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Asymmetric conjugate priors for large Bayesian VARs

Joshua C. C. Chan
Department of Economics, Purdue University

Large Bayesian VARs are now widely used in empirical macroeconomics. One
popular shrinkage prior in this setting is the natural conjugate prior as it facili-
tates posterior simulation and leads to a range of useful analytical results. This
is, however, at the expense of modeling flexibility, as it rules out cross-variable
shrinkage, that is, shrinking coefficients on lags of other variables more aggres-
sively than those on own lags. We develop a prior that has the best of both worlds:
it can accommodate cross-variable shrinkage, while maintaining many useful an-
alytical results, such as a closed-form expression of the marginal likelihood. This
new prior also leads to fast posterior simulation—for a BVAR with 100 variables
and 4 lags, obtaining 10,000 posterior draws takes less than half a minute on a
standard desktop. We demonstrate the usefulness of the new prior via a struc-
tural analysis using a 15-variable VAR with sign restrictions to identify 5 structural
shocks.
Keywords. Shrinkage prior, marginal likelihood, optimal hyperparameters,
structural VAR, sign restrictions.

JEL classification. C11, C52, C55, E44.

1. Introduction

Large Bayesian vector autoregressions (BVARs) have become increasingly popular in
empirical macroeconomics for forecasting and structural analysis since the influential
work by Banbura, Giannone, and Reichlin (2010). Prominent examples include Carriero,
Kapetanios, and Marcellino (2009), Koop (2013), Koop and Korobilis (2013), and Koro-
bilis and Pettenuzzo (2019). VARs tend to have a lot of parameters, and the key that
makes these highly parameterized VARs useful is the introduction of shrinkage priors.
For large BVARs, one commonly adopted prior is the natural conjugate prior, which has
a few advantages over alternatives. First, this prior is conjugate, and consequently it
gives rise to a range of useful analytical results, including a closed-form expression of
the marginal likelihood.1 Second, the posterior covariance matrix of the VAR coeffi-
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version of the paper.

1An analytical expression for the marginal likelihood is valuable for many purposes. First, it is useful for
model selection, for example, choosing the lag length in BVARs. Second, it can be used to select prior hy-
perparameters that control the degree of shrinkage. Examples include Del Negro and Schorfheide (2004),
Schorfheide and Song (2015), and Carriero, Clark, and Marcellino (2015). This approach of selecting hyper-
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cients under this prior has a Kronecker product structure, which can be used to speed
up computations.

On the other hand, a key limitation of the natural conjugate prior is that the prior
covariance matrix of the VAR coefficients needs to have a Kronecker product structure,
which implies cross-equation restrictions that might not be reasonable. In particular,
this Kronecker structure requires symmetric treatment of own lags and lags of other vari-
ables. In many applications, one might wish to shrink the coefficients on other variables’
lags more strongly to zero than those of own lags. This cross-variable shrinkage, how-
ever, cannot be implemented using the natural conjugate prior due to this Kronecker
structure. Carriero, Clark, and Marcellino (2015) summarize this dilemma between com-
putational convenience and prior flexibility as: “While the pioneering work of Litterman
(1986) suggested it was useful to have cross-variable shrinkage, it has become more
common to estimate larger models without cross-variable shrinkage, in order to have
a Kronecker structure that speeds up computations and facilitates simulation.”

We develop a prior that solves this dilemma—this new prior allows asymmetric
treatment between own lags and lags of other variables, while it maintains many use-
ful analytical results, such as a closed-form expression of the marginal likelihood. In
addition, we exploit these analytical results to develop an efficient method to simulate
directly from the posterior distribution—we obtain independent posterior draws and
avoid Markov chain Monte Carlo (MCMC) methods altogether. For a BVAR with 100 vari-
ables and 4 lags, simulating 10,000 posterior draws under this new asymmetric conju-
gate prior takes less than 30 seconds.

To develop this asymmetric conjugate prior, we first write the BVAR in a recursive
structural form, under which the error covariance matrix is diagonal. We then adopt
an equation-by-equation estimation approach in the spirit of Carriero, Clark, and Mar-
cellino (2019). In particular, we assume that the parameters are a priori independent
across equations, that is, the joint prior density is a product of densities, each for the set
of parameters in each equation. Under this setup, we show that if the VAR coefficients
and the error variance in each equation follows a normal-inverse-gamma prior, the pos-
terior distribution has the same form, that is, it is a product of normal-inverse-gamma
densities. It is useful to emphasize that this particular structural-form parameterization
is intended to be a computational device and it does not commit the user to a recursive
identification scheme. In particular, one can recover the reduced-form parameters from
the structural-form parameter, and the posterior sampler can be used in conjunction
with other identification schemes, as demonstrated in the application.

To help elicit the hyperparameters in this asymmetric conjugate prior, we prove
that if we assume a standard inverse-Wishart prior on the reduced-form error covari-
ance matrix, the implied prior on the structural-form impact matrix and error vari-
ances is a product of normal-inverse-gamma densities and vice versa. Hence, using this
proposition, we can first elicit the hyperparameters in the reduced-form prior, which

parameters is incorporated in the BEAR MATLAB toolbox developed by the European Central Bank (Dieppe,
Legrand, and Van Roye (2016)).
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is often more natural, and then obtain the implied hyperparameters in the structural-
form prior. Since we can directly specify prior beliefs on the reduced-form error covari-
ance matrix, this proposition implies that the proposed prior—with carefully chosen
hyperparameters—is independent of the order of the variables.

We demonstrate the usefulness of the proposed asymmetric conjugate prior and the
associated posterior sampler by revisiting the empirical study in Furlanetto, Ravazzolo,
and Sarferaz (2019), who use 6-variable VAR to identify 5 structural shocks using a set of
sign restrictions on the contemporaneous impact matrix. Here, we augment their sys-
tem with a set of additional variables and consider a 15-variable VAR, which is one of
the largest VARs identified with sign restrictions considered in the literature so far. Even
though there are good reasons to consider larger systems—such as concerns of informa-
tional deficiency and nonunique mapping from economic variables to data—empirical
works that impose sign restrictions typically use small or medium VARs (e.g., up to 6 or 7
variables) due to the computational burden. With more variables and sign restrictions,
it is clear that conventional approaches that use standard Gibbs samplers are too com-
putationally expensive. In contrast, using the proposed asymmetric conjugate prior and
the associated efficient sampler, it is feasible to conduct structural analysis with a large
number of sign restrictions, which helps sharpen inference.

The rest of the paper is organized as follows. We first introduce in Section 2 a repa-
rameterization of the reduced-form BVAR and the new asymmetric conjugate prior. We
then derive the associated posterior distribution and the marginal likelihood. Section 3
discusses a few extensions of the standard BVAR, and outlines the corresponding sam-
pling schemes. It is followed by a structural analysis using sign restrictions to illustrate
the usefulness of the proposed prior in Section 4. Lastly, Section 5 concludes and briefly
discusses some future research directions.

2. Bayesian VARs and conjugate priors

Let yt = (y1,t , � � � , yn,t )′ be an n× 1 vector of endogenous variables at time t. A standard
VAR can be written as

yt = b̃ + B̃1yt−1 + · · · + B̃pyt−p + ε̃yt , ε̃
y
t ∼ N (0, �̃), (1)

where b̃ is an n × 1 vector of intercepts, B̃1, � � � , B̃p are n × n VAR coefficient matrices,
and �̃ is a full covariance matrix.

The parameters in this model can be naturally divided into two blocks: the er-
ror covariance matrix �̃ and the matrix of intercepts and VAR coefficients, that is,
B̃ = (b̃, B̃1, � � � , B̃p )′. Under this parameterization, there is a conjugate prior on (B̃, �̃),
namely, the normal-inverse-Wishart distribution:

�̃∼ IW (̃ν0, S̃0 ),
(
vec(B̃) | �̃) ∼ N

(
vec(B̃0 ), �̃⊗ Ṽ

)
,

where ⊗ denotes the Kronecker product, vec(·) vectorizes a matrix by stacking the
columns from left to right, and IW denotes the inverse-Wishart distribution. This prior
is commonly called the natural conjugate prior and can be traced back to Zellner (1971).



1148 Joshua C. C. Chan Quantitative Economics 13 (2022)

For textbook treatment of this prior and the associated posterior distribution see, for
example, Koop and Korobilis (2010), Karlsson (2013), or Chan (2020b).

The main advantage of the natural conjugate prior is that it gives rise to a range of
analytical results. For example, the associated posterior and one-step-ahead predictive
distributions are both known; the marginal likelihood is also available in closed form.
These analytical results are useful for a variety of purposes. For instance, the closed-
form expression of the marginal likelihood under the natural conjugate prior can be
used to calculate optimal hyperparameters, as is done in Del Negro and Schorfheide
(2004), Schorfheide and Song (2015), and Carriero, Clark, and Marcellino (2015). The
direct sampling algorithm to draw from the posterior distribution of (vec(B̃), �̃) can be
used to develop efficient posterior samplers to estimate large, heteroscedastic Bayesian
VARs. Examples include Carriero, Clark, and Marcellino (2016) and Chan (2020a).

On the other hand, one key drawback of the natural conjugate prior is that the prior
covariance matrix of vec(B̃) is restrictive—to be conjugate it needs to have the Kronecker
product structure �̃ ⊗ Ṽ, which implies cross-equation restrictions on the covariance
matrix. In particular, this structure requires symmetric treatment of own lags and lags
of other variables. In many situations, one might want to shrink the coefficients on lags
of other variables more strongly to zero than those of own lags. This prior belief, how-
ever, cannot be implemented using the natural conjugate prior due to the Kronecker
structure.

Here, we develop a prior that solves this dilemma: this new prior allows asymmetric
treatment between own lags and lags of other variables, while it maintains many useful
analytical results. In what follows, we first consider a reparameterization of the reduced-
form VAR in (1). We introduce in Section 2.2 the new asymmetric conjugate prior and
discuss its properties. We then derive the associated posterior distribution and discuss
an efficient sampling scheme in Section 2.3. Finally, we give an analytical expression of
the marginal likelihood in Section 2.4.

2.1 The Bayesian VAR in structural form

In this section, we introduce a reparameterization of the reduced-form VAR in (1) and
derive the associated likelihood function. To that end, we first write the VAR in the fol-
lowing structural form:

Ayt = b + B1yt−1 + · · · + Bpyt−p + εyt , ε
y
t ∼ N (0, �), (2)

where b is an n× 1 vector of intercepts, B1, � � � , Bp are n× n VAR coefficient matrices, A
is an n× n lower triangular matrix with ones on the diagonal, and �= diag(σ2

1 , � � � , σ2
n )

is diagonal. Since the covariance matrix � is diagonal, we can estimate this recursive
system equation by equation without loss of efficiency.2 It is easy to see that we can

2Carriero, Clark, and Marcellino (2019) pioneer a similar equation-by-equation estimation approach to
estimate a large VAR with a standard stochastic volatility specification. However, they use the reduced-
form parameterization in (1), whereas here we use the structural form in (2). As we will see below, the latter
parameterization has the advantage of having a convenient representation as n independent regressions
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recover the reduced-form parameters by setting b̃ = A−1b, B̃j = A−1Bj , j = 1, � � � , p, and
�̃= A−1�(A−1 )′.

For later reference, we introduce some notation. Let bi denote the ith element of b
and let bj,i represent the ith row of Bj . Then βi = (bi, b1,i, � � � , bp,i )′ is the intercept and
VAR coefficients for the ith equation. Furthermore, letαi denote the free elements in the
ith row of the impact matrix A, that is, αi = (Ai,1, � � � ,Ai,i−1 )′. We then follow Chan and
Eisenstat (2018) to rewrite the ith equation of the system in (2) as

yi,t = w̃i,tαi + x̃tβi + εyi,t , ε
y
i,t ∼ N

(
0, σ2

i

)
,

where w̃i,t = (−y1,t , � � � , −yi−1,t ) and x̃t = (1, y′
t−1, � � � , y′

t−p ). Note that yi,t depends on
the contemporaneous variables y1,t , � � � , yi−1,t . But since the system is triangular, when
we perform the change of variables from ε

y
t to yt to obtain the likelihood function, the

corresponding Jacobian has unit determinant and the likelihood function has the usual
Gaussian form.

If we let xi,t = (w̃i,t , x̃t ), we can further simplify the ith equation as

yi,t = xi,tθi + εyi,t , ε
y
i,t ∼ N

(
0, σ2

i

)
,

where θi = (β′
i, α

′
i )

′ is of dimension ki = np+ i. Hence, we have rewritten the structural
VAR in (2) as a system of n independent regressions. Moreover, by stacking the elements
of the impact matrix αi and the VAR coefficients βi, we can sample them together to
improve efficiency.3

To derive the likelihood function, we further stack yi = (yi,1, � � � , yi,T )′ and define Xi
and εyi similarly. Hence, we can rewrite the above equation as follows:

yi = Xiθi + εyi , ε
y
i ∼ N

(
0, σ2

i IT
)
.

Finally, let θ = (θ′
1, � � � , θ′

n )′ and σ2 = (σ2
1 , � � � , σ2

n )′. Then the likelihood function of the
VAR in (2) is given by

p
(
y | θ, σ2) =

n∏
i=1

p
(
yi | θi, σ2

i

) =
n∏
i=1

(
2πσ2

i

)− T
2 e

− 1
2σ2
i

(yi−Xiθi )′(yi−Xiθi )
. (3)

In other words, the likelihood function is the product of n Gaussian densities.

2.2 Asymmetric conjugate priors

Next, we introduce a conjugate prior on (θ, σ2 ) that allows differential treatment be-
tween prior variances on own lags versus others. We assume that the parameters are

and it consequently leads to a more efficient sampling scheme. Ando and Zellner (2010) also consider a
similar reparameterization of the reduced-form VAR that allows equation-by-equation estimation. But in
their implementation they need to switch between two parameterizations, which makes estimation more
cumbersome.

3This more efficient blocking scheme has been used previously in the literature. For example, Eisenstat,
Chan, and Strachan (2016) use it to speed up computations in the context of time-varying parameter VARs
with stochastic volatility.
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a priori independent across equations, that is, p(θ, σ2 ) = ∏n
i=1p(θi, σ2

i ). Furthermore,
we consider a normal-inverse-gamma prior for each pair (θi, σ2

i ), i= 1, � � � , n:(
θi | σ2

i

) ∼ N
(
mi, σ

2
i Vi

)
, σ2

i ∼ IG(νi, Si ), (4)

and we write (θi, σ2
i ) ∼ NIG(mi, Vi, νi, Si ). In other words, the prior density of (θ, σ 2 ) is

given by

p
(
θ, σ2) =

n∏
i=1

ci
(
σ2
i

)−(νi+1+ ki
2 )e

− 1
σ2
i

(Si+ 1
2 (θi−mi )′V−1

i (θi−mi ))
, (5)

where ci = (2π )−
ki
2 |Vi|−

1
2 S
νi
i / �(νi ).4

Since the prior variance of each element of θi is controlled by the corresponding
diagonal element of Vi, it is obvious that this prior can accommodate different prior
variances between own lags versus others. As we will show in the next section, this prior
is also conjugate. To distinguish this from the natural conjugate prior, we call the prior
in (4) the asymmetric conjugate prior. The hyperparameters of the asymmetric conju-
gate prior are mi, Vi, νi, and Si, i = 1, � � � , n. Next, we describe how one can elicit these
hyperparameters.

First, partition mi = (m′
β,i, m′

α,i ) and Vi = diag(Vβ,i, Vα,i ), where mα,i and Vα,i are
the hyperparameters corresponding to αi, whereas mβ,i and Vβ,i are those associated
with βi. In what follows, we first discuss eliciting the hyperparameters associated with
αi and σ2

i , that is, mα,i, Vα,i, νi, and Si. We then introduce two Minnesota-type shrinkage
priors for the VAR coefficients βi.

Since αi and σ2
i control the reduced-form error covariance matrix �̃= A−1�(A−1 )′,

one concern is that an arbitrary choice of the hyperparameters for αi and σ2
i would

induce some unreasonable prior on �̃. For example, the implied prior on the ith diago-
nal element of �̃ might mechanically depend on its position in the n-tuple, that is, the
induced prior on �̃ depends on the order of the variables and is not invariant to reorder-
ing. This problem is especially acute for large systems due to the fact that A−1 is lower
triangular.

To avoid this potential noninvariance problem, we instead specify a prior on the
reduced-form error covariance matrix �̃. And given this prior on �̃, we then derive the
implied prior on αi and σ2

i , i = 1, � � � , n. Since we can directly elicit prior beliefs on the
elements of �̃, as a result these prior beliefs do not depend on the parameters’ position
in �̃. To that end, we consider a standard inverse-Wishart prior on �̃ centered around
S = diag(s2

1, � � � , s2
n ), where s2

i denotes the sample variance of the residuals from an AR(4)
model for the variable i, i= 1, � � � , n. More precisely, �̃∼ IW(ν0, S) with ν0 = n+ 2. This
prior on �̃ is commonly used in the literature (e.g., in Rao Kadiyala and Karlsson (1997),

4The proposed prior is related to the work of Baumeister and Hamilton (2015), who also consider
equation-specific conjugate priors on the structural VAR coefficients and error variances. But since they
consider a more general setting with a possibly nontriangular impact matrix A, they need a Metropolis–
Hastings step to explore the marginal posterior distribution A. In contrast, in our special case with a lower
triangular A, the proposed prior can be shown to be conjugate and direct sampling of all the parameters is
available.
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Carriero, Clark, and Marcellino (2015)). It turns out that, quite remarkably, the implied
prior on αi and σ2

i is normal-inverse-gamma. The following proposition and corollary
summarize this result.5

Proposition 1. Consider the following normal-inverse-gamma priors on the diagonal
elements of � and the lower triangular elements of A:

σ2
i ∼ IG

(
ν0 + i− n

2
,
s2
i

2

)
, i= 1, � � � , n, (6)

(
Ai,j | σ2

i

) ∼ N
(

0,
σ2
i

s2
j

)
, 1 ≤ j < i≤ n, i= 2, � � � , n. (7)

Then �̃
−1 = A′�−1A has the Wishart distribution �̃

−1 ∼ W(ν0, S−1 ), where S = diag(s2
1,

� � � , s2
n ). It follows that �̃∼ IW(ν0, S).

The proof is given in the Appendix of the Online Supplementary Material (Chan

(2022)). Since the mapping �̃
−1 = A′�−1A is one-to-one, the converse of Proposition 1 is

also true.

Corollary 1. Using the same notation as in Proposition 1, if �̃ ∼ IW(ν0, S), then the
implied priors onAi,j andσ2

i , i= 1, � � � , n, j = 1, � � � , i−1, are the normal-inverse-gamma
distributions given in (6) and (7).

The proof is given in the Appendix of the Online Supplementary Material. With these
results, we can now make precise the claim that the proposed normal-inverse-gamma
prior is independent of the order of the variables. Suppose the covariance matrix of the
reduced-form error vector ε̃yt is �̃, which has the prior IW(ν0, S). We claim that if we
change the order of the reduced-form errors, we can use the normal-inverse-gamma
prior to specify an appropriate inverse-Wishart prior—we simply need to reorder the
associated hyperparameters accordingly. More specifically, let π denote an arbitrary
permutation of n elements with the associated permutation matrix Pπ . If we permute
the order of the dependent variables via Pπyt = (yπ(1),t , � � � , yπ(n),t )′, its error covari-
ance matrix is then Pπ�̃P′

π and has the IW(ν0, Sπ ) distribution, where Sπ = PπSP′
π =

diag(s2
π(1), � � � , s2

π(n) ). Using Proposition 1, we can find a set of normal-inverse-gamma
priors that induces this inverse-Wishart prior IW(ν0, Sπ ). We summarize this result in
the following corollary.

Corollary 2. Suppose �̃ ∼ IW(ν0, S) and let π denote a permutation of n elements
with the associated permutation matrix Pπ . It follows that Pπ�̃P′

π ∼ IW(ν0, Sπ ), where

5In the context of a general structural VAR, Sims and Zha (1998) suggest precisely this approach of deriv-
ing the implied prior on the impact matrix from a natural prior (inverse-Wishart) on the error covariance
matrix. However, under their parameterization (Cholesky factorization), the implied prior on the impact
matrix is nonstandard. In contrast, we use a modified Cholesky factorization and the implied prior can be
shown to be of the form of a normal-inverse-gamma distribution.
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Sπ = diag(s2
π(1), � � � , s2

π(n) ). Consider the following normal-inverse-gamma priors on the
diagonal elements of � and the lower triangular elements of A:

σ2
i ∼ IG

(
ν0 + i− n

2
,
s2
π(i)

2

)
, i= 1, � � � , n,

(
Ai,j | σ2

i

) ∼ N
(

0,
σ2
i

s2
π(j)

)
, 1 ≤ j < i≤ n, i= 2, � � � , n.

Then �̆
−1 = A′�−1A has the Wishart distribution W(ν0, S−1

π ). That is, �̆∼ IW(ν0, Sπ ).

The proof follows directly from Proposition 1. In addition, Proposition 1 holds for
the more general case where S is any symmetric positive definite matrix. That is, the
induced priors on the structural-form variances are independent gamma distributions
and the conditional priors of the free elements of A are normal distributions. But un-
like the previous case with diagonal S, here the free elements in the same row of A are
correlated. We summarize the results in the following corollary.6 Its proof is given in the
Online Appendix.

Corollary 3. Suppose �̃ ∼ IW(ν0, R), where R is a symmetric positive definite ma-

trix. Factor �̃
−1 = C′�−1C and R−1 = L′S−1L, where C and L are lower triangular ma-

trices with ones on the main diagonal, � = diag(σ2
1 , � � � , σ2

n ) and S = diag(s2
1, � � � , s2

n )
are diagonal matrices. Let ci denote the free elements of the ith row of C, that is, ci =
(Ci,1, � � � , Ci,i−1 )′, and let L1:i−1 denote the (i− 1) × (i− 1) matrix that consists of the first
(i− 1) rows and columns of L. Similarly, define li and S1:i−1. Then the implied priors on
ci and σ2

i are

σ2
i ∼ IG

(
ν0 + i− n

2
,
s2
i

2

)
, i= 1, � � � , n, (8)

(
ci | σ2

i

) ∼ N
(
li, σ2

i L′
1:i−1S−1

1:i−1L1:i−1
)
, i= 2, � � � , n. (9)

Since the mapping �̃
−1 = C′�−1C is one-to-one, the converse is also true. That is, if we

assume that (ci, σ2
i ) follows the normal-inverse-gamma distributions given in (8) and

(9), then the implied prior on �̃ is inverse-Wishart: �̃∼ IW(ν0, R).

Hence, the above proposition and corollaries give us a guide to elicit the hyperpa-
rameters associated with αi and σ2

i . In our baseline case, we set νi = 1 + i/2, Si = s2
i /2,

mα,i = 0 and Vα,i = diag(1/s2
1, � � � , 1/s2

i−1 ). These values imply that the prior on the

reduced-form error covariance matrix is �̃ ∼ IW(n+ 2, S) with prior mean S. Further-
more, if we wish to have an inverse-Wishart prior on �̃ with a nondiagonal prior mean,
we can simply use Corollary 3 to elicit the associated values for mα,i and Vα,i.

6Chan and Jeliazkov (2009) have shown a similar result. However, their proof is not sufficiently construc-
tive and they did not give an explicit mapping between the inverse-Wishart parameters and the normal-
inverse-gamma parameters.
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Next, we describe two ways to set the hyperparameters mβ,i and Vβ,i. The first ap-
proach directly elicits prior beliefs on the structural VAR coefficients βi. The idea of
cross-variable shrinkage in this setting has been previously explored in Leeper, Sims,
and Zha (1996) and Sims and Zha (1998). We therefore follow Sims and Zha (1998), who
consider Minnesota-type shrinkage priors for VAR coefficients in the structural form.7

More specifically, we set mβ,i = 0 to shrink the VAR coefficients to zero for growth rates
data; for level data, mβ,i is set to be zero as well except the coefficient associated with
the first own lag, which is set to be one.

Recall that Vβ,i is the ratio of the prior covariance matrix of βi relative to the error
variance σ2

i . Similar to the Minnesota prior, here we assume Vβ,i to be diagonal with the
kth diagonal element (Vβ,i )k set to be:

(Vβ,i )k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

κ1

l2s2
i

, for the coefficient on the lth lag of variable i,

κ2

l2s2
j

, for the coefficient on the lth lag of variable j, j �= i,

κ3, for the intercept.

The hyperparameter κ1 controls the overall shrinkage strength for coefficients on own
lags, whereas κ2 controls those on lags of other variables. These two hyperparameters
will play a key role in the empirical analysis, and we will select them optimally by maxi-
mizing the associated marginal likelihood. We set κ3 = 100, which implies essentially no
shrinkage for the intercepts.8

By contrast, in the second approach we first elicit the prior means and variances on
the reduced-form VAR coefficients. We then derive the implied prior means and vari-
ances on the structural-form VAR coefficients. Since the prior beliefs are elicited on the
reduced-form parameters, this approach is comparable to commonly-used Minnesota
priors on the reduced-form parameters. More specifically, let m̃β,i and σ2

i Ṽβ,i denote
the prior mean vector and covariance matrix of the reduced-form parameters β̃i—these
hyperparameters can be elicited similarly as above. For later reference, we let κ̃1 and
κ̃2 denote the corresponding shrinkage hyperparameters. Finally, let mβ,i and σ2

i Vβ,i

denote the corresponding hyperparameters of the structural-form parameters βi. The
Online Appendix provides the details of the derivation and the explicit formulas of mβ,i

and Vβ,i using m̃β,i and Ṽβ,i as inputs. Both approaches give a normal-inverse-gamma
prior of the form given in (4).

7As noted by Sims and Zha (1998), a general structural VAR is a simultaneous equations model and there
is no dependent variable in an equation (other than an arbitrary normalization). Hence, the distinction
between “own” lags versus “others” is not meaningful. However, our setup is the special case of a recursive
system, where there is a natural dependent variable in each equation. Hence, we can distinguish between
“own” versus “other” lags.

8In principle, one can select κ3 optimally as well, but the corresponding optimization is more costly to
solve. More generally, high-dimensional numerical optimization using derivative-free methods is time con-
suming. One feasible alternative is to use automatic differentiation to obtain the relevant partial derivatives,
which are then fed to numerical optimization routines that use these partial derivatives to more efficiently
find the maximizer. See Chan, Jacobi, and Zhu (2020) for an example.
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2.3 Posterior distribution and efficient sampling

In this section, we first derive the posterior distribution of (θ, σ2 ) under the asymmetric
conjugate prior and show that it has indeed the same form as the prior. Then we describe
an efficient method for posterior simulation.

Since both the likelihood in (3) and the prior in (5) have the product form, we can
estimate each pair (θi, σ2

i ) separately. More specifically, the posterior distribution of
(θ, σ 2 ) is given by

p
(
θ, σ2 | y

) ∝ p(
θ, σ2)p(

y | θ, σ2)
=

n∏
i=1

p
(
θi, σ

2
i

)
p

(
yi | θi, σ2

i

)

=
n∏
i=1

ci
(
σ2
i

)−(νi+1+ ki
2 )e

− 1
σ2
i

(Si+ 1
2 (θi−mi )′V−1

i (θi−mi )) × (
2πσ2

i

)− T
2 e

− 1
2σ2
i

(yi−Xiθi )′(yi−Xiθi )

=
n∏
i=1

ci(2π )−
T
2
(
σ2
i

)−(νi+ T+ki
2 +1)e

− 1
σ2
i

(Si+ 1
2 (θ′

i(V−1
i +X′

iXi )θi−2θ′
i(V−1

i mi+X′
iyi )+m′

iV
−1
i mi+y′

iyi ))

=
n∏
i=1

ci(2π )−
T
2
(
σ2
i

)−(νi+ T+ki
2 +1)e

− 1
σ2
i

(Ŝi+ 1
2 (θi−θ̂i )′Kθi (θi−θ̂i ))

,

where Kθi = V−1
i + X′

iXi, θ̂i = K−1
θi

(V−1
i mi + X′

iyi ) and Ŝi = Si + (y′
iyi + m′

iV
−1
i mi −

θ̂
′
iKθi θ̂i )/2. Hence, the posterior distribution is a product of n normal-inverse-gamma

distributions and we have

(
θi, σ

2
i | y

) ∼ NIG
(
θ̂i, K−1

θi
, νi + T

2
, Ŝi

)
, i= 1, � � � , n. (10)

Using properties of the normal-inverse-gamma distribution, it is easy to see that the
posterior means of θi and σ2

i are respectively θ̂i and Ŝi/(νi + T/2 − 1). Other poste-
rior moments can also be obtained by using similar properties of the normal-inverse-
gamma distribution. For other quantities of interest where analytical results are not
available, we can estimate them by posterior simulation. For example, the h-step-ahead
predictive distribution of yT+h is nonstandard. But we can obtain posterior draws from
p(θ, σ2 | y) to construct the h-step-ahead predictive distribution.

In what follows, we outline an efficient method to simulate a sample of size M from
the posterior distribution. Here, we can directly generate independent draws from the
posterior distribution as opposed to MCMC draws that are correlated by construction.
First, note that (θ, σ2 | y) is a product of n normal-inverse-gamma distributions as given
in (10). Thus, we can sample each pair (θi, σ2

i | y) individually. Next, we can sample
(θi, σ2

i | y) in two steps. First, we draw σ2
i marginally from (σ2

i | y) ∼ IG(νi + T/2, Ŝi ).
Then, given the σ2

i sampled, we obtain θi from the conditional distribution

(
θi | y, σ2

i

) ∼ N
(̂
θi, σ

2
i K−1

θi

)
.
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Here, the covariance matrix σ2
i K−1

θi
is of dimension ki = np+ i. When n is large, sampling

from this normal distribution using conventional methods—based on the Cholesky fac-
tor of σ2

i K−1
θi

—is computationally intensive for two reasons. First, inverting the ki × ki

matrix Kθi to obtain the covariance matrix σ2
i K−1

θi
is computationally costly. Second, the

Cholesky factor of the covariance matrix needs to be computedM times—once for each
draw of σ2

i from the marginal distribution. It turns out that both of these computation-
ally intensive steps can be avoided.

To that end, we introduce the following notation: given a nonsingular square matrix
F and a conformable vector d, let F\d denote the unique solution to the linear system
Fz = d, that is, F\d = F−1d. When F is lower triangular, this linear system can be solved
quickly by forward substitution; when F is upper triangular, it can be solved by backward
substitution.9 Now, compute the Cholesky factor CKθi

of Kθi such that Kθi = CKθi
C′

Kθi
.

Note that this needs to be done only once. Let u be a ki×1 vector of independent sample
from N (0, σ2

i ). Then return

θ̂i + C′
Kθ\u,

which has the N (θ̂i, σ2
i K−1

θi
) distribution.10 Finally, we can further speed up the compu-

tations by vectorizing all operations to obtain M posterior draws instead of using for-
loops.

This sampling scheme is more efficient than the method in Carriero, Clark, and
Marcellino (2019), who propose estimating the reduced-form parameters equation-by-
equation. The main reason is that their method requires computing the Cholesky fac-
tor of every sampled reduced-form error covariance matrix (e.g., a total of M times for
M draws as they use MCMC). In contrast, the proposed method needs to compute the
Cholesky factor of the error covariance matrix only once, because here it does not de-
pend on the sampled coefficients (i.e., the proposed sampler is not a Gibbs sampler).
This difference becomes more important when n becomes larger, as number of opera-
tions for computing the Cholesky factor of an n× nmatrix is O(n3 ).

To get a sense of how long it takes to obtain posterior draws using the proposed al-
gorithm, we fit Bayesian VARs of different sizes, each with p = 4 lags. The algorithm is
implemented using Matlab on a desktop with an Intel Core i7-7700 @3.60 GHz proces-
sor and 64GB memory. The computation times (in seconds) to obtain 10,000 posterior
draws of (θ, σ 2 ) are reported in Table 1. As it is evident from the table, the proposed
method is fast and scales well. It also compares favorably to the algorithm in Carriero,
Clark, and Marcellino (2019), especially when n is large. For example, for a large BVAR
with n= 100 variables, the proposed method takes about half a minute to obtain 10,000
posterior draws. In comparison, using the algorithm in Carriero, Clark, and Marcellino
(2019) takes about 43 minutes.11

9Forward and backward substitutions are implemented in standard packages such as Matlab, Gauss

and R. In Matlab, for example, it is done by mldivide(F, d) or simply F\d.
10Note that θ̂i can be obtained similarly without explicitly computing the inverse of Kθi . Specifically, it is

easy to see that θ̂i can be calculated as C′
Kθi

\(CKθi
\(V−1

i mi + X′
iyi )) by forward then backward substitution.

Also note that since V−1
i is diagonal, its inverse is straightforward to compute.

11As recently pointed out in Bognanni (2021), the original algorithm in Carriero, Clark, and Marcellino
(2019) is not exact and can only be viewed as an approximation. The corrected algorithm described in Car-
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Table 1. The computation times (in seconds) to obtain 10,000 posterior draws of (θ, σ2 ) us-
ing the proposed method compared to the method in Carriero, Clark, and Marcellino (2019). All
BVARs have p= 4 lags.

n= 25 n= 50 n= 100

Proposed method 1.3 6.8 28
CCM 58 238 2574

2.4 The marginal likelihood

In this section, we provide an analytical expression of the marginal likelihood. This
closed-form expression is useful for a range of purposes, such as obtaining optimal hy-
perparamaters or designing efficient estimation algorithms for more flexible Bayesian
VARs.

To prevent arithmetic underflow and overflow, we evaluate the marginal likelihood
in log scale. Given the likelihood function in (3) and the asymmetric conjugate prior in
(5), the associated log marginal likelihood of the VAR has the following analytical expres-
sion:

logp(y) = − Tn

2
log(2π ) +

n∑
i=1

[
−1

2

(
log |Vi| + log |Kθi |

)

+ log�
(
νi + T

2

)
+ νi logSi − log�(νi ) −

(
νi + T

2

)
log Ŝi

]
. (11)

The details of the derivation are given in Appendix B. The above expression is straight-
forward to evaluate. We only note that to compute the log determinant log |Kθi |, it is
numerically more stable to first compute its Cholesky factor CKθi

and return 2
∑

log cii,
where cii is the ith diagonal element of the CKθi

.

3. Extensions

In this section, we briefly discuss how we can use the above analytical results and the
efficient sampling scheme in more general settings. Suppose we augment our BVAR in
(3) to the model p(y | θ, σ2, γ ) with the additional parameter vector γ . Further, consider
the prior p(θ, σ 2, γ ) = p(θ, σ2 | γ )p(γ ), where p(θ, σ2 | γ ) is the asymmetric conjugate
prior that could potentially depend on γ and the marginal prior p(γ ) is left unspecified
for now. Before we discuss some efficient posterior samplers, we first give two examples
that fit into this framework.

In our first example, we augment the BVAR by treating the hyperparameters κ1 and
κ2 as parameters to be estimated. That is, γ = (κ1, κ2 )′. This extension is useful as it
takes into account the parameter uncertainty of κ1 and κ2 (see also Giannone, Lenza,

riero, Chan, Clark, and Marcellino (2021) is about 3–10 times slower than the original algorithm, depending
on the size of the system. Hence, the advantage of our posterior sampler is even more substantial when the
corrected algorithm is used.



Quantitative Economics 13 (2022) Asymmetric conjugate priors 1157

and Primiceri (2015)). This extension is considered in the empirical application. In our
second example, we extend the BVAR by adding an MA(1) component to each equation:

yi,t = xi,tθi + εyi,t ,
ε
y
i,t = ui,t +ψiui,t−1,

where ui,t ∼ N (0, σ2
i ), t = 1, � � � , T , i = 1, � � � , n. In this case, γ = (ψ1, � � � , ψn )′. This ex-

tension is motivated by the empirical finding that allowing for moving average errors
often improves forecast performance (see, e.g., Chan (2013, 2020a)).

Both examples fit into the framework with likelihood p(y | θ, σ2, γ ) and prior
p(θ, σ2, γ ). One natural posterior sampler is to construct a Markov chain by sequen-
tially sampling from p(θ, σ 2 | y, γ ) and p(γ | y, θ, σ2 ). The first density is a product of
normal-inverse-gamma densities, and we can efficiently obtain a draw from it as de-
scribed before. The second density depends on the model, but it is often easy to sample
from.12

Alternatively, a more efficient approach is the collapsed sampler that samples from
p(γ | y). This sampling scheme is typically more efficient as it integrates out the high-
dimensional parameters (θ, σ2 ) analytically. The density p(γ | y) can be evaluated
quickly since

p(γ | y) ∝ p(y | γ )p(γ ),

where p(y | γ ) is the “marginal likelihood” of the standard BVAR. For instance, for the
first example with γ = (κ1, κ2 )′, the quantity p(y | γ ) is exactly as the analytical expres-
sion given in (11). Finally, given the posterior draws of γ , we can obtain the posterior
draws of (θ, σ 2 ) from p(θ, σ2 | y, γ ).

4. Application: Identifying financial shocks

In this section, we illustrate the usefulness of the proposed asymmetric conjugate prior
by revisiting the empirical study in Furlanetto, Ravazzolo, and Sarferaz (2019), who iden-
tify financial shocks in a VAR using sign restrictions. More specifically, for their baseline
they consider a 6-variable VAR—using US data on GDP, prices, interest rate, investment,
stock prices, and credit spread—to identify demand, supply, monetary, investment, and
financial shocks using a set of sign restrictions on the contemporaneous impact matrix.
Here, we revisit their empirical study by using a larger set of variables and consider a
15-variable VAR.

There are a few reasons in favor of using a larger set of macroeconomic and financial
variables. First, there is the concern of informational deficiency of using a limited in-
formation set. As pointed out in the seminal papers by Hansen and Sargent (1991) and
Lippi and Reichlin (1993, 1994), when the econometrician considers a narrower set of

12For our first example with a low-dimensional γ = (κ1, κ2 )′, an independent-chain Metropolis–Hastings
algorithm can be easily constructed. For our second example with γ = (ψ1, � � � , ψn )′, it turns out that we
can factor p(γ | y, θ, σ2 ) = p(ψ | y, θ, σ2 ) = ∏n

i=1p(ψi | y, θ, σ2 ). Then each ψi can be simulated using the
method in Chan (2013).
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variables than the economic agent, the underlying model used by the econometrician is
nonfundamental, in the sense that current and past observations of the variables do not
span the same space spanned by the structural shocks. Consequently, structural shocks
cannot be recovered from the model. Using a larger set of relevant variables can alleviate
this concern (see, e.g., Gambetti (2021), for a recent review on nonfundamentalness).

Second, the mapping from variables in an economic model to the data is typically
not unique. For example, take the economic variable inflation. Should one match it to
the data based on the CPI, PCE, or the GDP deflator (Loria, Matthes, and Wang (2020))?
One natural way to circumvent an arbitrary choice is to include multiple data series cor-
responding to the same economic variable in the analysis. An added benefit of this ap-
proach is that by using more data series (and the corresponding sign restrictions), one
often obtains sharper inference.

While Furlanetto, Ravazzolo, and Sarferaz (2019) consider a noninformative prior for
their 6-variable VAR, shrinkage is essential here for our much larger system. In particu-
lar, we use the proposed asymmetric conjugate prior to shrink the VAR coefficients in a
data-based manner. After describing the macroeconomic data set in Section 4.1, we first
present the estimates of the shrinkage hyperparameters in Section 4.2, highlighting the
empirical relevance of allowing for different levels of shrinkage on own lags and other
lags. We then conduct a structural analysis with sign restrictions in Section 4.3.

4.1 Data

The data set for our empirical application consists of 15 US quarterly variables and the
sample period is from 1985:Q1 to 2019:Q4. These variables are constructed from raw
time-series obtained from various sources, including the FRED database at the Federal
Reserve Bank of St. Louis and the Federal Reserve Bank of Philadelphia. The complete
list of these time-series and their sources are given in Appendix A.

In addition to the 6 variables used in the baseline model in Furlanetto, Ravazzolo,
and Sarferaz (2019)— namely, real GDP, GDP deflator, 3-month treasury rate, ratio of
private investment over output, S&P 500 index, and a credit spread defined as the dif-
ference between Moody’s baa corporate bond yield and the federal funds rate— we in-
clude 9 additional macroeconomic and financial variables, such as ratio of total credit
over real estate value, industrial production, mortgage rates, as well as other measures
of inflation, interest rates, and stock prices. These 15 variables are listed in Table 3.

4.2 Optimal shrinkage hyperparameters

In this section, we fit the 15-variable VAR with the proposed asymmetric conjugate prior.
More specifically, we implement the version that elicits prior beliefs on the reduced-
form parameters β̃i with hyperparameters κ̃1 and κ̃2. We obtain the optimal hyperpa-
rameter values by maximizing the log marginal likelihood. The results are reported in
Table 2.

For comparison, we also consider two useful benchmarks. In the first case, we set
κ̃1 = κ̃2 = κ̃ and maximize the log marginal likelihood with respect to κ̃ only. This bench-
mark mimics the standard practice of using the natural conjugate prior that does not
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Table 2. Optimal values of the hyperparameters under the symmetric prior (κ̃1 = κ̃2 ), the sub-
jective prior (Carriero, Clark, and Marcellino (2015)) and the proposed asymmetric prior (elicited
on the reduced-form parameters).

Symmetric prior Subjective prior Asymmetric prior

κ̃1 0.008 0.040 0.058
κ̃2 0.008 0.0016 0.0043
log-ML 4333.3 4329.8 4341.6

distinguish between own lags and lags of other variables. We refer to this version as the
symmetric prior. The second benchmark is a set of subjectively chosen values that apply
cross-variable shrinkage. In particular, we follow Carriero, Clark, and Marcellino (2015)
and consider κ̃1 = 0.04 and κ̃2 = 0.0016. This second benchmark is referred to as the
subjective prior.

Under the symmetric prior with the restriction that κ̃1 = κ̃2, the optimal hyperpa-
rameter value is 0.008. If we allow κ̃1 and κ̃2 to be different, we obtain very different re-
sults: the optimal value for κ̃1 increases more than 7 times to 0.058, whereas the optimal
value of κ̃2 reduces by about half to 0.0043. These results suggest that the data prefers
shrinking the coefficients on lags of other variables much more aggressively to zero than
those on own lags. This makes intuitive sense as one would expect, on average, a vari-
able’s own lags would contain more information about its future evolution than lags of
other variables. By relaxing the restriction that κ̃1 = κ̃2, the marginal likelihood value in-
creases by about 4000. If we were to test the hypothesis that κ̃1 = κ̃2, this large difference
in marginal likelihood values would have decidedly reject it.

In addition, the optimal values of κ̃1 and κ̃2 under the asymmetric prior are also
quite different from those of the subjective prior with κ̃1 = 0.04 and κ̃2 = 0.0016. By se-
lecting the values of κ̃1 and κ̃2 optimally, one can increase the marginal likelihood value
by more than 13,000. These results suggest that the subjective prior shrinks both the
coefficients on own and other lags too aggressively for our data set.

We have so far taken the empirical Bayes approach of choosing hyperparameter val-
ues by maximizing the log marginal likelihood. A fully Bayesian approach would specify
proper priors on κ̃1 and κ̃2 and obtain the corresponding posterior distribution. The
latter approach has the additional advantage of being able to quantity parameter uncer-
tainty of κ̃1 and κ̃2. In view of this, we take a fully Bayesian approach and treat κ̃1 and
κ̃2 as parameters to be estimated. Specifically, we assume a uniform prior on the unit
square (0, 1) × (0, 1) for κ̃1 and κ̃2, and compute the marginal posterior distribution of
κ̃1 and κ̃2. The contour plot of the joint posterior density is reported in Figure 1.

As the contour plot in the right panel shows, most of the mass of κ̃1 lies between
0.03 and 0.09, whereas the mass of κ̃2 is mostly between 0.002 and 0.007. That is, κ̃1

tends to be an order of magnitude larger than κ̃2. These results confirm the conclusion
that one should shrink the coefficients on other lags much more aggressively to zero
than those on own lags. Moreover, since there is virtually no mass along the diagonal
line κ̃1 = κ̃2, requiring them to be the same as in the natural conjugate prior appears
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Figure 1. Contour plot of the joint posterior density of κ̃1 and κ̃2. The mode of the density is
normalized to one for easy comparison.

to be too restrictive. As a comparison, we also plot the values of κ̃1 and κ̃2 under the
symmetric and subjective priors. As is evident from the figure, the values under both
priors are far from the high-density region of the posterior distribution.

Overall, the estimation results indicate that the optimal hyperparameter values
could be very different from some subjectively chosen values commonly used in em-
pirical work. In addition, they also highlight the importance of allowing for different
levels of shrinkage on own versus other lags and, therefore, the empirical relevance of
the proposed asymmetric conjugate prior.

4.3 Sign restrictions and impulse responses

Next, we revisit the empirical application in Furlanetto, Ravazzolo, and Sarferaz (2019)
that identifies financial shocks using sign restrictions on the contemporaneous impact
matrix. We first replicate their baseline results from a 6-variable VAR to identify 5 struc-
tural shocks, namely, demand, supply, monetary, investment, and financial shocks. We
then consider a larger, 15-variable VAR with the asymmetric conjugate prior to identify
the same structural shocks.

For the replication exercise, we use the same 6 variables and the associated sign re-
strictions considered in Furlanetto, Ravazzolo, and Sarferaz (2019), which are listed in
the first 6 rows of Table 3. The sign restrictions to identify supply, demand, and monetary
shocks are standard and are consistent with a wide range of dynamic stochastic general
equilibrium models (see, e.g., Canova and Paustian (2011)). To disentangle investment
and financial shocks from demand shocks, they are assumed to have different effects
on the ratio of investment over output. More specifically, positive investment and finan-
cial shocks have a positive effect on the ratio, which is in line with the idea that these
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Table 3. Sign restrictions and identified shocks.

Supply Demand Monetary Investment Financial

GDP + + + + +
GDP deflator − + + + +
3-month t-bill rate NA + − + +
Investment/output NA − NA + +
S&P 500 + NA NA − +
Spread NA NA NA NA NA
Spread 2 NA NA NA NA NA
Credit/Real estate value NA NA NA NA NA
Mortgage rates NA NA NA NA NA
CPI − + + + +
PCE − + + + +
employment NA NA NA NA NA
Industrial production + + + + +
1-year t-bill rate NA + − + +
DJIA + NA NA − +

Note: Spread is defined as the difference between Moody’s baa corporate bond yield and the federal funds rate; Spread 2 is
the difference between Moody’s baa corporate bond yield and 10-year treasury yield.

shocks create investment booms. In contrast, positive demand shocks reduce the ratio
of investment over output —investment level can still increase in response to demand
shocks, but not as much as other components of the output.

Finally, stock prices are used to disentangle investment shocks from financial
shocks, following the influential paper by Christiano, Motto, and Rostagno (2014). In
particular, investment shocks are assumed to have a negative impact on the stock prices,
whereas financial shocks have a positive impact. The first assumption captures the idea
that investment shocks are shocks to the supply of capital, which generate negative
comovements between the stock of capital and its price, where the price of capital is
viewed as a proxy of the value of equity. In contrast, financial shocks are stocks to the
demand for capital, which generate positive comovements between the stock of capital
and its price.

We then augment the 6-variable VAR with 9 additional variables. Some of the new
variables are alternative time series corresponding to a particular economic variable
(e.g., CPI and PCE as prices; the Dow Jones Industrial Average as stock prices). In those
cases, the same sign restrictions for the economic variable as discussed above are im-
posed. In addition, we also include a few other seemingly relevant variables to alleviate
the concern of informational deficiency. The additional variables and the corresponding
sign restrictions are listed in rows 7–15 of Table 3.

Given the posterior draws of the parameters, the algorithm proposed in Rubio-
Ramirez, Waggoner, and Zha (2010) is used to incorporate the sign restrictions to con-
struct impulse responses. This procedure can be computational intensive when the
number of variables and the number of identified shocks are large. In particular, when
there are a large number of sign restrictions, it is not uncommon to require millions of
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posterior draws to obtain enough samples that satisfy all the sign restrictions.13 For in-
stance, Furlanetto, Ravazzolo, and Sarferaz (2019) consider a noninformative prior and
construct impulse responses using a standard Gibbs sampler in conjunction with the
algorithm in Rubio-Ramirez, Waggoner, and Zha (2010). They report estimation time of
about a week for the 6-variable VAR using a 12-core workstation. For our 15-variable VAR
with more sign restrictions, it would be extremely computationally expensive to use a
standard Gibbs sampler to obtain enough posterior draws. To make estimation feasible,
we adopt the proposed asymmetric conjugate prior and the associated efficient sampler
to generate posterior draws of the structural parameters. These structural parameters
are then transformed to the corresponding reduced-form parameters, which are then
used to construct candidate impulse responses.

We first report results from the baseline model in Furlanetto, Ravazzolo, and Sarferaz
(2019) using the asymmetric conjugate prior elicited on the reduced-form parameters
and an updated data set. Since an improper (noninformative) prior is used in the orig-
inal study, to make our results comparable, we consider a proper but relatively vague
prior by setting κ̃1 = κ̃2 = 1. Figure 2 plots the impulse responses of the 6 variables to an
one-standard-deviation financial shock.

Despite using a different prior and dataset, our results are remarkably similar to
those reported in Figure 1 of Furlanetto, Ravazzolo, and Sarferaz (2019). In particular, we
also find a large effect on GDP and a relatively smaller impact on prices. The responses
of investment and stock prices are persistent. In particular, the credible intervals ex-
clude 0 for the first 7 quarters after impact for both variables. It is also interesting to note
that even though the responses of the credit spread are unrestricted in the estimation,
they are strongly countercyclical—this highlights the fact that the estimated structural
shock behaves like a financial stock. The only noticeable difference is that our median
responses of prices are all positive, whereas those in Furlanetto, Ravazzolo, and Sarferaz
(2019) have mixed signs (although the credible intervals in both cases are relatively wide
and include 0 for some periods).

As a comparison, we also compute the corresponding impulse responses under a
standard independent normal and inverse-Wishart priors: a Minnesota prior on the VAR
coefficients with hyperparameters κ̃1 = κ̃2 = 1 and an inverse-Wishart prior on �̃. The
results are almost identical to those obtained under the asymmetric conjugate prior
(results are reported in the Online Appendix), suggesting any minor differences from
Furlanetto, Ravazzolo, and Sarferaz (2019) are likely due to a slightly different data set
used.

Next, we construct the impulse responses from the 15-variable VAR. Given the large
number of VAR coefficients, appropriate shrinkage is vital in this case. We therefore ob-

13There are different implementations of the algorithm in Rubio-Ramirez, Waggoner, and Zha (2010).
One common approach, as is done in Furlanetto, Ravazzolo, and Sarferaz (2019), is to combine every uni-
form draw from the orthogonal group O(n) with a new posterior draw to generate candidate impulse re-
sponses. If the impulse responses do not satisfy all the sign restrictions, a new orthogonal matrix and a new
posterior draw are used to generate candidate impulse responses. Alternatively, one can reuse the posterior
draw and only generate a new orthogonal matrix. In this case, the number of posterior draws required can
be reduced. But to ensure the algorithm terminates, one typically sets an upper bound on the number of
times a posterior draw can be reused.
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Figure 2. Impulse responses from a 6-variable VAR with the asymmetric conjugate prior to an
one-standard-deviation financial shock. The shaded region represents the 16th and 84th per-
centiles.

tain the optimal shrinkage hyperparameters by maximizing the marginal likelihood of
the VAR with the asymmetric conjugate prior. As reported in Section 4.2, the optimal
shrinkage hyperparameters are found to be κ̃1 = 0.058 and κ̃2 = 0.0043. The following
results are based on these hyperparameter values.

Figure 3 reports the impulse responses of the same 6 variables to an one-standard-
deviation financial shock. Compared to the results from the 6-variable VAR depicted
in Figure 2, the median responses are mostly the same, but the credible intervals are
substantially narrower. For example, the responses of GDP are much more precisely
estimated—the credible intervals exclude 0 for the first 30 quarters after impact. These
results highlight the usefulness of the proposed asymmetric conjugate prior and the
value of including more variables and sign restrictions in identifying structural shocks.

As mentioned earlier, there are typically multiple data series corresponding to the
same economic variable. And it is often unclear which one should be used, if only one
variable is to be selected. In our application, for example, the time-series GDP deflator,
CPI and PCE are all good candidates for the economic variable prices. Instead of picking
one out of the three candidates, we include them all in the analysis. Figure 4 reports
impulse responses of the three measure of prices to an one-standard-deviation financial
shock. The median responses of the three variables are all positive and have very similar
shapes. However, their credible intervals are somewhat different—only in the case of
CPI do the credible intervals mostly exclude 0. If one had only used CPI, one might have
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Figure 3. Impulse responses from a 15-variable VAR with the asymmetric conjugate prior to
an one-standard-deviation financial shock. The shaded region represents the 16th and 84th per-
centiles.

drawn a stronger conclusion than it is warranted. This again highlights the benefit of
including more variables and performing a more comprehensive structural analysis.

5. Concluding remarks and future research

We developed a new asymmetric conjugate prior for large BVARs that can accommodate
cross-variable shrinkage, while maintaining many useful analytical results as the natural
conjugate prior. Using the new prior and the associated efficient sampler, we were able

Figure 4. Impulse responses of prices to an one-standard-deviation financial shock. The
shaded region represents the 16th and 84th percentiles.
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to identify 5 structural shocks using a 15-variable VAR with a set of sign restrictions on
the contemporaneous impact matrix. We showed that the larger number of variables
and sign restrictions—when used in conjunction with the asymmetric conjugate prior—
can sharpen inference on impulse responses.

There is now a large empirical literature that shows that models with stochastic
volatility tend to forecast substantially better (Clark (2011), D’Agostino, Gambetti, and
Giannone (2013), Cross and Poon (2016)). In future work, it would be useful to develop
similar efficient posterior samplers for large BVARs with stochastic volatility, such as
the models in Carriero, Clark, and Marcellino (2019) and Chan, Eisenstat, and Strachan
(2020). In addition, it would be interesting to use Proposition 1 to construct a multivari-
ate stochastic volatility model that is invariant to reordering of the variables.

Appendix A: Data

This Appendix provides the details of the raw data used to construct the variables in
the empirical application. In particular, Table 4 lists the variables and their sources. The
sample period is from 1985:Q1 to 2019:Q4.

Appendix B: Derivation of the marginal likelihood

In this Appendix, we prove that the marginal likelihood of the VAR(p) under the asym-
metric conjugate prior in (4) has the following expression:
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νi+ T

2
i

.



1166 Joshua C. C. Chan Quantitative Economics 13 (2022)

Table 4. Description of variables used in the empirical application.

Variable Description Source

GDP Log of real GNP/GDP Federal Reserve Bank of
Philadelphia

GDP Deflator Log of price index of GNP/GDP Federal Reserve Bank of
Philadelphia

3-month treasury bill 3-month treasury bill rate Federal Reserve Bank of St. Louis
Investment Log of real gross private domestic

investment
Federal Reserve Bank of St. Louis

S&P 500 Log of S&P 500 Yahoo Finance
Total credit Log of loans to nonfinancial private

sector
Board of Governors of the
Federal Reserve System

Mortgages Log of home mortgages of households
and nonprofit organizations

Federal Reserve Bank of St. Louis

Real estate value Log of real estate at market value of
households and nonprofit
organizations

Federal Reserve Bank of St. Louis

Corporate bond yield Moody’s baa corporate bond yield Federal Reserve Bank of St. Louis
10-year treasury note 10-year treasury constant maturity

rate
Federal Reserve Bank of St. Louis

Federal funds rate Federal funds rate Federal Reserve Bank of St. Louis
Mortgage rate 30-year fixed rate mortgage average Federal Reserve Bank of St. Louis
CPI Log of consumer price index Federal Reserve Bank of St. Louis
PCE Log of price index of personal

consumption expenditure
Federal Reserve Bank of St. Louis

Employment Log of employment level Federal Reserve Bank of St. Louis
Industrial production Log of industrial production index Federal Reserve Bank of St. Louis
1-year treasury bill 1-year treasury constant maturity rate Federal Reserve Bank of St. Louis
Dow Jones Industrial Average Log of Dow Jones Industrial Average

index
Google Finance
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The above equality holds because the quantity on the right-hand side is the normalizing
constant of the (θi, σ2

i ) ∼ NIG(mi, Vi, νi, Si ) distribution.
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