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Market counterfactuals and the specification of multiproduct
demand: A nonparametric approach

Giovanni Compiani
Booth School of Business, University of Chicago

Demand estimates are essential for addressing a wide range of positive and nor-
mative questions in economics that are known to depend on the shape—and
notably the curvature—of the true demand functions. The existing frontier ap-
proaches, while allowing flexible substitution patterns, typically require the re-
searcher to commit to a parametric specification. An open question is whether
these a priori restrictions are likely to significantly affect the results. To address
this, I develop a nonparametric approach to estimation of demand for differenti-
ated products, which I then apply to California supermarket data. While the ap-
proach subsumes workhorse models such as mixed logit, it allows consumer be-
haviors and preferences beyond standard discrete choice, including continuous
choices, complementarities across goods, and consumer inattention. When con-
sidering a tax on one good, the nonparametric approach predicts a much lower
pass-through than a standard mixed logit model. However, when assessing the
market power of a multiproduct firm relative to that of a single-product firm, the
models give similar results. I also illustrate how the nonparametric approach may
be used to guide the choice among parametric specifications.

Keywords. Nonparametric demand estimation, incomplete tax pass-through,
multiproduct firm.

JEL classification. L1, L66.

1. Introduction

Many areas of economics study questions that hinge on the shape of the demand func-
tions for given products. Examples include investigating the sources of market power,
evaluating the effect of a tax or subsidy, merger simulation, assessing the impact of a
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new product being introduced into the market, understanding the drivers of the well-
documented incomplete pass-through of cost and exchange-rate shocks to downstream
prices, and determining whether firms play a game with strategic complements or sub-
stitutes.1 Given a model of supply, the answers to these questions crucially depend on
the level, the slope, and often the curvature of the demand functions. Therefore, if the
chosen demand model is not flexible enough, the results could turn out to be driven
by the convenient, but often arbitrary, restrictions embedded in the model, rather than
by the true underlying economic forces. Addressing this concern requires an approach
that relaxes the parametric assumptions, thus providing results that may be used as a
benchmark.

To this end, I propose a nonparametric approach to estimate demand in differen-
tiated products markets based on aggregate data.2 Specifically, I focus on markets in
which consumers face a range of options that are differentiated in ways that are both
observed and unobserved to the researcher. Importantly, the presence of unobserved
heterogeneity at the product or market level implies that all the variables that are chosen
by firms after observing consumer preferences, for example, prices in many models are
endogenous. A vast literature in industrial organization and other fields has focused on
the empirical analysis of this type of market. The current frontier approach is to posit a
random coefficients discrete choice logit model3 and estimate it using the methodology
developed by Berry, Levinsohn, and Pakes (1995) (henceforth BLP).4 While the method-
ology in BLP accomplishes the crucial goals of generating reasonable substitution pat-
terns and allowing for price endogeneity, it relies on a number of parametric assump-
tions, which may affect the results of counterfactual exercises. For example, while it is
well known that the pass-through of a tax depends on the curvature, that is, the sec-
ond derivatives of the demand functions, it is not a priori clear whether BLP is flexible
enough to capture these features of the true demand system. In contrast, the approach

1References include Berry, Levinsohn, and Pakes (1995) and Nevo (2001) for the study of market power,
Bulow and Pfleiderer (1983), and Weyl and Fabinger (2013) for the effect of taxes and subsidies, Nevo (2000)
and Capps, Dranove, and Satterthwaite (2003) for merger simulation, Petrin (2002) for the analysis of new
products, Nakamura and Zerom (2010) and Goldberg and Hellerstein (2013) for incomplete pass-through,
and Bulow, Geanakoplos, and Klemperer (1985) for strategic complementarity and substitution.

2Souza-Rodrigues (2014) proposes a nonparametric estimation approach for a class of models that in-
cludes binary demand. However, extension to the case with multiple inside goods does not appear to be
trivial. Pinkse and Slade (2004) estimate a semiparametric demand system in which price enters linearly
and the price effects are flexible functions of the distance between products in characteristics space.

3Throughout the paper, I use the terms “random coefficients logit model” and “mixed logit model” in-
terchangeably.

4Another influential approach to demand estimation is the Almost Ideal Demand System (AIDS) pio-
neered by Deaton and Muellbauer (1980). I choose to compare my approach to BLP-type models and not
AIDS-type models, because the latter restrict the role of the unobserved heterogeneity in a way that is at
odds with the differentiated products markets literature from the last 20 years. Specifically, Deaton and
Muellbauer (1980) use their model of consumer behavior to obtain a demand equation only involving ob-
servables and add an additively separable error term to carry out estimation (equation (15) in their paper).
This implies that the unobservables do not have an immediate “structural” interpretation (such as product
quality not captured by the data). One consequence is that the standard arguments used to motivate the
issue of (price) endogeneity, as well as justify the instrumental variables solution to it, do not typically apply
in the AIDS framework.
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proposed in this paper does not rely on any distributional assumptions and imposes
only limited functional form restrictions. For instance, it is not necessary to assume that
the idiosyncratic taste shocks or the random coefficients on product characteristics in
the utility function belong to a parametric family of distributions. Instead, I leverage a
range of constraints—such as monotonicity of demand in certain variables and proper-
ties of the derivatives of demand—that are grounded in consumer theory.

In addition, by directly targeting the demand functions as opposed to the utility pa-
rameters, my approach relaxes several assumptions on consumer behavior and prefer-
ences that are embedded in BLP-type models. The latter models assume that each con-
sumer picks the product yielding the highest (indirect) utility among all the available
options. This implies, among other things, that the goods are substitutes to each other,5

that consumers are aware of all products and their characteristics,6,7 and that each con-
sumer buys at most one unit of a single product.8 In contrast to this, my approach allows
for a broader range of consumer behaviors and preferences, including complementar-
ities across goods, consumer inattention, and multiple discrete or continuous choices.
On the other hand, directly targeting the demand functions means that the distribu-
tion of preference heterogeneity across consumers cannot be recovered without further
restrictions. While this precludes quantifying individual consumer welfare, many other
questions can still be addressed, including evaluating markups, predicting equilibrium
prices and quantities after a policy change, and testing features of the demand functions
(e.g., income effects).

In practice, I propose approximating the (inverse of the) demand system using Bern-
stein polynomials, which make it easy to enforce a number of economic constraints in
the estimation routine. Computationally, the objective function to be minimized is con-
vex in the parameters; thus, if the constraints are also convex, standard algorithms are
guaranteed to converge to the global optimum. In order to show validity of the standard
errors, I adapt proofs from recent work in econometrics on nonparametric instrumental

5Gentzkow (2007) develops a parametric demand model that allows for complementarities across goods
and applies it to the market for news. Given the relatively small number of options available to consumers,
pursuing a nonparametric approach seems feasible in this industry and I view this as a promising avenue
for future research.

6Goeree (2008) uses a combination of market-level and microdata to estimate a BLP-type model where
consumers are allowed to ignore some of the available products. The model specifies the inattention prob-
ability as a parametric function of advertising and other variables. Relative to Goeree (2008), this paper
allows for more general forms on inattention. Specifically, any model that satisfies the assumptions in Sec-
tion 2 is permitted. Section 4.2 presents simulation results from one such model. A recent paper by Abaluck
and Adams (2017) obtains identification of both utility and consideration probabilities in a class of models
with inattentive consumers facing exogenous prices.

7One could conceivably use a BLP-type model to estimate consumer preferences on data generated by
inattentive consumers. Whether the BLP functional form is flexible enough in such contexts is an open
question that depends on the object of interest. The simulation evidence presented in this paper suggests
that a BLP-type model tends to underestimate own-price elasticities and overestimate cross-price elastici-
ties for one pattern of inattention.

8A few studies, including Hendel (1999) and Dubé (2004), estimate models of “multiple discreteness,”
where agents buy multiple units of multiple products. However, these papers typically rely on individual-
level data rather than aggregate data. The same applies to papers that model discrete/continuous choices,
such as Dubin and McFadden (1984).
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variables regression and I provide primitive conditions for the case where the objects of
interest are price elasticities and (counterfactual) equilibrium prices.

As with many nonparametric estimators, one limitation of my approach is that the
number of parameters tends to increase quickly with the number of goods and/or co-
variates. This does preclude dealing with markets featuring many products and as such
the proposed method represents a first step toward developing a widely applicable non-
parametric estimator. As a contribution in that direction, I show that one can partially
mitigate the curse of dimensionality by imposing microfounded restrictions on the de-
mand functions while preserving most of the flexibility of the nonparametric approach.
Specifically, I consider (i) an exchangeability restriction; and (ii) constraints on the way
covariates and prices enter the demand system. Both (i) and (ii) substantially reduce the
number of parameters relative to the most general model. In particular, (ii) highlights
that there is a trade-off between functional form restrictions and severity of the curse of
dimensionality. In practice, this means that a researcher can—to a certain extent—tailor
the model to the specifics of her setting by choosing how many assumptions to impose.
For example, if the sample size is moderate, a researcher might choose to assume more
in terms of functional form to contain the number of parameters, while still avoiding
several assumptions on the distribution of the unobservables and consumer behavior
relative to a standard discrete choice model. On the other hand, with larger samples, the
researcher might be able to relax some of these functional form restrictions.

Besides requiring a nonparametric approach, the assessment of how counterfactual
outcomes are affected by parametric restrictions necessitates an amount of data suffi-
cient to obtain informative results in the more flexible model. To this end, I leverage a
large sample of store/week-level quantities and prices from Nielsen. Specifically, I focus
on strawberry sales in California, which allows me to keep the number of goods low, and
thus avoid the curse of dimensionality. In addition, given the perishability of the prod-
uct, I am able to reasonably abstract from dynamic considerations and perform a clean
comparison between static demand models. Of course, this is a small product category,
but the increasing availability of large data sets suggests that it might be possible to ap-
ply nonparametric approaches such as that proposed here to a much broader class of
settings.

I consider two counterfactual exercises. The first is to quantify the pass-through
of a tax into retail prices. Comparing the results to those given by a standard mixed
logit model, I find that the nonparametrically estimated tax pass-through is significantly
lower than that delivered by mixed logit for organic strawberries. I relate this to the fact
that the nonparametric own-price elasticity for that good increases in absolute value
much faster with own-price, which provides an incentive for the retailer to contain the
price increase after the tax, all else equal. The second counterfactual concerns the role
played by the multiproduct nature of retailers in driving up markups (the “portfolio ef-
fect” in the terminology of, e.g., Nevo (2001)). In this case, a mixed logit model with
product-specific fixed effects matches the nonparametric results very closely. This is not
the case for mixed logit models with fewer fixed effects, suggesting that the proposed ap-
proach may be used to guide the choice among competing parametric specifications.
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Related literature This paper contributes to the vast literature on models of demand in
differentiated products markets pioneered by BLP. In particular, a recent paper by Berry
and Haile (2014) (henceforth BH) shows that most of the parametric assumptions im-
posed by BLP are not needed for identification of the demand functions, that is, that
these restrictions are not necessary to uniquely pin down the demand functions in the
hypothetical scenario in which the researcher has access to data on the entire relevant
population. While I build on the identification result in BH, I focus on a distinct set of is-
sues pertaining nonparametric estimation. Other papers developing flexible estimation
approaches to demand estimation include Bajari, Fox, and Ryan (2007), Fox et al. (2011),
Fox et al. (2012), Fox, il Kim, and Yang (2016), and Fox and Gandhi (2016). The goal in
these papers is to recover the distribution of random coefficients in discrete choice set-
tings, whereas I directly target the structural demand function. On the one hand, this
allows for a broader range of consumer behaviors; on the other, as discussed above, it
faces a curse of dimensionality. A recent paper by Tebaldi, Torgovitzky, and Yang (2019)
proposes a method to obtain nonparametric bounds on demand counterfactuals and
applies it to the California health insurance market, but does not develop inference pro-
cedures.

It should be emphasized that the present paper focuses on the case where the re-
searcher has access to market-level data, typically in the form of shares or quantities,
prices, product characteristics, and other market-level covariates. This is in contrast to
studies that are based on consumer-level data, such as Goldberg (1995) and Berry, Levin-
sohn, and Pakes (2004),9 and, for more recent nonparametric approaches, Hausman and
Newey (2016), Blundell, Horowitz, and Parey (2017), and Chen and Christensen (2018).

Second, the paper is related to the large literature on incomplete pass-through,10

and particularly, the papers that adopt a structural approach to decompose the differ-
ent sources of incompleteness. For instance, Goldberg and Hellerstein (2008), Nakamura
and Zerom (2010), and Goldberg and Hellerstein (2013) estimate BLP-type models to as-
sess how much of the incomplete pass-through is explained by sellers adjusting their
markups.11 The present paper contributes to this literature by providing a method to
evaluate markups that relaxes a number of restrictions on consumer behavior and pref-
erences. In my empirical setting, I estimate a significantly larger reduction in markups

9Of course, any method based on market-level data may be immediately applied to consumer-level data
by simply aggregating the latter at the market level. However, recent work by Berry and Haile (2009) shows
that within-market variation makes it possible to identify demand under weaker conditions relative to the
case where only market-level data is available. This opens an interesting avenue for future research on
nonparametric estimation of demand based on individual-level data.

10The literature on estimating pass-through is large and I do not attempt to provide an exhaustive list
of references. Here, I mention an interesting recent paper by Atkin and Donaldson (2015), which estimates
the pass-through of wholesale prices into retail prices, and uses this to quantify how the gains from falling
international trade barriers vary geographically within developing countries.

11Specifically, Goldberg and Hellerstein (2008) and Goldberg and Hellerstein (2013) focus on exchange
rate pass-through, while Nakamura and Zerom (2010) consider cost pass-through. Competing explanations
for incomplete pass-through considered in these papers are nominal rigidities and the presence of costs not
affected by the shocks.
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after the tax—and thus a more incomplete pass-through—for the organic product rela-
tive to what is predicted by a more restrictive parametric model.12

Third, the paper relates to the literature investigating the sources of market power
based on demand estimates, notably Nevo (2001).13 Once again, I offer a more flexible
method to disentangle and quantify the different components of market power. In my
empirical setting, I find that a mixed logit model with product fixed effects matches the
nonparametric results very closely, suggesting that standard parametric models might
be sufficient to address this type of questions.

Overview The rest of the paper is organized as follows. Section 2 presents the general
model and summarizes the nonparametric identification results from BH. Section 3 dis-
cusses the proposed nonparametric estimation approach. Section 4 presents the results
of several Monte Carlo simulations. Section 5 contains the empirical application. Sec-
tion 6 concludes. All proofs, additional simulations, and more details on the empiri-
cal application are presented in the Appendices of the Online Supplementary Material
(Compiani (2022)).

2. Model and identification

The general model I consider is the same as that in BH. In this section, I summarize
the main features of the model. In a given market t, there is a continuum of consumers
choosing from the set J ≡ {1, � � � , J}. Each market t is defined by the choice set J and by
a collection of characteristics χt specific to the market and/or products. The vector χt is
partitioned as follows:

χt ≡ (xt , pt , ξt ),

where xt is a vector of exogenous observable characteristics (e.g., exogenous product
characteristics or market-level income), pt ≡ (p1t , � � � , pJt ) are observable endogenous
characteristics (typically, market prices) and ξt ≡ (ξ1t , � � � , ξJt ) represent unobservables
potentially correlated with pt (e.g., unobserved product quality).14

Next, I define the structural demand system

σ : X → �J ,

where X denotes the support of χt and �J is the unit J-simplex. The function σ gives, for
every market t, the vector st of shares for the J goods. I emphasize that this formulation
of the model is general enough to allow for different interpretations of shares. The vector
st could simply be the vector of choice probabilities (market shares) for the inside goods

12For nonorganic strawberries, I find that mixed logit overestimates markup adjustment—and thus un-
derestimates pass-through—relative to the nonparametric approach, but the two confidence intervals over-
lap.

13Another approach to studying market power is based on estimates of the firm production function
(de Loecker (2011), de Loecker and Warzynski (2012)).

14While the leading case in the demand estimation literature is that in which only one attribute per prod-
uct (price) is endogenous, the framework allows for pjt to be a vector, as long as appropriate instruments
are available.
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in a standard discrete choice model. However, st could also represent a vector of “artifi-
cial shares,” for example, a transformation of the vector of quantities sold in the market
to the unit simplex. For example, this case arises when the goods are complements to
each other and the interpretation of market shares as fractions of consumers preferring
one good over all others does not apply.15 I also define σ0(χt ) ≡ 1 −∑J

j=1 σj(χt ), for
every market t, where σj(χt ) is the jth element of σ(χt ). In a standard discrete choice
setting, σ0 corresponds to the share of the outside option, but again this interpretation
is not required.

Next, following BH, I restrict the way in which some of the variables in X enter de-
mand. Specifically, I partition xt as (x(1)

t , x(2)
t ), where x(1)

t ≡ (x(1)
1t , � � � , x(1)

Jt ), x(1)
jt ∈ R for

j ∈ J , and define the linear indices

δjt = x(1)
jt βj + ξjt , j = 1, � � � , J.

Then, for every market t, I assume that

σ(χt ) = σ(δt , pt , x(2)
t

)
, (1)

where δt ≡ (δ1t , � � � , δJt ).16 Equation (1) requires that, for j = 1, � � � , J, x(1)
jt , and ξjt affect

consumer choice only through the linear index δjt . In other words, x(1)
jt and ξjt are as-

sumed to be perfect substitutes. In a standard BLP-type discrete choice setting, a simple
sufficient condition is that x(1)

jt enters good j’s indirect utility with a nonrandom coeffi-

cient. On the other hand, x(2)
t is allowed to enter the share function in an unrestricted

fashion.17 Two remarks about the restriction in (1) are in order. First, while (1) requires
that the dimension of x(1) be equal to J, it is possible to include more than one covariate
in each linear index. In fact, this is one of the strategies for dimension reduction sug-
gested in Section 3.2. Second, x(1)

jt could be a characteristic of good j, but it need not

be. The model allows for the case where x(1) includes market-level demand shifters that
are not necessarily product specific, as long as the dimension of x(1) is at least J. This
is illustrated in the application of Section 5, where x(1) consists of variables that shift
consumer preferences for strawberries but do not represent product characteristics.

Throughout the paper, I assume sufficient conditions for the structural demand sys-
tem σ to be point-identified, which I record in the next assumption.

Assumption 1. There exist price instruments Z = (Z1, � � � , ZJ ), excluded from the de-
mand system, such that E(ξj|X , Z ) = 0 a.s.-(X , Z ) for j ∈ J . Further, the additional suf-
ficient conditions for point-identification of σ in BH hold.

15See Example 1 in Berry, Gandhi, and Haile (2013) and the simulation in Section 4.3.
16As shown in Appendix B of BH, what is critical for identification is the strict monotonicity of δjt in

ξjt . Both its linearity in x(1)
jt and its additive separability in ξjt can be relaxed. However, the assumption in

(1) simplifies the estimation procedure in that it leads to an additively separable nonparametric regression
model. Given that this is the first attempt at estimating demand nonparametrically for this class of models,
maintaining (1) appears to be a reasonable compromise. Footnote 20 further elaborates on the nonsepara-
ble case.

17Indeed, the case where x(2)
t does not enter the model at all is allowed.
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The moment conditions in Assumption 1, which will motivate the estimation strat-
egy, require the unobservables ξ to be mean-independent of the price instruments and
exogenous characteristicsX . I refer the reader to BH for a detailed discussion of the ad-
ditional assumptions that suffice for identification. Under these conditions, BH show
that the demand system in (1) can be inverted as follows:

x(1)
jt + ξjt = σ−1

j

(
st , pt , x

(2)
t

)
, j = 1, � � � , J, (2)

where I use the normalizationβj = 1, which is available since the unobservables ξjt have
no natural scale. This is a set of equations each featuring one additively separable scalar
unobservable, which makes it more amenable to estimation than the original demand
system. The goal will be to flexibly estimate the functions σ−1

j , or functionals thereof.
Note that the distribution of ξjt will not be directly targeted in estimation; instead, ξjt
will be simply recovered as a residual from (2) given an estimate of σ−1

j . Thus, no restric-
tions will be placed on the distribution of ξjt (besides regularity conditions needed for
the asymptotic results discussed below).

Before turning to the proposed estimation method, it is worth pausing to highlight
the breadth of the model. First, unlike BLP-type approaches, the model places no para-
metric assumptions on the distribution of consumer preferences and only limited func-
tional form restrictions (i.e., the index assumption). Second, by directly targeting the
demand functions as opposed to the utility parameters, the approach can be applied
to consumer behaviors and preferences beyond standard discrete choice settings, in-
cluding complementarities across goods, consumer inattention, and multiple discrete
or continuous choices. Section 4 illustrates this through several simulations.

Because the model does not fully specify a functional form for utility, it is not pos-
sible to recover the distribution of preferences across consumers without further re-
strictions. However, this is often not needed. Indeed, knowledge of the market de-
mand functions, possibly in combination with a model of supply, is sufficient to address
many questions of interest, including evaluation of markups, predicting equilibrium re-
sponses to a policy (e.g., a tax), testing hypotheses on consumer preferences or behavior
(e.g., testing for the presence of income effects), and even aggregate welfare analysis.18

3. Nonparametric estimation

3.1 Setup and asymptotic results

The key idea behind my estimation strategy is to combine the inverted demand sys-
tem in (2) with the IV exogeneity restriction, E(ξj|X , Z ) = 0, to estimate σ−1

j using non-

18For example, the aggregate change in consumer surplus due to a change in prices can be computed
given knowledge of demand alone, under the assumptions spelled out in McFadden (1981) and Small and
Rosen (1981). On the other hand, as pointed out by BH (Section 4.2), one important exception is the evalu-
ation of individual consumer welfare, which can be performed with aggregate data only by committing to
a parametric functional form for utility.
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parametric instrumental variables (NPIV) methods.19,20 In particular, I approximate the
functions σ−1

j via the method of sieves, that is, using a sequence of models whose di-
mension grows with the sample size. For instance, in the case of polynomial approxi-
mations, the degree of the polynomials increases with the sample size. Therefore, the
approach does not require one to assume any functional form asymptotically, which
guards against misspecification bias. Implementing the procedure is straightforward
in that, in practice, it amounts to estimating a (large) parametric model. On the other
hand, proving theoretical properties of the estimator, for example, establishing the va-
lidity of the standard errors for price elasticities is more complicated due to the fact that
the unknown parameter is an entire function as opposed to a finite-dimensional ob-
ject. Specifically, I cannot rely on standard results from parametric models and I need to
adapt recent results from the econometrics literature on NPIV.

Some additional notation is needed to formalize the approach. I denote by T the
sample size, that is, the number of markets in the data. While T grows to infinity asymp-
totically, the number of goods J is fixed. Let 	 be the space of functions to which σ−1

belongs21 and let ψ(j)
Mj

(·) ≡ (ψ(j)
1,Mj

(·), � � � , ψ(j)
Mj ,Mj

(·))′ be the basis functions used to ap-

proximate σ−1
j for j ∈ J .22 Note that, although I suppress it in the notation, Mj grows

with T for all j. Let 	T be the resulting sieve space for 	. Next, I denote by a(j)
Kj

(·) ≡
(a(j)

1,Kj
(·), � � � , a(j)

Kj ,Kj
(·))′ the basis functions used to approximate the instrument space

for good j’s equation, and I let A(j) = (a(j)
Kj

(x1, z1 ), � � � , a(j)
Kj

(xT , zT ))′ for j ∈ J . Again, I

suppress the dependence of {Kj }j∈J on the sample size. I require that Kj ≥Mj for all j,
which corresponds to the usual requirement in parametric instrumental variable mod-
els that the number of instruments be at least as large as the number of endogenous
variables. Finally, I let rjt(st , pt , xt , zt ; σ̃

−1
j ) ≡ (x(1)

jt − σ̃−1
j (st , pt , x

(2)
t )) × a(j)

Kj
(xt , zt ). Then

the estimator solves the following GMM program:23

min
σ̃−1∈	T

J∑
j=1

[
T∑
t=1

rjt
(
st , pt , xt , zt ; σ̃

−1
j

)]′(
A′

(j)A(j)
)−[ T∑

t=1

rjt
(
st , pt , xt , zt ; σ̃

−1
j

)]
, (3)

19The literature on NPIV methods is vast and I refer the reader to recent surveys, such as Horowitz (2011)
and Chen and Qiu (2016).

20In the absence of separability of δjt in ξjt , following Appendix B of BH, we can write ξjt =
gj(st , pt , x

(1)
jt , x(2) ). This is the same as (2) except that x(1)

jt now enters the unknown function gj . In terms of

implementation, the sieve estimator proposed here could be easily adapted to this setting by including x(1)
jt

as an extra exogenous argument of the unknown function (see also Section 3.3 of Chen and Christensen
(2018)). Of course, this would increase the dimensionality of the problem, which is why we focus on the
linear index case here.

21This class of functions will be formally defined in Appendix A in this paper.
22In the simulations of Section 4, as well as in the application of Section 5, I use Bernstein polynomials

to approximate each of the unknown functions. However, the inference result in Theorem 1 below does not
depend on this choice, hence the general notation used in the first part of this section.

23This could also be viewed as a minimum-distance estimator in which the conditional expectation is es-
timated via series least squares and the weighting matrix is taken to be the identity matrix (see, e.g., p. 5568
of Chen (2007)). If there is correlation in the error terms across goods, one may want to use a nondiagonal
weighting matrix in order to improve efficiency.
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where Ã− denotes the Moore–Penrose inverse of a matrix Ã. The solution σ̂−1 to (3)
minimizes a quadratic form in the terms {rjt(·), j ∈ J , t = 1, � � � , T }, that is the implied
regression residuals interacted with the instruments. When 	T is chosen to be a linear
sieve (e.g., polynomials, splines, wavelets), the approximation to σ−1

j will be of the form

σ̃−1
j = θ′

jψ
(j)
Mj

(·) for j ∈ J . This, in turn, implies that (3) will be a convex program in the

coefficients θ, for which readily available algorithms are guaranteed to converge to the
global minimizer. In contrast, BLP-type models typically require minimizing nonconvex
functions, and thus off-the-shelf solvers are in general not guaranteed to converge to the
global minimum (Knittel and Metaxoglou (2014)). One caveat to the above is that, if one
wants to impose nonconvex constraints on θ, the optimization problem will become
harder. One such constraint is the symmetry of the Jacobian of demand with respect
to prices (see Appendix C.2). On the other hand, several other constraints, including
monotonicity and the exchangeability constraint considered in Section 3.2, are linear,
and thus can be handled with off-the-shelf convex optimization methods. For the case
with linear constraints, I recommend using the Matlab package CVX (see Grant and
Boyd (2008, 2014)), whereas in the presence of nonlinear—and possibly nonconvex—
constraints I found Knitro to perform well (Nocedal, Byrd, and Waltz (2006)).

I now state a result that yields asymptotically valid standard errors for generic func-
tionals of the demand system in the i.i.d. case.24 In turn, this may be used to obtain con-
fidence intervals for quantities of interest, such as price elasticities, and establish the
distribution of test statistics under a null hypothesis on consumer behavior (e.g., lack of
income effects), thus yielding critical values that can be used to test the null. The result
adapts Theorem D.1 in Chen and Christensen (2017) (henceforth, CC). Note that CC con-
sider a model with only one equation and one unknown function, whereas the setting
here involves J equations, each with a distinct unknown function and error term ξj . This
requires imposing additional (mild) restrictions on the covariance matrix of the errors
and modifying the proof accordingly. For conciseness, the formal assumptions needed
for the result and the definition of the estimator for the variance of the functional are
postponed to Appendix A. In words, the assumptions restrict: (i) the distribution of the
error terms by way of standard bounded moment conditions; (ii) the rate at which the
dimension of the approximation to the unknown functions grows with the sample size;
and (iii) the rate of convergence of the nonparametric estimator for the demand func-
tions and their derivatives. The restriction in (iii), which is formalized in Assumption 7
in Appendix A, is high level and I provide more primitive sufficient conditions for two
special cases of interest in Theorems 2 and 3 below. Also, following CC, I consider in-
ference on functionals of an unconstrained sieve estimator of the unknown functions.
Under the assumption that the true demand functions satisfy the inequality constraints
strictly, the constrained and unconstrained estimators will coincide asymptotically, and
thus the unconstrained standard errors will be valid in large samples. Recent papers by
Chernozhukov, Newey, and Santos (2015) and Freyberger and Reeves (2018) develop in-
ference procedures for constrained estimators that could be applied to our model (see

24Consistency of the estimator in the sup-norm follows directly from Theorem 3.1 of Chen and Chris-
tensen (2018).
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also Chetverikov, Santos, and Shaikh (2018)). I leave comparing different nonparametric
methods for future research.

Theorem 1. Let f be a scalar functional of the demand system and v̂T (f ) be the esti-
mator of the standard deviation of f (σ̂−1 ) defined in (10) in Appendix A. In addition, let
Assumptions 1, 2, 3, 4, 5, 6, and 7 in Appendix A hold. Then

√
T

(
f
(
σ̂−1)− f (σ−1))

v̂T (f )
d−→N(0, 1).

Proof. See Appendix B in the Online Supplementary Material (Compiani (2022)).

Importantly, the standard deviation v̂T (f ) in the statement of the theorem is allowed
to grow to infinity with the sample size, implying that the result covers the scenario in
which the functional f is estimable at a rate slower than the parametric rate

√
T . This

will typically be the case when, as in the empirical analysis of Section 5, the functionals
of interest are defined for a fixed market, as opposed to being averages across markets.

Theorem 1 applies to a wide class of functionals f and estimators σ̂−1. I now special-
ize the result to two functionals—price elasticities and equilibrium prices—that are key
inputs for many (counterfactual) questions in industrial organization. Also, consistent
with the empirical application of Section 5, I assume that J = 2 and that the unknown
functions are approximated via Bernstein polynomials. I state the results here and again
postpone the full presentation of the assumptions, as well as the proofs, to Appendix A.
In words, Theorems 2 and 3 replace the high-level Assumption 7 in Theorem 1 with suf-
ficient conditions on the smoothness of the unknown functions, the support of the en-
dogenous variables, and the growth rate of the sieve approximation. These are standard
assumptions in the NPIV literature.

Theorem 2. Let fε be the own-price elasticity functional defined in (11) in Appendix A,
let v̂T (fε ) denote the estimator of the standard deviation of fε(σ̂−1 ) based on (10), and let
Assumptions 1, 2, 3, 4(iii), 5, 6, and 8 from Appendix A hold. Then

√
T

(
fε
(
σ̂−1)− fε(σ−1))
v̂T (fε )

d−→N(0, 1).

Proof. See Appendix A.

Next, I state a result establishing the asymptotic distribution of equilibrium prices.

Theorem 3. Let fp1 be the equilibrium price functional defined in (15) in Appendix A,
let v̂T (fp1 ) denote the estimator of the standard deviation of fp1 (σ̂−1 ) based on (10), and
let Assumptions 1, 2, 3, 4(iii), 5, 6, and 9 from Appendix A hold. Then

√
T

(
fp1

(
σ̂−1)− fp1

(
σ−1))

v̂T (fp1 )
d−→N(0, 1).
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Proof. See Appendix A.

In the empirical application of Section 5, I apply Theorem 2 to obtain confidence
intervals for own- and cross-price elasticities, and Theorem 3 to obtain confidence in-
tervals for equilibrium prices under two counterfactual scenarios.

Lemmas 3–6 in Appendix A provide even more concrete restrictions for the “mildly
ill-posed case,” that is the scenario where a measure of the degree of endogeneity in the
nonparametric problem grows polynomially with the dimension of the sieve space.25 In
particular, the lemmas show that the assumptions of Theorems 2 and 3 can be satisfied
by letting the dimension of the sieve space grow polynomially in the sample size.

Next, I provide examples of demand models satisfying the restrictions on existence
of moments and smoothness that are required by Theorems 2 and 3. Regarding the first
class of restrictions, it suffices for the distribution of ξ ≡ (ξ1, � � � , ξJ ) to be nondegener-
ate and have some finite moment of order higher than two conditional on all values of
(X , Z ). This requirement is satisfied, for instance, if ξ has a nondegenerate normal dis-
tribution with mean zero conditional on every value of (X , Z ). Turning to the smooth-
ness restrictions, they are satisfied by any demand system that is infinitely differentiable
(although the restrictions are weaker). Most models used in empirical work meet this re-
quirement, including BLP, limited consumer information models such as Goeree (2008),
and constant elasticity demand models along the lines of, for example, Example 1 in
Berry, Gandhi, and Haile (2013). Simulation results for special cases of each of these
models are presented in Section 4.

3.2 Constraints

I conclude this section with a discussion of the curse of dimensionality that is inherent in
nonparametric estimation. Note that each of the unknown functions σ−1

j has 2J + nx(2)

arguments, where nx(2) denotes the number of variables included in x(2). Therefore, the
number of parameters to estimate grows quickly with the number of goods and/or the
number of characteristics included in x(2), and it will typically be much larger than in
conventional parametric models. While breaking the curse of dimensionality is outside
the scope of this paper, I show that the issue can be partially mitigated by imposing mi-
crofounded constraints on the estimated demand functions, including exchangeabil-
ity,26 index restrictions, and monotonicity. I emphasize that this is not an exhaustive list,
and one may wish to impose additional constraints in a given application. Conversely,
not all constraints discussed in this paper need to be enforced simultaneously in order
to make the approach feasible.

Imposing constraints in model (2) is complicated by the fact that economic theory
gives us restrictions on the demand system σ , but what is targeted by the estimation
routine is σ−1. Therefore, one contribution of the paper is to translate constraints on

25See Blundell, Chen, and Kristensen (2007) for a formal definition of the measure of ill-posedness and
CC for a discussion of its estimation.

26Similar exchangeability restrictions are discussed in Pakes (1994), Berry, Levinsohn, and Pakes (1995),
and Gandhi and Houde (2019) in relation to optimal instruments.
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the demand system σ into constraints on its inverse σ−1, and show that the latter can
be enforced in a computationally feasible way.

Specifically, I propose to estimate the functions σ−1
j using Bernstein polynomials,

which are convenient for imposing economic restrictions due to their approximation
properties. For a positive integerm, the Bernstein basis functions are defined as

bv,m(u) =
(
m

v

)
uv(1 − u)m−v,

where v = 0, 1, � � � ,m, and u ∈ [0, 1]. The integer m is called the degree of the Bernstein
basis. For our purposes, the following result from the approximation literature will be
important (see, e.g., Chapter 2 of Gal (2008)).

Result 1. Let g be a real-valued function that is continuous on [0, 1]N and define

Bm[g] =
m∑
v1=0

· · ·
m∑

vN=0

g

(
v1

m
, � � � ,

vN
m

)
bv1,m(u1 ) · · ·bvN ,m(uN ).

Then

sup
u∈[0,1]N

∣∣Bm[g](u) − g(u)
∣∣→ 0

asm→ ∞.

This means that, for an appropriate choice of the coefficients, Bernstein polynomials
provide a uniformly good approximation to any continuous function on the unit hyper-
cube as the degree m increases. Specifically, the approximation in Result 1 is such that
the coefficient on the bv1,m(u1 ) · · ·bvN ,m(uN ) term corresponds to the target function
evaluated at the grid of points ( v1

m , � � � , vNm ), for vi = 0, � � � ,m, and i= 1, � � � ,N . This yields
an intuitive approach to imposing restrictions on the Bernstein estimator.

To illustrate, consider the special case in which the degree m is two and g is a func-
tion ofN = 2 arguments. Since there are three terms for each argument (degree 0, 1, and
2), the tensor-product approximation is a linear combination of nine terms in total. Let
θ denote the coefficients on these nine terms. Result 1 says that, as m grows to infinity,
a good approximation will be such that the coefficients θ are equal to the true value of
g at a grid of points over the [0, 1] × [0, 1] square. Arranging the coefficients in a matrix,
we can write ⎡

⎢⎣θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33

⎤
⎥⎦=
⎡
⎢⎣ g(0, 0) g(0, 0.5) g(0, 1)
g(0.5, 0) g(0.5, 0.5) g(0.5, 1)
g(1, 0) g(1, 0.5) g(1, 1)

⎤
⎥⎦ . (4)

This is helpful because it allows us to immediately translate restrictions on g into restric-
tions on θ. For instance, the constraint that g be weakly increasing in its first argument
leads to the inequalities θ1i ≤ θ2i ≤ θ3i for i= 1, 2, 3.
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Using this argument, one can impose a number of constraints on σ−1 that are mo-
tivated by economic theory. First, it can be shown that the Jacobian of σ−1 with respect
to s belongs to the class of inverse M-matrices,27 which in turn implies the following
lemma.

Lemma 1. Let Assumption 2 in BH hold. Then, for all (s, p), (i)
∂σ−1
j

∂sk
(s, p) ≥ 0 for all j and

k. If further |
∂σj
∂δj

(δ, p)| ≥∑k
=j | ∂σk∂δj (δ, p)| for all j, then (ii)
∂σ−1
j

∂sj
(s, p) ≥ ∂σ−1

j

∂sk
(s, p) for all

j and all k 
= j. Finally, if in addition the own-price effects
∂σj
∂pj

(δ, p) are negative for all j,

then (iii)
∂σ−1
j

∂pj
(s, p) ≥ 0 for all j.

Proof. See Appendix C.3.

This lemma translates properties of the Jacobians of σ into properties of the Jaco-
bians of σ−1. Parts (i) and (iii) yield monotonicity restrictions on σ−1, whereas part (ii)
yields a “diagonal dominance” constraint. The assumptions on the Jacobians of σ are
mild and hold for many commonly used demand models. In particular, the assump-
tion for part (ii) says that the own-δ effects are larger in magnitude than the sum of the
cross-δ effects and the assumption for part (iii) simply requires demand to slope down
in own price. Note that the implied constraints are linear in the derivatives of the σ−1

j

functions. Thus, since derivatives are linear operators, one can use the approximation
property discussed above to enforce the constraints via linear restrictions on the Bern-
stein coefficients. Section 3.3 discusses how to operationalize this in practice.

Next, I focus on two types of constraints that are especially helpful in alleviating
the curse of dimensionality: exchangeability and index restrictions. In order to de-
fine exchangeability, let π : {1, � � � , J} �→ {1, � � � , J} be a permutation with inverse π−1

and, for simplicity, let x(2) = (x(2)
1 , � � � , x(2)

J ), that is, I assume that x(2) is a vector of

product-specific characteristics.28 Also, let ñx(2) be the dimension of each x(2)
j , so that

nx(2) = Jñx(2) . Then the structural demand system σ is exchangeable if

σj
(
δ, p, x(2))= σπ(j)

(
δπ−1(1), � � � , δπ−1(J ), pπ−1(1), � � � , pπ−1(J ), x(2)

π−1(1)
, � � � , x(2)

π−1(J )

)
, (5)

for j = 1, � � � , J. In words, this means that the demand functions do not depend on the
identity of the products, but only on their attributes (δ, p, x(2) ).29 For instance, for J = 3,

27A square real matrix A is called an M-matrix if (i) it is of the form A = αI − P , where all entries of P
are nonnegative; (ii) A is nonsingular and A−1 is entrywise nonnegative. A matrix B is called an inverse
M-matrix if it is the inverse of an M-matrix.

28 This need not be the case in the general model from Section 2. For instance, x(2) could be a vec-
tor of market-level variables. In such settings, I say the demand system is exchangeable if σj(δ, p, x(2) ) =
σπ(j )(δπ−1(1), � � � , δπ−1(J ), pπ−1(1), � � � , pπ−1(J ), x(2) ), which requires x(2) to affect the demand of each good
in the same way. Of course, the case where x(2) includes both market-level and product-specific variables
can be handled similarly at the cost of additional notation.

29For simplicity, here I consider the case of exchangeability across all goods 1, � � � , J. However, one could
also think of imposing exchangeability only within a subset of the goods, for example, the set of goods
produced by one firm. The arguments in this section would then apply to the subset of products on which
the restriction is imposed.
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exchangeability implies that

σ1
(
δ1, δ, δ, p1, p, p, x(2)

1 , x(2), x(2))= σ1
(
δ1, δ, δ, p1, p, p, x(2)

1 , x(2), x(2))
for all (δ1, δ, δ, p1, p, p, x(2)

1 , x(2), x(2) ), that is, the demand for good 1 is the same if we
switch the labels for goods 2 and 3. One may be willing to impose exchangeability when
it seems reasonable to rule out systematic discrepancies between the demands for dif-
ferent products. This assumption is often implicitly made in discrete choice models. For
example, in a standard random coefficient logit model without brand fixed-effects, if the
distribution of the random coefficients is the same across goods, then exchangeability
is satisfied.30

Moreover, one may allow for additional flexibility by letting the intercepts of the δ
indices vary across goods. This preserves the advantages of exchangeability in terms of
dimension reduction, which I discuss below, while simultaneously allowing each unob-
servable to have a different mean. Relative to existing methods, this is no more restrictive
than standard mixed logit models with brand fixed-effects and the same distribution of
random coefficients across goods.

Imposing exchangeability on the demand system σ is facilitated by the following
result.

Lemma 2. (i) If σ is exchangeable, then σ−1 is also exchangeable. Moreover, (ii) exchange-
ability translates into linear equality restrictions on the Bernstein coefficients, and thus a
reduction in the number of distinct coefficients to estimate.

Proof. See Appendix C.3.

Lemma 2 implies that one can directly impose exchangeability on the target func-
tions σ−1. To illustrate, in the example in (4), if the function g is exchangeable Lemma 2
yields the equalities θ21 = θ12, θ31 = θ13, and θ32 = θ23. One can directly embed these re-
strictions in the estimation routine by minimizing the criterion function over the lower-
dimensional space of free parameters (there are six free parameters out of nine in this
simple example). A more formal discussion of how to impose exchangeability is pro-
vided in Appendix C.1.

Finally, I consider index restrictions. Specifically, suppose we are willing to assume
that x(2) enters the demand functions through the indices δ. Then each demand func-
tion goes from having 2J + nx(2) to 2J arguments, which in a typical scenario reduces
the number of parameters from (m + 1)2J+n

x(2) to (m + 1)2J where m is the polyno-
mial degree for each argument of the function. Similarly, if we are willing to assume
that prices enter the demand functions through the indices δ, each demand function
goes from having 2J + nx(2) to J + nx(2) arguments, decreasing the number of parame-
ters from (m+ 1)2J+n

x(2) to (m+ 1)J+nx(2) . Thus, to a certain extent, it is possible to tailor
the approach based on the setting and sample size at hand by choosing how much to

30This also uses the fact that the idiosyncratic taste shocks are typically assumed to be i.i.d.—and thus
exchangeable—across goods.
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Table 1. Number of parameters with and without exchangeability and index restriction on
price.

p in index p not in index

J Exchangeability No exchangeability Exchangeability No exchangeability

3 10 27 405 729
5 45 243 4455 59,049
7 84 2187 27,027 4.78×106

10 165 59,049 218,790 3.49×109

Note: Tensor product of univariate Bernstein polynomials of degree 2 for each argument of the function. n
x(2) is assumed

to be zero.

assume in terms of functional form. Further, note that, while the index restriction does
have bite, including variables in the linear index does not mean that they are restricted
to enter the demand functions linearly. As discussed in Section 2, the content of this
assumption is that the variables in the index and the unobservables ξ must be perfect
substitutes in the “production” of utility. For instance, in a discrete choice model, a suf-
ficient condition is that the variables have nonrandom coefficients, but they are allowed
to enter the demand functions in highly nonlinear ways. Additionally, index restrictions
do not impose any constraints on the distribution of the unobservables and are thus
consistent with the goal of relaxing the arbitrary distributional assumptions often made
in estimating demand parametrically.

To illustrate the role played these constraints in alleviating the curse of dimension-
ality, I show in Table 1 how the number of parameters for each demand function grows
with J depending on whether I do or do not impose exchangeability and the index re-
striction on p. While the dimension of the model grows large with J in both cases, the
curse of dimensionality is much more severe when exchangeability or the index restric-
tion are not imposed—indeed to the point where estimation becomes computationally
intractable. Thus, such restrictions might constitute an appealing compromise in set-
tings where the number of characteristics and/or goods is relatively high and dimension
reduction becomes a necessity.

3.3 Implementation of the estimator

I conclude this section by providing a step-by-step guide to implementing the nonpara-
metric estimator. Consistent with the empirical application in Section 5, I focus on the
case with J = 2 goods.

1. Choose degreem and let

m∑
sown=0

m∑
sother=0

m∑
pown=0

m∑
pother=0

θ
(j)
sown,sother,pown,pother

bsown,m(sj )

× bsother,m(sk )bpown,m(p̃j )bpother,m(p̃k )
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be the Bernstein approximation to the function σ−1
j , where k denotes the good

other than j and p̃j , p̃k denote prices normalized to the [0, 1] interval.

2. Obtain constraints on Bernstein coefficients.

(a) Monotonicity. By parts (i) and (iii) of Lemma 1, σ−1
j is increasing in its first three

arguments. Thus,

θ
(j)
sown,sother,pown,pother

≤ θ(j)
sown+1,sother,pown,pother

for all sown = 0, � � � ,m− 1 and all sother, pown, pother = 0, � � � ,m;

θ
(j)
sown,sother,pown,pother

≤ θ(j)
sown,sother+1,pown,pother

for all sother = 0, � � � ,m− 1 and all sown, pown, pother = 0, � � � ,m; and

θ
(j)
sown,sother,pown,pother

≤ θ(j)
sown,sother,pown+1,pother

for all pown = 0, � � � ,m− 1 and all sown, sother, pother = 0, � � � ,m.

(b) Diagonal dominance. Using part (ii) of Lemma 1,

θ
(j)
sown,sother+1,pown,pother

− θ(j)
sown,sother,pown,pother

≤ θ(j)
sown+1,sother,pown,pother

− θ(j)
sown,sother,pown,pother

which simplifies to

θ
(j)
sown,sother+1,pown,pother

≤ θ(j)
sown+1,sother,pown,pother

for all sown, sother = 0, � � � ,m− 1 and all pown, pother = 0, � � � ,m.

3. Minimize the objective function in (3) with the approximations in step 1 in lieu of
σ̃−1
j , subject to the constraints in step 2. I recommend using the Matlab package

CVX, but any convex programming solver will work.

4. Plug the estimator of σ in the functional of interest. For derivatives (and thus
elasticities) of the demand functions, use the implicit function theorem to write
the derivatives of σ in terms of derivatives of σ−1 in closed form. For example,
J
p
σ (δ, p) = −[Js

σ−1 (s, p)]−1J
p

σ−1 (s, p), where J
p
σ is the Jacobian of σ wrt prices and

similarly for the other terms.

4. Monte Carlo simulations

This section presents the results of Monte Carlo simulations. There are three goals.
First, I illustrate that the estimation procedure works well with moderate sample sizes—
indeed much smaller than the sample size used in the empirical application and other
readily available supermarket scanner data sets. Second, I show how the general model
from Section 2 may be applied to a variety of settings which include—but are not limited
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to—standard discrete choice. Finally, I investigate the performance of the estimator as
the number of goods increases.

I compare the performance of the nonparametric demand approach (NPD for short)
to that of standard methods. Specifically, I take as a benchmark a random coefficient
logit model with normal random coefficients. I refer to this model as BLP. In order to
summarize the results, I plot the own- and cross-price elasticities as a function of the
own price, since these functions are key inputs to many counterfactuals of interest. For
instance, the shape of the own-price elasticity function will turn out to play an impor-
tant role in determining the pass-through rate of a tax in the application of Section 5.
In each plot, all market-level variables different from the own-price are fixed at their
median values. All simulations are for the case with J = 2 number of goods (except for
Section 4.4), T = 3000 number of markets. I report 95% intervals based on 200 replica-
tions of the estimator. Appendix D presents additional simulation designs in which the
sample size is lower (T = 500), the number of goods is larger than two, and the index
restriction is violated.

4.1 Correctly specified BLP model

First, I generate data from a mixed logit model with normal random coefficients. This
means that the BLP procedure is correctly specified and, therefore, performs well. On
the other hand, one would expect the nonparametric approach to yield larger standard
errors, due to the fact that it does not rely on any parametric assumptions. Thus, com-
paring the relative performance of the two sheds some light on how large a cost one has
to pay for not committing to a parametric structure when that happens to be correct.

I generate the utility that consumer i derives from good j as

uij = αipj +βxj + ξj + εij ,

where εij is independently and identically distributed (i.i.d.) extreme value across goods
and consumers, αi is distributed N(−1, 0.152 ) i.i.d. across consumers and indepen-
dent of εij , and β = 1. There is an outside option with utility ui0 = εi0, where εi0 is also
extreme-value distributed. The exogenous shifters xj are drawn from a uniform [0, 2]
distribution,31 whereas the unobserved quality indices ξj are distributed N(1, 0.152 )
i.i.d. across goods. Excluded instruments zj are drawn from a uniform [0,1] distribution
and I generate prices according topj = 2(zj+ηj )+ξj , whereηj is uniform [0,0.1].32 Note
that, letting δj = βxj + ξj and using standard properties of the extreme-value distribu-

tion, we can write the market share for good j as sj = ∫ e
δj+αpj

1+∑J
k=1 e

δk+αpk dFα(α) ≡ σj(δ, p)

where dFα is the distribution of α. Therefore, this BLP data generating process yields a
demand system of the form studied in this paper.

31Note that I drop the superscript on xj , since in the simulations there is only one scalar exogenous
shifter for each good, that is, there is no x(2). This applies to all the simulations in this section.

32Note that, while I do not specify a supply model, the definition of prices above is such that they are pos-
itively correlated with both the excluded instruments (consistent with their interpretation as cost shifters)
and the unobserved quality (consistent with what would typically happen in equilibrium).
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Figure 1. BLP model: Own-price (left) and cross-price (right) elasticity functions. Note: The
solid lines are the true elasticity functions, whereas the lines marked with triangles and the lines
marked with asterisks correspond to the BLP and NPD 95% intervals, respectively.

When estimating demand nonparametrically, I impose the constraints in Lemma
1 (diagonal dominance and monotonicity) and I restrict the demand functions for the
two goods to be the same. Figure 1 shows the own- and cross-price elasticity functions
for good 1, respectively. Both the NPD and the BLP confidence bands contain the true
elasticity functions. As expected, the NPD confidence band is larger than the BLP one
for the cross-price elasticity; however, they are still informative. On the other hand, the
NPD and the BLP confidence bands for the own-price elasticity appear to be compa-
rable. Overall, I take this as suggestive that the penalty one pays when ignoring correct
parametric assumptions in finite samples may not be substantial.

One may wonder how robust the nonparametric estimates in Figure 1 are to the
choice of the tuning parameter, that is, the polynomial degree for the Bernstein approx-
imation. Table 2 shows how the estimator for the median own- and cross-price elastic-
ities performs as the tuning parameter changes. While, as expected, the bias tends to
decrease and the standard deviation to increase with the polynomial degree, the own-
and cross-price elasticities are pinned down reasonably well for a range of tuning pa-
rameters. Appendix D.4 provides more results suggesting that this does not just hold for
the median levels, but also for the entire elasticity functions.

4.2 Inattention

Next, I consider a discrete choice setting with inattention. In any given market, I assume
a fraction of consumers ignore good 1 and, therefore, maximize their utility over good
2 and the outside option only. The remaining consumers consider all goods. I take the
fraction of inattentive consumers to be 1 −�(3 − p1 ), where � is the standard normal
cdf. This implies that, as the price of good 1 increases, more consumers will ignore good
1, which is consistent with the idea that consumers might pay more attention to cheaper
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Table 2. Performance of nonparametric estimator for median own- and cross-price elasticities
as the polynomial degree varies.

True Degree Bias S.E. MSE

Own −1.339 6 0.079 0.024 0.007
8 0.035 0.023 0.002

12 0.003 0.028 0.001

Cross 0.569 6 −0.055 0.009 0.003
8 −0.059 0.011 0.004

12 −0.038 0.014 0.002

products (e.g., items that are on sale might have a special display in supermarkets or op-
tions might be filtered from cheapest to most expensive on a e-commerce platform).
Except for the presence of inattentive consumers, the simulation design is the same as
in Section 4.1. In nonparametric estimation, I impose the same constraints as in the pre-
vious simulation, except that I do not restrict the two demand functions to be the same,
since the demand function for good 1 is now different from that of good 2 due to the
presence of inattentive consumers. Accordingly, in the BLP procedure, I allow different
constants for the two goods.

Figure 2 shows the results for good 1. The nonparametric method captures the shape
of both the own- and the cross-price elasticity functions, whereas BLP tends to under-
estimate the own-price elasticity and overestimate the cross-price elasticity. Intuitively,
BLP does not capture the fact that, as the price of good 1 increases, more and more
consumers ignore good 1. This results in a BLP own-price elasticity that is too low in ab-
solute value. Similarly, the BLP model does not capture the fact that, as the price of good

Figure 2. Inattention: Own-price (left) and cross-price (right) elasticity functions. Note: The
solid lines are the true elasticity functions, whereas the lines marked with triangles and the lines
marked with asterisks correspond to the BLP and NPD 95% intervals, respectively.
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2 increases, a fraction of customers will not switch to good 1 because they ignore it. This
leads to a BLP cross-price elasticity that is too high.

4.3 Complementary goods

I now consider a setting where good 1 and 2 are not substitutes, but complements. I
generate the exogenous covariates and prices as in the previous two simulations,33 but
I now let market quantities be as follows:

qj(δ, p) ≡ 10
δj

p2
j pk

j = 1, 2; k 
= j.

Note that qj decreases with pk, and thus the two goods are complements. Now define
the function σj as

σj(δ, p) = qj(δ, p)
1 + q1(δ, p) + q2(δ, p)

.

Unlike in standard discrete choice settings, here σj does not correspond to the market
share function of good j. Instead, it is simply a transformation of the quantities yield-
ing a demand system that satisfies the connected substitutes assumption.34 In the NPD
estimation, I impose the same constraints as in the simulation of Section 4.1.

Figure 3 shows the results for good 1. Again, NPD captures the shape of the elas-
ticity functions well. Specifically, note that the cross-price elasticity is slightly negative
given that good 1 and good 2 are complements. On the other hand, the BLP confidence

Figure 3. Complements: Own-price (left) and cross-price (right) elasticity functions. Note: The
solid lines are the true elasticity functions, whereas the lines marked with triangles and the lines
marked with asterisks correspond to the BLP and NPD 95% intervals, respectively.

33One difference is that I now take the mean of ξ1 and ξ2 to be 2 instead of 1 in order to obtain shares
that are not too close to zero.

34See also Example 1 in Berry, Gandhi, and Haile (2013).
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bands are mostly off target, consistent with the fact that a discrete choice model is not
well suited to estimate demand for (divisible) complements. In particular, the discrete
choice framework implies that the goods are substitutes, and thus forces the cross-price
elasticity to be positive.

4.4 J > 2 goods

The simulation designs considered so far featured J = 2 goods, which corresponds to the
setting of the empirical application. However, researchers are often interested in model-
ing demand for a larger number of goods. To this end, I now investigate the performance
of the estimator as the number of products increases. To alleviate the curse of dimen-
sionality that arises as J grows, I both impose exchangeability and restrict prices (as well
as the x attributes) to enter the indices δ in estimation. As discussed in Section 3.2, both
of these constraints substantially reduce the number of parameters to estimate.

The data is generated from the discrete choice dgp from Section 4.1 with one dif-
ference: the coefficients (α, β) on the product attributes (pj , xj ) are now drawn from a
discrete distribution and are correlated.35 Because the product attributes have random
coefficients, the index restriction is not satisfied (ξj does not enter the demand func-
tions in the same way as xj or pj), and thus the nonparametric model I estimate is mis-
specified. In addition, the BLP model is also misspecified in that it incorrectly assumes
that the random coefficients are normally distributed and independent of each other.
Comparing the performance of the two estimators then illustrates the relative impact of
two different types of misspecification: (i) that arising from incorrect distributional as-
sumptions in a parametric model, and (ii) that stemming from incorrectly imposing the
index restriction in the proposed nonparametric approach. Table 3 shows that, as the
number of goods ranges from 3 to 10, the nonparametric approach consistently outper-
forms the parametric one in pinning down the cross-price and especially the own-price
elasticities. This suggests that even the more restrictive version of the nonparametric

Table 3. Performance of estimators for median own- and cross-price elasticities as J varies.

NPD BLP

J True Bias S.E. MSE Bias S.E. MSE

Own 3 −1.322 −0.017 0.049 0.003 −0.980 0.052 0.963
5 −1.458 −0.065 0.078 0.010 −1.479 0.089 2.195

10 −1.559 0.429 0.088 0.191 −0.857 0.137 0.752

Cross 3 0.277 −0.088 0.022 0.008 0.247 0.217 0.108
5 0.173 −0.015 0.019 0.001 0.050 0.035 0.004

10 0.091 −0.048 0.012 0.003 0.017 0.050 0.003

Note: Mixed logit dgp with correlated discrete random coefficients. Both the NPD and the BLP model are misspecified.

35Specifically, I draw α from the distribution that places equal probabilities on the values −3 and −0.5
and set β= −α, so that there are two types of consumers, one that places low weights and one that places
high weights on the observable product attributes.
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estimator that imposes both exchangeability and the index restriction in all the prod-
uct attributes might be preferable to a parametric model that makes incorrect distribu-
tional assumptions on the unobservables. Appendix D.3 further explores the robustness
of the nonparametric approach to increasing violations of the index restriction, while
Appendix D.5 contains estimates for the entire own- and -cross elasticity functions for
the J > 2 case.

When the number of goods is higher (in the dozens), one would typically need ad-
ditional restrictions to make the problem tractable, which is an interesting avenue for
future research. As an example, Appendix D.6 provides simulations for a semiparamet-
ric model that maintains the conventional logit functional form but is flexible on how
prices and covariates enter the logit “wrapper.”36 Under this more restrictive model, the
curse of dimensionality in the number of goods is broken and the estimator can be easily
scaled to many goods.

5. Application to tax pass-through and multiproduct firm pricing

In this section, I use the proposed nonparametric procedure to investigate the robust-
ness of two counterfactual exercises to the parametric specification of demand. First, I
quantify the pass-through of a tax into retail prices. It is well known that the extent to
which a tax is passed through to consumers hinges on the curvature of demand (see,
e.g., Weyl and Fabinger (2013)). Therefore, flexibly capturing the shape of the demand
function is crucial to obtaining accurate results.

The second counterfactual concerns the role played by the multiproduct nature of
retailers in driving up markups. Specifically, a firm simultaneously pricing multiple (sub-
stitute) goods is able to internalize the competition that would occur if those goods were
sold by different firms, thus pushing prices upwards.37 Quantifying the magnitude of
this effect is ultimately an empirical question, which again depends on the shape of the
demand functions.

5.1 Data

I use data on sales of fresh fruit at stores in California. Specifically, I focus on straw-
berries, and look at how consumers choose between organic strawberries, nonorganic
strawberries, and other fresh fruit, which I pool together as the outside option. While
this is a small product category, it has a few features that make it especially suitable for
a clean comparison between different static demand estimation methods. First, given
the high perishability of fresh fruit, one may reasonably abstract from dynamic consid-
erations on both the demand and the supply side. Strawberries, in particular, belong to
the category of nonclimacteric fruits (see, e.g., Knee (2002)), which means that they can-
not be artificially ripened using ethylene.38 This limits the ability of retailers as well as

36I thank an anonymous referee for this suggestion.
37This is one of the determinants of markups considered by Nevo (2001) in his analysis of the ready-to-

eat cereal industry.
38Unlike climacteric fruits, such as bananas.
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consumers to stockpile and further motivates ignoring dynamic considerations in the
model. Second, while strawberries are harvested in California essentially year round,
other fruits, for example, peaches are not, which provides some arguably exogenous
supply-side variation in the richness of the outside option relative to the inside goods.
Finally, the large number of store/week observations combined with the limited num-
ber of goods provide an ideal setting for the first application of a nonparametric—and
thus data-intensive—estimation approach.

I instrument for prices using Hausman-type IVs, that is, the price of the same prod-
ucts in nearby markets (see Hausman (1996)). In addition, for the inside goods, I also
use shipping-point spot prices, as a proxy for the wholesale prices faced by retailers. Be-
sides prices, I include the following shifters in the demand functions: (i) a proxy for the
availability of nonstrawberry fruits in any given week; (ii) a measure of consumer tastes
for organic produce in any given store; and (iii) income.

Appendix F provides further details on the construction of the data set, as well as
some summary statistics and results for the first-stage regressions.

5.2 Model

Let 0, 1, and 2 denote nonstrawberry fresh fruit, nonorganic strawberries, and organic
strawberries, respectively. I take the following model to the data:

s1 = σ1
(
δstr, δorg, p0, p1, p2, x(2)),

s2 = σ2
(
δstr, δorg, p0, p1, p2, x(2)),

δstr = β0,str −β1,strx
(1)
str + ξstr,

δorg = β0,org +β1,orgx
(1)
org + ξorg.

(6)

In the display above, si denotes the share of product i, defined as the quantity of i di-
vided by the total quantity across the three products, x(1)

org denotes a measure of taste

for organic products,39 x(1)
str denotes the availability of other fruit, x(2) denotes income,

and (ξstr, ξorg ) denote unobserved store/week level shocks for strawberries and organic
produce, respectively. In Appendix G, I show that the demand specification (6) is con-
sistent with two classes of models in which consumers optimally choose from the three
products, the quality of organic produce x(1)

org enters the utility of goods 1 and 2 and the

variable x(1)
str shifts the utility of the outside option. Other microfoundations are possi-

ble and none of the additional restrictions in the models in Appendix G are imposed
in estimation. Note that (6) is an example of a model in which the exogenous demand
shifters x(1)

str , x(1)
org are not product-specific characteristics. As mentioned before, this is

allowed since the key requirement is that there be at least as many exogenous shifters as
there are goods. Further, notice that each of the two demand functions has its own sub-
script, indicating that I will not impose exchangeability restrictions across products and
instead will let the two demands be arbitrarily different functions of their arguments.

39Specifically, I take the percentage of organic sales over total yearly sales in the lettuce category at the
store.
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The unobservables (ξstr, ξorg ) could include, among other things, shocks to the qual-
ity of produce at the store/week level, variation in advertising and/or display across
stores and time, and taste shocks idiosyncratic to a given store’s customer base (pos-
sibly varying over time). To the extent that these factors are taken into account by the
store when pricing produce, the prices (p0, p1, p2 ) will be endogenous. In contrast, I
assume that the demand shifters (x(1)

str , x(1)
org ) are mean independent of (ξstr, ξorg ). Re-

garding x(1)
str , this is a proxy for the total supply of nonstrawberry fruits in California in a

given week. As such, I view this as a purely supply-side variable that shifts demand for
strawberries inwards by increasing the richness of the outside option,40 but is indepen-
dent of store-level shocks.41 As for x(1)

org, this is meant to approximate the taste for organic
products of a given store’s customer base. One plausible violation of exogeneity for this
variable would arise if consumers with a stronger preference for organic products (e.g.,
wealthy consumers) tended to go to stores that sell better-quality organic produce (e.g.,
Whole Foods). This could induce positive correlation between x(1)

org and ξorg. However,
Appendix E shows that many objects of interest, including the counterfactuals in Sec-
tion 5.4, are robust to certain forms of endogeneity arising through this channel. Note
that in model (6), the exogenous shifters x(1)

str and x(1)
org are not product-specific charac-

teristics, but rather market-level variables. As highlighted in Section 2, the framework of
the paper accommodates this.

I compare the nonparametric approach to a standard parametric model of demand.
Specifically, I consider the following mixed logit model:

ui,1 = β1 + (βp,i +βx(2)x(2))p1 +βp,0p0 +βpar
str x

(1)
str + ξ1 + εi,1,

ui,2 = β2 + (βp,i +βx(2)x(2))p2 +βp,0p0 +βpar
str x

(1)
str +βpar

orgx
(2)
org + ξ2 + εi,2,

(7)

where (εi,norg, εi,org ) are i.i.d. extreme value shocks, (ξ1, ξ2 ) represent unobserved qual-
ity of nonorganic and organic strawberries, respectively, and the price coefficient βp,i

can take one of two values across consumers.42

Comparing model (6) to model (7) illustrates the flexibility of the approach proposed
in this paper. The latter model specifies the indirect utility from each good, and thus
imposes the implicit (and unrealistic) assumption that each consumer makes a discrete
choice between one unit of nonorganic strawberries, one unit of organic strawberries,

40For example, in the summer many fresh fruits (e.g., Georgia peaches) are in season, which tends to
increase the appeal of the outside option relative to strawberries.

41The variable x(1)
str would be endogenous if the quality of strawberries sold in California supermarkets

systematically varied with the harvesting patterns of other fresh fruits. This does not seem to be a first-order
concern given that (i) strawberries are harvested in California essentially year round; and (ii) more than 90%
of all strawberries produced in the US are grown in California (United States Department of Agriculture
(2017)).

42Following the original BLP paper, I also estimated a mixed logit model with a normal random coeffi-
cient. The coefficients—and more importantly—the counterfactuals in Section 5.4 are very similar across
the two specifications. In the paper, I present the two-point distribution because it is slightly more flexible
than the one with normal coefficients. Specifically, the former has three parameters for the distribution of
the random coefficient (the two values plus the probability of, say, the first value), while the latter has two
parameters (the mean and the variance of the normal distribution).
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and one unit of other fruits. On the other hand, model (6) allows for a broader range
of consumer behaviors, including continuous choice, as I show in Appendix G.2. This is
one of the advantages of targeting the structural demand function directly as opposed
to the underlying utility parameters.

In order to perform the counterfactual exercises in Section 5.4, I need to take a stand
on the supply side. Following the retail literature, I make the assumption that each store
acts as a monopolist when choosing strawberry prices. This model of supply is justified if
consumers do not compare prices across stores when making their strawberry purchase
decisions, which seems to be a reasonable assumption.

5.3 Estimation

In nonparametric estimation, I impose the constraints on the Jacobian of demand based
on Lemma 1, but do not impose exchangeability. Thus, I allow the organic and nonor-
ganic category to have different demand functions. Further, I choose the degree of the
polynomials for the Bernstein approximation based on a two-fold cross-validation pro-
cedure.43 Table 4 shows the median own- and cross-price elasticities based on both the
parametric and the nonparametric model.44 One can see that the nonparametric elas-
ticities tend to be higher than those estimated parametrically.

In order to compare the fit of the nonparametric model relative to the mixed logit
model, I follow the same two-fold cross-validation approach used to choose the degree
for the Bernstein polynomial approximation. As shown in Table 5, the greater flexibility
of the NPD model translates into a lower average MSE.

Table 4. Estimation results.

NPD Mixed-logit

Nonorganic Organic Nonorganic Organic

Own-price elasticity −1.402 −5.503 −0.953 −2.651
(0.032) (0.672) (0.011) (0.039)

Cross-price elasticity 0.699 1.097 0.190 0.959
(0.044) (0.177) (0.031) (0.006)

Note: Median values. Standard errors in parentheses.

43See, for example, Chetverikov and Wilhelm (2017). Specifically, I partition the sample into two sub-
samples of equal size. Then I estimate the model using the first subsample and compute the mean squared
error (MSE) for the second subsample. I repeat this procedure inverting the role of the two subsamples and
use the average of the two MSEs as the criterion for choosing the polynomial degree. I let the polynomial
degree vary in the set {6, 8, 10, 12, 14} and find that a polynomial of degree 10 delivers the lowest average
MSE.

44The standard errors for the elasticities as well as the counterfactual quantities in the next section are
valid under the assumption that the unobservables are i.i.d. over time and across stores. Regarding i.i.d.-
ness over time, recall that we are in part controlling for seasonal patterns via the availability of other fruit
(x(1)

str ); therefore, this amounts to assuming that the remaining demand shocks are not serially correlated.
Regarding i.i.d-ness across stores, one might be concerned that stores belonging to the same chain have
correlated demand shocks since they may attract similar customers or have similar quality levels. To allevi-
ate this concern, I reestimated the model with chain fixed effects and obtained similar results.



Quantitative Economics 13 (2022) Market counterfactuals 571

Table 5. Two-fold cross-validation results.

NPD Mixed Logit

MSE 0.93 2.38

5.4 Counterfactuals

I use the estimates to address two counterfactual questions. First, I consider the effects
of a per-unit tax on prices.45 In each market, I compute the equilibrium prices when a tax
is levied on each of the inside goods individually. I set the tax equal to 25% of the price for
the product in that market. As shown in Table 6, the nonparametric approach delivers
a higher median tax pass-through in the case of nonorganic strawberries relative to the
mixed logit model. However, the two confidence intervals overlap. On the contrary, in
the case of organic strawberries, the nonparametric model yields a much lower median
pass-through (33% of the tax) relative to mixed logit (91%) with no overlap in the confi-
dence intervals. To shed some light on the drivers of this pattern, in Figure 4 I plot uni-
form confidence bands for the own-price elasticity of the organic product as a function
of its price.46,47 The own-price elasticity estimated nonparametrically is much steeper
than the parametric one. This is consistent with the pass-through results. All else equal,
a retailer facing a steeper elasticity function has a stronger incentive to contain the price
increase in response to the tax relative to a retailer facing a flatter elasticity function.

As a second counterfactual experiment, I quantify the “portfolio effect.” Specifically,
I ask what prices would be charged if, in each market, there were two competing retail-
ers, one selling organic strawberries and the other selling nonorganic strawberries, in-

Table 6. Effect of a specific tax.

NPD Mixed Logit

Nonorganic 0.84 0.53
(0.17) (5 · 10−3 )

Organic 0.33 0.91
(0.23) (5 · 10−4 )

Note: Median changes in prices as a percentage of
the tax. Standard errors in parentheses.

45As argued in Weyl and Fabinger (2013), the equilibrium outcomes are not affected by whether the tax is
nominally levied on the consumers or on the retailer. This is true for a variety of models of supply, including
monopoly. Therefore, without loss of generality, one may assume the tax is nominally levied on consumers
in the form of a sales tax.

46Own-price on the horizontal axis varies within its interquartile range. I set all other variables at their
median levels, except for δ2, which I set at its 75% percentile. Setting it at its median delivers a similar shape
for the elasticity function, but noisier estimates due to the fact that s2—which shows up in the denominator
of the elasticity—approaches zero as p2 increases.

47The uniform confidence bands are obtained by applying the score bootstrap procedure described in
CC.
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Figure 4. Organic strawberries: Own-price elasticity function.

stead of a two-product monopolist. I assume the two retailers compete on prices, com-
pute the resulting equilibrium, and compare it to the observed (monopoly) prices.48

This type of exercise is instrumental to assessing the impact of large retailers on con-
sumer prices. Specifically, it provides a measure of the upwards pressure on prices given
by the fact that a retailer selling multiple products is able to partially internalize price
competition. On the other hand, large retailers might tend to charge lower prices due
to, among other things, economies of scale or loss-leader behavior (see, e.g., Lal and
Matutes (1994), Lal and Villas-Boas (1998), and Chevalier, Kashyap, and Rossi (2003)).
Quantifying these different effects on prices is ultimately an empirical question that re-
quires reliable estimates of demand.

Table 7 reports the difference between the observed prices and the prices that would
arise in the counterfactual world with two single-product retailers. The parametric

Table 7. Effect of multiproduct pricing.

NPD Mixed Logit (I) Mixed Logit (II) Mixed Logit (III)

Nonorganic 0.10 0.08 0.20 0.21
(3 · 10−3 ) (1 · 10−3 ) (8 · 10−4 ) (2 · 10−3 )

Organic 0.43 0.42 0.54 0.55
(6 · 10−3 ) (2 · 10−3 ) (9 · 10−4 ) (1 · 10−3 )

Note: Median difference between the observed prices and the optimal prices chosen by two competing retailers as a per-
centage of markups. Standard errors in parentheses. Mixed Logit (I) refers to the model in (7). Mixed Logit (II) refers to the
model in (7) with β1 = β2; Mixed Logit (III) refers to the model in (7) with β1 = β2 = 0.

48Since this counterfactual exercise amounts to splitting a monopoly into a duopoly, it is related to the lit-
erature on merger analysis. See, for example, Nevo (2000) and Jaffe and Weyl (2013) and references therein.
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model in (7)—labeled Mixed Logit (I)—and the nonparametric approach yield very sim-
ilar results. In the median market, both models attribute around 10% and just above 40%
of markups to the portfolio effect for nonorganic and organic strawberries, respectively.
In other words, markups would be 10% to 40% lower in the scenario with two compet-
ing single-product retailers. One may wonder how robust this result is to modifications
of the parametric specification. To this end, I estimate two additional models—labeled
Mixed Logit (II) and (III)—that restrict the constants in model (7) to be the same and to
be zero, respectively. Thus, while Mixed Logit (I) allows for product-specific dummies,
Mixed Logit (II) only allows for a dummy for the inside goods jointly, and Mixed Logit
(III) does not allow for any unobserved systematic differences between the inside goods
or between the inside and the outside goods. The two restricted models tend to attribute
a larger share of markups to the portfolio effect relative to the more flexible parametric
specification or the nonparametric approach. This suggests that allowing for product
specific dummies is important in this context and points to a wider use of the approach
developed in this paper as a tool for selecting among different possible (parametric)
models.

As a further step in this direction, I estimated two additional mixed-logit models:
(i) I added a quadratic and a cubic term in own-price (with nonrandom coefficients) to
specification (7); and (ii) I allowed for more flexible heterogeneity in the price sensitivity
by letting the price coefficient take three values instead of two. Model (i) gives different
point estimates for the counterfactuals, but similar qualitative conclusions,49 Model (ii)
gives essentially the same results as the parametric baseline in Table 4 since the weight
attached to the third value for the price coefficient is estimated to be very close to zero.

6. Conclusion

In this paper, I develop and apply a nonparametric approach to estimate demand in
differentiated products markets. The methodology relaxes several arguably arbitrary re-
strictions on consumer behavior and preferences that are embedded in standard dis-
crete choice models. I achieve this by estimating the demand functions nonparametri-
cally and leveraging a number of constraints from consumer theory. Further, I provide
primitive conditions sufficient to obtain valid standard errors for quantities of interest.

I then use the approach as a benchmark to test the robustness of counterfactual out-
comes given by standard parametric methods. While I find that a standard model yields
a higher tax pass-through for one product relative to the nonparametric approach, an
exercise designed to quantify the upward pressure on prices given by the multiproduct
nature of sellers suggests that a flexible enough parametric model captures the patterns
in the data well.

This paper opens several avenues for future research. First, it would be interesting
to explore additional ways to tackle the curse of dimensionality, and thus enhance the

49Specifically, it yields median pass-through rates of 0.45 and 0.91 for nonorganic and organic strawber-
ries, respectively. Thus, this parametric model still overestimates tax pass-through for the organic category,
and if anything, tends to slightly underestimate pass-through for the nonorganic category. Turning to the
multi-product pricing counterfactual, the model predicts larger effects relative to the baseline results, with
the median markup decreasing by 15% and 49% for nonorganic and organic strawberries, respectively.
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applicability of the approach. For example, in markets with dozens of goods the current
methodology would typically be unfeasible. However, if good j is effectively only com-
peting with a handful of other products, then the remaining products’ prices and char-
acteristics do not enter good j’s demand function, which would substantially reduce
the dimensionality of the model. Therefore, developing a data-driven way of selecting
the relevant set of competitors for a given product appears to be a promising line of
research. Second, while the counterfactual analysis in this paper suggest that the non-
parametric approach may be used to guide the choice among parametric specifications,
additional work is required to make this argument formal. In this respect, the statistics
literature on focused model selection might provide valuable insights. Finally, it would
be interesting to apply the methodology proposed here to a broader range of empirical
settings. For instance, a recent paper by Adao, Costinot, and Donaldson (2017) shows
that many questions of interest in international trade may be addressed by considering
an economy where countries directly exchange factors of production instead of goods.
While their identification argument is nonparametric, they estimate a parametric model
in practice. Given that production factors are low dimensional, pursuing a more flexible
approach seems feasible in their setting. One could then assess how robust the results
are to the maintained parametric assumptions.

Appendix A presents the assumptions for Theorems 1, 2, 3, and the proofs for Theo-
rems 2 and 3. Online Appendix B contains the proof for Theorem 1 and supplementary
results for inference. Online Appendix C discusses additional economic constraints and
shows how to enforce them in estimation. Online Appendix D presents the results of
additional Monte Carlo simulations. Online Appendix E discusses violations of the exo-
geneity restriction maintained throughout the paper. Online Appendix F discusses the
construction of the data and contains descriptive statistics. Finally, Online Appendix G
provides two possible microfoundations for the demand model estimated in the empir-
ical application.

Appendix A: Inference

This Appendix contains all the notation and assumptions for the inference results in
Section 3 of the paper, as well as the proofs for Theorem 2 and 3.

A.1 Setup and notation

For simplicity, we focus on the case where there are no additional exogenous covariates
x(2) in the demand system. Accordingly, we drop x(2) and use x to denote what was de-
noted by x(1) in the main text. As pointed out by CC (Section 3.3), allowing for x(2) is
straightforward and does not change anything in the implementation of the estimator.

We first introduce some notation that is used throughout this Appendix. We denote
by S , P , Z , � the support of S, P , Z, ξ, respectively. Also, we let W ≡ (X , Z ) denote
the exogenous variables and W denote its support. Similarly, we let Y ≡ (S, P ) denote
the arguments of the unknown functions and Y denote its support. For every y ∈ Y ,
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let h0(y ) ≡ [h0,1(y ), � � � , h0,J(y )]′ ≡ [σ−1
1 (y ), � � � σ−1

J (y )]′, so that the estimating equations
become

xj = h0,j(y ) + ξj , j ∈ J . (8)

We assume that, for j ∈ J , h0,j ∈ H, where H is the Hölder ball of smoothness r, and
we endow it with the norm ‖ · ‖∞ defined by ‖h‖∞ ≡ maxj∈J ‖hj‖1,∞ for a function h=
[h1, � � � , hJ ], where ‖hj‖1,∞ denotes the sup-norm for a scalar-valued function hj . We
also let ‖v‖ denote the Euclidean norm of a vector v, ‖M‖ denote the norm of an m1-
by−m2 matrix M defined as ‖M‖ ≡ sup{‖Mv‖ : v ∈Rm2 , ‖v‖ = 1}, and (M)−l ≡ (M′M)−1M′
be the left inverse of a matrix M.

Further, we let {ψ(i)
1,Mi

, � � � , ψ(i)
Mi ,Mi

} be the collection of basis functions used to ap-

proximate h0,i for i ∈ J , and letM =∑J
j=1Mj be the dimension of the overall sieve space

for h. Similarly, we let {a(i)
1,Ki

, � � � , a(i)
Ki ,Ki

} be the collection of basis functions used to ap-

proximate the instrument space for h0,i, and let andK =∑J
j=1Kj .

Next, letting

diag(mat1, � � � , matJ ) ≡

⎡
⎢⎢⎢⎢⎣

mat1 0d1,r×d2,c · · · 0d1,r×dJ,c

0d2,r×d1,c mat2 · · · 0d2,r×dJ,c
...

...
. . .

...
0dJ,r×d1,c 0dJ,r×d2,c · · · matJ

⎤
⎥⎥⎥⎥⎦

for matrices mat j ∈R
dj,r×dj,c with j ∈ J , we define, for i ∈ J ,

ψ(i)
Mi

(y ) = (ψ(i)
1,Mi

(y ), � � � , ψ(i)
Mi ,Mi

(y )
)′

Mi − by − 1,

ψM (y ) = diag
(
ψ(1)
M1

(y ), � � � , ψ(J )
MJ

(y )
)

M − by − J,

�(i) = (ψ(i)
Mi

(y1 ), � � � , ψ(i)
Mi

(yT )
)′

T − by −Mi,

a(i)
Ki

(w) = (a(i)
1,Ki

(w), � � � , a(i)
Ki ,Ki

(w)
)′

Ki − by − 1,

aK(w) = diag
(
a(1)
K1

(w), � � � , a(J )
KJ

(w)
)

K − by − J,

A(i) = (a(i)
Ki

(w1 ), � � � , a(i)
Ki

(wT )
)′

T − by −Ki,
A= diag(A(1), � � � ,A(J ) ) JT − by −K,

Li = E
(
a(i)
Ki

(Wt )ψ
(i)
Mi

(Yt )′
)

Ki − by −Mi,

L= diag(L1, � � � , LJ ) K − by −M ,

L̂i =
A′

(i)�(i)

T
Ki − by −Mi,

L̂= diag(L̂1, � � � , L̂J ) K − by −M ,

GA,i = E
(
a(i)
Ki

(Wt )a
(i)
Ki

(Wt )′
)

Ki − by −Ki,
GA = diag(GA,1, � � � ,GA,J ) K − by −K,
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ĜA,i =
A′

(i)A(i)

T
Ki − by −Ki,

ĜA = diag(ĜA,1, � � � , ĜA,J ) K − by −K,

Gψ,i = E
(
ψ(i)
Mi

(Yt )ψ
(i)
Mi

(Yt )′
)

Mi − by −Mi,

Gψ = diag(Gψ,1, � � � ,Gψ,J ) M − by −M ,

X(i) = (xi1, � � � , xiT )′ T − by − 1,

X = (X ′
(1), � � � ,X ′

(J )

)′
JT − by − 1.

Also, we let, for j, k ∈ J ,

�jk =�′
kj = E

(
ξjtξkta

(j)
Kj

(Wt )a
(k)
Kk

(Wt )′
)
Kj − by −Kk,

�=

⎡
⎢⎢⎢⎢⎣
�11 �12 · · · �1J

�21 �22 · · · �2J
...

...
. . . · · ·

�J1 �J2 · · · �JJ

⎤
⎥⎥⎥⎥⎦ K − by −K

and, similarly,

�̂jk = �̂′
kj = 1

T

T∑
t=1

ξ̂jt ξ̂kta
(j)
Kj

(wt )a
(k)
Kk

(wt )′ Kj − by −Kk,

�̂=

⎡
⎢⎢⎢⎢⎣
�̂11 �̂12 · · · �̂1J

�̂21 �̂22 · · · �̂2J
...

...
. . . · · ·

�̂J1 �̂J2 · · · �̂JJ

⎤
⎥⎥⎥⎥⎦ K − by −K,

where ξ̂jt = xjt − ĥj(yt ).
For i ∈ J , we define

ζA,i ≡ sup
w∈W

∥∥G− 1
2

A,ia
(i)
Ki

(w)
∥∥, ζψ,i ≡ sup

y∈Y

∥∥G− 1
2

ψ,iψ
(i)
Mi

(y )
∥∥, ζi ≡ ζA,i ∨ ζψ,i

and let ζ ≡ maxj∈J ζj . The rate at which ζ diverges to infinity with the sample size will
play a role in the proofs. When splines (including Bernstein polynomials) are used for
aK and ψM , we have ζ =O(

√
M ) (see, e.g., Newey (1997).)

As in CC, we use the following sieve measure of ill-posedness, for i ∈ J :

τ(i)
Mi

≡ sup
hi∈�̃Mi :hi 
=0

(
E
[(
hi(Y )

)2]
E
[(
E
[
hi(Y )|W

])2]
) 1

2

,

where �̃Mi is the closed linear span of {ψ(i)
Mi

} and we let τM ≡ maxj∈J τ(j)
Mj

. The rate at

which τM diverges to infinity may be viewed as a measure of how difficult the estima-
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tion problem is. In order to formalize this, we will need appropriate notation. Specifi-
cally, letting aT and bT be sequences of positive numbers, the notation aT � bT means
lim supT→∞

aT
bT
<∞, and the notation aT � bT means aT � bT and bT � aT .

Next, for every 2J-vector of integers α̃ and function g : Y �→ R, we let |α̃| ≡∑2J
j=1 α̃j

and ∂α̃g ≡ ∂|α̃|g

∂α̃1 s1···∂α̃J sJ∂α̃J+1p1···∂α̃2J pJ
. Similarly, for h = [h1, � � � , hJ ] : Y �→ RJ , we let ∂α̃h ≡

[∂α̃h1, � � � , ∂α̃hJ ].
The (unconstrained) sieve NPIV estimator ĥi has the following closed form:

ĥi(y ) =ψ(i)
Mi

(y )′θ̂i

for

θ̂i =
[
�′

(i)A(i)
(
A′

(i)A(i)
)−
A′

(i)�(i)
]−
�′

(i)A(i)
(
A′

(i)A(i)
)−
A′

(i)X(i).

We write this in a more compact form as

θ̂i = 1
T

[
L̂′
iĜ

−
A,iL̂i

]−
L̂′
iĜ

−
A,iA

′
(i)X(i).

Stacking the J estimators, we write

θ̂= (θ̂′
1, � � � , θ̂′

J

)′ = 1
T

[
L̂′Ĝ−

AL̂
]−
L̂′Ĝ−

AA
′X

and

ĥ(y ) =ψM (y )′θ̂.

Next, lettingH0,j ≡ (h0,j(y1 ), � � � , h0,j(yT ))′ andH0 ≡ (H ′
0,1, � � � ,H ′

0,J )′, we define

θ̃= 1
T

[
L̂′Ĝ−

AL̂
]−
L̂′Ĝ−

AA
′H0 (9)

and let

h̃(y ) =ψM (y )′θ̃.

For any functional f : H �→ R and any (h, v) ∈ H × H, we let Df (h)[v] ≡ ∂f (h+τv)
∂τ |τ=0 de-

note the pathwise derivative of f at h in the direction v (if it exists). Next, letting vecg,J,j

be the column J-vector valued function that returns all zeros except for the jth element,
where it returns the function g, we define

Df (h)
[
ψ

(j)
Mj

]≡ (Df (h)[vec
ψ

(j )
1,Mj

,J,j
], � � � ,Df (h)[vec

ψ
(j )
Mj ,Mj

,J,j
]
)′

Mj − by − 1,

Df (h)[ψM ] ≡ (Df (h)
[
ψ(1)
M1

]′
, � � �Df (h)

[
ψ(J )
MJ

]′)′
M − by − 1.

Finally, we let

v2
T (f ) =Df (h0 )[ψM ]′

(
L′G−1

A L
)−1
L′G−1

A �G
−1
A L
(
L′G−1

A L
)−1
Df (h0 )[ψM ]



578 Giovanni Compiani Quantitative Economics 13 (2022)

denote the sieve variance for the estimator f (ĥ) of the functional f , and let the sieve
variance estimator be

v̂2
T (f ) =Df (ĥ)[ψM ]′

(
L̂′Ĝ−1

A L̂
)−1
L̂′Ĝ−1

A �̂Ĝ
−1
A L̂
(
L̂′Ĝ−1

A L̂
)−1
Df (ĥ)[ψM ]. (10)

Because the functionals of interest are defined for fixed (s, p), they will typically be
slower than

√
T -estimable (or “irregular”), that is, v2

T (f ) ↗ ∞ as T → ∞.

A.2 Assumptions for Theorem 1

This section collects the assumptions for Theorem 1. The proof can be found in Online
Appendix B.

Assumption 2. The variables (Xt , Zt , Pt , ξt ) are independent and identically dis-
tributed across markets.

Assumption 3. For all j, k ∈ J , j 
= k:

(i) supw∈W E(ξ2
j |w) ≤ σ2 <∞;

(ii) infw∈W E(ξ2
j |w) ≥ σ2 > 0;

(iii) supw∈W E(|ξjξk||w) ≤ σcov <∞;

(iv) supw∈W E[ξ2
j I{
∑J
i=1 |ξi| > �(T )}|w] = o(1) for any positive sequence �(T ) ↗ ∞;

(v) E(|ξj|2+γ(1)
)<∞ for some γ(1) > 0;

(vi) E(|ξjξk|1+γ(2)
)<∞ for some γ(2) > 0.

Assumption 4.

(i) τMζ
√
M(logM )

T = o(1);

(ii) ζ
(2+γ(1) )
γ(1)

√
(logK)
T = o(1) and ζ

(1+γ(2) )
γ(2)

√
(logK)
T = o(1), where γ(1), γ(2) > 0 are defined

in Assumption 3(v)–3(vi);

(iii) K �M and ζ =O(
√
M ).

Assumption 5. The basis used for the instrument space is the same across all goods, that
is,Kj =Kk and a(j)

Kj
(·) = a(k)

Kk
(·) for all j, k ∈ J .

Assumption 6. ‖ĥ− h0‖∞ = op(1).

Assumption 7. Let HT ⊂ H be a sequence of neighborhoods of h0 with ĥ, h̃ ∈ HT wpa1,
and assume that the sieve variance vT (f ) for the functional f is strictly positive for every
T . Further, assume that:
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(i) v �→Df (h0 )[v] is a linear functional and there exists αwith |α| ≥ 0 s.t. |Df (h0 )[h−
h0]| � ‖∂αh− ∂αh0‖∞ for all h ∈ HT ;

There are α1, α2 with |α1|, |α2| ≥ 0 s.t.

(ii) |f (ĥ) − f (h0 ) −Df (h0 )[ĥ− h0]| � ‖∂α1 ĥ− ∂α1h0‖∞‖∂α2 ĥ− ∂α2h0‖∞;

(iii)
√
T

vT (f ) (‖∂α1 ĥ−∂α1h0‖∞‖∂α2 ĥ−∂α2h0‖∞ +‖∂αh̃−∂αh0‖∞ ) =Op(ηT ) for a nonneg-
ative sequence ηT such that ηT = o(1);

(iv) 1
vT (f )‖(Df (ĥ)[ψM ]′ −Df (h0 )[ψM ]′ )(G

− 1
2

A L)−l ‖ = op(1).

Discussion of assumptions Assumption 3 corresponds to Assumption 2 in CC, modified
to account for the fact that my model has J equations and J error terms. Assumption 4(i)
corresponds to the condition imposed by CC in Theorem D.1, whereas 4(ii) is similar to
Assumption 3(iii) in CC. Assumption 4(iii) restricts the growth rates of the sieve spaces
for the endogenous variables and the instruments. The requirement that ζ = O(

√
M )

holds, for instance, when splines are used to approximate the unknown functions (see,
e.g., Newey (1997)). I impose it since in practice I advocate using Bernstein polynomials,
which are a special case of splines. Assumption 5 is not necessary but I impose it for
simplicity. Assumption 6 requires ĥ to be a consistent estimator. CC provide sufficient
conditions for it and characterize the rate of convergence. Assumption 7 corresponds to
the sufficient conditions in Remark 4.1 of CC.

A.3 Theorem 2: Price elasticity functionals

We now focus on the case where the functional f is the own-price price elasticity of
good 1 at a fixed (s, p) ≡ (s1, s2, p1, p2 ) and Bernstein polynomials are used for both
the endogenous variables and the instruments. The goal is to provide sufficient, lower-
level conditions for Theorem 1. Analogous arguments hold for the own-price elasticity
of good 2 and for the cross-price elasticities.

The functional of interest takes the form

fε(h0 ) = −p1

s1

∂h0,2(s, p)
∂s2

∂h0,1(s, p)
∂p1

− ∂h0,1(s, p)
∂s2

∂h0,2(s, p)
∂p1

∂h0,1(s, p)
∂s1

∂h0,2(s, p)
∂s2

− ∂h0,1(s, p)
∂s2

∂h0,2(s, p)
∂s1

≡ −p1

s1

N1 −N2

D1 −D2
. (11)

Theorem 2 maintains the following assumption.

Assumption 8.

(i) P has bounded support and (P , S) have densities bounded away from 0 and ∞;

(ii) The basis used for both the endogenous variables and the instruments is tensor-
product Bernstein polynomials. Further, the univariate Bernstein polynomials for
the endogenous variables all have the same degreeM

1
4 ;
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(iii) The unknown functions h0 = [h0,1, h0,2]′ belong to the Hölder ball of smoothness
r ≥ 8 and finite radius;

(iv) M
2+γ(1)

2γ(1)
√

logT
T = o(1) and M

1+γ(2)

2γ(2)
√

logT
T = o(1), where γ(1), γ(2) > 0 are defined in

Assumption 3(v)–3(vi);

(v)
√
T

vT (fε ) × (M
3−r

4 + τMM
9−r

4√
T

+ τ2
MM

3 logM
T ) = o(1).

Discussion of Assumption 8. Assumptions 8(i), 8(iii), and 8(iv) are conditions
needed to apply the sup-norm rate results in CC.50 Assumption 8(ii) is assumed for
simplicity but it is not necessary. Assumption 8(v) corresponds to the second part of
Assumption CS(v) in CC and is used to verify Assumption 7. More concrete sufficient
conditions for Assumptions 8(iv) and 8(v) may be provided in specific settings. For ex-
ample, Lemma 3 below gives sufficient conditions for the mildly ill-posed case.51

We now provide a proof of Theorem 2.

Proof of Theorem 2. We prove the statement by showing that the assumptions
of Theorem 1 hold. Assumptions 2, 3, 4(iii), 5, and 6 are maintained. Assumption 4(i)
is implied by Assumptions 4(iii) and 8(v), and Lemma 10. Similarly, Assumption 4(ii) is
implied by Assumptions 4(iii) and 8(iv).

We now verify Assumption 7. In what follows, unless otherwise specified, it is as-
sumed that the arguments of all functions are (s, p) and the dependence is suppressed
for notational convenience.

7(i) The pathwise derivative of fε in the direction v≡ (v1, v2 )′ ∈ H is

Dfε(h0 )[v] ≡ ∂fε(h0 + τv)
∂τ

∣∣∣∣
τ=0

= p1

s1

(
C1
∂v2

∂s2
+C2

∂v1

∂s2
+C3

∂v1

∂p1
+C4

∂v2

∂p1
+C5

∂v2

∂s1
+C6

∂v1

∂s1

)
, (12)

where

C1 = −
(D1 −D2 )

∂h0,1

∂p1
− (N1 −N2 )

∂h0,1

∂s1

(D1 −D2 )2 ,

C2 = −
−(D1 −D2 )

∂h0,2

∂p1
+ (N1 −N2 )

∂h0,2

∂s1

(D1 −D2 )2 ,

C3 = −
∂h0,2

∂s2
(D1 −D2 )

, C4 =
∂h0,1

∂s2
(D1 −D2 )

,

50CC establish sup-norm rate results for the case where the unknown function is approximated using
B-splines, among others. Since Bernstein polynomials are a special case of splines (see, e.g., Schumaker
(2007)), their results apply to the setting considered here.

51See CC (p. 15) for a formal definition of mild and severe ill-posedness.
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C5 = −
(N1 −N2 )

∂h0,1

∂s2

(D1 −D2 )2 , C6 =
(N1 −N2 )

∂h0,2

∂s2

(D1 −D2 )2 .

Therefore,Dfε(h0 ) : H �→ R is a linear functional.
Next, note that, for any h= [h1, h2] ∈ HT ,∣∣∣∣∂h1

∂s1
− ∂h0,1

∂s1

∣∣∣∣ ≤
∫ s2

−∞

∫ p1

−∞

∣∣∣∣ ∂3h1

∂s1∂s2∂p1
(s1, s2, p

1
, p2 ) − ∂3h0,1

∂s1∂s2∂p1
(s1, s2, p

1
, p2 )

∣∣∣∣ds2 dp1

≤ constant
∥∥∥∥ ∂3h1

∂s1∂s2∂p1
− ∂3h0,1

∂s1∂s2∂p1

∥∥∥∥
1,∞

,

where the first inequality follows from the triangle inequality and the fundamental the-
orem of calculus, and the second inequality follows from Assumption 8(i) and the fact
that the support of (S1, S2 ) is the unit simplex, and thus trivially bounded. By a similar
argument, we can bound all the other derivatives in (12) and write

Dfε(h0 )[h− h0] ≤ constant

× max
{∥∥∥∥ ∂3h1

∂s1∂s2∂p1
− ∂3h0,1

∂s1∂s2∂p1

∥∥∥∥
1,∞

,

∥∥∥∥ ∂3h2

∂s1∂s2∂p1
− ∂3h0,2

∂s1∂s2∂p1

∥∥∥∥
1,∞

}

≡ constant
∥∥∥∥ ∂3h

∂s1∂s2∂p1
− ∂3h0

∂s1∂s2∂p1

∥∥∥∥∞
which shows that Assumption 7(i) holds with α= [1, 1, 1, 0].

7(ii) By the mean value theorem,

fε(ĥ) − fε(h0 ) = p1

s1

[
C̃1

(
∂ĥ2

∂s2
− ∂h0,2

∂s2

)
+ C̃2

(
∂ĥ1

∂s2
− ∂h0,1

∂s2

)
+ C̃3

(
∂ĥ1

∂p1
− ∂h0,1

∂p1

)

+ C̃4

(
∂ĥ2

∂p1
− ∂h0,2

∂p1

)
+ C̃5

(
∂ĥ2

∂s1
− ∂h0,2

∂s1

)
+ C̃6

(
∂ĥ1

∂s1
− ∂h0,1

∂s1

)]
,

C̃1 = −
(D̃1 − D̃2 )

∂h̃1

∂p1
− (Ñ1 − Ñ2 )

∂h̃1

∂s1

(D̃1 − D̃2 )2
,

C̃2 = −
−(D̃1 − D̃2 )

∂h̃2

∂p1
+ (Ñ1 − Ñ2 )

∂h̃2

∂s1

(D̃1 − D̃2 )2
,

C̃3 = −
∂h̃2

∂s2

(D̃1 − D̃2 )
, C̃4 =

∂h̃1

∂s2

(D̃1 − D̃2 )
,

C̃5 = −
(Ñ1 − Ñ2 )

∂h̃1

∂s2

(D̃1 − D̃2 )2
, C̃6 =

(Ñ1 − Ñ2 )
∂h̃2

∂s2

(D̃1 − D̃2 )2
,
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where [ ∂h̃1
∂p1

, ∂h̃1
∂s1

, ∂h̃1
∂s2

, ∂h̃2
∂p1

, ∂h̃2
∂s1

, ∂h̃2
∂s2

] lies on the line segment between [ ∂h0,1
∂p1

, ∂h0,1
∂s1

, ∂h0,1
∂s2

,
∂h0,2
∂p1

, ∂h0,2
∂s1

, ∂h0,2
∂s2

] and [ ∂ĥ1
∂p1

, ∂ĥ1
∂s1

, ∂ĥ1
∂s2

, ∂ĥ2
∂p1

, ∂ĥ2
∂s1

, ∂ĥ2
∂s2

] and Ñ1, Ñ2, D̃1, D̃2 are defined accord-
ingly. Therefore, after some algebra, we obtain∣∣fε(ĥ) − fε(h0 ) −Dfε(h0 )[ĥ− h0]

∣∣
≤ F1

∣∣∣∣∂ĥ2

∂s2
− ∂h0,2

∂s2

∣∣∣∣+ F2

∣∣∣∣∂ĥ1

∂s2
− ∂h0,1

∂s2

∣∣∣∣+ F3

∣∣∣∣∂ĥ1

∂p1
− ∂h0,1

∂p1

∣∣∣∣
+ F4

∣∣∣∣∂ĥ2

∂p1
− ∂h0,2

∂p1

∣∣∣∣+ F5

∣∣∣∣∂ĥ2

∂s1
− ∂h0,2

∂s1

∣∣∣∣+ F6

∣∣∣∣∂ĥ1

∂s1
− ∂h0,1

∂s1

∣∣∣∣,
where (Fi )6

i=1 are linear combinations of ‖∂α̃ĥ− ∂α̃h0‖∞ for vectors α̃with |α̃| = 1. Thus,∣∣fε(ĥ) − fε(h0 ) −Dfε(h0 )[ĥ− h0]
∣∣≤ constant

∥∥∂α1 ĥ− ∂α1h0
∥∥∞∥∥∂α2 ĥ− ∂α2h0

∥∥∞
for some α1, α2 with |α1| = |α2| = 1.

7(iii) Given the choice of α, α1, α2 above and by Corollary 3.1 in CC, we have

∥∥∂α1 ĥ− ∂α1h0
∥∥∞∥∥∂α2 ĥ− ∂α2h0

∥∥∞ + ∥∥∂αh̃− ∂αh0
∥∥∞ = Op

([
M

1−r
4 + τMM 3

4

√
logM
T

]2)
+Op

(
M

3−r
4
)
.

Thus, Assumption 7(iii) is implied by Assumption 8(v).
7(iv) By Remark 4.1 in CC, a sufficient condition for Assumption 7(iv) is

Tiv,ε ≡
τM

√√√√ M∑
m=1

(
Dfε(ĥ)

[(
G

− 1
2

ψ ψM
)
m

]−Dfε(h0 )
[(
G

− 1
2

ψ ψM
)
m

])2
vT (fε )

= op(1), (13)

where (G
− 1

2
ψ ψM )m denotes the mth row of the matrix G

− 1
2

ψ ψM . Note that, after some al-

gebra, we can write Dfε(ĥ)[(G
− 1

2
ψ ψM )m] −Dfε(h0 )[(G

− 1
2

ψ ψM )m] for every m as the linear
combination of terms, where each term is the difference between a first-order partial
derivative of ĥi and the same derivative of h0,i for some i ∈ {1, 2}, and each coefficient

is a first-order partial derivative of an element of (G
− 1

2
ψ ψM )m. Therefore, using Corollary

3.1 in CC and the well-known rate results for splines and their derivatives in, for exam-
ple, Newey (1997),

Tiv,ε =Op
( √

T

vT (fε )
×
[
τMM

(9−r )
4√

T
+ τ2

MM
11
4
√

logM
T

])
. (14)

The conclusion in (13) then follows from Assumption 8(v).
The next two lemmas provide more primitive sufficient conditions for Assumptions

8(iv) and 8(v). Both lemmas focus on the “mildly ill-posed” in which τM grows polynomi-
ally inM and show that Assumptions 8(iv) and 8(v) can be satisfied by lettingM increase
polynomially with T . First, we consider a case where the functional fε is irregular.
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Lemma 3. Let Assumptions 8(i) and 8(iii) hold. Further, let (vT (fε ))2 �Ma+ς+1 (i.e., the
functional fε is irregular) and τM �M ς

2 for a≤ 0, ς ≥ 0, a+ ς+ 1> 0, r+ 2a− 7> 0. Then
Assumptions 8(iv) and 8(v) are satisfied ifM � Tρ with

ρ ∈
(

2
r − 3 + 2(a+ ς+ 1)

, min
{

1
ς− a+ 5

,
γ(1)

2 + γ(1)
,
γ(2)

1 + γ(2)

})
.

Further,M may be chosen to satisfy the latter condition if r+ 4a− 11> 0 and γ(i)(r+ 2a+
2ς− 3) − 4> 0 for i ∈ {1, 2}.

Proof. The result follows by inspection.

Next, we consider the case where the functional fε is regular.

Lemma 4. Let Assumption 8(i) hold. Further, let vT (fε ) = O(1) (i.e., the functional fε is
regular), τM �M

ς
2 for ς ≥ 0, and let the unknown functions h0 = [h0,1, h0,2]′ belong to

the Hölder ball of smoothness r ≥ 15 + 4ς and finite radius. Then Assumptions 8(iv) and
8(v) are satisfied ifM � Tρ with

ρ ∈
(

2
r − 3

, min
{

1
2(ς+ 3)

,
γ(1)

2 + γ(1)
,
γ(2)

1 + γ(2)

})
.

Further,M may be chosen to satisfy the latter condition if γ(i)(r − 5) − 4> 0 for i ∈ {1, 2}.

Proof. The result follows by inspection.

A.4 Theorem 3: Equilibrium price functionals

We now specialize Theorem 1 to the case where the functional f is the equilibrium price
of good 1 in a market with two goods characterized by marginal costs mc ≡ (mc1,mc2 )
and indices δ≡ (δ1, δ2 ). I let fp ≡ [fp1 , fp2 ] : H �→ R2 denote the functional that returns
the equilibrium prices, so that the goal is to obtain the asymptotic distribution of the
sieve estimator fp1 (ĥ). An analogous argument holds for the price of good 2. Again, I
let h0 = [h0,1, h0,2] denote the inverse of the demand system σ0. Further, I use h−1

0 =
[h−1

0,1, h−1
0,2] = [σ0,1, σ0,2] to denote the demand system itself. The equilibrium prices p≡

(p1, p2 ) ≡ [fp1 (h0 ), fp2 (h0 )] solve the firm’s first-order conditions:[
g1(δ, p,mc, h0 )
g2(δ, p,mc, h0 )

]
≡ −[(Jsh0

)−1
J
p
h0

]′ [p1 −mc1

p2 −mc2

]
+
[
h−1

0,1(δ, p)
h−1

0,2(δ, p)

]
=
[

0
0

]
, (15)

where

J
s
h0

≡

⎡
⎢⎢⎣
∂h0,1

(
h−1

0 (δ, p), p
)

∂s1

∂h0,1
(
h−1

0 (δ, p), p
)

∂s2
∂h0,2

(
h−1

0 (δ, p), p
)

∂s1

∂h0,2
(
h−1

0 (δ, p), p
)

∂s2

⎤
⎥⎥⎦ ,
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J
p
h0

≡

⎡
⎢⎢⎢⎣
∂h0,1

(
h−1

0 (δ, p), p
)

∂p1

∂h0,1
(
h−1

0 (δ, p), p
)

∂p2
∂h0,2

(
h−1

0 (δ, p), p
)

∂p1

∂h0,2
(
h−1

0 (δ, p), p
)

∂p2

⎤
⎥⎥⎥⎦ .

We make the following assumptions.

Assumption 9.

(i) P has bounded support and (P , S) have densities bounded away from 0 and ∞;

(ii) The basis used for both the endogenous variables and the instruments is tensor-
product Bernstein polynomials. Further, for the sieve space, the univariate Bern-
stein polynomials all have the same degreeM

1
4 ;

(iii) h0 = [h0,1, h0,2] where h0,1 and h0,2 belong to the Hölder ball of smoothness r ≥ 9
and finite radius;

(iv) M
2+γ(1)

2γ(1)
√

logT
T = o(1) and M

1+γ(2)

2γ(2)
√

logT
T = o(1), where γ(1), γ(2) > 0 are defined in

Assumption 3(v)–3(vi);

(v)
√
T

vT (fp1 ) × (M
4−r

4 + τMM
10−r

4√
T

+ τ2
MM

3 logM
T ) = o(1).

Discussion of assumptions. Assumptions 9(i), 9(iii), and 9(iv) are conditions needed
to apply the sup-norm rate results in CC. 9(ii) is made for simplicity but it is not neces-
sary. Assumption 9(v) corresponds to the second part of Assumption CS(v) in CC and is
used to verify Assumption 7. More concrete sufficient conditions for Assumptions 9(iv)
and 9(v) may be provided in specific settings. For example, Lemma 5 below gives suffi-
cient conditions for the mildly ill-posed case.

We now provide a proof of Theorem 3.

Proof of Theorem 3. We prove the statement by showing that the assumptions
of Theorem 1 hold. Assumptions 2, 3, 4(iii), 5, and 6 are maintained. Assumption 4(i)
is implied by Assumptions 4(iii) and 9(v), and Lemma 10. Similarly, Assumption 4(ii) is
implied by Assumptions 4(iii) and 9(iv).

We now verify Assumption 7.
7(i) Applying the implicit function theorem to (15),

Dfp(h)[v] = −

⎡
⎢⎢⎣
∂g1(δ, p,mc, h+ τv)

∂p1

∂g1(δ, p,mc, h+ τv)
∂p2

∂g2(δ, p,mc, h+ τv)
∂p1

∂g2(δ, p,mc, h+ τv)
∂p2

⎤
⎥⎥⎦

−1

×

⎡
⎢⎢⎣
∂g1(δ, p,mc, h+ τv)

∂τ
∂g2(δ, p,mc, h+ τv)

∂τ

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣
τ=0

≡ −(Jpg )−1
J
τ
g|τ=0 (16)
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for all h, v ∈ H. Now, note that J
p
g |τ=0 does not depend on v, and that Jτg|τ=0 is a lin-

ear function of v(h−1(δ, p), p) and its first derivatives, with coefficients that depend on
derivatives of h of order 2 or lower, that is, we can write

Dfp1 (h)[v] =
∑

α̃:|α̃|≤1

2∑
j=1

Cα̃,j
(
δ,mc,

{
∂βh : |β| ≤ 2

})× ∂α̃vj(h−1(δ, p), p
)

(17)

for real-valued functionals Cα̃,j . This shows thatDfp(h0 )[v] is linear. Further, by the fun-
damental theorem of calculus, following an argument analogous to that in the proof of
Theorem 2, we obtain

∣∣Dfp1 (h0 )[h− h0]
∣∣≤ constant

∥∥∥∥ ∂4h

∂s1∂s2∂p1∂p2
− ∂4h0

∂s1∂s2∂p1∂p2

∥∥∥∥∞
for all h ∈ H. Therefore, Assumption 7(i) holds with α= [1, 1, 1, 1].

7(ii) As in the proof of Theorem 2, by the mean value theorem, we obtain∣∣fp1 (ĥ) − fp1 (h0 ) −Dfp1 (h0 )[ĥ− h0]
∣∣

≤
∑

α̃:|α̃|≤1

2∑
j=1

[
Cα̃,j
(
δ,mc,

{
∂βĥ : |β| ≤ 2

})−Cα̃,j
(
δ,mc,

{
∂βh0 : |β| ≤ 2

})]

× ∥∥∂α̃ĥj − ∂α̃h0,j
∥∥

1,∞.

Since each of the Cα̃,j(δ,mc, {∂βĥ : |β| ≤ 2}) − Cα̃,j(δ,mc, {∂βh0 : |β| ≤ 2}) terms may

be bounded, after some algebra, by a linear combination of {‖∂βĥ − ∂βh0‖∞ : |β| ≤ 2},
Assumption 7(ii) holds with |α1| = 1, |α2| = 2.

7(iii) Given the choice of α, α1, α2 above and by Corollary 3.1 in CC, we have∥∥∂α1 ĥ− ∂α1h0
∥∥∞∥∥∂α2 ĥ− ∂α2h0

∥∥∞ + ∥∥∂αh̃− ∂αh0
∥∥∞

=Op
(
M

3−2r
4 + τMM 5−r

4

√
logM
T

+ τ2
MM

7
4

logM
T

)

+Op
(
M

4−r
4
)
.

Thus, Assumption 7(iii) is implied by Assumption 9(v).
7(iv) By Remark 4.1 in CC, a sufficient condition for Assumption 7(iv) is

Tiv,p ≡
τM

√√√√ M∑
m=1

(
Dfp1 (ĥ)

[(
G

− 1
2

ψ ψM
)
m

]−Dfp1 (h0 )
[(
G

− 1
2

ψ ψM
)
m

])2
vT (fp1 )

= op(1), (18)

where (G
− 1

2
ψ ψM )m denotes themth row of the matrixG

− 1
2

ψ ψM . Note that, after some alge-

bra, we can write Dfp1 (ĥ)[(G
− 1

2
ψ ψM )m] −Dfp1 (h0 )[(G

− 1
2

ψ ψM )m] for every m as the linear
combination of terms, where each term is the difference between a partial derivative of
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ĥi of order at most 2 and the same derivative of h0,i for some i ∈ {1, 2}, and each coef-

ficient is a partial derivative of an element of (G
− 1

2
ψ ψM )m of order at most 1. Therefore,

using Corollary 3.1 in CC and the well-known rate results for splines and their derivatives
in, for example, Newey (1997), we can write

Tiv,p =Op
( √

T

vT (fp1 )
×
[
τMM

(10−r )
4√

T
+ τ2

MM
3
√

logM
T

])
.

The conclusion in (18) then follows from Assumption 9(v).
Finally, the following lemmas provide more primitive sufficient conditions for As-

sumptions 9(iv) and 9(v). As for the price elasticity functional, we focus on the mildly
ill-posed case and show that Assumptions 9(iv) and 9(v) are satisfied by letting M grow
polynomially in T . We first consider the scenario in which the functional fp1 is irregular.

Lemma 5. Let Assumptions 9(i) and 9(iii) hold. Further, let (vT (fε ))2 �Ma+ς+1 (i.e., the
functional fp1 is irregular) and τM �M

ς
2 for a ≤ 0, ς ≥ 0, a + ς + 1 > 0, r + 2a − 8 > 0.

Then Assumptions 9(iv) and 9(v) are satisfied ifM � Tρ with

ρ ∈
(

2
r − 4 + 2(a+ ς+ 1)

, min
{

1
ς− a+ 5

,
γ(1)

2 + γ(1)
,
γ(2)

1 + γ(2)

})
.

Further,M may be chosen to satisfy the latter condition if r+ 4a− 12> 0 and γ(i)(r+ 2a+
2ς− 4) − 4> 0 for i ∈ {1, 2}.

Proof. The result follows by inspection.

Next, we consider the case in which fp1 is regular.

Lemma 6. Let Assumptions 9(i) hold. Further, let vT (fε ) =O(1) (i.e., the functional fp1 is
regular), τM �M ς

2 for ς ≥ 0, and let h0,1 and h0,2 belong to the Hölder ball of smoothness
r > 16+4ς and finite radius. Then Assumptions 9(iv) and 9(v) are satisfied ifM � Tρ with

ρ ∈
(

2
r − 4

, min
{

1
2(ς+ 3)

,
γ(1)

2 + γ(1)
,
γ(2)

1 + γ(2)

})
.

Further,M may be chosen to satisfy the latter condition if γ(i)(r − 6) − 4> 0 for i ∈ {1, 2}.

Proof. The result follows by inspection.
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