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Full-information estimation of heterogeneous agent models
using macro and micro data

Laura Liu
Department of Economics, Indiana University

Mikkel Plagborg-Møller
Department of Economics, Princeton University

We develop a generally applicable full-information inference method for hetero-
geneous agent models, combining aggregate time series data and repeated cross-
sections of micro data. To handle unobserved aggregate state variables that af-
fect cross-sectional distributions, we compute a numerically unbiased estimate
of the model-implied likelihood function. Employing the likelihood estimate in a
Markov Chain Monte Carlo algorithm, we obtain fully efficient and valid Bayesian
inference. Evaluation of the micro part of the likelihood lends itself naturally to
parallel computing. Numerical illustrations in models with heterogeneous house-
holds or firms demonstrate that the proposed full-information method substan-
tially sharpens inference relative to using only macro data, and for some parame-
ters micro data is essential for identification.
Keywords. Bayesian inference, data combination, heterogeneous agent models.

JEL classification. C11, C32, E1.

1. Introduction

Macroeconomic models with heterogeneous agents have exploded in popularity in re-
cent years.1 New micro data sets—including firm and household surveys, social security
and tax records, and censuses—have exposed the empirical failures of traditional rep-
resentative agent approaches. The new models not only improve the fit to the data, but
also make it possible to meaningfully investigate the causes and consequences of in-
equality among households or firms along several dimensions, including endowments,
financial constraints, age, size, location, etc.
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So far, however, empirical work in this area has only been able to exploit limited
features of the micro data sources that motivated the development of the new mod-
els. As emphasized by Ahn et al. (2017), the burgeoning academic literature has mostly
calibrated model parameters and performed overidentification tests by matching a few
empirical moments that are deemed important a priori. This approach may be highly
inefficient, as it ignores that the models’ implied macro dynamics and cross-sectional
properties often fully determine the entire distribution of the observed macro and mi-
cro data. The failure to exploit the joint information content of macro and micro data
stands in stark contrast to the well-developed inference procedures for estimating rep-
resentative agent models using only macro data (Herbst and Schorfheide (2016)).

To exploit the full information content of macro and micro data, we develop a gen-
eral technique to perform Bayesian inference in heterogeneous agent models. We as-
sume the availability of aggregate time series data as well as repeated cross-sections of
micro data. Evaluation of the joint macro and micro likelihood function is complicated
by the fact that the model-implied cross-sectional distributions typically depend on un-
observed aggregate state variables. To overcome this problem, we devise a way to com-
pute a numerically unbiased estimate of the model-implied likelihood function of the
macro and micro data. As argued by Andrieu, Doucet, and Holenstein (2010) and Flury
and Shephard (2011), such an unbiased likelihood estimate can be employed in stan-
dard Markov Chain Monte Carlo (MCMC) procedures to generate draws from the fully
efficient Bayesian posterior distribution given all available data.

The starting point of our analysis is the insight that existing solution methods for
heterogeneous agent models directly imply the functional form of the joint sampling
distribution of macro and micro data, given structural parameters. These models are
typically solved numerically by imposing a flexible functional form on the relevant
cross-sectional distributions (e.g., a discrete histogram or parametric family of densi-
ties). The distributions are governed by time-varying unobserved state variables (e.g.,
moments). To calculate the model-implied likelihood, we decompose it into two parts.
First, heterogeneous agent models are typically solved using the method of Reiter (2009),
which linearizes with respect to the macro shocks but not the micro shocks. Hence, the
macro part of the likelihood can be evaluated using standard linear state space meth-
ods, as proposed by Mongey and Williams (2017) and Winberry (2018).2 Second, the
likelihood of the repeated cross-sections of micro data, conditional on the macro state
variables, can be evaluated by simply plugging into the assumed cross-sectional density.
The key challenge that our method overcomes is that the econometrician typically does
not directly observe the macro state variables. Instead, the observed macro time series
are imperfectly informative about the underlying states.

Our procedure can loosely be viewed as a rigorous Bayesian version of a two-
step approach: First, we estimate the latent macro states from macro data, and then
we compute the model-implied cross-sectional likelihood conditional on these esti-
mated macro states. More precisely, we obtain a numerically unbiased estimate of the

2If non-Reiter model solution methods are used, our general estimation approach could in principle still
be applied, though its computational feasibility would be context-dependent, as discussed in Section 7.
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likelihood by averaging the cross-sectional likelihood across repeated draws from the
smoothing distribution of the hidden states given the macro data. We emphasize that,
despite being based on a likelihood estimate, our method is fully Bayesian and automat-
ically takes into account all sources of uncertainty about parameters and states. An at-
tractive computational feature is that evaluation of the micro part of the likelihood lends
itself naturally to parallel computing. Hence, computation time scales well with the size
of the data set. Though our baseline method is designed for repeated cross-sections of
micro data, we present ideas for exploiting panel data in Section 6.

We perform finite-sample valid and fully efficient Bayesian inference by plugging the
unbiased likelihood estimate into a standard MCMC algorithm. The generic arguments
of Andrieu, Doucet, and Holenstein (2010) and Flury and Shephard (2011) imply that
the ergodic distribution of the MCMC chain is the full-information posterior distribu-
tion that we would have obtained if we had known how to evaluate the exact likelihood
function (not just an unbiased estimate of it). This is true no matter how many smooth-
ing draws are used to compute the unbiased likelihood estimate. In principle, we may
use any MCMC posterior sampling algorithm that relies only on evaluating (the unbi-
ased estimate of) the posterior density, such as Random Walk Metropolis–Hastings.

In contrast to other estimation methods, our full-information method is automati-
cally finite-sample efficient and can easily handle unobserved individual heterogeneity,
micro measurement error, as well as data imperfections such as selection or censor-
ing. In an important early work, Mongey and Williams (2017) propose to exploit mi-
cro data by collapsing it to time series of cross-sectional moments and incorporating
these into the macro likelihood. In principle, this approach can be as efficient as our full-
information approach if the structural model implies that these moments are sufficient
statistics for the micro data. We provide examples where this is not the case, for example,
due to the presence of unobserved individual heterogeneity and/or micro measurement
error. Even when sufficient statistics do exist, it is necessary to properly account for sam-
pling error in the observed cross-sectional moments, which is done automatically by our
full-information likelihood method, but could be delicate and imprecise for moment-
based approaches. Moreover, textbook adjustments to the micro likelihood allow us to
accommodate specific empirically realistic features of micro data such as selection (e.g.,
oversampling of large firms) or censoring (e.g., top-coding of income), whereas this is
challenging to do efficiently with moment-based approaches.

We illustrate the joint inferential power of macro and micro data through two nu-
merical examples: a heterogeneous household model (Krusell and Smith (1998)) and a
heterogeneous firm model (Khan and Thomas (2008)). In both cases, we assume that
the econometrician observes certain standard macro time series as well as intermit-
tent repeated cross-sections of, respectively, (i) household employment and income and
(ii) firm capital and labor inputs. Using simulated data, and given flat priors, we show
that our full-information method accurately recovers the true structural model param-
eters. Importantly, for several structural parameters, the micro data reduces the length
of posterior credible intervals substantially, relative to inference that exploits only the
macro data. In fact, we give examples of parameters that can only be identified if micro
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data is available. In contrast, inference from moment-based approaches can be highly
inaccurate and sensitive to the choice of moments.

We deliberately keep our numerical illustrations low-dimensional and build our
code on top of the user-friendly Dynare-based model solution method of Winberry
(2018). Though pedagogically useful, this particular numerical model solution method
cannot handle very rich models, so a full-scale empirical illustration is outside the scope
of this paper. However, there is nothing in our general inference approach that rules
out larger-scale models. We argue in Section 7 that our general inference approach is
compatible with cutting-edge model solution methods that apply automatic dimension
reduction of the state space equations (Ahn et al. (2017)).

Literature Our paper contributes to the recent literature on structural estimation of
heterogeneous agent models by exploiting the full, combined information content avail-
able in macro and micro data. We build on the idea of Mongey and Williams (2017) and
Winberry (2018) to estimate heterogeneous agent models from the linear state space
representation obtained from the Reiter (2009) model solution approach. Several pa-
pers have exploited only macro data (as well as calibrated steady-state micro moments)
for estimation, including Winberry (2018), Hasumi and Iiboshi (2019), Auclert, Rogn-
lie, and Straub (2020), Acharya, Chen, Del Negro, Dogra, Matlin, and Sarfati (2021),
and Auclert, Bardóczy, Rognlie, and Straub (2021). Challe, Matheron, Ragot, and Rubio-
Ramirez (2017), Mongey and Williams (2017), Bayer, Born, and Luetticke (2020), and
Papp and Reiter (2020) additionally track particular cross-sectional moments over time.
In contrast, we exploit the entire model-implied likelihood function given repeated mi-
cro cross-sections, which is (at least weakly) more efficient, as discussed further in Sec-
tion 3.3.

We are not aware of other papers that tackle the fundamental problem that the ag-
gregate shocks affecting cross-sectional heterogeneity are not directly observed. Parra-
Alvarez, Posch, and Wang (2020) use the model-implied steady-state micro likelihood in
a heterogeneous household model, but abstract from macro data or aggregate dynam-
ics. Closest to our approach are Fernández-Villaverde, Hurtado, and Nuño (2019), who
exploit the model-implied joint sampling density of macro and micro data in a particu-
lar heterogeneous agent macro model. However, they assume that the underlying state
variables are directly observed, whereas our contribution is to solve the computational
challenges that arise in the generic case where the macro states are (partially) latent.

Certain other existing methods for combining macro and micro data cannot be
applied in our setting. Hahn, Kuersteiner, and Mazzocco (2022) develop asymptotic
theory for estimation using interdependent micro and macro data sets, but their full-
information approach requires derivatives of the exact likelihood in closed form, which
is not available in our setting due to the need to integrate out unobserved state variables.
Chang, Chen, and Schorfheide (2021) propose a reduced-form approach to estimating
the feedback loop between aggregate time series and heterogeneous micro data; they
do not consider estimation of structural models. In likelihood estimation of representa-
tive agent models, micro data has mainly been used to inform the prior, as in Chang,
Gomes, and Schorfheide (2002). Finally, unlike the microeconometric literature on het-
erogeneous agent models (Arellano and Bonhomme (2017)), our work explicitly seeks to



Quantitative Economics 14 (2023) Estimation of heterogeneous agent models 5

estimate the deep parameters of a general equilibrium macro model by also incorporat-
ing aggregate time series data.

Outline Section 2 shows that heterogeneous agent models imply a fully-specified sta-
tistical model for the macro and micro data. Section 3 presents our method for comput-
ing an unbiased likelihood estimate that is used to perform efficient Bayesian inference.
There we also compare our full-information approach with moment-based estimation
approaches. Sections 4 and 5 illustrate the inferential power of combining macro and
micro data using two simple numerical examples, a heterogeneous household model
and a heterogeneous firm model. Section 6 proposes an extension to panel data. Sec-
tion 7 concludes and discusses possible future research directions. Appendix A contains
proofs and technical results. A Supplemental Appendix (Liu and Plagborg-Møller (2023))
and a full Matlab code suite are available online.3

2. Framework

We first describe how heterogeneous agent models generically imply a statistical model
for the macro and micro data. Then we illustrate how a simple model with heteroge-
neous households fits into this framework.

2.1 A general heterogeneous agent framework

Consider a given structural model that implies a fully-specified equilibrium relation-
ship among a set of aggregate and idiosyncratic variables. We assume the availability
of macro time series data as well as repeated cross-sections of micro data, as sum-
marized in Figure 1. Let x ≡ {xt }1≤t≤T denote the vector of observed time series data
(e.g., real GDP growth), where xt is a vector, and T denotes the time series sample size.
At a subset T ⊂ {1, 2, � � � , T } of time points, we additionally observe the micro data
y ≡ {yi,t }1≤i≤Nt ,t∈T , where yi,t is a vector (e.g., the asset holdings of household i or the
employment of firm i). At each time t, the cross-section {yi,t }1≤i≤Nt is sampled at ran-
dom from the model-implied cross-sectional distribution conditional on some macro

Figure 1. Diagram of the distribution of the macro and micro data implied by a heterogeneous
agent model. The state vector zt includes any time-varying parameters that govern the cross–
sectional distribution p(yi,t | zt , θ).

3https://github.com/mikkelpm/het_agents_bayes

https://github.com/mikkelpm/het_agents_bayes
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state vector zt . For now, it is convenient to assume that {yi,t } constitutes a representative
sample, but sample selection or censoring are easily accommodated in the framework,
as we demonstrate in Section 5.4. Formally, we make the following assumption.

Assumption 1. The data is sampled as follows:

1. Conditional on z ≡ {zt }Tt=1, the micro data {yi,t }1≤i≤Nt ,t∈T is independent across t

and the data points {yi,t }
Nt
i=1 at time t are sampled i.i.d. from the densityp(yi,t | zt , θ).

2. Conditional on z, the micro data y is independent of the macro data x.

3. Conditional on zt and {xτ , zτ}τ≤t−1, the macro data xt is sampled from the density
p(xt | zt , θ). Conditional on {zτ}τ≤t−1, the state vector zt is sampled from the density
p(zt | zt−1, θ).

The first condition above operationalizes the notion of representative sampling of
repeated cross-sections. The second condition entails no loss of generality, since we can
always include xt in the state vector zt . The third condition is a standard Markovian state
space formulation of the aggregate dynamics, as discussed further below.

Given the structural parameter vector θ, the fully-specified heterogeneous agent
model implies functional forms for the macro observation density p(xt | zt , θ), the
macro state transition density p(zt | zt−1, θ), and the micro sampling density p(yi,t |
zt , θ). These density functions reflect the equilibrium of the model, as we illustrate in
the next subsection, and they are the key inputs in the likelihood computation in Sec-
tion 3. Notice that the framework allows the micro and macro data to be dependent,
though this dependence must be fully captured by the macro state vector zt , which
is determined by the structure of the model at hand. Because the sampling densities
p(xt | zt , θ) andp(yi,t | zt , θ) are derived from an equilibrium model, the likelihood func-
tion derived below in equation (5) automatically embodies any constraints of the type
envisioned by Imbens and Lancaster (1994) on the relationship between the aggregate
macro data and the time-varying population moments of the micro sampling distribu-
tion. For example, if yi,t equals individual-level consumption, xt equals aggregate con-
sumption, and zt equals the underlying macro shocks (which determine the dynamics
of aggregates and of the micro distribution), then the asymptotic adding-up constraint
that limNt→∞ 1

Nt

∑Nt
i=1 yi,t

a.s.= xt will be automatically satisfied if the sampling densities
are derived from a model that imposes market clearing.

In most applications, some of the aggregate state variables zt that influence the
macro and micro sampling densities are unobserved, that is, zt �= xt . This fact compli-
cates the evaluation of the exact likelihood function and is the key technical challenge
that we overcome in this paper, as discussed in Section 3.

2.2 Example: Heterogeneous household model

We use a simple heterogeneous household model à la Krusell and Smith (1998) to il-
lustrate the components of the general framework introduced in Section 2.1. Our dis-
cussion of the model and the numerical equilibrium solution technique largely follows
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Winberry (2016, 2018). Though this model is far too stylized for quantitative empirical
work, we demonstrate the flexibility of our framework by adding complications such as
permanent heterogeneity among households as well as measurement error in observ-
ables. In Section 4, we will estimate a calibrated version of this model on simulated data.

Model assumptions A continuum of heterogeneous households i ∈ [0, 1] are exposed
to idiosyncratic employment risk as well as aggregate shocks to wages and asset returns.
Households have log preferences over consumption ci,t at time t = 0, 1, 2, � � � . When em-
ployed (εi,t = 1), households receive wage income net of an income tax levied at rate τ.
When unemployed (εi,t = 0), they receive unemployment benefits equal to a fraction b
of their hypothetical working wage. The idiosyncratic unemployment state εi,t evolves
exogenously according to a two-state first-order Markov process that is independent of
aggregate conditions and household decisions. Households cannot insure themselves
against their employment risk, since the only available financial instruments are shares
of capital ãi,t , which yield a rate of return rt . Financial investment is subject to the bor-
rowing constraint ãi,t ≥ 0.

For expositional purposes, we add a dimension of permanent household hetero-
geneity: Each household is endowed with a permanent labor productivity level λi, which
is drawn at the beginning of time from a log-normal distribution with mean parame-
ter E[logλi] = μλ ≤ 0 and variance parameter chosen such that E[λi] = 1. An employed
household inelastically supplies λi efficiency units of labor, earning pretax income of
λiwt , where wt is the real wage per efficiency unit of labor.

To summarize, the households’ problem can be written

max
ci,t ,ai,t≥0

E0

[ ∞∑
t=0

βt log ci,t

]

s.t. ci,t = λi
{
wt

[
(1 − τ)εi,t + b(1 − εi,t )

] + (1 + rt )ai,t−1 − ai,t
}

,

where ai,t = ãi,t/λi are the normalized asset holdings.
A representative firm produces the consumption good using a Cobb–Douglas pro-

duction function Yt = eζtKαt L
1−α, where aggregate capital Kt depreciates at rate δ, and

L is the aggregate level of labor efficiency units (which is constant over time since em-
ployment risk is purely idiosyncratic). The firm hires labor and rents capital in com-
petitive input markets. Log total factor productivity (TFP) evolves as an AR(1) process

ζt = ρζζt−1 + εt , where εt
i.i.d.∼ N(0, σ2

ζ ). The government balances its budget period by
period, implying τL= b(1 −L).

We collect the deep parameters of this model in the vector θ. These include β, α, δ,
τ, ρζ , σζ , the transition probabilities for idiosyncratic employment states, and μλ.

Equilibrium definition and computation The mathematical definition of a recursive
competitive equilibrium is standard, and we refer to Winberry (2016) for details. We now
review Winberry’s method for solving the model numerically.

A key model object is the cross-sectional joint distribution of the micro state vari-
ables, that is, employment status εi,t , normalized assets ai,t−1, and permanent produc-
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tivity λi. This distribution, which we denote μ̃t(ε, a, λ), is time-varying as it implicitly de-
pends on the aggregate productivity state variable ζt at time t. Due to log utility and the
linearity of the households’ budget constraint in λi, macro aggregates are unaffected by
the distribution of the permanent cross-sectional heterogeneity λi (recall that E[λi] = 1).
This implies that the mean parameter μλ of the log-normal distribution of λi is only
identifiable if micro data is available, as discussed further in Section 4. In equilibrium,
we have μ̃t(ε, a, λ) = μt(ε, a)F(λ | μλ ), where F(· | μλ ) denotes the time-invariant log-
normal distribution for λi.

To solve the model numerically, Winberry (2016, 2018) assumes that the infinite-
dimensional cross-sectional distributionμt(ε, a) can be well approximated by a rich but
finite-dimensional family of distributions. The distribution of a given ε is a mixture of a
mass point at 0 (the borrowing constraint) and an absolutely continuous distribution
concentrated on (0, ∞). At every point in time, Winberry approximates the absolutely
continuous part using a density of the exponential form

gε(a) = exp

{
ϕ̃ε0 + ϕ̃ε1m̃ε1 +

q∑
�=2

ϕε�
[
(a− m̃ε1 )� − m̃ε�

]}
,

where m̃ε1 = E[a | ε], m̃εl = E[(a− m̃ε1 )� | ε] for l ≥ 2, the ϕ̃ε�’s are coefficients of the dis-
tribution, and q ∈ N is a tuning parameter that determines the quality of the numerical
approximation. The q + 1 coefficients {ϕ̃ε�}0≤l≤q are pinned down by the q moments
{m̃ε�}1≤l≤q, along with the normalization that gε(a) integrates to one. The approxima-
tion of the distribution μt(ε, a) at any point in time therefore depends on 2(q + 1) pa-
rameters: the probability point mass at a = 0 as well as the q moments {m̃ε�}1≤l≤q, for
each employment state ε. Denote the vector of all these parameters byψ. The model so-
lution method proceeds under the assumption μt(a, ε) =G(a, ε; ψt ), where G denotes
the previously specified parametric mixture functional form for the distribution, and we
have added a time subscript to the parameter vector ψ=ψt . Though the approximation
μt(a, ε) ≈G(a, ε; ψt ) only becomes exact in the limit q→ ∞, the approximation may be
good enough for small q to satisfy the model’s equilibrium equations to a high degree of
numerical accuracy.

Adopting the distributional approximation, the model’s aggregate equilibrium can
now be written as a nonlinear system of expectational equations in a finite-dimensional
vector zt of macro variables:

Et
[
H(zt+1, zt , εt+1; θ)

] = 0, (1)

where we have made explicit the dependence on the deep model parameters θ. Con-
sistent with the notation in Section 2.1, the vector zt includes (log) aggregate output
log(Yt ), capital log(Kt ), wages log(wt ), rate of return rt , and productivity ζt , but also the
time-varying distributional parameters ψt . For brevity, we do not specify the full equi-
librium correspondenceH(·) here but refer to Winberry (2016) for details. Among other
things, H(·) enforces that the evolution over time of the cross-sectional distributional
parameters ψt is consistent with households’ optimal savings decision rule, given the



Quantitative Economics 14 (2023) Estimation of heterogeneous agent models 9

other macro state variables in zt . H(·) also enforces consistency between micro vari-
ables and macro aggregates, such as capital market clearing Kt = ∑1

ε=0

∫
aμt(ε, da).

Estimation of the heterogenous agent model requires a fast numerical solution
method, which Winberry (2016, 2018) achieves using the Reiter (2009) linearization ap-
proach. First, the system of equations (1) is solved numerically for the steady-state val-
ues zt = zt−1 = z̄ in the case of no aggregate shocks (εt = 0). Then the system (1) is
linearized as a function of the aggregate variables zt , zt−1, and εt around their steady-
state values, and the unique bounded rational expectations solution is computed (if it
exists) using standard methods for linearized models (Herbst and Schorfheide (2016)).
This leads to a familiar linear transition equation of the form:

zt − z̄ =A(θ)(zt−1 − z̄) +B(θ)εt . (2)

The matrices A(θ) and B(θ) are functions of the derivatives of the equilibrium corre-
spondenceH(·), evaluated at the steady-state z̄. Notice thatA(·) and B(·) implicitly de-
pend on functionals of the steady-state cross-sectional distribution of the micro state
variables (ε, a). This is because the Reiter (2009) approach only linearizes with respect
to macro aggregates zt and shocks εt , while allowing for all kinds of heterogeneity and
nonlinearities on the micro side, such as the borrowing constraint in the present model.
In practice, Winberry (2016, 2018) implements the linearization of equation (1) auto-
matically through the software package Dynare.4 For pedagogical purposes, we build
our inference machinery on top of the code that Winberry kindly makes available on his
website, but we discuss alternative cutting-edge model solution methods in Section 7.

Our inference method treats the linearized equilibrium relationship (2) as the true
model for the (partially unobserved) macro aggregates zt . That is, we do not attempt to
correct for approximation errors due to linearization or due to the finite-dimensional
approximation of the micro distribution. In particular, the transition density p(zt |
zt−1, θ) introduced in Section 2.1 is obtained from the linear Gaussian dynamic equation
(2), as opposed to the exact nonlinear equilibrium of the model, which is challenging to
compute. We stress that the goal of our paper is to fully exploit all observable implica-
tions of the (numerically approximated) structural model, and we leave concerns about
model misspecification to future work (see also Section 7).

Sampling densities We now show how the sampling densities of macro and micro data
can be derived from the numerical model equilibrium.

For sake of illustration, assume that we observe a single macro variable given by a
noisy measure of log output, that is, xt = log(Yt ) + et , where et ∼ N(0, σ2

e ). The mea-
surement error is not necessary for our method to work; we include it to illustrate the
identification status of different kinds of parameters in Section 4. For this choice of ob-
servable, the sampling density p(xt | zt , θ) introduced in Section 2.1 is given by a normal
density with mean log(Yt ) and varianceσ2

e . More generally, we could consider a vector of
macro observables xt linearly related to the state variables zt , with a vector et of additive

4See Adjemian et al. (2011).



10 Liu and Plagborg-Møller Quantitative Economics 14 (2023)

measurement error:5

xt = S(θ)zt + et . (3)

Together, the equations (2)–(3) constitute a linear state space model in the observed
and unobserved macro variables. We exploit this fact to evaluate the macro and micro
likelihood function in Section 3.

As for the micro data, suppose additionally that we observe repeated cross-sections
of households’ employment status εi,t and after-tax/after-benefits income ιi,t =
λi{wt[(1 − τ)εi,t + b(1 − εi,t )] + (1 + rt )ai,t−1}. That is, at certain times t ∈ T = {t1, t2, � � � ,
t|T | } we observe Nt observations yi,t = (εi,t , ιi,t )′, i = 1, � � � ,Nt , drawn independently
from a cross-sectional distribution that is consistent with μt(ε, a), F(λ | μλ ), and zt . The
joint sampling density p(yi,t | zt , θ) can be derived from the model’s underlying cross-
sectional distributions. The conditional distribution of ιi,t given εi,t and the macro states
is absolutely continuous, since the micro heterogeneity λi smooths out the point mass
at the households’ borrowing constraint. By differentiating the cumulative distribution
function, it can be verified that the conditional sampling density of ιi,t given εi,t equals

p(ιi,t | εi,t , zt , θ) = πεi,t (ψt )
f

(
ιi,t
ξi,t

∣∣∣ μλ)
ξi,t

+ [
1 −πεi,t (ψt )

] ∫ ∞

0

f

(
ιi,t

ξi,t + (1 + rt )a
∣∣∣ μλ)

ξi,t + (1 + rt )a gεi,t (a |ψt )da, (4)

where f (· | μλ ) is the assumed log-normal density for λi, πε(ψt ) ≡ P(a= 0 | ε, ψt ) is the
probability mass at zero for assets, and ξi,t ≡wt[(1 − τ)εi,t + b(1 − εi,t )]. In practice, the
integral can be evaluated numerically; cf. Section 4.

This concludes the specification of the model as well as the derivations of the macro
state transition density and of the sampling densities for the macro and micro data. In
Section 3, we will use these ingredients to derive the likelihood function consistent with
the model and the observed data.

Other observables and models Of course, one could think of many other empirically
relevant choices of macro and micro observables, leading to other expressions for the
sampling densities. Our choices here are merely meant to illustrate how our framework
is flexible enough to accommodate: (i) a mixture of discrete and continuous observables;
(ii) observables that depend on both micro and macro states; and (iii) persistent cross-
sectional heterogeneity λi that, given repeated cross-section data, effectively amounts
to measurement error at the micro level.

We emphasize that the general framework in Section 2.1 can also handle many other
types of heterogeneous agent models. To show this, Section 5 will consider an alternative
model with heterogeneous firms as in Khan and Thomas (2008).

5Some of the elements of et could have variance 0 if no measurement error is desired.
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3. Efficient Bayesian inference

We now describe our method for doing efficient Bayesian inference. We first construct
a numerically unbiased estimate of the likelihood, and then discuss the posterior sam-
pling procedure. Finally, we compare our approach with procedures that collapse the
micro data to a set of cross-sectional moments.

3.1 Unbiased likelihood estimate

Our likelihood estimate is based on decomposing the joint likelihood into a macro part
and a micro part (conditional on the macro data):

p(x, y | θ) =
macro︷ ︸︸ ︷
p(x | θ)

micro︷ ︸︸ ︷
p(y | x, θ)

= p(x | θ)
∫
p(y | z, θ)p(z | x, θ)dz

= p(x | θ)
∫ ∏

t∈T

Nt∏
i=1

p(yi,t | zt , θ)p(z | x, θ)dz. (5)

Note that this decomposition is satisfied by construction under Assumption 1 and will
purely serve as a computational tool. The form of the decomposition should not be
taken to mean that we are assuming that “x affects y but not vice versa.” As discussed in
Section 2, our framework allows for a fully general equilibrium feedback loop between
macro and micro variables.

The macro part of the likelihood is easily computable from the Reiter-linearized state
space model (2)–(3). Assuming i.i.d. Gaussian measurement error et and macro shocks
εt , the macro part of the likelihood p(x | θ) can be obtained from the Kalman filter. This
is computationally cheap even in models with many state variables and/or observables.
This idea was developed by Mongey and Williams (2017) and Winberry (2018) for esti-
mation of heterogeneous agent models from aggregate time series data.

The novelty of our approach is that we compute an unbiased estimate of the micro
likelihood conditional on the macro data. Although the integral in expression (5) can-
not be computed analytically in realistic models, we can obtain a numerically unbiased
estimate of the integral by random sampling:

∫ ∏
t∈T

Nt∏
i=1

p(yi,t | zt , θ)p(z | x, θ)dz ≈ 1
J

J∑
j=1

∏
t∈T

Nt∏
i=1

p
(
yi,t | zt = z(j)

t , θ
)
, (6)

where z(j) ≡ {z(j)
t }1≤t≤T , j = 1, � � � , J, are draws from the joint smoothing density p(z |

x, θ) of the latent states. Again using the Reiter-linearized model solution, the Kalman
smoother can be used to produce these state smoothing draws with little computational
effort (e.g., Durbin and Koopman (2002)). As the number of smoothing draws J → ∞,
the likelihood estimate converges to the exact likelihood, but we show below that finite
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J is sufficient for our purposes, as we rely only on the numerical unbiasedness of the
likelihood estimate, not its consistency.

Our likelihood estimate can loosely be interpreted as arising from a two-step ap-
proach: First, we estimate the states from the macro data, and then we plug the state
estimates z(j)

t into the micro sampling density. However, unlike more ad hoc versions
of this general idea, we will argue next that the unbiased likelihood estimate makes it
possible to perform valid Bayesian inference that fully takes into account all sources of
uncertainty about states and parameters.

The expression on the right-hand side of the likelihood estimate (6) is parallelizable
over smoothing draws j, time t, and/or individuals i. Thus, given the right computing
environment, the computation time of our method scales well with the dimensions of
the micro data. This is particularly helpful in models where evaluation of the micro sam-
pling density involves numerical integration, as in the household model in Section 4
below.

3.2 Posterior sampling

Now that we have a numerically unbiased estimate of the likelihood, we can plug it into
any generic MCMC procedure to obtain draws from the posterior distribution, given
a choice of prior density. We may simply pretend that the likelihood estimate is exact
and run the MCMC algorithm as we otherwise would, as explained by Andrieu, Doucet,
and Holenstein (2010) and Flury and Shephard (2011). Despite the simulation error in
estimating the likelihood, the ergodic distribution of the MCMC chain will equal the fully
efficient posterior distribution p(θ | x, y). This is true no matter how small the number
J of smoothing draws is. Still, the MCMC chain will typically exhibit better mixing if
J is moderately large so that proposal draws are not frequently rejected merely due to
numerical noise. In principle, we can use any generic MCMC method that requires only
the likelihood and prior density as inputs, such as Metropolis–Hastings. Our approach
can also be applied to sequential Monte Carlo sampling (Herbst and Schorfheide (2016,
Chapter 5)).6

3.3 Comparison with moment-based methods

The above full-information approach yields draws from the same posterior distribution
as if we had used the model-implied exact joint likelihood of the micro and macro data;
it is thus finite-sample optimal in the usual sense. An alternative approach proposed
by Challe et al. (2017) and Mongey and Williams (2017) is to collapse the micro data
into a small number of cross-sectional moments, which are tracked over time (i.e., the
repeated cross-sections of micro data are transformed into time series of cross-sectional

6Implementation of Algorithm 8 in Herbst and Schorfheide (2016) requires some care. The mutation step
(step 2.c) can use the unbiased likelihood estimate with finite number of smoothing draws J, by Andrieu,
Doucet, and Holenstein (2010). However, it is not immediately clear whether an unbiased likelihood esti-
mate suffices for the correction step (step 2.a). For the latter step, we therefore advise using a larger number
of smoothing draws to ensure that the likelihood estimate is close to its analytical counterpart.
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moments). We now examine under which circumstances our full-information approach
is strictly more efficient than this moment-based approach.

We focus on moment-based approaches that track the evolution of cross-sectional
moments over time, rather than exploiting only steady-state moments. Empirically,
cross-sectional distributions are often time-varying (Krueger, Perri, Pistaferri, and Vi-
olante (2010), Wolff (2016)). The model-based numerical illustrations below also exhibit
time-variation in cross-sectional distributions. Thus, collapsing the time-varying mo-
ments to averages across the entire time sample would leave information on the table.

If the micro sampling density has sufficient statistics for the parameters of inter-
est, and the sufficient statistics are one-to-one functions of the observed cross-sectional
moments, then these moments contain the same amount of information about the
structural parameters as the full micro data set. As stated in the Pitman–Koopman–
Darmois theorem, only the exponential family has a fixed number of sufficient statistics.
The following result obtains.

Theorem 1. If the conditional sampling density of the micro data yi,t can be expressed
as

p(yi,t | zt , θ) = exp

[
ϕ0(zt , θ) +m0(yi,t ) +

Q∑
�=1

ϕ�(zt , θ)m�(yi,t )

]
, (7)

for certain functions ϕ�(·, ·), m�(·), � = 0, � � � ,Q, then there exist sufficient statistics for θ
given by the cross-sectional moments

m̂�,t = 1
Nt

Nt∑
i=1

m�(yi,t ), �= 1, � � � ,Q. (8)

Proof. Please see Appendix A.1.

That is, under the conditions of the theorem, the full micro–macro data set {y, x}
contains as much information about the parameters θ as the moment-based data set
{m̂, x}, where m̂ ≡ {m̂�,t }1≤�≤Q,t∈T . This result is not trivial due to the presence of the la-
tent macro states zt , which are integrated out in the likelihood (5). The key requirement
is that in (7), the terms inside the exponential should be additive and each term should
take the form ϕ�(zt , θ)m�(yi,t ).

Whether or not the micro sampling density exhibits the exponential form (7) de-
pends on the model and on the choice of micro observables. As explained in Section 2.2,
in this paper we adopt the Winberry (2018) model solution approach, which approxi-
mates the cross-sectional distribution of the idiosyncratic micro state variables si,t using
an exponential family of distributions. Hence, if we observed the micro states si,t directly,
Theorem 1 implies that there would be no loss in collapsing the micro data to a certain
set of cross-sectional moments. However, there may not exists sufficient statistics for the
actual micro observables yi,t , which are generally nontrivial functions of the latent mi-
cro states si,t and macro states zt . The following corollary gives conditions under which
sufficient statistics still obtain. Let yi,t be a dy × 1 vector and si,t be a ds × 1 vector.
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Corollary 1. Suppose we have:

1. The conditional density of the micro states si,t given zt is of the exponential form.

2. The micro states are related to the micro observables as follows:

si,t = B1(zt , θ)ϒ(yi,t ) +B0(zt , θ), (9)

where:

(a) dy = ds.
(b) ϒ(·) is a known, piecewise bijective and differentiable function with its domain

and range being subsets of Rds .

(c) The ds × ds matrix B1(zt , θ) is nonsingular for almost all values of (zt , θ).

Then there exist sufficient micro statistics for θ.

Proof. Please see Appendix A.1. The proof states the functional form of the sufficient
statistics.

There are several relevant cases where the conditions of Corollary 1 fail, and hence
sufficient statistics may not exist. First, the dimension dy of the observables yi,t could
be strictly smaller than the dimension ds of the latent micro states si,t . Second, there
may not exist any linear relationship between si,t and some function ϒ(yi,t ) of yi,t , for
example, due to binding constraints. Third, there may be unobserved individual hetero-
geneity and/or micro measurement error, such as the individual-specific productivity
parameter λi in Section 2.2. We provide further discussion in Appendix A.2.

Even if the model exhibits sufficient statistics given by cross-sectional moments
of the observed micro data, valid inference requires taking into account the sampling
uncertainty of these moments. This is a challenging task, since the finite-sample dis-
tribution of the moments is typically not Gaussian (especially for higher moments);
see Appendix A.3 for an example. Hence, the observation equation for the moments
does not fit into the linear-Gaussian state space framework (2)–(3) that lends itself to
Kalman filtering. If the micro sample size is large, the sampling distribution of the mo-
ments may be well approximated by a Gaussian distribution, but even then the variance-
covariance matrix of the distribution will generally be time-varying and difficult to com-
pute/estimate. In Section 4 below, we consider one natural method for approximately
accounting for the sampling uncertainty of the moments. We find that this moment-
based approach is less reliable than our preferred full-information approach.

The potential inefficiency and fragility of the moment-based approach contrasts
with the ease of applying our efficient full-information method. Users of our method
need not worry about the existence of sufficient statistics, nor do they need to select
which moments to include in the analysis and figure out how to account for their sam-
pling uncertainty. Moreover, we show by example in Section 5.4 that the full-information
approach can easily accommodate empirically relevant features of micro data such as
censoring or selection, which is challenging to do in a moment-based framework (at
least in an efficient way).
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4. Illustration: Heterogeneous household model

We now demonstrate that combining macro and micro data can sharpen structural in-
ference when estimating the heterogeneous household model of Section 2.2 on simu-
lated data. We contrast the results of our efficient full-information approach with those
of an alternative moment-based approach. This section should be viewed as a proof-of-
concept exercise, as we deliberately keep the dimensionality of the inference problem
small in order to focus attention on the core workings of our procedure.

4.1 Model, data, and prior

We consider the stylized heterogeneous household model defined in Section 2.2. We aim
to estimate the households’ discount factorβ, the standard deviation σe of the measure-
ment error in log output, and the individual productivity heterogeneity parameter μλ.
All other parameters are assumed known for simplicity.

Consistent with Section 2.2, we assume that the econometrician observes aggregate
data on log output with measurement error, as well as repeated cross-sections of house-
hold employment status εi,t and after-tax/after-benefits income ιi,t .

We adopt the annual parameter calibration in Winberry (2016); see Supplemental
Appendix C.1. In particular, β = 0.96. We choose the true measurement error standard
deviation σe so that about 20% of the variance of observed log output is due to measure-
ment error, yielding σe = 0.02.7 The individual heterogeneity parameter μλ is chosen
to be −0.25, implying that the model’s cross-sectional 20th to 90th percentile range of
log after-tax income roughly matches the range in U.S. data (Piketty, Saez, and Zucman
(2018, Table I)).

Using this calibration, we simulate T = 100 periods of macro data, as well as micro
data consisting ofNt =N = 1000 households observed at each of the ten time points t =
10, 20, 30, � � � , 100. The data is simulated using the same approximate model solution
method as is used to compute the unbiased likelihood estimate; see Section 2.2.

Finally, we choose the prior on (β, σe, μλ ) to be flat in the natural parameter space.

4.2 Computation

Following Winberry (2016, 2018), we solve the model using a Dynare implementation of
the Reiter (2009) method. This allows us to use Dynare’s built-in Kalman filter/smoother
procedures when evaluating the micro likelihood estimate (6). We use an approximation
of degree q= 3 when approximating the asset distribution, in the notation of Section 2.2.
We average the likelihood across J = 500 smoothing draws. The integral (4) in the micro
sampling density of income is evaluated using a combination of numerical integration
and interpolation.8 To simulate micro data from the cross-sectional distribution, we

7One possible real-world interpretation of the measurement error is that it represents the statistical un-
certainty in estimating the natural rate of output (recall that the model abstracts from nominal rigidities).

8First, we use a univariate numerical integration routine to evaluate the integral on an equal-spaced grid
of values for log ι. Then we use cubic spline interpolation to evaluate the integral at arbitrary ι. In practice,
a small number of grid points is sufficient in this application, since the density (4) is a smooth function of ι.
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apply the inverse probability transform to the model-implied cumulative distribution
function of assets, which in turn is computed using numerical integration.

For simplicity, our MCMC algorithm is a basic Random Walk Metropolis-Hastings
algorithm with tuned proposal covariance matrix and adaptive step size (Atchadé and
Rosenthal (2005)).9 The starting values are determined by a rough grid search on the
simulated data. We generate 10,000 draws and discard the first 1000 as burn-in. Using
parallel computing on 20 cores, likelihood evaluation takes about as long as Winberry’s
(2016) procedure for computing the model’s steady state.

4.3 Results

Figure 2 shows that both macro and micro data can be useful or even essential for esti-
mating some parameters, but not others. The figure depicts the posterior densities of the
three parameters, on a single sample of simulated data. The full-information posterior
(solid curves) is concentrated close to the true values of the three parameters (which are
marked by vertical thin dashed lines). The figure also shows the posterior density with-
out conditioning on the micro data (dashed curves). The household discount factor β
is an important determinant of not just aggregate variables, but also the heterogeneous
actions of the micro agents in the economy. Ignoring the micro data leads to substan-
tially less accurate inference about β in this simulation, as the macro-only posterior
is less precisely centered around the true value as well as more diffuse than the full-
information posterior. Nevertheless, macro data clearly does meaningfully contribute to

Figure 2. Heterogeneous household model: Posterior density. Posterior densities with (solid
curves) and without (dashed curves) conditioning on the micro data. Both sets of results use the
same simulated data set. Vertical dashed lines indicate true parameter values. Posterior density
estimates from the 9000 retained MCMC draws using Matlab’s ksdensity function with default
settings. The third display omits the macro-only results, since μλ is not identified from macro
data alone.

9Our proposal distribution is a mixture of (i) the adapted multivariate normal distribution and (ii) a dif-
fuse normal distribution, with 95% probability attached to the former. We verified the diminishing adaption
condition and containment condition in Rosenthal (2011), so the distribution of the MCMC draws will con-
verge to the posterior distribution of the parameters.
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Figure 3. Heterogeneous household model: Consumption policy function, employed. Esti-
mated steady-state consumption policy function for employed households, either using both
micro and macro data (left panel) or only using macro data (right panel). The thick curve is com-
puted under the true parameters. The thin lines are 900 posterior draws (computed using every
10th MCMC draw after burn-in). X-axes are normalized asset holdings ai,t .

pinning down the parameter β. More starkly, μλ can only be identified from the cross-
section, since by construction the macro aggregates are not influenced by the distribu-
tion of the individual permanent productivity draws λi. In contrast, essentially all the
information about the measurement error standard deviation σe comes from the macro
data, again by construction. Thus, our results here illustrate the general lesson that both
macro and micro data can be either essential, useful, or irrelevant for estimating differ-
ent parameters.

Figure 3 shows that efficient use of the micro data leads to substantially more precise
estimates of the steady-state consumption policy function for employed households.10

The left panel shows that full-information posterior draws of the consumption policy
function (thin curves) are fairly well centered around the true function (thick curve), as
is expected given the accurate inference about β depicted in Figure 2. In contrast, the
right panel shows that macro-only posterior draws are less well centered and exhibit
higher variance, especially for households with high or low current asset holdings. The
added precision afforded by efficient use of the micro data translates into more precise
estimates of the marginal propensity to consume (the derivative of the consumption
policy function) at the extremes of the asset distribution. This is potentially useful when
analyzing the two-way feedback effect between macroeconomic policies and redistri-
bution (Auclert (2019)).

The extra precision afforded by micro data also sharpens inference on the impulse
response function of the asset distribution with respect to an aggregate productivity
shock. Figure 4 shows full-information (left panel) and macro-only (right panel) pos-
terior draws of the impulse response function of employed households’ asset holding
density, in the periods following a 5% aggregate productivity shock.11 Once again, the

10Figure C.1 in Supplemental Appendix C.2 plots the policy function for unemployed households.
11For unemployed households, see Figure C.2 in Supplemental Appendix C.2.
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Figure 4. Het. household model: Impulse responses of asset distribution, employed. Estimated
impulse response function of employed households’ asset distribution with respect to an aggre-
gate productivity shock, either using both micro and macro data (left panel) or only using macro
data (right panel). The thin lines are 900 posterior draws (computed using every 10th MCMC
draw after burn-in). X-axes are normalized asset holdings ai,t . The four rows in each panel are
the asset densities at impulse response horizons 0 (impact), 2, 4, and 8. The dashed and thick
solid curves are the steady-state density and the impulse response, respectively, computed un-
der the true parameters. On impact the true impulse response equals the steady-state density,
since households’ portfolio choice is predetermined.

full-information results have substantially lower variance. Following the shock, there is
a noticeable movement of the asset distribution computed under the true parameters
(thick solid curve). At horizon h = 8, the mean increases by 0.16 relative to the steady
state (dashed curve), the variance increases by 0.10, and the third central moment de-
creases by 0.06. However, the true movement in the asset distribution is not so large
relative to the estimation uncertainty. This further motivates the use of an efficient in-
ference method that validly takes into account all estimation uncertainty.

The previous qualitative conclusions hold up in repeated simulations from the cali-
brated model. We repeat the MCMC estimation exercise on 10 different simulated data
sets.12 Figure 5 plots all 10 full-information and macro-only posterior densities for the
three parameters on the same plot. Notice that the full-information densities for β sys-
tematically concentrate closer to the true value than the macro-only posteriors do, as in
Figure 2.

Our inference approach is valid in the usual Bayesian sense no matter how small
the sample size is. In Figure C.3 of Supplemental Appendix C.2, we show that the full-
information approach still yields useful inference about the model parameters if we only
observeN = 100 observations every ten periods (instead ofN = 1000 as above).

4.4 Comparison with moment-based methods

In this subsection, we compare the above full-information results with a moment-based
inference approach, to shed light on the theoretical comparison in Section 3.3. Due

12Computational constraints preclude a full Monte Carlo study.
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Figure 5. Heterogeneous household model: Posterior density, multiple simulations. Posterior
densities with (light curves) and without (dark curves) conditioning on the micro data, for 10
different simulated data sets. See also caption for Figure 2.

to the unobserved individual heterogeneity parameter λi, fixed-dimensional sufficient
statistics do not exist in this model with the given observables.13 Hence, we follow em-
pirical practice and compute an ad hoc selection of cross-sectional moments, includ-
ing the sample mean, variance, and third central moment of household after-tax in-
come. We compute the moments separately for the groups of employed and unem-
ployed households, in each period t = 10, 20, � � � , 100 where micro data is observed. We
consider three moment-based approaches with different numbers of observables: The
“1st Moment” approach only incorporates time series of sample means, the “2nd Mo-
ment” approach incorporates both sample means and variances, and the “3rd Moment”
approach incorporates sample moments up to the third order.

Once we compute the time series of cross-sectional moments on the simulated
data, we treat them as additional time series observables and proceed as in the “Macro
Only” approach considered earlier. To account for the sampling uncertainty in the cross-
sectional moments, we appeal to a central limit theorem and treat the moments as
jointly Gaussian, which is equivalent to adding measurement error in those state space
equations that correspond to the moments. A natural and practical way to construct the
variance-covariance matrix of the measurement error is to estimate its elements using
higher-order sample moments of micro data. The variance-covariance matrix is actually
time-varying according to the structural model, but since this would be challenging to
account for, we treat it as fixed over the sample.14 Supplemental Appendix B provides
the details of how we estimate the variance-covariance matrix. The computation time
of the moment-based likelihood functions is not much faster than our full-information
approach, since the evaluation of the micro likelihood (which is specific to the full-
information method) takes approximately the same amount of time as the calculation

13The unobserved individual heterogeneity is observationally equivalent to micro measurement error
given repeated cross-sections of micro data.

14Higher-order sample moments are less accurate approximations to their population counterparts.
Given an empirically relevant cross-sectional sample size, the resulting variance-covariance matrix would
be even more imprecise if inferred period by period.
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Figure 6. Heterogeneous household model: Likelihood comparison. Comparison of log likeli-
hoods across inference methods, based on one typical simulated data set. Each panel depicts
univariate deviations of a single parameter while keeping all other parameters at their true val-
ues. The maximum of each likelihood curve is normalized to be zero. Vertical dashed lines in-
dicate true parameter values. The “1st Moment” and “Macro Only” curves are flat on the right
panel, since μλ is not identified from this data alone. For results across 10 different simulated
data sets, see Figure A.1 in Appendix A.4.

of the model’s steady state (which is common to all methods), when implemented on a
research cluster with 20 parallel workers.

We compare the shape and location of the likelihood functions for the full-informa-
tion and moment-based methods.15 For graphical clarity, we vary a single parameter at
a time, keeping the other parameters at their true values. Figure 6 plots the univariate
log likelihood functions of all inference approaches based on one typical simulated data
set.16 Since we are interested in the curvature of the likelihood functions near their max-
ima, and not the overall level of the functions, we normalize each curve by subtracting
its maximum.

Figure 6 shows that the moment-based likelihoods do not approximate the efficient
full-information likelihood well, with the “3rd Moment” likelihood being particularly
inaccurately centered. There are two reasons for this. First, as discussed in Section 3.3,
there is no theoretical sufficient statistics in this setup, so all the moment-based ap-
proaches incur some efficiency loss. Second, the sampling distributions of higher-order
sample moments are not well approximated by Gaussian distributions in finite samples,
and the measurement error variance-covariance matrix depends on even higher-order
moments, which are poorly estimated. A separate issue is that the individual hetero-
geneity parameterμλ cannot even be identified using the “1st Moment” approach, since
this parameter does not influence first moments of the micro data. The “2nd Moment”

15We omit full posterior inference results for the moment-based methods, as they were more prone to
MCMC convergence issues than our full-information method.

16We compute the full-information likelihood function by averaging across J = 500 smoothing draws.
For a clearer comparison of the plotted likelihood functions, we fix the random numbers used to draw from
the smoothing distribution across parameter values. Note that we do not fix these random numbers in the
MCMC algorithm, as required by the Andrieu, Doucet, and Holenstein (2010) argument.



Quantitative Economics 14 (2023) Estimation of heterogeneous agent models 21

likelihood is not entirely misleading but nevertheless differs meaningfully from the full-
information likelihood.17 Figure A.1 in Appendix A.4 confirms that the aforementioned
qualitative conclusions hold up across 10 different simulated data sets.

To summarize, even in this relatively simple model, the moment-based methods we
consider lead to a poor approximation of the full-information likelihood, and the infer-
ence can be highly sensitive to the choice of which moments to include. It is possible
that other implementations of the moment-based approach would work better in par-
ticular applications. Nevertheless, any moment-based approach will require challenging
ad hoc choices, such as which moments to use and how to account for their sampling
uncertainty. No such choices are required by the efficient full-information approach de-
veloped in this paper.

5. Illustration: Heterogeneous firm model

As our second proof-of-concept example, we estimate a version of the heterogeneous
firm model of Khan and Thomas (2008). In addition to showing that our general infer-
ence approach can be applied outside the specific Krusell and Smith (1998) family of
models, we use this section to illustrate how sample selection or data censoring can eas-
ily be accommodated in our method.

5.1 Model, data, and prior

A continuum of heterogeneous firms are subject to both idiosyncratic and aggregate
productivity shocks. Investment is subject to nonconvex adjustment costs. Specifically,
firm i’s investment Ii,t is free if |Ii,t/ki,t| ≤ a, where ki,t is the firm-specific capital stock,
and a ≥ 0 is a parameter. Otherwise, firms pay a fixed adjustment cost of ξi,t in units
of labor. ξi,t is drawn at the beginning of every period from a uniform distribution on
the interval [0, ξ̄], independently across firms and time. Here, ξ̄ ≥ 0 is another param-
eter. In addition to the aggregate productivity shock, there is a second aggregate shock
that affects investment efficiency. The representative household has additively separa-
ble preferences over log consumption and (close to linear) leisure time. For brevity, we
relegate the details of the model to Supplemental Appendix D.1, which entirely follows
Winberry’s (2018) version of the Khan and Thomas (2008) model.

We aim to estimate the adjustment cost parameters ξ̄ and a. Khan and Thomas
(2008) showed that these parameters have little impact on the aggregate macro implica-
tions of the model in their preferred calibration; hence, micro data is needed. We keep
all other parameters fixed at their true values for simplicity. Supplemental Appendix D.3
provides results for an alternative exercise where we instead estimate the parameters of
the firms’ idiosyncratic productivity process; the key messages are qualitatively similar
to those presented below.

17The “Full Info” and “Macro Only” likelihoods are consistent with the posterior densities plotted in
Section 4.3. For β, the “Macro Only” likelihood has a smaller curvature around the peak and a wider range
of peaks across simulated data sets, so the full information method helps sharpen the inference of β. For
σe, the “Macro Only” curves are close to their “Full Info” counterparts. The parameter μλ is not identified
in the “Macro Only” case, so the corresponding likelihood function is flat.
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We adopt the annual calibration of Winberry (2018), which in turn follows Khan and
Thomas (2008); see Supplemental Appendix D.2. However, we make an exception in set-
ting the firm’s idiosyncratic log productivity AR(1) parameter ρε = 0.53, following foot-
note 5 in Khan and Thomas (2008).18 We then adjust the log productivity innovation
standard deviation σε = 0.0364, so that the variance of the idiosyncratic log productiv-
ity process is unchanged from the baseline calibration in Khan and Thomas (2008) and
Winberry (2018). The macro implications of our calibration are virtually identical to the
baseline in Khan and Thomas (2008), as those authors note.

We assume that the econometrician observes time series on aggregate output and
investment, as well as repeated cross-sections of micro data on firms’ capital and labor
inputs. We simulate macro data with sample size T = 50, while micro cross-sections of
sizeN = 1000 are observed at each point in time t = 1, � � � , 50. Unlike in Section 4, we do
not add measurement error to the macro observables.

The prior on (ξ̄, a) is chosen to be flat in the natural parameter space.

5.2 Computation

As in Section 4, we solve and simulate the model using the Winberry (2018) Dynare
solution method. We follow Winberry (2018) and approximate the cross-sectional den-
sity of the firms’ micro state variables (log capital and idiosyncratic productivity) with a
multivariate normal distribution. Computation of the micro sampling density is simple,
since—conditional on macro states—the micro observables (capital and labor) are log-
linear transformations of these micro state variables. We use J = 500 smoothing draws
to compute the unbiased likelihood estimate. The MCMC routine is the same as in Sec-
tion 4. The starting values are selected by a rough grid search on the simulated data. We
generate 10,000 draws and discard the first 1000 as burn-in. Likelihood evaluation using
20 parallel cores is several times faster than computing the model’s steady state.

5.3 Results

Despite the finding in Khan and Thomas (2008) that macro data is essentially unin-
formative about the firms’ adjustment cost parameters, these are accurately estimated
when the micro data is used also. Figure 7 shows the posterior densities of ξ̄ and a com-
puted on 10 different simulated data sets. The posterior distribution of each parameter
is systematically concentrated close to the true parameter values. We refrain from vi-
sually comparing these results with inference that relies only on macro data, since the
macro likelihood is almost entirely flat as a function of (ξ̄, a), consistent with Khan and
Thomas (2008).19 Thus, micro data is essential to inference about these parameters. This
finding is broadly consistent with Bachmann and Bayer (2014), who show that the dy-
namics of the cross-sectional dispersion of firm investment are very informative about
the nature of firm-level frictions.

18This avoids numerical issues that arise when solving the model for high degrees of persistence, as
required in the estimation exercise in Supplemental Appendix D.3.

19On average across the 10 simulated data sets, the standard deviation (after burn-in) of the macro log
likelihood logp(x | θ) across all Metropolis–Hastings proposals of the parameters is only 0.14, while it is 18.7
for the micro log likelihood logp(y | x, θ).
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Figure 7. Heterogeneous firm model: Posterior density, multiple simulations. Posterior densi-
ties across 10 simulated data sets. Vertical dashed lines indicate true parameter values. Posterior
density estimates from the 9000 retained MCMC draws using Matlab’s ksdensity function with
default settings.

5.4 Correcting for imperfect sampling of micro data

One advantage of the likelihood approach adopted in this paper is that standard tech-
niques can be applied to correct for sample selection or censoring in the micro data. This
is highly relevant for applied work, since household or firm surveys are often subject to
known data imperfections, even beyond measurement error.

Valid inference about structural parameters merely requires that the micro sam-
pling density p(yi,t | zt , θ) introduced in Section 2.1 accurately reflects the sampling
mechanism, including the effects of selection or censoring. Hence, if it is known, say,
that an observed variable such as household income is top-coded (i.e., censored) at the
threshold ȳ, then the functional form of the density p(yi,t | zt , θ) should take into ac-
count that the observed data equals a transformation yi,t = min{ỹi,t , ȳ} of the theoret-
ical household income ỹi,t in the DSGE model. The likelihood functions of such lim-
ited dependent variable sampling models are well known and readily looked up; see,
for example, Wooldridge (2010, Chapters 17 and 19).20 We provide one illustration be-
low.

Other approaches to estimating heterogeneous agent models do not handle data
imperfections as easily or efficiently. For example, inference based on cross-sectional
moments of micro observables may require lengthy derivations to adjust the moment
formulas for selection or censoring, especially for higher moments. Moreover, even in
models where low-dimensional sufficient statistics exist for the underlying micro vari-
ables (cf. Section 3.3), the imperfectly observed micro data may not afford such sufficient

20If the nature of the data imperfection is only partially known, it may be possible to estimate the sam-
pling mechanism from the data. For example, if the data is suspected to be subject to endogenous sample
selection, one could specify a Heckman-type selection model and estimate the parameters of the selection
model as part of the likelihood framework (Wooldridge (2010, Chapter 19)). It is outside the scope of this
paper to consider nonparametric approaches or to analyze the consequences of misspecification of the
sampling mechanism.
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statistics. In contrast, our likelihood-based approach is automatically efficient, and the
adjustments needed to account for common types of data imperfections can be looked
up in microeconometrics textbooks.

Illustration: Selection on outcomes We illustrate the previous points by adding an en-
dogenous selection mechanism to the sampled micro data in the heterogeneous firm
model. Assume that instead of observing a representative sample of firms every period,
we observe the draws for those firms whose employment in that period exceeds the 90th
percentile of the steady-state cross-sectional distribution of employment. To make the
effective micro sample size comparable to that in Section 5.3, we here set the per-period
micro sample size before selection equal to N = 10,000. That is, out of 10,000 potential
draws in a period, we only observe the capital and labor inputs of the approximately
1000 largest firms. Though stylized, this sampling mechanism is intended to mimic the
real-world phenomenon that databases such as Compustat tend to only cover the largest
active firms in the economy.

To adjust the likelihood for selection, we combine the model-implied cross-sectional
distribution of the idiosyncratic state variables with the functional form of the selection
mechanism. Let gt(ε, k) be the cross-sectional distribution of idiosyncratic log produc-
tivity εi,t and log capital ki,t at time t, implied by the model (this density is approximated
using an exponential family of densities, as in Winberry (2018)). In the model, log em-
ployment is given by ni,t = (logν+ ζt − log(wt ) + εi,t +αki,t )/(1 − ν), where wt is the ag-
gregate wage, ζt is log aggregate TFP, and ν and α are the output elasticities of labor and
capital in the firm production function (ν + α < 1). Since observations yi,t = (ni,t , ki,t )′
are observed if and only if ni,t ≥ n̄, the micro sampling density is given by the truncation
formula21

p(ni,t , ki,t | zt , θ) = (1 − ν)gt
(
(1 − ν)ni,t − αki,t − logν− ζt + log(wt ), ki,t

)∫ ∞

−∞

∫ ∞

−∞
1
(
logν+ ζt − log(wt ) + ε+ αk≥ (1 − ν)n̄

)
gt(ε, k)dεdk

.

The selection threshold n̄ is given by the true 90th percentile of the steady-state distri-
bution of log employment. We assume this threshold is known to the econometrician
for simplicity.22

Figure 8 shows the posterior distribution of the adjustment cost parameters (ξ̄, a)
in the model with selection, across 10 simulated data sets. All settings are the same as
in Section 5.3, except for (i) the selection mechanism in the simulated micro data and
the requisite adjustment to the functional form of the micro likelihood function, and
(ii) the pre-selection micro sample size N = 10,000 (as discussed above). The posterior
distributions of the parameters of interest remain centered close to the true parameter
values, with no appreciable increase in posterior uncertainty relative to Figure 7. This
example demonstrates that data imperfections can be handled in a valid and efficient
manner using standard likelihood techniques.

21The integral in the denominator can be computed in closed form if the density gt (ε, k) is multivariate
Gaussian, which is the approximation we use in our numerical experiments, following Winberry (2018).

22In principle, n̄ could be treated as another parameter to be estimated from the available data.



Quantitative Economics 14 (2023) Estimation of heterogeneous agent models 25

Figure 8. Heterogeneous firm model: Posterior densities with selection. Posterior densities
across 10 simulated data sets subject to selection. Vertical dashed lines indicate true parameter
values. Posterior density estimates from the 9000 retained MCMC draws using Matlab’s ksden-
sity function with default settings.

6. Extension to panel data

While our baseline procedure in Section 3 assumes the micro data to be given by re-
peated cross-sections, we now consider settings where the micro data has a panel di-
mension, that is, the same cross-sectional units are observed over two or more consecu-
tive time periods. For tractability, we focus on panel data sets where the time dimension
per unit is short (similar to Papp and Reiter (2020)). One example is rotating panel sur-
vey data, where each unit is observed for a few consecutive time periods, after which it
is replaced by a new, representatively sampled unit (as in the Bureau of Labor Statistics’
Consumer Expenditure Survey). Panel data sets with a large time dimension, such as de-
tailed administrative data sets, are computationally challenging and beyond the scope
of this paper.

6.1 Challenges and solutions

The main challenge in handling panel data is the need to integrate out any unob-
served individual-specific state variables (such as idiosyncratic productivity or asset
holdings) that influence agents’ dynamic decision rules. If the structural model di-
rectly implies a simple functional form for the one-step-ahead predictive density p(yi,t |
yi,t−1, yi,t−2, � � � , z, θ) of the observed data yi,t for individual i, then evaluating the micro
likelihood is trivial (as in reduced-form dynamic panel data models). Unfortunately, in
most settings this predictive density is not available in closed form, and must instead
be computed as the integral

∫
p(yi,t | si,t , z, θ)p(si,t | yi,t−1, yi,t−2, � � � , z, θ)dsi,t over the

latent micro state variables si,t . Whereas the first density in the integrand may often be
available in closed form, the second density will typically not be (outside simple linear
models). Hence, evaluating the integral for each i and t appears to be computationally
infeasible in many applications, especially if the number of time periods is moderately
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large. Nevertheless, as we now show, it is often possible to evaluate the micro likeli-
hood when the time dimension per unit is small, by avoiding direct evaluation of the
intractable predictive density.

Our proposal for exploiting panel data utilizes the model-implied relationship be-
tween (i) the latent micro state variables si,ti in the initial period ti for individual i and
(ii) the micro observables {yi,t }t in all observed time periods for that individual. This re-
lation necessarily involves iterating on the dynamic micro decision rules of the agents
in the economy. In the next subsection, we explain this approach by example, using the
heterogeneous household model from Section 2.2. Since the main focus of this paper is
repeated cross-sectional micro data, we leave a numerical exploration of the benefits of
panel data for future work.

6.2 Example: Heterogeneous household model

Unlike in Section 2.2, we here assume that we observe two consecutive periods of
yi,t = (εi,t , ιi,t ) for each household i, that is, household employment and income. To
implement the likelihood estimate in Section 3, we must evaluate the conditional micro
density

p(yi,t , yi,t−1 | z, θ) = p(εi,t , εi,t−1 | z, θ)︸ ︷︷ ︸
=p(εi,t−1,θ)p(εi,t |εi,t−1,θ)

p(ιi,t , ιi,t−1 | εi,t , εi,t−1, z, θ).

Employment εi,t evolves as a simple exogenous two-state Markov process, so the chal-
lenge is to evaluate the last density on the right-hand side above.

Note that, by definition of household income,

ιi,t−1 = λi
(
wt−1

[
(1 − τ)εi,t−1 + b(1 − εi,t−1 )

] + (1 + rt−1 )ai,t−2
)
,

and

ιi,t = λi
(
wt

[
(1 − τ)εi,t + b(1 − εi,t )

] + (1 + rt )a′
t−1(ai,t−2, εi,t−1 )

)
,

where a′
t−1(a, ε) is the model-implied micro policy function at period t − 1 for next-

period normalized assets given current normalized assets a and current employment ε,
and given the aggregate state zt−1.

Conditional on (εi,t , εi,t−1 ) and the macro states z in all periods, the observation
(ιi,t , ιi,t−1 ) is therefore a known transformation of the initial micro state vector si,t−1 =
(λi, ai,t−2 ).23 We can then derive p(ιi,t , ιi,t−1 | εi,t , εi,t−1, z, θ) by applying the change-
of-variables formula to the density

p(λi, ai,t−2 | εi,t , εi,t−1, z, θ) = f (λi | μλ )gεi,t−1 (ai,t−2 |ψt−1 ),

where ψt−1 denotes the parameters governing the cross-sectional distribution and is
part of the aggregate state zt−1, and the density gεi,t−1 (ai,t−2 | ψt−1 ) is directly available

23Strictly speaking, employment εi,t−1 is also a micro state variable. However, since it follows an exoge-
nous Markov process, our derivations above condition on it, and we can therefore disregard it in si,t−1.
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from the output of the model solution procedure, as discussed in Section 2.2.24 Com-
puting the Jacobian term in the change-of-variables formula requires us to evaluate
the derivative ∂a′

t−1(a, ε)/∂a, for example, by applying finite differences to the function
a′
t−1(a, ε) that is outputted by the numerical model solution method.25

6.3 Summary and discussion

In general terms, our proposal is to express the consecutive micro observations in terms
of the latent micro state variables si,ti in the initial observed period ti for individual i.
We can then “invert” this relation and evaluate the micro likelihood using the model-
implied cross-sectional density of si,ti (which we also exploited previously in the re-
peated cross-section setup). This strategy is highly context-specific as it exploits the
structure of the observables and iterates on the model-implied dynamic decision rules
of the agents. Though we have only illustrated the strategy for the case of two-period
panel data, the idea could in principle be applied to longer panels by further iterating
on the decision rules; however, this could become cumbersome when the time dimen-
sion is moderately large. As a side note, it is straightforward to allow for measurement
error in the micro observables by simply adding independent noise to the density of the
noise-less observables using the convolution formula.26

In some models, the dynamic relationship between micro states and micro observ-
ables may be sufficiently convoluted to render the above approach impractical. For such
cases, we propose an alternative approach in Supplemental Appendix E based on arti-
ficially adding lagged state variables to the micro state vector in the numerical model
solution procedure. Though this alternative approach is conceptually simple to imple-
ment, the increase in the dimension of the effective micro state vector may require more
time to be spent on computing an accurate numerical solution of the model. We there-
fore recommend that researchers first attempt the baseline approach illustrated in the
previous subsection, which does not require any modification of the numerical model
solution method.

7. Conclusion

The literature on heterogeneous agent models has hitherto relied on estimation ap-
proaches that exploit ad hoc choices of micro moments and macro time series for es-
timation. This contrasts with the well-developed framework for full-information likeli-
hood inference in representative agent models (Herbst and Schorfheide (2016)). We de-
velop a method to exploit the full information content in macro and micro data when es-
timating heterogeneous agent models. As we demonstrate through economic examples,
the joint information content available in micro and macro data is often much larger

24Note that assets are predetermined, so the subscript for the distribution parameters is t − 1.
25If the solution method uses an approximate, discrete grid for this function, one possibility is to com-

pute the derivative of a smooth interpolation of the discretized rule.
26Unlike the repeated cross-section case, in the case of panel data, unobserved individual heterogeneity

and micro measurement error are not observationally equivalent.
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than in either of the two separate data sets. Our inference procedure can loosely be inter-
preted as a two-step method: First, we estimate the underlying macro states from macro
data, and then we evaluate the likelihood by plugging into the cross-sectional sampling
densities given the estimated states. However, our method delivers finite-sample valid
and fully efficient Bayesian inference that takes into account all sources of uncertainty
about parameters and states. The computation time of our procedure scales well with
the size of the data set, as the method lends itself to parallel computing. Unlike esti-
mation approaches based on tracking a small number of cross-sectional moments over
time, our full-information method is automatically efficient and can easily accommo-
date unobserved individual heterogeneity, micro measurement error, as well as data im-
perfections such as censoring or selection.

For clarity, we have limited ourselves to numerical illustrations with small-scale
models in this paper, leaving full-scale empirical applications to future work. Our ap-
proach is computationally most attractive when the model is solved using some ver-
sion of the Reiter (2009) linearization approach, since this yields simple formulas for
evaluating the macro likelihood and drawing from the smoothing distribution of the la-
tent macro states; cf. Section 3. To estimate large-scale quantitative models, it would
be necessary to apply now-standard dimension reduction techniques or other compu-
tational shortcuts to the linearized representation of the macro dynamics (Ahn et al.
(2017), Auclert et al. (2021)), and we leave this to future research. Nevertheless, we
emphasize that our method is in principle generally applicable, as long as there ex-
ists some way to evaluate the macro likelihood, draw from the smoothing distribu-
tion of the macro states, and evaluate the micro sampling density given the macro
states.

Our research suggests several additional avenues for future research. First, it would
be useful to go beyond our extension to short panel data sets in Section 6 and develop
methods that are computationally feasible when the time dimension of the panel is
large. Second, since our method works for a wide range of generic MCMC posterior sam-
pling procedures, it would be interesting to investigate the scope for improving on the
simple Random Walk Metropolis–Hastings algorithm that we use for conceptual clar-
ity in our examples. Third, the goal of this paper has been to fully exploit all aspects of
the assumed heterogeneous agent model when doing statistical inference; we therefore
ignore the consequences of misspecification. Since model misspecification potentially
affects the entire macro equilibrium, and thus cannot be addressed using off-the-shelf
tools from the microeconometrics literature, we leave the development of robust infer-
ence approaches to future work.

Appendix A

A.1 Proofs

A.1.1 Proof of Theorem 1 Let m̂t ≡ (m̂1,t , � � � , m̂Q,t )′ denote the set of sufficient statis-
tics in period t. According to the Fisher–Neyman factorization theorem, there exists a
function h(·) such that the likelihood of the micro data in period t, conditional on zt ,
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can be factorized as

Nt∏
i=1

p(yi,t | zt , θ) = h(yt )p(m̂t |Nt , zt , θ). (10)

Let h(y) = ∏
t∈T h(yt ), N = {Nt }t∈T , and m̂ = {m̂t }t∈T , where T is the subset of time

points with observed micro data. Then the micro likelihood, conditional on the ob-
served macro data, can be decomposed as

p(y | x, θ) =
∫
p(y | z, θ)p(z | x, θ)dz

= h(y)
∫
p(m̂ | N, z, θ)p(z | x, θ)dz (11)

= h(y)p(m̂ | N, x, θ). (12)

The expression (12) implies that m̂ is a set of sufficient statistics for θ, based again on
the Fisher–Neyman factorization theorem.

A.1.2 Proof of Corollary 1 Let mt be a vector of population counterparts of the cross-
sectional sufficient statistics of the micro states si,t . We may viewmt as part of the macro
state vector zt . According to the exponential polynomial setup,

p(si,t | zt , θ) = p(si,t |mt )

= exp

[
ϕ̃0(mt ) +

Q∑
�=1

ϕ̃�(mt )m̃�(si,t )

]
.

m̃�(si,t ) takes the form s
p1
i,t,1s

p2
i,t,2 · · · spdsi,t,ds

with pk being positive integers and 1 ≤∑ds
k=1pk ≤ q, where q is the order of the exponential polynomial. The potential number

of sufficient statisticsQ equals
(q+ds
q

)− 1, that is, the number of complete homogeneous
symmetric polynomials.

Making the change of variables in (9), we have

p(yi,t | zt , θ) = exp

[
ϕ̃0(mt ) +

Q∑
�=1

ϕ̃�(mt )m̃�
(
B1(zt , θ)ϒ(yi,t ) +B0(zt , θ)

)]

×
∣∣∣∣det

(
B1(zt , θ)

∂ϒ(yi,t )
∂yi,t

)∣∣∣∣
≡ exp

[
ϕ0(zt , θ) +m0(yi,t ) +

Q∑
�=1

ϕ�(zt , θ)m�(yi,t )

]
.

Given assumptions 2.a and 2.b, the potential number of sufficient statistics Q remains
the same. Now the sufficient statistics can be expressed as m�(yi,t ) ≡ m̃�(ϒ(yi,t )) and the
correspondingϕ�(zt , θ) can be obtained by rearranging terms and collecting coefficients
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on m�(yi,t ). For the determinant of the Jacobian, condition 2 implies that both B1(zt , θ)
and ∂ϒ(yi,t )

∂yi,t
are nonsingular square matrices, so

det
(
B1(zt , θ)

∂ϒ(yi,t )
∂yi,t

)
= det

(
B1(zt , θ)

)
det

(
∂ϒ(yi,t )
∂yi,t

)
.

Hence, both log |det(B1(zt , θ))| and log |det( ∂ϒ(yi,t )
∂yi,t

)| are finite and can be absorbed into
ϕ0(zt , θ) and m0(yi,t ), respectively.

Thus, the micro likelihood fits into the general form in Theorem 1, and the sufficient
statistics are given by

m̂�,t = 1
Nt

Nt∑
i=1

m�(yi,t ) = 1
Nt

Nt∑
i=1

m̃�
(
ϒ(yi,t )

)
, �= 1, � � � ,Q.

A.2 Nonexistence of sufficient statistics: Details

Can we generalize beyond the sufficient conditions in Corollary 1? The key is that in (7),
the terms inside the exponential should be additive and each term should take the form
ϕ�(zt , θ)m�(yi,t ), which ensures that the cross-sectional moments can be calculated us-
ing micro data as in equation (8) and the multiplicative term h(y) can be taken out of the
integral in equation (11). Building on the analysis of Section 3.3, here are more examples
of cases where there are no sufficient statistics in general.

(i) si,t = B1(zt , θ)ϒ(yi,t , zt ) + B0(zt , θ), that is, yi,t and zt are neither additively nor
multiplicatively separable.

(ii) The model features unobserved individual heterogeneity and/or micro measure-
ment error. Since these two cases are observationally equivalent in a repeated
cross-section framework, we focus on the the former. Letting λi denote the un-
observed individual heterogeneity, we can extend (9) to

si,t = ϒ̃(yi,t , λi, zt , θ) ≡ B1(λi, zt , θ)ϒ(yi,t , λi ) +B0(λi, zt , θ),

which is the most general setup allowing λi to affect all terms in the expression.
If λi is independent of si,t conditional on (zt , θ), we have

p(si,t , λi | zt , θ) = p(si,t |mt )p(λi | θ)

(recall the notation in the proof of Corollary 1). Accordingly,

p(yi,t | zt , θ) =
∫
p

(
ϒ̃(yi,t , λi, zt , θ) |mt

)
×

∣∣∣∣det
(
B1(λi, zt , θ)

∂ϒ(yi,t , λi )
∂yi,t

)∣∣∣∣p(λi | θ)dλi.

If λi appears in B1, B0, or ϒ, then p(yi,t | zt , θ) may not belong to the exponential
family after integrating out λi. That said, we can construct special cases where
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sufficient statistics do exist. For example, if

si,t = B1(zt , θ)ϒ(yi,t ) +B0(zt , θ) +B2(zt , θ)λi

and both p(si,t |mt ) and p(λi | θ) follow Gaussian distributions.

(iii) ds > dy : For example, suppose si,t is two-dimensional whereas yi,t is one-
dimensional, say yi,t = s1,i,t , yi,t = s1,i,t + s2,i,t , or yi,t = s1,i,t s2,i,t . We can first
expand the yi,t in (9) to ỹi,t = (yi,t , s2,i,t )′ and then integrate out s2,i,t . However,
after the integration, the resulting micro likelihood as a function of yi,t may not
take the exponential family form anymore.

A.3 Sampling distribution of cross-sectional moments: Example

As alluded to in Section 3.3, here is a simple example demonstrating thatp(m̂t |Nt , zt , θ)
is not linear Gaussian in finite samples and, therefore, neither is p(m̂ | N, x, θ). Suppose
yi,t = si,t is a scalar and p(si,t |mt ) is Gaussian, that is, a second-order exponential poly-
nomial. Let

m̂1,t = 1
Nt

Nt∑
i=1

si,t and m̂2,t = 1
Nt

Nt∑
i=1

(si,t − m̂1,t )2,

withm1,t andm2,t being their population counterparts. Then standard calculations yield

p(m̂t |Nt , zt , θ) = p(m̂t |mt ) =φ
(
m̂1,t ;m1,t ,

m2,t

Nt

)
pχ2

(
Ntm̂2,t

m2,t
;Nt − 1

)
,

where φ(x; μ, σ2 ) represents the probability distribution function (pdf) of a Gaussian
distribution with mean μ and variance σ2, and pχ2 (x; ν) is the pdf of a chi-squared dis-
tribution with ν degrees of freedom. We can see that the latter is not linear Gaussian.
Moreover, when p(si,t |mt ) follows a higher order exponential polynomial, the charac-
terization of p(m̂t | Nt , zt , θ) would be even more complicated without a closed-form
expression.

A.4 Heterogeneous household model: Likelihood comparison

Complementing the results for a single simulated data set in Section 4.4, Figure A.1 com-
pares log likelihoods for the different inference methods across 10 different simulated
data sets. Here, different inference methods are exhibited in different rows. Similar to
Figure 6, each column depicts univariate deviations of a single parameter while keeping
all other parameters at their true values. There are 10 likelihood curves in each panel,
corresponding to the 10 simulated data sets. The maximum of each likelihood curve is
normalized to be zero. Vertical dashed lines indicate true parameter values. The “1st
Moment” and “Macro Only” curves are flat on the right panels of the second and the last
rows, since μλ is not identified from this data alone. We conclude from the figure that
the full-information likelihood is systematically well centered and tightly concentrated
around the true parameter values, whereas the various moment-based likelihoods are
poorly centered, exhibit less curvature, and/or shift around substantially across simula-
tions.
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Figure A.1. Het. household model: Likelihood comparison, multiple simulations. Comparison
of log likelihood functions across 10 different simulated data sets. See the description in Ap-
pendix A.4.
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