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Permutation-based tests for discontinuities in event studies

FEDERICO A. BUGNI
Department of Economics, Northwestern University

Jia L1

School of Economics, Singapore Management University

Qivuan L1
School of Economics, Singapore Management University

We propose using a permutation test to detect discontinuities in an underlying
economic model at a known cutoff point. Relative to the existing literature, we
show that this test is well suited for event studies based on time-series data. The
test statistic measures the distance between the empirical distribution functions
of observed data in two local subsamples on the two sides of the cutoff. Critical
values are computed via a standard permutation algorithm. Under a high-level
condition that the observed data can be coupled by a collection of conditionally
independent variables, we establish the asymptotic validity of the permutation
test, allowing the sizes of the local subsamples to be either be fixed or grow to in-
finity. In the latter case, we also establish that the permutation test is consistent.
We demonstrate that our high-level condition can be verified in a broad range
of problems in the infill asymptotic time-series setting, which justifies using the
permutation test to detect jumps in economic variables such as volatility, trading
activity, and liquidity. These potential applications are illustrated in an empiri-
cal case study for selected FOMC announcements during the ongoing COVID-19
pandemic.

Keyworbs. Event study, infill asymptotics, jump, permutation tests, randomiza-
tion tests, semimartingale.

JEL crassiFicaTiON. C12, C14, C22, C32.

1. INTRODUCTION

Many econometric problems can be expressed in terms of the continuity or the dis-
continuity of certain component in the underlying economic model. In an influential
paper, Chow (1960) tested the temporal stability in the demand for automobiles, and
subsequently stimulated a large literature on structural breaks in time-series analysis;
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see, for example, Andrews (1993), Stock (1994), Bai and Perron (1998), and many ref-
erences therein. In microeconometrics, the regression discontinuity design (RDD) has
been extensively used for causal inference. This literature identifies and estimates an
average treatment effect by evaluating discontinuities of conditional expectation func-
tions of outcome and treatment variables at a cutoff point of the running variable; see
Imbens and Lemieux (2008) and Lee and Lemieux (2010) for comprehensive reviews.!
Meanwhile, a more recent high-frequency financial econometrics literature has been
devoted to studying discontinuities, or jumps, in various financial time series (e.g.,
price, volatility, trading activity, etc.). The high-frequency jump literature is pioneered
by Barndorff-Nielsen and Shephard (2006), who propose the first nonparametric test
for asset price jumps using high-frequency data in an infill asymptotic setting. More re-
cently, Bollerslev, Li, and Xue (2018) study the jumps of volatility and trading intensity in
high-frequency jump regressions (Li, Todorov, and Tauchen (2017)) that closely resem-
ble the classical RDD.

Although these strands of literature involve apparently different terminology and
technical tools, they share a common theme: The econometric goal is to learn about
differences in the data generating processes between two subsamples separated by the
cutoff. Imbens and Kalyanaraman (2011) emphasize that these subsamples should be
“local” to the cutoff point, which is quite natural given the nonparametric nature of dis-
continuity inference (Hahn, Todd, and Van der Klaauw (2001)). The issue under study is
thus a local version of the classical two-sample problem. Correspondingly, the related
inference is often carried out using nonparametric two-sample ¢-tests, which are based
on kernel regressions in the RDD (Hahn, Todd, and Van der Klaauw (2001), Imbens and
Kalyanaraman (2011), Calonico, Cattaneo, and Titiunik (2014)), or in the same spirit,
spot high-frequency estimators (Foster and Nelson (1996), Comte and Renault (1998),
Jacod and Protter (2012), Li, Todorov, and Tauchen (2017), Bollerslev, Li, and Xue (2018))
in the infill time-series setting.

In an ideal scenario in which the subsamples separated by the cutoff are i.i.d. and
independent of each other, the permutation test is an excellent tool to detect differ-
ences in their distributions. In particular, standard results for randomization inference
(Lehmann and Romano (2005, Chapter 15.2)) indicate that a permutation test imple-
mented with any arbitrary test statistic is finite-sample valid under these conditions.
The recent literature has investigated the properties of permutation tests to detect dif-
ferences between two samples under less ideal conditions. One example is Canay and
Kamat (2017), who consider an RDD and show that permutation-based inference is
asymptotically valid to detect discontinuities in the distribution of the baseline covari-
ates at the cutoff. These authors implement their test with a finite number of observa-
tions that are located closest to the cutoff, effectively forcing them to concentrate on a
small neighborhood of the cutoff as the sample size grows. In the same spirit, Cattaneo,
Titiunik, and Vazquez-Bare (2017) propose using permutation-based inference to detect
discontinuities at the cutoff under the “local randomization framework” introduced in

1Coincidentally, the RDD was first proposed by Thistlethwaite and Campbell (1960) around the same
time as the Chow test.
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Cattaneo, Frandsen, and Titiunik (2015). Outside of the RDD literature, Chung and Ro-
mano (2013) and DiCiccio and Romano (2017) investigate the asymptotic properties of
permutation-based inference to test for differences in specific distributional features of
two samples, such as the mean or the correlation coefficient. It is important to note that
all of the references mentioned in this paragraph presume cross-sectional data.

In the context of time-series applications, there is an active literature on change-
point tests implemented via permutations. This approach was first suggested by Antoch
and Huskovéa (2001) and later pursued by other authors; see Huskova (2004) or Horvath
and Rice (2014) for surveys of this literature. While most of this literature imposes inde-
pendent errors, some allow for limited forms of weak dependence (Kirch and Steinebach
(2006), Kirch (2007), and Jentsch and Pauly (2015)). In contrast, our econometric setting
accommodates essentially unrestricted persistence and nonstationarity in the underly-
ing state processes (e.g., volatility), which better suits our interest on their dynamics over
short time windows around economic news events. In the context of machine-learning
methods, Chernozhukov, Wuthrich, and Zhu (2018) propose using permutations to im-
plement conformal inference that allows for time-series data.

Set against this background, our main goal in this paper is to establish a general the-
ory for permutation-based discontinuity tests, with a special emphasis on event studies
based on time-series data. To capture the “local” nature of this problem, we adopt an
infill asymptotic framework, under which the inference concentrates on observations
“close” to the event time. Specifically, we consider the Cramér—von Mises test statistic
formed as the squared L, distance between the empirical cumulative distribution func-
tions for the two local subsamples near the cutoff, and compute the critical value via
a standard permutation algorithm. As explained earlier, if the data were i.i.d., the be-
havior of this permutation test would follow directly from standard results for random-
ization inference. This “off-the-shelf” theory, however, is not applicable here because
time-series data observed in a short event window can be serially highly dependent.

The main theoretical contribution of the present paper is to establish the asymptotic
validity of the permutation test in this nonstandard setting. The theory has two compo-
nents. The first is a new general result for permutation test. Specifically, we link the (fea-
sible) permutation test formed using the original data with an infeasible test constructed
in a “coupling” problem that involves conditionally i.i.d. coupling variables. Since the
latter resembles the classical two-sample problem, the infeasible test controls size ex-
actly under the coupling null hypothesis (i.e., coupling variables in the two subsamples
are homogeneous), and is consistent under the complementary alternative hypothesis.
Under a proper notion of coupling, which is customized for the permutation test, we
show that the feasible test inherits the same asymptotic rejection properties from the
infeasible one. Since this result is of independent theoretical interest that is well beyond
our subsequent analysis in the infill time-series setting, we frame the theory under gen-
eral high-level conditions so as to facilitate other types of applications.

The second component of our analysis pertains to specializing the general result
to the infill time-series setting designed for event-study applications. The event-study
framework is particularly relevant for studying macroeconomic and financial shocks,
including monetary shocks triggered by FOMC announcements (Cochrane and Piazzesi
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(2002), Nakamura and Steinsson (2018a)), or “natural disasters” such as the ongoing
COVID-19 pandemic. Following Li and Xiu (2016) and Bollerslev, Li, and Xue (2018), we
model observed data using a general state-space framework, in which the observations
are discretely sampled from a latent state process “contaminated” by random distur-
bances. This model has been used to model variables such as asset returns, trading vol-
ume, duration, and bid-ask spread, and readily accommodates both continuously and
discretely valued variables. Under this state-space model, the temporal discontinuity
in the data’s distribution is mainly driven by the jump of the latent state process (e.g.,
asset volatility, trading intensity, and propensity of informed trading), which can be de-
tected by the permutation test. Under easy-to-verify primitive conditions, we construct
coupling variables and apply the aforementioned general theory to establish the permu-
tation test’s asymptotic validity.

We recognize two advantages of the proposed permutation test in comparison with
the standard approach based on the nonparametric “spot” estimation of the underlying
state process. First, the permutation test attains asymptotic size control even if the num-
ber of observations in each subsample is fixed.? This remarkable property is reminis-
cent of the finite-sample exactness of the permutation test in the classical two-sample
problem for i.i.d. data. In contrast, the nonparametric estimation approach works in a
fundamentally different way, as it relies on the asymptotic (mixed) normality of the es-
timator, which in turn requires the sizes of the local subsamples to grow to infinity. In
empirical applications, however, it is often desirable to use a short time window, either
to reduce the effect of confounding factors in the background, or simply because of the
lack of observations soon after the occurrence of the economic event (say, in a real-time
research situation). Not surprisingly, the conventional inference based on asymptotic
Gaussianity often results in large size distortions in this “small sample” scenario, as we
demonstrate concretely in a realistically calibrated Monte Carlo experiment (see Sec-
tion 3). Meanwhile, the permutation test exhibits much more robust size control in finite
samples.

The second advantage of the permutation test is its versatility: The same test can
be applied in many different empirical contexts without any modification. On the other
hand, the nonparametric estimation approach often relies on specific features of the
problem, and needs to be designed on a case-by-case basis. Therefore, the proposed per-
mutation test may be particularly attractive in new empirical environments for which
tests based on the conventional approach are not yet developed or not yet well under-
stood. In Section 2.2, we illustrate this point more concretely in the context of testing for
volatility jumps. In that case, the standard approach relies crucially on the assumption
that the price shocks are Brownian in its design of the spot volatility estimator and the
associated ¢-statistic, and it cannot be adapted easily to accommodate a more general
setting with Lévy-driven shocks.3 The permutation test, on the other hand, is valid even
in the latter more general setting.

2For a similar type of results in the context of RDD; see Cattaneo, Frandsen, and Titiunik (2015), Cattaneo,
Titiunik, and Vazquez-Bare (2017), Canay and Kamat (2017), and Bugni and Canay (2021).

3As explained by Barndorff-Nielsen and Shephard (2001), these more general processes offer the pos-
sibility of capturing important deviations from Brownian shocks and for flexible modeling of dependence
structures. However, to the best of our knowledge, the estimation and inference of the spot volatility (i.e., the
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That being said, we stress that the proposed permutation test is a complement,
rather than substitute, for the conventional nonparametric estimation method, because
it has two limitations. One is that the permutation test focuses exclusively on hypothe-
sis testing, without producing a point estimate for the jump of the state process (e.g.,
volatility) of interest, whereas the estimate is a byproduct of the conventional approach.
In addition, the proposed permutation test is purely nonparametric and it does not ex-
ploit any parametric structure that one may be willing to impose. It is therefore con-
ceivable that in certain semiparametric settings, more efficient tests may be designed to
exploit a priori model restrictions. Put differently, the aforementioned versatility of the
permutation test may come with an efficiency cost. A better understanding about the
robustness-efficiency tradeoff might be an interesting topic for future research.

In an empirical illustration, we apply the permutation test to a recent sample of high-
frequency intraday returns of the SPY ETF for the S&P 500 index. Specifically, we focus
on four important FOMC announcements during the ongoing COVID-19 pandemic, and
test whether each announcement induces discontinuities in volatility, trading activity,
and two measures of market illiquidity. We document robust empirical evidence for dis-
continuities in volatility and trading activity. We also find evidence for announcement-
induced discontinuity in transaction cost (measured by bid-ask spread), but not in mar-
ket impact (gauged by Amihud’s measure). This application highlights one of the main
advantages of the proposed test; namely, it is applicable for a broad variety of high-
frequency observations modeled in distinct ways, which is unlike, for example, the con-
ventional ¢-test designed specifically for testing volatility jumps in the Brownian setting.

The rest of the paper is organized as follows. We present the asymptotic theory for
the permutation test in Section 2. Section 3 reports the test’s finite-sample performance
in Monte Carlo experiments, and Section 4 presents the empirical illustration. Section 5
concludes. Appendix A contains all proofs and Appendix B discusses an extension of our
methods.

Notation We use | x| to denote the Euclidean norm of a vector x. For any real number
a, we use [a] to denote the smallest integer that is larger than a. For any constant p > 1,
| - Il , denotes the L, norm for random variables. For two real sequences a, and b,, we
write a, < b, if a,,/C < b, < Ca,, for some finite constant C > 1.

2. THEORY
2.1 A general result for the asymptotic validity of permutation tests

We first prove a new result that is broadly useful for establishing the asymptotic valid-
ity of permutation tests. Because of its independent theoretical interest, we develop the
theory under high-level conditions. In Section 2.2, below, we shall specialize this gen-
eral result in event-study applications under a more specific infill time-series setting,
for which the existing theory on permutation tests is not applicable.

scaling process) in the non-Brownian case remains to be an open question in the literature. There is some
limited work on the inference of integrated volatility functionals for the non-Brownian case (see Todorov
and Tauchen (2012)), which demonstrates various distinct complications in the non-Brownian setting.
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Consider an array (Y),,;);ez, of R-valued observed variables defined on a probability
space ({}, F, P), which may be either “raw” data or preliminary estimators. Our econo-
metric goal is to decide whether two subsamples (Y}, ;)icz, , and (Yy,i)iez,,, have “sig-
nificantly” different distributions, where (Z1,,, Z»,,) is a partition of Z,, C Z. For ease of
exposition, we assume that 7 , and Z»,, contain the same number of observations, de-
noted by k,.* We stress from the outset that k,, may either be fixed or grow to infinity
in the subsequent analysis. As such, our analysis speaks to not only the classical finite-
sample analysis of permutation tests, but also the large sample analysis routinely used
in econometrics.

To implement the test, we first estimate the empirical cumulative distribution func-
tions (CDF) for the two subsamples using

~ 1
Fin()=1= 3 Whi=xh jeil,2).

"ieT; ,

We then measure their difference via the Cramér-von Mises statistic, given by

o~

n Zk Z Fl n(Ynz)_F2n(Ynz)) (1

€L,

For a significance level « € (0, 1), we compute the critical value via a standard permu-
tation algorithm as in Lehmann and Romano (2005, p. 633), which we specify in Algo-
rithm 1 below. We use 7 to denote a permutation of the elements of Z,,, that is, a bijective
mapping from Z, to itself. Let G,, denote the collection of all possible permutations of
T, with M,, being its cardinality.

ArcoriTHM 1. Step 1. For each permutation 7 € G,, compute the permuted test statis-
tic Tn(ﬂ-) as Tn, but with (Y3, 1);ez, replaced by (Yn 7T(,)),ezn

Step 2. Order{T (m):me Gy }asT D<.. <T SetT* ,Ek)forkz(Mn(l—a)].

Step 3.1f T, > T;{, reject the null hypothesis. If T, < T,j‘, do notreject the null hypoth-
esis. If T, = T* reject the null hypothesis with probability Pn=Mupa—-M py! /]\71 0 where
M} and MO are the cardinalities of {j : 7)) > T*} and {j : T/’ = T*}, respectively. The
resultlng test then rejects according to the critical function qﬁn = l{Tn > T*} + pnl{Tn =
).

REMARK 2.1. The test specified in Algorithm 1 is a randomized test and has a random
outcome when 7, = T,’{ (i.e., it rejects the null hypothesis with probability p, indepen-
dent of the data); see Section 3.1 in Lehmann and Romano (2005) for details about ran-
domized tests. One can construct a nonrandomized (and more conservative) version by
replacing p, with zero. Also, in practice, M, may be too large to consider G, in its en-
tirety. In such cases, we could replace G, with a random subset of it, denoted by @n, and
composed of the identity permutation and an i.i.d. sample of permutations in G,. All of
the formal results in this paper apply if we use G, instead of G, in Algorithm 1.

4 All of our results can be easily extended to the case when Z; , and 7, , have different sizes, but with the
same order of magnitude.
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REMARK 2.2. In this paper, we use the Cramér—von Mises statistic in (1) for concreteness
and simplicity of exposition. However, Appendix B of this paper shows that our main
results extend well beyond this particular statistic. In particular, the asymptotic validity
of the permutation test extends to any other rank statistic, that is, a statistic that only
depends on the rank of the observations. Furthermore, our consistency result applies
to any other rank statistic under mild regularity conditions. For example, both of these
results hold if we replace (1) with the Kolmogorov-Smirnov statistic, given by

Tn = max|ﬁl,n(Yn,i) - ﬁZ,n(Yn,i)|-
i€,
For details, see Appendix B.

If the data (Y),,;);ez, are i.i.d., then the null hypothesis of the classical two-sample
problem holds, and Lehmann and Romano (2005, Theorem 15.2.1) implies that the
aforementioned permutation test has exact size control in finite samples. This is a re-
markable property of the permutation test, as it holds without requiring any specific
distributional assumptions on the data. In contrast to the classical two-sample prob-
lem, however, we shall not assume that the data are independent, or even “weakly” de-
pendent (e.g., mixing). As mentioned in the Introduction, the main goal of this paper
is to study the permutation test for time-series data observed within a short event win-
dow (say, a few days or hours), which can be serially highly dependent in practice. Our
key theoretical insight is that the permutation test is still asymptotically valid if the data
(Yy,i)iez, can be approximated, or “coupled,” by another collection of variables that are
conditionally independent, as formalized by the following assumption.

AssuMPTION 2.1. There exists a collection of variables (U, ;)icz, such that the follow-
ing conditions hold for a sequence (G,),>1 of o-fields: (i) for each n > 1, the variables
(Un,i)iez, are Gy-conditionally independent, and U, ; has the same G,-conditional dis-
tribution as U, ; if i, j belong to the same subsample (i.e., I,,, or I, ,); (ii) for any real
sequence m, = o(1), we have sup g P(|Uy,; — x| < Mu|Gn) = Op(ny); (iii) max;cz, |17,1,,- —
Uil = op(k;Z), where ()N’n,i),-dn is an identical copy of (Yp,i)iez, in Gn-conditional dis-
tribution.

Assumption 2.1 lays out the high-level structure for bridging our analysis with the
classical theory on permutation tests, which we carry out in Theorem 2.1 below. Con-
dition (i) sets up the “coupling” problem, which corresponds to a conditional version
of the classical two-sample problem, treating the (Uy,;)icz, , and (Uy,i)iez,,, variables as
“data.” In part (a) of Theorem 2.1, we consider the situation in which both subsamples
have the same conditional distribution. In this case, our coupling variables (Uy,,;);ecz,
give rise to an infeasible permutation test that can be analyzed as a classical two-sample
problem. In particular, this infeasible permutation test attains the exact finite-sample
size under our conditions.

This infeasible test, however, only plays an auxiliary role in our analysis, because our
interest is on the feasible test cf)n formed using the original (Y}, ;);cz, data. Therefore,
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a key component of our theoretical argument in Theorem 2.1 is to show that the feasible
test for the original data inherits asymptotically the same rejection properties from the
infeasible test. Conditions (ii) and (iii) in Assumption 2.1 are introduced for this purpose.
Specifically, condition (ii) requires the variable U, ; to be nondegenerate, in the sense
that its conditional probability mass within any small [x — 5, x + 7] interval is of order
O(n) in probability.> Condition (iii) specifies the requisite approximation accuracy of
the coupling variables. We note that this condition is easier to hold when £, is smaller,
because the joint coupling requirement would involve a smaller number of variables
and the o,(k;?) error bound is easier to attain. This condition can be verified under
more primitive conditions pertaining to the smoothness of underlying processes and an
upper bound on the growth rate of k,,, as detailed in Section 2.2.%

THEOREM 2.1. Under Assumption 2.1, the following statements hold for the permutation
test ¢, described in Algorithm 1:
(@) If the variables (Up,;)icz, have the same G,-conditional distribution, we have
(b) Let Qj () denote the G,-conditional distribution function of U, ; for i € EJ nand
jef{l,2}, and Q, = (Q1,n + O2,0)/2. If kyy — 00 Wlfl P(f(Q1,n(x) — 02,1(x))?d0,(x) >
8,) — 1 for any real sequence §,, = o(1), we have E[¢,] — 1.

Theorem 2.1 characterizes the asymptotic rejection probabilities of the feasible
test ¢, under the null and alternative hypotheses of the two-sample problem for the
coupling variables. Part (a) pertains to the situation in which the two subsamples of
coupling variables, (Uy,i)iez, , and (Uy,i)iez,,, have the same conditional distribution,
which corresponds to the null hypothesis. In this case, the theorem shows that the
asymptotic rejection probability of the feasible test is equal to the nominal level «. It
is relevant to note that this result holds whether k,, is fixed or divergent. This property
is clearly reminiscent of the permutation test’s finite-sample exactness in the classical
setting.

Part (b) of Theorem 2.1 concerns the power of the feasible test d;n It shows that the
feasible test rejects with probability approaching one when the conditional distribu-
tions of the two coupling subsamples, O, , and Q> ,, are different, in the sense that their
“distance” measured by [(Q1,,(x) — Q2,n(x))? dQ,(x) is asymptotically nondegenerate,
where the mixture distribution Q,, captures approximately the distribution of the per-
muted data.” This consistency-type result requires that the information available from

5Condition (ii) is satisfied if U, ; has a conditional probability density that is uniformly bounded in prob-
ability.

6In our applications, we can often verify condition (iii) with 17,1, i = Yy, i. Nonetheless, allowing }N’,,,,» # Yy
is useful when Y, ; is itself an estimator. For example, if (Y}, ;)iez, is a finite collection of estimators that
converge jointly in distribution, then the coupling required in Assumption 2.1(iii) can be obtained via the
Skorokhod representation. As such, the theory developed in Canay and Kamat (2017) can be cast in our
framework with G, being the trivial information set and k,, being a fixed constant, although our anticon-
centration condition in Assumption 2.1(ii) is slightly stronger than the continuity condition in Canay and
Kamat (2017, Assumption 4.2).

“When the two subsamples have different sizes, the same result goes through with Q,, defined as the
sample-size weighted average between Q1,, and Qz,,, given by O, = (Q1,n|Z1,u| + O2,n|Z2,n|)/(|Z1,n] +
|IZ,n|)~
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each subsample grows with the sample size, that is, k,, — co. This result appears to be
new in the context of permutation-based tests under a fixed alternative for the coupling
variables. In particular, we note that an analogous result is unavailable in Canay and Ka-
mat (2017), as they restrict attention to an asymptotic framework with a fixed k,, which
makes a consistency-type result unavailable. Our proof relies on applying Lehmann and
Romano (2005, Theorem 15.2.3) to the infeasible test, for which we use the coupling
construction developed by Chung and Romano (2013) to show that the so-called Ho-
effding (1952) condition is satisfied. We note that this argument is used to establish the
consistency of the permutation test rather than its asymptotic size property.

Theorem 2.1 establishes the relation between the rejection probability of the feasi-
ble test ¢, and the homogeneity (or the lack of it) across the two coupling subsamples
(Un,1iez,,, and (Up,i)iez, ,- This result does not speak directly to hypotheses formulated
in terms of the original (Y}, ;);cz, observations. Rather, its theoretical significance is to
“absorb” all generic technicalities stemming from the (feasible) permutation test, which
in turn considerably simplifies our overall analysis. The residual issue for any specific
application is to explicitly construct the coupling variables and translate their homo-
geneity in terms of the primitive structures of the original empirical problem, which can
be done using domain-specific techniques. We provide general results along this line in
the infill time-series context, as detailed in Section 2.2 below.

To help anticipate the general discussion, it is instructive to sketch the scheme in a
basic running example. Let Y,, ; = A;l/ Z(P(,-H) A, — Pia,) be the scaled increment of the
asset price process P; over the ith sampling interval. Let 7 be a “cutoff” time point of
interest that is known to the researcher (e.g., the announcement time of a news release)
and i* be the unique integer such that 7 € [i*A,, (i* +1)A,).2 We consider two index sets
Tn={i*—kn,...,i* =1}and Ip , = {i* + 1, ..., i* + k,}, which collect observations be-
fore and after the cutoff, respectively. We consider an asymptotic setting in which these
subsamples are “local” in calendar time, that is, k,A,, — 0. Note that this implies that
A, — 0, which means that we are considering an infill asymptotic setting. If P; is an It
process with respect to an information filtration (F;);>0, we may represent Y,, ; as

-1/2 (i+DA, ~1/2 (i+DA,
Yni=A, / bsds + A, / osdWs, foriel,, (2)
A, iA,

where b; is the drift process, oy is the stochastic volatility process, and W; is a stan-
dard Brownian motion.? If the o, process is smooth (e.g., Holder continuous) in a local
neighborhood before 7, then the volatility throughout the preevent subsample Z; , is
approximately o(;+_g,)a,. Further recognizing that the drift term is negligible relative to
the Brownian component, we can approximate Y, ; for each i € 7; , using the coupling
variables

~1/2
Un,i = 0k, 0 / (Wis1)a, — Wia,) ~ MN(0, U(zi*—k,,)An)’ 3)

8The integer i* depends on n. We suppress this dependence in our notation for simplicity and to avoid
having nested subscripts.

9Note that Z,, does not include the i*th return observation. Therefore, although the returns in (2) do not
contain price jumps, an event-induced price jump is allowed to occur at time 7.
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where MA denotes the mixed normal distribution. Since the Brownian motion has
independent and stationary increments, it is easy to see that the coupling variables
(Un,i)ieTy,, are F(i+_x,)a,-conditionally i.i.d. Moreover, if the volatility process o, does
not jump at the cutoff time 7, we may follow the same logic to extend the approximation
in (3) further to i € 7, ,. In other words, if the volatility process process does not jump
then the coupling variables (U,,;);cz, are conditionally i.i.d., which corresponds to the
situation in part (a) of Theorem 2.1. On the other hand, if the volatility process jumps
at time 7, say by a constant ¢ # 0, then the coupling variables for the 7, , subsample
will instead take the form U, ; = (0, )a, + ¢)(W(i+1)a, — Wia,). In this case, the two
subsamples of U,, ;’s have distinct conditional distributions (i.e., mixed normal with dif-
ferent conditional variances), corresponding to the scenario in part (b) of Theorem 2.1.

Within the context of this illustrative example, we can further clarify a key feature
of the proposed test that holds more generally. It is not aimed at detecting “small” time
variations in the distribution of the observed data. In fact, by allowing the drift 5; and
the volatility o; to be time varying, a smooth form of heterogeneity is always built in.
The test instead detects abrupt changes, or discontinuities, in the evolution of the dis-
tribution, which can be more plausibly associated with the “lumpy” information carried
by the underlying economic announcement, as emphasized by Nakamura and Steins-
son (2018b). Specifically in this example, the asset returns are locally centered Gaussian
(due to the assumption that the price is an It6 process), and hence, the temporal dis-
continuity in the return distribution manifests itself as a volatility jump. The empirical
scope of our permutation test, however, is far beyond volatility-jump testing depicted in
this illustration, as we shall demonstrate in the remainder of the paper.

2.2 Permutation tests for discontinuities in event studies

We now specialize the general Theorem 2.1 into an infill asymptotic time-series setting
that is particularly suitable for event studies. By introducing a mild additional econo-
metric structure, we shall establish the asymptotic validity of the permutation test un-
der more primitive conditions that are easy to verify in a variety of concrete empirical
settings. As in the running example above, we consider an event occurring at time 7 €
[i*A,, (i*+1)A,), which separates two subsamples indexed by 7;,,, = {i* — kp, ..., i* — 1}
and Zp , = {i* + 1, ..., i* + k,}, respectively. All limits in the sequel are obtained under
the infill asymptotic setting with A, — 0.

We suppose that the data are generated from an approximate state-space model of
the form

Yii=8(lin, €ni) +Ruiy, 1€y, 4)

where the state process {; is cadlag, adapted to a filtration 7;, and takes values in an
openset Z C RAm(), (€n,i)icz, areii.d. random disturbances taking values in some (pos-
sibly abstract) space &; g(-, -) is a “smooth” transform; and R, ; is a residual term that
is negligible relative to the leading term g({;a,, €,,;) in a proper sense detailed below.
A simpler version of this state-space model without the R, ; residual term has been used
by Li and Xiu (2016) and Bollerslev, Li, and Xue (2018), among others, for modeling mar-
ket variables such as trading volume and bid-ask spread. By introducing the R, ; residual
term, we can use a unified framework to accommodate a broader class of models, which
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in particular include increments of an Itd6 semimartingale. We now revisit the model in
(2) as the first illustration.

ExamPLE 1 (Brownian Asset Returns). We represent the It6 process model (2) for asset
returns in the form of (4) by setting {; = 0y, €,,; = A;I/Z(W(,-H)An —Wi,),and g(z, €) = ze.
The resulting residual term has the form

—172 (i+1)A, “1/2 (i+1)A,

R, i=A, / bsds + A, / (o5 — oin,) dWs,  i€l,. (5)
iAn iAp

Under mild and fairly standard regularity conditions, it is easy to show that max;c7, |R,,|

is 0,(1). On the other hand, the leading term g({;a,, €,,;) has a nondegenerate centered

mixed Gaussian distribution with conditional variance UiZA,,-

This running example further illustrates the distinct roles played by ¢/, €,,;, and Ry, ;
in our state-space model (4). The leading term g({;a,, €,,;) captures the “main feature”
of the observed data; in addition, since the ¢, ; disturbance terms are i.i.d., any “large”
change in the empirical distribution across the two subsamples must be attributed to
the time-r discontinuity in the state process {;. From this description, it follows that the
hypothesis test for the continuity of the distribution of the main feature of the observed
data can be formulated as

Hy:Af; =0 versus H,:A{; #0, (6)

where A{; = {; — {;— = {, — limyy; {; denotes the jump of the state process at time 7.

With the state-space model (4) in place, we can design more primitive sufficient
conditions for establishing the asymptotic validity of the permutation test under the
hypotheses in (6). We need some additional notation to describe these conditions. For
each fixed z € Z, let f,(-) and F,(-) denote the probability density function (PDF) and
the CDF of the random variable g(z, ¢, ;), respectively. It is also convenient to introduce
a “shifted” version of {; defined as ; = ¢, — A{;1{t > 7}, which has the same increments
as {; over time intervals not containing .

AssuMPTION 2.2. (i) The collection of variables (€, ;)icz, are i.i.d. and, for each k € I,
the variables (e, ;);>k are independent of Fy,,. Moreover, for any compact subset K € Z,
we have (ii) Sup g ,cx f2(x) < 00 and (iii) inf,exc [ (Fz(x) — Fzic(x))? dF;(x) > 0 when-
everc #0.

AssumPTION 2.3. There exist a sequence (T,,)m>1 0f sStopping times increasing to infinity,
a sequence of compact subsets (K, )m>1 of Z, and a sequence (K,;,)m>1 of constants such
that for some real sequence a, > 1 andeachm > 1: (i) ||g(z, €n,i) — 8(2', €4,i) 2 < Kmanllz—
Z'| for all z, 2’ € Ky,; (ii) ¢ takes values in K, for all t < T,,, and ||Zme - ZSATm”Z <
K|t — s|1/2 for all t, s in some fixed neighborhood of t; (iii) max;cz, |Ry,i| = 0, (k;;2).

Assumption 2.2 entails regularity conditions pertaining to the random disturbance
terms, which are often easy to verify in concrete examples as demonstrated later in this
subsection. Assumption 2.3 imposes a set of smoothness conditions that permits the
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approximation of the observed data using properly constructed coupling variables.'?
Specifically, condition (i) requires that the random function z + g(z, €,,;) is Lipschitz
in z over compact sets under the L, distance. The a, sequence captures the scale of
the Lipschitz coefficient. In many applications, we can verify this condition simply with
an =1, but allowing a, to diverge to infinity is sometimes necessary (see Example 2 be-
low). Condition (ii) states that the ¢, process is locally compact (up to each stopping
time T,,) and, upon removing the fixed-time discontinuity at 7, it is (1/2)-Hoélder con-
tinuous under the Ly norm. This Holder-continuity requirement can be easily verified
using well-known results provided that the 7 process is an Itd6 semimartingle or a long-
memory process (see Jacod and Protter (2012, Chapter 2) and Li and Liu (2020)). Condi-
tion (iii) imposes the requisite assumptions on the residual terms. In some applications,
this condition holds trivially with R, ; = 0, but, more generally, it needs to be verified
on a case-by-case basis using (relatively standard) infill asymptotic techniques. Theo-
rem 2.2, below, establishes the size and power properties of the permutation test under
the hypotheses described in (6).

THEOREM 2.2. In the state-space model (4), suppose that Assumptions 2.2 and 2.3 hold,
and that a,,kﬁA,l/ 2_ o(1). Then the following statements hold for the permutation test <f>n
described in Algorithm 1:

(a) Under the null hypothesis in (6), that is, A{; =0, we have ]E[J)n] — a;

(b) Under a fixed alternative hypothesis in (6), that is, A{; = c for some (unknown)
constant ¢ # 0 and if k,, — oo, we have ]E[qASn] — 1.

This theorem is proved by verifying the high-level conditions in Theorem 2.1 with
properly constructed coupling variables analogous to those in equation (3). The con-
dition ank%A,l,/ 2= o(1) mainly requires that the window size k,, does not grow too fast,
which ensures the closeness between the coupling variables and the original data. In the
typical case with a, = 1, it reduces to k, = o(A,, 1 6).11 In general, a larger k, allows one
to utilize more data, but the associated longer event window may also lead to a larger
nonparametric bias, and hence, a more severe size distortion. Part (a) shows that the
permutation test attains the desired asymptotic level under the null hypothesis in (6).
Again, we stress that the test has valid asymptotic size control even in the “small-sample”
case with fixed k,. As in Theorem 2.1, the “large-sample” condition k, — oo is needed
for establishing the consistency of the test under the alternative, as shown in part (b).

In the remainder of this subsection, we use a few prototype examples to demonstrate
how the proposed test may be used in various empirical settings. In particular, we show
how to cast the specific problems into the approximate state-space model (4), and dis-
cuss how to verify our sufficient regularity conditions. We start by revisiting the running
example.

10Note that the assumption is framed in a localized fashion using the stopping times (7},)u=1, which is
a standard technique for weakening the regularity condition in the infill asymptotic setting. See Jacod and
Protter (2012, Section 4.4.1) for a comprehensive discussion on the localization technique.

UThis sufficient condition for the growth rate of k, is different from the conditions needed for con-
ventional asymptotic-Gaussian-based spot inference, which requires &, < A;* for some ¢ € (0, 1/2). For
the permutation test, k, may be fixed or grow to infinity. However, in the latter case, our condition on the
growth rate of k,, is more stringent than what is needed for the conventional spot inference theory.
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ExampLE 1 (Brownian Asset Returns, Continued). Recall that ¢, ; = A;l/ 2(W(,~+1) A, —
Wia,), {+ = o1, and g(z, €) = ze. In this context, the hypothesis testing problem in (6)
represents a test of the continuity of the volatility process o; at time ¢ = 7, that is,

Hy:Ao,=0 versus H,:Ao;#0.

We suppose that the volatility process o; is nondegenerate by setting its domain to
Z = (0, 00). Since the Brownian motion has independent increments with respect to
the underlying filtration, the disturbance term ¢, ; satisfies Assumption 2.2(i). In ad-
dition, for each point z € Z, the random variable f(z, €, ;) has an N(0, z2) distribu-
tion. It is then easy to see that conditions (ii) and (iii) in Assumption 2.2 hold for
any compact subset X C Z (note that X is necessarily bounded away from zero). To
verify Assumption 2.3, first note that g(z, €,,;) — g(2’, €,,i) = (z — Z')e,,;, and hence,
lg(z, €ni) — g(2/, €n,i)ll2 = |z — Z/|. Assumption 2.3(i) thus holds for a, = 1. It is well
known that o is locally (1/2)-Holder continuous under the L, norm if it is an It6 semi-
martingale or a long-memory process; if so, Assumption 2.3(ii) is satisfied if the oy and
o, ! processes are both locally bounded. Finally, to verify Assumption 2.3(iii), we assume
that the drift process b; is locally bounded. It is then easy to show via routine calculations

that max;ez, |Ry,i| = Op(k,l/zA}/Z). Since the condition ankf‘lA,l/z = 0(1) in Theorem 2.2

implies that Op(k},/zA,l/Z) = 0p(k,?), we have max;ez, |Rp,i| = 0 (k;%) as needed in As-
sumption 2.3(iii). All conditions in Theorem 2.2 are now verified, and this shows that the

permutation test ¢, is asymptotically valid for testing the null hypothesis Ac, = 0.

Example 1 shows that the permutation test ¢, is asymptotically valid for testing the
presence of a volatility jump. This is a relatively familiar problem in the literature. It is
therefore useful to contrast the proposed permutation test with the standard approach,
which is based on nonparametric “spot” estimators of the asset price’s instantaneous
variances before and after the event time given by, respectively,

R 1 R 1
o= T Z Ylf,i’ o7 = k, Z Ylf,i' )

n . .
IGIL,Z ZGIZ,,,

Assuming k, — oo and k2A, — 0, it can be shown that (see Jacod and Protter (2012,
Chapter 13))

o * (6% = 62 = (o2 = 02))

2 _
V264 + 262

Thus, we can test Hy : Ao, = 0 by comparing the ¢-statistic k) > (62 — 62_)/,/26% + 264
with critical values based on the standard normal distribution.

Two remarks are in order. First, note that the asymptotic size control of the standard
approach relies on the asymptotic normal approximation (8), which depends crucially
on k;, — oo (in addition to having A,, — 0) because the underlying central limit theorem
is obtained by aggregating a “large” number of martingale differences. Hence, the ¢-test
may suffer from severe size distortion when &, is relatively small. This issue is empir-

4 N, 1). @)
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ically relevant because an applied researcher may use a short time window to capture
short-lived “impulse-like” dynamics and/or to minimize the impact of other confound-
ing economic factors in the background. Moreover, for “real-time” applications, the re-
searcher may have no choice but to use a small k,, simply because of the limited amount
of available data soon after the event time 7. In sharp contrast, the permutation test con-
trols asymptotic size even when k, is fixed. This remarkable property is inherited from
the coupling two-sample problem, in which the permutation test controls size exactly
regardless of whether k,, is fixed or grows to infinity.

The second and perhaps practically more important difference between the two
tests is that the permutation test is more versatile. Under the spot-estimation-based
approach, both the design of the spot estimators in (7) and the convergence in (8) de-
pend heavily on the fact that the increments of the Brownian motion are not onlyi.i.d.,
but also Gaussian. Gaussianity is obviously essential for the conventional approach be-
cause, among other things, it ensures that the instantaneous variance of the normalized
returns are well-defined.'? The permutation test, on the other hand, only exploits the
i.i.d. property of the Brownian shocks, without relying on their Gaussianity. Therefore,
the permutation test readily accommodates a more general model for asset returns with
Lévy shocks, as we demonstrate in the following example.

ExampLE 2 (Lévy-driven Asset Returns). We generalize the model in Example 1 by re-
placing the Brownian motion W with a Lévy martingale L, so that the asset return has
the form

(i+1)A, (i+D)A,
P(i+l)An_PiAn:f bsds—i—/ osdLs, i€T,.
iA, iAy

In this case, we define the random disturbance as €, ; = AV (L(i+1)a, — Lia,) for some
constant 3 € (1, 2]. The more general normalizing sequence A;l/ P is used to ensure that
€n,; has a non-degenerate distribution. For instance, if L is a stable process, we take g
to be its jump-activity index, so that €, ; has a centered stable distribution (recall that
the Brownian motion is a stable process with index 8 = 2). We treat the value of 8 as
unknown. Since the permutation test is scale-invariant with respect to the data, we can
nonetheless regard the normalized return Y, ; = A;l/ B (Pii+1)a, — Pia,) as directly ob-
servable (because tests implemented for P(;;1)s, — Pia, and Y, ; are identical). To apply
our theory, we represent Y, ; using the state-space model (4) with {; = oy, g(z, €) = ze,
and the residual term given by

1 (i+DA, 1 (i+DA,
Rpi=A, /ﬁ/ bsds+ A, /'B/ (05— oia,)dLs, €T,
1Ay, [ZAV]

Recognizing that the scaled Lévy increments (e, ;);cz, are i.i.d., we can verify Assump-
tions 2.2 and 2.3 using similar arguments as in Example 1 but with a,, = A,l/ 2=V/B which

12Recall that many distributions used in continuous-time models do not have finite second moments.
For example, within the class of stable distributions, the Gaussian distribution is the only one with a finite
second moment. Moreover, Gaussianity also implies that the variance of A1 (W;a, — W;_1)a,)? is 2, which
explains the “2” factor in the denominator of the 7-statistic.
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depicts the rate at which | e, ;|2 diverges. In particular, the condition a,,kiA,l/ 2 - o(1)
requires k, to obey k, = o(Aﬁ,l/ A=D/3) Then we can apply Theorem 2.2 to show that the
permutation test ¢, is asymptotically valid for testing the discontinuity in the volatility
process oy at time 7, regardless of whether the driving Lévy process is a Brownian mo-
tion or not. To our knowledge, our test is the first in the literature that accommodates
Lévy-type shocks in the context of testing for volatility jumps.

So far, we have illustrated the use of the permutation test for high-frequency asset
returns data. Under the settings of Examples 1 and 2, the distributional change of asset
returns is mainly driven by the time-r discontinuity in volatility, and hence, the permu-
tation test is effectively a test for volatility jumps. Example 2, in particular, highlights the
versatility and robustness of the permutation test compared with the conventional ap-
proach based on spot estimation. Going one step further, we now illustrate how to apply
the permutation test to other types of economic variables.

ExamPLE 3 (Location-Scale Model for Volume). Consider a simple model for trading
volume, under which the volume within the ith sampling interval is given by Y, ; =
Wwia, + via,€n,i- The u, location process captures the local mean, or trading intensity,
and the v, scale process captures the time-varying heterogeneity in the order size.
This location-scale model fits directly into the state-space model (4) with {; = (uy, v¢),
g((u, v), €) = u+ve, and R,,; = 0. Let F; be the filtration generated by the ¢; process. If
€n,i is independent of the ¢; process and has finite second moment and bounded PDE
then it is easy to verify Assumptions 2.2 and 2.3 with a, = 1. Theorem 2.2 thus implies
that the permutation test is valid for testing the discontinuity in {; = (u;, v;) at time 7.

The location-scale structure in Example 3 is by no means essential in applications,
because the permutation test is valid provided that the more general conditions in As-
sumptions 2.2 and 2.3 hold. This illustration is pedagogically convenient, in that it per-
mits a straightforward verification of our high-level conditions. That being said, this ex-
ample does reveal a limitation of our theory developed so far. That is, the data variable
needs to be continuously distributed, as required in Assumption 2.2(ii) (which in turn
is related to Assumption 2.1(ii)). Observed data in actual applications are invariably dis-
crete, but this continuous-distribution assumption is often deemed as a reasonable ap-
proximation to reality. In some situations, however, the discreteness in the data is more
salient. For example, the trading volume of a relatively illiquid asset may take values as
small integer multiples of the lot size (e.g., 100 shares).!3 This motivates us to directly
confront the discreteness in the data, as detailed in the next subsection.

2.3 Extension: The case with discretely valued data

The extension will be carried out in similar steps as the theory developed above. We
start with modifying the general result in Theorem 2.1 to accommodate discretely valued

13This issue has become less important in the equity market as retail investors can now trade a single
share, or even a fractional share, of a stock. However, the lot size is still relevant for less liquid assets such as
option contracts or for equity data from earlier sample periods.
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observations; we then specialize the general theory to a high-frequency setting under
more primitive conditions. Recall that Q; ,(-) denotes the G,-conditional distribution
function of the coupling variable U, ; fori € Z; , and j € {1, 2}, and 0,=(01..+ 02,0)/2.

THEOREM 2.3. Suppose that there exists a collection of variables (U, ;);c1, that satisfies
Assumption 2.1(i) for some sequence (G,)>1 of o-fields, and P(?n,i #Upi)= o(k;l) uni-
formlyini e T, where (}N’n,i)idn is an identical copy of (Yy,)iez, in Gn-conditional distri-
bution. Then the following statements hold for the test ¢, described in Algorithm 1:

(@) If the variables (Up,;)icz, have the same G,-conditional distribution, we have
E[(f)n] — a.

(b) If ky — o0 and P( [(Q1,4(x) — Q2,,(x))2d0,(x) > 8,) — 1 for any real sequence
8, = o(1), we have E[&n] — 1.

Theorem 2.3 establishes exactly the same asymptotic properties for the permuta-
tion test as Theorem 2.1, but under different conditions: it does not impose the anticon-
centration requirement for the coupling variable (i.e., Assumption 2.1(ii)), and the “dis-
tance” between the observed data and the coupling variable is measured by the proba-
bility mass of {17,,,,- # Up,i}. These modifications seem natural for the discrete-data set-
ting.

Next, we specialize the general result in Theorem 2.3 to the state-space model (4),
starting with some motivating examples. The first is an alternative model for the trading
volume that explicitly features discretely valued data, which shows an interesting con-
trast to Example 3.

ExaMPLE 4 (Poisson Model for Volume). Let Y, ; be the trading volume of an asset
within the ith sampling interval. Following Andersen (1996), we model the discretely val-
ued volume using a Poisson distribution with time-varying mean. To form a state-space
representation, let (e, ;(#));>0 be a copy of the standard Poisson process on R, inde-
pendent across i, and let {; be the time-varying mean process independent of the ¢, ;’s.
We then set Y), ; = €,,;({ia,), which conditional on the { process, is Poisson distributed
with mean {;5,. This representation is a special case of (4), with g(Z, €) = €({) being a
time change and R, ; = 0. We also note that although the ¢, ;’s are assumed to be i.i.d.,
the (Y,,,i)iez, series can be highly persistent through its dependence on the stochastic
mean process ;.

To further broaden the empirical scope, we consider another example concerning
the bid-ask spread of asset quotes. This example is econometrically interesting because
of its resemblance to the discrete-choice models (e.g., probit and logit) commonly used
for modeling binary and multinomial data.

ExamPLE 5 (Bid-Ask Spread). Let Y, ; be the bid-ask spread of an asset at time iA,,. For
a liquid asset, the spread is often maintained at 1 tick (e.g., 1 cent), but it may widen to
several ticks due to a higher level of asymmetric information or dealer’s inventory cost.
For ease of exposition, we suppose that Y}, ; is a binary variable taking values in {1, 2},
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while noting that a multinomial extension is straightforward. Motivated by the classical
discrete-choice models, we model the spread as Y, ; = 1 + 1{{;r, > €,,;}, and suppose
that the variables (e, ;);c7, are i.i.d. and independent of the {; process. With the CDF of
€,,; denoted by Fe(-), we have P(Y,,; = 2|{ia,) = Fe({ia,). Evidently, upon redefining {;
as Fe({;), we can assume that €, ; is uniformly distributed on the [0, 1] interval without
loss of generality. This normalization in turn allows us to interpret {; as the stochastic
propensity of a “wide” spread, which may serve as a measure of market illiquidity.

We now proceed to establish the asymptotic validity of the permutation test for the
hypotheses described in (6) for discretely valued observations; see Theorem 2.4 below.
Since the state-space representation (4) holds with the residual term R, ; = 0 in the ex-
amples above, it seems reasonable to avoid unnecessary redundancy by restricting our
analysis to a simpler version given by

Yni=8lin, €ni)y 1€y 9

We replace Assumption 2.3 with the following assumption, where we recall that for each
z € Z, F;(-) denotes the CDF of the random variable g(z, ¢, ;) and L= — NG > 1)

AssuMPTION 2.4. There exist a sequence (T,,)m>1 0f stopping times increasing to infinity,
a sequence of compact subsets (K,;,)m>1 of Z, and a sequence (K ) m>1 of constants such
that foreachm > 1: () P(g(z, €5,i)) # 8(Z', €1,1)) < Knllz—Z'| forall z, 2’ € Ky; (ii) {; takes
values in Ky, for all t < Ty, and \|{in1,, — LsaT, ll2 < Kimlt — 5|12 for all t, s in some fixed
neighborhood of .

THEOREM 2.4. In the state-space model (9), suppose that Assumptions 2.2(i), 2.2(iii), and
2.4 hold, and that k3A, = o(1). Then the following statements hold for the permutation
test (Z)n described in Algorithm 1:

(a) Under the null hypothesis in (6), that is, A{; = 0, we have IE[(]ASH] —

(b) Under a fixed alternative hypothesis in (6), that is, A{; = c for some (unknown)
constant ¢ #0, and if k,, — oo, we have thatIEl[dAbn] — 1.

Theorem 2.4 depicts the same asymptotic behavior of the permutation test as in
Theorem 2.2. The sufficient conditions of these results differ mainly in how to gauge
the closeness between the data and the coupling variable, as manifest in the differ-
ence between Assumption 2.3(i) and Assumption 2.4(i). The latter is easy to verify un-
der more primitive conditions in concrete settings. Specifically, in Example 4, we note
that |g(z, €,,;) — g(Z/, €5,1)| is a Poisson random variable with mean |z — Z/|, and hence,
P(g(z, €n,i) # g(2', €n,i)) =1 — exp(—|z — Z/|) < |z — /| as desired. In Example 5, we can
use €,,; ~ Uniform[0, 1] to deduce that

P(g(2, €n,i) # 8(Z, €n,i)) =P(Lz = €01} # 1{2' = €4,1}) = |2 = 2],

which again verifies Assumption 2.4(i). Therefore, in the context of Examples 4 and 5
above, the permutation test is asymptotically valid for detecting discontinuities in trad-
ing activity and illiquidity, respectively.
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3. MoONTE CARLO SIMULATIONS
3.1 Setting

Our Monte Carlo experiment is based on the setting of Example 2. We simulate the (log)
price process according to dP; = oy dL; under an Euler scheme on a 1-second mesh,
and then resample the data at the A, = 1 minute frequency. We simulate L either as a
standard Brownian motion or as a (centered symmetric) stable process with index g =
1.5. To avoid an unrealistic price path, we truncate the stable distribution so that its
normalized increment A;l/ B (Lia, — L(i—1)a,) is supported on [-C, C], and we consider
C € {10, 20, 30} to examine the effect of the support. The unit of time is one day.

To simulate the volatility process, we first simulate two volatility factors according to
the following dynamics (see Bollerslev (2011)):

dVi,; = 0.0116(0.5 — V1,,) dt +0.1023\/W1, (pdL, + /1 — p2 dBy,/) + ¢ - 11=ry,
dVa,; = 0.6930(0.5 — Va,1) dt +0.7909\/Va, ((pdL + /1 — p2 dBa,() + ¢ - 11=ry,

where B, and By, are independent standard Brownian motions that are also inde-
pendent of L, p = —0.7 captures the negative correlation between price and volatility
shocks (namely, the “leverage” effect). The 14 volatility factor is highly persistent with
a half-life of 2.5 months, while the 1, volatility factor is quickly mean-reverting with a
half-life of only one day. The constant ¢ determines the size of the volatility jump at the
event time 7. In particular, ¢ = 0 corresponds to the null hypothesis, and we consider a
range of ¢ values in (0, 5] in order to trace out a power curve for the corresponding alter-
native hypotheses. The range of the ¢ parameter is calibrated according to Bollerslev, Li,
and Xue’s (2018) empirical estimates for FOMC announcements. !4

We note that the two volatility factors, 11 and 1, capture the slow- and fast-mean-
reverting volatility dynamics, respectively, with the former having “smoother” sample
paths than the latter. With this in mind, we simulate ¢; using two models:

Model A: o2 =2V,

] (10)
Model B: (o =Vl,t+I/2,t-

In finite samples, Model A features relatively smooth volatility paths, which is close to
the “ideal” scenario underlying the infill asymptotic theory. Meanwhile, Model B gener-
ates more realistic, and rougher, sample path for o, providing a nontrivial challenge for
the proposed inference theory.

We implement the permutation test at the 5% significance level, with the window
size k, € {15, 30, 60, 90}. The six-fold increase from the smallest window size to the
largest one represents a considerable range that allows us to explore the robustness of

1“Spe(:iﬁcally, Bollerslev, Li, and Xue (2018) estimate the average jump size of log(o;) for the S&P 500
ETF around FOMC announcements to be 1.037 (see Table 3 of that paper). This suggests that o2/0?_ =
(exp(1.037))% ~ 8 on average, corresponding to ¢ 2 3.5 in this Monte Carlo design.
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the proposed test with respect to the k, tuning parameter.'® The critical value is com-
puted as in Remark 2.1 based on 1000 i.i.d. permutations. For comparison, we also im-
plement the standard (two-sided) ¢-test based on (8). Rejection frequencies are com-
puted based on 2000 Monte Carlo trials.

3.2 Results

We first examine the size properties of the permutation test ¢, and the ¢-test based on
(8). Table 1 reports the rejection frequencies of these tests under the null hypothesis
(i.e., ¢ = 0) for various data generating processes. Column (1) corresponds to the case
with L being a standard Brownian motion, and columns (2), (3), and (4) report results
when L is a truncated stable process with the truncation parameter C = 10, 20, and 30,
respectively.

The top panel of the table shows results from Model A, where the volatility is solely
driven by the “slow” factor. Quite remarkably, the rejection frequencies of the permu-
tation test are very close to the 5% nominal level for all specifications of L, and impor-
tantly, for a wide range of the window size k. In contrast, the rejection rates of the ¢-test
appear to be far more sensitive to the choice of k,,. As we increase &k, from 15 to 90, the re-
jection rate increases from 1.1% to 4.8% when L is a Brownian motion. A similar pattern
emerges when L is a truncated stable process, except that the rejection rates now ex-
ceed the nominal level and reach 7.4% and 9.1% in columns (3) and (4), respectively. It is
relevant to note that the ¢-test is not formally justified when L is not a Brownian motion.

TaBLE 1. Rejection rates under the null hypothesis.

Permutation test T-test
(1 2) (3) 4) () (2) (3) (4)

Model A: One-factor volatility

k,=15 0.050 0.058 0.053 0.062 0.011 0.017 0.021 0.032
k, =30 0.054 0.049 0.056 0.057 0.031 0.042 0.044 0.063
k, =60 0.047 0.048 0.053 0.059 0.046 0.053 0.055 0.077
k, =90 0.058 0.050 0.053 0.056 0.048 0.056 0.074 0.091
Model B: Two-factor volatility
k,=15 0.049 0.055 0.054 0.062 0.014 0.017 0.023 0.037
k, =30 0.055 0.050 0.055 0.056 0.037 0.041 0.051 0.073
ky =60 0.049 0.049 0.054 0.064 0.091 0.077 0.078 0.102
k, =90 0.064 0.052 0.058 0.059 0.136 0.101 0.117 0.147

Note: This table presents rejection frequencies of the permutation test and the ¢-test under the null hypothesis ¢2_ =

o2. The significance level is fixed at 5%. Column (1) corresponds to the case with L being a standard Brownian motion, and
columns (2)-(4) correspond to cases in which L is truncated stable with index 1.5 and truncation parameter C € {10, 20, 30}.
The rejection frequencies are computed based on 2000 Monte Catrlo trials.

15We also implemented simulations in which the two subsamples, 7 ,, and 7, ,, have different sample
sizes k1,n, k2,, € {15, 30, 60, 90}. As anticipated in footnote 4, these results are quantitatively similar to those
with a common sample size, that is, k1,, = k2,,. These additional results are omitted for brevity but are
available upon request.
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The more challenging case is Model B with the two-factor volatility dynamics. Look-
ing at the bottom panel of Table 1, we find that the permutation test still has rejection
rates that are quite close to the nominal level, although we see a slight overrejection
of 6.4% when k, = 90. This is likely due to the fact that the approximation error in the
coupling has nontrivial impact when the window size is large. That being said, we note
that the benchmark ¢-test is more severely affected by this bias issue, with rejection rates
reaching 9.1% and 13.6% when k, = 60 and &, = 90, respectively.

Figure 1 plots the power curves of the permutation test and the ¢-test for various
k,’s in Model A and Model B. We note that the four specifications of L produce quali-
tatively similar results. We see that the rejection frequencies increase with the window
size k, and the jump size ¢, which is expected from our consistency result obtained un-
der k,, — oco. The permutation test appears to be less powerful than the ¢-test under the
alternative hypothesis. This is a natural consequence of the typical trade-off between
efficiency and robustness to the assumptions. The ¢-test is based on the spot variance
estimator, which is “locally” the maximum-likelihood estimator of the spot variance un-
der the Brownian shocks. The asymptotic validity and efficiency of the ¢-test rely on the
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FiGure 1. The figure plots the rejection frequencies of the permutation test and the ¢-test.
The significance level is fixed at 5% (highlighted by shade). Results for Model A and Model
B are presented in the top and bottom rows, respectively. In all the plots, L is simulated as
a standard Brownian motion. The power curves are computed for the jump size parameter
c€{0,0.5,1, ..., 5}. The rejection frequencies are computed based on 2000 Monte Carlo trials.
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Brownian assumption. In contrast, the permutation test is asymptotically valid regard-
less of whether the shocks are Brownian or not. As expected, this robustness is costly in
terms of power. On the flip side, the power advantage of the ¢-test comes at the cost of
size distortion when shocks are non-Brownian, which can be large, as shown in Table 1.

Overall, we find that the permutation test controls size remarkably well under the
null hypothesis. Although it appears to be less powerful than the ¢-test, it does not suffer
from the latter’s size distortion, which can be severe in the two-factor volatility model.
Our results suggest that, given its robustness, the permutation test is a useful comple-
ment to the conventional test based on spot estimation and asymptotic Gaussian ap-
proximation.

4. AN EMPIRICAL ILLUSTRATION

We apply the proposed permutation test to a recent sample of high-frequency price and
volume observations of the S&P 500 ETF (NYSE: SPY) as an empirical illustration. The
sampling frequency is 1 minute; the data source is the TAQ database. With the permu-
tation test, we are interested in testing distributional discontinuities of the ETF’s return,
trading volume, and two measures of illiquidity for several FOMC announcements dur-
ing the COVID-19 pandemic. This setting highlights one of the key merits of the pro-
posed test, namely, it is applicable for a broad variety of high-frequency observations
modeled in distinct ways. This is in sharp contrast to the conventional ¢-test based on
(8), which is designed specifically for testing volatility jumps and whose validity relies
on the assumption of Brownian shocks. We construct the high-frequency volume series
as the total number of shares within each 1-minute trading session. The illiquidity mea-
sures of interest include Amihud’s measure defined as the ratio between absolute return
and dollar trading volume (Amihud (2002)) and the bid-ask spread averaged within each
1-minute trading session.

We focus on four important FOMC announcements in the 2020-2021 sample period
that are related to distinct aspects of the Federal Reserve’s monetary policy during the
COVID-19 pandemic. The first is the announcement made on March 3, 2020, which was
also the first FOMC announcement after COVID-19 hit the United States. The Fed stated
its decision to lower the federal funds rate by 1/2 percentage point as its first response
to counter the pandemic’s negative impact on the economy. The second event occurred
on December 16, 2020. At that time, being concerned with the rising long-term yield,
many market participants expected that the Fed might implement the so-called “oper-
ation twist” to tame the steepening of the yield curve. But this turned out not to be on
the Fed’s agenda, and so the Fed’s “inaction” may be deemed as a shock relative to the
market’s anticipation. The third case pertains to the announcement on March 17, 2021.
During the press conference, the Fed Chairman suggested that the central bank would
be unlikely to raise the rate in the next 2-3 years, which may be regarded as a forward
guidance on the target rate. The final example is the announcement on September 22,
2021, when the Fed officially declared its intention to taper the large-scale asset pur-
chase program.

Figure 2 plots the asset return and trading volume of SPY over 1-hour windows cen-
tered at these announcement times. For ease of comparison, we plot the return and
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Ficure 2. This figure plots the price return (solid) and volume (shaded) of the SPY ETF in 1-hour
windows around four FOMC announcements.

volume data for the four events on the same scale. These plots immediately reveal the
highly distinct market conditions at those times. This highlights the usefulness of adopt-
ing a high-frequency event-study research design, which allows us to investigate each
event separately, rather than pooling information across different announcements un-
der a likely fragile homogeneity assumption. We also observe several interesting pat-
terns regarding how the market responds to the “lumpy” information embedded in the
announcements. We generally see a rise in trading activity after the announcement.
The price also tends to fluctuate more in the post-announcement window, although the
March 3, 2020, event may be an exception as the market was already quite volatile even
before the announcement.

As mentioned above, we implement the permutation test described in Algorithm 1
on the ETF’s returns, trading volume, Amihud’s measure, and bid-ask spread con-
structed on the 1-minute sampling frequency. For ease of interpretation, we consider
the nonrandomized version of the test described in Remark 2.1. We consider two event
windows: k,, = 10 minutes or 30 minutes. Recall that each FOMC announcement con-
tains two stages. The first is an immediate release of a short summary on the Federal Re-
serve’s webpage, which will be further detailed in the Fed Chairman’s opening statement
during the first (roughly) 10 minutes of the press conference. The second part is a Q&A
session in which the Chairman responds to questions from the media, with the first few
generally being more important. Given this setup, the shorter k,, = 10 window allows us
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TABLE 2. Test results for selected FOMC announcements.

k,=10 k, =30
Date (7) Return Volume Amihud Spread Return Volume Amihud Spread
03/03/2020 *xk * *xk sokok ok
12/16/2020 ok *okok *k kokok *k *xk *okk
03/17/2021 * ok *okok % sokok *okok
09/22/2021 *% *xk *xk Kk *okok sk

Note: The permutation test is implemented following Algorithm 1. For ease of interpretation, we consider the nonrandom-
ized version as described in Remark 2.1 using 100,000 i.i.d. permutations. Rejections at the 10%, 5%, and 1% significance levels
are indicated by x, *x, and xxx, respectively.

to focus on the immediate impact of the FOMC statement, whereas the longer £, = 30
window further covers the “more subtle” policy information conveyed to the public dur-
ing the Q&A session. It is worth noting that the 30-minute event window is also adopted
in prior work on the high-frequency identification of monetary policy shocks; see Naka-
mura and Steinsson (2018a).

Table 2 reports the results of the permutation test. Recall that the permutation test
applied to asset returns may be interpreted as a test for volatility jumps, as explained
in Example 1 (with Brownian shocks) or Example 2 (with more general Lévy shocks).16
At a significance level of 10%, the permutation test rejects the null of continuity for all
events except the one on March 3, 2020. The latter nonrejection is consistent with our
previous observation that the volatility of SPY was high even before the announcement.
Meanwhile, the test also strongly rejects the null hypothesis of distributional continuity
for the volume series, echoing the burst of trading activity seen in Figure 2.

The permutation test applied to the two illiquidity measures generates mixed re-
sults. We find some moderate evidence for the distributional discontinuity of Amihud’s
measure shortly after the March 3 and December 16 announcements in 2020. For the
case with a 30-minute window, we do not reject the null of continuity for any of the
announcements. The overall evidence suggests that the FOMC announcements under
study did not lead to an abrupt change in the market impact coefficient gauged by Ami-
hud’s measure. Needless to say, this finding per se does not imply that the liquidity con-
dition is unchanged after the announcement, as the notion of liquidity is a multifaceted
concept. Indeed, we see that the permutation test applied to the bid-ask spread always
strongly rejects the null of continuity. The post-announcement spread tends to be larger
than its pre-announcement level, suggesting that it is significantly more costly to trade
during the post-announcement trading session.

All in all, the empirical illustration above demonstrates how the proposed permu-
tation test may be used to test for distributional discontinuities for a variety of market
variables. This type of versatility is not easily attained by existing methods in the high-
frequency econometrics literature. We also see that interesting empirical findings may

16prior work on volatility jumps (see, e.g., Bollerslev, Li, and Xue (2018) and Li, Todorov, and Zhang
(2021)) focuses exclusively on the case in which volatility is the scaling factor of Brownian shocks. Our per-
mutation test is related to the prior work, but is valid under a more general notion of volatility with respect
to non-Brownian shocks.
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be obtained even with a small number of observations, which confirms the practical rel-
evance of allowing the k, window to be possibly fixed in our asymptotic theory for the
permutation test.

5. CONCLUDING REMARKS

In this paper, we propose using a permutation test to detect discontinuities in an eco-
nomic model at a cutoff point. Relative to the existing literature, we show that the per-
mutation test is well suited for event studies based on time-series data. While nonpara-
metric z-tests have been widely used for this purpose in various empirical contexts, the
permutation test proposed in this paper provides a distinct alternative. Instead of rely-
ing on asymptotic (mixed) Gaussianity from central limit theorems, we exploit finite-
sample properties of the permutation test in the approximating, or “coupling,” two-
sample problem.

We demonstrate that our new theory is broadly useful in a wide range of problems
in the infill asymptotic time-series setting, which justifies using the permutation test
to detect jumps in economic variables such as volatility, trading activity, and liquidity.
Compared with the conventional nonparametric ¢-test, the proposed permutation test
has several distinct features. First, the permutation test provides asymptotic size control
regardless of whether the sizes of the local subsamples are fixed or growing to infinity.
In the latter case, we also establish that the permutation test is consistent. Second, the
permutation test is versatile, as it can be applied without modification to many different
contexts and under relatively weak conditions.

APPENDIX A: PROOFS

Throughout the proofs, we use K to denote a positive constant that may change from
line to line, and write K, to emphasize its dependence on some parameter p. For any
event E € F, we identify it with the associated indicator random variable.

ProOOF OF THEOREM 2.1. Step 1. Define ¢, in the same way as an but with (Y}, )iez,
replaced by (U,,;);ez, - In this step, we show that

Eldn] =Elpnl + o(1). 11

Let ¢, be defined in the same way as <f>n, but with (Y}, )7, replaced by ()7,”) (€T,
as defined in Assumption 2.1(iii). Since (Y}, ;);ez, and (Yy,;);ez, have the same (condi-
tional) distribution,

El¢pn] = E[dy]. 12)

Let E,, € F be the event where the ordered values of (U, ;);cz, and (17,1, i)iez, correspond
to the same permutation of Z,. Since the test statistic is only a function of the rank of the
observations, we have ¢, = ¢, in restriction to E,. Hence,

|E[$n] — El¢pnl| = |E[dnES] — E[¢nES]| < P(EY). (13)

By (12) and (13), (11) follows from P(EY) = o(1), which will be proved below.
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Let A, ;j={Uy; — Uy, >0, 17",1- — ?n_i < 0} for every (i, j) € Z, x Z,, and note that
E;; € U; jAy,; j. Recall the elementary fact that if a sequence of random variables X, =
0,(1), then there exists a real sequence 8, = o(1) such that P(|X,| < §,) — 1. Under
Assumption 2.1(iii), by applying this result to X,, = 2max;c7, |l~/n,i — Up,i|k?, we can find
a sequence 8, = o(1) such that

P(maxn?n,i Upil < ank,;z/z) S, (14)
i€Z,

We then observe that

Apiyj S {Un,j—Un,i25nk22,?n,j—?n,i<0}U{05Un,j—Un,i<5nk;2}
{|f;n,j - i}n,i - (Un,j - n,i)i > ank,zz} U {0 =< Un,j —Up,i < Snklzz}

N

N

max |V, ; — Upil > 5nk,;2/2} U{0 < Uy j— Upi < 8uky2).

i€Z,
Therefore,

E, C U;jAnij < {EIEI%XI?n,i — Uil > 5nk;2/2} U (Ui, jez, {0 < Up,j — Up,i < Snkgz}),

which, together with (14), implies that
P(ES) < P(Uj jez,{0 < Up,j — Un,i < 8uk;%}) + o(1). (15)
Next, consider the following argument:

P(Ui.jeIn{O =< Un,j - Un,i < 6nk;2}|gn) = Z P(O = U”lj B U”’i < S”k;2|g”)
i,jeZn
<2k, Z supP(|Uy,; — x| < 8uk;,%|Gn)

ieZ, ¥R
=0,(8,) =0p(1), (16)

where the last line holds by Assumption 2.1(ii). By (16) and the bounded convergence
theorem,

P(Uj, jez, {0 < Un,j — Un,i < 8nky2}) = 0(1). (17)

By combining (15) and (17), we conclude that P(E};) = o(1), as desired.

Step 2. We now prove the assertions in parts (a) and (b) of the theorem. In view of
(11), we only need to prove E[¢,] — « and E[¢,] — 1 in these two parts, respectively.
For part (a), note that (U, ;);c7, are conditionally i.i.d. and so permutations constitute
a group of transformations that satisfy the randomization hypothesis in Lehmann and
Romano (2005, Definition 15.2.1). Then Lehmann and Romano (2005, Theorem 15.2.1)
imply that E[¢,| G,] = «, and E[¢,] = « then follows from the law of iterated expecta-
tions.

To prove part (b), we need some additional notation. To emphasize the dependence
of Tn, /T\,’{, and (f) » on the original data (Y}, ;);ez, , we explicitly write them as Tn (), /T\,’{ (Y),
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and &n(Y). With this notation, we can rewrite ¢, = (Z)H(U ), since it is computed in the
same way as ¢, but with (Y, ;);cz, replaced by (U, )iez,-

We first analyze the asymptotic behavior of 7,,(U). Define the empirical analogue of
Qj,n(-) as

~ 1
Qjn(x)= 7= > HUpi=x}

"ieT; ,

Since the variables (Uy,i)icz;,, are Gn-conditionally i.i.d.,

E[(Q),n(x) — Qj,n(x))?1Ga] < O(k; ") = o(1).

By Markov’s inequality and the law of iterated expectations, this implies that 0 jn(X) —
Qj,n(x) = 0p(1) for each x € R. This and a classical Glivenko-Cantelli theorem (e.g.,
Davidson (1994, Theorem 21.5)) imply that

sup|Qj,n(x) — O} n(x)| = 0p(1), forje{l,2}. (18)
xeR
By definition,
o~ _ o~ N o~ ) 2
Tn(U) = an ZEXI: (Ql,n(Un,t) QZ,n(Un,z)) .

In addition, we define

1

S, =
" 2k,

Z(Ql,n(Un,i) - QZ,n(Un,i))z-

i€,
Note that the functions O i n(-) and Q; ,(-) are uniformly bounded. Hence, by the triangle
inequality and (18),

~ 1 _~ ~
TaU) = Sa| = 57 D 1(Q1n(Un,i) = Q2.n(Un,)” = (Q1,(Uni) = Q2n(Un))’|
n i€,

K ~
Ek_z Z |Qj,n(Un,i)_Qj,n(Un,i)|=0p(1). (19)

™ ieT, je{l,2}

Conditional on G,, the bounded random functions Q ,(-) and O3 ,(-) can be treated as
deterministic functions. Next, note that

1
Si=5 2 [ (Quale) = Qan(x)*dQ;n(x) +0,(1)
Je{l,2}
= f(Ql,n(x) — 02,2(x))? d0,(x) + 0, (1), (20)

where the first equality holds by a law of large numbers for the conditionally i.i.d. vari-
ables (Uy,i)iez;, for j =1, 2, and the second equality holds by the definition of 0, By
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combining (19) and (20), we deduce that

Tn(U)=/(Q1,n(X)—Qz,n(X))dez(X)Jrop(l)- 21

In turn, by (21) and the condition in part (b), we conclude that
P(T,(U) > 6,) > 1 forany s, =o(1). (22)

Next, we analyze the asymptotic behavior of T*(U ). It is useful to consider the fol-
lowing representation of this variable. We denote Uz = (U, 7(;))icz,, where 7 is a ran-
dom permutation of Z,,, independent from the data and is drawn uniformly from the
set of all permutations of Z,,. By definition, /T\,’{(U ) is the 1 — « quantile of Tn(U;T), con-
ditional on the sample, where the randomness comes from the random realization of 7.
To analyze the permutation distribution, we construct an additional coupling sequence
of (Uy,i)icz, following the method of Chung and Romano (2013, Section 5.3). We note
that their coupling construction does not require the null hypothesis to hold, and it is
thus suitable for our current purposes. The result of their coupling construction is an-
other random sequence (U,/,,,-)ieIn such that (i) U,,; = U,’l) ; for all i in some random sub-
set Z, C I,; (ii) the cardinality of Z, \ Z;,, denoted D,, satisfies E[D,] = O(k,l/ 2); and (iii)
(U, )iez, are G,-conditionally i.i.d. with marginal distribution 0,

For any fixed arbitrary permutation 7 and for j € {1, 2}, define

. 1 ~, 1
Qjnixsmy== 3 Wnmy =3} and Qj,05m = 3 WU, =x}.
n iGZjY” n l’EIj,H

By repeatedly using the triangle inequality,

T0(Un) = Tu(U)| = 57— | > (Q1,0 W, miiys ™) — Q2,n(Un, iy )

i€Z,

2k,
(an( nw(z)’ ) QZn( nrr(z)’ ))2)

Z Z|er”(U”7T(l)’7T) Q ( n, (i)’ )|

]e{l 2}t iel,

— Z |WUn, n(k) < Un,w} = WUy, ey < Up i M
njkel,

SKDn/knzop(l); (23)

where the last inequality uses the fact that (U,,;, U, ) = (U,/w., U,’l,k) if (i, k) eZ, x I,
and so the summation on the previous line only has (2k,)?> — (2k, — D,)? < 4k,D,,
bounded terms that can be different from zero, and the o0,(1) statement follows from
E[D,] = O(k,l,/ 2), k, — oo, and Markov’s inequality.

For any fixed arbitrary permutation 1, T,,(U /) is the Cramér-von Mises statistic for
the G,-conditionally i.i.d. variables (U, _ . )icz,. Hence, by a similar argument leading
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to (22), we have Tn (U;) = 0p(1). By combining this with (23), it follows that
Tw(Uz) = 0p(1). (24)

Since this result holds for any arbitrary fixed permutation =, it also holds for any pair
of permutations considered at random from the set of all possible permutations of Z,,,
independently from the data. By elementary properties of stochastic convergence, this
implies the so-called Hoeffding’s condition (e.g., Lehmann and Romano (2005, equation
(15.10))). By this and Lehmann and Romano (2005, Theorem 15.2.3), the permutation
distribution associated with the test statistic ?,,(U ), conditional on the data, converges
to zero in probability. As a corollary of this,

Tr(U)=o0,(1). (25)

From (22) and (25), itis easy to see that T,(U) > ?,’{ (U) with probability approaching
1. This further implies that E[¢,] — 1, which together with (11) proves the assertion of
part (b). O

Proor oF THEOREM 2.2. (a) We prove the assertion of part (a) by applying Theo-
rem 2.1(a). We construct the coupling variable U,, ; as follows:

Un,i =8~k )A,» €n,i), TorallieZ,. (26)

We set G, = F(i—k,)a,- By Assumption 2.2, (€, ;)e7, are i.i.d. and independent of G,.
Since {(j+_x,)a, is Gn-measurable, the variables (U,,;);ez, are G,-conditionally i.i.d. This
verifies the condition in part (a) of Theorem 2.1, which also implies Assumption 2.1(i). It
remains to verify conditions (ii) and (iii) in Assumption 2.1.

By a standard localization argument (see Jacod and Protter (2012, Section 4.4.1)),
we can strengthen Assumption 2.3 by assuming 71 = oo, K, = K, and K, = K for some
fixed compact set K and constant K > 0. In particular, {;+_,)a, takes values in the com-
pact set K. By Assumption 2.2, it is then easy to see that the G,-conditional probability
density of Uy,; = g({(i*—k,)A,» €n,i) is uniformly bounded (and it does not depend on i).
This implies condition (ii) of Assumption 2.1.

Finally, we verify condition (iii) of Assumption 2.1. By Assumption 2.2(i), for each i €
Ty, &n,i is independent of Fj, . Since {ja, and {(;+_x,)a, are Fj,-measurable, we deduce
from Assumption 2.3(i) that

2
E[|g(Lia,» €n,i) — 8(Li—ka, €n,1)| 1 Fin, ] < Ka2l&ia, — Lim—kpa, 1% 27

Note that under the null hypothesis with A; = 0, the processes {; and {, are identical.
Hence, by Assumption 2.3(ii) and (27),

1/2 ,1/2
||g(§iAn,6n,i)—g(§(i*—k,,)An,€n,i)||2SKankn/ AN

By the maximal inequality under the L, norm (see, e.g., Vaart and Wellner (1996,
Lemma 2.2.2)), we further deduce that

2
H?;%X’g@mn, €n,i) — 8(L(i*—kn)Ap» €n,i)| H2 < KanknA)/?. (28)
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Recall that a,,kiA,l/ 2_ o(1) by assumption. Hence,

Il?;%nx|g(§m,,, €n,i) — 8L kA €nyi)| = Op(kﬁz)- (29)
Note that, by the definitions in (4) and (26),

Yu,i— Uni=g(in,» €n,i) — 8(L(ix—k,)Ay» €nyi) + Ry (30)

Combining (29), (30), and Assumption 2.3(iii), we deduce that max;ez, |Y,,; — Uyl =
0 p(k;Z), which verifies Assumption 2.1(iii). We have now verified all the conditions
needed in Theorem 2.1(a), which proves the assertion of part (a) of Theorem 2.2.

(b) We prove the assertion of part (b) by applying Theorem 2.1(b). Under the main-
tained alternative hypothesis, we have A{; = ¢ for some constant ¢ # 0. The coupling
variable now takes the following form:

U, {g(g(i*_knmn, i) i€l a1
8 kA, T C €ni) L€y p.

Under Assumption 2.2, it is easy to see that, for each j € {1, 2}, the variables (U,,;) i€T;
are G,-conditionally i.i.d., which verifies Assumption 2.1().

We now turn to the remaining conditions in Assumption 2.1. As in part (a), we can
invoke the standard localization procedure and assume that the ¢; process takes value
in a compact set K. Note that

& — (g(i*—kn)An +AL) =4 — g(i*—kn)An = Op(l)»

where the 0,(1) statement follows from the fact that the {; process is cadlag and
kyA, — 0. Therefore, by enlarging the compact set K slightly if necessary, we also have
{(i*— kA, + ¢ € K with probability approaching 1. Then we can verify Assumption 2.1(ii)
following the same argument as in part (a). The verification of Assumption 2.1(iii) is also
similar.

Finally, we verify the condition in Theorem 2.1(b) pertaining to the conditional
CDFs. Note that

Ql,l’l(x) - Fé(i*—knmn (x) and Q2,n(x) - F{(i*—kn)An-i_C(x)'
It is then easy to see that
2 = 2
2/(Ql,n(x) — Q2,1(x))"dQ,(x) > /(Fg(i*—kn)An (x) = Fév(i*—kn)An'*'C(x)) AFgp g a, (X).

Since {(+_k,)a, takes values in the compact set K, Assumption 2.2(iii) implies that the
lower bound in the above display is bounded away from zero. Hence, f (Q1,n(x) —
Q2,1(x))?dQ,(x) > 8, for any real sequence 8, = o(1). We have now verified all con-
ditions for Theorem 2.1(b), which proves the assertion of part (b) of Theorem 2.2. O
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Proor oF THEOREM 2.3. This proof follows from similar arguments to those used to
prove Theorem 2.1. For the sake of brevity, we focus on the only substantial difference,
which is how we establish that P(ES) = o(1). Recall that E,, denotes the event where the
ordered values of (U,,;);c7, and (17,“-) ieT, correspond to the same permutation of Z,.. In
the case of this proof, this result follows from

P(ES) < P(Uiez, {Yni # Unil) < Y P(Vyi#Uni) = o(),
i€,

where the first inequality follows from Ef, C Uz, {17,1,,- # U, ;} and the convergence fol-
lows from the assumption that P(Y,, ; # Uy,,;) = o(k,;!) uniformly in i € Z,. O

Proor oF THEOREM 2.4. (a) We prove this assertion by applying Theorem 2.3(a). We
shall verify the conditions in Theorem 2.3 for 17,,,,- =Y i, Uni = 8({(i*—k,)A,» €n,i), and
Gn = F(i*—k,)A,- By assumption, the variables (¢, ;);ez, are i.i.d. and independent of G,,.
Hence, the variables (Up,;);cz, are G,-conditionally i.i.d.

It remains to verify that P(Y,, ; # U,,;) = o(k, ') uniformly in i € Z,.. By repeating the
localization argument used in the proof of Theorem 2.2, we can strengthen Assump-
tion 2.4 with 77 = oo without loss of generality. In particular, ¢; takes values in some
compact subset £ € Z. Note that for each i € Z,, €, ; is independent of ({;a,, {(i*—k,)a,)-
By Assumption 2.4(i), we thus have P(Y), ; # U,,:|Gx) < K| {ia, — {(i*—k,)a, Il Then, by As-
sumption 2.4(ii), we further have P(Y,, ; # U, ;) < K(k,A,)'/?. The condition P(Y,,; #
U,.i) = o(k;') then follows from k3A, = o(1). By Theorem 2.3(a), we have E[¢,] — a as
asserted.

(b) We prove this assertion by applying Theorem 2.3(b). We verify the conditions in
Theorem 2.3 for Y, ; = Y,,.;, G, = Flit—ky)A,» and

U — 18—k, €ni) ifi e 7y,
n,1 — op .
8(Lir—kA, +C €ni) ifi€Tp .

Following the same argument as in part (a), we see that (Un,i)iezj,,, are G,-conditionally
iid. for each j € {1,2}, and P(Y,,; # U,,i) = o(k,;l) uniformly in i € Z,,. Assump-
tion 2.2(iii) also ensures that P([(Q1,,(x) — Q2,n(x))? d@n(x) > §,) — 1 for any real se-
quence 8, = o(1). By Theorem 2.3(b), we have that ]E[qg,,] — 1, as asserted. O

APPENDIX B: EXTENSION TO OTHER TEST STATISTICS

As explained in Remark 2.2, our main results extend beyond the Cramér—von Mises
statistic in (1). We characterize the relevant class of test statistics by the following high-
level assumption.

ASSUMPTIONB.1. T, = W, ((Yn,i)iez, ), where (W) nen is a sequence of functions that sat-
isfies the following conditions:

(@) ?n is arank statistic, that is, for any (Yy,;) ez, and (Yr/z,i)iezn withsign(Y, ;—Y, ) =
Sign(Y,;’i - Yr/lyj)forall I ] € Iy, “Pn((Yn,i)iGIn) = \Pn((Yr/,yi)iGZ,z)-

(b) For any (Yn,i)ieI,, and (Y,/M-)ieI,,» |\I’n((Yn,i)ieIn) - \I’n((Y,/lyi)ieIn” = Op(Dn/kn)
WithDy =|{i €Ly Yn,i # Y, }.
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Assumption B.1 is satisfied for a large class of test statistics, which includes the
Cramér—von Mises and Kolmogorov—Smirnov statistics. In fact, the proof of Theorem 2.1
shows that the Cramér—von Mises statistic satisfies Assumption B.1, and an analogous
argument can be used to extend this to the Kolmogorov—Smirnov statistic. We now
briefly describe the assumption. Assumption B.1(a) is an essential ingredient to our
methodology. In turn, Assumption B.1(b) is a mild regularity condition that limits the
influence that a few sample observations can have on the test statistic, and is only re-
quired to establish our consistency result.

The result proves Theorem 2.1 for any test statistic that satisfies Assumption B.1.
Since Theorem 2.1 is the key to all of the results in the paper, this effectively implies that
our findings extend to the class of statistics characterized by Assumption B.1, as claimed
in Remark 2.2.

THEOREM B.1. Under Assumptions 2.1 and B.1 (instead of (1)),
A(a) If the variables (U, ;);c7, have the same G,-conditional distribution, we have
El¢n] — o,
(b) Let T,,(U) denote the test statistic but applied to (U, ;);cz, instead of (Yy,i)icz,- If
k, — oo and IP’(T,,(U) > 8,) — 1 for any real sequence 8, = o(1), we have IE[(Z),,] — 1.

Prook. This proof follows closely that of Theorem 2.1, which has two steps. Step 1 re-
mains unchanged, as it only relies on Assumption 2.1 and the fact that T, is a rank statis-
tic, imposed in Assumption B.1(a). Part (a) of Step 2 also remains unchanged, as it is en-
tirely based on Step 1. To complete this proof, it then suffices to cover the analog of part
(b) of Step 2.

We begin by considering the asymptotic behavior of T;;‘(U ), thatis, the 1 — @ quantile
of Tn (U;), conditional on the sample, where the randomness comes from the realization
of 7. As in the proof of Theorem 2.1, we rely on the coupling construction based on
Chung and Romano (2013, Section 5.3), which produces a random sequence (U,’w.)iezn
such that (i) U,,; = U;m. for all i in some random subset Z,, C Z,;; (i) D, = {i € Z,, : Uy,,; #
Ur’m.}| satisfies E[D,,] = O(k}/ 2); and (iii) (U,’“.),-Ezn are G,-conditionally i.i.d. Then, for
any fixed arbitrary permutation 7,

|?n(U7T) - TH(U;T)| = \qfn((Unyﬂ'(l‘))iGIn) - ‘Pn((Ur/l,ﬂ(i))ieIn)|
= 0p(Da/ky***) = 0, (1), (32)

where the second equality relies on |{i € Z,, : Uy ») # U, +iy}l = Dn and Assump-
tion B.1(b), and the last equality relies on E[D,] = O(k},/ 2), k,, — oo, and Markov’s in-
equality. We can then repeat the arguments in the proof of Theorem 2.1 to conclude that
T,(U,) = 0,(1) for any fixed arbitrary permutation 7. By this with (32), we conclude
that 7,,(U,) = 0,(1). Since 7 was arbitrarily chosen, it then follows that

THU)=0,(1). (33)

From the assumption in part (b) and (33), it is easy to see that T,(U) > T;{‘(U ) with
probability approaching one. We can then repeat the remaining arguments in the proof
of Theorem 2.1 to complete this proof. O
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