochastic water assets. Water from the desalination plant is treated as
risk-free in terms of providing reliable supply that is independent of climatic conditions.

The optimal water portfolio share equations for reservoirs, w1, and rainwater har-
vesting, w2, adjusted for costs, are respectively given by

w1 = (k1a1 − ka2 )γ−1, (29)

w2 = (k2a2 − ka1 )γ−1. (30)

The cost-adjusted share of desalinated water, w3, is then determined from the adding
up constraint

w3 = 1 −w1 −w2 (31)

for simplicity the t subscript has been dropped. The parameter γ is the relative risk aver-
sion of the water manager and characterizes the shape of the utility function. In calibrat-
ing the model, the risk aversion parameter is assumed to be constant.17 Water utility
managers are risk averse for γ > 0, with γ > 1 representing relatively high risk aversion.
In the extreme case where γ → ∞, the optimal solution is not to source any water from
the two risky water assets (w1 = w2 = 0), but only from desalinated water (w3 = 1).

The terms

a1 = μ1

S1
− μ3

S3
+ c1λ1

p

(
μ1 + σ2

1

S1

)
− c3λ3μ3

p
, (32)

a2 = μ2

S2
− μ3

S3
+ c2λ2

p

(
μ2 + σ2

2

S2

)
− c3λ3μ3

p
, (33)

in (29) and (30) represent respectively the cost-adjusted excess water flows from reser-
voirs and rainwater harvesting relative to desalinated water, and Si is asset i′s water
stock. The parameters μi and σi are respectively the mean and standard deviation of
asset i′s water flows, ci = (Ki + Oi(Si ))/Si is the average cost per unit of water, where
Ki are capital costs and Oi are operating costs. Finally, the price of water is p and
λi = p(Ki + Oi − O′

iSi )/(Ki + Oi )2, where O′
i = dOi/dSi and the remaining terms k1, k2,

and k, are the risk-adjusted terms defined as

k1 = 1(
1 − ρ2

12

)(σ1

S1
+ σ1c1λ1

p

)2 ,

k2 = 1(
1 − ρ2

12

)(σ2

S2
+ σ2c2λ2

p

)2 , (34)

16The Leroux–Martin (2016) model is based on a stochastic dynamic optimization framework, which is
in contrast to the static portfolio model proposed by Humphreys and McClain (1998).

17See Leroux, Martin, and Zheng (2018) for an alternative utility function in a water portfolio model
where the relative risk aversion parameter is allowed to be time-varying.
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k = ρ12

√
k1k2,

where ρ12 is the correlation between reservoir inflows and rainwater harvesting.
Before constructing the optimal water portfolio shares it is necessary to convert the

conditional mean and the conditional variance and co-volatility estimates obtained in
Section 3, into the appropriate quantities used in equations (29) and (30). This also cap-
tures the relative size and performance of the water assets, described in detail in Leroux
and Martin (2016). The empirical estimates of the conditional moments of reservoir in-
flows are measured in mm. To convert these estimates into a volumetric measure of
reservoir inflows, conditional means and variances are scaled by the total catchment
area of reservoirs, estimated at 1071.5 km2 and annualized by scaling these conditional
moments by 12. In the case of harvested rain, the catchment area of a representative har-
vesting site is 3.6 km2. Assuming a harvesting rate of 0.1 the rainwater harvesting con-
ditional moments are scaled by 0.36 km2 and annualized while taking into account the
capacity constraints of harvesting technology. Finally, the average flow of desalinated
water from the desalination plant given by μ3 is chosen based on the scenario investi-
gated in the calibration experiments.18

The parameter values used to calibrate the water portfolio are summarized in Ta-
ble 6. Reservoirs have the greatest storage capacity of S1 = 1290 GL. The storage capac-
ity for a rainwater harvesting site is S2 = 0.217 GL while the maximum capacity for the
desalination plant is S3 = 150 GL, which is designed to provide one-third of Melbourne’s
water supply during drought conditions. Reservoirs also incur the highest capital costs,
with desalination costs being roughly half that of reservoirs, while harvesting has the
lowest. In contrast, reservoirs have the lowest operating costs with desalination having
the highest.

The price of water is set at p = 2.47$/kL, which is taken as the wholesale price of
water in 2013/14 (Melbourne Water (2013)). The population growth for the city of Mel-
bourne is set at ξ = 2% per annum (ABS (2015)). The discount rate is δ= 3% per annum,
which is chosen to reflect the long term planning horizon of urban water infrastructure
projects and the risk aversion parameter γ, is set at 3.5, based on the empirical analysis
in Leroux and Martin (2016).

The conditional means and comoments from the estimated model in Section 5 are
expressed in terms of the logarithms of the water assets. Given the assumption of nor-
mality used in specifying (1) to (3), the conditional means of the levels of the water assets
are

μ1,t = exp(m1,t + 0.5h1,1,t ),

μ2,t = exp(m2,t + 0.5h2,2,t ),
(35)

18The modeling incorporates technological change in the water sector by explicitly modeling new tech-
nologies such as desalination and rainwater harvesting. Reservoirs have been operating essentially un-
changed since the beginning of the last century. In contrast, potential efficiency gains in rainwater har-
vesting can be accommodated in this model via changes in the harvesting rate. For details, see Leroux and
Martin (2016).
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Table 6. Calibration parameter values used to calibrate the portfolio
water model, equations (29) to (34) for Melbourne.

Parameter Value Unit Description

S1 1290 GL Reservoir capacity
S2 0.217 GL Rainwater capacity
S3 150 GL Desalination plant capacity

K1 1166 $m Reservoir fixed capital costs, p.a.
K2 0.39 $m Rainwater fixed capital costs, p.a.
K3 656 $m Desalination fixed capital costs, p.a.

o1 0.00 $/kL Reservoir operating costs per unit
o2 0.29 $/kL Rainwater operating costs per unit
o3 1.08 $/kL Desalination operating costs per unit

p 2.47 $/kL Water price
ξ 0.02 Population growth rate, p.a.
δ 0.03 Discount rate, p.a.
γ 3.50 Risk aversion parameter

where

m1,t = φ1,0 +
11∑
i=1

φ1,idi,t ,

m2,t = φ2,0 +
11∑
i=1

φ2,idit ,

(36)

are the conditional means of the two water assets. The corresponding conditional vari-
ances are

σ2
1,t = exp(2m1,t + h1,1,t )

(
exp(h1,1,t ) − 1

)
,

σ2
2,t = exp(2m2,t + h2,2,t )

(
exp(h2,2,t ) − 1

)
,

(37)

while the conditional covariance is

σ1,2,t = exp
(
m1,t +m2,t + 0.5(h1,1,t + h2,2,t )

)(
exp(h1,2,t ) − 1

)
. (38)

The conditional correlation of the levels of reservoir inflows and rainwater harvesting is
defined as σ1,2,t/(σ1,tσ2,t ). Evaluating the conditional moments in (35) to (38) based on
the quasi maximum likelihood estimates in Section 5, yields the estimates of the con-
ditional second-order moments used in the calculation of the optimal water portfolio.
The optimal portfolio weights in equations (29)–(31) are evaluated by substituting the
estimated conditional variances and covariance in equations (32)–(34).

In constructing the optimal water supply portfolio, the system is assumed to be op-
erating in normal times with water stocks based on their long run historical values. In the
case of reservoirs, the mean capacity utilization over the past 25 years is approximately
65% (Melbourne Water (2018)). This implies an effective stock of S1 = 1290 × 0.65 =
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838.5, with average per unit costs of

c1 = K1

S1
+ o1 = 1166

1290 × 0.65
+ 0.00 = 1.3906.

The long run average for rainwater harvesting is set at 75%, which is taken from Ler-
oux and Martin (2016). The effective stock of harvested water is then S2 = 0.217 × 0.75 =
0.1627, with average per unit costs of

c2 = K2

S2
+ o2 = 0.39

0.217 × 0.75
+ 0.29 = 2.6863.

Average unit costs of desalinated water are computed as if the desalination plant is op-
erating at full capacity, given by

c3 = K3

S3
+ o3 = 656

150
+ 1.08 = 5.4533.

It is assumed that the average flow of desalinated water is 40% of capacity.
The results of the calibration for the base case are presented in columns 2 to 4 of Ta-

ble 7. The average contributions of the water assets suggests that reservoirs contribute
87% of the total cost-adjusted water stock, with the remaining water coming from rain-
water harvesting (8%) and desalination (5%). The median for reservoir inflows is slightly
higher at 95%, reflecting the presence of past positive outliers in reservoir inflows. The
standard deviations indicate some variation in the optimal portfolio over time, espe-
cially in the case of desalination, which has a standard deviation of 14%. The total cost
of the water portfolio is estimated to be $1.67 bn per year for the base case, which is
calculated from the asset shares, the average unit supply costs from each water asset
and the total cost-adjusted water stock. The long run average portfolio composition and
costs resulting from the base case are in line with the results for long run average con-
ditions under assumptions of constant risks and corisks, presented in columns 5 to 7
of Table 7. However, as suggested by the low frequency with which desalination is used,
and as seen in the subsequent analyses, long run averages mask important variations in
asset shares from one year to the next as well as marked differences in the frequency of
use of alternative water assets that can only be unveiled if one allows for time varying
risk.19

Figure 6 plots the optimal cost-adjusted portfolio shares from reservoirs and rain-
water harvesting for the full sample period alongside each water asset’s conditional
variance and the conditional correlation. The top panel suggests that reservoirs tend

19Some sensitivity experiments of the estimated model were conducted. Reestimating the time-varying
risk model by including seasonal dummy variables in the conditional variance equations does not change
the qualitative results presented in Table 7. The average estimates of the weights decrease marginally from
0.87 to 0.85 for reservoir inflows, increase marginally from 0.08 to 0.10 for rainwater harvesting, and remain
unchanged at 0.05 for desalination. The percentage number of years in using desalinated water remains at
12.79%, while the cost of the water portfolio increases marginally from $1.67 bn p.a. to $1.70 bn. A second
sensitivity experiment consisted of investigating the effects of changes in costs on the portfolio composi-
tion. The results suggest variations in the cost structure have minor effects on the water portfolio, with the
main effects dominated by the conditional second-order moments and comoments.
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Table 7. Summary measures of water portfolio weights, 1925–2010, for the base case scenario
optimal portfolio composition (p.a.). Columns 2–4 report the average time varying shares com-
puted from optimal monthly water portfolios based on equations (29) to (34) evaluated using
the parameter values as per Table 6 and the parameter estimates of the RV DCC model reported
in columns 2–5 in Table 5. Columns 5–7 report the optimal portfolio based on the constant risk
estimates reported in columns 6–9 in Table 5. Desal Use refers to the percentage of years in which
desalination optimally contributes to the total cost-adjusted water stock. Costs report the aver-
age annual total supply cost of the optimal water portfolios.

Statistics

Asset Sharesa

Time Varying Risk Constant Risk

Reservoir Rainwater Desal. Reservoir Rainwater Desal.

Average 0.87 0.08 0.05 0.93 0.07 0.00
Median 0.95 0.05 0.00 0.93 0.07 0.00
SD 0.20 0.07 0.14 0.00 0.00 0.00
Desal. Use (% of yrs) 12.79 0.00
Costs ($bn p.a.) 1.67 1.46

aBased on a desalination flow of μ3 = 0.4, stocks of S1 = 0.65 and S2 = 0.75, which represent the average stocks over the last
25 years of our data. A nonnegativity restriction is imposed on some shares.

to dominate the water supply, with reservoirs contributing more than 90% to the wa-
ter stock over most of this period. Exceptional falls in reservoir shares coincide with
increases in the conditional variance of reservoir inflows, giving rise to greater hedg-
ing opportunities among alternative water assets. These movements are captured in the
theoretical model, for example, in 2006, when decreases in reservoir inflows by nearly
60% are reflected in large increases in reservoir volatility resulting in an exceptionally
small portfolio weight allocated to reservoirs and correspondingly larger shares for rain-
water harvesting and desalination. The year 2006 was also a record year for water stocks
with reservoir levels falling to 30% of capacity, motivating the decision to build Mel-
bourne’s desalination plant. The bottom panel suggests that the extent to which rainwa-
ter harvesting is used to hedge against greater reservoir risk depends on the conditional
variance of rainwater harvesting as well the conditional correlation coefficient between
reservoir inflows and rainfall, plotted in the middle panel.

Table 8 reports the optimal water portfolios for the last 20 years of the data, be-
tween 1991 and 2010. Reservoirs remain the dominant supply, with rainwater harvesting
adding between 2% and 25% to the total cost-adjusted water stock since 1991. Desali-
nated water does not commonly feature in the optimal water portfolio, except during the
years 1997, 2006, and 2007, when desalinated water contributes between 1/4 to almost
2/3 of the total cost-adjusted water stock. These years also coincide with the highest
rainwater harvesting contributions over this period. These exceptional years fall within
the Millennium Drought, a period of below average reservoir inflows starting in 1997 and
ending in 2009. While the desalination plant, commissioned in 2006 and completed in
2012, was built to provide water security in periods of severe water stress such as during
the Millennium Drought, these results suggest that the desalination plant would have
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Figure 6. Time-varying optimal portfolio shares for reservoir inflows and rainwater harvesting
water assets (continuous line), with their conditional variances (long dashed line) and condi-
tional correlations (short dashed line), 1925–2010. The cost-adjusted portfolio share are based
on equations (29) to (34), evaluated using the parameter values in Table 6 and the parameter
estimates of the RV-GARCH model reported in Table 5.

optimally supplied water in only 3 of the 12 drought years—albeit significant quantities
on each occasion.20

Before 1997, the operating costs of the optimal water portfolio are mostly stable be-
tween $1.41 bn and $1.48 bn per year. After this time, the costs vary significantly, with
operating costs about twice the long run average operating cost during desalination
years.

7. Implications of climate change

The portfolio model in Section 6 is now used to estimate the effects of climate change on
the future water portfolio. Two distinct approaches are contrasted. The first approach is

20It would be of interest to compare the composition of the conditional water portfolio with the ex-post
optimal portfolio composition. However, as the second-order moments are not observed and the third asset
did not exist over the sample period, this is not possible. An alternative strategy is to follow the counterfac-
tual experiment in Leroux and Martin (2016).
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Table 8. Estimated optimal portfolio compositions and costs, 1991–
2010. Reported are annual shares computed from optimal monthly water
portfolios based on equations (29) to (34), evaluated using the parameter
values in Table 6 and the parameter estimates of the RV DCC model re-
ported in columns 2–5 of Table 5. Costs give the annual total supply costs
of the optimal water portfolios.

Yeara

Asset Sharesb Costs

Reservoir Rainwater Desalinated ($bn p.a.)

1991 0.94 0.06 0.00 1.45
1992 0.95 0.05 0.00 1.44
1993 0.98 0.02 0.00 1.41
1994 0.97 0.03 0.00 1.41
1995 0.91 0.09 0.00 1.48

1996 0.92 0.08 0.00 1.48
1997 0.40 0.22 0.38 3.17
1998 0.94 0.06 0.00 1.45
1999 0.88 0.12 0.00 1.53
2000 0.98 0.02 0.00 1.41

2001 0.94 0.06 0.00 1.46
2002 0.89 0.11 0.00 1.51
2003 0.98 0.02 0.00 1.40
2004 0.99 0.01 0.00 1.39
2005 0.85 0.15 0.00 1.57

2006 0.12 0.25 0.63 4.25
2007 0.51 0.25 0.24 2.65
2008 0.80 0.20 0.00 1.64
2009 0.86 0.14 0.00 1.55
2010 0.97 0.03 0.00 1.41

aThe years 1997 to 2009 coincide with the Millennium Drought.
bBased on a desalination flow of μ3 = 0.4, stocks of S1 = 0.65, and S2 = 0.75, which represent

the average stocks over the last 25 years of our data. A nonnegativity restriction is imposed on
some shares.

based on simulating the RV DCC model over a 20-year forecast horizon using a bootstrap
resampling scheme applied to the residuals of the model.21 In the second approach, the
RV DCC model estimates are applied to projected climate data, generated from global
climate models for four different climate change scenarios over the same 20-year time
horizon, ending in 2030. The first approach is internally consistent as it preserves time
variations in the variances and covariances of the climate data at the local scale. In con-
trast, the second approach is based on deterministic approximations of the highly com-
plex physical and biochemical processes and interactions in the global climate system,
whereby uncertain initial conditions and future emission pathways result in increasingly
uncertain future climates as one moves from a global to a local scale.

21The choice of a 20-year forecast horizon is motivated by the remaining life of the desalination plant.
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7.1 Simulating climate change from historical data

In simulating the RV DCC model, two alternative resampling schemes are investigated.
The first scheme involves sampling from both tails of the distribution of the RV DCC
residuals to capture the increased frequencies of droughts and floods as projected un-
der climate change (Stocker et al. (2014)). The second scheme replicates extreme events
in the recent past by only sampling from the distribution of residuals during a period
referred to as the Millennium Drought (1997–2009).22 For both schemes, the number
of bootstrap runs is set at 100,000. For all bootstrap draws, the samples are paired to
preserve the correlation structure between reservoir inflows and rainwater harvesting.23

Sampling from the distribution of estimated values of the RV DCC model parameters as
reported in columns 2 to 5 in Table 5 allows explicitly for model uncertainty, whereby less
precisely estimated parameter values result in more variable water portfolios across the
set of bootstrap draws. For the parameters that are related to the water portfolio model,
long term average values as reported in Table 6 are used.

Table 9 reports the results of the first bootstrapping scheme where sampling is ob-
tained from the combined lower and upper tails of the distribution of residuals for vari-
ous cutoffs. The results reported for various scenarios are the average shares of each wa-
ter asset over the 20-year horizon, the proportion of years where the desalination plant
is used and the cost of the water portfolio. For comparative purposes, the first scenario
of the table reports the results from sampling from the full distribution (labeled “All”).
The next scenario is from the lower and upper 0.48 tails of the distribution, while the
most extreme scenario presented involves sampling from the lower and upper 0.35 tails
of the distribution. The results of the simulation experiment demonstrate that by pro-
gressively sampling more and more from the lower and upper tails of the distribution
the contributions from reservoirs in the water portfolio decrease, while increasing for
rainwater harvesting and desalinated water. For the most extreme case where sampling
is from the lower and upper 0.35 tails, the contribution from reservoirs decreases from
87% to 66%, whereas for rainwater harvesting the share increases from 8% to 12% rela-
tive to the base case in Table 7. The effect on desalination is even more significant with
the share allocated to desalination increasing more than fourfold from 5% to 22%, and
the proportion of years where desalination is used increasing from one in five years to
almost every other year. A comparison of the costs of the water portfolios suggests that
water costs increase from $1.67 bn to $2.40 bn, an increase of 44% as a result of the most
extreme climate change simulation presented in Table 9.

Table 10 reports the results from the second bootstrapping scheme where sampling
occurs only from the residuals of the Millennium Drought. This approach adopts ca-
pacity utilizations of 50% and 60%, respectively, for reservoirs and harvested rainwater,
reflecting the average utilization during the Millennium Drought. The average per unit

22A process of whitening and recoloring of the residuals is applied so as to preserve the original autocor-
relation in both resampling schemes.

23In empirical finance, the proposed methodology of this paper is also used by Brownlees and Engle
(2016) to compute the expected marginal shortfall for a given forecast horizon by bootstrapping a multi-
variate GARCH model.
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Table 9. Simulated water portfolio results based on a 20-year forecast horizon where sampling
is from the combined lower and upper tails of the residual distribution with the cutoff points
given in the first column. The number of bootstraps is 100,000. Reported are the average annual
shares computed from optimal monthly water portfolios based on equations (29) to (34) evalu-
ated using the parameter values as per Table 6 and the RV DCC parameter estimates drawn from
their estimated distributions reported in columns 2–5 of Table 5. Desal Use refers to the percent-
age of years in which desalination optimally contributes to the total cost-adjusted water stock.
Costs report the average annual total supply cost of the optimal water portfolios.

Sampling Statistics

Asset Sharesa

Reservoir Rainwater Desal.

All

Mean 0.87 0.07 0.06
Median 0.96 0.04 0.00

SD 0.23 0.07 0.17
Desal. Use (% of yrs) 14.32

Costs ($bn p.a.) 1.71

0.48

Mean 0.85 0.07 0.08
Median 0.96 0.04 0.00

SD 0.25 0.07 0.19
Desal. Use (% of yrs) 17.24

Costs ($bn p.a.) 1.77

0.45

Mean 0.82 0.08 0.10
Median 0.95 0.05 0.00

SD 0.28 0.08 0.22
Desal. Use (% of years) 21.28

Costs ($bn p.a.) 1.86

0.40

Mean 0.76 0.10 0.14
Median 0.93 0.07 0.00

SD 0.32 0.08 0.25
Desal. Use (% of yrs) 30.56

Costs ($bn p.a.) 2.08

0.35

Mean 0.66 0.12 0.22
Median 0.89 0.11 0.00

SD 0.36 0.09 0.29
Desal. Use (% of yrs) 43.91

Costs ($bn p.a.) 2.40

aBased on a desalination flow of μ3 = 0.4, stocks of S1 = 0.65 × 1290, and S2 = 0.75 × 0.217, which represent the average
stocks over the last 25 years of the data. A nonnegativity restriction is imposed on some shares.

costs of the two water assets are respectively,

c1 = K1

S1
+O1 = 1166

1290 × 0.5
+ 0.00 = 1.8078,

and

c2 = K2

S2
+O2 = 0.39

0.217 × 0.6
+ 0.29 = 3.2854.
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Table 10. Simulated water portfolio results based on a 20-year forecast
horizon where sampling is from the residuals of the Millennium Drought.
The number of bootstraps is 100,000. Reported are the average annual
shares computed from optimal monthly water portfolios based on equa-
tions (29) to (34) evaluated using the parameter values as per Table 6 and
the RV DCC parameter estimates drawn from their estimated distribu-
tions reported in columns 2–5 of Table 5. Desal Use refers to the percent-
age of years in which desalination optimally contributes to the total cost-
adjusted water stock. Costs report the average annual total supply cost of
the optimal water portfolios.

Statistics

Asset Sharesa

Reservoir Rainwater Desalinated

Mean 0.77 0.09 0.14
Median 0.93 0.07 0.00
SD 0.30 0.07 0.24
Desal. Use (% of yrs) 30.74
Costs ($bn p.a.) 1.93

aBased on a desalination flow of μ3 = 0.5, and stocks of S1 = 0.50 × 1290, and S2 = 0.60 ×
0.217, which represent the average stocks during the Millennium Drought. A nonnegativity re-
striction is imposed on some shares.

In the case of desalinated water, the same average costs apply as for the base case sce-
nario as it is assumed that the desalination plant is operating at constant per unit costs
of c3 = 5.4533, for an average annual flow of desalinated water of μ3 = 0.5 = 75 GL.

Simulating Millennium Drought conditions over the next 20 years, Table 10 suggests
an average optimal water portfolio consisting of 77% from reservoirs, while rainwa-
ter harvesting and desalination contribute 9% and 14%, respectively, to the total cost-
adjusted water stock. Over the 20-year period desalinated water is used more than 30%
of the time. The total cost of the water portfolio is $1.93 bn per annum, suggesting a 16%
increase in water costs when compared with the baseline cost of $1.67 bn in Table 7.

Tables 9 and 10 are replicated as Tables S1 and S2 in Appendix B in the Online Sup-
plementary Material using the point estimates of the RV DCC parameters as reported in
columns 2 and 4 in Table 5. Comparing the computed portfolios and standard deviations
of Tables 9 and 10 with those in Appendix B reveals only minor differences, suggesting
that the uncertainty in future water portfolios is primarily driven by climate uncertainty
with model uncertainty contributing a relatively small amount to overall uncertainty.

7.2 Water portfolios under projected climate change

An alternative to generating 20-year forecasts from historical data as a means to simu-
late climate change is to apply the RV DCC model to projected climate data generated
from global climate models for various future warming scenarios.24 In particular, the

24We thank an anonymous reviewer for suggesting that we apply the RV-DCC model also to projected
climate data.
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projected rainwater harvesting and temperature from up to 42 global climate models
for four representative concentration pathway (RCP) scenarios until 2030 is used to gen-
erate local projections for rainwater harvesting and reservoir inflows and to compute
the optimal future water portfolios under projected climate change.25 The global cli-
mate models and their outputs used here underpin the IPCC’s fifth Assessment Report,
whereby RCP2.6, RCP4.5, RCP6.0, and RCP8.5 represent respectively higher cumulative
future emissions and correspondingly more severe climate change by 2100 (Stocker et al.
(2014)).

The 42 climate models differ in their comprehensiveness and the detail and scale
with which the complex physical and biochemical processes and feedbacks in the cli-
mate system are modeled and so provide a good basis for understanding the role of
uncertainty between models in projecting future water portfolios. Yet, common to all
models is their deterministic nature, whereby within model uncertainty is generated
from different initial conditions rather than from the stochastic approach adopted in
Section 7.1. This has interesting implications for interpreting optimal future water port-
folios that arise when applying the RV DCC model, which explicitly allows for time vary-
ing covariance matrices, to projected climate data.

Columns 3–5 in Table 11 present the portfolios that arise under the four different
climate change projection scenarios and the assumption of time varying risks and co-
risks. It is immediately apparent that the four climate change scenarios do not result
in consistently larger shares of harvested and desalinated water as is seen in Table 9.
Instead the results demonstrate pairwise consistency with reservoir shares decreasing
between RCP2.6 and RCP6.0 as well as between RCP4.5 and RCP8.5, but not, for exam-
ple, between RCP2.6 and RCP4.5. This result is potentially due to the different assump-
tions regarding the timing and height of global emission peaks across the RCP scenarios,
whereby some low emission scenarios feature highly concave emission pathways with
increases in emissions in the earlier decades followed by rapidly decreasing emissions
in the latter half of this century.

Overall, the rebalancing of the water portfolio toward more desalinated water that is
observed between RCP2.6 and RCP6.0 mimics more closely the forecasting results that
are obtained from simulating the RV DCC model in Section 7.1. The share of desalinated
water increases from 4% to 9% and the frequency of its use doubles from around one in 6
years to 1 in 3 years. This has consequences for the projected water portfolio costs, which
increase, relative to the long run average historical costs, by 32% to $2.21 bn for RCP6.0.

25Projected precipitation and temperature data was downloaded for Melbourne and the catchment ar-
eas. To generate projected reservoir inflows under the RCP scenarios, a precipitation-runoff model (PERM)
was used as described in Peel, Srikanthan, McMahon, and Karoly (2015). The model runs on a monthly time
step with 5 parameters to be optimized and was calibrated to observed (BOM AWAP) rainfall, temperature,
and reservoir inflow data. The downloaded precipitation and temperature projections were stochastically
replicated 100 times, quantile-quantile bias corrected using historical precipitation and temperature data
and run through the calibrated PERM model giving runoff projections. To generate projected harvested
rainwater, grid cell coordinates, and cell weights were used to determine weighted average precipitation
projections for the Melbourne Greater Capital City Area. The weighted average precipitation projections
were stochastically replicated 100 times and then quantile-quantile bias corrected using historical precipi-
tation data.
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Across all climate change scenarios the shares of rainwater harvesting are higher, rang-
ing from 22% to 37%, than under RV DCC climate change forecasts.

Assuming constant risk in projected climate data results in much less variation in
projected water portfolios across the four climate change scenarios as demonstrated in
columns 6 to 8 in Table 11. With around 93% of water being sourced from reservoirs
and the remainder being rainwater harvesting, there is no significant case for desalina-
tion even under the most severe climate change scenarios. As a result, projected water
portfolio costs under constant risk climate change never exceed $1.48 bn.

The standard deviations reported in Table 11 give an indication of the uncertainty
introduced by the use of 42 global climate models outputs to project climate change.
This model uncertainty appears to be relatively constant across the four climate change
scenarios, and is largest when it comes to future reservoir shares, followed by rainwa-
ter harvesting shares and desalination shares. Assuming constant risk in projected cli-
mate data eliminates between model uncertainty almost completely, with standard de-
viations across all assets and scenarios of between 0.00 and 0.03.

8. Conclusions

Changes in climatic conditions impact upon the risks and corisks of natural assets. To
capture this time variation, a multivariate volatility model of water assets is specified
based on augmenting the DCC conditional covariance model with realized volatility, re-
ferred to as RV DCC. The model was estimated by quasi maximum likelihood methods
for two climate sensitive water assets, reservoir inflows, and rainwater harvesting. The
empirical results were used to construct a dynamic portfolio of water supply, consisting
of the two climate sensitive water assets, and desalinated water, which acted as a risk
free asset as water from this source is independent of climatic conditions.

Implications of climate change on the water asset portfolio were investigated us-
ing econometric forecasting techniques based on historical data as well as by analyzing
projected climate data for the two climate sensitive water assets. Econometric forecast-
ing involved two bootstrapping schemes. In the first scheme, the RV DCC model was
simulated over a 20-year horizon by sampling from the tails of the residual distribution
to capture the effects of increased floods and droughts on the water portfolio. In the
second scheme, the residuals were drawn from the residual distribution corresponding
to a recent period, known as the Millennium Drought. To complement the simulation
analysis, projected climate data for the same 20-year time horizon from up to 42 global
climate models was obtained for four RCP scenarios and downscaled to generate flow
projections for the two risky water assets.

The empirical results showed that reservoirs were on average the dominant source
of water in the optimal portfolio during normal times, with minor contributions from
rainwater harvesting and desalination. During extreme drought events, desalinated wa-
ter had a relatively more important role in the portfolio, also coinciding with elevated
contributions from rainwater harvesting. The results of the bootstrap experiments sug-
gested that climate change necessitated portfolio rebalancing resulting in increased wa-
ter supply costs of between 7% and 44% per year. Similar results were obtained from
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Table 11. Simulated water portfolio results based on a 20-year forecast horizon using climate
projection data for four scenarios. The number of climate models for each scenario are: 32
(RCP2.6), 42 (RCP4.5), 25 (RCP 6.0), and 39 (RCP8.5). Columns 3–5 report the average time vary-
ing shares computed from optimal monthly water portfolios based on equations (29) to (34),
evaluated using the parameter values as per Table 6 and applying the RV DCC point estimates
reported in columns 2 and 4 in Table 5 to the residuals of the climate projection data. Columns
6–8 report the optimal portfolio based on applying the constant risk point estimates reported in
columns 6 and 8 of Table 5. Desal Use refers to the percentage of years in which desalination op-
timally contributes to the total cost-adjusted water stock. Costs report the average annual total
supply cost of the optimal water portfolios.

Scenario Statistics

Asset Sharesa

Time-Varying Risk Constant Risk

Reservoir Rainwater Desal. Reservoir Rainwater Desal.

RCP2.6

Mean 0.64 0.32 0.04 0.93 0.07 0.00
Median 0.72 0.28 0.00 0.94 0.06 0.00

SD 0.27 0.21 0.10 0.02 0.02 0.00
Desal. Use (% of yrs) 15.63 0.00

Costs ($bn p.a.) 1.94 1.46

RCP4.5

Mean 0.75 0.22 0.03 0.93 0.07 0.00
Median 0.85 0.15 0.00 0.94 0.06 0.00

SD 0.22 0.14 0.10 0.03 0.02 0.02
Desal. Use (% of yrs) 11.90 2.38

Costs ($bn p.a.) 1.78 1.47

RCP6.0

Mean 0.54 0.37 0.09 0.93 0.07 0.00
Median 0.63 0.37 0.00 0.93 0.07 0.00

SD 0.34 0.24 0.13 0.02 0.02 0.00
Desal. Use (% of yrs) 36.00 0.00

Costs ($bn p.a.) 2.21 1.46

RCP8.5

Mean 0.69 0.27 0.04 0.92 0.08 0.00
Median 0.79 0.21 0.00 0.93 0.07 0.00

SD 0.25 0.18 0.09 0.03 0.02 0.01
Desal. Use (% of yrs) 20.51 2.56

Costs ($bn p.a.) 1.88 1.48

aBased on a desalination flow of μ3 = 0.4, and stocks of S1 = 0.65 × 1290 and S2= 0.75 × 0.217, which represent the average
stocks over the last 25 years of the data. A non-negativity restriction is imposed on some shares.

generating optimal portfolios based on projected climate data, with projected portfolio
costs increasing by more than 30% under RCP6.0.

The proposed dynamic model of water assets builds on the existing literature of
optimal water portfolios, by allowing for time varying conditional volatilities and co-
volatilities, while preserving the advantage of analytical solutions. However, there are
a number of ways the model can be expanded to capture additional dynamics linking
the key variables within the model. One important extension of the theoretical model
would be to include explicitly the multivariate GARCH volatility dynamics by speci-
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fying an additional set of stochastic differential equations to capture time variations
in the variances and covariances. The cost of this extension would be the need for
numerical solutions to compute the portfolio shares as analytical solutions would no
longer be available. Two methods for capturing the effects of climate change on fu-
ture water portfolio were used, consisting of weighted bootstrapping methods to cap-
ture historical large movements in the water assets, and projected climate data gener-
ated from global climate models. An extension of these approaches would be to specify
the moments of the stochastic differential equations to include climate change explic-
itly by making the moments functions of cumulative emissions. Finally, costs enter the
model as deterministic variables. In a similar vein to the other proposed extensions,
stochastic costs could be included by appending to the model stochastic differential
equations capturing changes in costs over time. These extensions are left for future re-
search.
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