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Frank Schorfheide
Department of Economics, University of Pennsylvania, CEPR, NBER, and PIER

We use a dynamic panel Tobit model with heteroskedasticity to generate forecasts
for a large cross-section of short time series of censored observations. Our fully
Bayesian approach allows us to flexibly estimate the cross-sectional distribution
of heterogeneous coefficients and then implicitly use this distribution as prior to
construct Bayes forecasts for the individual time series. In addition to density fore-
casts, we construct set forecasts that explicitly target the average coverage prob-
ability for the cross-section. We present a novel application in which we forecast
bank-level loan charge-off rates for small banks.

Keywords. Bayesian inference, density forecasts, loan charge-offs, panel data, set
forecasts, Tobit model.

JEL classification. C11, C14, C23, C53, G21.

1. Introduction

This paper considers the problem of forecasting a large collection of short time series
with censored observations. In the empirical application, we forecast charge-off rates
on loans for a panel of small banks. A charge-off occurs if a loan is deemed unlikely to
be collected because the borrower has become delinquent. The prediction of charge-off
rates is interesting to banks, regulators, and investors because they are losses on loan
portfolios. If charge-off rates are large, the bank may be entering a period of distress and
require additional capital. Due to mergers and acquisitions, changing business mod-
els, and changes in regulatory environments the time-series dimension that is useful
for forecasting is often short. The general methods developed in this paper are not tied
to the charge-off rate application and can be used in any setting in which a researcher
would like to analyze a panel of censored data with a large cross-sectional and a short
time-series dimension.
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In a panel data setting, cross-sectional heterogeneity in the data is modeled through
unit-specific parameters. The more precisely they are estimated, the more accurate the
forecasts are. The challenge in forecasting panels with a short time dimension is that
the data set does not contain a lot of information about the heterogeneous parameters.
A natural way of adding information to the estimation of these parameters is the use of
prior distributions. The key insight in panel data applications is that one can extract
information from the cross-section and equate the prior distribution with the cross-
sectional distribution of unit-specific coefficients. An empirical Bayes implementation
of this idea creates a point estimate of the cross-sectional distribution of the hetero-
geneous coefficients and then conditions the subsequent posterior calculations on the
estimated prior distribution. The classic James–Stein estimator for a vector of means can
be interpreted as an empirical Bayes estimator.1

Rather than pursuing an empirical Bayes approach, we conduct a full Bayesian anal-
ysis by specifying a hyperprior for the distribution of heterogeneous coefficients and
constructing a joint posterior for the coefficients of this hyperprior as well as the actual
unit-specific coefficients. This approach can in principle handle quite general nonlin-
earities and generate predictions under a wide variety of loss functions. It is preferable
for interval and density forecasts, because it captures all sources of uncertainty.

The contributions of our paper are threefold. First, we extend the full Bayesian esti-
mation and prediction with a linear panel data model in Liu (2022) to a dynamic panel
Tobit model with heteroskedastic innovations and correlated random effects. We hereby
build on work on the Bayesian estimation of static, dynamic, and panel Tobit models by
Chib (1992), Wei (1999), Baranchuk and Chib (2008), and Li and Zheng (2008).

Second, we construct interval forecasts that target average posterior coverage prob-
ability across all units in our panel instead of pointwise coverage probability for each
unit. We show that it is optimal to generate these forecasts as the highest posterior den-
sity sets that use the same threshold for each unit instead of unit-specific thresholds. Be-
cause the predictive distributions associated with the Tobit models are mixtures of dis-
crete and continuous distributions, “interval” forecasts may take the form of the union
of one or more intervals and the value zero, and thus we refer to them as set forecasts
subsequently. We prove that the empirical coverage frequency converges to the average
nominal coverage frequency of the sets as the cross-sectional dimension of the panel
tends to infinity. This result is connected to similar findings in the literature on non-
parametric function estimation and dates back to Wahba (1983) and Nychka (1988). The
underlying insights also have been recently used in concurrent research by Armstrong,
Kolesár, and Plagborg-Møller (2022) to construct empirical Bayes confidence intervals
for vectors of means that are valid for multiple priors. In the Monte Carlo study and the
empirical application, the proposed Bayesian set forecasts have good finite sample fre-
quentist coverage properties in the cross-section.

Third, we present a novel application in which we forecast bank-level loan charge-
off rates. Our empirical analysis is based on more than 100 short panel data sets with a

1Empirical Bayes methods have a long history in the statistics literature going back to Robbins (1956);
see Robert (1994) for a textbook treatment.
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time dimension of T = 10. These panel data sets include predominantly credit card (CC)
and residential real estate (RRE) loans and cover various (overlapping) time periods. We
also include local economic conditions as bank-specific regressors with homogeneous
coefficients. For each data set, we document the density forecasting performance of sev-
eral model specifications. We find that allowing for heteroskedasticity is important for
good density and set forecasting performance. Overall, a specification with flexibly mod-
eled correlated random effects and heteroskedasticity performs well in terms of den-
sity forecasting and is used in the subsequent analysis. In addition, we generate maps
that compare the spatial distribution of predicted loan losses during and after the Great
Recession and plot cross-sectional distribution of set forecasts. We document how set
forecasts change as we move from targeting pointwise coverage probability to target-
ing average coverage probability. The latter approach smooths out differences among
the lengths of the set forecasts and overall improves the forecasts with respect to both
coverage probability and average length.

The heterogeneous intercepts in our model can be interpreted as estimates of the
quality of the banks’ loan portfolios. Loan quality is potentially determined by many
factors: the risk taking behavior of the bank, the potential customer base, and its abil-
ity to efficiently screen borrowers. In regressing heterogeneous coefficient estimates on
bank characteristics, we find that bank size as measured in total assets is positively re-
lated to inverse quality of the loan portfolio. A favorable interpretation of this finding is
that larger banks are able to take higher risks on loans because they are better diversified
or have a higher tolerance for risk. However, overall bank characteristics explain only a
very small fraction of the estimated heterogeneity.

Because the Tobit model is nonlinear, the effect of a change in local economic con-
ditions that enter the model with homogeneous coefficients depends on the hetero-
geneous intercept and is thereby bank specific. We are able to compute a posterior
distribution of the “treatment” effect for each bank and decompose it into an extensive-
margin effect (a bank switches from no charge-offs to positive charge-offs during an eco-
nomic downturn) and an intensive-margin effect (a bank increases its positive charge-
offs during a downturn). We find that the variation in charge-off rates generated by local
economic conditions is very small compared to the variation due to the heterogeneous
intercept estimates.

Our paper relates to several branches of the literature. We build on the Bayesian lit-
erature on the estimation of censored regression models.2 The approach of using data
augmentation for limited-dependent variable models that impute the latent uncensored
variables dates back to Chib (1992) and Albert and Chib (1993). To sample the latent ob-
servations, we rely on an algorithm tailored toward dynamic Tobit models by Wei (1999).
Sampling from truncated normal distributions is implemented with a recent algorithm
of Botev (2017). Bayesian panel Tobit models have been estimated by Baranchuk and
Chib (2008) and Li and Zheng (2008). Our flexible benchmark model is most closely re-
lated to the semiparametric model of Li and Zheng (2008), which we generalize by intro-
ducing heteroskedasticity through a latent unit-specific error variance and allowing for

2A general survey of the literature on Bayesian estimation of univariate and multivariate censored re-
gression models can be found, for instance, in the handbook chapter by Li and Tobias (2011).
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a more flexible form of correlated random effects. As mentioned previously, the former
is very important for the density and set forecast performance.3

We model the unknown distribution of the heterogeneous coefficients (intercepts
and innovation variances) as Dirichlet process mixtures (DPM) of normals. Even though
we do not emphasize the nonparametric aspect of this modeling approach (due to a
truncation, our mixtures are strictly speaking finite and in that sense parametric), our
paper is related to the literature on nonparametric density modeling using DPM.4 Exam-
ples of econometrics papers that use DPMs in the panel data context are Hirano (2002),
Burda and Harding (2013), Rossi (2014), and Fisher and Jensen (2022). The implementa-
tion of our Gibbs sampler relies on Ishwaran and James (2001, 2002).

As an alternative to a full Bayesian analysis, recent papers by Gu and Koenker
(2017a,b) and Liu, Moon, and Schorfheide (2020) have pursued an empirical Bayes strat-
egy to generate predictions based on linear panel data models with heterogeneous co-
efficients. Forecasts from empirical Bayes and full Bayesian estimation approaches have
desirable optimality properties as the cross-sectional dimension of the data set gets
large. Liu, Moon, and Schorfheide (2020) generalize optimality results for the estima-
tion of a vector of means in Brown and Greenshtein (2009) to a linear dynamic panel
data forecasting setting. Liu (2022) shows that the predictive density obtained from the
full Bayesian analysis of a linear panel data model converges to the predictive density
derived from the true cross-sectional distribution of the heterogeneous coefficients as
the cross-section gets large.

There also exists a literature on estimating the determinants of loan losses. This lit-
erature often uses nonperforming loans (loans that have not been serviced for more
than 90 days) and tends to ignore the censoring, which is reasonable if one uses an av-
erage across banks but can be problematic if one uses bank-level data. The two papers
most closely related to our work are Ghosh (2015, 2017). We base our choice of bank-
characteristic regressors on these papers.

The remainder of our paper is organized as follows. Section 2 presents the specifi-
cation of our dynamic panel Tobit model, a characterization of the posterior predictive
distribution for future observations, and discusses the construction and evaluation of
density and set forecasts. Section 3 provides details on how we model the correlated ran-
dom effects distribution and heteroskedasticity. It also presents the prior distributions
for the parametric and flexible components of the model, and outlines a posterior sam-
pler. We conduct a Monte Carlo experiment in Section 4 to examine the performance
of the proposed techniques in a controlled environment. The empirical application in
which we forecast charge-off rates on various types of loans for a panel of banks is pre-
sented in Section 5. Finally, Section 6 concludes. Detailed derivations and proofs, a de-
scription of the data sets, and additional simulation and empirical results are relegated
to the Online Appendix (Liu, Moon, and Schorfheide (2023)).

3Baranchuk and Chib (2008) report some results on point forecasts of the probability of zeros versus
nonzeros, whereas we focus on set and density forecasts.

4Keane and Stavrunova (2011) introduce a smooth mixture of Tobits to model a cross-section of health-
care expenditures. Our model is related, but different in that we are using a DPM to average across different
intercept values and innovation variances.
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2. Model specification and forecast evaluation

Throughout this paper, we consider the following dynamic panel Tobit model with het-
erogeneous intercepts and innovation variances:

yit = y∗
itI
{
y∗
it ≥ 0

}
,

y∗
it|
(
Y ∗

1:N ,0:t−1,X1:N ,−1:t−1, λ1:N , σ2
1:N , ρ, β, ξ

) indep∼ N
(
λi + ρy∗

it−1 +β′xit−1, σ2
i

)
,

(1)

where i= 1, � � � ,N , t = 1, � � � , T , and I{y ≥ a} is the indicator function that is equal to one
if y ≥ a and equal to zero otherwise. Throughout the paper, we abbreviate sequences
of the form (a1, � � � , an ) by a1:n. For instance, Y ∗

1:N ,0:t−1 = {(y∗
10, � � � , y∗

N0 ), � � � , (y∗
1t−1, � � � ,

y∗
Nt−1 )}, and λ1:N = (λ1, � � � , λN ). The nx× 1 vector xit comprises a set of sequentially ex-

ogenous regressors. ξ is a vector of hyperparameters defined in (3) below that does not
affect the conditional distribution of y∗

it . It is assumed that conditional on the parame-
ters and the regressors xit−1, the observations yit are cross-sectionally independent. The
distributional assumption in (1) implies that we can write

p
(
y∗
it|Y

∗
1:N ,0:t−1,X1:N ,−1:t−1, λ1:N , σ2

1:N , ρ, β, ξ
)= p(y∗

it|y
∗
it−1, xit−1, λi, σ

2
i , ρ, β

)
, (2)

which we will use subsequently to simplify formulas. Our specification uses the lagged
latent variable y∗

it−1 on the right-hand side because it is more plausible for our empirical
application. The Bayesian computations described in Section 3.2 below can be easily
adapted to the alternative model, in which the lagged censored variable yit−1 appears
on the right-hand side.

We model the heterogeneous parameters as correlated random effects (CRE) with
density

p
(
λi, y

∗
i0, σ2

i |xi,−1, ξ
)
, (3)

assuming cross-sectional independence of the heterogeneous coefficients.5 Here, ξ is a
hyperparameter vector that indexes a family of CRE distributions. For instance, the can-
didate distribution of (λi, y∗

i0, lnσ2
i ) could be jointly normal with a mean that is a linear

function of xi,−1. In this case, ξ would include the parameters of the conditional mean
function and the nonredundant parameters of the covariance matrix. To achieve a flex-
ible representation of the distribution of (λi, y∗

i0, σ2
i ), we consider a family of mixtures

of normal distributions in Section 3. We define the homogeneous parameter θ= [ρ, β′]′
and complete the model with the specification of a prior distribution for (θ, ξ).

Our model is closely related to the panel Tobit models of Baranchuk and Chib (2008)
and Li and Zheng (2008), henceforth BC and LZ, respectively. However, the modeling
approaches differ with respect to the treatment of coefficient heterogeneity and het-
eroskedasticity.6 As in LZ, we restrict regression coefficient heterogeneity to the inter-
cept. We also follow LZ in modeling the CRE distribution in (3) nonparametrically, albeit

5We consider period t = −1 for x in the conditioning set because of the timing assumption that charge-
off rates can only respond with a one-period lag to changes in local economic conditions so as to accom-
modate possible sequentially exogenous regressors. See Section 2.1 for more details.

6As in the panel Probit model of Chib and Jeliazkov (2006), one could allow for additional lags of y∗
it .
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the details are slightly different. Because the regressors xit in our application are not
assumed to be strictly exogenous, we condition the distribution of (λi, y∗

i0 ) only on the
initial values xi,−1 and not on other xits. The most important difference between our
specification and that of LZ is that we allow for heterogeneous innovation variances σ2

i ,
whereas LZ set σ2

i = σ2 for all i. As documented in Section 5.2, σ2
i heterogeneity is very

important for the construction of an accurate set and density forecasts in our empirical
application.

BC restrict the distribution of the heterogeneous coefficients to be normal, but they
do allow regression coefficients other than the intercept to be heterogeneous.7 Rather
than linking the heterogeneity to the regressors xit , they let the mean of the distribu-
tion depend on additional unit-specific covariates. Instead of embedding additional co-
variates (such as bank characteristics) ex ante into (3), we run ex post regressions of
estimates of the ratio λ̂i/σi on additional unit-specific covariates to explore potential re-
lationships. The reasons for conducting an ex post analysis in our application are three-
fold: (i) it is not clear ex ante which bank characteristics are relevant, (ii) the relationship
between bank characteristics and cross-sectional heterogeneity could be nonlinear, and
(iii) bank characteristics may only explain a small fraction of the cross-sectional hetero-
geneity.

BC’s interaction between regressors and the normal CRE distribution generates het-
eroskedasticity in what could be interpreted as composite error term that consists of
a homoskedastic innovation in the regression equation for y∗

it and the randomness in
the heterogeneous coefficients scaled by the regressors. In our model specification, the
heteroskedasticity is unrelated to the regressors xit because we are treating the σ2

i as
random effects. A relationship to the regressors could be generated through a CRE spec-
ification for σ2

i , but we did not pursue this extension because in our application the
regressors, local unemployment, and house price growth, cannot explain the dispersion
in σ2

i .
In the remainder of this section, we discuss our assumptions about the simultane-

ous determination of outcomes yit and regressors xit in Section 2.1, the derivation of
the posterior predictive density in Section 2.2, the density forecast evaluation criteria in
Section 2.3, and the construction and evaluation of set forecasts in Section 2.4.

2.1 Simultaneity and timing assumptions

In our application, yit corresponds to bank-level loan charge-off rates and the regressors
xit measure local economic conditions, such as unemployment and house prices, in the
state in which the bank operates.8 In this context, it is plausible to assume that there is
feedback from the bank charge-offs, which affect profitability and overall health of the
banking sector, to the local economic conditions.

The key assumption that we are making throughout the paper is that charge-off
rates are only affected by lagged economic conditions and not by contemporaneous

7Our framework can be easily extended to accommodate heterogeneous slope coefficients (see Liu,
Moon, and Schorfheide (2020) and Liu (2022)).

8We consider a sample of small banks that conduct most of their business locally.
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economic conditions. For concreteness, suppose that xit corresponds to economic con-
ditions in the state in which bank i operates. We assume that the state-level conditions
in period t = 0, � � � , T are described by the conditional density

p
(
X1:N ,t|Y1:N ,0:t , Y

∗
1:N ,0:t ,X1:N ,−1:t−1, θx, λ1:N , σ2

1:N , θ, ξ
)

= p(X1:N ,t|Y1:N ,0:t ,X1:N ,−1:t−1, θx ). (4)

Thus, we allow current charge-offs to affect current state-level conditions. However, we
assume that X1:N ,t does not separately depend on the latent variables Y ∗

1:N ,0:t and the
heterogeneous coefficients (λi, σ2

i ). In our application, only actual charge-off rates are
assumed to matter for economic outcomes. θx is a vector of parameters determining the
law of motion for the state-level conditions.

Timing restrictions such as the one above have traditionally been widely used in the
macroeconometric literature on structural vector autoregressions; see, for instance, the
survey by Ramey (2016). Here, we are assuming that a deterioration of macroeconomic
conditions affects banks’ decisions to write off loans with a one-period delay, where the
length of a period is a quarter in our application.9 Combining (1), (2), and (4), we can
write

p
(
Y1:N ,1:T , Y ∗

1:N ,1:T ,X1:N ,0:T |Y1:N ,0, Y ∗
1:N ,0,X1:N ,−1, λ1:N , σ2

1:N , θ, ξ, θx
)

=
T∏
t=1

{
p(X1:N ,t|Y1:N ,0:t ,X1:N ,−1:t−1, θx ) ×

[
N∏
i=1

p
(
yit|y

∗
it

)
p
(
y∗
it|y

∗
it−1, xit−1, λi, σ

2
i , θ

)]}
×p(X1:N ,0|Y1:N ,0,X1:N ,−1, θx )

=
{
N∏
i=1

[
T∏
t=1

p
(
yit|y

∗
it

)
p
(
y∗
it|y

∗
it−1, xit−1, λi, σ

2
i , θ

)]}

×
T∏
t=0

p(X1:N ,t|Y1:N ,0:t ,X1:N ,−1:t−1, θx ). (5)

In slight abuse of notation, p(yi0|y∗
i0 ) represents the censoring. The distribution of yit|y∗

it

is a unit point mass that is located at 0 if y∗
it ≤ 0 or at y∗

it if y∗
it > 0. Because the system is

triangular, the panel Tobit component in (1) can be estimated independently of (4) and
without the use of instrumental variables.

2.2 Posterior predictive densities

Our goal is to generate forecasts of Y1:N ,T+h conditional on the observations (Y1:N ,0:T ,
X1:N ,−1:T ). In the empirical analysis in Section 5, we focus on h = 1-step-ahead fore-
casts, which require the predictor xiT , which is known at the forecast origin t =
T . The extension to multistep forecasts is discussed in Section 3.3. Because in a

9Relaxing this assumption is beyond the scope of this paper.
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Bayesian framework uncertainty with respect to parameters, latent variables, and fu-
ture shocks is treated identically through the use of random variables, it is conceptu-
ally straightforward to construct a predictive distribution of Y1:N ,T+1 conditional on
(Y1:N ,0:T ,X1:N ,−1:T ) by integrating out all sources of uncertainty. The general approach
is summarized, for instance, in Geweke and Whiteman (2006). We subsequently describe
the integration steps required for our panel Tobit model.

According to (3), the distribution of (Y1:N ,0, Y ∗
1:N ,0 ) conditional on X1:N ,−1 does not

depend on θx. Using the factorization in (5), the CRE density (3), and the prior p(θ, ξ) =
p(θ)p(ξ), we can write the posterior distribution of the parameters and time-T latent
variables as

p
(
Y ∗

1:N ,T , λ1:N , σ2
1:N , θ, ξ|Y1:N ,0:T ,X1:N ,−1:T

)
∝
[
N∏
i=1

∫ ( T∏
t=1

p
(
yit|y

∗
it

)
p
(
y∗
it|y

∗
it−1, xit−1, λi, σ

2
i , θ

))

×p(yi0|y∗
i0

)
p
(
λi, y

∗
i0, σ2

i |xi,−1, ξ
)
dY ∗

i,0:T−1

]
p(θ)p(ξ), (6)

where ∝ denotes proportionality. The posterior predictive distribution for units i =
1, � � � ,N is given by

p(Y1:N ,T+1|Y1:N ,0:T ,X1:N ,−1:T )

=
∫ N∏

i=1

[∫ ∫
p
(
yiT+1|y∗

iT+1

)
p
(
y∗
iT+1|y∗

iT , xiT , λi, σ
2
i , θ

)
×p(y∗

iT , λi, σ
2
i |θ, ξ, Y1:N ,0:T ,X1:N ,−1:T

)
dy∗
iT d

(
λi, σ

2
i

)]
×p(θ, ξ|Y1:N ,0:T ,X1:N ,−1:T )d(θ, ξ). (7)

Draws from p(Y1:N ,T+1|Y1:N ,0:T ,X1:N ,−1:T ) can be generated by sampling (Y ∗
1:N ,T , λ1:N ,

σ2
1:N , θ, ξ) from the posterior (6) and then evaluating the autoregressive law of motion

for y∗
it in (1) for t = T + 1.

To simplify the notation, we dropX1:N ,−1:T from the conditioning set in the remain-
der of this section. Moreover, we denote the forecast horizon by h again with the under-
standing that the discussion of multistep forecasts is deferred to Section 3.3. We denote
expectations and probabilities under the posterior predictive distribution by E

yiT+h
Y1:N ,0:T

[·]
and P

yiT+h
Y1:N ,0:T

{·}, respectively. More generally, we use subscripts to indicate the condition-
ing set and superscripts to denote the random variables over which the operators inte-
grate. The predictive distribution is a mixture of a point mass at zero and a continuous
distribution for realizations of yiT+h that are greater than zero:

p(yiT+h|Y1:N ,0:T ) = P
yiT+h
Y1:N ,0:T

{yiT+h = 0}δ0(yiT+h ) +pc(yiT+h|Y1:N ,0:T )I{yiT+h ≥ 0}. (8)
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Here, δ0(y ) is the Dirac function with the property δ0(y ) = 0 for y �= 0 and
∫
δ0(y )dy = 1.

The density pc(yiT+h|Y1:N ,0:T ) represents the continuous part of the predictive distribu-
tion.

2.3 Evaluating density forecasts

To compare the density forecast performance of various model specificationsM , we re-
port the average log predictive scores

LPSh(M ) = 1
N

N∑
i=1

ln
(
I{yiT+h = 0} · PyiT+h

Y1:N ,0:T
{yiT+h = 0|M }

+ I{yiT+h > 0}p(yiT+h|Y1:N ,0:T )
)

(9)

and continuous ranked probability scores (CRPSs). The CRPS measures the L2 dis-
tance between the cumulative distribution function F

yiT+h
Y1:N ,0:T

(y|M ) associated with
p(yiT+1|Y1:N ,0:T ) and a “perfect” density forecast, which assigns probability one to the
realized yiT+h. Then

CRPSh(M ) = 1
N

N∑
i=1

∫ ∞

0

(
F
yiT+h
Y1:N ,0:T

(y|M ) − I{yiT+h ≤ y}
)2
dy. (10)

Both LPS and CRPS are proper scoring rules, meaning that it is optimal for the forecaster
to truthfully reveal her predictive density (Gneiting and Raftery (2007)).

2.4 Constructing and evaluating set forecasts

We construct set forecasts from the posterior predictive distribution p(yiT+h|Y1:N ,0:T ) in
(7) of the form:

CiT+h|T (Y1:N ,0:T ) = {0} ∪
(
Ki⋃
k=1

[aik, bik]

)
(11)

with the understanding that (i) Ci = {0} ifKi = 0, (ii) ai1 may be equal to zero, and (iii)

ai1 < bi1 < ai2 < bi2 < · · ·< aiKi < biKi .

The {0} value arises from the discrete portion of the predictive density, whereas the inter-
val components are obtained from the continuous portion of the predictive density; see
the decomposition in (8).10 The disjoint interval segments may arise if the continuous
part of the predictive density is multimodal. If we target an average coverage probabil-
ity in the cross-section, then for some units i we might obtain the empty set, that is,
CiT+h|T (Y1:N ,0:T ) = ∅.

10Because in our model the support of the posterior predictive distribution of y∗
iT+h includes y < 0, the

probability of censoring is strictly positive and the set that includes {0} is strictly shorter than the one with-
out zero.
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Constructing set forecasts To generate the set forecasts, we adopt a Bayesian approach
and require that the probability of {yiT+h ∈ CiT+h|T (Y1:N ,0:T )} conditional on having ob-
served Y1:N ,0:T reaches a prespecified level. Given that the estimation of the Tobit model
is executed with Bayesian techniques, the use of posterior predictive credible sets is nat-
ural. We distinguish between forecasts that are constructed to satisfy the coverage prob-
ability constraint pointwise, that is,

P
yiT+h
Y1:N ,0:T

{
yiT+h ∈ CiT+h|T (Y1:N ,0:T )

}≥ 1 − α for all i, (12)

and sets that are constructed to satisfy the constraint on average:

1
N

N∑
i=1

P
yiT+h
Y1:N ,0:T

{
yiT+h ∈ CiT+h|T (Y1:N ,0:T )

}≥ 1 − α. (13)

The latter approach allows the sets CiT+h|T (Y1:N ,0:T ) for some units i to be “shortened”
in the sense that their posterior credible level drops below 1 − α, whereas sets for other
units are “lengthened.”

It is well known that the shortest credible sets take the form of highest posterior
density (HPD) sets. Suppose that we require to satisfy the coverage constraint for each
i individually. If P

yiT+h
Y1:N ,0:T

{yiT+h = 0} ≥ 1 − α, then CiT+h|T (Y1:N ,0:T ) = {0}. Otherwise, the
set takes the form

CiT+h|T (Y1:N ,0:T ) = {0} ∪ {yiT+h | pc(yiT+h|Y1:N ,0:T )I{yiT+h ≥ 0} ≥ κi
}

, (14)

where the threshold κi is chosen such that∫
yiT+h∈CiT+h|T (Y1:N ,0:T )

pc(yiT+h|Y1:N ,0:T )I{yiT+h ≥ 0}dyiT+h = 1 − α− P
yiT+h
Y1:N ,0:T

{yiT+h = 0}.

Because pc(y|·) is a continuous density, the HPD set can be represented as a collection
of disjoint intervals as in (11).

If the objective is to minimize average length across i conditional on the constraint
on coverage probability holding only on average, then the unit-specific thresholds κi in
(14) are replaced by a common threshold κ that applies to all units i. One can establish
the optimality of the common threshold as follows. Suppose that one lowers the thresh-
old for unit i (κi < κ) and raises it for unit j (κj > κ). This lengthens the set for unit i
by δi > 0 and shortens the set for unit j by δj < 0. The increase in coverage probabil-
ity for unit i, �πi > 0, is less than δiκ, whereas the decrease in coverage probability for
unit j, �πj < 0, is less than δjκ. Because we are holding the overall coverage probability
constant, we obtain

δiκ > �πi = −�πj >−δjκ.

Thus, δi >−δj , which means that the overall average length increases and the uniform
threshold of κ dominates.
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Evaluation of set forecasts The assessment of the set forecasts in our simulation study
and the empirical application is based on the cross-sectional coverage frequency

1
N

N∑
i=1

I
{
yiT+h ∈ CiT+h|T (Y1:N ,0:T )

}
(15)

and the average length of the sets CiT+h|T (Y1:N ,0:T ),

1
N

N∑
i=1

Ki∑
k=1

(bik − aik ). (16)

Rather than trading off average length against deviations of average coverage frequency
from the nominal coverage probability in a single criterion, we simply report both.11

The relationship between the nominal credible level of the set forecasts and the em-
pirical coverage frequency is delicate. In Theorem 2.1 below, we provide high-level reg-
ularity conditions under which

1
N

N∑
i=1

I
{
yiT+h ∈ CiT+h|T (Y1:N ,0:T )

} p−→ 1 − α (17)

in PY1:N ,0:T ,Y1:N ,T+h probability as N −→ ∞. Underlying these results is the well-known
insight (see, for instance, the textbook by Robert (1994)) that, for a generic parameter
ς and data set Y , the following relationship between credible sets and confidence sets
holds:

Pς,Y {ς ∈ C(Y )
}=

∫
Y
PςY

{
ς ∈ C(Y )

}
dPY =

∫
ς
PYς
{
ς ∈ C(Y )

}
dPς .

Thus, 1 − α Bayesian credible sets have on average 1 − α frequentist coverage probabil-
ity, but not pointwise for each ς. In our framework, the cross-sectional averaging across
i approximates the integration under the prior distribution. The basic insight has previ-
ously been used in the literature on nonparametric function estimation, dating back to
Wahba (1983) and Nychka (1988), to obtain results that link average coverage probabili-
ties to Bayesian credible levels. More recently, Armstrong, Kolesár, and Plagborg-Møller
(2022) constructed empirical Bayes confidence intervals for vectors of means that are
valid for multiple priors.

Let ϑ = (θ, ξ). To state the theorem, we define the following probability associated
with the interval [aik,N , bik,N ] conditional on (Yi,0:T ,ϑ):

Fik,N (ϑ) =
∫ bik,N

aik,N

p
(
y∗
iT+h|Yi,0:T ,ϑ

)
dy∗
iT+h. (18)

Theorem 2.1. Suppose the following assumptions hold:

(i) The future observations are sampled from the predictive density p(y1:N ,T+h|
Y1:N ,0:T ).

11For various approaches to rank set forecasts, see Askanazi, Diebold, Schorfheide, and Shin (2018).
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(ii) The posterior distribution p(ϑ|Y1:N ,0:T ) has the unique mode ϑ̄N . There exists a
sequence of shrinking neighborhoods NN (ϑ̄N ) with complements N c

N (ϑ̄N ) and a
sequence δN , such that ‖ϑ− ϑ̄N‖ ≤ δN for all ϑ ∈ NN (ϑ̄N ) and

PϑY1:N ,0:T

{
ϑ ∈ N c

N (ϑ̄N )
} p−→ 0, δN

p−→ 0

in PY1:N ,0:T probability asN −→ ∞.

(iii) The functions Fik,N (ϑ) defined in (18) are locally Lipschitz in any compact neigh-
borhood NN (ϑ) with Lipschitz constantsMik,N (NN (ϑ)).

(iv) For someM <∞ independent ofN , the Lipschitz constants satisfy

PY1:N ,0:T

{
1
N

N∑
i=1

Ki∑
k=1

Mik,N
(
NN (ϑ̄N )

)
>M

}
−→ 0.

(v) The Bayesian coverage probability constraint (see (12) or (13)) holds with equality.

Then the empirical coverage frequency converges to the Bayesian credible level in the sense
of (17).

A proof of this theorem is provided in the Online Appendix. Assumption (i) states
that the future observations are generated from the “true” predictive densityp(Y1:N ,T+h|
Y1:N ,0:T ). In Assumption (ii), we require the posterior distribution of ϑ to concentrate.
Throughout the paper, we represent the CRE distribution through finite-dimensional
mixtures; see Section 3.1. Thus, ϑ is finite-dimensional and the concentration results
can be obtained from the literature on the consistency and asymptotic normality of pos-
terior distributions; see Hartigan (1983), van der Vaart (1998), Ghosh and Ramamoorthi
(2003), or Ghosal and van der Vaart (2017) for textbook treatments. The only difference
to many of the results stated in the literature is that we assume that the convergence in
probability to occur under the marginal distribution of Y1:N ,0:T rather than its distribu-
tion conditional on a “true” parameter, which imposes some restrictions on the prior for
ϑ. Assumptions (iii) and (iv) require the probabilities Fik,N to be smooth functions ofϑ.
In our model, the probabilities are computed from finite-dimensional mixtures of nor-
mal distributions, which are smooth functions of the underlying parameters. However,
the Lipschitz constants are generally sample dependent and one needs to require that
their average across i and k is stochastically bounded. In the Online Appendix, we verify
the conditions for a simple model without censoring.

3. Correlated random effects, priors, and posteriors

We provide a characterization of the CRE distributionp(λi, y∗
i0, σ2

i |xi,−1, ξ) and a specifi-
cation of the prior distribution for (θ, ξ) in Section 3.1. Section 3.2 contains a description
of the posterior sampler, and Section 3.3 outlines multistep forecasting approaches.
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3.1 (Correlated) random effects and prior distributions

We now describe the prior distribution for θ, the parametrization of the distribution of
(λi, y∗

i0 ), and the prior distribution for the hyperparameter vector ξ. We begin with a
homoskedastic random effects (RE) setup in which λi and y∗

i0 are independent of each
other and of xi,−1. We then introduce heteroskedasticity and finally extend the model
specification to CRE. The prior distribution involves a small number of tuning constants,
denoted by τ, that allow the researcher to scale the prior in various dimensions.

The subsequent exposition involves various parametric probability distributions in
addition to the normal distribution that appeared in (1). We use B(a, b), G(a, b), and
IG(a, b) to denote the beta, gamma, and inverse gamma distributions, respectively. The
pair (θ, σ2 ) has a normal-inverse-gamma distribution NIG(m, v, a, b) if σ2 ∼ IG(a, b)
and θ|σ2 ∼ N(m, σ2v). Finally, the pair (�, �) has a matrix variate normal-inverse-
Wishart distribution MNIW(M , V , ν, S) if �∼ IW(ν, S) has an inverse Wishart distribu-
tion and vec(�)|�∼N(vec(M ), �⊗ V ).

Prior for θ We standardize the regressors xit to have zero mean and unit variance and
use the following normal prior for the regression coefficients θ:

θ∼N(0, τθInx+1 ), (19)

where τθ is a tuning constant that controls the prior variance.

Flexible RE with homoskedasticity Under RE, the distribution of λi and y∗
i0 does not

depend on xi,−1. Moreover, we assume that λi and y∗
i0 are independent. Thus,

p
(
λi, y

∗
i0|xi,−1, ξ

)= p(λi|ξ)p
(
y∗
i0|ξ

)
.

We consider a mixture representation for p(λi|ξ) while assuming that the initial values
y∗
i0 are normally distributed:

λi|ξ
i.i.d.∼ N(φλ,k, �λ,k ) with prob. πλ,k, k= 1, � � � ,K,

y∗
i0|ξ

i.i.d.∼ N(φy , �y ).
(20)

The maximum number of mixture components K is assumed to be prespecified.12

A prior over the RE distributions is induced through a prior p(ξ) for the hyperpa-
rameter vector

ξ= [φλ,1, �λ,1, πλ,1, � � � , φλ,K , �λ,K , πλ,K , φy , �y ]′.

During the Bayesian inference stage, the prior is updated in view of the data and we
obtain a posterior distribution for ξ, and hence a posterior distribution for the RE distri-
bution. The priors for the coefficients of the normal distributions are

(φλ,k, �λ,k )
i.i.d.∼ NIG

(
0, τφ, 3, 2τλσ

)
, (φy , �y ) ∼ NIG

(
0, τyφ, 3, 2τyσ

)
. (21)

12We use K = 20 in the simulation exercise and the empirical analysis. This leads to the following uni-
form bound on the approximation error (see Theorem 2 of Ishwaran and James (2001)): ‖f λ,K − f λ‖ ∼
4N exp[−(K− 1)/α] ≤ 2.24 × 10−5, at the prior mean of α (= 1) and a cross-sectional sample sizeN = 1000.
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We parameterized the IG distribution such that the variances �λ,k and �y have a prior
distribution with mean τσ and variance τ2

σ (omitting the superscripts).13 Conditional
on �, the mean parameter φ has aN(0, τφ�) distribution (omitting the subscripts). The
marginal distribution of y∗

i0 implied by (20) and (21) is a Student-t distribution, whereas
the distribution of λi is a mixture of Student-t distributions. The tuning constants can
be used to control the spread of the means of the mixture components as well as the
magnitude and variation of the variances of the mixture components.

The prior for the probabilities πλ,1:K is generated by a mixture of truncated stick
breaking processes TSB(1, αλ,K) of the form

πλ,k|(αλ,K) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ1, k= 1,

k−1∏
j=1

(1 − ζj )ζk, k= 2, � � � ,K − 1,

1 −
K−1∑
j=1

πλ,j , k=K,

ζk ∼ B(1, αλ ), αλ ∼G(2, 2).

(22)

Note that the B(1, αλ ) prior has a density p(ζk ) ∝ (1 − ζk )(αλ−1). If αλ is close to zero,
then a lot of the mass of the distribution is concentrated near ζk = 1. This means that
the first mixture component has a probability that is close to one, whereas the remaining
mixture components have very small probabilities. If αλ is close to two, then most of
the mass of the distribution of ζk is concentrated on values of ζk that are close to zero.
In turn, a larger number of mixture components receive nontrivial probabilities. The
G(2, 2) distribution is recommended by Ishwaran and James (2002). It has a mean of
one and draws fall with 95% probability into the interval [0.12, 2.75], which means that
the prior covers both mixtures dominated by few components and mixtures with many
nontrivial components.

In the homoskedastic specification, we use the conjugate prior for σ2 that arises in
the context of a linear regression model:

σ2 ∼ IG
(
3, 2τvV ∗). (23)

The IG distribution is parameterized in a similar way as the IG distributions in (21). V ∗ =
1
N

∑N
i=1 V̂i(yit ) is the cross-sectional average of the time-series variances of yit and the

tuning constant τv provides additional flexibility to scale the prior for σ2.

Heteroskedasticity To generate heteroskedasticity, one could simply replace (23) by
σ2
i ∼ IG(3, 2τvV ∗ ). However, to make the distribution a bit more flexible, we augment

the hyperparameter vector ξ and also represent the distribution of lnσ2
i as a mixture of

13Under our parametrization of the X ∼ IG(a, b) distribution, E[X] = b/(a − 1) for a > 1, and V[X] =
(E[X])2/(a− 2) for a > 2.
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normals:14

lnσ2
i |ξ∼N(ψk,ω2

k

)
with prob. πσ ,k, k= 1, � � � ,K. (24)

A straightforward change-of-variables yields the distribution p(σ2
i |ξ). As for the RE dis-

tribution, the coefficients ψk and ωk have NIG priors:

(
ψk,ω2

k

) i.i.d.∼ NIG
(
ln
(
τvV

∗)− ln(2)/2, 1, 3, 2 ln 2
)
, k= 1, � � � ,K. (25)

The parametrization is chosen so that the implied prior mean E[σ2
i ] and prior vari-

ance V[σ2
i ] for each mixture component k matches the one implied by the prior used

in the homoskedastic version of the Tobit model; see (23).15 Moreover, we verified
by simulation that the marginal density of σ2

i under this prior is very similar to the
IG(3, (3 − 1)τvV ∗ ) distribution used for the homoskedastic specification. It does, how-
ever, have fatter tails as it is a mixture of log t distributions.

Flexible CRE with heteroskedasticity We extend the RE specification in two directions:
first, we allow for correlation of λi and y∗

i0 with xi,−1, and second, we allow λi and y∗
i0 to

be correlated with each other conditional on xi,−1. The CRE distribution is given by the
following location and scale mixture of normal distributions:

[
λi, y

∗
i0

] | (xi,−1, ξ)
i.i.d.∼ N

([
1, x′

i,−1

]
�k, �k

)
with prob. πλ,k, k= 1, � � � ,K, (26)

where �k is an (nx + 1) × 2 matrix and �k is a 2 × 2 matrix. The hyperparameter vector
ξ is now defined to include the nonredundant elements of (�k, �k, πλ,k ).

For the mixture probabilitiesπλ,1:K , we use the same prior distribution as in (22). The
prior distribution for the coefficient matrices �k and �k is a multivariate generalization
of the RE distribution. We assume

(�k, �k )
i.i.d.∼ MNIW

(
0, τφInx+1, 7, 4D(τσ )

)
, k= 1, � � � ,K, D(τσ ) =

[
τλσ 0
0 τ

y
σ

]
. (27)

Under this parametrization, the marginal IW distribution of the 2×2 matrix�k has mean
D(τσ ). The conditional distribution of �k|�k is MN(0, τφ�k ⊗ Inz+1 ), where τφ scales
the variance of the normal distribution. The dimension of �k is 2 × 2, and hence, the
marginal distribution of λi is identical to the RE case.16

14In an earlier version of the paper, we used a mixture of IG distributions. We switched to a mixture of
normals for lnσ2

i for a more symmetric treatment of λi and σ2
i . Alternatively, Chib and Hamilton (2002)

used Dirichlet process prior with an IG base measure to generate scale mixtures of normals.
15The marginal IG distribution implies E[ω2

k] = ln 2. Conditional on ω2
k = ln 2, the transformed parame-

ter exp(ψk ) has a log-normal distribution with mean τvV∗ and variance (τvV∗ )2.
16The marginal distribution of the (1,1) element of the IW(7, 4D(τ� )) distribution is IW(6, 4D11(τ� )).

Converted into the parametrization of the Gamma distribution, this corresponds to an IG(3, 2D11(τ� )) =
IG(3, 2τλσ ) distribution.
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Tuning of the prior The scale of the prior distribution is controlled by a vector of tuning
constants:

τ = [τθ, τφ, τλσ , τyσ , τv
]′

.

While these tuning constants could in principle be determined in a data-driven way, us-
ing a marginal data density criterion (see the approach used in the Bayesian vector au-
toregression (VAR) literature, for instance, Del Negro, Schorfheide, Smets, and Wouters
(2007) and Giannone, Lenza, and Primiceri (2015)), we do not pursue that route in this
paper. Instead, we choose τ ex ante in an informal calibration step. While τθ has a
straightforward interpretation after the regressors have been normalized, the implica-
tions of the remaining constants are less transparent because they control priors that
are specified over a set of distributions. We recommend the researcher makes an initial
choice and then samples from the prior. We found it useful to examine plots of moments
or number of modes associated with the distributions. Similar plots can be generated
based on the posterior. If a researcher finds that the posterior is located in an area that
has essentially no prior mass, then the scaling of the prior can be adjusted to examine
whether the initial prior unduly biases the posterior estimates. An example in the con-
text of our empirical application is provided in the Online Appendix.

3.2 Posterior sampling

Draws from the posterior distribution can be obtained with a Gibbs sampling algorithm.
We subsequently describe the conditional distributions over which the Gibbs sampler
iterates. We focus on the flexible CRE specification with heteroskedasticity, which is
the most complicated specification. A key feature of the Gibbs sampler is that it uses
data augmentation by sampling the sequences of latent variables Y ∗

i,0:T , i= 1, � � � ,N . In
this regard, we are building on Tanner and Wong (1987) (data augmentation for a gen-
eral state-space model), Chib (1992) (static Tobit model), Albert and Chib (1993) (Probit
model), Carter and Kohn (1994) (linear state space model), and Wei (1999) (dynamic
Probit model). The general blocking of parameters in the Gibbs sampler is related to
Baranchuk and Chib (2008) and Li and Zheng (2008). The sampler for the flexible mix-
ture representation of the CRE distribution is based on Ishwaran and James (2001, 2002).
In terms of the actual implementation, the computations for the Tobit model are very
similar to the ones for the linear model studied in Liu (2022). The only exception is the
treatment of the latent variables Y ∗

i,0:T , which closely follows Wei (1999).
In order to characterize the conditional posterior distributions for the Gibbs sam-

pler, we introduce some additional notation. Because p(λi, y∗
i0|xi,−1, ξ) and p(σ2

i |ξ) are
mixture distributions, ex post each (λi, y∗

i0 ) and σ2
i is associated with one of the K mix-

ture components, respectively. We denote the component membership indicators by
γi,λ and γi,σ ∈ {1, � � � ,K}, respectively.

Step 1: Drawing from Y ∗
i,0:T |(Y1:N ,0:T ,X1:N ,−1:T , λ1:N , σ2

1:N , γ1:N ,y , γ1:N ,σ , θ, ξ) To fix
ideas, consider the following sequence of observations yi0, � � � , yiT :

y∗
i0, y∗

i1, 0, 0, 0, y∗
i5, y∗

i6, 0, 0, 0, y∗
i10.
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Our model implies that whenever yit > 0 we can deduce that y∗
it = yit . Thus, we can focus

our attention on periods in which yit = 0. In the hypothetical sample, we observe two
strings of censored observations: (yi2, yi3, yi4 ) and (yi7, yi8, yi9 ). We use t1 for the start
date of a string of censored observations and t2 for the end date. In the example, we have
two such strings, we write t(1)

1 = 2, t(1)
2 = 4, t(2)

1 = 7, t(2)
2 = 9. The goal is to characterize

p(Y ∗
i,t(1)

1 :t(1)
2

, Y ∗
i,t(2)

1 :t(2)
2

|Yi,0:T , � � �). Because of the AR(1) structure, observations in periods

t < t1 − 1 and t > t2 + 1 contain no additional information about y∗
it1

, � � � , y∗
it2

. Thus, we
obtain

p
(
Y ∗
i,t(1)

1 :t(1)
2

, Y ∗
i,t(2)

1 :t(2)
2

|Yi,0:T , � � �
)

= p(Y ∗
i,t(1)

1 :t(1)
2

|Y
i,t(1)

1 −1:t(1)
2 +1, � � �

)
p
(
Y ∗
i,t(2)

1 :t(2)
2

|Y
i,t(2)

1 −1:t(2)
2 +1, � � �

)
,

which implies that we can sample each string of latent observations independently.
Let s = t2 − t1 + 2 be the length of the segment that includes the string of censored

observations as well as the adjacent uncensored observations. Iterating the AR(1) law of
motion for yit forward from period t1 − 1, we deduce that the vector of random variables
[Y ∗
i,t1:t2

, yit2+1]′ conditional on yit1−1 is multivariate normal with mean

M1:s|0 = [μ1, � � � , μs]′, μ1 = λi + ρyit1−1 +β′xit1−1,

μτ = λi + ρμτ−1 +β′xiτ−1 for τ = 2, � � � , s.
(28)

The covariance matrix takes the form

�1:s|0 = σ2
i

⎡⎢⎣ρ1,1|0 · · · ρ1,s|0
...

. . .
...

ρs,1|0 · · · ρs,s|0

⎤⎥⎦ , ρi,j|0 = ρj,i|0 = ρj−i
i−1∑
l=0

ρ2l for j ≥ i. (29)

We can now use the formula for the conditional mean and variance of a multivariate
normal distribution

M1:s−1|0,s =M1:s−1|0 −�1:s−1,s|0�
−1
ss|0(yit2+1 −μs ),

�1:s−1,1:s−1|0,s = �1:s−1,1:s−1|0 −�1:s−1,s|0�
−1
ss|0�s,1:s−1|0

(30)

to deduce that

Y ∗
i,t1:t2 ∼ TN−(M1:s−1|0,s, �1:s−1,1:s−1|0,s ). (31)

Here, we use TN−(μ, �) to denote a normal distribution that is truncated to satisfy y ≤ 0.
Draws from this truncated normal distribution can be efficiently generated using the
algorithm recently proposed by Botev (2017).

There are two important special cases. First, suppose that t2 = T , meaning that the
last observation in the sample is censored. Then the mean vector and the covariance
matrix of the truncated normal distribution are given by (28) and (29) with the under-
standing that s = t2 − t1 + 1. Second, suppose that t1 = 0, meaning that the initial obser-
vation in the sample yi0 = 0. Because in this case the observation yit1−1 = yi,−1 is missing,



134 Liu, Moon, and Schorfheide Quantitative Economics 14 (2023)

we need to modify the expressions in (28) and (29). According to (26), the joint distribu-
tion of (λi, y∗

i0 ) is a mixture of normals. Using the mixture component membership indi-
cator γi,λ and deriving the conditional normal distribution y∗

i0|(λi, xi,−1 ) from the joint
normal distribution (λi, y∗

i0 )|xi,−1, we can express y∗
i0|(λi, xi,−1 ) ∼ N(μ∗(λi, xi,−1 ), σ2∗ ).

This leads to the mean vector

M1:s = [μ1, � � � , μs]′, μ1 = μ∗(λi, xi,−1 ),

μτ = λi + ρμτ−1 +β′xiτ−1 for τ = 2, � � � , s
(32)

and the covariance matrix

�1:s = σ2
i

⎡⎢⎢⎢⎢⎣
0 0 · · · 0
0 ρ1,1 · · · ρ1,s−1
...

...
. . .

...
0 ρs−1,1 · · · ρs−1,s−1

⎤⎥⎥⎥⎥⎦+ σ2∗

⎡⎢⎣ ρ0+0 · · · ρ0+(s−1)

...
. . .

...
ρ(s−1)+0 · · · ρ(s−1)+(s−1)

⎤⎥⎦ , (33)

where the definition of ρi,j is identical to the definition of ρi,j|0 in (29). One can then
use the formulas in (30) to obtain the mean and covariance parameters of the truncated
normal distribution.

Step 2: Drawing from λi|(Y1:N ,0:T , Y ∗
1:N ,0:T ,X1:N ,−1:T , σ2

1:N , γ1:N ,y , γ1:N ,σ , θ, ξ) Poste-
rior inference with respect to λi becomes “standard” once we condition on the latent
variablesY ∗

i,0:T and the component membership γi,λ. It is based on the normal location-
shift model

y∗
it − ρy∗

it−1 −β′xit−1 = λi + uit , uit
i.i.d.∼ N

(
0, σ2

i

)
, t = 1, � � � , T . (34)

Because the conditional prior distribution λi|(y∗
i0, xi,−1, γi,λ ) is normal, the posterior of

λi is also normal and direct sampling is possible.

Step 3: Drawing from σ2
i |(Y1:N ,0:T , Y ∗

1:N ,0:T ,X1:N ,−1:T , λ1:N , γ1:N ,y , γ1:N ,σ , θ, ξ) Poste-
rior inference with respect to σ2

i is based on the normal scale model

y∗
it − ρy∗

it−1 −β′xit−1 − λi = uit , uit
i.i.d.∼ N

(
0, σ2

i

)
, t = 1, � � � , T . (35)

However, even conditional on the mixture component membership indicator γi,σ , the
prior for σ2

i in (24) is not conjugate and direct sampling is not possible. Instead, we sam-
ple from this nonstandard posterior via an adaptive random walk Metropolis–Hastings
(RWMH) step.17

Step 4: Drawing from θ|(Y1:N ,0:T , Y ∗
1:N ,0:T ,X1:N ,−1:T , λ1:N , σ2

1:N , γ1:N ,λ, γ1:N ,σ , ξ) Con-
ditional on the latent variables Y ∗

i,0:T and the heterogeneous coefficients λi, σ2
i , we can

express our model as

y∗
it − λi = ρy∗

it−1 +β′xit−1 + uit , uit
i.i.d.∼ N

(
0, σ2

i

)
, i= 1, � � � ,N , t = 1, � � � , T . (36)

17We use an adaptive procedure based on Atchadé and Rosenthal (2005), which adaptively adjusts the
random walk step size to keep acceptance rates around 30%.
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The temporal and spatial independence of the uit ’s allows us to pool observations across
i and t. Under the normal prior in (19), the posterior distribution of θ = [ρ, β′]′ is also
normal and we can obtain draws by direct sampling.

Step 5: Drawing from (γi,λ, γi,σ )|(Y1:N ,0:T , Y ∗
1:N ,0:T ,X1:N ,−1:T , λ1:N , σ2

1:N , θ, ξ) We de-
scribe how to draw the component membership indicator γi,λ. Straightforward modifi-
cations lead to a sampler for γi,σ . Note that ξ contains the elements of �1:K , �1:K , and
πλ,1:K . The prior probability that unit i is a member of component k is given by πλ,k. Let
π̄i,λ,k denote the posterior probability of unit i belonging to component k conditional
on the set of means �1:K and variances �1:K as well as λi. The π̄i,λ,k’s are given by

π̄i,λ,k = πλ,kpN
(
λi|y

∗
i0, xi,−1,�k, �k

)
K∑
k=1

πλ,kpN
(
λi|y

∗
i0, xi,−1,�k, �k

) . (37)

Note that the conditional distribution λi|(y∗
i0, xi,−1,�k, �k ) is normal, indicated by the

notation pN (·), and can be derived from the joint normal distributions of the mixture
components in (26). Thus,

γi,λ|(�1:k, �1:K , λi ) = kwith prob. π̄i,λ,k. (38)

Step 6: Drawing from ξ|(Y1:N ,0:T , Y ∗
1:N ,0:T ,X1:N ,−1:T , λ1:N , σ2

1:N , γ1:N ,λ, γ1:N ,σ , θ) Sam-
pling from the conditional posterior of �1:K , �1:K , and πλ,1:K can be implemented as
follows. Let nλ,k be the number of units and Jλ,k the set of units that are members of
component k. Both nλ,k and Jλ,k can be determined based on γ1:N ,λ. The conditional
posterior of the component probabilities takes the form of a generalized truncated stick
breaking process

πλ,1:K|(nλ,1:K , α,K) ∼ TSB

(
{1 + nλ,k}Kk=1,

{
αλ +

K∑
j=k+1

nλ,j

}K
k=1

,K

)
, (39)

meaning that the ζk’s in (22) have a B(1 + nλ,k, αλ +∑K
j=k+1 nλ,j ) distribution. Condi-

tional on πλ,1:K , the hyperparameter αλ has a Gamma posterior distribution of the form

αλ|πλ,1:K ∼G(2 +K − 1, 2 − lnπλ,K ). (40)

The conditional posterior for (�k, �k ) takes the form

p
(
�k, �k|Y1:N ,0:T , Y ∗

1:N ,0:T , λ1:N , σ2
1:N , γ1:N ,λ, γ1:N ,σ , θ

)
∝ p(�k, �k )

∏
i∈Jλ,k

p
(
λi, y

∗
i0|xi,−1,�k, �k

)
. (41)

Because here the prior p(�k, �k ) is MNIW and the likelihood
∏
i∈Jλ,k

p(λi, y∗
i0|xi,−1,

�k, �k ) is derived from a multivariate normal linear regression model, the conditional
posterior of (�k, �k ) is also MNIW. All three conditional posteriors allow direct sam-
pling. The derivations can be modified to obtain the conditional posterior of ψ1:K ,ω1:K ,
and πσ ,1:K .



136 Liu, Moon, and Schorfheide Quantitative Economics 14 (2023)

Step 7: Drawing from the predictive density Conditional on (y∗
iT , λi, σ2

i , θ) and
xi,T :T+h−1, paths from the predictive distribution for yi,T+1:T+h can be easily generated
by simulating (1) forward; see Section 3.3 for further details.

Modifications for the simplified model specifications If the CRE distribution is modeled
parametrically instead of flexibly, then the drawing of the component membership in-
dicators (γi,λ, γi,σ ) in Step 5 and the drawing of π·,1:K and α in Step 6 are unnecessary.
One only has to sample from the MNIW posterior of (�1, �1 ) and the NIG posterior of
(ψ1,ω1 ). Under homoskedasticity, that is, σ2

i = σ2 for all i, we can pool (35) in Step 3
across t and i. In combination with the prior in (23), this leads to an IG posterior for
σ2 from which one can sample directly. The RE specification requires modifications to
Step 1, because the distribution of yi0 is now simplified to y∗

i0 ∼N(φy , �y ), to Step 2 be-
cause the prior distribution of λi is different, and to Step 6 because the pairs of VAR
coefficients (�k, �k ) are replaced by (φλ,k, �λ,k ) and (φy , �y ), which leads to NIG pos-
teriors.

3.3 Multistep forecasting

In general, there are two ways of extending one-step-ahead to multistep-ahead forecast-
ing: an iterated approach and a direct approach.

First, iterating the law of motion of y∗
it in (1) forward by h periods, starting from pe-

riod t = T , yields

y∗
iT+h = λi

(
h−1∑
s=0

ρs

)
+ ρhy∗

iT +β′
(
h−1∑
s=0

ρsxiT+h−1−s

)
+
h−1∑
s=0

ρsuiT+h−s. (42)

Thus, forecasting y∗
iT+h iteratively requires the path xi,T :T+h−1. We can distinguish the

following scenarios: (i) the path is given at time T . For instance, in a stress-testing
application of our framework the path of the exogenous variables would be specified
by the regulator as part of the stressed macroeconomic scenario. (ii) xit is strictly ex-
ogenous. In this case, the user has to specify a separate model for xit to simulate fu-
ture trajectories along which (42) is evaluated. Because of the exogeneity, this simula-
tion can be conducted independently of the simulation of (42). Suppose one has draws
(λ(j)
i , ρ(j), β(j), σ2(j)

i ) and draws x(j)
i,T :T+h−1 from the posterior predictive distribution of

the exogenous regressors, then one can define

μ
(j)
iT+h|T = λ

(j)
i

(
h−1∑
s=0

(
ρ(j))s)+ (ρ(j))hy∗(j)

iT +β(j)

(
h−1∑
s=0

(
ρ(j))sx(j)

iT+h−1−s

)
,

σ
2(j)
iT+h|T =

(
h−1∑
s=0

(
ρ(j))2s

)
σ

2(j)
i .

One can sample y∗(j)
iT+h from a N(μ(j)

iT+h|T , σ2(j)
iT+h|T ) and apply the censoring to obtain a

draw y
(j)
iT+h. (iii) The xits are endogenous and interact with the yits, which is the case in
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our application. To capture the feedback from the dependent variables to the regressors,
one has to simulate (Y1:N ,T+1:T+h, Y ∗

1:N ,T+1:T+h,X1:N ,T+1:T+h−1 ) jointly; see (5).
Second, rather than generating h-step ahead forecasts iteratively, in practice fore-

casters often engage in direct estimation of an h-step-ahead prediction function. In our
framework, this approach amounts to estimating a model of the form

y∗
it = λi + ρy∗

it−h +β′xit−h + uit
with the understanding that the serial correlation in uit implied by our original model
(1) is ignored. A discussion of the disadvantages and advantages of multistep estimation
in the context of VARs can be found in Schorfheide (2005).

4. Monte Carlo experiment

We conduct a Monte Carlo experiment to illustrate the performance of the set and den-
sity forecasts from the dynamic panel Tobit model in (1) under ideal conditions. We
also discuss the estimation of the heterogeneous coefficients. We simplify the model
by omitting the additional predictors xit and using the RE specification. We endow
the forecaster with knowledge of the true p(y∗

i0 ) and factorize p(λi, y∗
i0, lnσ2

i |ξ) as
p(λi|ξ)p(y∗

i0 )p(lnσi|ξ). The data generating process (DGP) is summarized in Table 1.
We set the autocorrelation parameter to ρ = 0.8 and consider skewed random effects
distributions for λi and lnσ2

i that are generated as mixtures of normals.
The simulated panel data sets consist of N = 1000 cross-sectional units and the

number of time periods in the estimation sample is T = 10. We generate one-step-ahead
forecasts for period t = T + 1. The fraction of zeros across all samples is 45% and for
roughly 15% of the cross-sectional units the sample consists of T = 10 zeros (“all ze-
ros”).18 The measures of forecast accuracy discussed in Sections 2.3 and 2.4 are first
computed for the cross-section i = 1, � � �, N = 1000 and we then average the perfor-
mance statistics over the nsim = 100 Monte Carlo repetitions.

Table 1. Monte Carlo design.

Law of motion: y∗
it = λi + ρy∗

it−1 + uit where uit ∼N(0, σ2
i ) and ρ= 0.8

Initial observations: y∗
i0 ∼N(0, 1)

Skewed random effects distributions:

p(λi|y∗
i0 ) = 1

9pN (λi| 5
2 , 1

2 ) + 8
9pN (λi| 1

4 , 1
2 )

p(lnσ2
i |y∗

i0 ) = 1
9pN (lnσ2

i − c| 5
2 , 1

2 ) + 8
9pN (lnσ2

i − c| 1
4 , 1

2 ), c is chosen such that E[σ2
i ] = 1

Sample size:N = 1000, T = 10

Number of Monte Carlo repetitions:Nsim = 100

Fraction of zeros: 45%, Fraction of all zeros: 15%

18In the Online Appendix, we report additional results for Monte Carlo designs with 60% and 75% zeros,
respectively. The overall message from the baseline Monte Carlo design is preserved under the alternative
specifications.
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Model specifications and predictors We compare the performance of six predictors de-
scribed below: four Bayes predictors derived from different versions of the dynamic
panel Tobit model, a predictor derived from a Tobit model with homogeneous coeffi-
cients, and a predictor from a linear model with homogeneous coefficients that ignores
the censoring. The prior distributions used for the estimation of the various models were
described in Section 3.1 and are summarized in Table 2. Further implementation details
are provided in the Online Appendix.

We consider four versions of the dynamic panel Tobit model with random effects
(see Section 3.1 for details): (i) flexible RE and heteroskedasticity; (ii) normal RE and
heteroskedasticity; (iii) flexible RE and homoskedasticity; and (iv) normal RE and ho-
moskedasticity. Versions (ii)–(iv) are misspecified in light of the DGP. The pooled Tobit
specification ignores the heterogeneity in λi, setting λi = λ for all i, and imposes ho-
moskedasticity. Finally, the pooled linear specification imposes λi = λ, σi = σ2 for all i,
and in addition, ignores the censoring of the observations during the estimation stage
(and finally censors the forecasts at 0).

Density and set forecasts To assess the density forecasts, we compute LPS and CRPS; see
Section 2.3. The larger LPS and the smaller CRPS the better the forecast. The accuracy
statistics are reported in columns 2 and 3 of Table 3. As expected, the flexible specifica-
tion with heteroskedasticity that nests the DGP delivers the most accurate density fore-
casts. While replacing the flexible representations of the RE distributions with normal
distributions only leads to a marginal deterioration of forecast performance, imposing
homoskedasticity generates a substantial drop in accuracy. The two “pooled” models
that ignore the intercept heterogeneity perform the worst.

We consider two types of set forecasts; see Section 2.4. The first type targets the aver-
age coverage probability in the cross-section (“average”), whereas the other type targets
the correct coverage probability for each unit i (“pointwise”). To assess the set forecasts,
we compute the coverage frequency and the average length of 90% predictive sets. Re-
sults are presented in columns 4 to 7 of Table 3. The “average” sets constructed from
the heteroskedastic specification have good frequentist coverage properties. They at-
tain coverage frequencies of 91.0% and 90.8%, respectively. A comparison between the
“average” and the “pointwise” set forecasts from the heteroskedastic models highlights
that the average length of the “average” sets is indeed smaller. Moreover, the coverage
frequency of the “pointwise” sets exceeds the nominal coverage level of 90% by a larger
amount. We observe a similar pattern also for the set forecasts from the homoskedas-
tic model specifications. Overall, the homoskedastic specifications generate worse set
forecasts, in terms of coverage frequency and average length, than the heteroskedastic
specifications.

Parameter estimates The last two columns of Table 3 summarize the bias and standard
deviation of the posterior mean estimator of the homogeneous parameter ρ. Under the
correctly specified “Flexible and Heterosk.” model the bias is close to zero and the stan-
dard deviation is small. Replacing the flexible RE specification by a normal specification
raises the bias by a factor of three. Replacing heteroskedasticity by homoskedasticity
approximately increases the standard deviation by 50% because of a loss of efficiency.
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Table 3. Monte Carlo experiment: forecast performance and parameter estimates.

Density
Forecast

Set Forecast
“Average”

Set Forecast
“Pointwise” Estimates

LPS CRPS Cov. Length Cov. Length Bias(ρ̂) StdD(ρ̂)

Flexible and Heterosk. −0.757 0.277 0.910 1.260 0.933 1.503 −0.002 0.005
Normal and Heterosk. −0.758 0.277 0.908 1.248 0.932 1.498 −0.006 0.005
Flexible and Homosk. −0.902 0.294 0.929 1.506 0.942 1.698 0.007 0.008
Normal and Homosk. −0.903 0.294 0.929 1.501 0.942 1.699 0.001 0.007
Pooled Tobit −0.935 0.313 0.935 1.705 0.947 1.911 0.252 0.004
Pooled Linear −1.243 0.357 0.923 1.925 0.933 1.951 0.229 0.005

Note: The Monte Carlo design is summarized in Table 1. The true values for ρ is 0.8. “Cov.” is coverage frequency and
“Length” is an average across i.

Imposing intercept homogeneity (pooled Tobit and pooled linear specification) leads to
a substantial increase in the bias.

The panels of Figure 1 show the true RE density p(λ), hairlines that represent
p(λ|ξ) generated from posterior draws of ξ, and histograms of the point estimates
E[λi|Y1:N ,0:T ]. The left panel corresponds to the flexible specification, whereas the panel
on the right displays results for the normal specification. In both cases, we allow for
heteroskedasticity. The posterior distribution of p(λ|ξ) under the flexible specification
concentrates near the true density, whereas not surprisingly, the parametric specifica-
tion yields larger discrepancies between the true RE density and the draws from the pos-
terior distribution. Because of the shrinkage effect of the prior distribution, we generally
expect the cross-sectional distribution of E[λi|Y1:N ,0:T ] (histograms) to be less dispersed
than the distribution of λi (density plots). Moreover, if we observe sequences of all zeros
for multiple units i, posterior inference of the corresponding λis should be the same.

Figure 1. Posterior means and estimated RE distributions for λi. Note: The histograms depict
E[λi|Y1:N ,0:T ], i= 1, � � � ,N , for two different model specifications. The shaded areas are hairlines
obtained by generating draws from the posterior distribution of ξ and plotting the corresponding
random effects densities p(λ|ξ). The black solid lines represent the true p(λ).
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This will create a spike in the left tail of the E[λi|Y1:N ,0:T ] distribution. Both features are
present in the figure.19

5. Empirical analysis

We now use different versions of the dynamic panel Tobit model to forecast loan charge-
off rates (charge-offs divided by the stock of loans in the previous period, multiplied by
400). As mentioned in the Introduction, a charge-off occurs if a loan is deemed unlikely
to be collected because the borrower has become substantially delinquent after a period
of time. The prediction of charge-off rates is interesting from the perspectives of banks,
regulators, and investors, because charge-offs generate losses on loan portfolios and are,
in fact, a large contributor to bank losses. If these charge-off rates are large, the bank may
be entering a period of distress and require additional capital.20

We consider a panel of “small” banks, which we define to be banks with total as-
sets of less than one billion dollars.21 For these banks, it is reasonable to assume that
they operate in local markets. The forecasts are generated from model (1) where yit are
charge-off rates. As potential explanatory variables, we consider the quarter-on-quarter
inflation in the house price index � ln HPIit−1, the change in the unemployment rate
�URit−1, and the growth rate in personal income � ln INCit−1. Here, � is the temporal
difference operator. The term β′xit−1 therefore captures variation in regional economic
conditions, which we measure at the state level. Banks located in regions with poor eco-
nomic conditions may be more likely to encounter loan losses because of a higher frac-
tion of borrowers that are unable to repay their loans. Our baseline model is based on
xit = [� ln HPIit , �URit ]′, but we also consider a specification that includes personal in-
come as a third explanatory variable and a specification without any explanatory vari-
ables.

The heterogeneous intercept λi can be interpreted as a bank-specific measure of the
quality of the loan portfolio: the smaller λi, the higher the quality of the loan portfolio
and the less likely a charge-off is to occur. The autoregressive component in the model
captures the persistence of the composition of the loan portfolio over time, and the
covariates shift the density of repayment probabilities. We consider various choices of
p(λi, y∗

i0, σi|xi,−1, ξ); see Section 3.1. The data set is described in Section 5.1. Section 5.2
presents density forecast comparisons for various model specifications. Estimates of the

19We provide illustrative analytical examples of these effects in the Online Appendix.
20The accounting details are more complicated: bank balance sheets contain a contra asset account

called “Allowance for Loan and Lease Losses” (ALLL). Provisions for LLL are created based on estimated
credit losses and reduce the income of the bank. Charge-offs reduce the ALLL and the gross loans on the
balance sheet, leaving the net amount unchanged. At this stage, the charge-offs do not lead to a further
reduction of income. Whether or not a bank takes a loss provision or a charge-off is to some extent a man-
agerial/accounting decision, although regulators require loans they classify as losses to be charged off. We
abstract from strategic accounting aspects; see Moyer (1990) for a seminal paper.

21Monitoring potential loan losses in small banks is useful by itself. Moreover, the delinquency rates of
small banks could foreshadow those rates of large banks since the small banks tend to have more subprime
borrowers who are more vulnerable to minor deterioration in economic condition.
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heterogeneous and homogeneous parameters are reported in Section 5.3. Posterior pre-
dictive checks are conducted in Section 5.4. Finally, Section 5.5 contains the set forecast
results.

5.1 Data

The raw data are obtained from “call reports” (FFIEC 031 and 041) that the banks have
to file with their regulator and are available through the website of the Federal Reserve
Bank of Chicago. Due to missing observations and outliers, we restrict our attention to
four loan categories: credit card (CC) loans, other consumer credit (CON), construction
and land development (CLD), and residential real estate (RRE). We construct rolling
panel data sets for each loan category that have a time dimension of twelve quarterly
observations: one observation y0 to initialize the estimation, T = 10 observations for es-
timation, and one observation to evaluate the one-step-ahead forecast. The number of
banks N in the cross-section varies depending on market size and date availability. The
earliest sample considered in the estimation starts (t = 0) in 2001Q2 and the most re-
cent sample starts in 2016Q1. A detailed description of the construction of the data set
is provided in the Online Appendix.

In the remainder of this section, we present two types of results: (i) forecast evalua-
tion statistics and parameter estimates for RRE and CC charge-off rates based on sam-
ples that cover the Great Recession and range from 2007Q2 (t = 0) to 2009Q4 (t = T );22

(ii) scatter plots summarizing forecast evaluation statistics for the 111 rolling samples
that we constructed (based on data availability) for the above-mentioned four loan cat-
egories.

Table 4 contains some summary statistics for the two baseline samples. For the small
banks in our sample, RRE loans are an important part of their loan portfolio. For approx-
imately 45% (25%) of the banks RREs account for 20% to 50% (more than 50%) of their
loan portfolio. CC loans, on the other hand, make up less than 2% of the loans held
by the banks in our sample. Both baseline samples contain a substantial fraction of zero
charge-off observations: 76% for RREs and 43% for CC, which makes it challenging to es-
timate the coefficients of our panel data models. Moreover, 61% of the banks in the RRE
sample never write off any loans between 2007 and 2009. The distribution of charge-off

Table 4. Summary statistics for baseline samples.

N Zeros [%] All Zeros [%] Mean 75th Max

RRE 2576 76 61 0.25 0.00 33.1
CC 561 43 22 3.27 4.07 260

Note: The estimation sample ranges from 2007Q2 (t = 0) to 2009Q4 (t = T =
10). We forecast 2010Q1 observations. “Zeros” refers to the fraction of zeros in the
overall sample of observations (all i and all t), “All Zeros” is the fraction of banks for
which charge-off rates are zero in all periods. Mean, 75th percentile, and maximum
are computed based on the overall sample.

22There are, in general, large uncertainties during the Great Recession. Thus, accurate density and set
forecasts are important.
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rates, across banks and time, is severely skewed. For RREs, the 75th percentile is 0 and
the maximum is 33.1% annualized. For CCs, the corresponding figures are 4.07% and
260%, respectively. A table with summary statistics for the remaining samples is pro-
vided in the Online Appendix.

5.2 Density forecasts and model selection

Selected samples We begin the empirical analysis by comparing the density fore-
cast performance of several variants of (1) for the two baseline samples using xit =
[� ln HPIit , �URit ]′. This comparison includes forecasts from a Tobit model and a lin-
ear model with homogeneous intercepts and homoskedastic innovation variances. Ta-
ble 5 reports LPS (the larger the better) and CRPS (the smaller the better). Several obser-
vations stand out. First, allowing for heteroskedasticity improves the density forecasts
unambiguously. Second, in both RRE and CC samples, all four heteroskedastic specifi-
cations lead to very similar density forecasting performance.

All samples Figure 2 summarizes the LPS comparisons for all 111 samples. We focus on
the comparison of predictive scores from the heteroskedastic specifications versus ho-
moskedastic specifications using flexibly modeled correlated random effects. The solid
line is the 45-degree line and the intersections of the dashed and dotted lines correspond
to the scores associated with the baseline RRE and CC samples reported in Table 5. The
figure shows that the results for the baseline samples are qualitatively representative:
incorporating heteroskedasticity is important for density forecasting. We provide a fig-
ure in the Online Appendix that illustrates that LPS differentials between normal versus
flexible CREs and CREs versus REs are small. In view of these results, we subsequently
focus on the flexible CRE specification with heteroskedasticity.

Table 5. Density forecast performance.

Specification

RRE CC

LPS CRPS LPS CRPS

Heteroskedastic models

Flexible CRE −0.523 0.240 −1.921 1.957
Normal CRE −0.521 0.240 −1.901 1.895
Flexible RE −0.525 0.238 −1.925 1.970
Normal RE −0.524 0.237 −1.912 1.936

Homoskedastic models

Flexible CRE −0.751 0.272 −2.512 2.495
Normal CRE −0.751 0.272 −2.463 2.343
Flexible RE −0.751 0.270 −2.630 2.613
Normal RE −0.752 0.270 −2.535 2.391
Pooled Tobit −0.831 0.310 −2.642 2.620
Pooled Linear −1.594 0.374 −3.010 2.789

Note: The estimation sample ranges from 2007Q2 (t = 0) to 2009Q4 (t = T = 10).
We use xit = [� ln HPIit , �URit ]

′ and forecast 2010Q1 observations.
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Figure 2. Log predictive density scores—all samples. Note: Flexible CRE specification. The fig-
ure illustrates pairwise comparisons of log predictive scores. We also show the 45-degree line. Log
probability scores are depicted as differentials relative to pooled Tobit. The intersection of the
dashed (dotted) lines corresponds to RRE (CC) baseline sample. We use xit = [� ln HPIit , �URit ]′.

Tail probabilities for selected samples From the density forecasts, we can compute
probability forecasts for particular events. We consider the tail event I{yiT+1 ≥ c} for
c = 1% for now. Figure 3 visualizes the probabilities of the tail event for RRE charge-off
rates for 2010Q1 and 2018Q1, emphasizing the spatial dimension.23 We associate each
bank iwith a particular county. If there are multiple banks in one county, we average the
predicted probabilities. 2010Q1 is the immediate aftermath of the Great Recession and
the counties that are covered by our sample appear predominantly in dark color, indi-

Figure 3. RRE charge-off rate predictive tail probabilities, spatial dimension. Note: Predictive
tail probabilities are defined as P{yiT+1 ≥ c|Y1:N ,0:T ,X1:N ,−1:T }, where c = 1%. Flexible CRE spec-
ification with heteroskedasticity. The estimation samples range from 2007Q2 (t = 0) to 2009Q4
(t = T = 10) and 2015Q2 (t = 0) to 2017Q4 (t = T = 10).

23Similar maps for CC charge-off rates are available in the Online Appendix.
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cating that predicted probabilities of the event exceed 9.1%. Banks in California, Florida,
and the Midwest from Minnesota, Wisconsin, and Michigan down to Arkansas, Missis-
sippi, and Alabama are predicted to write off a considerable fraction of their RRE loans.
Eight years later, the situation has improved considerably, as the map now appears in
light instead of dark color, in particular, in hard hit states such as California and Florida.

While this paper focuses on forecasting problems, the predictive densities derived
from our empirical model can be embedded into more complex decision problems that
more closely capture the objectives of policy makers or regulators. In this case, the pre-
dictive density is used to compute posterior expected losses associated with policy de-
cisions. The accuracy of the loss calculation is tied to the empirical adequacy of the pre-
dictive density, which is what we are evaluating in this section.

5.3 Parameter estimates for selected samples

Heterogeneous parameters The distributions of posterior mean estimates of the het-
erogeneous coefficients for the 2007Q2 sample of RRE charge-off rates are depicted in
Figure 4.24 We use the AR coefficient ρ to rescale λi and σi. The panels on the left and
in the center of the figure show histograms for the posterior means of λi and σi, re-
spectively, whereas the right panel contains a scatter plot that illustrates the correlation
between the posterior means of intercepts and shock standard deviations.

A notable feature of the histogram for the posterior means of λi/(1 − ρ) is the spike
in the left tail of the distribution. Such spikes were also present in the Monte Carlo simu-
lation; see Figure 1. The spike corresponds to banks with predominantly zero charge-off
rates. For these banks, the sample contains very little information about λi other than
that it has to be sufficiently small to explain the zero charge-off rates. In turn, the pos-
terior mean estimate is predominantly driven by the prior. Similar spikes are visible in

Figure 4. Heterogeneous coefficient estimates, RRE charge-off rates. Note: Heteroskedas-
tic flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to 2009Q4
(t = T = 10). A few extreme observations are not visible in the plots. The conditioning set is
(Y1:N ,0:T ,X1:N ,−1:T ).

24Similar plots for CC charge-off rates are available in the Online Appendix.
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the histogram for the posterior means of the re-scaled log standard deviations and the
right panel shows that the σi spike and the λi spike are associated with the same banks.
Small estimates of σi are associated with near zero estimates of λi, whereas large esti-
mates of σi are associated with a broad range of λi estimates. The large dispersion of σi
estimates is consistent with the substantially better density forecast performance of the
heteroskedastic models.

Because regional economic conditions have already been controlled for by β′xit−1,
the estimates of λi are more likely to be related to bank characteristics. Popular explana-
tions for the heterogeneity in loan losses across banks, here captured by the heterogene-
ity of λ̂i, are attitude toward risk, that is, some banks might have a greater propensity to
take risk or have better opportunities to diversify returns on their loan portfolio, and
quality of credit management; see Keeton and Morris (1987) for an early contribution
and Ghosh (2015, 2017) more recently.

In Figure 5, we illustrate the relationship between the posterior mean estimate of
λ̂i/σi, which for ρ= 0 and β= 0 determines the probability of nonzero charge-offs, and
bank size measured by the log of total assets. The top segments of the two panels con-
tain scatter plots with groupwise least-absolute-deviations (LAD) regression lines (left
scale). As we have seen previously in Figure 4, there are two groups of λ̂i estimates. For
simplicity, we refer to these groups as low-λ and high-λ groups, respectively. For both
the RRE and CC samples, the positive relationship between bank size and riskiness of
the loan portfolio λ̂i/σi is more pronounced for banks in the high-λ group. The slope
coefficients are 0.18 and 0.19, respectively. The shaded areas at the bottom of the panels

Figure 5. λ̂i/σi and P{i ∈ High} versus log assets (bank size). Note: Heteroskedastic flexible CRE
specification. The estimation sample ranges from 2007Q2 (t = 0) to 2009Q4 (t = T = 10). Bank
assets are measured at t = 0. We form a low-λ (+) and high-λ (o) group (left scale). The lines in
the top segment of the plot are LAD regression lines. The black lines in the grey shaded areas are
predicted probabilities from the logit models (right scale).
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contain fitted probabilities (right scale) from a logit model that uses log assets as right-
hand side variable. The larger the assets, the higher the probability that it belongs to the
high-λ group. These results suggest that larger banks in our sample tend to hold riskier
loan portfolios.

In Table 6, we present estimates from LAD regressions of λ̂i/σi on multiple bank
characteristics (measured in period t = 0), separately for the low-λ and the high-λ group
of banks.25 We also report estimates for a logit model for I{i ∈ High}. According to the
logit estimates bank size (log assets), the ratio of RRE or CC loans to all loans, lending
specialization (ratio of total loans to total assets), and lack of credit quality (ratio of ALLL
to total loans) increase the probability that a bank belongs to the high-λ group. Capital-
ization (capital-to-asset ratio) and profitability (return on assets) lower the probability
that a bank belongs to the high-λ group. For the group-specific regressions only a few
bank variables appear to be significant. Foremost, it is bank size measured by log as-
sets. For the RRE high-λ group, it also includes lending specialization, and for the CC
high-λ group it includes diversification (share of noninterest income to total income).
Operational efficiency, measured by the ratio of overhead costs to assets (OCA) is pre-
dominantly insignificant.

Ghosh (2017) studies macroeconomic and bank-level determinants of nonperform-
ing loans, that is, loans past due 90 days or more, for the 100 largest commercial banks
over the period 1992Q4 to 2016Q1. With the exception of log assets and loan fractions, we
followed his study in constructing our bank-level regressors. Although our sample dif-
fers from his in several dimensions (selection of banks, measure of loan performance,
and time period), we provide a brief comparison of the results for real estate loans as
follows.

Ghosh (2017) finds the following significant relationships for real estate loans: log
capital-to-assets (positive), log loans-to-assets (negative), log inverse credit quality (pos-
itive), log return on assets (negative). In our logit regression, the same bank character-
istics have significant coefficients, but the signs of the estimates for the capital-to-asset
and the loan-to-asset ratio differ. As Ghosh (2017) points out, the effect of bank capital-
ization on loan quality is theoretically ambiguous. On the one hand, managers in banks
with low capital bases have a moral hazard incentive to engage in risky lending prac-
tices (negative relationship). On the other hand, managers in highly capitalized banks
may feel confident to engage in risky lending (positive relationship). With respect to the
loan-to-asset ratio, our positive estimate for RRE contradicts the notion that banks that
are specialized in lending do a better job in selecting high-quality loans, and the positive
relationship may reflect that these banks could have more liberal lending policies.

We also report goodness-of-fit (R2) measures in Table 6. For the LAD regressions, we
report Koenker and Machado (1999)’s quantile regression R2. For the logit regressions,
we compute McFadden (1973)’s pseudoR2. For the RRE loans, the variation in loan qual-
ity (λ̂i/σi) explained by bank characteristics is low. The R2s for the group-specific LAD
regressions are only 0.03 and 0.06, respectively. For the CC sample, bank characteristics

25Data definitions and summary statistics for the bank characteristics are provided in the Online Ap-
pendix.
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Table 7. Estimates of common parameters.

y∗
it−1 � ln HPIit−1 �URit−1 � ln INCit−1

LPSMean CI Mean CI Mean CI Mean CI

RRE 0.21 [0.18, 0.25] −0.03 [−0.04, −0.02] 0.15 [0.13, 0.17] −0.5232
0.22 −0.03 [−0.04, −0.02] 0.15 [0.12, 0.17] 0.001 [−0.005, 0.007] −0.5214
0.29 [0.27, 0.31] −0.5214

CC 0.41 [0.36, 0.46] −0.09 [−0.15, −0.04] 0.46 [0.30, 0.62] −1.9214
0.41 [0.36, 0.45] −0.10 [−0.16, −0.04] 0.46 [0.30, 0.63] 0.010 [−0.030, 0.051] −1.9216
0.48 [0.43, 0.52] −1.9268

Note: Heteroskedastic flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to 2009Q4 (t = T = 10).
The table contains posterior means and 90% credible intervals in brackets.

are more successful in explaining variations in loan quality. The R2 values are 0.18 and
0.11, respectively. The logit regressions attain pseudo R2 values of 0.32 and 0.47, which
indicate that the bank characteristics considered here are partly successful in determin-
ing whether a bank belongs to the low-λ or high-λ group.

Common parameters Parameter estimates of the common coefficients for the flexible
CRE specification with heteroskedasticity are reported in Table 7 for the 2007Q2 sam-
ples. We report posterior means and 90% credible intervals. For each sample, we con-
sider three specifications: (i) the baseline specification with � ln HPIit−1 and �URit−1,
(ii) an extended version that also includes � ln INCit−1, and (iii) a version without regres-
sors.

Both samples exhibit mild autocorrelation. The point estimate of ρ is 0.21 for RRE
and 0.41 for CC. To report the estimates of β, we undo the standardization of the regres-
sors. The numerical values can be interpreted as follows. For the RRE sample, under the
extended specification that includes personal income growth a 1% quarter-on-quarter
fall of house prices leads to an increase in charge-off rates by 0.03 percentage points.
A 1% increase in the unemployment rate raises the charge-off rates by 0.15 percentage
points. Finally, a 1% growth of personal income increases the charge-off rates by 0.001
percentage points. For both samples, the coefficients on persistence, house-price infla-
tion, and unemployment rate changes are “significant,” whereas the coefficient on the
income growth regressor is “insignificant” in that it is small and its sign is ambiguous.
Adding income growth hardly alters the coefficient estimates for house-price inflation
and unemployment rate changes. The estimates for the CC sample are qualitatively sim-
ilar to RRE but about three times larger in magnitude.

In the last column of Table 7, we report the LPS, now up to four decimal places, that
were previously used for the comparison of density forecasts in Table 5. The values for
the three configurations of xit are very close. For the CC sample, the LPS criterion fa-
vors our baseline specification with xit = [� ln HPIit , �URit ]′, whereas for the RRE sam-
ple strictly speaking the model without regressors is preferred. In the Online Appendix,
we show scatter plots of λ̂i+β′xit−1 versus λ̂i, which indicate that only a very small frac-
tion is explained by local economic conditions. Despite the quantitatively small effect
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of local economic conditions on charge-offs, we proceed with xit = [� ln HPIit , �URit ]′,
whose coefficients are “significant,” and examine the effects of changes in house prices
and unemployment more carefully.

Because the Tobit model is nonlinear, the average effect of a change in the regres-
sors (“treatment effect”) depends on λi. We consider a change of the regressor from its
sample value xiT to x̃iT = xiT + �x · ι, where the unit-length vector ι determines the di-
rection of the perturbation of xiT and �x > 0 the magnitude. Accounting for censoring,
we decompose the treatment effect on yiT+1 as follows:

ỹiT+1 − yiT+1

�x
= β′ιI

{
λi + ρy∗

iT +β′xiT + uiT+1 > 0
}

+ λi + ρy∗
iT +β′x̃iT + uiT+1

�x

(
I
{
λi + ρy∗

iT +β′x̃iT + uiT+1 > 0
}

− I
{
λi + ρy∗

iT +β′xiT + uiT+1 > 0
})

= Ii + II i. (43)

Term Ii captures the intensive margin, that is, a bank that has nonzero charge-offs con-
ditional on xiT and x̃iT . In this region, the Tobit model is linear and the effect is β′ι. The
second term, II i, captures the extensive margin of banks switching between zero and
positive charge-offs.

Figure 6 (see online version for colors) depicts the posterior mean and the 90% cred-
ible band of the two components of the treatment effect for the banks in the 2007Q2 CC
sample.26 We sort the banks based on the posterior means λ̂i/σi, which for ρ = 0 and

Figure 6. Effects (Terms I and II) of HPI and UR on CC charge-off rates. Note: Heteroskedas-
tic flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to 2009Q4
(t = T = 10). The banks i = 1, � � � ,N along the x-axis are sorted based on the posterior means
λ̂i/σi. Terms Ii are shown in black/grey and terms II i in dark/light blue (see online version for
colors). The units on the y-axis are in percent. The solid lines indicate the posterior means of the
treatment effect components and the shaded areas delimit 90% credible bands.

26A similar figure for the RRE sample is available in the Online Appendix.
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β= 0 would determine the probability of a positive charge-off. We consider two choices
for �x · ι: a 5% drop in house prices (left panels) and a 5% rise in the unemployment
rate within one quarter (right panels). These are severe shocks to the local economies.
For the first approximately 120 banks, the posterior mean of Ii (black/grey) is close to
zero. These are the banks with low values of λ̂i that appear as a mass in the left tail of
the density plot in the left panel of Figure 4. Under the baseline conditions xiT , they are
unlikely to have nonzero charge-offs. For the remaining banks, the posterior mean of
the term I treatment effect rises under the HPI fall scenario from 0.03% to 0.1%, where
the latter value is the coefficient estimate reported in Table 7. The credible intervals are
fairly wide, ranging from 0% to 0.15%.

The posterior mean for component II (dark/light blue) of the treatment effect is
qualitatively similar under the two economic scenarios. For the first 120 banks, term II
is small because much of β′(x̃iT − xiT ) has to compensate for the low estimate of λi be-
fore the latent variable y∗

iT+1 becomes positive. For the remaining banks, the term is also
small, but for a different reason: with high probability, these banks already have posi-
tive charge-offs under the baseline economic conditions. Quantitatively, the effects are
larger under the very severe unemployment scenario. The switch of low λi banks from
zero to positive charge-offs leads to a posterior mean of the average treatment effect of
0.04%. As λ̂i/σi increases, the expected value of term II decreases because it becomes
more likely that the bank has positive charge-offs even under the baseline scenario.

5.4 Posterior predictive checks for selected samples

In order to assess the fit of the estimated panel Tobit model, we report posterior predic-
tive checks in Figure 7. A posterior predictive check examines the extent to which the es-
timated model can generate artificial data with sample characteristics that are similar to
the characteristics of the actual data that have been used for estimation.27 Consider the
top left panel of the figure. Here, the particular characteristic, or sample statistic, under
consideration is the cross-sectional density of yiT+1 conditional on yiT+1 > 0. The thick
solid line is computed from the actual RRE loan sample. Each hairline is generated as fol-
lows: (i) take a draw of (ρ, β, ξ) from the posterior distribution; (ii) conditional on these
draws generate λ1:N , Y ∗

1:N ,0, and σ2
1:N ; (iii) simulate a panel of observations Ỹ1:N ,0:T+1;

(iv) compute a kernel density estimate based on Ỹ1:N ,T+1. The swarm of hairlines visu-
alizes the posterior predictive distribution. A model passes a posterior predictive check
if the observed value of the sample statistic does not fall too far into the tails of the pos-
terior predictive distribution. Rather than formally computing p-values, we focus on a
qualitative assessment of the model fit.

By and large, the estimated models for RRE and CC charge-off rates do a fairly good
job in reproducing the cross-sectional densities of yiT+1 in that some of the hairlines
generated from the posterior cover the observed densities. The only discrepancies arise
for charge-off values close to zero. With high probability, the densities computed from

27Textbook treatments of posterior predictive checks can be found, for instance, in Lancaster (2004) and
Geweke (2005).
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Figure 7. Posterior predictive checks: Cross-sectional distribution of sample statistics. Note:
Heteroskedastic flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to
2009Q4 (t = T = 10). The black solid lines (left and right panels) and the histogram (center pan-
els) are computed from the actual data. Each hairline corresponds to a simulation of a sample
Ỹ1:N ,0:T+1 of the panel Tobit model based on a parameter draw from the posterior distribution.

simulated data have less mass than the observed RRE and CC densities. Moreover, the
modes of the simulated densities are slightly to the right and lower than the modes in the
two actual densities. The hairlines depict the densities conditional on yiT+1 > 0. In the
observed RRE sample, the fraction of yiT+1 = 0 is 0.71. The corresponding 90% interval
obtained from the estimated model is [0.73, 0.79]. For CC charge-off rates, the fraction in
the data is 0.43 and the corresponding 90% interval obtained from the estimated model
is [0.37, 0.47].

The center panels of Figure 7 focus on the estimated models’ ability to reproduce the
number of zero charge-off observations. For each unit i, we compute the number of pe-
riods in which yit = 0. Because T = 10, the maximum number of zeros between t = 0 and
t = T + 1 is 12. The histogram is generated from the actual data, whereas the hairlines
are computed from the simulated data. For instance, 61% of the banks do not write off
any RRE loans in the 12 quarters of the sample and roughly 5% of the banks write off RRE
loans in every period. Overall, the estimated models do remarkably well in reproducing
the patterns in the data. For RRE loans, the model captures the large number of all-zero
samples and the fairly uniform distribution of the number of samples with zero to nine
instances of yit = 0. The only deficiency is that the model cannot explain the absence of
samples with ten or eleven instances of zero charge-off rates. In the case of CC loans, the
estimated model underpredicts the number of all-zero samples but generally is able to
match the rest of the distribution.

The last column of Figure 7 provides information about the models’ ability to cap-
ture some of the dynamics of the charge-off data. Here, the test statistic is the first-
order sample autocorrelation of the yi,0:T+1 sequence, conditional on both yit and yit−1
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being greater than zero. The panels in the figure depict the cross-sectional density of
these sample autocorrelations. For the RRE loans, the density computed from the actual
data is covered by the hairlines generated from the posterior predictive distribution. For
the CC loans, the estimated model generates somewhat higher sample autocorrelations
than what is present in the data.

In the Online Appendix (see Figure A-8), we consider three additional predictive
checks based on (i) the time series mean of yit after observing a zero (and, if applicable,
before observing the next zero), (ii) the time series mean of yit before observing a zero
(and, if applicable, after observing the previous zero), (iii) a robust estimate of the first-
order autocorrelation of yi,0:T+1 provided there are sufficiently many nonzero observa-
tions. With the exception of the autocorrelations in the CC sample, the two estimated
models are able to reproduce the cross-sectional densities of the sample statistics.

5.5 Set forecasts

Selected samples Set forecasts for 2010Q1, constructed as HPD sets from the poste-
rior predictive distribution, are visualized in Figure 8 (see online version for colors).
The nominal credible level is 90%. We distinguish forecasts targeting pointwise coverage
probability (grey) from forecasts targeting average coverage probability (pink). For each
bank i, we plot the set forecast, the posterior mean forecast, and the actual realization of
the charge-off rate. The banks are sorted according to E[yiT+1|Y1:N ,0:T ,X1:N ,−1:T ]. We do
not show forecasts for the first 1400 (100) banks for the RRE (CC) sample because they
are essentially zero.

A comparison of the grey and the pink sets in Figure 8 shows the effect of target-
ing average versus pointwise coverage. The upper bound as a function of i increases
less under targeting average coverage probability, because the criterion allows us to
shorten very wide predictive sets and lengthen narrow sets, while reducing the average

Figure 8. Set forecasts, banks sorted by E[yiT+1|Y1:N ,0:T ,X1:N ,−1:T ]. Note: Flexible CRE speci-
fication with heteroskedasticity. The estimation sample ranges from 2007Q2 (t = 0) to 2009Q4
(t = T = 10). We forecast 2010Q1 observations. The nominal coverage probability is 90%. Poste-
rior mean forecasts (solid black line), actuals (blue dots), and set forecasts targeting pointwise
(grey) and average (pink) coverage probability (see online version for colors).
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Table 8. Set forecast performance.

Coverage Ave. Len.

Fraction of Sets of the Form

{0} [0, b] {0} ∪ [a, b]

RRE Target Average Coverage 0.88 0.31 0.68 0.28 0.04
Target Pointwise Coverage 0.94 0.75 0.61 0.36 0.03

CC Target Average Coverage 0.91 6.48 0.02 0.81 0.17
Target Pointwise Coverage 0.91 7.74 0.19 0.56 0.25

Note: Flexible CRE specification with heteroskedasticity. The estimation sample ranges from 2007Q2 (t = 0) to 2009Q4
(t = T = 10). We forecast 2010Q1 observations. The nominal coverage probability is 90%.

length. For the RRE sample set, forecasts for banks with large expected charge-off rates
E[yiT+1|Y1:N ,0:T ,X1:N ,−1:T ] become considerably shorter. In fact, for i > 2500, many of
them become {0}. Although we plot the actual values of the charge-off rates in Figure 8,
it is not possible to glean how close the empirical coverage frequency is to the nomi-
nal coverage probability. Thus, in Table 8 we report both the average length of the sets
and the empirical coverage frequency. For both samples, the set forecasts that are con-
structed by targeting the average coverage probability have a cross-sectional coverage
frequency that is close to the nominal coverage probability of 90% and they tend to be
shorter than the ones obtained by targeting pointwise coverage probability.28

We also report the frequency of the three types of set forecasts. Due to the large num-
ber of zero observations in the RRE sample, there is a large fraction of banks, between
60% and 68%, for which the posterior predictive probability of observing yiT+1 = 0 ex-
ceeds 90%. This leads to a forecast of {0}. For the CC sample, the fraction of {0} forecasts
is considerably smaller.

As one switches from targeting pointwise coverage probability to average coverage
probability the composition of the set types changes. Roughly speaking, the forecaster
should widen the “narrow” sets (small σi) by lowering their HPD threshold, and tighten
the wide sets (large σi) by raising their HPD threshold. For the RRE sample with a rel-
atively high fraction of zeros, when targeting pointwise coverage, the average coverage
probability is largely above 90%, so this mechanism manifests itself as reducing wider
pointwise sets to {0}, which decreases the average coverage probability and average
length at the same time. Thus, there is an increase in the fraction of {0} forecasts; also
see the right tail in the left panel of Figure 8.

For the CC sample with a relatively low fraction of zeros, when targeting pointwise
coverage, the average coverage probability is already close to 90%. Switching from tar-
geting pointwise to targeting average coverage, the majority of {0} forecasts are con-
verted into [0, b] forecasts by adding a small continuous portion, and thereby increasing
the pointwise coverage of these units to more than 90%; see the left tail in the right panel

28We also computed evaluation statistics for the homoskedastic specification. It turns out that the set
forecasts generated by the homoskedastic specifications are substantially larger than the sets obtained from
the models with heteroskedasticity, without improving the coverage probability. This finding is consistent
with the density forecast results in Table 5.
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Figure 9. Set forecasts: Targeting pointwise versus average coverage—all samples. Note: Flex-
ible CRE specification with heteroskedasticity. The bold symbols (o, +) correspond to the RRE
(left panel) and CC (right panel) baseline samples. The two endpoints of each hairline indicate
the coverage probability and length for a particular estimation sample. Circled endpoints cor-
respond to targeting average coverage probability, and unmarked endpoints (or crosses for the
baseline samples) represent pointwise coverage targeting. Hairlines in the left panel represent
samples for which the coverage frequency gets closer to the nominal coverage probability of 90%
and the length becomes shorter. The remaining samples are represented by the hairlines in the
right panel.

of Figure 8. Moreover, about one-third of the disconnected forecasts are converted into
connected forecasts, which is due to a lengthening of the sets for small σi units. In the
end, the fraction of [0, b] forecasts increases substantially in this case.

All samples In Figure 9, we provide information about the coverage frequency and av-
erage length size of the set forecast for all samples. We focus on a comparison between
targeting pointwise versus average coverage probability in the flexible CRE specifica-
tion with heteroskedasticity. Each hairline corresponds to one of the 111 different sam-
ples and the two endpoints of the hairlines indicate average length and deviation of
the empirical coverage frequency from the 90% nominal credible level. The circled end-
points correspond to targeting average coverage, and unmarked endpoints (or crosses
for the baseline samples) represent pointwise coverage targeting. The left panel com-
prises samples for which targeting average coverage brings the empirical coverage fre-
quency closer to 90% and reduces the average length. Here, the hairlines point into the
lower left corner of the graph. The remaining samples are represented by the hairlines
in the right panel. Targeting the average coverage unambiguously reduces the average
length. For 52% of the samples, it also improves the empirical coverage frequency (left
panel). For the remaining 48% of the samples, the deterioration of the coverage fre-



156 Liu, Moon, and Schorfheide Quantitative Economics 14 (2023)

quency is relatively small. The median improvement in coverage probability in the left
panel is 0.022, whereas the median deterioration in the right panel is only 0.007. We
conclude that, by and large, directly targeting the average posterior coverage probability
improves the empirical coverage frequency in the cross-section and produces shorter
set forecasts.

6. Conclusion

The limited dependent variable panel with unobserved individual effects is a common
data structure but not extensively studied in the forecasting literature. This paper con-
structs forecasts based on a flexible dynamic panel Tobit model to forecast individual
future outcomes based on a panel of censored data with large N and small T dimen-
sions. Our empirical application to loan charge-off rates of small banks shows that the
estimation of heterogeneous intercepts and conditional variances improves density and
set forecasting performance in the more than 100 samples considered. Posterior predic-
tive checks conducted for two particular samples indicate that the Tobit model is able
to capture salient features of the charge-off panel data sets. Our framework can be ex-
tended to allow for stronger forms of simultaneity between the dependent variable and
regressors and to account for dynamic panel versions of more general multivariate cen-
sored regression models. We can also allow for missing observations in our panel data
set. Finally, even though we focused on the analysis of charge-off data, there are many
other potential applications for our methods.
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