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The random utility model (RUM, McFadden and Richter (1990)) has been the stan-
dard tool to describe the behavior of a population of decision makers. RUM as-
sumes that decision makers behave as if they maximize a rational preference over
a choice set. This assumption may fail when consideration of all alternatives is
costly. We provide a theoretical and statistical framework that unifies well-known
models of random (limited) consideration and generalizes them to allow for pref-
erence heterogeneity. We apply this methodology in a novel stochastic choice data
set that we collected in a large-scale online experiment. Our data set is unique
since it exhibits both choice set and (attention) frame variation. We run a statisti-
cal survival race between competing models of random consideration and RUM.
We find that RUM cannot explain the population behavior. In contrast, we cannot
reject the hypothesis that decision makers behave according to the logit attention
model (Brady and Rehbeck (2016)).
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1. Introduction

A fundamental question in social science is how to describe the behavior of a popula-
tion of decision makers (DMs). The random utility model (RUM, McFadden and Richter
(1990)) is the standard tool to describe behavior.1 RUM assumes that DMs behave as if
they maximize their preferences over their choice set. However, RUM may fail at describ-
ing behavior if DMs do not consider all available alternatives. For instance, DMs may
behave as if they use a two-stage procedure: first simplifying choice by using a consid-
eration set, and only then choosing the best alternative among those considered. Thus,
DMs may choose dominated alternatives.2 A large literature, pioneered by Masatlioglu,
Nakajima, and Ozbay (2012) and Manzini and Mariotti (2014), has proposed theories
of consideration-mediated choice. These theories accommodate departures from RUM
caused by inattention, feasibility, categorization, and search.3 In contrast to RUM,4 little
is known about the empirical validity of these models. Our work aims to fill this impor-
tant gap in the literature.

Methodologically, we provide a unifying theoretical framework that generalizes well-
known theories of random consideration. We unify these theories with a new concept
called attention-index. The attention-index is a net measure of how enticing a collec-
tion of alternatives is, or how costly it is to pay attention to it. We show how to test these
theories statistically, and how to recover the preference distribution and consideration
rules. Our framework extends many theories of consideration-mediated choice to allow
for preference heterogeneity. This allows us to take these theories of individual behav-
ior to the population level, thus permitting the use of cross-sectional data sets to test
them. Following McFadden and Richter (1990) and Kitamura and Stoye (2018), we take
seriously the fact that all theories of stochastic choice have as their primitive the unob-
served distribution over choices that can only be estimated in finite samples by sample
frequencies of choice. Thus, to test these models in finite samples, we need to account
for sampling variability.

Empirically, we design a large experiment5 with two independent sources of exoge-
nous variation: (i) full variation in choice sets (menus), and (ii) variation in frames.
We conducted this experiment online in Amazon Mechanical Turk (MTurk), collect-
ing 12,297 independent choice observations from 2135 individuals. A frame consists of

1RUM was first proposed by Block and Marschak (1960) and Falmagne (1978) in an environment similar
to ours.

2For evidence of choice of dominated alternatives, see De Los Santos, Hortaçsu, and Wildenbeest
(2012), Honka (2014), Ho, Hogan, and Morton (2017), Honka, Hortaçsu, and Vitorino (2017), Hortaçsu,
Madanizadeh, and Puller (2017), Barseghyan, Coughlin, Molinari, and Teitelbaum (2021), and Heiss, Mc-
Fadden, Winter, Wuppermann, and Zhou (2021).

3See, for instance, Aguiar, Boccardi, and Dean (2016), Brady and Rehbeck (2016), Aguiar (2017), Lleras,
Masatlioglu, Nakajima, and Ozbay (2017), Caplin, Dean, and Leahy (2019), Horan (2019), Kovach and Ülkü
(2020), and Cattaneo, Ma, Masatlioglu, and Suleymanov (2020).

4For evidence for RUM, see Kitamura and Stoye (2018) and McCausland, Marley, Davis-Stober, Brown,
and Park (2020).

5Other experiments that we are aware of that have collected stochastic choice data focusing on choice
set variation are Apesteguia and Ballester (2021) (87 individuals) and McCausland et al. (2020) (141 par-
ticipants). In contrast to our work, both focus mainly on binary choice sets and goodness-of-fit measures
(including the computation of Bayes factors).
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observable information that is irrelevant in the rational assessment of the alternatives
(Salant and Rubinstein (2008)).6 Full variation in choice sets means that all possible
choice sets are observed by the researcher. It allows us to test consideration-mediated
choice theories in a large cross-section of heterogeneous individuals. Frame variation
means that we vary the complexity of the description of alternatives without affecting
the relevant payoffs. This is equivalent to varying the cost of consideration. In this sense,
we induce an attention frame. This variation in frames allows us to differentiate between
RUM and models of limited consideration since consideration could change with frames
but preferences must remain stable.

In general, without frame variation, many models of consideration are empirically
indistinguishable from RUM. For instance, if a data set, without frame variation, is con-
sistent with the classical consideration model of Manzini and Mariotti (2014), then it is
also consistent with RUM. However, this model and RUM will typically recover a distinct
distribution of preferences. Varying frames, we can test whether the distribution of pref-
erences remains the same across frames. This will imply that the model in Manzini and
Mariotti (2014) and RUM may have different empirical implications in our experimental
setup. The same reasoning applies to any model of limited consideration.

In our experimental design, we introduce three attention-cost/complexity frames
for every choice set. Each DM faces all three frames. These treatments require the DM
to solve a simple cognitive task to understand the alternatives. The consideration cost is
progressively reduced across frames while we keep the choice set fixed. The fact that the
choice remains the same is not explicitly stated in the experiment instructions. Within
this design, we can understand how changing consideration costs across frames may
affect choices while we keep (the distribution of) preferences fixed. Under our incentives
protocol (pay-at-random across tasks), and under consequentialism, the distribution of
preferences must remain constant regardless of the frame. By exploiting this feature of
our design, we show that, in our sample, RUM fails to describe the population behavior,
while the logit attention model of Brady and Rehbeck (2016) describes it well.

Our paper generalizes the methodology of Cattaneo et al. (2020) by allowing hetero-
geneity in preferences when the choice sets include a default alternative. We show that
in our setting, if one assumes independence of preferences and consideration, at the
population level, testing a consideration-mediated choice theory with heterogeneous
preferences and a dominated default is equivalent to testing whether this hypothetical
full-consideration distribution over choices is consistent with RUM. We, therefore, use
this result to test these models using the framework of Kitamura and Stoye (2018).

To exploit all possible implications of the limited-consideration models of interest,
we need full variation in choice sets. A limited consideration model may describe behav-
ior well for a nonexhaustive data set, but it may fail to do so for an extended one. That
is, one may have false positives when observing choices from a nonexhaustive set of
menus, as discussed at length in Cattaneo et al. (2020) and De Clippel and Rozen (2021).
Nonetheless, full exogenous variation in choice sets is an important data feature that

6We interpret the notion of rational assessment to be an assessment compatible with consequentialism
and RUM.
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is usually not satisfied in field data. Our testing procedure exploits rich experimental
variation to increase the statistical power of our tests.

In addition, our experiment introduces a dominated default alternative that works
as an opportunity cost of paying attention. For any choice set and frame, the default is
always present and shown first. Moreover, it is preselected as the default choice—if the
subject decides to skip the task, she is informed that the default alternative will be cho-
sen for her. This design allows us to use the default alternative as the opportunity cost
of incurring in the cost of consideration and understanding the other alternatives in the
choice set. The set of alternatives in our experiment consists of lotteries. Hence, we use a
degenerate lottery as the default due to its simplicity. In this sense, we believe the default
alternative in our design has effectively zero cost of consideration. This dominated de-
fault is key to disentangle the distribution of preferences from random consideration.7

We use these theoretical and experimental innovations to test two well-known mod-
els of random consideration: (i) the logit attention model of Brady and Rehbeck (2016)
(LA), and (ii) the version of elimination-by-aspects model of Tversky (1972) charac-
terized by Aguiar (2017) (EBA).8 There is increasing interest in incorporating limited
consideration in discrete choice.9 In particular, the influential and tractable model of
Manzini and Mariotti (2014) (MM) has become an important tool for the analysis of lim-
ited attention in empirical work (e.g., Dardanoni et al. (2020), Abaluck and Adams (2021),
and Kashaev and Lazzati (2021)). However, MM is highly stylized and assumes that con-
sideration is driven by an item-dependent parameter (i.e., independence in considera-
tion). We investigate from an experimental perspective whether this strong assumption
is effective in explaining choice when consideration is hard. To do so, we consider two
extensions of MM that allow for substitution and complementarity in consideration, the
LA and EBA models. These two generalizations have the property that their intersection
is exactly the MM model (Kovach and Suleymanov (2021)). This implies that MM ex-
plains the population behavior if and only if both the LA and EBA models explain it.

We test these models and the benchmark RUM conditioning on the frame. Crucially,
we require the underlying preference relation to be stable among frames while allowing
the consideration rules to vary with the frame. Our main findings are: (i) We reject the
hypothesis that RUM provides a good description of population behavior. (ii) In con-
trast, the LA model with heterogeneous preferences cannot be rejected at the 5% signif-
icance level. (iii) However, we reject the hypothesis that EBA, and hence MM, describe
the population behavior.

Our work contributes to the recent experimental literature on stochastic choice, lim-
ited consideration, and departures from RUM. Even though by now, limited attention in
many environments is well documented, it is less clear what structural models of lim-
ited attention should the practitioner use. We see our contribution as providing answers

7We formulate a sensitivity analysis when the default is not dominated in Appendix B.
8We refer to EBA as the version of the original model in Tversky (1972) by Cattaneo et al. (2020) (Ex-

ample 6). The model in Aguiar (2017) coincides with EBA in the special case where there is a dominated
default with a restriction that any category that does not contain the default has zero mass. The EBA model
characterization for the case without a default remains an open question.

9See, for instance, Goeree (2008), Dardanoni, Manzini, Mariotti, and Tyson (2020), Abaluck and Adams
(2021), Barseghyan et al. (2021), and Barseghyan, Molinari, and Thirkettle (2021).
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to this second issue.10 We hope that our findings about which models of limited con-
sideration are successful empirically will inform future empirical work in the field. For
instance, our findings have already been used to motivate the choice of the parametric
specification of limited consideration in the recent work of Abaluck and Adams (2021).11

Outline

The paper proceeds as follows. Section 2 presents our model. Section 3 details frame
variation and our testing procedure. Section 4 presents our experiment. Section 5
presents the testing results. Finally, Section 6 concludes. All proofs and additional results
are in the Appendix. The Online Supplementary Material (Aguiar, Boccardi, Kashaev,
and Kim (2023)) include the replication files (data and code) and the instructions of our
experiment.

2. Environment—model

We consider a finite choice set X and we denote the outside alternative or default as
o /∈X . We let the set of all possible choice sets be A = 2X \ {∅}, where 2X denotes the set
of all subsets ofX . A probabilistic choice rule is a mapping p :X ∪ {o} ×A �→ [0, 1]. The
probabilistic choice rules for a given choice set add up to 1,

∑
a∈Ap(a,A) +p(o,A) = 1.

Moreover, p(a,A) = 0 if a /∈ A. We fix p(o, ∅) = 1. A complete stochastic choice rule
is a vector P = (p(a,A))A∈A,a∈A∪{o}. For identification purposes, we treat P as a known
object. In practice, we do not observe P , but can consistently estimate it by the collection
of sample frequencies P̂ (see Section 3.2 for further details).

2.1 Random behavioral model

We consider an environment where DMs, faced with a choice setA ∈ A, first pickD⊆A
(consideration set) and then choose the alternative in D that maximizes their prefer-
ences. With probability π(�), DMs are endowed with preferences �∈X×X drawn from
the set of all linear orders (strict preferences) on X , R(X ).12 Note that since o /∈X , fol-
lowing Manzini and Mariotti (2014), we implicitly assume that the default is picked if
and only if nothing else is considered. A typical interpretation of this situation is the
sleeping agent behavior (see, for instance, Abaluck and Adams (2021)). When the agent
is sleeping (i.e., she considers the empty set) she chooses the default alternative. Other-
wise, the agent wakes up and considers some nonempty set and maximizes her prefer-
ences in her consideration set. In the second case, the default is assumed to be domi-
nated by the rest of alternatives. We show how to relax this assumption in Appendix B.

10There is a vast literature documenting departures from fully rational behavior, but it is not focused on
limited consideration. See Rieskamp, Busemeyer, and Mellers (2006) for a survey.

11Abaluck and Adams (2021) structurally estimate a model of discrete choice with limited consideration
under the LA and MM model.

12Linear orders are complete, reflexive, transitive, and antisymmetric orders.



76 Aguiar, Boccardi, Kashaev, and Kim Quantitative Economics 14 (2023)

Figure 1. Consideration mediated choices. Choices are the result of a two stage process, first
pick a consideration set and then pick the best alternative in that set. We observe choices (ai)
and menus (A). We do not observe and we aim to identify the theory objects: distribution of
preferences in the population (π) and stochastic choice rule (mA).

The distribution π ∈ �(R(X )) fully captures preference heterogeneity.13 The dis-
tribution over random consideration sets given the menu A is fully characterized by
mA : 2A → [0, 1],

∑
D⊆AmA(D) = 1. In other words, mA is an element of the sim-

plex �(2A ). Let m denote the complete collection of those distributions for all possible
menus. That is, m= (mA(D))A∈A,D∈2A . We assume that the random consideration sets
and random preferences are independent.

Definition 1 (Random behavioral model, B-rule). A complete stochastic choice rule P
is a B-rule if there exists a pair (m, π ) such that

p(a,A) =
∑

�∈R(X )

π(�)
∑
D⊆A

mA(D)1(a� b, ∀b ∈D)

for all a ∈X andA ∈ A.

This choice rule is illustrated in Figure 1. Definition 1 implicitly assumes that the
random consideration set rule and the heterogeneous preferences are independent. In-
dependence is a good starting assumption in the sterile environment of our experiment,
as we want to achieve a decomposition of any observed probabilistic choice rule into
its consideration (captured by m) and preference (captured by π) components. Inde-
pendence has been assumed successfully in the structural work of Abaluck and Adams
(2021). Also, we are interested in modeling decision-making in two-stages where DMs
simplify a hard choice task using fast-and-frugal heuristics (consideration) that are in-
dependent of preferences, and then choose rationally from the simplified choice set.
If the researcher observes additional information (e.g., age, gender, education, and in-
come levels of individuals), then random consideration rule and random preferences
need to be independent only conditionally on those observables. 14

Independence holds trivially for the case of homogeneous preferences, such as all
models covered by the Random Attention Model (RAM) of Cattaneo et al. (2020). More-

13For any set C, �(C ) denotes the set of all probability distributions (simplex) on C. 1(B) denotes indi-
cator of the statement B and is equal to 1 if B is true and is equal to zero otherwise.

14See Kashaev and Aguiar (2022) for a study of the correlation between preferences and consideration.
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over, as the following lemma demonstrates, the B-rule does not have empirical content
even under the independence assumption.

Lemma 1. Every complete stochastic choice rule P is a B-rule.

Without additional restriction on π andm, the model is not falsifiable. That is, any P
can be generated by some independent π and m. We will impose constraints on m that
will allow us to test an important class of random consideration sets models without
restricting heterogeneity in preferences.

2.2 Attention-index consideration set rule

We restrict m by considering a family of consideration set rules that are governed by an
attention index. The attention-index η ∈ �(2X ) is a distribution over the power set. The
value η(D) captures the unconditional attention that DMs pay to the set D ∈ 2X . The
attention index of a set is a net measure of its attractiveness with respect to how hard it
is to consider it. The attention index measures how enticing a consideration set is, and
how complex it is to understand. Therefore, η(C ) > η(D) means that C, in net terms,
attracts more attention thanD.

Definition 2 (Attention-index representation). A consideration set rule m admits an
attention-index representation if there exists and attention-index η, a link function ψ,
and an index correspondence g such that g(D,A) ⊆ 2X \D and

mA(D) =ψ
(
η(D),

∑
C∈g(D,A)

η(C )

)

for allA ∈ A andD⊆A.

In what follows, we assume that the link function ψ and the correspondence g are
known. A given link function captures the particular way in which the attention in-
dex shapes consideration given a choice set or menu. In other words, the link function
transforms unconditional attention into conditional (on the choice set) attention. The
index set g(D,A) captures the collection of sets that are used in the attention aggrega-
tor

∑
C∈g(D,A)η(C ). However, we do not assume that η is known and do no impose any

restrictions on it, so the setting is still semiparametric.
Next, we define several important models of limited consideration that admit the

attention-index representation. They only differ in how they use the attention index to
form the consideration set at a given menu.

Definition 3. The logit attention (LA, Brady and Rehbeck (2016)), the choice set in-
dependent (MM, Manzini and Mariotti (2014)), the random consideration (EBA, Tver-
sky (1972), Aguiar (2017)15), and the full consideration (FC) models admit an attention-
index representation such that:

15The model in Aguiar (2017) is a special case of the model in Tversky (1972) and coincides with it when
the attention index of only sets that contain the default is nonzero.
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• m ∈ MLA if and only if there exists η ∈ �(2X ) such that for

mA(D) = η(D)∑
C⊆A

η(C )
> 0

for allA ∈ A andD ∈ 2A;

• m ∈ MMM if and only ifm ∈ MLA with

η(A) =
∏

a∈X\A

(
1 − γ(a)

) ∏
b∈A

γ(b)

for a given γ :X → (0, 1) and for allA ∈ 2X ;

• m ∈ MEBA if and only if there exists η ∈ �(2X ) such that

mA(D) =
∑

C:C∩A=D
η(C )

for allA ∈ A andD ∈ 2A;

• m ∈ MFC if and only ifm ∈ MEBA with

η(A) = 1(A=X ).

The MM-rule imposes independence in consideration across items, making the
model highly stylized and tractable. Both the LA- and the EBA-rules generalize this item-
independence to allow for substitution and complementarity of attention between dif-
ferent items. The LA-rule predicts that the probability of considering D is proportional
to the attention-index value η(D). The EBA-rule predicts that the probability of consid-
ering a subsetD given menuA is equal to the probability thatD is the intersection of the
subset of alternatives (considered randomly using the attention index) and the choice
set.16 In our application, we focus on these four particular models because they allow
us to learn about the true data generating process governing our experimental appli-
cation systematically. 17 However, our approach extends to any model of consideration
that admits an attention-index representation.18

Given the definition of the attention-index representation, we can define a restricted
version of the B-rule (L-B-rule). Let ML be the set of all consideration rules induced by
a given link function ψL, the correspondence gL, and all attention-indices η,

ML =
{
m :mA(D) =ψL

(
η(D),

∑
C∈gL(D,A)

η(C )

)
for some η ∈ �(

2X
)}

.

16Note that for the LA-modelψLA(x, y ) = x/(x+ y ) and gLA(D,A) = {C ∈ 2X \D : C ∩A= C}, and for the
EBA-model ψEBA(x, y ) = x+ y and gEBA(D,A) = {C ∈ 2X \D : C ∩A=D}.

17LA and EBA are completely distinct generalizations of MM. Thus, rejecting or accepting either of these
models is very informative.

18For instance, one can generate a continuum of such models by taking all possible convex combinations
of consideration rulesmLA andmEBA that are generated by the same attention-index η.
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Definition 4 (L-B-rule). A complete stochastic choice rule P is L-B-rule if P is a B-rule
withm ∈ ML.

We believe that random consideration rules that admit an attention-index represen-
tation have several theoretical advantages over other generalizations in the literature.
First, they cover, as special cases, well-known models of consideration and allow us to
introduce a new class of semiparametric models of limited consideration with heteroge-
neous preferences. In other words, the L-B-rule unifies existing models into a common
structure. This structure helps us to understand the common traits of these models, to
classify them, and to provide an identification and testing framework to possibly new
models covered in this structure.

Second, they enable the unique identification of the consideration rule and the un-
derlying stochastic choice full consideration probability from a cross-section of choices
with menu variation and heterogeneous preference (see Theorem 3). We are not aware
of any other work that achieves the same and is more general than ours. Allowing het-
erogeneous preferences is important in analysis of any data sets, and is unavoidable in
cross-sections. An important alternative generalization is RAM, which imposes only a
shape constraint on random consideration. However, it does not allow heterogeneous
preferences, nor it obtains point identification of consideration or the underlying full
consideration choice rule. Moreover, RAM is completely uninformative about prefer-
ences, when the stochastic choice rule is regular,19 as in the random utility models.20

Also, the L-B-rule allows cycles of probabilities that can violate regularity while RAM
cannot (see Appendix C.2).

Third, the concept of attention index is intuitive, simple, and of behavioral inter-
est, as it provides a useful (unconditional) index of attention for any subset of alterna-
tives. The link function and the attention index follow the tradition of classical stochastic
choice theory of simple scalability where the probability of choice of an alternative in a
menu is a nonlinear function (a link function) of some scale/index (Krantz (1965), Tver-
sky (1972)). In the simple scalability tradition, the scale/index captures the intensity of
the stimuli associated with a particular alternative. A classical example is the logit model
of choice. Here, we apply the same intuition to consideration–the attention index cap-
tures the net attractiveness of a consideration set.

Fourth, consideration rules that admit an attention-index representation are com-
patible with optimal random consideration of a representative DM. Here, we show that a
L-B-rule can be obtained as the result of allocating attention optimally (see Example 2).

In addition, consideration rules that admit an attention-index representation are
compatible with a flexible interpretation of randomness. In our framework, the random-
ness due to limited consideration can arise both at the individual and population level.
Indeed, consideration can be random at the individual level and independent and iden-
tically distributed (i.i.d.) at the population level; and consideration can be determinis-

19Regular random choice means that p(a,A) ≥ p(a, B) for any two menusA⊆ B and any a ∈A.
20Kashaev and Aguiar (2022) extend RAM to allow for heterogeneous preferences and show that when the

stochastic choice rule is regular nothing can be said as well about random consideration and preferences
even under independence among them.
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tic at the individual level but heterogeneous at the population level. The next example
shows how the latter case can be described by a L-B-rule.

Example 1 (Heterogeneous categorization). Consider a population of DMs with two
types of agents endowed with different deterministic attention rules. Assume that half
of the DMs are fully attentive, while the other half follows a rule of thumb: they pay full
attention to option b if it is present in a given choice set, else the consideration set is
empty. The DMs pick the best alternative, according to the (heterogeneous) preference
realization governed by some π ∈ �(R(X )). If the consideration set is empty, then the
outside option is selected. This population has heterogeneous (deterministic) consid-
eration, however, the population behavior can be fully captured by a random consid-
eration rule with the EBA restriction. Namely, let η(X ) = 1

2 and η({b}) = 1
2 . Then the

EBA-B-rule can describe this population behavior.

The next example demonstrates that the consideration rules that admit an attention-
index representation can be derived as a solution to the problem where representative
DMs optimally allocate their attention.

Example 2 (Costly attention allocation). Consider a (representative) DM whose prefer-
ences are given by a (mean) utility u : X → R and additive random vector ξ = (ξx )x∈X
such that the random utility of a given item x is given by u(x)+ξx. The taste shocks ξ are
distributed with respect to some continuous distribution.21 When the DM is faced with a
menuA, she needs to allocate her attention, measured bymA ∈ �(2A ), over all possible
consideration sets in A (including the empty set). The attractiveness of a set D is cap-
tured by the McFadden’s surplus of a given set defined by α(D) = E[maxx∈D(u(x) + ξx )]
for allD⊆ 2A \ {∅}, where the expectation is taken with respect to ξ. The attractiveness of
the empty set is normalized to be 0, α(∅) = 0. The surplus α(D) is a measure of average
attractiveness, capturing how enticing a consideration set is for the representative DM.
The difficulty of picking a consideration set, or the cost of attention, is captured by a cog-
nitive cost function K : [0, 1] → R ∪ {∞}. If D is considered with probability m(D), then
the cognitive cost is K(m(D)). The cost function is menu independent, but depends on
the allocated attentionm(D). Following Fudenberg, Iijima, and Strzalecki (2015), we as-
sume thatK is convex. In this case, DM’s problem is to find mA ∈ �(2A ) that maximizes
the expected attractiveness of the menu, given the cognitive cost of processing it. For-
mally,

mA = arg max
m∈�(2A )

∑
D⊆A

[
m(D)α(D) −K(

m(D)
)]

.

When K(t ) = 0 for all t ∈ [0, 1], the solution is such that mA(A) = 1. That is, the DM
is consistent with full consideration (FC). When K(t ) = −t log(t )/θ, where θ is the cost
parameter, we get that

mA(D) = exp
(
θα(D)

)
∑
C⊆A

exp
(
θα(C )

) .

21This guarantees that the implied random utility rule π exists because ties have zero probability.
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That is, optimal consideration in this case is consistent with LA with the attention-index
η(D) = exp (θα(D)). Note that in this definition of η, the independence assumption is
still satisfied since η(D) is an aggregate quantity and only depends on the mean utilities
(u(x))x∈X and the distribution of ξ but not on the realizations of ξ (e.g., when ξ follows
the Gumbel distribution, then α(D) = log

∑
x∈D eu(x)). Of course, we can replace α(D)

with any other measure of attractiveness and all our derivations will go through. This
means we can generate any model consistent with LA this way. Finally, whenK(t ) = 1

2 t
2,

we can get a special case of the EBA model.22

Finally, the attention-index representation also has several econometric advantages.
It allows for a significant reduction of the dimensionality of the consideration set rules,
making them tractable. In general, the number of parameters controlling the random
consideration is

∑
A⊆X 2|A| − 1. The single-attention index and the link function reduce

the number of unknown parameters to 2|X| − 1. It also leads to statistical testing (i.e., we
can take into account sample variability) of known models of random consideration in a
cross-section data set of choices (see Section 5). Thus, one can confront existing models
to experimental data sets in a competitive fashion to guide the exploration of models of
consideration sets and to inform which models are more successful.

2.3 Characterization and identification of the L-B-model

In this section, we answer the following questions: (i) When can we recover different
consideration rules from the data? (ii) What are their observable implications? We an-
swer these questions by decomposing the observed probabilities of choice P into an
attention rule m and a distribution of preferences π. In other words, we recover from
the data set P the primitives of the B-rule that generated it, and provide necessary and
sufficient conditions that guarantee that a data set P can be generated by a L-B-rule.

Our starting point is to exploit the fact that if a consideration rule m admits an
attention-index representation, then the probability of choosing the default alterna-
tive is completely determined by the attention-index η. In particular, the probabil-
ity of choosing the outside option is independent of the distribution of preferences
due to the independence assumption that we have imposed between preferences and
consideration. In addition, recall that in our model the outside option is only chosen
when nothing else in the menu is considered.23 If we denote po = (p(o,A))A∈A and
ψ∅(η) = (ψ(η(∅),

∑
C∈g(∅,A)η(C )))A∈A, abusing notation we can write the system of

equations

po =ψ∅(η).

When ψ∅ is invertible, we can uniquely recover the random consideration rule from the
probability of choosing the outside alternative from all different menus. Since our ob-
jective is the identification of the consideration rule, we provide a natural restriction on

22The EBA model then requires that the DM does not reoptimize in smaller menus A⊂X . Instead, she
uses the heuristic that whatever category she draws atX it is intersected with the given menu to obtain the
consideration set.

23For an extension that relaxes this assumption, see Appendix B.
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the attention-index rule that guarantees invertibility of ψ. This restriction is satisfied by
the models of interest in this paper (but not restricted to them).

Definition 5 (Totally monotone consideration). A consideration rule m admitting an
attention-index representation is totally monotone, if we can write, for allA ∈ A,

mA(∅) = ϕ
(
η(∅),

∑
C⊆A

η(C )

)
,

where ϕ : [0, 1] × [0, 1] → [0, 1] is a strictly monotone in each argument function.

The probability of not considering any object, conditional on a given choice set, is
assumed to be a monotonic function of the cumulative probability of paying attention
to at least some alternative in the menu (according to η), and of the probability of not
considering anything (unconditionally). Crucially, the dependence on the correspon-
dence g disappears in a totally monotone attention-index representation, with respect
to the general attention-index representation. Note, this happens only for the case of not
considering anything (i.e., the consideration set is ∅).

Totally monotone attention-index rules are such that the random consideration is
monotone as in Cattaneo et al. (2020), namelymA(∅) ≤mB(∅) ifB⊆A, whenϕ is strictly
increasing in the first entry. However, in this case, they imply more. Since the mapping
m(·)(∅) : A → [0, 1] is a function of the cumulative probability of considering at least one
item in any given menu (i.e., a function of

∑
C⊆Aη(C )), the behavior of the probability

of choosing the outside option will be restricted. For instance, for the case of EBA it will
satisfy a form of marginal decreasing propensity of choice (Aguiar (2017)).

We highlight that total monotonicity is testable. Observe that the marginal probabil-
ity of choosing the outside option, when a new set of alternatives is added to a menu,
is weakly decreasing (e.g., �Cp(o,A) = p(o,A ∪ C ) − p(o,A) ≤ 0 and �D(�Cp(o,A) ≤
0)).24 Alternatively, ϕ can be strictly decreasing in the first entry, in which case it pro-
vides an antithetic behavior to that of RAM (yet testable). In this sense, this restriction
on attention is neither weaker nor stronger than the monotonicity restriction in Catta-
neo et al. (2020).

Strict monotonicity of ϕ in each of its entries implies the invertibility of ψ.25 This
sufficient condition for invertibility of the link function ψ is mild. It holds in all the ex-
amples of interest in this work. Importantly, it is a testable restriction. Note that since
the inverse of ψ is known under the model of interest, we can compute a candidate η
from the data P . If the computed η is not an element of the simplex �(2X ), thenψ is not
invertible.

The next lemma shows that the models we consider admit a totally monotone
attention-index representation.

24Note, however, that this restriction does not mean thatm satisfies the monotonicity property for other
menus different from the empty set.

25This is a consequence of Mobius invertibility of the mapping v(·) = ∑
C⊆·η(C ) (Chateauneuf and Jaf-

fray (1989)).
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Lemma 2. Any m ∈ ML, L ∈ {LA, MM, EBA, FC}, admits a totally monotone attention-
index representation with

• ϕLA(ηo, t ) = ηo
t ;

• ϕEBA(ηo, t ) = 1 − t +ηo;

• ϕMM(ηo, t ) = ϕLA(ηo, t ) and ϕMM(ηo, t ) = ϕEBA(ηo, t );

• ϕFC(ηo, t ) = ϕEBA(ηo, t ).

The proof is omitted because of its simplicity for the cases of LA, EBA, and FC. For
the case of MM, the statement follows from Brady and Rehbeck (2016) and Aguiar (2017).
26

The key assumption in this section has been that the default that is always present
is always dominated. We formulate a sensitivity analysis when the default is not domi-
nated in Appendix B.

2.4 Characterization of the L-B-model

As a preliminary step for characterizing the L-B-model, we construct a candidate cali-
brated attention-index ηL from the data P . Informally, this calibrated (revealed) atten-
tion index is the result of inverting the link function ϕ with respect to the probability
of choosing the default alternative. The link function invertibility is a consequence of
the monotonicity assumptions and the existence of a unique Mobius inverse of the cu-
mulative attention-index v(·) = ∑

C⊆·η(C ) (Chateauneuf and Jaffray (1989)). We do this

recursively. For a given ϕL, let ϕ−1,L
1 and ϕ−1,L

2 be the inverses of ϕL with respect to the
first and the second argument, respectively. Let |A| denote the cardinality of a finite set
A.

Definition 6 (Calibrated attention index). For given P , ηL : 2X → R is such that (i)
ηL(∅) = ϕ−1,L

1 (p(o,X ), 1), and (ii) for allD ∈ 2X \X ,

ηL(D) =
∑
B⊆D

(−1)|D\B|ϕ−1,L
2

(
ηL(∅), p(o,D)

)
.

The calibrated attention index depends only on the data set P and the model L. If
the calibrated attention index of a set is negative, then P could not have been generated
by model L. This testable implication is analogous to the Block and Marschak (1960)
inequalities.

Now, we construct an object, mL, that is a distribution over consideration sets if the
model L is correctly specified.

26Note that since MM and FC are special cases of LA and EBA, respectively, they share the same link
function. However, empirically we will be able to differentiate among them because of the additional re-
strictions they pose on η.
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Definition 7. For a given P , let mL = (mL
A(D))A∈A,D∈2A , where mL

A : 2A → R is such
that for allA ∈ A andD ∈ 2A,

mL
A(D) =ψL

(
ηL(D),

∑
C∈gL(D,A)

ηL(C )

)
.

We can apply this generic formula for totally monotone attention-index rules to the
specific models of interest.

Example 3.• mLA
A (D) = ηLA(D)∑

C⊆A ηLA(C )
, where ηLA(D) = ∑

B⊆D(−1)|D\B| p(o,X )
p(o,B) ;

• mMM
A (D) = ηMM(D)∑

C⊆A ηMM(C )
, where ηMM(D) = ∏

a∈X\D(1 − γMM(a))
∏
b∈D γMM(b), and

γMM :X →R such that γMM(a) = 1 − p(o,A)
p(o,A\{a}) for someA ∈ A that contains a;

• mEBA
A (D) = ∑

C:C∩A=DηEBA(C ), where ηEBA(D) = ∑
A⊆D:D∈A(−1)|D\A|p(o,X \A);

• mFC
A (D) = 1(A=D).

In general, mL may not be a distribution (some components may be negative or
greater than 1) sincemL is calibrated from observed frequencies. Moreover,mLA ormMM

may not be well-defined if probabilities of choosing the outside option for some choice
sets are zero.

To be able to estimatemL from the data with probability approaching 1, we need the
following definition that formalizes the above discussion.

Definition 8 (Well-definedmL). mL is well-defined ifmL
A ∈ �(2A ) for allA ∈ A.

We are ready to state our main result.

Theorem 1. For every link function L, the following are equivalent:

(i) P is a L-B-rule;

(ii) mL is a well-defined and P is a B-rule described by (mL, π ).

Theorem 1 provides a full characterization of well-defined models with link func-
tions. If P is a L-B-rule, then mL has to be well-defined. Theorem 1 implies that to test
a given model one does not need to consider all possible distributions over considera-
tions sets. It suffices to check the unique distribution that is calibrated from observed P
according to Definition 7.

Initially, we had to find two objects (the distribution over preferences π and the dis-
tribution over consideration sets m) to make the data consistent with the model. Now
we just need to find π. In other words, we simplified the testing problem. Unfortunately,
the testing problem is still not tractable since the set of all possible distributions over
preferences �(R(X )) is big. To solve this problem, we introduce another fictitious ob-
ject.
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Definition 9. For given model L and P , let PL
π = (pL

π(a,A))A∈A,a∈X , where pL
π : X ×

A → R is such that for allA ∈ A and a ∈A,

pL
π(a,A) =

p(a,A) −
∑
C⊂A

mL
A(C )pL

π(a, C )

mL
A(A)

.

Note that when P has been generated by a L-B-rule, PL
π corresponds to the underly-

ing full-consideration random utility rule. In fact, we can write a L-B model equivalently
as

p(a,A) =
∑
D⊆A

mA(D)pπ(a,D),

where pπ(a,A) = ∑
�∈R(X )π(�)1(a � b, ∀b ∈A) is the underlying FC distribution over

(nondefault) choices that is weighted by the random consideration rule m to produce
the observed behavior. When P has been generated by this L-B-rule, it follows that pL

π =
pπ . That is why we call PL

π the calibrated full consideration rule.
Similar to mL, PL

π has interpretation when the L-B-rule is consistent with the data.
The next theorem provides the last missing piece of our characterization before testing.

Theorem 2. Suppose that for given model L and stochastic choice rule P (i) mL is well-
defined, (ii)mL

A(A)> 0 for allA ∈ A. Then the following are equivalent:

(i) P is a L-B-rule;

(ii) PL
π is a FC-B-rule.

Note that both mL ≥ 0 and PL
π can be computed from P . Thus, Theorem 2 implies

that to test a given model L it is necessary and sufficient to test whether mL is well-
defined, and whether calibratedPL

π is a full consideration rule. Theorems 1 and 2 provide
a generalization of the characterization results in Manzini and Mariotti (2014), Brady
and Rehbeck (2016) and Aguiar (2017). Moreover, they provides a unified result for all
models that admit a (totally monotone) attention-index representation.27

In practice, we do not observe P , but can consistently estimate it by the collection of
sample frequencies P̂ . In Section 3.2, we discuss how to test the L-B-rule accounting for
sampling variability in P̂ .

2.5 Identification

Assuming independence between the distribution of preferences and the random con-
sideration set rule, we uniquely identify the consideration set rule from P if it is a L-B-
rule, for all models with totally monotone link functions. Moreover, if there is a positive
mass of individuals that consider all alternatives in the choice set, the recoverability of
preferences is as good as in the case of full consideration.

27Note that Theorem 2 simplifies the testing problem because it avoids the problem of computing the
distribution over choices for every consideration set in every menu. We only need to focus on computing
the distribution over choices in each menu.
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Theorem 3 (Identification). Suppose that for a given model L (i) P is a L-B-rule and
(ii) mL

A(A) > 0 for all A ∈ A. If P is described by (m, π ) and (m′, π ′ ), then m = m′ and
pπ = pπ′ .

We underline that we achieve a unique decomposition of the data setP into its atten-
tion and preference components. Identification of preferences and consideration rules
is not a trivial task. Even for simple data sets where stochastic behavior arises from only
one channel (e.g., limited consideration), models that only allow for stochastic behav-
ior because of preference heterogeneity (e.g., RUM), or because of random considera-
tion/attention without additional assumptions (e.g., RAM) may fail to identify under-
lying preferences even when they perfectly describe observed choices. Our framework
shows that the recoverability of preferences is as good as the RUM benchmark in stark
contrast with RAM, where nothing can be learned about preferences for regular random
choice.

3. Frames and testing

3.1 Frames

In this section, we introduce another source of variation in the data-attention frames.
This additional source of variation will allow us to differentiate between behavior con-
sistent with RUM and behavior consistent with L-B. Following Salant and Rubinstein
(2008), we define the extended choice set as a pair of a choice set A ∈ A and an atten-
tion frame f ∈ F . In this extended environment, for a given frame f ∈ F , we can define
a probabilistic choice rule pf . Similarly, a complete stochastic choice rule with frame
f ∈ F is Pf = (pf (a,A))A∈A,a∈A∪{o}.

The elements of F contain descriptions of physical items that only vary in presen-
tation but not in the information they contain. Our interpretation of attention frames is
the same as Bhattacharya, Mukherjee, and Sonal (2021). These descriptions are available
to DMs and should not affect their preferences, but may influence their attention.

Example 4 (Stochastic choice rule with frames). Let X = {a, b, c} and consider two
frames: (i) f that describes a = 1 token, b = 2 tokens, and c = 3 tokens; (ii) and f ′ that
describes a= 3 − 2 tokens, b= 10 − 8 tokens, and c = 2 + 1 tokens. An example of an (in-
complete) stochastic choice rule with frame f is Pf = (pf (a, {a, b}) = 0, pf (b, {a, b}) =
1, pf (b, {b, c}) = 0, pf (c, {b, c}) = 1). An example of an (incomplete) stochastic choice
rule with frame f ′ is Pf ′ = (pf ′(a, {a, b}) = 1/2, pf ′(b, {a, b}) = 1/2, pf ′(b, {b, c}) =
1/2, pf ′(c, {b, c}) = 1/2).

In Example 4, f and f ′ present the same information about the same alternatives
in two distinct ways. In particular, different frames correspond to different numbers of
arithmetic operations used to describe the value of the option. The same value is ex-
pressed in each frame with a different sequence of arithmetic operations.

The B-rule with frame f can be defined analogously to the definition of the B-rule in
Section 2. A complete stochastic choice rule with frame f , Pf , is a B-rule if there exists a



Quantitative Economics 14 (2023) Random utility and limited consideration 87

frame dependent distribution over random consideration sets, mf and a frame depen-
dent distribution over strict linear orders πf such that

pf (a,A) =
∑

�∈R(X )

πf (�)
∑
D⊆A

mf ,A(D)1(a� b, ∀b ∈D).

We take the stand that preferences should not depend on the way the information
is presented. Only attention may change due to frames. We formalize these ideas by the
assumption of consequentialism, which is a common implicit assumption in the RUM
framework of McFadden and Richter (1990).

Definition 10 (Consequentialism). A collection of B-rules (Pf )f∈F described by ((mf ,
πf ))f∈F is said to satisfy consequentialism if there exists π such that πf = π for all f ∈ F .

Consequentialism means that an attention frame does not alter the payoffs that a
DM obtains from choosing a given alternative. In the same way that the standard ratio-
nal choice framework imposes frame independence (Salant and Rubinstein (2008)), the
classical RUM imposes consequentialism (McFadden and Richter (1990)).

At this point, it is useful to formally define the Random Utility Model (RUM) over the
whole choice setX ∪ {o}. RUM treats the default alternative as just another item with no
special status. That is, it is not assumed to be a dominated alternative. Let R(X ∪ {o}) be
a set of linear orders over the extended choice setX ∪ {o}.

Definition 11 (Random Utility Model, RUM). A collection of complete stochastic
choice rules with frame (Pf )f∈F is consistent with random utility if there exists πo ∈
�(R(X ∪ {o})) such that

pf (a,A) =
∑

�∈R(X∪{o})

πo(�)1(a� b, ∀b ∈A),

for all a ∈A,A ∈ A, and all f ∈ F .

Note that RUM satisfies consequentialism and πo does not depend on the frame.
The L-B-rule extends the RUM framework to allow for frame dependence only through
the random consideration rule.

By assuming that preferences satisfy consequentialism, we are essentially making
two assumptions: (i) we assume that the distribution of preferences does not depend on
how the alternatives are presented; (ii) consideration in turn can depend on payoff ir-
relevant information. These assumptions are important, since our experiment has three
treatments where a subject must perform a different number of arithmetic operations
to evaluate the monetary value of a prize.

These assumptions are auxiliary and are not necessary for either RUM or L-B-rules.
However, these assumptions are a reasonable baseline to compare RUM and random
consideration models. The reason that these assumptions are not immediately implied
is because RUM is often viewed as descriptive. Taking this one step further, one could as-
sume that the distribution of preferences varies with the difficulty of evaluating a task in
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Figure 2. Relation among consideration set rules for a fixed frame: RUM, LA, MM, and EBA.

our experiment. This would violate our assumption of consequentialism. While frame-
dependent preference could be a reasonable assumption in some settings, it would limit
the ability to predict counterfactual choices. For example, one would need to identify
preferences in each setting to get a prediction on choices.

Specifically, frame variation allows us to differentiate between L-B-rules and RUM as
follows. Without it, LA is not nested by nor nests RUM. For example, LA allows for attrac-
tion effect, which violates regularity and, therefore, is inconsistent with RUM. Also, their
intersection is nonempty because MM is both consistent with RUM and LA (Manzini
and Mariotti (2014), Brady and Rehbeck (2016)). Moreover, for a fixed frame EBA is
nested in RUM and nests MM, therefore, its intersection with LA is nonempty (Aguiar
(2017)) (see Figure 2).28 However, with frame variation this is no longer true: RUM and
EBA intersect, but are not nested within each other.29

3.2 Testing procedure

Theorem 2 allows us to test whether for a given frame f , a given stochastic choice rule
Pf is a L-B-rule: it is necessary and sufficient to test whether mL

f is well-defined (satis-

fies a set of linear inequalities) and PL
f ,π is consistent with the full consideration model.

Note that the full consideration model is equivalent to the random utility model without
outside option. Testing for RUM is a well-understood problem and amounts to solving a
quadratic optimization with cone constraints (see McFadden and Richter (1990) and Ki-
tamura and Stoye (2018)). The approach proposed by Kitamura and Stoye (2018) allows
us to test these conditions while accounting for sampling variability induced by using
P̂f instead of unknown Pf .

We, however, need to slightly modify the testing procedure in Kitamura and Stoye
(2018) to take into account the frame variation. First, we describe the testing procedure
for the fixed frame and then extended it to environments with frame variation.

To introduce the testing procedure, we need to define several objects. Note that, for
a fixed frame f , the calibrated full consideration rule, PL

f ,π , is a vector of length dp =∑|X|
k=1 k

(|X|
k

)
.30 The kth element of PL

f ,π corresponds to some pair (a,A) such that a ∈A.

28Kovach and Suleymanov (2021) shows that MM is the intersection of LA and EBA.
29All of these relationships are preserved when allowing for heterogeneous preferences under the in-

dependence assumption of preferences and attention. The reason is that the outside probability does not
depend on the distribution of preferences. For more details, see Appendix C.

30
(n
k

) = n!
k!(n−k)! and n! = 1 · 2 · · · · · n.
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Let B1 be the matrix of the size dp × |X|! such that (k, l) element of it is equal to

B1,k,l = 1(a ∈A)1(a�l c, ∀c ∈A),

where k corresponds to a pair (a,A) such that a ∈A, and �l is lth linear order onX . We
defineG1 as the matrix of size (dp+dm ) ×d1, where d1 = |X|! +dm and dm = ∑

A⊆X 2|A|
is the dimension ofmL

f , such that

G1 =
[

B1 0dp×dm
0dm×|X|! Idm

]
,

where 0dp×dm denotes the zero matrix of size dp×dm, and Idm denotes the identity matrix
of size dm × dm. The next result establishes an equivalent characterization of the L-B-
rule via mL

f and PL
f ,π . Let Rd1+ denote componentwise nonnegative elements of the d1-

dimensional Euclidean space R
d1 .

Theorem 4. For a fixed frame f , the following are equivalent:

(i) PL
f ,π is a FC-B-rule andmL

f is well-defined;

(ii) inf
v∈Rd1+

‖gL
f −Gfv‖ = 0, where gL

f = (PL′
f ,π ,mL′

f )′.

Proof. See McFadden and Richter (1990) and Kitamura and Stoye (2018).

Theorem 4 implies that we can test the null hypothesis that inf
v∈Rd1+

‖gL
f −G1v‖ = 0.

Fortunately, this testing problem can be directly cast to the testing problem in Kitamura
and Stoye (2018).

To take into account the frame variation and consequentialism, we need to modify
the matrix G1. Let df = |F | and B be a matrix of size df · dp × |X|! that consists of df
matrices B1 stacked together. That is, B= (B′

1B
′
1 
 
 
B

′
1 )′. Let d = |X|! + df · dm. Similar to

G1, define

G=
[

B 0df ·dp×df ·dm
0df ·dm×|X|! Idf ·dm

]
.

Note that when df = 1 (i.e., the frame is fixed), thenG=G1.

Corollary 1. The following are equivalent:

(i) (Pf )f∈F satisfies consequentialism; PL
f ,π is a FC-B-rule and mL

f is well-defined for
all f ∈ F .

(ii) infv∈Rd+‖gL −Gv‖ = 0, where gL = ((PL
f ,π )′f∈F ,mL

f )′f∈F )′.

4. The experiment

Our testing approach does not have requirements in terms of repeated individual choice
data. Exploiting this feature, our experiment was designed to study the performance of
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different theories of random consideration sets with few observations per individual. In
particular, we conducted the experiment in Amazon MTurk for a large cross-section with
at most two (disjoint) choice sets per individual (see Section 4.1). The large sample size
of the data set generated by our experiment is fundamental for ensuring high statistical
power using the tools in Kitamura and Stoye (2018).

All sessions were run between August 25, 2018, and September 17, 2018, on the
MTurk platform with surveys designed in Qualtrics.31 We surveyed 2135 individuals.
They were paid on average $1.09 as a result of $0.25 for participation fee and the out-
come of a randomly selected task that pays a minimum of $0 and a maximum of $2. All
payments were made in USD. The average duration of the session was 251.68 seconds
(slightly over 4 minutes).32 This means that our average payment per hour is roughly
$15.

The payment in our experiment is comparable to other well-known experiments
conducted in MTurk. To name a few, Horton, Rand, and Zeckhauser (2011) studied be-
havior in MTurk using games with the payment range between $0.40 and $1.60. They
find that behavior in MTurk is consistent with behavior in the lab, where the stakes of
games are ten times bigger. They also estimate the median minimum wage in MTurk as
$0.14 per hour.33

 Dean and McNeill (2014) conducted experiments of decision-making.
The average payment for completing 15-min long tasks was between $1.35 and $1.55
including the show-up fee of $0.25. Kim (2020) conducted an experiment in MTurk for
several weeks with one 10-min task each week. The average earnings from each week’s
task were below $1.00. Rand, Greene, and Nowak (2012) also conducted a public good
game with MTurkers and the payment range was between $0.90 and $1.50 including the
show-up fee of $0.50.

4.1 Experimental design

In our experiment, we have two independent sources of exogenous variation: full varia-
tion in choice sets and variation in frames. Recall that full variation in choice sets means
that all possible choice sets are observed, and variation in frames means that we vary ob-
servable information without affecting the rational assessment of the alternatives. These
two sources of variation allow us to test consideration-mediated choice theories in a
large cross-section of heterogeneous individuals, and differentiate these theories from
RUM. The latter is possible since consideration is allowed to change with frames, but
preferences must remain stable due to consequentialism. We vary the frame through
changes in the cost of consideration.

31By clicking the link on the MTurk page, subjects were randomly directed to one of the treatments im-
plemented by Qualtrics. After completing their task, subjects were also asked to complete a short survey
regarding their demographic information. Subjects were not allowed to participate in the experiment more
than once. Only subjects living in the USA were recruited.

32The average duration of each task is about 23 seconds, and the duration is significantly correlated with
the length of the choice set and the frame.

33The minimum wage here refers to the reservation wage the MTurk subjects have for performing a given
task.



Quantitative Economics 14 (2023) Random utility and limited consideration 91

Table 1. Lotteries measured in tokens, expected values, and variance.

Lottery Expectation Variance

Preference Rank u(x) = x1−σ
1−σ with σ

−2 0 0.25 0.30 0.50 0.75

(1) 1
2 50 + 1

2 0 25.000 625.00 1 1 2 5 5 6
(2) 1

2 30 + 1
2 10 20.000 100.00 5 5 5 2 1 1

(3) 1
4 50 + 1

4 30 + 1
4 10 + 1

4 0 22.500 368.75 3 3 4 4 3 4
(4) 1

4 50 + 1
5 48 + 3

20 14 + 2
5 0 24.125 511.73 2 2 1 3 4 5

(5) 1
5 48 + 1

4 30 + 3
20 14 + 1

4 10 + 3
20 0 21.625 251.11 4 4 3 1 2 3

(o) 12 with probability 1 12.000 0.00 6 6 6 6 6 2

Choice set design

To induce preference heterogeneity, we consider lottery alternatives with different ex-
pected values and variances. Table 1 shows the alternatives and implied preference
rankings if DMs are expected utility maximizers with CRRA Bernoulli utility function.
The outside option is dominated for moderate levels of risk aversion (e.g., Holt and Laury
(2002)).34

Let X = {l1, l2, l3, l4, l5} be the set of all nondefault alternatives, and let o be the de-
fault/outside option. All menus A ∈ A are observed in the sample. The outside option
is always present and is shown first, while the order of other alternatives is randomized.
Menus can be thought as different treatments.

Our primitive to test L-B is P̂ = (p̂(a,A))a∈A∪{o},A∈A, therefore, we proceeded with
stratified sampling, setting the minimal number of observations per choice set to be
proportional to its cardinality, that is, nA = λ(|A| + 1) with λ ≥ 30. This design requires
a minimum of

∑
A∈A|A| = 3330 tasks.

For each menu, the DM faced three consideration frames or cost treatments: High
(H), Medium (M), and Low (L). These frames/cost treatments were induced by intro-
ducing a k-length two digit addition/subtraction to compute each prize in the lottery.
The length k was set equal to 5, 3, and 1, for the high, the medium, and the low cost, re-
spectively. Since in our experiment attention frames only change the complexity of the
description of lotteries, we assume that preferences of DMs do not depend on the way
alternatives are described, thus are consistent with consequentialism.

The numbers for the cognitive task were randomly generated. Examples can be seen
in Figure 3. The default alternative owas presented as is, and there was no need to solve
an arithmetic problem to understand it across the different levels of cost.

To prevent possible learning that could attenuate consideration costs, subjects were
faced with disjoint choice sets. That is, subjects were either presented with the full
choice set and the outside option (X ∪ {o}); or a partition of X (presented at random
order), that is, Aj ∪ {o}, Ak ∪ {o} with Aj ∪Ak =X and Aj ∩Ak = ∅. Our experimental
design is summarized in Figure 4.

34Recall that the assumption that the default is dominated is a testable assumption in our framework. In
addition, without cost of consideration treatments, the outside alternative is easier to understand than the
rest because of its simplicity. Hence, it works as a consideration-reference point in the sense of Kovach and
Suleymanov (2021).
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Figure 3. Consideration cost treatments. Different induced costs for choice set {o, l2, l4}.

The default alternative Our design allows us to use o as the opportunity cost of incur-
ring in the cost of consideration and understanding the other lotteries in the choice set.
We use a degenerate lottery as the default due to its simplicity. In this sense, we believe
the alternative o in our design has effectively zero cost of consideration. Recall, that for
any choice set/frame the outside option is always present and shown first. Moreover,
it is preselected as the default alternative. If the subject decides to skip the task, she is
informed that o will be chosen for her.

4.2 Sample

The sample consists of 2135 individuals that selected alternatives from one or two choice
sets for all costs of attention, as shown in Figure 4, for a total of 12,297 observations. The
number of observations per alternative/choice set are shown in Table 4 in Appendix D.
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Figure 4. Experimental design: DM i draws with probability p(Aj ) menu Aj with
|Aj | ∈ {3, 4, 5}. In the picture, Aj = {l3, l4, l5}. Therefore, she is asked to choose from menus
Aj ∪ {o} and A2 ∪ {o}, since A2 ∪Aj =X and A2 ∩Aj = ∅. She is faced with one of these menus
first (randomly selected) and asked to choose when the cost is H, M, and L. Then she faced the
other menu for the three cost treatments.

Based on these observations the primitive for our analysis is the collection of observed
frequencies (p̂(a,A))a∈A,A∈A. We compute these frequencies for all costs. Unless oth-
erwise stated, p̂(a,A) refers to observed frequency in the data pooled across attention
costs.

Figure 5 summarizes the distribution of gender, age, education, ethnicity, labor, and
income in our sample. Our subjects are a diverse sample of US individuals. By design,
demographics are balanced across consideration cost treatments and choice sets (that
can also be thought of as treatments).

4.3 Descriptive analysis: Evidence for costly consideration and frame effects

In this section, we describe the behavior of individuals in our sample and present sug-
gestive evidence that our cost treatments effectively induce costly consideration or
frame effects. In particular, we observe that the consideration cost treatments/frames:
(i) affect the choice frequency of the outside option; (ii) have a heterogeneous effect on
the choice frequencies of all other alternatives; (iii) and affect the patterns of choice with
respect to the size of the menu. Moreover, all these effects depend monotonically on the
level of difficulty of choice induced by each treatment.

Under the null hypothesis of full consideration and consequentialism, the observed
frequency of choice of the outside option should remain the same across frames. The
reason is that the choice menu remains the same across cost treatments, and payment is
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Figure 5. Distribution of demographics in sample.

at random. However, the outside option is chosen more often as the cost increases (see
Figure 6). This is evidence against full consideration and in favor of frame-dependent
choice.

Figure 6. Frequency of the outside option conditional on the menu size and frame.
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Figure 7. Frequencies of choices for different lotteries and frames.

We remind the reader here that low, medium, and high cost corresponds to 1, 3,
and 5 arithmetic operations required to understand the monetary prize of each lottery,
respectively. The monotone relation shows that our treatments were effective, and that
the frequency of choice of the default is in fact ordered in the way it was expected.

Figure 7 shows the effect of the frames/cost-treatments on the choice frequencies.
The harder it is to understand the lotteries,35 the more likely subjects opt to not consider
them and instead choose the outside option. These results support the effectiveness of
the induced treatments. Figure 7 also shows that the effect of the cost treatment is not
homogeneous across alternatives. The choice frequency of lottery 1 (the simplest to un-
derstand after the default) increases with the cost treatment; the cost does not have a
significant impact on the probability of selecting lottery 4; while it has a negative impact
on the other lotteries.

Overall, the probability of selecting any given lottery does not necessarily decrease
with the size of the menu, suggesting that regularity is violated in our sample, as shown
in Figure 8. Indeed, we test RUM later and confirm that these violations are significant,
since we reject RUM at the 5% significance level.

Notice that, for a fixed frame/attention cost, some lotteries are harder to compute
than others. For instance, lottery 2 can pay 30 or 10 tokens, while lottery 3 can pay 50, 30,
10, or 0. So, for every frame, lottery 3 is harder to compute than lottery 2. Our attention-
index framework allows for alternatives or lotteries with heterogeneous complexity (e.g.,
the simplest model MM has a lottery-specific attention parameter). For instance, the
simplest lottery 1 is picked more often as the cost rises, while the hardest to compute

35Here, simplicity comes in the form of how easy (number of arithmetic operations) it is to compute
expectation, variance, and expected utility of the lottery in terms of the number of prizes and whether the
probabilities are uniform on the support of the lottery or not.
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lottery 5 displays the opposite pattern. These observations confirm the presence of het-
erogeneous attention patterns.

4.4 Evidence for total monotonic attention

Recall that, under the null hypothesis, the data set is generated by an attention-index
model with a link function that is totally monotone. Hence, the frequency of choosing
the outside option is equal to a monotone transformation of cumulative attention asso-
ciated with the attention-index

∑
C⊆Aη(C ):

p(o,A) =mA(∅) = ϕ
( ∑
C⊆A

η(C ), η(∅)

)
.

In Figure 8, we observe that the frequency of choice of the outside option is not a
decreasing function of the cardinality of the choice set. The latter is inconsistent with
total monotonicity, and thus, we may naively conclude that neither RUM, LA, nor EBA
can explain our data set. However, as we confirm in the next section, this slight violation
of monotonicity is an artifact of sample variability, and it is not statistically significant.

Choice overload refers to the case when the propensity of not choosing any alterna-
tive (i.e., the probability of picking the default alternative) increases with the size of the
choice sets (Iyengar and Lepper (2000)). Our findings are informative on whether this
effect, which may be present at the individual level, still matters at the population level.
Note that neither RUM nor any model of limited consideration that we study (including
Cattaneo et al. (2020)) can rationalize choice overload.36 Existing models of limited con-
sideration are fundamentally at odds with choice overload, since one of the important
reasons to form a consideration set is to simplify choice.37 We find no statistical support
for choice overload in our data set. However, our choice set is of moderate size.

4.5 Differentiating between LA and EBA

In Figure 8, we also plot the frequencies of choice of the nondefault alternatives and find
that there are violations of total monotonicity (e.g., lottery 3). This evidence suggests
that EBA cannot describe this data set because total monotonicity should hold for all
alternatives (Block and Marschak (1960), Aguiar (2017)). However, this is not enough to
conclude that EBA cannot describe the data set because of sample variability. Nonethe-
less, we reject the null hypothesis that EBA can describe this data set. In addition, we
must highlight that LA is the only candidate that can accommodate the observed non-
monotonicity of the nondefault alternatives observed in this data set. We confirm this
insight in our formal testing section by showing that LA does a good job at describing
this data set.

36Chernev, Böckenholt, and Goodman (2015) provides a meta-data analysis of the determinants of
choice overload.

37Other models of stochastic choice that are not models of limited consideration usually can accom-
modate choice overload; see, Fudenberg, Iijima, and Strzalecki (2015), Echenique, Saito, and Tserenjigmid
(2018), Natenzon (2019), and Kovach and Tserenjigmid (2022).
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Figure 8. Frequency of choice for all frames as a function of the menu size.

The nonmonotonicity that we observe in Figure 8 is usually called attraction effect
(Huber, Payne, and Puto (1982)). The attraction effect refers to a phenomenon when,
as a new alternative is added to the choice set, the probability of the existing items is
boosted. Our findings support the presence of the attraction effect in our experimental
sample.

5. Testing random consideration models

In this section, we report the results of testing the ability of RUM, LA, and EBA to de-
scribe our experimental data. We test these models without imposing any restrictions
on preferences except stability over frames. Unless otherwise stated, the tested hypoth-
esis is that, for a particular specification of our model (consideration set stochastic rule),
there exists (m, π ) that is a L-B representation for behavior.

5.1 Econometric testing

For every frame f , although Pf is not observed, the realized choice frequencies P̂f are.
For everyA ∈ A and f ∈ F , let nf ,A denote the number of individuals in the sample that
faced choice setA and frame f , and let ai,f ,A, i= 1, 
 
 
 , nA be the observed choice of in-
dividual i from choice setA∪ {o} and frame f . We assume that the researcher observes a
cross-section of observations (i.e., i.i.d. observations) for every menu and frame.38 Then

38For a given frame, this is a standard stochastic choice data set in the literature on limited consideration.
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we define the estimated stochastic choice rule as

P̂f = (
p̂f (a,A)

)
A∈A,a∈A∪{o}.

with p̂f (a,A) = n−1
f ,A

∑nf ,A
i=1 1(ai,f ,A = a) for any a ∈A∪ {o}.

Given the model of interest L and the estimator of Pf , P̂f , we can compute the es-

timators of mL
f and PL

f ,π , m̂L
f and P̂L

f ,π , using Definitions 7 and 9.39 Given the results of
Corollary 1, a natural test statistic is

Tn = n min
v∈Rd+

∥∥ĝL −Gv∥∥2
,

where n= minf (
∑
A nf ,A ) is the smallest sample size across frames and ĝL = ((P̂L

fπ )′f∈F ,

(m̂L
f )′f∈F )′.
Let ĝL,∗

l , l= 1, 
 
 
 , L, be bootstrap replications of ĝL. Let τn ≥ 0 be a tuning parameter
and ι be a vector of ones of dimension d.40 To compute the critical values of Tn, we follow
the bootstrap procedure proposed in Kitamura and Stoye (2018):

(i) Compute η̂τn =Gvτn , where vτn solves

n min
[v−τnι/d]∈Rd+

∥∥ĝL −Gv∥∥2
;

(ii) Compute the bootstrap test statistic

T∗
n,l = n min

[v−τnι/d]∈Rd+

∥∥ĝL,∗
l − ĝL + η̂τn −Gv∥∥2

, l= 1, 
 
 
 , L;

(iii) Use the empirical distribution of the bootstrap statistic to compute critical values
of Tn.

For a given significance level α ∈ (0, 1/2), the decision rule for the test is “reject the null
hypothesis if Tn > ĉ1−α,” where ĉ1−α is an (1 − α)-quantile of the empirical distribution
of the bootstrap statistic.

We would like to conclude this section by observing that we can test the model con-
ditional on additional observables (e.g., gender, income brackets, and education level).
For discrete (or discretized) covariates, one just needs to perform the test for a subgroup
of the population.

5.2 Survival race the L-B-rule versus RUM: Stability of preferences

Without frame variation, many models of consideration are empirically indistinguish-
able from RUM. For instance, if a data set is consistent with EBA or MM, for a fixed

39To compute P̂L
f ,π , in our empirical application, we minimized the Euclidean distance between P̂f

and (
∑
D⊆A m̂L

f pf ,π (a,D))a∈A,A∈A subject to pf ,π (a,A) ≥ 0,
∑
a∈D pf ,π (a,D) = 1 for all a and A, and

pf ,π (a,D) = 0 for allD and a /∈D.

40In our empirical application, we conducted tests for different values of τn (e.g., τn =
√

log(minf ,A nf ,A )
minf ,A nf ,A

following Kitamura and Stoye (2018), and τn = 0). The results are qualitatively the same.
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Table 2. Testing results under preference stability.

Model Tn p-value

RUM 3231.59 <0.001
LA 24,959.06 0.524
EBA 24,840.23 0.001

Note: Number of bootstrap replications = 1000.

frame, then it is also consistent with RUM. However, these models and RUM will typi-
cally recover a distinct distribution of preferences. Varying frames, we can test whether
the distribution of preferences remains the same across frames.

L-B-model assumes that the distribution of preferences in the population is inde-
pendent of the consideration rule. In our experiment, the choice sets faced by any sub-
ject are exactly the same for the three consideration cost treatments. Given our pay-
at-random incentives scheme, choices from each choice set can be considered as i.i.d.
draws from the underlying random utility distribution under the null hypothesis of
stochastic rationality. Therefore, the independence assumption together with our exper-
imental design imply that if one of the L-B theories describes the behavior of the high-
cost treatment, it must also describe the behavior of the low-cost treatment. That is, if
the independence assumption holds, then the distribution of preferences, π, should be
invariant to changes in consideration costs for theories that we cannot reject. We check
the validity of the different models of interest under this preference stability restriction.

We apply the procedure described in Section 5.1 to test whether the RUM, LA, and
EBA models can explain the data with the restriction that the distribution of prefer-
ences remains frame-independent (i.e., consequentialism). The results of testing are
presented in Table 2. In this table, we report the values of the test statistic and the corre-
sponding p-values coming from the bootstrap distribution (1000 bootstrap replications
for every test statistic were conducted) for different models.41 First, we strongly reject
RUM at any reasonable significance level. In other words, for RUM we reject the hy-
pothesis that the same distribution of preferences can rationalize behavior across con-
sideration cost treatments. In contrast, we cannot reject the LA model at any standard
significance level. In addition, we reject the hypothesis that EBA explains the population
behavior under preference stability. Note that we can discriminate between RUM and
EBA because of variation in frames—EBA is more general than RUM because it allows
for flexible attention per frame. So, the rejection of EBA with stable preferences does not
follow from the rejection of RUM. Taken together, our results show that our experimen-
tal subjects behave as if they are maximizing their preferences given a consideration set
that follows the LA restriction.

41The p-value is interpreted as the probability of observing a realization of the test statistic that is above
the one that is actually observed due to sample variability, if the null hypothesis is indeed correct. Then
the smaller the p-value is, the more evidence the researcher has to reject the hypothesis of the validity of a
given model.
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5.3 Discussion

Our findings strongly support the hypothesis that the population behaves as if it is con-
sistent with the LA model of limited consideration and has a stable distribution of pref-
erences across frames.42 All frame effects observed in our descriptive analysis are fully
captured by the variation in the random consideration rule that changes conditional on
the frame. In contrast, the traditional RUM fails to describe the population behavior. To
confirm that our testing procedure has power against LA, in Appendix E, we access the
performance of our procedure using the Monte Carlo simulation. In particular, we show
that our test can reject the false null hypothesis of data being consistent with the LA
model with high frequency in finite samples that are comparable to our experiment.

We highlight that our analysis cannot exclude the possibility that other models of
behavior could also explain the population behavior in our experiment. We have only
established that the population behavior is as if it is consistent with a L-B-rule.

Although we do not impose any restrictions on preferences, for example, expected
utility, our results relate to the work of Freeman et al. (2019). They provide an alternative
mechanism for the selection of a riskless lottery (default) over dominant risky choices
from pairwise comparisons, when binary choice sets are presented as lists. They pro-
pose a theoretical explanation of the choice of the riskless choice with a model of ref-
erence dependence. The class of reference dependence models used by these authors
is a special case of utility maximization. Recall that we find evidence against RUM in
our experiment, thus ruling out Freeman et al. (2019) mechanism for our environment
with costly consideration. In addition, in our experimental design, subjects are not re-
quired to choose from lists nor are restricted to pairwise comparisons. For an extended
discussion of the role of misperception, see Appendix C.3.

We have maintained the assumption that the default alternative is also the worst
alternative for both the LA and EBA models. However, RUM allows the default to be
ranked arbitrarily. Hence, the main findings that LA explains the data set and RUM fails
to do the same are robust to this assumption. We leave it as an open question whether
EBA can explain this data set if this assumption is relaxed. Nevertheless, we believe that
this assumption is reasonable in our experimental setup.

We have done our empirical analysis without conditioning on observable hetero-
geneity (e.g., age or gender). Attention and preferences may differ across different de-
mographic groups. Methodologically, our tools can be applied after conditioning on ob-
servable heterogeneity, as explained in Kitamura and Stoye (2018). The study of consid-
eration set rules and their relation to demographics is beyond the scope of this paper.

It is noteworthy that if individuals have convex risk preferences to mix between lot-
teries, repetition of discretized choice tasks may make it hard to estimate risk prefer-
ences. Feldman and Rehbeck (2022) show that subjects who mix between lotteries in
convex budgets sets are more likely to randomize choices in a repeated discretized task.
Our experiment that uses different cost-treatments and randomizes the order of lotter-

42We also rejected the hypothesis of whether the LA model with homogeneous preferences can explain
the data. See Appendix F.
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ies in presentation may alleviate such concerns compared to previous experiments in
which the same set of lotteries in a fixed order was repeatedly presented to subjects.43

We finish this section by discussing our model and our findings in relation to Ra-
tional Inattention (RI) models. Caplin, Dean, and Leahy (2019) shows that rational inat-
tentive DMs form (deterministic) consideration sets. Generally, RI primitives cannot be
point-identified with standard stochastic choice data sets. Nonetheless, RI models may
still have testable implications in standard stochastic choice data sets. In Appendix C.4,
we show that a representative RI DM is compatible with deterministic consideration sets
(i.e., the presence of zero probability of choice), which is not supported in our data. The
case of a population of heterogeneous rational inattentive DMs and the aggregation of
such behavior in the population is left for future research.

6. Conclusion

We have designed and implemented a novel experiment with a large sample that al-
lowed us to statistically discern among competing models of population behavior. By
exogenously varying choice sets and the frames induced by the cost of considering al-
ternatives, we can disentangle two sources of stochastic behavior: limited consideration
and preference heterogeneity. We use this novel data set to test RUM and two models of
limited consideration, LA and EBA.

These models provide testable implications on choices that uniquely identify the
stochastic consideration set rule from data. By calibrating consideration given the the-
ory, we show that testing the L-B-model can be cast into Kitamura and Stoye (2018)
framework for testing RUM. That is, we show that there exists a stochastic rule (com-
puted from data) that is RUM if and only if observed choices are generated by a popula-
tion of individuals consistent with the L-B-model.

We provide evidence against classical RUM, since consideration costs are binding for
some individuals in the population. In contrast, we find support for the LA model with
heterogeneous preferences. Crucially, we cannot reject that the distribution of prefer-
ences implied by LA is the same across all attention frames. This means that once we
disentangled attention and preferences under LA, the recovered distribution of prefer-
ences does not change with the frame.

Appendix A: Proofs

A.1 Proof of Lemma 1

We define mA({a}) = p(a,A), and mA(D) = 0 for all D ⊆ A, D �= {a}. Let π̃ ∈ �(R(X ))
be the uniform distribution. The pair ((mA )A∈M, π̃ ) is a B-rule. We now prove that it
generates any data P . By definition, if P can be generated by a B-rule, then we have that

p(a,A) =
∑
D⊆A

mA(D)
∑

�∈R(X )

π̃(�)1(a� b, ∀b ∈D)

43We thank an anonymous referee for pointing out this issue.
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for allA and a ∈A. Rearranging and replacing the choice of π̃ in the above equation, we
get that

∑
D⊆A

mA(D)
∑
�∈R

π̃(�)1(a� b, ∀b ∈D) = 1∣∣R(X )
∣∣ ∑

�∈R(X )

[ ∑
D⊆A

mA(D)1(a� b, ∀b ∈D)

]
.

For given � andmA({a}) = p(a,A), we have∑
D⊆A

mA(D)1(a� b, ∀b ∈D) = p(a,A)1(a� a) = p(a,A)

because � includes the diagonal a� a for all a ∈X .
This implies that

1∣∣R(X )
∣∣ ∑

�∈R(X )

[ ∑
D⊆A

mA(D)1(a� b, ∀b ∈D)

]
= p(a,A)

given that

1∣∣R(X )
∣∣ ∑

�∈R(X )

[ ∑
D⊆A

mA(D)1(a� b, ∀b ∈D)

]
= 1∣∣R(X )

∣∣ ∑
�∈R(X )

p(a,A) = p(a,A).

A.2 Proof of Theorem 1

(i) implies (ii). A complete stochastic choice rule P is a B-rule if there exists a pair (m, π )
such that

p(a,A) =
∑
D⊆A

mA(D)
∑

�∈R(X )

π(�)1(a� b, ∀b ∈D),

for all a ∈ X and A ∈ A, where we exchanged the summation operator with respect to
the consideration sets and the linear orders exploiting independence.

Note that we can write the probability of the default alternative as p(o,A) = 1 −∑
a∈Ap(a,A). This implies that

1 −p(o,A) =
∑
D⊆A

mA(D)

[∑
a∈A

∑
�∈R(X )

π(�)1(a� b, ∀b ∈D)

]
,

where the summation operator with respect to the items a ∈A can be exchanged with
the summation over consideration sets. This is possible because the latter summation
does not depend on the items a ∈A.

Now, we notice that
∑
a∈A

∑
�∈R(X )π(�)1(a� b, ∀b ∈D) = 1 for all D⊆A. This im-

plies that the default probability does not depend on the distribution of preferences and
can be written in terms of the cumulative distribution of the consideration set distribu-
tion:

p(o,A) = 1 −
∑

D⊆A,D�=∅
mA(D).
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We let the capacity ϕ∗ : 2X → [0, 1] be defined by ϕ∗(A) = p(o,A).
The fact that η= ηL under the correct specification of the link function follows from

our monotonicity assumptions and the existence of a unique Mobius inverse of the
mapping v(·) = ∑

C⊆·η(C ) (Shafer (1976), Chateauneuf and Jaffray (1989)). We provide
specific derivations for each of the models of interest in this paper, to connect them with
the existing literature, but they follow directly from the general ηL formula.

For given L ∈ {LA, MM, EBA, FC} and P :

• Ifm ∈ MLA, thenmA(D) = η(D)∑
C⊆A η(C ) for some η ∈ �(2X ) ∩R++.

This means that ϕ
∗(X )
ϕ∗(A) = ∑

D⊆Aη(D). Then by Shafer (1976) it must be that

η(D) =
∑
B⊆D

(−1)|D\B|ϕ∗(X )
ϕ∗(B)

=
∑
B⊆D

(−1)|D\B|p(o,X )
p(o, B)

;

• Ifm ∈ MMM, thenmA(D) = η(D)∑
C⊆A η(C ) for some η ∈ �(2X ) ∩R++ with

η(D) =
∏

a∈X\D

(
1 − γ(a)

) ∏
b∈D

γ(b),

and γ :X → (0, 1). This implies by simple computation that

γ(a) = 1 − ϕ∗(A)

ϕ∗(A \ {a}
) = 1 − p(o,A)

p
(
o,A \ {a}

)
for someA ∈ A that contains a;

• Ifm ∈ MEBA, thenmA(D) = ∑
C:C∩A=Dη(C ) for some η ∈ �(2X ). Then

ϕ∗(A) =
∑

D∩A �=∅
η(D).

Using Shafer (1976) and Chateauneuf and Jaffray (1989), we conclude that

η(D) =
∑

A⊆D:D∈A
(−1)|D\A|(1 −ϕ∗(X \A)

) =
∑

A⊆D:D∈A
(−1)|D\A|(p(o,X \A)

)
;

• Ifm is FC, then obviouslymA(D) = 1(A=D).

To establish that m = mL for given L ∈ {LA, MM, EBA, FC} and P , we exploit the
uniqueness of m, which is a consequence of the invertibility of the Mobius transform
and the completeness of P . In particular, if (m, π ) and (m′, π ) represent the same P ,
then it must be that m′ = m for the cases of L ∈ {LA, MM, EBA, FC}. To see that this is
true, recall that if P is a L-B-rule with (m, π ), then 1 − ∑

D⊆A,D�=∅mA(D) = ϕ∗(A). This
is exactly the same for the case where there is homogeneity in the preferences such that
there is a linear order �∈ R(X ) such that π(�) = 1. Since this equivalence does not de-
pend on the distribution of preferences and due to the completeness of the data set, we
can use this fact to apply known results from the consideration set literature regarding
the uniqueness ofm.
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Now, by the Mobius inverse, it follows that

ηLA(D) =
∑
B⊆D

(−1)|D\B|p(o,X )
p(o, B)

,

for allD ∈ 2X . In particular,

• By Theorem 3.1 in Brady and Rehbeck (2016), it must be that m is uniquely identi-
fied by

mA(D) = η(D)∑
C⊆D

η(D)
,

whereη ∈ �(2X )∩R++ follows from the requirement that
∑
B⊆D(−1)|D\B| p(o,X )

p(o,B) > 0

for allD ∈ 2X .

• Given γMM(a) = 1 −p(o, a) ∈ (0, 1) for all a ∈X (which is well-defined by the com-
pleteness of P) and ηMM(D) = ∏

a∈X\D(1 − γMM(a))
∏
b∈D γMM(b), it follows thatm

is uniquely identified by

mA(D) =
∏
a∈D

γMM(a)
∏

b∈A\D

(
1 − γMM(b)

)
,

for all A⊆D. Note that
∏
b∈∅ γmm(b) = 1 by convention. Also observe that unique-

ness follows from Theorem 3.3 in Brady and Rehbeck (2016) since the MM restric-
tion is a special case of the LA restriction.

• Given ηEBA(D) = ∑
A⊆D:D∈A(−1)|D\A|(1 −p(o,X \A)) ≥ 0 it follows by Theorem 1

in Aguiar (2017) thatm is uniquely identified by

mEBA
A (D) =

∑
C:C∩A=D

ηEBA(C ),

for allD⊆A, whereD �= ∅ andmA(∅) = 1 − ∑
D⊆A,D�=∅mA(D).

• The case of FC is trivial.

A.3 Proof of Theorem 2

(i) implies (ii). If P is a L-B-rule then by Theorem 1, under conditions (i) and (ii), it must
be that

pL
π(a,A) =

pm,π(a,A) −
∑
C⊂A

mL
A(C )pL

π(a, C )

mL
A(A)

,
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where pm,π(a,A) = ∑
D⊆AmL

A(D)[
∑

�∈R(X )π(�)1(a � b∀b ∈ D)]. Following the recur-
sive formula, we can show that

pL
π(a,A) =

mL
A(A)

[ ∑
�∈R(X )

π(�)1(a� b∀b ∈A)

]

mL
A(A)

=
∑

�∈R(X )

π(�)1(a� b∀b ∈A).

This implies that PL is a FC-B-rule.
(ii) implies (i). Under conditions (i) and (ii), the fact that

pL
π(a,A) =

pm,π(a,A) −
∑
C⊂A

mL
A(C )pL

π(a, C )

mL
A(A)

implies that for allA ∈ A and all a ∈A,

p(a,A) =
∑
D⊆A

mL
A(D)pL

π(a,D).

If PL is a FC-B-rule, then it implies that there exists π ∈ �(R(X )) such that

pL
π(a,A) =

∑
�∈R(X )

π(�)1(a� b∀b ∈A).

Hence, P is a L-B-rule. In fact, for allA ∈ A and all a ∈A, it must be that the pair (mL, π )
generates the data set P :

p(a,A) =
∑
D⊆A

mL
A(D)

∑
�∈R(X )

π(�)1(a� b∀b ∈A), .

A.4 Proof of Theorem 3

We first prove that if P is described by (m, π ) and (m′, π ′ ), then it must be that m=m′.
This follows from Chateauneuf and Jaffray (1989). In particular, Brady and Rehbeck
(2016) shows the identification results for L = LA, while Aguiar (2017) provides identi-
fication results for L = EBA. For L = MM, the result holds trivially.

Fixingm, if P is described by both (m, π ) and (m, π′ ), then

pL
π(a,A) =

p(a,A) −
∑
C⊂A

mL
A(C )pL

π(a, C )

mL
A(A)

,

and

pL
π′(a,A) =

p(a,A) −
∑
C⊂A

mL
A(C )pL

π′(a, C )

mL
A(A)

,

for all a ∈A and nonempty A ⊆ X , which follows from Definition 9. By condition (ii),
mL
A(A) > 0 and using the recursive definitions above for binary sets, we can see that
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pL
π(a, {a, b}) = pL

π′(a, {a, b}) for any a, b ∈X . For a fixed m, the recursive formula leads
to the equivalence pL

π′ = pL
π .

Appendix B: Sensitivity analysis for the default

One key assumption in our setup is that the outside option is only picked under full
consideration if the choice set only contains the outside option. In our notation, we
write this as pπ(o, ∅) = 1 and pπ(o,A) = 0 for all A �= ∅. In this section, we relax this
assumption to allow the probability of choosing the default to satisfy pπ(o, ∅) = 1 and
pπ(o,A) = e

|A| with e ∈ [0, 1) for all A �= ∅. The sensitivity parameter e is interpreted
as the fraction of DMs that choose the dominated default even when there are other
available alternatives. This is a violation of the assumption that the default is the worst
alternative. Then this implies that under the null of consistency with the B-rule the prob-
ability of choosing the default is

p(o,A) =mA(∅) + e

|A|
(
1 −mA(∅)

)
.

This assumption is compatible with RUM and implies that the probability of o being the
best alternative in all linear orders is constant across menus under full consideration.44

Notice that under this assumption we can calibratemA(∅) for allA ∈ A:

mA(∅) =
p(o,A) − e

|A|(
1 − e

|A|
) .

Then for a given sensitivity parameter e ∈ [0, 1), we can calibrate the empirical attention-
index ηL without any changes. Next, we can compute pπ given the calibrated mL, for
A ∪ {o}, and we can test RUM here using the tools we have developed. In our current
empirical results, since the LA model passes for e= 0, it is unnecessary to do this sensi-
tivity analysis.

Appendix C: Comparison with models of stochastic choice

In this Appendix, we analyze the connection between the three consideration-mediated
choice theories discussed in this paper and models that allow for stochastic behavior
exclusively in preferences or in consideration.

C.1 Comparison with RUM

As explained previously, randomness arising from limited consideration as in EBA and
MM can be rationalized under the umbrella of random utility for a fixed frame. However,
LA allows for behavior that is inconsistent with regularity. Therefore, LA is not nested
in RUM. By construction, our model L-B generalizes FC by allowing for independent

44Indeed, this assumption allows the default to be chosen when compared to other alternatives. This is
achieved by putting a mass (equal to e/|A|) on the event that o is the first among all alternatives in a given
menu. This is a restriction on the distribution of preferences.
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variation in choices due to limited consideration. In particular, L-B is RUM defined over
X (what we call, equivalently, FC) when the stochastic choice rule is such thatmA(D) =
1(D=A). We call this model FC.

Moreover, the L-B model is more general than RUM. This follows from the analysis
in previous sections. In particular, fixing preferences, π(�i ) = 1(�i=�) for �i∈ R(X ),
L-B with L = LA reduces to original LA model by Brady and Rehbeck (2016) and, there-
fore, potentially inconsistent with RUM. Of course, when we add frame variation we can
distinguish between EBA and RUM.

C.2 Comparison to RAM

Cattaneo et al. (2020) extends many theories of consideration by proposing the Random
Attention Model (RAM). The authors allow for random consideration maps in the con-
text of limited attention models. RAM abstracts away from the particular consideration-
set-formation rule by considering a class of nonparametric random attention rules. The
authors acknowledge that RAM is best suited for eliciting information about preference
ordering of a single decision-making unit when her choices are observed repeatedly, which
justifies the preference homogeneity assumption in their setting.

Many of the canonical models of limited attention proposed in the literature satisfy
the monotonic attention property of Cattaneo et al. (2020). For instance, RAM nests LA,
MM, and EBA without preference heterogeneity among other salient models of consid-
eration sets. Additionally, RAM is a strict generalization of RUM. However, our L-B is not
nested in RAM; see Cattaneo et al. (2020) for a complete description of its relationship
to the literature.

Here, we show that in the presence of preference heterogeneity RAM may fail to ra-
tionalize behavior that can be explained by L-B. First, we formally define the restrictions
imposed by RAM.

RAM imposes a monotonic attention restriction on consideration rules: the proba-
bility of paying attention to a particular subset does not decrease when the total number
of possible consideration sets decreases. Formally,

Definition 12 (Monotonic attention). For any a ∈A \D,mA(D) ≤mA\{a}(D).

Moreover, Cattaneo et al. (2020) provides a characterization of the model in terms of
the revealed preference information inferred from data. Formally, we have the following.

Definition 13 (Revealed preference, RAM). Let p be a RAM. Define PR as the transitive
closure of P defined as

aPb if there existsA ∈ A with a, b ∈A such that p(a,A)>p
(
a,A \ {b}

)
.

Then a is revealed preferred to b of and only if a PR b.

Then a choice rule has a RAM representation if and only if PR has no cycles. The
following example of a L-B-rule, which results from a m ∈ MLA for two linear orders �1

and �2 with π(�i ) = 0.5 with i= 1, 2, cannot be generated by RAM.
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Table 3. Example 5 stochastic choice rule and random consideration set probability. p is con-
sistent with LA-B but cannot be generated by RAM.

{a, b, c} {a, b} {a, c} {b, c} {a} {b} {c} ∅

a 0.305 0.339 0.157 0.208
b 0.250 0.339 0.227 0.208
c 0.255 0.300 0.341 0.345
o 0.190 0.322 0.543 0.432 0.792 0.792 0.655 1

η(D) 0.20 0.30 0.01 0.10 0.05 0.05 0.10 0.19

Example 5 (RAM violation). Let X = {a, b, c} and consider a LA model for the random
consideration set probability measure with η(D) given as in Table 3. Moreover, consider
two preference relations �1 such that a�1 b�1 c, and �2 such that c �2 b�2 a.45 The re-
sulting probabilistic choice rule is generated by a LA-B by construction. However, it can-
not be rationalized by RAM since both aPb and bPa (i.e., p(a, {a, b, c})>p(a, {a, c}) and
p(b, {a, b, c}) > p(b, {b, c})). This means that a LA-B-rule allows cycles of the revealed
preference relation P , which is ruled out by RAM.

C.3 Consideration cost and imperfect perception

One possible concern with our design is that DMs consider an alternative but misper-
ceives the attributes (i.e., computes the wrong utility). We must point out that this con-
cern applies broadly to any experimental design in which subjects have a nontrivial cog-
nitive task. The following analysis assumes that the consideration cost is fixed. First, we
need some preliminaries. For a given distribution of preferences π ∈ �(R(X )), with per-
fect perception, there exists a random utility array u = (ua )a∈A supported on R

|A| such
that for a given menu of alternativesA ∈ A:

P
(
ua > ub, ∀b ∈A \ {a}

) = π(�: a� b, ∀b ∈A \ {a}
)
.

Now, misperception of any alternative a ∈ A can be represented by another (possibly
wrong) random utility variable wa supported on the reals. We let w = (wa )a∈A be the
array of such random variables. This random variable represents the subjective value
that the DMs assigns to alternative a given her own perception of the item. Hence, w
and u may be different (even when they may be correlated). Without loss of generality,
we can define misperception as

ea = wa − ua,

45In our experiment, this preference heterogeneity can be explained by heterogeneity in risk aversion.
For example, let a ≡ l4, b ≡ l3, c ≡ l2, and assume that DMs are expected-utility-maximizers with CRRA
Bernoulli utilities. Then a� b� c for individuals that are risk-neutrals (σ = 0), while c � b� a for risk averse
individuals (σ > 0.5). Holt and Laury (2002) finds that these types are common in their experiment across
payment schemes.
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for all a ∈A (and e = (ea )a∈A).46

Under the assumption of independence of preference and attention. The only impli-
cation of misperception is that subjects’ behavior will be governed not by π but rather
by a different distribution of preferences πe such that

πe
(�: a� b ∀b ∈A \ {a}

) = P
(
ua + ea > ub + eb ∀b ∈A \ {a}

)
.47

In other words, the population of DMs behavior captured by P will still be represented
by a L-B model with (πe,m) instead of the true (π,m). This means that our design is
robust to any arbitrary misperception error, in terms of the validity of our conclusions
about how good are the different models to describe the population.

The only possible problem induced by misperception of alternatives is that we may
lose the capacity to identify the true distribution of preferences. This possibility again
is unavoidable in any experimental design that has a cognitive task. Nonetheless, this
possibility is testable in our framework. In particular, if misperception exists, it must
depend on the cognitive cost. Hence, we have the triple (eH , eM , eL ) that represents
the misperception random array for the high, medium, and low cost, respectively. Then
the distribution of preferences for any L-B model must not be stable across attention
treatments with corresponding (πeH , πeM , πeL ) distribution of preferences (that differ
among costs).

However, we cannot reject the null hypothesis that LA has a stable distribution of
preferences among the different cost distributions (i.e., πeH = πeM = πeL = π). In that
sense, there is no evidence that misperception is important in our design.

C.4 Relation with rational inattention models

Rational inattention (RI) models have recently gained a lot of interest to model situa-
tions when choice is hard. However, RI models usually need very rich data sets to be
indentified/tested. That is, generally they cannot be identified with standard stochas-
tic choice data sets. In that sense, we cannot do a full comparison between RI models
and our approach, since the data set requirements are different. However, we can derive
some implications of RI behavior for our data set.

RI is a model for individual behavior. To the best of our knowledge, the aggregate
implications of this model are unknown. Hence, we will focus on comparing our ap-
proach to a case of a representative RI behavior. The problem of the representative RI
DM is to choose the best possible alternative from a choice set. She has a prior μ over
the true value of alternatives, V = (vk )k∈X∪{o}, with μ ∈ �(V ). In response to the infor-
mation structure, the RI DM chooses her optimal information to acquire an optimal
action. We focus here on the subclass of RI problems with an additive cost of percep-
tion. The result of this problem is a true-value or state dependent stochastic choice rule

46Note that in our experimental design, menus are randomly assigned to a DM. In addition, the presen-
tation of each alternative remains the same across menu, conditional on the cost of consideration. Then it
must be that the distribution of misperception (by-design) is the same across menus.

47Where πe(�: property) denotes the cumulative probability of preferences that have a certain property.
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pv(·,A) ∈ �(A∪ {o}), defined as

pv(·,A) = arg max
p

∑
a∈A∪{o}

pv(a,A)vaμ(va ) − κ(
pv(·,A), μ

)
.

For the specification of κ, we focus on the generalized entropy proposed in Fosgerau,
Melo, de Palma, and Shum (2017), which generalizes widely used entropic cost. Fos-
gerau et al. (2017) shows that this state-dependent stochastic choice is observationally
equivalent to an additive random utility choice rule conditional on the support. That is,
if pv(·,A) ∈ �(A ∪ {o}) (positive probability of choice), then pv(·,A) is a random utility
rule. Even when the underlying utility is fixed (and equal to v without loss of general-
ity), there is randomness in choice due to a costly information acquisition. The state-
dependent stochastic choice only differs from RUM when there are items in the choice
set that are never chosen. Therefore, the RI DM is compatible with deterministic con-
sideration sets. However, in our experiment we do not observe any element chosen with
zero probability. In fact, the lowest probability of choice is 6% across all alternatives in
X ∪ {o} and across all choice sets.

We have to aggregate across states to derive testable implications for the represen-
tative RI DM for our data set. This is because in our setup, the experimenter does not
know ex ante the true value of alternatives. Preferences over lotteries (when there is not
first-order stochastic dominance ordering among them) is unknown before choice. This
is an important difference between our experiment and RI experimental literature, since
they generally rely on enhanced data sets. We focus on collecting data sets that replicate
standard stochastic choice data.

Using the fact that the sum of random utility rules is also a random utility rule, we
notice that the marginal probability of choosing across different states is just the sum
over the likelihood of this states (or the distribution of the true preferences). Then, if P
admits a representative RI DM:

p(a,A) =
∑
v∈V

pv(a,A)ρ(v),

where ρ ∈ �(V ) is the objective probability of the unobserved states.

Lemma 3. If pv(a,A) > 0 for all a ∈A ∪ {o}, and all v ∈ V , it follows that if P admits a
representative RI DM then P also admits a RUM representation.

The proof of this lemma follows from Aguiar, Boccardi, and Dean (2016) and Fos-
gerau et al. (2017) that showed that the weighted sum of RUM is also RUM. The case in
which one allows heterogeneity in discrete consideration sets, induced by RI, is difficult
and left for future research.

Appendix D: Additional details on the sample design

The primitive for the considered models is the estimated stochastic choice rule p̂f (a,A)
for f ∈ {H, M, L}. Therefore, for a fixed level of the cost f , the minimal required sample
size was calculated to be proportional to the cardinality of the choice set. To maximize
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Table 4. Average number of observations per alternative/choice set.

Choice set N N/|A| Choice set N N/|A|

o12345 171 28.50 o12 131 43.67
o2345 155 31.00 o13 118 39.33
o1345 154 30.80 o14 125 41.67
o1245 149 29.80 o15 116 38.67
o1235 156 31.20 o23 112 37.33
o1234 143 28.60 o24 123 41.00
o345 131 32.75 o25 120 40.00
o245 118 29.50 o34 121 40.33
o235 125 31.25 o35 122 40.67
o234 116 29.00 o45 119 39.67
o145 112 28.00 o1 155 77.50
o135 123 30.75 o2 154 77.00
o134 120 30.00 o3 149 74.50
o125 121 30.25 o4 156 78.00
o124 122 30.50 o5 143 71.50
o123 119 29.75

the number of observations for a given set of individuals, some individuals faced two
decision tasks. To prevent possible learning, these subjects faced disjoint choice sets.
That is, every subject faced either the full choice set X ∪ {o} or two choice sets that only
had the outside option in common. Therefore, because of random assignment, in our
experiment

(i) 171 subjects faced only the whole choice set (the targeted number is 180);

(ii) 757 subjects faced pairs of disjoint choice sets: the set of size 4 and the set of size
1 (the targeted number is 750);

(iii) 1207 subjects faced pairs of disjoint choice sets: the set of size 3 and the set of size
2 (the targeted number is 1200).

This implies a total of 2135 subjects (the targeted number is 2130) for a total 4099
choices (the targeted number is 4080). Additionally, demographic data and preferences
over binary comparison of lotteries were asked and incentivized. The effective number
of observations per alternative/choice set/cost is summarized in Table 4.

Appendix E: Performance of the test

In this section, we study the performance of our test in terms of statistical power. We are
going to test the null hypothesis of LA-B when the true choice process presents choice
overload. We consider behavior arising from a mixed population. A fraction λ ∈ [0, 1] of
the population is consistent with MM-B with γ(x) = 1/2 for all x ∈ X and preferences
consistent with expected utility maximization. The remaining fraction, λ, follows sim-
ple heuristics such the DM chooses outside option with probability proportional to the
cardinality of the set. If she decides to pay attention to the menu, then she chooses uni-
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Table 5. The table displays the proportion of rejections
at the 10% and 5% significance levels for LA-B. Sample
size = 4000. Number of MC replications = 1000. Number
of bootstrap replications = 1000.

Process Significance level

10% 5%

λ= 0.25 1 1
λ= 0.50 0.434 0.694

formly at random from it. The process is then consistent with the following stochastic
choice rule:

p(a,A) = λpMM-B(a,A) + (1 − λ)pCO(a,A), (1)

where pMM-B(a,A) is consistent with MM-B with (mMM, π ) and π(�) = 1/120 for all
�∈R(X ); and

pCO(o,A) = |A| + 1
|X| + 1

and pCO(a,A) = 1 −pCO(o,A)
|A| .

The assumed process implies that a fraction 1−λ of the population exhibits choice over-
load.48

As the proportion of the population that exhibits choice overload increases so should
increase the probability of rejecting the null that population behavior is generated by
L-B. On the other extreme, when λ= 1 we should not reject the model. In particular, for
any λ < 32/39 the process defined by equation (1) exhibits choice overload. However,
for high values of λ the magnitude of this effect may not be significant to reject L-B.

Table 5 presents the results for power simulations for sample size 4000 and λ ∈
{0.25, 0.50}. For 1000 replications, the table displays the proportion of simulations that
are rejected at the 10% and 5% significance levels. As expected, the fraction of rejections
is bigger for smaller values of λ. For λ= 0.25, the rejection rate is 100%. We observe that
at comparable sample size to our experiment the mixed process is rejected with power
close to 1 when the choice overload fraction of DMs is moderate.

Appendix F: The L-model with homogeneous preferences

In our setup, given an attention rule L (e.g., LA or MM) and a given frame, we can re-
cover the underlying full consideration probabilistic choice rule pL

π . Under the null hy-
pothesis that our experimental data set can be generated by a L-rule with a strict pref-
erence relation over X ∪ {o} (such that o is the worst alternative), it must be that pL

π

48This process may intuitively arise when a DM that faced with a choice set only knows the size of the
choice set and the alternatives in the grand set X . Knowing about the alternatives implies paying a cost
c per alternative. Assume that preferences over information are modeled by a willingness to pay attention
variable,w, that is distributed uniformly in [0, 1]. Then, given a choice set realization, after knowing |A| DM
i decides to pay attention to choice setA ifwi > |A|× c. This implies that the DM pays attention and decide
in the interior of the set with probability

∑
a∈Ap(a,A) = 1 − c|A|; and p(o,A) = c|A|.
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is degenerate (i.e., pL
π(a,A) ∈ {0, 1} for all A and a ∈A). In particular, if we reject that

pL
π(a1, {a1, a2}) ∈ {0, 1} for some binary menu {a1, a2} and for some attention cost, then

we have to reject the L model with homogeneous preferences.
Given that the only model with heterogeneous preferences that was not rejected in

our experiment is LA, to show the importance of preference heterogeneity, we tested
whether the LA model with homogeneous preferences can explain the data. We took
menu {1, 3} and the high cost frame and computed the implied by the LA model the full
consideration probability p̂LA

π (1, {1, 3}). If the data can be explained by the LA model
with homogeneous preferences, then p̂LA

π (1, {1, 3}) should converge in probability to ei-
ther 0 (3 � 1 with probability 1) or 1 (1 � 3 with probability 1). We tested two hypotheses:
(i) pπ(1, {1, 3}) = 0 and (ii) pπ(1, {1, 3}) = 1. Both were rejected at the 5% significance
level (p-value< 10−3). As a result, we can conservatively claim that the null hypothesis
that our experimental data set can be explained by the LA-rule with a single preference
relation is rejected at least at the 5% significance level.
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