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Diskussionspapier

63 / 2004

The L Distribution and Skew Generalizations

Matthias Fischer

Lehrstuhl f̈ur Statistik undÖkonometrie
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Abstract: Leptokurtic or platykurtic distributions can, for example, be gen-

erated by applying certain non-linear transformations to a Gaussian random

variable. Within this work we focus on the class of so-called power trans-

formations which are determined by their generator function. Examples are

theH−transformation of Tukey (1960), theJ−transformation of Fischer and

Klein (2004) and theL−transformation which is derived from Johnson’s in-

verse hyperbolic sine transformation. It is shown that generator functions

themselves which meet certain requirements can be used to construct both

probability densities and cumulative distribution functions. For theJ−trans-

formation, we recover the logistic distribution. Using theL−transformation,

a new class of densities is derived, discussed and generalized.
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1 Introduction

Flexible distribution families which accommodate, for instance, leptokurtosis can be gen-

erated, for example, if we transform a Gaussian random variable with certain non-linear

transformations. Examples are theH−transformation of Tukey (1960), theK−trans-

formation of Haynes et al. (1997) or theJ−transformation of Fischer and Klein (2004).

All of these transformations can be embedded in so-calledpower transformationsT (x) =

p(x)r, wherep(x) is the generator function andr can be understood as kurtosis parameter

in the sense of preserving the kurtosis ordering of van Zwet (1964). Within this work we

restrict these generator functions to the class of so-called density generator functions. It

will be verified that theH− and theK−generator functions are not member of this class,

whereas theJ−generator function is. Additionally, we propose theL−transformation

as a special power transformation which is closely related to the inverse hyperbolic sine

transformation of Johnson (1949) and show that its generator function is also a density

generator function. Moreover, we demonstrate how to derive both a probability density

and a cumulative distribution function by means of a density generator. In particular, the

logistic density is recovered for theJ−transformation. Applying the mechanism to the

L−transformation, a new class of densities is derived. These so-calledL−distributions

are shown to be symmetric and heavy-tailed, with non-existing mean. Finally, we present

some skewL−distributions derived using the fact that the cumulative distribution is avail-

able in closed form.



2 Power Kurtosis Transformations

Let Z be a random variable which is symmetric around the median0 and which has a

continuous distribution function. Define

Y = Z ·W (Z) (1)

whereW is a suitable kurtosis transformation. Hoaglin (1983) postulated some plausible

requirements to a suitable transformationW of kurtosis. Firstly,W should preserve sym-

metry, i.e. W(z) = W(−z) for z ∈ R. Hence, we can restrict discussion ofW only to

the positive axis. Secondly, the initial distributionZ should hardly be transformed in the

centre, i.e.W(z) ≈ 1 for z ≈ 0. Finally, in order to increase the tails of the distribution,

we have to assure thatW is accelerated strictly monotone increasing for positivez > 0,

i.e. W ′(z) > 0 andW ′′(z) > 0 for z > 0. Consequently,W is strictly monotone increas-

ing and convex forz > 0. Conversely, a shortening of the tails takes place, either ifW is

strictly monotone increasing with negative second derivation or ifW is not monotone but

concave forz > 0. Differentiability and monotonicity imply thatW ′(0) = 0.

Example 2.1 Kurtosis transformations which satisfy the aforementioned conditions are:

1. TheH−transformation of Tukey (1960):H(z) = exp(1/2z2)h for h ∈ R,

2. TheJ−transformation of Fischer and Klein (2004):J(z) = cosh(z)j for j ∈ R

with cosh(z) = 0.5(ez + e−z),

3. TheK−transformation of Haynes et al. (1997):K(z) = (1 + z2)k for k ∈ R.

The H−, J− andK−transformation can be embedded in so-calledpower transforma-

tionswhich are defined next.



Definition 2.1 (Power transformation) A kurtosis transformation is called a power trans-

formation if it admits a representation

W (z; p) = (p(z))r, r ∈ R,

wherep(z) = p(−z), p(0) = 1, p′(z) ≥ 0 for z > 0 and p′′(z) > 0 for z > 0. The

functionp will be termed as the generating function of the power transform.

Next, we introduce theL−transformation which will play the leading part within this

work.

Example 2.2 (L-transformation) Originally, Johnson (1949) recommends using the in-

verse hyperbolic sine (IHS) transformationY = sinh(Z/l) instead ofZ ·W (Z) from (1),

wherel serves as kurtosis parameter. Settingl = 1, we can rewrite this equation as

Y = Z · L(Z) with L(Z) =
sinh(Z)

Z
and sinh(Z) = 0.5(eZ + e−Z).

The transformationL(z) = (sinh(z)/z)l will be called theL−transformation in the fol-

lowing.

3 Distribution Generating Functions and corresponding

Distributions

In a first step, we now restrict the class of generating functions to those functions which

dominate their first derivative, but coincide with the first derivate in the limit.



Definition 3.1 (Distribution generating function) AssumeW (x) = p(x)r is a power

kurtosis transformation with generating functionp(x). The functionp(x) is called a dis-

tribution generating function (dgf) if the following three properties are satisfied:

(D1) p(x) ∈ C2(R),

(D2) p′(x) ≤ p(x), x ≥ 0,

(D3) lim
x→∞

p′(x)

p(x)
= 1.

Example 3.1 Revisiting the examples from the previous section, we obtain the following

results:

1. H−transformation: The generating function is given bypH(x) = exp(0.5x2).

Hence,p′H(x) = x exp(0.5x2) and (D2) is violated forx > 1, i.e. pH(x) is no

dgt.

2. J−transformation: The generating function is given bypJ(x) = cosh(x) = ex+e−x

2
.

Because ofp′J(x) = sinh(x) = 0.5(ex−e−x), (D2) and (D3) are satisfied andpJ(x)

is a dgt. Note that (D1) is trivial.

3. K−transformation: FrompK(x) = 1+x2 we conclude thatp′K(x) = 2x. It follows

immediately that (D3) is not valid andpK(x) is no dgt.

4. L−transformation: UsingpL(z) = sinh(x)
x

, we obtainp′L(x) = cosh(x)x−sinh(x)
x2 .

Hence, forx > 0,

pL(x)− p′L(x) =
sinh(x)

x
− cosh(x)x− sinh(x)

x2

=
x sinh (x)− cosh (x) x + sinh (x)

x2

=
(x + 1) sinh (x)− x cosh (x)

x2
> 0



becauseexp(x)− (2x + 1) exp(−x) > 0. Moreover,

lim
x→∞

p′L(x)

pL(x)
= lim

x→∞
cosh (x) x− sinh (x)

x sinh (x)
= lim

x→∞
(coth(x)− 1/x) = 1.

Thus (D1), (D2) and (D3) are satisfied andpL(x) is a dgt.

Definition 3.2 Assume thatp(x) is distribution generating function. Then we define

F (x; p) =
1

2

(
d log(p(x))

dx
+ 1

)
. (2)

Note thatF (x; p) = 1
2

(
p′(x)
p(x)

+ 1
)

. The next lemma verifies thatF (x; p) is a cumulative

distribution function which is ”generated” byp. This explains where the name ”distribu-

tion generating function” comes from.

Lemma 3.1 F (x; p) is a cumulative distribution function onR for every distribution gen-

erating functionp.

Proof: Using the symmetry ofp(x), we can concentrate on[0,∞). From lim
x→∞

p′(x)
p(x)

= 1

we conclude thatlim
x→∞

F (x; p) = 0.5(1 + 1) = 1, too. F (x; p) is strictly increasing be-

cause of(D1), (D2), (D3) and the symmetry ofF . ¤

Definition 3.3 (LDGF Distribution) Assume thatp(x) is distribution generating trans-

formation (dgt). The distribution associated with Lemma 3.1 will be called a LDGF

distribution in the sequel. According to (D1), the corresponding density is well-defined

and given by

f(x; p) =
dF (x; p)

dx
=

1

2

d2 log(p(x))

dx2
. (3)



If we consider the density generating function of theJ−transformation, the corresponding

LDGF distribution is identical to the logistic distribution.

Example 3.2 (Logistic distribution) From example 3.1 we knew that the generating func-

tion of theJ−transformation is a distribution generating function. PluggingpJ(x) =

cosh(x) into (3), we get

F (x; p) =
1

2

(
d log(cosh(x))

dx
+ 1

)
=

cosh (x) + sinh (x)

2 cosh (x)

with corresponding density given by

f(x; p) =
1

2 (cosh (x))2 =
2

(exp(x) + exp(−x))2
=

2 exp(2x)

(exp(2x) + 1)2
,

i.e. we recover the logistic density.



4 The L Distribution: Definition and Properties

The focus of this section is on theL−transform from example 2.1 with distribution gen-

erating functionp(x) = pL(x) = sinh(x)/x. Let us first derive some properties of the

functionp(x):

Lemma 4.1 Assume thatp(x) = sinh(x)/x.

1. The functionp(x) is continuous onR with lim
x→0±

p(x) = 1.

2. The power series representation is given by

p(x) = 1 +
x2

3!
+

x4

5!
+ . . .

3. The functionp(x) is symmetric:p(x) = p(−x) for all x ∈ R.

4. For all x ∈ R holds the inequalitycosh(x) ≥ p(x).

5. The first derivative is given byp′(x) = cosh(x)−p(x)
x

> 0 for x ≥ 0.

Proof: The first property follows direct from the rule of l’Hospital withsinh(x)′ =

cosh(x) andcosh(0) = 1. To derive property 2, divide the power series representation

sinh(x) = x + x3

3!
+ x5

5!
+ . . . by x. Hence, property 3 is obvious. Property 4 follows from

cosh(x) = 1 + x2

2!
+ x4

4!
+ . . . which itself implies property 5.¤

A plot of p(x) andp′(x) is given in figure 6, below.

Figure 1 to be inserted here



Definition 4.1 (L distribution) Pluggingp(x) into (3), we get the density

f(x) =
x2 +

(
1− (cosh (x))2)

2x2
(
1− (cosh (x))2) =

sinh(x)2 − x2

2x2 sinh(x)2
=

p(x)2 − 1

2 sinh(x)2
, x ∈ R.

The distribution belonging to this symmetric density will be called a L distribution in the

sequel.

According to (2), the corresponding cumulative distribution function is given by

F (x) =
cosh (x) x− sinh (x) + x sinh (x)

2x sinh (x)
, x ∈ R. (4)

Tedious but straightforward calculations allow us to determine the score function which

is plotted in figure 2(b). The decreasing behavior forx → ±∞ stems from the heavier

tails of the distribution.

Lemma 4.2 (Score function)The score function of the L distribution is given by

ψ(z) = −f ′(x)

f(x)
= 2

cosh (x) x3 + sinh (x)− sinh (x) (cosh (x))2

x sinh (x)
(
x2 + 1− (cosh (x))2) .

Figure 2 to be inserted here

Lemma 4.3 (Tail function) The tail functionT (x) = 1− F (x) is given by

T (x) =
1

2z
− exp(−x)

exp(x)− exp(−x)
≈ 1

2x
for largex.

Proof: Using (4),

T (x) = 1− cosh (x) x− sinh (x) + x sinh (x)

2x sinh (x)

= 1− 1

2
coth(x) +

1

2x
− 1

2
=

1

2z
− exp(−x)

exp(x)− exp(−x)
¤



Lemma 4.4 The expectation value of aL−distribution doesn’t exist.

Proof: Consider the integral

∫ ∞

0

xf(x)dx =

∫ ∞

0

x
sinh(x)2 − x2

2x2 sinh(x)2
dx =

∫ ∞

0

1

2x
dx +

∫ ∞

0

x

2 sinh(x)2
dx →∞,

because the first integral tends to∞ and the second isπ2/8. ¤

5 Skew L Distributions

The L distribution is a unimodal, symmetric distribution family. Exploiting the fact

that the cumulative distribution function is available in closed-form, we finally introduce

skewness by means of techniques summarized in Ferreira and Steel (2004). All methods

use weighting functions to incorporate skewness into an originally symmetric density.

Following the proposal of Jones (2004), a new density can be obtained using order statis-

tics viaf(x; β1, β2) = 1
B(β1,β2)

f(x)F (x)β
1 (1− F (x))β2. Applied to the L distribution, the

corresponding density of the first skew L (SL1) distribution is given by

fSL1(x; β1, β2) =

(
cosh(x)x−sinh(x)+x sinh(x)

2x sinh(x)

)β1
(
1− cosh(x)x−sinh(x)+x sinh(x)

2x sinh(x)

)β2

2B(β1,β2)x2 sinh(x)2

(sinh(x)2−x2)

with symmetry forβ1 = β2. Secondly, hidden truncation models initiated by Azzalini

(1985) with building rulef(x; λ) = 2f(x)F (λx) lead to the SL2 distribution with pdf

fSL2(x; λ) =

(
(cosh (z))2 − 1− z2

)
(cosh (λ z) λ z − sinh (λ z) + λ z sinh (λ z))

2z3
(
(cosh (z))2 − 1

)
λ sinh (λ z)

.

Note that symmetry is now achieved forλ = 0. Following the suggestion of Fernández

and Steel (1998), skewness can be introduced using inverse scale factors in the positive



and negative orthant. Thus, the SL3 density is defined by

fSL3(x; γ) =
2

γ + 1
γ

f(xγ−sign(x)) =
2

γ + 1
γ

pL(xγ−sign(x))2 − 1

2 sinh(xγ−sign(x))2
, γ ∈ (−1, 1),

where symmetry corresponds to the caseγ = 1. Finally, the scaling factor approach used,

for example, by Hansen (1994) results in the SL4 density

f(x; η) = f(x/(1 + sign(x)η)) =
pL(x/(1 + sign(x)η))2 − 1

2 sinh(x/(1 + sign(x)η))2
, η > 0

with symmetry forη = 1. Note that both applications and further properties of the L

distribution and their skew counterparts are factored out to future research.

6 Summary

Power transformations – like theH−transformation of Tukey (1960) or theJ−trans-

formation of Fischer and Klein (2004) – are used to generate leptokurtic distributions by

means of variable transformation. They are characterized by so-called generator func-

tions. We show that generator functions which meet certain requirements can be used

to construct both probability densities and cumulative distribution functions. For the

J−transformation, we recover the logistic distribution. After introducing theL−trans-

formation, a new class of densities is derived. TheL−distributions are symmetric, heavy-

tailed with non-existing expectation value. Moreover, skew versions of the L distributions

are introduced which exploit the closed-form of the cumulative distribution function.
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Figure 1: The generating functionp(x) and its first derivative
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Figure 2: L distribution
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