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Pareto extrapolation: An analytical framework
for studying tail inequality

Émilien Gouin-Bonenfant
Department of Economics, Columbia University

Alexis Akira Toda
Department of Economics, University of California San Diego

We develop an analytical framework designed to solve and analyze hetero-
geneous-agent models that endogenously generate fat-tailed wealth distribu-
tions. We exploit the asymptotic linearity of policy functions and the analytical
characterization of the Pareto exponent to augment the conventional solution al-
gorithm with a theory of the tail. Our framework allows for a precise understand-
ing of the very top of the wealth distribution (e.g., analytical expressions for top
wealth shares, type distribution in the tail, and transition probabilities in and out
of the tail) in addition to delivering improved accuracy and speed.

Keywords. Bewley–Huggett–Aiyagari model, Pareto exponent, power law, solu-
tion accuracy.

JEL classification. C63, D31, D58, E21.

1. Introduction

What are the economic effects of a wealth tax on billionaires? Providing a quantitative
answer to this type of question using the existing toolkit for economic modeling can
prove challenging. The reason is that becoming a billionaire is inherently a “tail event”: it
is extremely rare yet it has a disproportionate effect on aggregate variables. For example,
in the U.S., fewer than 0.0006% of households can claim the title of billionaire, yet they
control 3.4% of the capital in the economy.1 Having a precise quantitative theory of tail
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(https://www.federalreserve.gov/releases/z1/dataviz/dfa/), the aggregate U.S. household net worth in
2021Q1 was $128 trillion. Therefore with 122 million households in U.S., the fraction of billionaires is
724/(122 × 106 ) = 0.00059% with a wealth share of 4.4/128 = 3.4%.
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events—how much wealth is held in the upper tail of the wealth distribution, what type
of individuals reach the tail, and how much mobility there is in and out of the tail—is
thus key to conducting credible economic analysis on questions such as the effect of a
wealth tax.

However, the conventional solution algorithm for heterogeneous-agent models is
not well suited to handle tail events since it relies on approximating the wealth distri-
bution by a histogram, which lumps the upper tail into a single bin. Although analytical
models of wealth inequality based on the random growth mechanism do not suffer from
this issue, they require strong (and often unrealistic) assumptions to obtain closed-form
solutions, which makes them a poor device to address policy-relevant quantitative ques-
tions.

In this paper, we develop an analytical framework designed to solve and analyze
Bewley–Huggett–Aiyagari models (heterogeneous-agent models without aggregate un-
certainty) that generate fat-tailed wealth distributions. In a nutshell, we augment the
conventional solution algorithm with an analytical “theory of the tail” (e.g., Pareto up-
per tail of the wealth distribution, mobility in and out of the tail, and policy functions
in the tail). Our contribution is to produce a number of new theoretical results includ-
ing: an algorithm to compute the wealth distribution (Pareto extrapolation), correction
terms for aggregate quantities to account for the contribution of agents in the tail, and
analytical expressions for tail event moments such as top wealth shares, type distribu-
tion in the tail, and the transition probabilities in and out of the tail.

Our framework builds on the conventional solution algorithm and extends it with
two additional steps: (i) the “asymptotic analysis” of the individual optimization prob-
lem to approximate the behavior of agents in the tail and analytically compute the Pareto
exponent of the wealth distribution, and (ii) the “Pareto extrapolation” of the wealth dis-
tribution outside the grid to accurately compute the equilibrium. Our analytical frame-
work allows researchers to easily and accurately analyze rich heterogeneous-agent mod-
els with features such as persistent earnings and investment risk, borrowing constraint,
portfolio choices, etc. and compute tail event moments, which existing methods have
difficulty (or are unable) to compute despite their importance.

In the “asymptotic analysis” step, we solve a simplified, or “asymptotic” individ-
ual optimization problem semianalytically. Roughly speaking, this problem abstracts
from additive elements and focuses on proportional elements.2 The benefit of studying
the asymptotic problem is that its solution determines the behavior of wealthy agents,
which governs the tail property of the model such as the Pareto exponent of the wealth
distribution and the transition probabilities in and out of the tail. Since asymptotic pol-
icy functions (e.g., consumption, investment) are linear in wealth, we are able to derive
analytical expressions for the contribution of agents in the tail to aggregates that de-
pend only on asymptotic slopes (for instance, the asymptotic marginal propensity to
consume) and the Pareto exponent.

2For example, consider the income fluctuation problem, which is a building block of Bewley–Huggett–
Aiyagari models. The asymptotic problem in this case is one with no labor income (for agents in the tail, la-
bor income is negligible compared to capital income), which can be solved analytically as in Merton (1969)
and Samuelson (1969).
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In the “Pareto extrapolation” step, we approximate the upper tail of the wealth distri-
bution using the theoretical Pareto exponent computed in the asymptotic analysis step.
Recall that the conventional solution algorithm approximates the wealth distribution
by assigning probabilities to a finite wealth grid. To do so, one must simply compute the
transition probability matrix for wealth and its eigenvector associated with the domi-
nant eigenvalue (see Young (2010)). Yet, this approach is problematic because in many
situations including heterogeneous-agent models with return heterogeneity, mortality
risk, or random discount factors, the wealth distribution is naturally unbounded and
fat-tailed. Our approach is thus to approximate the bulk of the wealth distribution using
the conventional approach but to “append” an (unbounded) Pareto distribution above
the largest grid point. The main challenge is to construct a transition probability matrix
such that the values associated with the largest wealth grid point reflect the transition
probabilities in and out of the upper tail. We provide an algorithm to do so whose key
inputs are the asymptotic policy functions and the Pareto exponent computed in the
asymptotic analysis step.

The new steps that we propose are based on closed-form formulas, and thus do not
generate additional computational cost. In fact, our framework tends to be much faster
than the conventional solution algorithm. In principle, one could approximate a fat-
tailed wealth distribution using a very large (but finite) grid. In contrast, our approach is
to solve the “non-Pareto” part of the wealth distribution using a short but dense grid and
extrapolate the upper tail using the theoretical Pareto exponent, where all calculations
are done analytically. Since most of the computational cost scales with the number of
grid points, our approach can deliver improved accuracy and a higher speed.

To assess the accuracy of our framework, we use a simple heterogeneous-agent
model that admits a closed-form solution as a laboratory. We find that our method is
extremely accurate and robust to the grid choice, even when looking at moments such
as the wealth share of the top 0.0006% of households (billionaires). Unsurprisingly, the
common practice of truncating the upper tail of the wealth distribution generates a se-
vere downward bias in top wealth shares, even for extremely large truncation points.

For the benefit of the users, we have provided Matlab files for implementing the
Pareto extrapolation algorithm at https://github.com/alexisakira/Pareto-extrapolation.
Due to space limitations, this paper omits a quantitative application of Pareto extrap-
olation. An application to the wealth tax in a calibrated general equilibrium model is
discussed in Sections 5 and 6 of the working paper version (Gouin-Bonenfant and Toda
(2018)).

Related literature Our paper is related to a large literature that spans across many dis-
ciplines, including quantitative macroeconomics, economic theory on consumption-
portfolio choices and general equilibrium, mathematical and statistical results on Pareto
tails, and numerical analysis.

It is well known in the quantitative macroeconomics literature that idiosyncratic un-
employment risk and incomplete financial markets alone are insufficient to generate a
sufficiently dispersed wealth distribution (Krueger, Mitman, and Perri (2016)). Recently,
Stachurski and Toda (2019, 2020) have theoretically proved that in canonical Bewley–
Huggett–Aiyagari models in which agents are infinitely-lived, have constant discount

https://github.com/alexisakira/Pareto-extrapolation
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factors, and can invest only in a risk-free asset, the wealth distribution necessarily in-
herits the tail property of the income distribution (which empirically has a thinner tail
than the wealth distribution3). Therefore, canonical heterogeneous-agent models can-
not explain the wealth distribution. They also argue that introducing other ingredients
such as random discount factors (Krusell and Smith (1998)), idiosyncratic investment
risk (Quadrini (2000), Cagetti and De Nardi (2006)), and random birth/death (Carroll,
Slacalek, Tokuoka, and White (2017), McKay (2017)) can generate fat tails. Our paper
contributes to the quantitative macroeconomics literature by providing a general solu-
tion algorithm to solve and analyze such models.

As mentioned in the Introduction, since existing numerical methods are in general
not well suited for studying the tail behavior of the wealth distribution, most papers
that study the power law behavior in the wealth distribution use analytical solutions.
Nirei and Souma (2007) and Benhabib, Bisin, and Zhu (2011) solve growth models with
idiosyncratic investment risk and use the properties of Kesten (1973) processes to ob-
tain a Pareto wealth distribution. Toda (2014), Arkolakis (2016), Benhabib, Bisin, and
Zhu (2016), and Nirei and Aoki (2016) consider stochastic birth/death and obtain the
double Pareto wealth distribution based on the mechanism of Reed (2001).4 Our pa-
per bridges this literature on power law in economics and quantitative macroeconomics
by providing an analytical framework that combines a theory of the tail to the conven-
tional numerical solution algorithm. Our framework is general enough to be applied to
state-of-the-art quantitative models of wealth inequality (Kaymak and Poschke (2016),
Hubmer, Krusell, and Smith (2020), Guvenen, Kambourov, Kuruscu, Ocampo-Diaz, and
Chen (2019)).

The asymptotic analysis step of our approach exploits the asymptotic linearity of
policy functions in models with homothetic utility as well as the analytical characteriza-
tion of the Pareto exponent as the solution to an eigenproblem. Although the asymptotic
linearity of policy functions with homothetic preferences is intuitive, a rigorous proof
with an exact analytical characterization of asymptotic slopes was obtained only re-
cently by Ma and Toda (2021, 2022) after the working paper version of this paper (Gouin-
Bonenfant and Toda (2018)) was circulated. To analytically characterize the Pareto expo-
nent of the wealth distribution in a general Markovian environment, we apply the recent
results from Beare and Toda (2022), who characterize the Pareto exponent as a solution
to an eigenproblem. Toda (2019) pointed out the usefulness of the asymptotic problem
for computing the Pareto exponent in general models that admit no closed-form so-
lutions. However, he neither considers the solution algorithm for general equilibrium
models with fat-tailed wealth distributions nor discusses the implications for analyt-
ically characterizing tail event moments, which is the heart of our analysis. We build

3de Vries and Toda (2021) estimate capital and labor income Pareto exponents across 475 country-year
observations and document that capital income (hence wealth) inequality is higher than labor income in-
equality (median Pareto exponents 1.46 and 3.35, respectively) and the two inequalities are uncorrelated.

4Other recent applications include firm dynamics (Daron and Cao (2015)), asset pricing (Toda and Walsh
(2015, 2017)), dynamics of inequality (Gabaix, Lasry, Lions, and Moll (2016), Aoki and Nirei (2017), Cao
and Luo (2017), Kasa and Lei (2018)), entrepreneurship (Jones and Kim (2018)), and the spread of a new
infectious disease (Beare and Toda (2020)). For reviews of generative mechanisms of Pareto tails used in
these papers, see Gabaix (2009).
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on these results to produce our new results, which include: an algorithm to compute
the wealth distribution (Pareto extrapolation), correction terms for aggregate quantities
to account for the contribution of agents in the tail, and analytical expressions for tail
event moments such as top wealth shares, type distribution in the tail, and the transi-
tion probabilities in and out of the tail. Our paper bridges this literature on power law
in economics and quantitative macroeconomics by showing that the theoretical insight
carries over to rich quantitative models.

Our paper is also related to the literature on solution methods for heterogeneous-
agent models. In particular, we use the insight from Algan, Allais, and Den Haan
(2008) and Winberry (2018), who approximate cross-sectional distributions using finite-
dimensional parametric families. In our case, because economic theory suggests that
the upper tail of the wealth distribution is Pareto and it is possible to compute the Pareto
exponent from the solution to the asymptotic problem, we use this Pareto distribution
to approximate the upper tail. We use Young (2010)’s nonstochastic simulation to com-
pute the rest of the wealth distribution from the transition probability matrix implied by
the law of motion, though Pareto extrapolation is likely applicable to other approaches
such as updating the CDF.

Finally, our paper is close in spirit to Achdou, Han, Lasry, Lions, and Moll (2022).
They study a continuous-time version of the Bewley–Huggett–Aiyagari model, which al-
lows them to obtain a number of novel characterizations and results, including closed-
form expressions for the stationary wealth distribution (in a special case) and the
marginal propensity to consume of agents close to the borrowing constraint. They apply
finite-difference methods and propose a fast solution algorithm that can be applied to
general heterogeneous-agent models in continuous time. While our paper is different—
we focus on the complications arising from fat-tailed wealth distributions—we share the
same goal of bridging the gap between theoretical and quantitative work in macroeco-
nomics.

2. Issues with the conventional solution algorithm

Before introducing our framework, we briefly discuss issues with the conventional solu-
tion algorithm. Suppose that we want to solve a Bewley–Huggett–Aiyagari model numer-
ically when the wealth distribution could be unbounded, and in particular, fat-tailed.5

The conventional solution algorithm for heterogeneous-agent models (henceforth “the
truncation method”) combines dynamic programming over a finite grid (Blackwell
(1965), Coleman (1990)) with nonstochastic simulation (Young (2010)). The algorithm
would be roughly as follows:

5There exist models in which the stationary equilibrium wealth distribution has a compact support.
For instance, Stachurski and Toda (2019, Theorem 8) show the boundedness of wealth distribution in any
Bewley–Huggett–Aiyagari model in which agents are infinitely lived, have constant discount factors, have
bounded relative risk aversion utility, have bounded income, and save only in a risk-free asset. Similarly,
there exist models in which the stationary equilibrium wealth distribution has a Pareto upper tail: see foot-
note 4 and the surrounding discussion.
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(i) The researcher sets up a finite grid for wealth denoted by WN = {wn}Nn=1, where
N is the number of grid points and w1 < · · · < wN . Suppose there are also other
exogenous state variables (e.g., income, return on wealth, etc.), which can take S

possible values indexed by s = 1, � � � , S. Given the guess of the equilibrium object
(e.g., interest rate, wage, etc.), we can solve the individual optimization problem
on the S ×N grid using dynamic programming.

(ii) Having solved the individual optimization problem and obtained the law of mo-
tion for individual wealth, the researcher constructs the SN × SN joint transition
probability matrix Q of exogenous state and wealth. The stationary distribution
π ∈R

SN+ is obtained by solving Q′π = π (so π is an eigenvector of Q′ correspond-
ing to the eigenvalue 1).

(iii) Finally, the researcher imposes the market clearing condition by integrating the
individual decision rules (capital, labor, etc.) over the grid using the stationary
distribution π to find the equilibrium objects (interest rate, wage, etc.).

There are two potential issues with this algorithm when the stationary wealth dis-
tribution is fat-tailed, both of which are related. First, consider the largest grid point
wN . This grid point in principle does not represent just the point w = wN , but the half-
line w ∈ [wN , ∞). Therefore when we construct the transition probability from wN to
other grid points, instead of assuming that the current wealth state w is concentrated at
wN , we need to take into account that w is really distributed over the interval [wN , ∞)
according to the (true) stationary distribution. Since the interval [wN , ∞) contains sub-
stantial probability mass when the wealth distribution is fat-tailed, failing to account for
this will overestimate the transition probability to lower wealth states, and hence under-
estimate the top tail probability.

Second, suppose that we use the stationary distribution π = (πsn ) to compute ag-
gregate quantities used in market clearing conditions. For concreteness, consider the
aggregate wealth

W =
S∑

s=1

N∑
n=1

πsnwn. (2.1)

The right-hand side of (2.1) essentially supposes that the top tail is concentrated on the
grid point wN , whereas in fact it is distributed over the interval [wN , ∞). Thus failing
to account for this will underestimate the aggregate wealth, which affects the compu-
tation of equilibrium through market clearing conditions.6 As we will show, this second
problem is particularly severe when the object of interest is a top wealth share.

3. The Pareto extrapolation algorithm

Our new solution algorithm, which we call the “Pareto extrapolation” method, builds on
the conventional solution algorithm described in Section 2 but differs at several steps,

6This point is important as Kubler and Schmedders (2005) show that approximate equilibria can be very
far from exact equilibria.
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most importantly when computing the stationary distribution and when aggregating in-
dividual behavior to evaluate the market clearing condition. It can be applied to solve for
the stationary equilibrium of any heterogeneous-agent model, although the novel steps
are needed only when the model generates a Pareto-tailed wealth distribution. In gen-
eral, the stationary wealth distribution has a Pareto upper tail in models that combine
homothetic preferences (e.g., additive CRRA, Epstein–Zin, etc.) with either random dis-
count factors, stochastic returns on wealth, and/or birth and death. A byproduct of our
algorithm is that it will tell the user whether the model generates a Pareto-tailed wealth
distribution, and if so, provides an analytical characterization of the Pareto exponent.

We now provide a step-by-step description of the Pareto extrapolation method. As a
leading example, we focus on a simplified (no aggregate shocks) version of the classical
Krusell and Smith (1998) (henceforth KS) model with random discount factors, which is
known to generate a Pareto-tailed wealth distribution (Toda (2019), Ma, Stachurski, and
Toda (2020)). Since the KS model is well known, we only briefly describe the Bellman
equation for the value function of the household:

vs(w) = max
c≥0

{
c1−γ

1 − γ
+βs(1 −p) E

[
vs′
(
w′) | s]}, (3.1a)

w′ =R(w − c) + ys′ , (3.1b)

w′ ≥w
¯

. (3.1c)

Here, s = 1, � � � , S denotes Markov states that evolve over time according to a transition
probability matrix P = (pss′ ), βs > 0 is the discount factor in state s, p ∈ [0, 1) is the
birth/death probability (the infinitely-lived case corresponds to p = 0), γ > 0 is the rela-
tive risk aversion, c is consumption, ys is income in state s, w is the beginning of period
wealth including current labor income,7 R is the gross interest rate, and w

¯
is the mini-

mum wealth (borrowing limit).

The Pareto extrapolation algorithm.

(i) Asymptotic analysis

(a) Compute the “asymptotic” policy/value functions semi-analytically

(b) Compute the theoretical Pareto exponent

(ii) Dynamic programming

(a) Initialize value/policy functions using a guess

(b) Update the value/policy functions over a finite grid using the Bell-
man/Euler equations

7Sometimes researchers use the wealth excluding current labor income as the state variable. Such varia-
tions in the timing convention are unimportant for applying the algorithm.
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(iii) Transition probabilities

(a) Construct the joint transition probability matrix for exogenous state and
wealth over a finite grid using nonstochastic simulation

(b) To account for transitions in and out of the grid, extrapolate the
model using the asymptotic policy functions and the Pareto exponent

(iv) Aggregation

(a) Aggregate individual behavior of agents inside the grid

(b) To account for the contribution of agents outside the grid, ex-
trapolate the model using the asymptotic policy functions and the Pareto
exponent

Below, we explain each step in more detail and pay particular attention to the “new”
steps, namely (iii)b and (iv)b.

3.1 Asymptotic analysis

The first step of the algorithm consists of characterizing the “asymptotic” properties
of the model. We use two (related) features of models with homothetic preferences.
First, the control variables (consumption, investment, etc.) are approximately linear in
wealth for wealthy agents. Second, the endogenously determined wealth distribution
has a Pareto upper tail.

3.1.1 Computing the asymptotic policy functions Given that labor income enters addi-
tively into the budget constraint, whereas capital income is proportional to wealth, the
former becomes negligible as the wealth of an agent tends to infinity.8 To characterize
the behavior of wealthy agents, we consider a simplified problem where labor income
is set to zero. Assuming that agents have (asymptotically) homothetic preferences (e.g.,
CRRA, HARA, Epstein–Zin, etc.), which is almost always the case in applications, this
simplified problem becomes a homogeneous problem in the sense that all control vari-
ables scale with wealth. We refer to this problem as the asymptotic problem. Such prob-
lems can be solved semianalytically and the decision rules become linear in wealth.9

8Note that it is the individual labor income that becomes negligible relative to individual capital income.
At the aggregate level, labor income generally comprises a substantial portion of aggregate income.

9Toda (2014, Theorem 5) discusses the analytical solution to homogeneous problems in a Markovian
(non-iid) environment. The usefulness of asymptotic analysis to compute the theoretical Pareto exponent
was pointed out by Toda (2019). Appendix A of the Online Supplementary Material (Gouin-Bonenfant and
Toda (2023)) formally defines the asymptotic problem and heuristically discusses the asymptotic linearity
of policy functions in an abstract dynamic programming setting. For a rigorous proof of asymptotic linearity
as well as an analytical characterization of asymptotic slopes, see Ma and Toda (2021, 2022).
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For concreteness, consider the KS model. In this case, income ys and the borrowing
limit w

¯
are negligible asymptotically, so we replace the budget constraint (3.1b) and the

borrowing constraint (3.1c) by

w′ =R(w − c), (3.2a)

w′ ≥ 0, (3.2b)

respectively. Note that the problem is now homogeneous because the utility function is
homothetic: an agent twice as rich will consume twice as much, state-by-state. We can
maximize a homothetic function subject to homogeneous constraints of the form (3.2)
semianalytically quite efficiently, as explained in Toda (2014) in detail. In the case of the
KS model, the asymptotic consumption rule can be computed as follows.

The Euler equation in the KS model is

c
−γ
t = βs(1 −p)RE

[
c
−γ
t+1 | s].

Let wt =w and conjecture a solution of the form cs(w) = c̄sw, where {c̄s }Ss=1 can be inter-
preted as the asymptotic marginal propensity to consume (MPC) out of wealth in each
patience state. Using the asymptotic budget constraint (3.2a), we obtain

w′ = wt+1 =R(wt − ct ) = R(1 − c̄s )w.

Noting that ct+1 = c̄s′w′ and combining the above equations, we obtain

c̄
−γ
s = (1 −p)R1−γβs

S∑
s′=1

pss′
[
(1 − c̄s )c̄s′

]−γ
. (3.3)

The asymptotic consumption rules in the KS model can be solved semi-analytically
as the solution to the asymptotic Euler equation (3.3), which admits a (necessarily
unique) solution if, and only if

(1 −p)R1−γρ(DP ) < 1, (3.4)

where D = diag(β1, � � � , βS ) is the diagonal matrix of discount factors and ρ(A) denotes
the spectral radius (largest absolute value of all eigenvalues) of the matrix A.10

10See Appendix B in the Online Supplementary Material for a proof. For the intuition and technical de-
tails on condition (3.4), see the discussion around equation (2.13) in Ma and Toda (2021). When the spec-
tral condition (3.4) is violated, the asymptotic MPCs are zero by the results in Ma and Toda (2021, 2022). If
needed, the asymptotic value functions can be obtained by conjecturing that vs(w) = v̄s

w1−γ

1−γ and using the

Bellman equation (3.1a) combined with the asymptotic MPCs {c̄s }Ss=1:

v̄s = c̄
1−γ
s + (1 −p)R1−γβs

∑
s′

pss′ v̄s′ (1 − c̄s )1−γ .
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3.1.2 Computing the theoretical Pareto exponent Equipped with the solution to the
asymptotic problem, we can now compute the Pareto exponent of the wealth distri-
bution. We use the insight from Toda (2019), who argues that the tail property of the
wealth distribution depends only on the behavior of wealthy agents. Substituting the
asymptotic consumption rule cs(w) = c̄sw into the asymptotic budget constraint (3.2a),
we obtain the asymptotic law of motion for wealth in the KS model, which is linear:

w′ =R(1 − c̄s )w. (3.5)

The key insight here is that, since the patience state s evolves randomly over time (and
so does the asymptotic MPC c̄s), the wealth accumulation process of wealthy agents be-
comes a “random growth model.”

More generally, suppose that the law of motion of the asymptotic problem is

wt+1 =Gt+1wt , (3.6)

where Gt+1 > 0 is the gross growth rate of wealth between time t and t + 1 and wt is
wealth. Thus, in the asymptotic problem, the law of motion for wealth necessarily sat-
isfies Gibrat (1931)’s law of proportional growth. Assuming that agents enter/exit the
economy at constant probability p > 0, Beare and Toda (2022) show that under mild
conditions the stationary wealth distribution has a Pareto upper tail and characterize
the Pareto exponent ζ, as follows. For z ∈R, let

Mss′(z) = E
[
ez logGt+1 | st = s, st+1 = s′

]= E
[
Gz

t+1 | st = s, st+1 = s′
]

(3.7)

be the moment generating function of the log growth rate logGt+1 conditional on tran-
sitioning from state s to s′, and

M(z) = (
Mss′(z)

)
(3.8)

be the S× S matrix of conditional moment generating functions (3.7). (In the case of the
KS model, we simply have Mss′(z) = [R(1 − c̄s )]z using (3.5) and (3.7).) Then under mild
conditions Beare and Toda (2022) show that the equation

(1 −p)ρ
(
P �M(z)

)= 1, (3.9)

where P�M(z) denotes the Hadamard (entrywise) product of P and M(z), has a unique
positive solution z = ζ > 0, and that the stationary wealth distribution has a Pareto up-
per tail with exponent ζ. The following proposition gives a simple test for the solvability
of (3.9).

Proposition 3.1. If Gt+1 ≤ 1 always, then (3.9) does not have a solution z > 0. If M(z)
is finite for all z > 0, P is irreducible, and

pss Pr(Gt+1 > 1 | st = st+1 = s) > 0 (3.10)

for some s, then (3.9) has a unique solution z = ζ > 0.
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For some parametrization, the model might generate a bounded wealth distribu-
tion. Intuitively, Gt+1 ≤ 1 means that wealth shrinks (or stays the same), so there is no
random growth. In this case, the wealth distribution does not have a Pareto tail, and the
Pareto extrapolation algorithm reduces to the conventional one (because ζ = ∞ makes
the extra steps discussed in Sections 3.2 and 3.3 redundant). If P is irreducible, every
state is visited eventually. The condition (3.10) says that in state s, with positive proba-
bility the agent’s wealth grows and the agent can remain in that state. Because there is
random growth, the wealth distribution has a Pareto tail. If agents are infinitely lived but
there exists a stationary distribution due to other mechanisms than random entry/exit
(e.g., borrowing constraint), then we can just set p= 0 in (3.9) to compute the theoretical
Pareto exponent.

3.2 Transition probabilities

The conventional solution algorithm approximates the wealth distribution over a finite
grid. The idea is to first compute the joint transition probability matrix Q over the ex-
ogenous state s and wealth w and then compute the stationary distribution π by solv-
ing Q′π = π. The key challenge when the wealth distribution is fat-tailed is that for any
truncation point wN , some agents will “escape” the grid (i.e., transition from w ≤ wN to
w′ > wN ) and similarly some will “enter” the grid (w > wN and w′ ≤ w). Equipped with
the policy functions, their asymptotic counterpart, and the theoretical Pareto exponent
ζ, we now provide a simple algorithm that computes the transition probability matrix Q

while accounting for transitions in and out of the grid.
We first introduce some notation. Let WN = {wn}Nn=1 be the grid for wealth, In =

[wn, wn+1 ) be the half-open interval with endpoints wn and wn+1, and IN = [wN , ∞).
Let w′ = gss′(w) be the law of motion for wealth (conditional on transitioning from state
s to s′) implied by the policy functions obtained in the dynamic programming step. Fi-
nally, let Q = (qsn,s′n′ ) be the SN × SN joint transition probability matrix of exogenous
state s and wealth {wn}Nn=1 and π = (πsn ) be the SN × 1 stationary distribution of wealth.

To compute the elements of Q, we proceed in two steps. For agents “inside the
grid,” we use nonstochastic simulation exactly as in Young (2010). For agents “outside
the grid,” we extrapolate the model beyond the largest grid point and obtain analytical
expressions for the transition probabilities. Then the stationary distribution π can be
computed as the (unique) eigenvector of Q′ corresponding to the eigenvalue 1.

We now describe in detail how to compute the transition probabilities qsn,s′n′ . For
simplicity, we focus on the case when there is no death (p = 0). The case p> 0 is similar
and it is a matter of taking the weighted average of transition probabilities conditional
on survival and death, weighting by 1 −p and p.

Case 1: n < N . Take the lower grid point of In, which is wn. If gss′(wn ) ∈ Ik for some
k<N , then we can take θ ∈ [0, 1) such that

gss′(wn ) = (1 − θ)wk + θwk+1 ⇐⇒ θ = gss′(wn ) −wk

wk+1 −wk
. (3.11)
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Figure 1. Construction of transition probabilities from a grid point.

We can then assign probabilities 1−θ, θ to the grid points wk, wk+1 (i.e., states k and k+
1), respectively (Figure 1). If gss′(wn ) <w1 or gss′(wn ) ≥ wN , then just assign probability
1 to state 1 or N .

Thus for n <N we construct the transition probability as

qsn,s′n′ = pss′ ×

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if gss′(wn ) <w1 and n′ = 1,

1 − θ if gss′(wn ) ∈ Ik and n′ = k,

θ if gss′(wn ) ∈ Ik and n′ = k+ 1,

1 if gss′(wn ) ≥wN and n′ =N ,

0 otherwise,

(3.12)

where θ is defined by (3.11).

Case 2: n =N . Suppose for the moment that there is an untruncated grid W∞ = {wn}∞n=1,
and for n ≥ N we know the probability of w = wn conditional on w ∈ IN ∩ W∞. Let this
probability be denoted by rn. By definition, we have

∑∞
n=N rn = 1. Now for each n ≥N , we

can do precisely as in the previous case, and add probabilities (1 − θ)rn and θrn (where
θ is defined by (3.11)) to the grid points wk, wk+1 whenever w′ = gss′(wn ) ∈ Ik for k <N

(Figure 2). If gss′(wn ) <w1 or gss′(wn ) ≥wN , then just add probability rn to the transition
to state 1 or N . The nice thing is that for large enough n, the next period’s state w′ =
gss′(wn ) is likely large (contained in IN ), so we only need to compute θ for finitely many n

(say n =N , � � � , N ′, where wN ′ is the smallest grid point such that the next period’s wealth
always exceeds wN ). For the probability rn, because the theoretical density is Pareto with
exponent ζ, we can simply set rn ∝ w

−ζ−1
n if the grid spacing wn+1 − wn is constant for

n ≥N .

Figure 2. Construction of transition probabilities from a hypothetical grid point.
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More formally, we do as follows. First, let h = wN − wN−1 > 0 be the grid spacing of
the hypothetical grid points {wn}∞n=N+1 taken to be the distance between the largest two
actual grid points.11 Define the untruncated grid W∞ = {wn}∞n=1 by wn = wN + (n−N )h
for n >N . Compute the smallest index N ′ ≥N such that gss′(wN ′ ) >wN for all s, s′:

N ′ = min
{
n ≥N | ∀s, s′, gss′

(
wN + (n−N )h

)
>wN

}
. (3.13)

To evaluate the law of motion outside the grid, we can simply linearly extrapolate the
law of motion for w ≥wN as

gss′(w) = gss′(wN ) +Gss′(w −wN ), (3.14)

where Gss′ > 0 is the theoretical slope obtained in the asymptotic analysis step. Com-
bining (3.13) and (3.14), after some algebra we obtain

N ′ = N + max
s,s′

max
{⌈

wN − gss′(wN )
Gss′h

⌉
, 0
}

, (3.15)

where 
x� denotes the smallest integer exceeding x.
To compute the conditional probability rn, because theoretically the stationary dis-

tribution has a Pareto upper tail with exponent ζ > 1 (if ζ ≤ 1, then the mean is in-
finite, which is impossible in equilibrium), using the density (conditional on w ≥ wN )
f (x) = ζw

ζ
Nx−ζ−1, we set

rn ≈ ζw
ζ
N

(
wN + (n−N )h

)−ζ−1
h= ζ

h

wN

(
1 + (n−N )

h

wN

)−ζ−1

for n ≥N . Since for n ≥N ′ the next state will always be N (w′ = gss′(wn ) ∈ IN ), there is no
need to compute rn individually. Using the theoretical Pareto density, we obtain

∞∑
n=N ′

rn ≈ 1
2
rN ′ +

∫ ∞

wN′
ζw

ζ
Nx−ζ−1 dx= 1

2
rN ′ + (wN ′/wN )−ζ

=
(

1 + (
N ′ −N

) h

wN

)−ζ−1(
1 +

(
N ′ −N + 1

2

)
h

wN

)
. (3.16)

(We explain the mysterious term rN ′/2 in Section 4.4.) Therefore we set⎧⎪⎪⎨⎪⎪⎩
rn := Cζ

h

wN

(
1 + (n−N )

h

wN

)−ζ−1

for N ≤ n <N ′,

rN ′ := C

(
1 + (

N ′ −N
) h

wN

)−ζ−1(
1 +

(
N ′ −N + 1

2

)
h

wN

)
,

(3.17)

where the constant of proportionality C is chosen to satisfy
∑N ′

n=N rn = 1.

11This choice is motivated by the trapezoidal formula for quadrature and we have numerically confirmed
to be optimal.
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Now for each s and extra grid point n = N , � � � , N ′, define the transition probability
q̃sn,s′n′ exactly as in (3.12). The remaining elements of the joint transition probability
matrix Q = (qsn,s′n′ ) can be computed as

qsN ,s′n′ =
N ′∑

n=N

rnq̃sn,s′n′ . (3.18)

A few remarks are in order. First, the algorithm for constructing Q has essentially zero
additional computational cost relative to the existing method, despite its complicated
appearance. The reason is that extrapolation from the Pareto distribution is used only
at the largest grid point wN . Thus, although we are computing transition probabilities
from SN points, which the conventional solution algorithm needs to compute anyway,
the Pareto extrapolation algorithm requires only S × 1 = S additional operations, which
is negligible. In our numerical example in Section 5, we find that the computing time of
this step is trivial and, therefore, we do not report it.

Second, the SN × SN transition probability matrix Q is sparse, meaning that Q has
few nonzero elements. To see this, let us evaluate the number of nonzero elements of Q.
For each s, s′ and n < N , there are at most two states the next wealth can take because
nonstochastic simulation assigns positive probabilities to two neighboring grid points
(Figure 1). For n = N , in principle the next wealth state can be anything. Therefore the
number of nonzero elements of Q is at most

2 × S2 × (N − 1) +N × S2 = S2(3N − 2).

Thus the fraction of nonzero elements of Q is bounded above by

S2(3N − 2)

(SN )2 = 3N − 2

N2 → 0

as N → ∞, so Q is sparse.12 Therefore, computing the stationary distribution π is feasi-
ble, despite the fact that Q is in practice a very large matrix.

3.3 Aggregation

When computing the equilibrium of a heterogeneous-agent model, we need to impose
market clearing conditions in some way or another. To do so, we need to aggregate in-
dividual behavior. Let us first focus on computing the aggregate capital supply in the KS
model. Given that the capital supply of an agent in state s with wealth w is w− cs(w), the

12Achdou et al. (2022) mention that “[c]ontinuous time imparts a number of computational advan-
tages relative to discrete time [. . . , which] relate to [. . . ] the fact that continuous-time problems with dis-
cretized state space are, by construction, very “sparse.” While it is true that continuous-time problems
have advantages over discrete-time problems (e.g., partial differential equations versus nonlinear differ-
ence equations), discrete-time problems also do possess sparsity if appropriately solved. One key advan-
tage of continuous-time models arises when the exogenous state variables obey a diffusion process. In that
case, the transition probability matrix is also sparse in the number of possible exogenous states (S using
our notation).
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aggregate capital supply is K = ∫
(w − cs(w)) d	(w, s), where 	(w, s) is the theoretical

joint distribution of wealth and exogenous state. The truncation method approximates
K with

Ktrunc =
S∑

s=1

N∑
n=1

πsn(wn − csn ), (3.19)

where csn and πsn are consumption and unconditional (stationary) probability at state
(s, n).

The only caveat is that for the wealth state N , the probability is not concentrated
on the grid point wN but in principle distributed over the half-line IN = [wN , ∞). We
can easily overcome this problem by (i) extrapolating the policy functions outside the
grid using the asymptotic policy functions, and (ii) extrapolating the wealth distribution
outside the grid using the theoretical Pareto exponent ζ. First, notice that individual
capital supply is asymptotically equivalent to (1 − c̄s )w. We can therefore approximate
the capital supply of agents with w ≥wN by linearly extrapolating as

w − cs(w) ≈ wN − csN + (1 − c̄s )(w −wN ).

Second, notice that the density of wealth conditional on w ≥ wN is approximately a
Pareto distribution with exponent ζ and minimum size wN , which has density f (x) =
ζw

ζ
Nx−ζ−1. Therefore

E[w |w ≥wN ] ≈
∫ ∞

wN

ζw
ζ
Nx−ζ dx= ζ

ζ − 1
wN .

Combining both observations, we can approximate the capital supply of an agent in
state (s, N ) by

E
[
w − cs(w) | w ≥wN

]≈ wN − csN + 1
ζ − 1

(1 − c̄s )wN .

Therefore, using Pareto extrapolation, the correct approximation of the aggregate capital
supply K is

KPE =
S∑

s=1

N∑
n=1

πsn(wn − csn )︸ ︷︷ ︸
=Ktrunc

+ 1
ζ − 1

S∑
s=1

πsN (1 − c̄s )wN︸ ︷︷ ︸
correction term

. (3.20)

Comparing (3.19) to (3.20), we can see that the truncation method introduces an er-
ror because the correction term 1

ζ−1

∑S
s=1 πsN (1 − c̄s )wN is absent. If ζ is close to 1

(Zipf’s law), then failing to account for this term will introduce significant error. The
formula (3.20) highlights the fact that choosing a large grid point wN (so that the frac-
tion of agents at the largest grid point

∑S
s=1 πsN is small) does not necessarily solve

the problem. The reason is that wN and
∑S

s=1 πsN enter multiplicatively in the correc-
tion term. For example, if

∑S
s=1 πsN = 10−6 and wN = 106, then the correction term is

1
ζ−1

∑S
s=1(1 − c̄s ), which can be substantial as a fraction of K.
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The insight carries well beyond the KS model. In general, we can approximate the
integral of any policy function xs(w) that is asymptotically equivalent to x̄sw against the
stationary distribution using

X ≈
S∑

s=1

N∑
n=1

πsnxsn + 1
ζ − 1

S∑
s=1

πsNx̄swN , (3.21)

where xsn = xs(wn ). A special case is the computation of aggregate wealth, which is sim-
ply

E[w] ≈
S∑

s=1

N∑
n=1

πsnwn + 1
ζ − 1

S∑
s=1

πsNwN . (3.22)

4. Additional considerations for Pareto extrapolation

In this section, we discuss many additional details and considerations for the Pareto
extrapolation algorithm.

4.1 Top wealth shares

Oftentimes, the object of interest is the wealth distribution itself. One common way
to summarize the concentration of wealth (other than to report the Pareto exponent)
is to compute “top wealth shares” (i.e., the share of wealth owned by the top fraction
p ∈ (0, 1) agents). When using the Pareto extrapolation method, we suggest comput-
ing the top wealth shares as follows. For each grid point, we can compute the aggregate
wealth held by agents at least as rich as that grid point. Dividing that number by aggre-
gate wealth (3.22) gives the top wealth share at that grid point. By interpolating between
points, we can define the top wealth shares inside the grid. To compute the top wealth
shares outside the grid, we suggest using the theoretical Pareto exponent ζ to extrapo-
late the wealth share beyond the largest grid point. More precisely, let πN = ∑S

s=1 πsN

be the probability mass on the largest grid point wN . The density for x ≥ wN is then
f (x) = πNζw

ζ
Nx−ζ−1. Using this, the tail probability is

Pr(X ≥ x) =
∫ ∞

x
πNζw

ζ
Nx−ζ−1 dx= πNw

ζ
Nx−ζ . (4.1)

On the other hand, the total wealth held by wealthy agents is

E[X; X ≥ x] =
∫ ∞

x
πNζw

ζ
Nx−ζ dx= ζ

ζ − 1
πNw

ζ
Nx−ζ+1. (4.2)

Therefore, letting W be the aggregate wealth, setting p = Pr(X ≥ x), and eliminating x,
the wealth share s(p) of the wealthiest fraction p ∈ (0, 1) of agents is

s(p) = ζ

ζ − 1
π

1/ζ
N

wN

W
p1−1/ζ . (4.3)
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4.2 Top tail type and exit probabilities

For particular applications, it is of interest to compute the distribution of types (states)
s ∈ S in the top tail and the probability that an agent with a particular type exits the top
tail. The following proposition, which is new, provides an answer.

Proposition 4.1. Suppose the law of motion for asymptotic agents is the random growth
model (3.6). Let M(z) be the matrix of conditional moment generating functions in (3.8)
and ζ > 0 be the Pareto exponent that solves (3.9). Let π̄ be the left Perron vector of P �
M(ζ ) normalized such that

∑S
s=1 π̄s = 1. Then π̄ is the top tail type distribution:

lim
w→∞ Pr(st = s | wt > w) = π̄s . (4.4)

Furthermore, the conditional top tail exit probability is given by

lim
w→∞ Pr(wt+1 ≤w | wt > w, st = s) = 1 − (1 −p) E

[
min

{
1, Gζ

t+1

} | st = s
]
. (4.5)

The formulas in Proposition 4.1 are highly nontrivial yet quite useful for calibrating
and analyzing models. For example, (4.4) and (4.5) can be used to answer questions such
as “what is the probability that a billionaire is an entrepreneur?” and “what is the prob-
ability that an individual in the Forbes 400 list drops out?” (or “what is the probability
that the wealthiest individual is no longer wealthiest?”) within the model. These types of
questions cannot be satisfactorily answered using existing approaches because it either
requires a very large and fine grid or a prohibitively large scale simulation.

4.3 Dynamic programming

Dynamic programming methods such as value function iteration (Blackwell (1965)) and
policy function iteration (Coleman (1990)) consist of numerically solving the individual
optimization problem over a finite grid for wealth. Many different algorithms exist, but
they all share the same structure: the researcher starts with a guess for the policy/value
functions and uses optimality conditions such as the Euler/Bellman equations to update
those guesses until convergence.

Dynamic programming is by far the most computationally intensive step when solv-
ing a heterogeneous-agent model. Compared to the asymptotic problem, which reduces
to solving for an S × 1 object, dynamic programming needs to solve for an S ×N object.
However, we can use the solution to the asymptotic problem to construct a “good” ini-
tial guess, which helps speed up convergence. For example, when solving the KS model
using policy function iteration, we suggest using the initial guess

c(0)
s (w) = c̄s(w − c

¯
),

where c̄s is the asymptotic MPC and c
¯
< w1 is an arbitrary number that ensures that

consumption is positive. Intuitively, the reason why this guess speeds up convergence is
that the distance between the true solution cs(w) and the guess c(0)

s (w) is already small,
especially at the upper end of the grid.13

13Ma and Toda (2022, Figure 5) study this point in detail and find that using the good initial guess speeds
up convergence by about 25%.
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4.4 The term rN ′/2 in ( 3.16)

Consider the Pareto distribution with exponent ζ > 1 and minimum size wN > 0, which
has density f (x) = ζw

ζ
Nx−ζ−1 for x≥wN . Let wn =wN + (n−N )h for n >N and consider

the probability P = Pr(w ≥wN ′ ), where N ′ ≥N . On the one hand, this probability can be
analytically computed as

P =
∫ ∞

wN′
ζw

ζ
Nx−ζ−1 = (wN ′/wN )−ζ .

On the other hand, using the trapezoidal formula for quadrature, we obtain

P ≈ 1
2
hf (wN ′ ) +

∑
n>N ′

hf (wn ) = 1
2
rN ′ +

∑
n>N ′

rn,

where

rn = hf (wn ) = ζw
ζ
N

(
wN + (n−N )h

)−ζ−1
h= ζ

h

wN

(
1 + (n−N )

h

wN

)−ζ−1

.

Therefore

∞∑
n=N ′

rn = 1
2
rN ′ + 1

2
rN ′ +

∑
n>N ′

rn ≈ 1
2
rN ′ + P = 1

2
rN ′ + (wN ′/wN )−ζ ,

which explains (3.16).

4.5 Aggregating nonlinear functions

Suppose we want to compute the expectation of the power function wν for some
power ν. For example, ν = 1 corresponds to aggregate wealth, ν = 2 the variance of
wealth, and ν = 1 − γ with γ > 0 appears in calculating the welfare for CRRA prefer-
ences with relative risk aversion γ > 0. Assuming that the power ν is below the theoreti-
cal Pareto exponent ζ, the conditional expectation of the upper tail is

E
[
wν |w ≥wN

]=
∫ ∞

wN

ζw
ζ
Nxν−ζ−1 dx= ζ

ζ − ν
wν
N .

Therefore the analog of (3.22) is

E
[
wν
]≈

S∑
s=1

N∑
n=1

πsnw
ν
n + ν

ζ − ν

S∑
s=1

πsNwν
N . (4.6)

Similarly, noting that

E
[
wν logw |w ≥wN

]= E
[

d
dν

wν
∣∣∣w ≥wN

]
= ζ

(ζ − ν)2 w
ν
N + ζ

ζ − ν
wν
N logw,
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setting ν = 0 we obtain

E[logw] ≈
S∑

s=1

N∑
n=1

πsn logwn + 1
ζ

S∑
s=1

πsN . (4.7)

In the KS model, the value function is asymptotically equivalent to v̄s
w1−γ

1−γ (see foot-
note 10). To approximate the welfare function W , which is defined as the integral of the
value function against the stationary distribution, we can apply (4.6) to ν = 1 − γ and
dividing by 1 − γ. Hence the welfare in consumption equivalent is

W ≈
(

S∑
s=1

N∑
n=1

πsnvsn + 1
ζ − 1 + γ

S∑
s=1

πsNv̄sw
1−γ
N

) 1
1−γ

. (4.8)

4.6 Choosing the grid and truncation point

The description of our algorithm in Section 3 implicitly assumes that the researcher has
already chosen the grid W = {wn}Nn=1 and, in particular, the truncation point wN . Here,
we provide a practical guidance on how to choose the grid and the truncation point.

Exponential grid In common applied settings, the researcher would like to use a grid
that covers a large part of the state space without too many points. A natural idea is to use
a grid such that wn exponentially grows with n. Because we are not aware of a systematic
approach for constructing an exponential grid, we propose a simple solution.

In many models, the state variable may become negative (e.g., asset holdings), which
causes a problem for constructing an exponential grid because we cannot take the loga-
rithm of a negative number. Suppose we would like to construct an N-point exponential
grid on a given interval [a, b]. A natural idea to deal with such a case is as follows.

Constructing the exponential grid.

(i) Choose a shift parameter s >−a.

(ii) Construct an N-point evenly-spaced grid on [log(a+ s), log(b+ s)].

(iii) Take the exponential and subtract s.

The remaining question is how to choose the shift parameter s. The following propo-
sition shows that the shift parameter s is automatically determined by the median grid
point (corresponding to n =N/2).

Proposition 4.2. Let a < c < a+b
2 . Then the exponential grid with shift parameter s =

c2−ab
a+b−2c has median grid point c.

To choose the median grid point c, we can use information from the problem we
want to solve. Note that by construction, half of the grid points will lie on the interval
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(a, c). Therefore we should choose the number c such that c is a “typical” value for the
state variable, for instance, the aggregate capital in a representative-agent model.

Affine-exponential grid Although the exponential grid covers a large part of the state
space, according to our experience it is not always ideal because the grid spacing wn −
wn−1 tends to be large in the bulk of the state space. An alternative is to simply set the
grid spacing h = wn − wn−1 to be constant, but that necessarily makes the number of
points N quite large when the truncation point wN is large and the grid spacing h is
small.

As a compromise, we suggest using the hybrid (affine-exponential) grid: construct
the exponentially-spaced grid as discussed above, but replace the bottom (say below
the median grid point) by an evenly-spaced grid. This way, we can choose a relatively
large truncation point wN , while keeping the grid spacing wn − wn−1 small for at least
the bottom points, which contain the bulk of the wealth distribution.

Through many numerical experiments, we have confirmed that the affine-exponen-
tial grid outperforms both the evenly- and exponentially-spaced grids. All of our results
in Section 5 are based on this affine-exponential grid.

Truncation point Because our algorithm relies on the asymptotic linearity of policy
functions, we suggest choosing a truncation point that implies a small difference be-
tween the average propensity to consume (APC) at the largest grid point, csN/wN , and
the asymptotic MPC c̄s determined by solving (3.3). Therefore the researcher should
choose a truncation point wN that implies a small maximum APC relative error

max
s

∣∣∣∣ 1
c̄s

csN
wN

− 1

∣∣∣∣, (4.9)

where wN is the largest grid point (truncation point) and csN denotes the policy function
in state s at that point. The idea is that, if the APC at the largest grid point is close to
its asymptotic value, then the consumption function should already be approximately
linear, making all of the above approximations accurate.

4.7 General equilibrium

So far, we have considered evaluating the market clearing condition for a guess of equi-
librium prices. To solve for equilibrium prices, we can apply the Pareto extrapolation
method for successive guesses of equilibrium prices and update the guesses using the
excess supply computed in the aggregation step. Here, the asymptotic analysis step can
be used to narrow down the set of prices consistent with an equilibrium.

Notice that we can rule out any prices such that the theoretical Pareto exponent ζ
is below or equal one.14 When ζ ≤ 1, aggregate wealth is infinite, which is inconsistent
with market clearing. In the KS model, narrowing down the set of interest rates R consis-
tent with an equilibrium amounts to evaluating (3.4) (if one would like to impose pos-
itive MPC) and (3.9) for a range of values of R and computing a bound (R

¯
, R̄). Since

14This condition is only necessary for equilibrium existence. Establishing sufficiency is beyond the scope
of this paper. Cao (2020) establishes the existence of equilibrium in the Krusell and Smith (1998) model.
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the asymptotic analysis step is not computationally intensive, we can make substantial
efficiency gains by avoiding the dynamic programming step as much as possible.

5. Evaluating solution accuracy

As in any new numerical method, the first order of business is to evaluate the solution
accuracy. For this purpose, we present a simple (minimal) heterogeneous-agent model
that admits a semianalytical solution and Pareto-tailed wealth distribution, which we
use as a benchmark for evaluating numerical solutions.

5.1 Model

We consider a dynamic general equilibrium model similar in spirit to Krusell and Smith
(1998) but with the following features: (i) mortality risk and heterogeneous discount fac-
tors (for obtaining a Pareto-tailed wealth distribution), (ii) no aggregate or income risk
(for analytical tractability), (iii) subsistence consumption (for mimicking the borrowing
constraint). Time is discrete and denoted by t = 0, 1, � � � .

Agents The economy is populated by a mass 1 continuum of S types of agents indexed
by s = 1, � � � , S. An agent’s type evolves over time according to a Markov chain with ir-
reducible transition probability matrix P = (pss′ ). Agents die with probability p ∈ (0, 1)
each period and is replaced by newborn agents. A newborn agent becomes type s with
probability πs > 0, where π = (π1, � � � , πS )′ is the stationary distribution (left Perron vec-
tor) of P . A type s agent has discount factor βs. All agents supply one unit of labor inelas-
tically. A typical agent has utility function

E0

∞∑
t=0

(
t−1∏
i=0

βsi(1 −p)

)
log(ct − c

¯t
), (5.1)

where c
¯t

≥ 0 is the minimum (subsistence) consumption of agents at time t. We assume
the minimum consumption is a constant fraction of the current labor income, so

c
¯t

=φωt , (5.2)

where φ ∈ [0, 1) is the constant of proportionality and ωt is the wage at time t.

Technology Technology is represented by a representative firm with a Cobb–Douglas
production function AF(K, L) = AKαL1−α, where A is Total Factor Productivity (TFP)
and α ∈ (0, 1) is the capital share. Capital depreciates at rate δ ∈ [0, 1]. Therefore the
firm’s problem at time t is

max
K,L≥0

[
−K + 1

Rt

(
AtF(K, L) −ωtL+ (1 − δ)K

)]
, (5.3)

where Rt is the gross risk-free rate from time t − 1 to t. That is, the firm buys capital
K at the end of time t − 1, hires labor to produce at the beginning of time t, and pays
the profit and depreciated capital to shareholders (who discount using the risk-free rate
since there is no aggregate risk).
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Budget constraint There are perfectly competitive life insurance companies that pro-
vide annuities and life insurances. Letting Rt be the gross risk-free rate, due to mortality
risk, the effective gross risk-free rate is R̃t =Rt/(1 −p). Letting at be the financial wealth
of a typical agent at the beginning of time t excluding current labor income, the budget
constraint is therefore

at+1 = R̃t+1(at − ct +ωt ). (5.4)

The agents face the natural borrowing constraint (see Appendix C in the Online Supple-
mentary Material for details).

Equilibrium We consider the stationary equilibrium.

Definition 5.1 (Stationary equilibrium). A stationary equilibrium consists of a gross
risk-free rate R, a wage ω, aggregate capital K, aggregate labor L, optimal consumption
rules {cs(a)}Ss=1, and a stationary distribution 	= 	(a, s) such that:

(i) given R and ω, aggregate capital K and aggregate labor L solve the profit maxi-
mization problem (5.3),

(ii) given R and ω, for each s the optimal consumption rule cs(a) maximizes the util-
ity (5.1) subject to the budget constraint (5.4) and the natural borrowing con-
straint,

(iii) the capital market clears, so

RK =
S∑

s=1

∫
a	(da, s), (5.5)

(iv) the labor market clears, so

L= 1, (5.6)

(v) 	 is the stationary distribution of the law of motion

(a, s) �→
{(

R̃
(
a− cs(a) +ω

)
, s′
)

with probability (1 −p)pss′ ,(
0, s′

)
with probability pπs′ ,

(5.7)

where R̃= R/(1 −p).

The reason why the left-hand side of (5.5) is RK is as follows. Capital is installed at
the end of time t − 1 and pays aggregate dividend RK to shareholders at the beginning
of time t. This quantity must equal aggregate asset holdings at the beginning of period,
which is the right-hand side of (5.5).

Appendix C in the Online Supplementary Material proves the existence of a station-
ary equilibrium.
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Table 1. Exogenously set parameters.

Description Symbol Value

Birth/death probability p 0.025
Discount factor βs (0.9, 0.95, 1)
TFP A 1
Capital share α 0.38
Capital depreciation rate δ 0.08

5.2 Calibration

We use a numerical example to evaluate the solution accuracy. We first exogenously set
some parameters as in Table 1. The birth/death probability p = 0.025 implies that one
generation is economically active on average for 1/p = 40 years. We assume there are
three patience types with average discount factor 0.95. Without loss of generality, we
set the TFP to A = 1. Finally, we set the capital share and depreciation rate to standard
values.

We parsimoniously model the discount factor process {βt } and assume that the tran-
sition probability matrix is

P =
⎡⎢⎣1 − q q 0

q/2 1 − q q/2
0 q 1 − q

⎤⎥⎦ ,

where q ∈ (0, 1) is the probability of transitioning to another state. We calibrate the re-
maining parameters q, φ by targeting the stationary wealth distribution. Namely, we
target the top 1%, 10%, and 50% wealth shares and the wealth Pareto exponent in U.S.
and obtain q = 0.0927 and φ = 0.7286.15 This calibration implies that the patience state
changes on average every 11 years and nondiscretionary consumption is 73% of average
labor income. Table 2 shows that the stationary wealth distribution in the model closely
matches the empirical counterpart.

Table 2. Targeted moments.

Moment Data Model

Top 1% wealth share (%) 32.38 32.90
Top 10% wealth share (%) 69.95 68.72
Top 50% wealth share (%) 98.71 98.11
Pareto exponent 1.52 1.55

15To compute the wealth shares, we average the 2017–2019 quarterly household wealth shares data from
Federal Reserve’s “Distributional Financial Accounts” (footnote 1). The U.S. wealth Pareto exponent is taken
from Vermeulen (2018, Table 8).
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5.3 Solution accuracy

For the numerical solution, we consider both the conventional truncation method as
well as the proposed Pareto extrapolation method with various wealth grid, trunca-
tion point, and number of grid points. To implement our algorithm, we use an N-point
affine-exponential grid supported between the natural borrowing limit and largest grid
point w̄ as discussed in Section 4.6, where the median grid point is the aggregate capital
in a corresponding representative-agent model, which is

KRA = ((
1/
(
β̄(1 −p)

)− 1 + δ
)
/(Aα)

) 1
α−1 = 4.0510. (5.8)

(Here, β̄ is the average discount factor.)

Aggregate wealth To ensure that all the differences of the numerical solutions from the
analytical one are entirely due to the construction of the transition probability matrix,
instead of solving for the equilibrium numerically for each method, we use the equilib-
rium risk-free rate and consumption policies from the semianalytical solution to com-
pute the stationary distribution on the wealth grid, and then compute the implied ag-
gregate financial wealth using (3.22) (with or without the correction term) for the Pareto
extrapolation and truncation methods, respectively. For this exercise, our primary inter-
est is the relative error Ŵ /W −1, where W and Ŵ are the aggregate financial wealth from
the semianalytical and numerical solutions, respectively.

Table 3 shows the relative error Ŵ /W − 1 in the aggregate wealth using this grid for
various truncation point w̄ and number of points N , both for the truncation and Pareto
extrapolation methods.

The message from Table 3 is clear: there is no accuracy-efficiency trade-off with the
Pareto extrapolation method, while the conventional truncation method is subject to
this trade-off. Pareto extrapolation is quite accurate, with relative error robustly in the
range 0.001–0.4% when w̄/KRA ≥ 100 regardless of the grid specification. On the other
hand, truncation can achieve acceptable accuracy only with a large, fine grid.

Another way to see the issue with the truncation method is to simply calculate the
fraction of wealth (wealth share) held by agents outside the grid. For any truncation

Table 3. Relative error (%) in aggregate wealth for the truncation and Pareto extrapolation
methods.

Method: Truncation Pareto extrapolation

w̄/KRA N = 10 100 1000 N = 10 100 1000

101 −36.920 −26.850 −26.530 −3.195 −1.882 −2.260
102 −21.520 −8.690 −7.860 −0.437 0.062 −0.031
103 −15.640 −2.950 −2.240 −0.261 0.036 0.017
104 −12.930 −1.080 −0.640 −0.234 0.011 0.008
105 −11.510 −0.420 −0.180 −0.221 0.003 0.002
106 −10.720 −0.180 −0.050 −0.212 0.001 0.001

Note: Note: N : number of grid points; w̄: wealth truncation point.
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Figure 3. Wealth share of agents outside the grid.

point w̄, define the top wealth share by s(w̄) = ∫∞
w̄ wd	(w)/

∫∞
0 wd	(w), where 	(w)

is the theoretical CDF of the wealth distribution. According to (4.2), if 	 has a Pareto
tail with exponent ζ, then s(w̄) ∼ w̄1−ζ for large w̄. Figure 3 plots this wealth share for
truncation points w̄/KRA ∈ [10, 106] in log-log scale.16 With w̄ = 10 ×KRA, about 40% of
wealth is left outside the grid. This is why it is important to correct for the truncation
error using the Pareto extrapolation algorithm.

Top wealth shares Although in Table 3 we evaluated the solution accuracy using the
aggregate wealth, this quantity is usually not of interest beyond evaluating the mar-
ket clearing condition. One may be interested in other quantities, such as the top 1%
wealth share. To address this point, we compute top wealth shares using the Pareto ex-
trapolation method as described in Section 4.1. For the truncation method, since it is
not obvious how to extrapolate the top wealth share beyond the largest grid point, we
simply interpolate by a cubic spline using the point (0, 0) (by definition, the top 0%
wealth share is 0) and all the grid points. Because in general top wealth shares need
to be computed only once after solving for the equilibrium, for both truncation and
Pareto extrapolation methods, we use a finer grid with N = 1000 points. Figure 4 plots
the top wealth shares against the truncation point for w̄/KRA = 101, � � � , 106. We con-
sider the wealthiest 0.0006% (fraction of billionaires, see footnote 1) as well as the top
0.01%, 0.1%, and 1%. We can see that the truncation method vastly underestimates top
wealth shares when the truncation point w̄ is small, as expected. To reasonably match
the wealth share of billionaires, the truncation method requires a huge truncation point

16Technically, for the semianalytical solution we cannot compute the exact top wealth shares because the
functional form of the wealth distribution is unknown (we only know the tail behavior characterized by the
Pareto exponent ζ). For this case, to compute the stationary distribution, we use the Pareto extrapolation
method with a highly accurate 2,000-point affine-exponential grid with truncation w̄ = 106 × KRA, which
we take as the truth.
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Figure 4. Top wealth shares in the analytical model. Note: “Analytical,” “Pareto extrapolation,”
and “Truncation” refer to the semianalytical solution and the numerical solutions using the
Pareto extrapolation and truncation methods, respectively.

such as w̄/KRA = 104.17 On the other hand, the Pareto extrapolation method is indistin-
guishable from the truth regardless of the truncation point.

Evaluation with fixed grid density Although Figure 4 verifies the accuracy of the Pareto
extrapolation algorithm, it could be somewhat misleading. For instance, the accuracy of
the billionaire wealth share (top left) slightly worsens as we increase the truncation point
beyond 104. This is because in Figure 4, the number of grid points is fixed at N = 1000,
so the grid density decreases as we increase the truncation point, which could worsen
the accuracy. To isolate the effect of truncation on accuracy, we now vary the truncation
point, fixing the grid density. Namely, we solve the model using 300 grid points per one
order of magnitude in wealth, so for example with w̄/KRA = 104, there are 4×300 = 1200
grid points.

17Note that a truncation point of 104 is extremely large. The average net worth of U.S. households was
$1.05 million in 2021Q1 (see footnote 1). Multiplying this number by 104, we obtain $10.5 billion. According
to Forbes, there were only 60 households with net worth above this threshold in March 2021. A common
philosophical criticism for modeling wealth with an unbounded (Pareto) distribution is that in the data
there will always be a wealthiest household, and hence the wealth distribution is bounded. This criticism
is misguided for two reasons. First, the largest wealth is an order statistic (random variable) and we cannot
in general select an a priori upper bound. Second, what practically matters for computation is whether the
wealth distribution has a large probability mass in the tail (so truncation error becomes an issue) and not
necessarily whether it is bounded or not.
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Figure 5. Relative error (%) of analytical KS model. Note: the grid is an affine-exponential grid
discussed in Section 4.6. The horizontal axis shows the truncation point w̄ relative to the typical
scale KRA defined by (5.8). For each specification, the number of grid points is 300 per one order
of magnitude in wealth.

Figure 5 shows the relative error in aggregate wealth and billionaire (top 0.0006%)
wealth when we solve the model using Pareto extrapolation and truncation. The rela-
tive error with Pareto extrapolation is essentially none and the performance is robust
across the grid specification. On the other hand, to calculate the aggregate wealth ac-
curately (which is necessary for solving the market clearing condition), the truncation
method requires a very large truncation point such as 104 times the “typical scale.” If an
intermediate truncation point such as 102 is used, the truncation method predicts that
billionaire wealth is zero, where in fact they hold 2.5% of aggregate wealth in the model.
Even with a large truncation point such as 104, the truncation method still suffers from
26% error for billionaire wealth.

APC error In Section 4.6, we argued that the APC error (4.9) can be used to guide the
choice of the truncation point wN . To see this point, Figure 6 plots (in a log-log scale)
the relative errors in aggregate and billionaire wealth computed in Figure 5 as well as the

Figure 6. APC and solution accuracy of analytical KS model.
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APC error (4.9). We can see from these graphs that when the APC error is less than 10−2

(1%), the relative error in the aggregate and billionaire wealth is less than 10−3 (0.1%),
which is more than enough for practical purposes.

Which truncation error matters more? In Section 2, we argued that the truncation
method suffers from two kinds of truncation errors, one when computing the transition
probabilities and the other when aggregating. The Pareto extrapolation method corrects
both errors as discussed in Sections 3.2 and 3.3, respectively. A natural question is which
correction matters more.

To address this issue, we consider two intermediate Pareto extrapolation methods,
one that only corrects the transition probabilities (as in Section 3.2) and the other that
only corrects the aggregate wealth (as in Section 3.3). Figure 7 shows the relative errors
in the aggregate wealth with the grid used in Figure 5.

According to Figure 7, correcting the transition probability only has a negligible im-
pact on the solution accuracy, whereas correcting the aggregate wealth improves accu-
racy by an order of magnitude. However, combining both increases the solution accu-
racy dramatically. The intuition for this (surprising) result is as follows. In the correction
term 1

ζ−1

∑S
s=1 πsN (1 − c̄s )wN in (3.20), the two sources of errors introduced by the trun-

cation method (incorrect transition probability matrix and incorrect aggregate wealth
held by agents at the top grid point) interact with each other multiplicatively. Therefore
correcting only one error need not improve the accuracy.

Discussion With the truncation method, in principle one could increase the truncation
point further to 106 to minimize the truncation error. However, that is inefficient be-
cause it increases the number of grid points, which substantially increases computing
time (especially when the number of possible individual states S is large). Our approach
thus allows for an accurate approximation of the full wealth distribution with few grid
points. The key idea is that we approximate the right tail of the wealth distribution with

Figure 7. Decomposition of Pareto extrapolation method.
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a single parameter (i.e., the Pareto exponent ζ), which allows us to substantially reduce
the computational cost associated with solving the policy functions and wealth distri-
bution, hence making the algorithm faster.

As is clear from the aggregate capital formula (3.20), the Pareto extrapolation method
reduces to the conventional truncation method when ζ = ∞. Therefore whether the
truncation method is enough for practical purposes depends on the magnitude of the
Pareto exponent ζ. The numerical example in Figure 5 has Pareto exponent ζ = 1.5,
which is the value in U.S. When we apply our algorithm to solve the Krusell and Smith
(1998) model (without aggregate risk) with their original calibration, we find that the
Pareto exponent is ζ = 3.23, which is much larger. Thus the truncation error in their
model is less of an issue. However, because Pareto extrapolation improves both accu-
racy and speed and the computation of the Pareto exponent is not possible without
Pareto extrapolation, we strongly recommend using Pareto extrapolation for solving any
Bewley–Huggett–Aiyagari model that features the random growth mechanism.

6. Concluding remarks

This paper proposes a simple, systematic approach—Pareto extrapolation—to analyze
and solve heterogeneous-agent models that endogenously generate fat-tailed wealth
distributions. The core insight that we take advantage of is due to Pareto, who noticed
that household wealth displayed a striking empirical regularity:

Nous sommes tout de suite frappé du fait que les points ainsi déterminés, ont une tendance
très marqué à se disposer en ligne droite.

(We are instantly struck by the fact that the points determined this way have a very marked
tendency to be disposed in straight line.)

—Pareto (1897, pp. 304–305)

We put Pareto’s insight to work to tackle models of wealth inequality. Our approach
makes the solution algorithm more transparent, efficient, and accurate with zero addi-
tional computational cost.

We are now much closer to understanding the economic forces that generate such
a concentration of wealth. Yet, the conventional solution algorithm for heterogeneous-
agent models is not well suited to handle such wealth distributions, since it relies on
approximating the wealth distribution by a histogram, lumping the upper tail into a sin-
gle bin. Our paper fills this gap by combining new theoretical and numerical results.

There are still many open questions that are not addressed in this paper. First, we
focus on the solution algorithm for the stationary equilibrium, but many applied works
consider the transition dynamics along a deterministic path. The challenge is that the
upper tail of the wealth distribution is not exactly Pareto during the transition. We plan
to address this issue in a separate paper. Second, we focus on models without aggregate
risk. At present, the mathematical theory of Pareto tails such as Beare and Toda (2022)
only allow for idiosyncratic risk, and extending it to the case with aggregate uncertainty
remains beyond the frontier. Finally, the Pareto exponent formula (3.9) is proved only
for Markov multiplicative processes (where Gibrat’s law holds exactly). We conjecture
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that the formula is valid in a large class of processes that are “asymptotically linear” (see
Mirek (2011) for the case with iid shocks), but establishing that seems challenging.
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