

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Leroux, Anke D.; Martin, Vance; St. John, Kathryn A.

Article

Modeling time varying risk of natural resource assets: Implications of climate change

Quantitative Economics

Provided in Cooperation with:

The Econometric Society

Suggested Citation: Leroux, Anke D.; Martin, Vance; St. John, Kathryn A. (2022) : Modeling time varying risk of natural resource assets: Implications of climate change, Quantitative Economics, ISSN 1759-7331, The Econometric Society, New Haven, CT, Vol. 13, Iss. 1, pp. 225-257, https://doi.org/10.3982/QE1597

This Version is available at: https://hdl.handle.net/10419/296274

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

https://creativecommons.org/licenses/by-nc/4.0/

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Supplement to "Modeling time varying risk of natural resource assets: Implications of climate change"

(Quantitative Economics, Vol. 13, No. 1, January 2022, 225-257)

ANKE D. LEROUX Department of Economics, Monash University

VANCE L. MARTIN Department of Economics, University of Melbourne

KATHRYN A. ST. JOHN Department of Economics, University of Melbourne

Appendix A: Leroux–Martin water portfolio model

Leroux and Martin (2016) specify a water portfolio model where an optimal allocation of water assets and future water consumption are determined by maximizing an intertemporal discounted utility function subject to a set of constraints that represent the flows of the alternative water assets. Let x(t) represent water consumption, and $w_1(t)$ and $w_2(t)$ the cost-adjusted shares from two risky water assets given by reservoir inflows and rainwater harvesting, respectively, with the property that the third water asset is determined from the adding-up constraint $w_3(t) = 1 - w_1(t) - w_2(t)$. In the analysis, the third water asset is taken as desalinated water, which is assumed to be risk-free as providing water from this source is perfectly reliable.

The aim of the social planner is to choose x(t) and the water portfolio shares $w_1(t)$ and $w_2(t)$, to maximize the following intertemporal utility function:

$$\max_{x(t),w_1,w_2} E \int_0^\infty \left[e^{(\xi-\delta)t} \frac{x(t)^{1-\gamma}}{1-\gamma} \right] dt,$$
(S1)

subject to the following constraints:

$$dS_1(t) = \mu_1 \, dt + \sigma_1 \, dz_1(t), \tag{S2}$$

$$dS_2(t) = \mu_2 \, dt + \sigma_2 \, dz_2(t), \tag{S3}$$

$$dS_3(t) = \mu_3 \, dt,\tag{S4}$$

$$dW(t) = \left(a_1(t)w_1(t) + a_2(t)w_2(t) + \frac{\mu_3}{S_3(t)} + \frac{c_3}{p}\lambda_3\mu_3\right)W(t)\,dt - x(t)\,dt$$

Anke D. Leroux: anke.leroux@monash.edu Vance L. Martin: vance@unimelb.edu.au

Kathryn A. St. John: stjohnka@gmail.com

^{© 2022} The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0. Available at http://qeconomics.org. https://doi.org/10.3982/QE1597

2 Leroux, Martin, and St. John

Supplementary Material

$$+\left(\frac{\sigma_1}{S_1(t)} + \frac{c_1}{p}\lambda_1\sigma_1\right)w_1(t)W(t)\,dz_1(t)$$
$$+\left(\frac{\sigma_2}{S_2(t)} + \frac{c_2}{p}\lambda_2\sigma_2\right)w_2(t)W(t)\,dz_2(t),\tag{S5}$$

and the initial condition for total cost-adjusted water stock $W(0) = W_0$.¹ The parameter γ is the relative risk aversion parameter, ξ is the population growth rate and δ is the discount rate, with $\delta > \xi$. The constraints in equations (S2) to (S4) represent the flow equations for the three water assets, $dS_i(t)$, i = 1, 2, 3. Reservoir inflows and rainwater harvesting are assumed to have Brownian motions with respective means μ_1 and μ_2 , and respective variances σ_1^2 and σ_2^2 . Both of these assets are sensitive to random changes in climatic conditions with the property $dz_i(t) \sim N(0, dt)$. Variations in climatic conditions also affect reservoir inflows and rainwater harvesting jointly, resulting in the flows from these two water assets being correlated with parameter ρ , such that $dz_1(t) dz_2(t) = \rho dt$. In contrast, desalinated water is treated as risk-free as water flows from this source are independent of climatic conditions with the average flow given by μ_3 . The final constraint given by (S5) is the equation governing the flows in the total cost-adjusted water, K_i are capital costs, O_i are operating costs, and $O'_i = dO_i/dS_i$. Finally, the $a_1(t)$ and $a_2(t)$ terms are given by

$$a_1(t) = \frac{\mu_1}{S_1(t)} - \frac{\mu_3}{S_3(t)} + \frac{c_1\lambda_1}{p} \left(\mu_1 + \frac{\sigma_1^2}{S_1(t)}\right) - \frac{c_3\lambda_3\mu_3}{p},\tag{S6}$$

$$a_2(t) = \frac{\mu_2}{S_2(t)} - \frac{\mu_3}{S_3(t)} + \frac{c_2\lambda_2}{p} \left(\mu_2 + \frac{\sigma_2^2}{S_2(t)}\right) - \frac{c_3\lambda_3\mu_3}{p}.$$
 (S7)

The optimal solution of (S1) to (S5) is derived from solving the dynamic programming problem (see Kamien and Schwartz (1981))

$$(\delta - \xi)V = \max_{x(t), w_1, w_2} \left\{ \frac{x(t)^{1-\gamma}}{1-\gamma} + \left[\left(a_1(t)w_1(t) + a_2(t)w_2(t) + \frac{\mu_3}{S_3(t)} + \mu_3\lambda_3\frac{c_3}{p} \right) W(t) - x(t) \right] V_W + \left[\frac{1}{2} \left(\frac{\sigma_1}{S_1(t)} + \sigma_1\lambda_1\frac{c_1}{p} \right)^2 w_1^2 + \frac{1}{2} \left(\frac{\sigma_2}{S_2(t)} + \sigma_2\lambda_2\frac{c_2}{p} \right)^2 w_2^2 + \left(\frac{1}{S_1(t)} + \lambda_1\frac{c_1}{p} \right) \left(\frac{1}{S_2(t)} + \lambda_2\frac{c_2}{p} \right) \rho \sigma_1 \sigma_2 w_1(t) w_2(t) W(t)^2 V_{WW} \right] \right\}, \quad (S8)$$

where V is the time-invariant indirect utility function with respective first and second derivatives V_W and V_{WW} . The optimal solution of the water portfolio shares follow Leroux and Martin (2016) and are given in equations (29) to (31) in the main text.

¹In neoclassical growth models with population growth, utility is typically expressed in terms of per capita consumption. Adopting this formulation here would not affect the optimal share equations as they are independent of the effective discount rate.

Appendix B: Water portfolios under forecast climate change with fixed parameter estimates

TABLE S1. Simulated water portfolio results based on a 20-year forecast horizon where sampling is from the combined lower and upper tails of the residual distribution with the cutoff points given in the first column. The number of bootstraps is 100,000. Reported are the average annual shares computed from optimal monthly water portfolios based on equations (29) to (34) evaluated using the parameter values as per Table 6 and RV-DCC point estimates reported in columns 2 and 4 of Table 5 in the main text. *Desal Use* refers to the percentage of years in which desalination optimally contributes to the total cost-adjusted water stock. *Costs* report the average annual total supply cost of the optimal water portfolios.

Sampling	Statistics	Asset Shares ^a		
		Reservoir	Rainwater	Desal.
	Mean	0.88	0.07	0.05
	Median	0.96	0.04	0.00
All	SD	0.22	0.08	0.16
	Desal. Use (% of yrs)			12.96
	Costs (\$bn p.a.)			1.67
0.48	Mean	0.86	0.08	0.06
	Median	0.96	0.04	0.00
	SD	0.24	0.08	0.17
	Desal. Use (% of yrs)			16.03
	Costs (\$bn p.a.)			1.73
0.45	Mean	0.83	0.09	0.08
	Median	0.95	0.05	0.00
	SD	0.27	0.09	0.19
	Desal. Use (% of yrs)			19.97
	Costs (\$bn p.a.)			1.81
	Mean	0.76	0.11	0.13
0.40	Median	0.93	0.07	0.00
	SD	0.31	0.09	0.23
	Desal. Use (% of yrs)			29.57
	Costs (\$bn p.a.)			2.02
0.35	Mean	0.67	0.14	0.19
	Median	0.87	0.13	0.00
	SD	0.35	0.10	0.27
	Desal. Use (% of yrs)			45.03
	Costs (\$bn p.a.)			2.34

^aBased on a desalination flow of $\mu_3 = 0.4$, and stocks of $S_1 = 0.65 \times 1290$ and $S_2 = 0.75 \times 0.217$, which represent the average stocks over the last 25 years of the data. A nonnegativity restriction is imposed on some shares.

4 Leroux, Martin, and St. John

Supplementary Material

TABLE S2. Simulated water portfolio results based on a 20-year forecast horizon where sampling is from the residuals of the Millennium Drought. The number of bootstraps is 100,000. Reported are the average annual shares computed from optimal monthly water portfolios based on equations (29) to (34) evaluated using the parameter values as per Table 6 and the RV-DCC point estimates reported in columns 2 and 4 of Table 5 in the main text. *Desal Use* refers to the percentage of years in which desalination optimally contributes to the total cost-adjusted water stock. *Costs* report the average annual total supply cost of the optimal water portfolios.

	Asset Share ^a			
Statistics	Reservoir	Rainwater	Desalinated	
Mean	0.81	0.09	0.10	
Median	0.95	0.05	0.00	
SD	0.28	0.08	0.21	
Desal. Use % of yrs			21.94	
Costs (\$bn p.a.)			1.83	

^aBased on a desalination flow of $\mu_3 = 0.5$, and stocks of $S_1 = 0.50 \times 1290$ and $S_2 = 0.60 \times 0.217$, which represent the average stocks during the Millennium Drought. A nonnegativity restriction is imposed on some shares.

References

Kamien, M. I. and N. L. Schwartz (1981), *Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management*, Vol. 4. North Holland, New York. [2]

Leroux, A. D. and V. L. Martin (2016), "Hedging supply risks: An optimal water portfolio." *American Journal of Agricultural Economics*, 98 (1), 276–296. [1, 2]

Co-editor Tao Zha handled this manuscript.

Manuscript received 7 April, 2020; final version accepted 10 July, 2021; available online 28 July, 2021.