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Quantifying noise in survey expectations
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Expectations affect economic decisions, and inaccurate expectations are costly.

Expectations can be wrong due to either bias (systematic mistakes) or noise (un-

systematic mistakes). We develop a framework for quantifying the level of noise

in survey expectations. The method is based on the insight that theoretical mod-

els of expectation formation predict a factor structure for individual expectations.

Using data from professional forecasters, we find that the magnitude of noise is

large (10%–30% of forecast MSE) and comparable to bias. We illustrate how our

estimates can be applied to calibrate models with incomplete information and

bound the effects of measurement error.
Keywords. Expectation formation, factor models, measurement error, noise,

panel data, subjective expectations.
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Now, it’s hard to say what there is more of, noise or bias. But one thing is very certain—that

bias has been overestimated at the expense of noise. Virtually all the literature and a lot of

public conversation is about biases. But in fact, noise is, I think, extremely important, very

prevalent.
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1. Introduction

Motivation

Expectations are a key driver of economic decisions. As a result, inaccurate expectations
are costly.2 There are two reasons why expectations may be wrong. The first possibility is
bias (systematic mistakes). For example, Alice always expects to win the lottery, but sadly
that never happens. The second possibility, however, is noise (unsystematic mistakes).
That is like Bob’s view of the economy, which depends on whether his favorite football
team won or lost the game yesterday. Alice’s and Bob’s mistakes are equally detrimental
to forecast accuracy, as formalized by the bias-variance decomposition (e.g., Hastie, Tib-
shirani, and Friedman (2009), p. 223). Yet noise has received little attention in prior re-
search on subjective expectations. This paucity of research is especially surprising given
the extant literature in psychology on noise in human decision making (Dawes, Faust,
and Meehl (1989), Grove, Zald, Lebow, Snitz, and Nelson (2000), Kahneman, Sibony, and
Sunstein (2021)).

What we do

We develop a general framework for quantifying the level of noise in survey expectations.
The key insight is that existing models imply a factor structure for the cross-section of
individual expectations. Imagine many people forecasting the same variable, say, in-
flation. Existing models have the property that individual forecasts can be written as
a linear combination of some underlying factors plus a noise term. These factors cap-
ture macroeconomic news (e.g., changes in oil prices) as well as any common sentiment
shocks that are orthogonal to fundamentals (e.g., animal spirits). Factor loadings may
vary across forecasters, capturing the possibility that forecasters may disagree on how
to interpret the available evidence.

The noise term is orthogonal to the common factors and uncorrelated across fore-
casters. Hence, our definition captures idiosyncratic noise in expectations. For instance,
that is the variation in Bob’s expectations about the economy that is driven by the per-
formance of his favorite football team. Other people have different favorite teams, so
such noise is idiosyncratic. (If everyone has the same favorite team, that is a sentiment
shock, and hence a common factor.) In practice, we first estimate a factor model using
panel data on individual forecasts. Noise is then given by the residuals from the factor
model.

The key measurement challenge is to distinguish noise from heterogeneity. Consider
two forecasters predicting inflation, and suppose that they make different forecasts. One
possibility is that the forecasters disagree on how to interpret the available data. For ex-
ample, they may have different views on the importance of a recent oil price shock. Al-
ternatively, the forecasters may agree on how to interpret the data, but their forecasts

2For surveys, see Pesaran and Weale (2006, Section 5,) and Manski (2018). Coibion, Gorodnichenko, and
Kamdar (2018) provide a review focused on inflation expectations in macro, while Barberis (2018, Chap-
ters 4, 5, and 6) discusses the role of expectations in finance. Bachmann and Elstner (2015) and Barrero
(2018) quantify welfare losses from inaccurate expectations.
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could be noisy. With a single cross-section of forecasts, heterogeneity and noise are ob-
servationally equivalent. We overcome this measurement challenge by using panel data.
With panel data, we can track forecasters over time, and in effect, estimate how they re-
act to new information.

Noise recovered by our method can be due to either (i) inherent randomness in ex-
pectations; or (ii) measurement error. Potential mechanisms for (i) include imperfect in-
formation (Lucas (1973), Woodford (2003)), limited attention (Sims (2003), Maćkowiak
and Wiederholt (2009)), and diagnostic expectations (Bordalo, Gennaioli, and Shleifer
(2018)). Measurement error may arise if survey questions are not fully precise, or survey
participants have difficulty conveying their true subjective expectations (Manski and
Molinari (2010), Drerup, Enke, and von Gaudecker (2017)). The two potential expla-
nations are observationally equivalent when only data on expectations are available.3

However, our measures of noise provide empirically-informative upper bounds. Intu-
itively, since we estimate “(i) + (ii),” we can easily bound measurement error, or (ii). With
additional (stronger) assumptions on the expectation-formation process, our estimates
can be used to point-identify the magnitude of measurement error.

Empirical findings

We apply the new methodology to inflation forecasts from the Survey of Professional
Forecasters (SPF). Our estimates indicate that noise is large and pervasive, equal to 10–
30% of mean-squared forecast error and of a similar magnitude to bias. Importantly,
we find that variation in the data is well captured by factor models with a small (1–3)
number of factors.

Our framework has applications that go beyond quantifying the amount of noise.
To show this, we first investigate the consequences of noise for forecast combination.
Consensus (or average) forecasts tend to perform better than most individual forecasts,
a phenomenon popularized as the wisdom-of-the-crowd effect (Surowiecki (2005)). De-
pending on the forecast horizon, we find that 20%–60% of the wisdom-of-the-crowd ef-
fect is due to the reduction in noise (with the rest due to a reduction in bias). Hence, to
a large extent, the crowd is wise because it is less noisy than individual forecasters.

Next, we illustrate how our estimates can be used to (i) guide theory and calibrate
models of expectation formation; and (ii) bound the effects of measurement error. For
the first question, we demonstrate how our estimates can be used to develop novel tests
of the noisy-information model (Lucas (1973), Woodford (2003), Sims (2003)). We find
that the baseline noisy-information model underpredicts the amount of noise relative
to what we find empirically. To be consistent with the data, the noisy-information model
needs to attribute around half of our estimated noise to measurement error.

For the second application, we study whether negative micro-level estimates of the
Coibion and Gorodnichenko (2015) regression may be explained by measurement er-
ror. Under Bayesian updating, the micro Coibion–Gorodnichenko coefficient should be
zero. Recent empirical work, however, has obtained negative coefficients at the micro

3Even with data on actions, the two possibilities are difficult to tell apart; see Drerup, Enke, and von
Gaudecker (2017).
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level (Broer and Kohlhas (2018), Bordalo, Gennaioli, Ma, and Shleifer (2020)). Unfor-

tunately, when expectations are measured with error, the Coibion–Gorodnichenko re-

gression suffers from a nonclassical measurement-error problem that can spuriously

yield negative estimates. To check robustness, we calculate how much measurement

error would be necessary to generate the observed micro coefficients under Bayesian

updating. We find that most of the noise that we estimate needs to be attributed to mea-

surement error to explain the empirical findings. Given that noise is likely to arise from

multiple reasons, not just measurement error, we conclude that these findings appear

robust to empirically-realistic amounts of measurement error.

Related literature

The paper builds on an extensive literature on expectation formation. For comprehen-

sive overviews, we refer to the surveys cited above (footnote 2). While the present paper

is, to the best of our knowledge, the first to develop a method specifically designed to

measure noise in subjective expectations, some existing techniques can be used for an-

swering related questions. In particular, Davies and Lahiri (1995) decompose forecast

errors to (i) an individual time-invariant bias term; (ii) shocks that are common to all

forecasters; and (iii) shocks that are forecaster specific. The last component is closely

related to our own measure of noise. As shown below (Section 2.2), however, the as-

sumptions made by Davies and Lahiri are violated by prominent models of expectation

formation; see also Crowe (2010). Gaglianone and Issler (2021) develop a factor-based

approach to forecast combination.4 Under certain assumptions made by the authors,

individual expectations are driven by a single common factor. However, many popular

theoretical models violate the single-factor assumption. In addition, we find that ap-

proximating the data well in our empirical application often requires more than one

factor. The single-factor assumption is also made in the pioneering work of Figlewski

(1983) on optimal forecast combination.

In a study that appeared after the initial version of our article was posted online,

de Silva and Thesmar (2021) also develop a method to quantify noise in survey expec-

tations. While our goal is to estimate idiosyncratic noise from forecaster-level data, the

method proposed by de Silva and Thesmar uses consensus forecasts and, therefore, cap-

tures sentiment shocks. Unfortunately, the setup of de Silva and Thesmar (2021) rules

out any form of nonlinear interaction between variables measurable with respect to pri-

vate and public information sets. In addition, their approach requires the researcher to

accurately approximate true conditional expectations. Nevertheless, the two papers are

highly complementary and reach similar empirical conclusions.

4In contemporaneous and independent work, Herbst and Winkler (2019) use a factor model to study
the structure of multivariate disagreement among professional forecasters. Consistent with our own em-
pirical findings, Herbst and Winkler find that for most variables in the Survey of Professional Forecasters,
disagreement is mostly due to the idiosyncratic component.
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2. Methodology

2.1 Framework

We are interested in measuring noise in expectations about some common target vari-
able xt . Throughout, we assume that any deterministic component in xt is removed, and
xt has mean zero. Following Kučinskas and Peters (2022), the target variable is assumed
to follow

xt =
M∑
j=1

+∞∑
�=0

αj,�εj,t−�, (1)

for some square-summable coefficients αj,�. Here, εt = (ε1,t , ε2,t , � � � , εM ,t )� is a martin-
gale difference sequence of structural shocks with E[εtε�

t ] = �ε. Without loss of gener-
ality, we assume that �ε is a diagonal matrix, and we normalize αj,0 = 1.

We assume that the econometrician has access to a panel of individual-level expec-
tations about the target variable, Fi,t[xt+1], of the form

Fi,t[xt+1] = bi,0 +
M∑
j=1

+∞∑
�=0

ai,j,�+1εj,t−� + νi,t , (2)

where i = 1, � � � ,N denotes a particular forecaster, bi,0 is a forecaster-specific uncondi-
tional bias term, and νi,t is forecaster-specific zero-mean noise. To capture the notion
that noise is idiosyncratic, we assume νi,t is orthogonal to the structural shocks εj,t at all
leads and lags and independent across forecasters. To be consistent with existing theory
(see Section 2.2), we allow νi,t to be serially correlated. The ai,j,� coefficients capture how
expectations respond to the underlying structural shocks. Importantly, these reactions
are allowed to be heterogeneous across forecasters. Finally, we assume that ai,j,�’s are al-
most surely square summable for every i, while νi,t is covariance stationary and satisfies
standard regularity conditions for factor models (see, e.g., Bai (2003)).

As shown by Kučinskas and Peters (2022), the specification of expectation formation
above nests all major models of expectations in the existing literature. Such generality
is intuitive: Equation (1) is satisfied by the solution to any (linearized) economic model,
while equation (2) allows for an unrestricted form of model misspecification as well as
idiosyncratic noise on the part of forecasters. While the model specification assumes
linearity, it is straightforward to allow for state and/or time dependence by assuming
that αj,� and ai,j,� are functions of some state variables.

Truncating the infinite sum in equation (2) at a finite lag K, we obtain an approxi-
mate finite-length dynamic-factor model:

Fi,t[xt+1] ≈ bi,0 +
M∑
j=1

K∑
�=0

ai,j,�+1εj,t−� + νi,t ,

which we can also write as a static-factor model withM(K + 1) factors:

Fi,t[xt+1] ≈ bi,0 +λ�
i ft + νi,t , (3)
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where factor loadings, λi, and factors, ft , are given by

λi = (ai,1,1, � � � , ai,1,1+K , � � � , ai,M ,1, � � � , ai,M ,1+K )�,

ft = (ε1,t , � � � , ε1,t−K , � � � , εM ,t , � � � , εM ,t−K )�.

Equation (3) is the main theoretical justification for our empirical approach, demon-
strating that individual expectations follow an approximate factor model. To estimate
noise, we only need to take data on individual expectations and purge them of the fac-
tor structure. Importantly, our method does not require data on the realizations of the
target variable—a key difference from measuring bias. This feature is useful in applied
work, for example, when data are revised over time, or realizations are not observed.

2.2 Illustration: Noisy-information model

We now illustrate the general framework with the noisy-information model. While the
baseline model is fairly simple, in the Appendix (Section B) we show that the model can
be generalized to include richer information structures, more realistic dynamics of the
target variable, behavioral biases (including diagnostic expectations), and strategic be-
havior without changing any of the economic conclusions.

Suppose that the variable of interest, xt , is an autoregressive process with a persis-
tence coefficient ρ ∈ (−1, 1) and normally distributed disturbances:

xt = ρxt−1 + σεεt , εt ∼ i.i.d. N (0, 1) and σε > 0.

Following the work of Lucas (1973) and Woodford (2003), among others,5 we assume
that forecasters are subject to an information friction. Each forecaster i only observes a
noisy signal of xt :

yi,t = xt + σi,ωωi,t , ωi,t ∼ i.i.d. N (0, 1) and σi,ω > 0. (4)

Here, ωi,t is an idiosyncratic shock, which is i.i.d. across time and agents, and uncor-
related with εt at all leads and lags. The formulation above is standard. Our only gen-
eralization from most standard expositions is that we allow for the precision of the id-
iosyncratic signal to vary across forecasters.6 Given that noisy information can be mi-
crofounded by rational inattention (Sims (1998, 2003)), such heterogeneity is natural.
For example, professional macro forecasters are likely to pay closer attention to inflation
than football players (i.e., macro forecasters have a lower σi,ω than football players).

The Kalman filter equations imply that in the steady state

Fi,t[xt+1] = ρ{Giyi,t + (1 −Gi )Fi,t−1[xt ]
}

, (5)

5Angeletos and Lian (2016) provide an overview of this extensive literature.
6Similar models with heterogeneity in the precision of signals are studied by Coibion and Gorodnichenko

(2012, pp. 130–131) and Dovern (2015, Section 5.1). See also Lahiri and Sheng (2008) and Baker, McElroy,
and Sheng (2019).
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where Gi ∈ [0, 1] is the forecaster-specific steady-state Kalman gain, and Fi,t[xt+1] de-
notes the one-step-ahead forecast of xt+1 made by forecaster i. A key feature of equation
(5) is that the Kalman gain varies across forecasters, due to the heterogeneous precision
of individual signals.

Iterating on equation (5), we find that Fi,t[xt+1] follows an infinite-order dynamic-
factor model:

Fi,t[xt+1] =
∞∑
�=0

λi,�ft−� + νi,t ,

where the factor ft , factor loadings λi,�, and forecaster-specific noise νi,t are

ft = εt , λi,� = ρ�+1[1 − (1 −Gi )�+1],

νi,t = ρGi
∞∑
�=0

[
ρ(1 −Gi )

]�
ωi,t−�.

Hence, as expected from the general case, the noisy-information model predicts a factor
structure for the cross-section of individual expectations. We note that the noise term,
νi,t , is serially correlated with a first-order autocorrelation coefficient of ρ(1 −Gi ). For
this reason, it is important to allow for serially-correlated noise.

Noise versus sentiment shocks In the Appendix (Section B), we demonstrate that the
cross-section of individual expectations continues to exhibit a factor structure in a gen-
eralized noisy-information model. The generalized model features sentiment shocks
(Lorenzoni (2009), Angeletos and La’O (2013), Nimark (2014)). As the extension makes
clear, sentiment shocks are soaked up by the factors. Hence, our measures of noise do
not capture sentiment shocks. Some authors use a broader definition of noise that does
include sentiment shocks (see, e.g., Chahrour and Jurado (2018)). For such broader def-
initions of noise, our estimates provide a lower bound. Measuring sentiment shocks re-
quires different tools; see, for instance, Angeletos, Collard, and Dellas (2018).

Violations of simple common-factor structure We are not aware of any prominent mod-
els of expectation formation in which individual expectations do not exhibit a factor
structure. In part, that is to be expected given the generality of the setup in Section 2.1.
In addition, there are fundamental statistical reasons to expect that expectations can of-
ten be well approximated by factor models (Juodis (2020), Freeman and Weidner (2022),
Menzel (2021)). That being said, it is straightforward to construct (arguably contrived)
examples that violate the assumptions in Section 2.1. For that purpose, it is easiest to
consider data-generating processes that can generate “weak factor structures” (Chudik,
Pesaran, and Tosetti (2011)). As an example, suppose that instead of equation (4), the
noisy signal exhibits a spatial MA(1) structure, with

yi,t = xt + σi,ωωi,t + θσi−1,ωωi−1,t︸ ︷︷ ︸
≡ω̃i,t

= xt + ω̃i,t ,
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for i = 2, � � � ,N and appropriately extended for i = 1. Although this model generates a
factor structure similar to the one discussed previously, factor loadings (throughGi) and
forecaster-specific noise terms, νi,t , are now spatially dependent. Such spatial depen-
dence leaves unchanged most of the statistical properties of the estimation procedures
that we consider. However, noise is no longer idiosyncratic, changing the economic in-
terpretation of our estimates.

2.3 Mean-squared error decomposition

To compare the relative importance of noise and bias in the data, we provide a novel
decomposition of mean-squared forecast errors (MSE). Straightforward algebra using
equation (1) and equation (2) shows that forecast errors follow

xt+1 − Fi,t[xt+1] = −bi,0 −
M∑
j=1

+∞∑
�=1

sgn(αj,� )bi,j,�εj,t+1−� − νi,t +
M∑
j=1

εj,t+1,

where bi,j,� ≡ sgn(αj,� )(ai,j,�−αj,� ) denote bias coefficients introduced by Kučinskas and
Peters (2022). Positive (negative) values of these coefficients indicate overreaction (un-
derreaction) to particular shocks. We now calculate that the mean-squared error of fore-
caster i is given by

MSEi ≡ Ei
[(
xt+1 − Fi,t[xt+1]

)2]
= b2

i,0︸︷︷︸
uncond. bias

+
M∑
j=1

Var[εj,t ]

(+∞∑
�=1

b2
i,j,�

)
︸ ︷︷ ︸

conditional bias

+Vari[νi,t ]︸ ︷︷ ︸
noise

+
M∑
j=1

Var[εj,t ].︸ ︷︷ ︸
irreducible error

(6)

Here, Ei[·] denotes the expectation conditional on forecaster-specific time-invariant
characteristics (and similarly for Vari[·]). The equation above shows that the mean-
squared error of an individual forecaster can be decomposed into components due to
(i) bias (from both unconditional and conditional bias); (ii) noise; and (iii) irreducible
error.

To implement equation (6) empirically, we use the following approach. Uncondi-
tional bias b2

i,0 and MSEi can be consistently estimated from the data forecaster-by-
forecaster. Our factor-based procedure produces an estimate of Vari[νi,t ]. Hence, given
an estimate for the variance of irreducible error, we can back out the size of the condi-
tional bias for every forecaster. To estimate the variance of irreducible error, we follow
the approach put forward by Kučinskas and Peters (2022). First, define the consensus
forecast as F̄t[xt+1] = N−1 ∑N

i=1 Fi,t[xt+1]. For large N , idiosyncratic noise vanishes at
the consensus level, and the consensus mean-squared forecast error, MSEcons., is given
by

MSEcons. = (b̄0 )2︸ ︷︷ ︸
uncond. bias

+
M∑
j=1

Var[εj,t ]

(+∞∑
�=1

b̄2
j,�

)
︸ ︷︷ ︸

conditional bias

+
M∑
j=1

Var[εj,t ]︸ ︷︷ ︸
irreducible error

, (7)
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where b̄0 =N−1 ∑N
i=1 bi,0 and b̄j,� =N−1 ∑N

i=1 bi,j,� denote average bias coefficients. As
before, we estimate the unconditional bias directly from the data on forecast errors.
We then approximate the conditional bias term by estimating the univariate impulse-
response function of forecast errors. Intuitively, if the consensus systematically under-
or overreacts to news, its forecast errors are predictable. We purge the observed consen-
sus forecast errors of this predictability, and thereby obtain an estimate of the irreducible
error. We provide the details behind our empirical implementation in Section 3.2.

2.4 Estimation

To measure noise in the data, we employ established techniques for estimating factor
models (see, e.g., Stock and Watson (2016)). While we make no contributions here, we
outline the key ideas. We emphasize that the panel data set must contain forecasts of the
same common variable xt+1 made by multiple forecasters.

Single factor The easiest case for estimation is when a single factor drives the observed
forecasts, as in the noisy-information model of Section 2.2:

Fi,t[xt+1] = bi,0 +ψi(L)ft + νi,t
for some lag polynomial ψi(L). As before, define the consensus, or average, forecast by
F̄t[xt+1] =N−1 ∑N

i=1 Fi,t[xt+1] ≈ b̄0 + ψ̄(L)ft whenN is large, where b̄0 and ψ̄(L) denote
the cross-sectional averages of bi,0 and ψi(L). Then we can write

Fi,t[xt+1] ≈ bi,0 +ψi(L)

(
F̄t[xt+1] − b̄0

ψ̄(L)

)
+ νit ≡ ai,0 + θi(L)F̄t[xt+1] + νi,t ,

where θi(L) ≡ψi(L)/ψ̄(L), and ai,0 is a composite forecaster-specific intercept. Hence,
to estimate noise, we can simply regress individual forecasts on the consensus (and its
lagged values) forecaster-by-forecaster:

Fi,t[xt+1] = αi +
K∑
�=0

βi,�F̄t−�[xt−�+1] + νi,t .

Here, K is the number of lagged consensus forecasts that are included in the regres-
sion. Then the estimated noise is given by the residuals of the regression. As discussed
in Chudik and Pesaran (2015), for consistent estimation,K should grow with T , the time-
series dimension of the data set (albeit at a rate slower than T 1/3).

This approach generalizes the pioneering work of Figlewski (1983) who estimated a
special case of the regression above with K = 1. While the approach of using consensus
forecasts is only valid when the true model has a single factor, it has the benefit of being
very easy to implement in practice. In our empirical application, it also gives similar
results to those from more sophisticated procedures.7

7The use of the cross-sectional averages as factor proxies has been popularized by Pesaran (2006) in the
context of the so-called Common Correlated Effects (CCE) estimator. Theoretical and Monte Carlo results in
Westerlund and Urbain (2015) and Juodis, Karabıyık, and Westerlund (2021) suggest that (when applicable)
this method has better small sample behavior as compared to the principal components procedure.
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Multiple factors To estimate models with multiple factors, we use an iterative
maximum-likelihood procedure (Bai (2003, 2009)). Suppose that the model to be es-
timated is

Fi,t[xt+1] = bi,0 +λ�
i ft + νit

for a given number of factors R. We initialize the estimation procedure by some initial
values for the factors, say, f̂(0)

t . Then we estimate the factor loadings λi and bi,0 by run-
ning time-series regressions

Fi,t[xt+1] = bi,0 +λ�
i f̂(0)
t + νi,t

for each forecaster i = 1, � � � ,N using only those time periods when the specific fore-

caster is active. With the estimated loadings and forecaster fixed effects at hand (say λ̂
(0)
i

and b̂(0)
i,0 ), we run cross-sectional regressions,

Fi,t[xt+1] − b̂(0)
i,0 = f�t λ̂

(0)
i + νit ,

for each time period t = 1, � � � , T (using only forecasters active at time t) to obtain esti-
mates of the factors f̂(1)

t . We then iterate this procedure until the change in the sum of
squared residuals is lower than some tolerance level. The estimated noise is then given
by the residuals from the time-series regressions. To increase the probability of locating
the global rather than just a local minimum, we repeat the procedure for multiple initial
starting values.

A key advantage of this simple iterative procedure in our empirical setting is that the
panel data set we use is highly unbalanced (as is the case for most data sets on survey
expectations).8 Due to the unbalancedness, the estimates of factors and factor loadings
obtained using the iterative procedure are not asymptotically efficient. In particular,
more efficient estimates can be obtained by combining principal-component estima-
tion with the EM algorithm (as suggested by Stock and Watson (2002) and Jin, Miao, and
Su (2021)), or using matrix-completion methods (as suggested by Fernández-Val, Free-
man, and Weidner (2021)). However, estimates obtained in such a way will generally
result in larger estimates of noise. This conclusion follows from observing that our sug-
gested procedure minimizes the sum of squared residuals (hence noise), while the other
procedures do not. Thus, the estimates of noise obtained using our iterative procedure
should be seen as lower bounds on the true level of noise.

3. Empirical results

For our empirical application, we use data from the Survey of Professional Forecast-
ers (SPF) administered by the Federal Reserve Bank of Philadelphia. The survey is con-
ducted quarterly and contains forecasts of multiple macro variables made by profes-
sional forecasters.

8This feature of the data effectively rules out estimation of the underlying dynamic-factor model using
frequency domain techniques, as studied by Forni, Hallin, Lippi, and Zaffaroni (2015, 2017).
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Table 1. Summary statistics.

h= 0 h= 1 h= 2 h= 3 h= 4

Initial Sample
Total Forecasts 7712 7727 7723 7696 7297
Med. # Forecasts/Forecaster 16.00 16.00 16.00 16.00 14.00
Med. # Forecasts/Survey 36.00 37.00 37.00 36.00 35.00
Avg. Forecast 3.51 3.46 3.44 3.41 3.36
Min. Forecast −12.74 −6.35 −6.66 −16.11 −19.45
Max. Forecast 29.95 32.11 32.29 31.16 29.75
Avg. Forecast Error −0.04 0.01 0.04 0.06 0.04
Std. Dev. Forecast 2.56 2.37 2.27 2.26 2.23
Std. Dev. Forecast, Within 1.79 1.68 1.60 1.65 1.66

Final Sample
Total Forecasts 6007 5964 5924 5858 5552
Avg. Forecast 3.47 3.44 3.41 3.39 3.33
Min. Forecast −12.74 −6.35 −6.66 −16.11 −19.45
Max. Forecast 29.95 32.11 32.29 31.16 29.75
Avg. Forecast Error −0.01 0.05 0.07 0.11 0.11
Std. Dev. Forecast 2.65 2.45 2.34 2.33 2.32
Std. Dev. Forecast, Within 1.86 1.71 1.66 1.71 1.75

Note: Summary statistics for quarterly inflation forecasts. The initial sample period is 1968Q2–2019Q2. The final sample
consists of all forecasters with at least 20 forecasts and all survey dates with at least 20 forecasters. Forecast horizon h runs from
h= 0 (nowcasts) to h= 4 (1-year-ahead forecasts) quarters. Std. dev. forecast, within denotes the standard deviation of forecasts
after the within transformation (subtracting the sample mean for each individual forecaster).

We focus on inflation forecasts. Inflation expectations play a central role in mod-
ern economic models (Coibion, Gorodnichenko, and Kamdar (2018)). In addition, the
data set has been used extensively in prior research, and hence provides an ideal testing
ground for a new methodology. We study forecasts of quarterly inflation, with inflation
derived from the GDP price deflator. In the main text, we describe the empirical findings
and discuss data construction in the Appendix (Section A).

Table 1 provides summary statistics. The data set contains forecasts at horizons
ranging from nowcasts (current quarter) up to 1-year-ahead forecasts. For most fore-
cast horizons, our initial sample contains around 7700 individual forecasts. However,
the data set is highly unbalanced, with the median forecaster participating in only 14–16
survey waves. To allow for reasonably precise estimation of noise, we restrict the sample
to (i) forecasters that provide at least 20 nowcasts of inflation; and (ii) dates on which
at least 20 forecasters submit nowcasts.9 We ensure that these two restrictions hold si-
multaneously by iteratively removing observations that do not satisfy these conditions.
Whenever we look at other subsamples of the data, we always make sure that the data
set only contains forecasters with 20 nowcasts and dates with at least 20 nowcasts.

Our final sample has around 6000 individual forecasts. Comparing the initial and
final samples, the summary statistics look very similar, with comparable average fore-

9Ideally, we would impose a more stringent requirement, given that the precision of factor estimates is
proportional to the square root of the number of individuals. However, due to data limitations, satisfying
the joint requirement for, say, 30 and 30 is not feasible; see Table C.8 in the Appendix.
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casts, average forecast errors, and standard deviations of forecasts. Hence, sample se-
lection effects seem unlikely to have a major impact on our results.

3.1 Baseline estimates

Estimated level of noise. Our baseline results are given in the Table 2. The left panel
of the table shows the results from a dynamic-factor model with a single factor, as dis-
cussed in Section 2.4; K denotes the number of lagged consensus forecasts used in the
regressions. The right panel shows the results using the iterative procedure of Bai (2009);
R denotes the number of factors in the static-factor model representation. The table re-
ports the average standard deviation of noise (averaged across forecasters).10

Depending on the forecast horizon and model specification, the standard deviation
of noise ranges between 0.60 and 1.10. The magnitudes are economically significant.
As shown in the Table 1, the within-forecaster standard deviation of forecasts is around
1.70. Hence, a substantial part of within-forecaster variation in the observed forecasts is
due to noise. For example, if we take the standard deviation of noise to be 0.85 (midpoint
of our estimates), then our estimates attribute 25% of the within-forecaster variance to
noise (i.e., (0.85/1.70)2). Especially given that we use data from professional forecasters,
the amount of noise is substantial.

Number of factors Our estimates of noise depend on the number of factors included
in the model, with more factors leading to a lower estimated level of noise. We therefore

Table 2. Noise: baseline estimates.

Single Factor (Consensus) Multiple Factors

K = 0 K = 1 K = 2 K = 3 R= 1 R= 2 R= 3 R= 4

h= 0 1.11 1.07 1.03 1.00 1.10 0.95 0.84 0.73
(0.07) (0.06) (0.06) (0.06) (0.06) (0.04) (0.04) (0.03)

h= 1 0.99 0.95 0.92 0.89 0.99 0.83 0.73 0.64
(0.07) (0.06) (0.06) (0.06) (0.06) (0.05) (0.04) (0.03)

h= 2 0.99 0.95 0.92 0.89 0.97 0.82 0.72 0.62
(0.07) (0.07) (0.06) (0.06) (0.07) (0.05) (0.04) (0.03)

h= 3 1.03 0.99 0.97 0.94 1.02 0.84 0.72 0.60
(0.08) (0.08) (0.08) (0.08) (0.07) (0.05) (0.04) (0.03)

h= 4 1.08 1.04 0.99 0.96 1.08 0.87 0.73 0.62
(0.09) (0.08) (0.08) (0.08) (0.08) (0.06) (0.04) (0.03)

Note: Standard deviations of noise (averages across forecasters). Cross-sectional standard errors (shown in parentheses)
are obtained by regressing σ̂i = α+ui and using the standard error for α, where σ̂i denotes the estimated standard deviation of
noise for forecaster i. Forecast horizon h runs from h= 0 (nowcasts) to h= 4 (1-year-ahead forecasts) quarters.

10In our calculation of standard errors, we make the implicit assumption that the data has a random-
coefficient structure in that the underlying population values for the standard deviations vary across fore-
casters. Thus, the leading term in the asymptotic distribution of N−1 ∑N

i=1 σ̂i, where σ̂i denotes the esti-
mated standard deviation of noise, is solely determined by that variation; see, for example, Okui and Yanagi
(2019).
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Table 3. Optimal number of factors.

h= 0 h= 1 h= 2 h= 3 h= 4

Raw Forecasts 1 1 1 1 3
Adjusted for Time F.E. 2 1 1 3 2

Note: Number of factors selected by the pseudo growth ratio (GR) criterion of Ahn and Horenstein (2013) using the least-
squares objective function. We calculate the statistics for R ∈ {1, � � � , 5} and report the number of factors R with the highest
statistic. Raw forecasts show the number of factors selected when raw forecasts are used; Adjusted for time F.E. gives the number
of factors selected after subtracting the consensus forecast from each individual forecast.

next study the number of factors supported by the data. To do so, we use the (pseudo)
growth-ratio criterion of Ahn and Horenstein (2013) calculated on the basis of the sum
of squared residuals. As shown in Table 3, when raw forecasts are used, the procedure
typically selects a single factor. However, the procedure may be subject to the one-factor
bias (see, e.g., Ahn and Horenstein (2013), p. 1209).11 Hence, we also show the results
when the consensus forecast is subtracted from the individual forecasts. Consistent with
a one-factor bias, the procedure now often selects a higher factor. However, the maxi-
mum number of factors selected is still only 3, and the procedure never selects the max-
imum value of factors that we allow (5). While there is some remaining uncertainty about
how many factors should be selected, the estimates of noise in Table 2 are fairly robust to
the precise number of factors chosen. For most forecasting horizons, going from R= 1
to R = 3 (the maximum selected by the growth-ratio criterion) only decreases the esti-
mated standard deviation of noise by around 25%.12

Factor estimates Differently from much prior work using factor models, we are not
directly interested in the factor estimates. Nevertheless, Figure 1 plots the estimated
factors across different forecasting horizons. For each forecasting horizon, we plot the
estimated factor from the corresponding model with R = 1 (estimated using the itera-
tive maximum likelihood procedure).13 As seen in the graph, the estimated factors are
strongly correlated with realized inflation. For nowcasts (h= 0), the correlation between
the first factor and realized inflation is 0.91. The correlation declines at longer forecast-
ing horizons, with a correlation of 0.70 for 1-year-ahead forecasts, as forecasters react
less to transitory movements in inflation. The estimated factors become less volatile as
the forecasting horizon increases, and forecasters filter out short-term shocks.

11Intuitively, the one-factor bias is caused by the fact that in a model such as zi,t = gt + λift + εi,t , the
first eigenvalue of the covariance matrix of zi,t can be made arbitrary large by increasing the value of gt .
This substantially complicates the consistent estimation of the true number of factors.

12Ideally, we would also like to formally test for the number of factors in our setup. However, the pro-
cedure of Onatski (2009) is not applicable due to the unbalanced data set we consider, while the weighted
Cross-section Dependence (CD) statistic of Juodis and Reese (2022) will lack power to reject any null hy-
pothesis because of the relatively short time-series dimension.

13Given the highly unbalanced nature of our data, the “first” (or “most important”) factor is no longer
well-defined for models with multiple factors. However, given that we find that a single-factor is typically
selected by the Ahn and Horenstein (2013) procedure, any reasonable definition of the “first” factor would
arguably look similar to the single-factor estimates that we report.
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Figure 1. Estimated factors. Note: Estimated factors for h-quarter-ahead forecasts and realized
inflation. Factor estimates from a single-factor model estimated using the iterative maximum–
likelihood procedure shown. For easier interpretability, we rotate the factors by regressing real-
ized inflation on the first factor (for each forecasting horizon separately) and then plotting the
fitted values. The legend shows the correlation of the respective factor with realized inflation.

3.2 Noise versus bias

To compare the relative importance of noise and bias, we now implement the decompo-
sition of mean-squared forecast errors developed in Section 2.3. We first use consensus
forecasts to quantify the size of irreducible error (Kučinskas and Peters (2022)). Intu-
itively, we use the predictability of forecast errors to remove the conditional-bias com-
ponent from the consensus MSE, and attribute the remainder to irreducible error. Em-
pirically, the consensus forecast in the SPF is arguably the best available predictor of
inflation (Ang, Bekaert, and Wei (2007)). Hence, the consensus MSE should already be a
good proxy for the variance of the irreducible error. To be conservative, we go a step fur-
ther and remove the observed (ex post) predictability of consensus forecast errors. The
remaining details are provided in Appendix D (Section D.2).

The results are shown in Table 4. For short-term forecasts, noise is as important as
bias, with both noise and bias accounting for around one-third of the MSE at the fore-
caster level (with the remaining third due to irreducible error). For three-quarter and

Table 4. Noise versus bias.

Individual Consensus

MSE Bias Noise Irreducible MSE Bias Irreducible

h= 0 3.53 37.3% 33.0% 29.7% 1.17 10.0% 90.0%
h= 1 4.46 31.4% 34.1% 34.5% 1.99 22.8% 77.2%
h= 2 5.12 33.7% 30.0% 36.3% 2.55 27.0% 73.0%
h= 3 6.42 57.4% 11.7% 30.9% 2.98 33.5% 66.5%
h= 4 7.50 53.1% 17.3% 29.6% 3.55 37.5% 62.5%

Note: Baseline estimates of noise and bias as a fraction of mean-squared forecast error. Forecast horizon h runs from h= 0
(nowcasts) to h= 4 (1-year-ahead forecasts) quarters. The iterative maximum-likelihood procedure with the number of factors
chosen by the growth-ratio statistic of Ahn and Horenstein (2013) (adjusted for time fixed effects) is used to estimate the level
of noise. The amount of irreducible error is obtained using the method proposed by Kučinskas and Peters (2022).
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four-quarter-ahead forecasts, we find that noise matters slightly less, explaining around
10% of the MSE. This latter result is primarily driven by the fact that for these horizons,
the Ahn and Horenstein (2013) growth-ratio criterion selects a higher number of factors,
thereby reducing our estimated level of noise. At the consensus level, idiosyncratic noise
washes out. Interestingly, we find that bias increases with the forecast horizon at the
consensus level due to stronger underreaction to news (i.e., conditional bias) at longer
horizons. Overall, we conclude that (i) around 10–30% of the observed MSE at the fore-
caster level is due to noise; and (ii) noise and bias are similarly important quantitatively,
especially at shorter forecasting horizons.

3.3 Robustness tests

Our estimates of noise are just residuals from a factor model. Hence, a potential worry
is that we may overestimate the amount of noise if the factor model is misspecified. To
avoid this problem, we make conservative measurement choices to obtain lower bounds
on the amount of noise whenever possible. For example, we do not perform degrees-of-
freedom adjustments for our estimates of noise. Given that many of the time-series re-
gressions have a small number of observations, this choice leads to a substantial under-
estimation of noise; see Chen, Fernández-Val, and Weidner (2021, Section 3) for the in-
tuition.

While it is not possible to fully rule out misspecification, in this section we perform a
number of model specification tests to help alleviate potential concerns. In addition, we
investigate whether the estimates of noise are similar across alternative specifications.
Overall, the results seem fairly robust across a range of assumptions. These findings sug-
gest that our baseline results are not driven by specific modeling choices or sample re-
strictions.

3.3.1 Predictability tests If the baseline model is well specified, our estimates of noise
should not predict actual inflation. That is a testable implication, which can be used to
check the specification of our model. Specifically, in a regression of the form

xt+h = αi + γiν̂(h)
i,t + ui,t ,

we should have γi = 0, where ν̂(h)
i,t denotes our estimate of noise for h-step-ahead fore-

casts made by forecaster i at time t. In contrast, if there is some remaining information in
our noise estimates that is helpful for predicting actual inflation, we would have γi �= 0.

Table 5 presents the results of these predictability regressions, estimated for each
forecaster separately. Conducting inference on γi requires calculating standard errors
that are robust to the generated-regressors problem. The generated-regressors problem
arises because we use residuals on the right-hand side of the regression, and these resid-
uals are calculated by first estimating forecaster fixed effects and factor loadings. In the
Appendix (Section D.1), we derive the corrected standard errors and use a Newey–West-
type estimator that is robust to heteroskedasticity and autocorrelation.

The results indicate that for most forecasters and forecasting horizons, we cannot
reject the null hypothesis of no predictability. The empirical frequency of rejections at
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Table 5. Is noise predictive of actual inflation?

N % t ≥ 1.96 % t ≤ −1.96 % |t| ≥ 1.96 Med. R2 P90 R2

h= 0 141 3.55 1.42 4.96 0.01 0.05
h= 1 141 2.13 0.00 2.13 0.01 0.09
h= 2 141 0.71 2.84 3.55 0.01 0.09
h= 3 141 2.84 1.42 4.26 0.02 0.10
h= 4 141 2.13 0.71 2.84 0.02 0.12

Note: Results from predictability regressions xt+h = αi + γiν̂
(h)
i,t + ui,t where ν̂(h)

i,t denotes our estimates of noise, and h is

forecast horizon. The regression is run for all forecasters and forecast horizons. The table shows the fraction of regressions
with t-statistics above 1.96, below −1.96, and above 1.96 in absolute value. The final two columns provide the median and
90th percentile of the regression R2’s. The standard errors used in the calculation of the t-statistics are adjusted for generated
regressors and robust to heteroskedasticity and autocorrelation, with 4 Newey–West lags.

a nominal level of 5% is close to 5%. In addition, rejections do not appear to be con-
centrated among positive (or negative) values of t-statistics. Even looking at the raw R-
squared’s of these regressions, we obtain very small numbers, indicating no predictabil-
ity. The medianR-squared’s for these regressions are in the range of 1–2%. Even the 90th
percentiles of the estimated R-squared’s are low, at 5–12% across the forecast horizons.
We conclude that our estimates of noise do not seem predictive of actual inflation, as
should be the case if our model is well specified.

3.3.2 Further tests Appendix C contains a battery of additional robustness checks. In
particular, we show that the results remain very similar if we (i) orthogonalize our es-
timates w.r.t. realized inflation; (ii) redefine noise to be uncorrelated over time; (iii) re-
define noise to be both uncorrelated over time and orthogonal to realized inflation; (iv)
remove potential outliers; and (v) reestimate the model on different subsamples. Finally,
we document that (vi) for a given forecaster, the level of noise is strongly positively cor-
related across different forecast horizons. This last result suggests that our estimates of
noise capture an economically meaningful forecaster-specific trait.

4. Applications: Putting noise to work

We now provide several applications of our estimates. Our goal is to show that noise
matters for understanding a variety of substantive economic questions.

4.1 Wisdom of the crowd

Consensus (or average) forecasts are typically substantially more accurate than most
individual forecasts, an effect popularized as the “wisdom of the crowd” by Surowiecki
(2005). If individual forecasts are noisy, then consensus forecasts may be more accurate
simply because they average away the idiosyncratic noise.14 Alternatively, the reduction

14The use of cross-sectional averaging as a way to reduce measurement error and endogeneity is well
known in the literature on pseudo panel data models; see, for example, Verbeek (2008). For example, Juodis
(2018) uses this insight to estimate factor-augmented panel data models from repeated cross-sections.
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in mean-squared error could stem primarily from a reduction in bias. Our estimates can
be used to quantify the sources of the wisdom-of-the-crowd effect.

The MSE decomposition results in Table 4 imply that 20–60% of the wisdom-of-the-
crowd effect is explained by the reduction in idiosyncratic noise (with the rest of the
effect due to a reduction in bias). For instance, for one-quarter-ahead forecasts (h= 1),
61.6% of the improvement in the consensus forecast can be attributed to the reduction
in noise (0.341 × 4.46/(4.46 − 1.99)). Similarly, for nowcasts (h = 0) and two-quarter
ahead (h = 2) forecasts, 50% or more of the improvement is due to noise. Noise plays
a smaller role for three-step-ahead forecasts, with slightly over 20% of the wisdom-of-
the-crowd effect attributable to a reduction in noise.

4.2 Are micro Coibion–Gorodnichenko regressions robust?

Our estimates of noise can be used to check whether empirical findings are robust to
realistic levels of measurement error in expectations. We illustrate this idea using micro-
level (Coibion and Gorodnichenko (2015), CG for short) regressions as a case study.

Empirical approach In an influential contribution, Coibion and Gorodnichenko
showed that information rigidities can be identified by regressing consensus forecast
errors on lagged revisions:

xt+h − F̄t[xt+h] = α+βc
{
F̄t[xt+h] − F̄t−1[xt+h]

} + ut . (8)

Here, F̄t[xt+h] denotes the average (consensus) forecast. Recently, the same method has
also been applied to individual data on expectations (e.g., see Bordalo et al. (2020), Broer
and Kohlhas (2018), Bouchaud, Krüger, Landier, and Thesmar (2019)). With individual
data, one estimates

xt+h − Fi,t[xt+h] = α+βm
{
Fi,t[xt+h] − Fi,t−1[xt+h]

} + ui,t , (9)

where i denotes an individual forecaster. The existing empirical work has found that the
micro estimate β̂m is typically smaller than the consensus estimate β̂c , and the micro esti-
mate is often negative. This finding is inconsistent with standard models of information
rigidities (as well as full-information rational expectations).

A potential concern with the micro estimates is that they are sensitive to measure-
ment error in expectations. If Fi,t[xt+h] is measured with error, measurement error en-
ters both the left- and right-hand sides of equation (9). This leads to a nonclassical
measurement-error problem. The measurement-error problem can generate a negative
estimate of βm with high probability even when the true coefficient is zero.

Our estimates of noise can be used to investigate whether empirical estimates of βm
are robust to realistic amounts of measurement error. Suppose that instead of observing
the true expectations, we only observe

Fi,t[xt+h] = F∗
i,t[xt+h] +ηi,t ,
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where F∗
i,t[xt+h] denotes the true (unobserved) expectations of an agent i, and ηi,t is

measurement error. We assume that the measurement error is uncorrelated across fore-
casters, uncorrelated with the target variable xt at all leads and lags, and has finite vari-
ance σ2

η. However, we allow measurement error to be serially correlated and denote
φ≡Corr(ηi,t , ηi,t−1 ).

Suppose that the true forecast errors are unpredictable by past forecast revisions at
the micro level, that is,

Cov
(
xt+h − F∗

i,t[xt+h], F∗
i,t[xt+h] − F∗

i,t−1[xt+h]
) = 0.

However, since the true expectations are unobserved, an analyst that uses the observed
expectations to run the regression equation (9) would in effect be estimating

xt+h − F∗
i,t[xt+h] −ηi,t = α+βm

{
F∗
i,t[xt+h] − F∗

i,t−1[xt+h] +ηi,t −ηi,t−1
} + ui,t .

Therefore, the probability limit of the OLS estimator in the presence of measurement
error is

plimN ,T→∞ β̂m = −σ
2
η(1 −φ)

Var[ri,t ]
, (10)

where ri,t ≡ Fi,t[xt+h] − Fi,t−1[xt+h] denotes the observed forecast revision. Hence, the
estimated value of βm is negative as long as there is some measurement error (σ2

η > 0),
and measurement error is not a unit root process (|φ| < 1).

We can now invert equation (10) for σ2
η to ask what amount of measurement error

is necessary to generate the empirically observed value of β̂m under the null hypothesis
that the true coefficient is zero, that is,

σ̃2
η = (−β̂m )V̂ar[ri,t ]

1 −φ . (11)

Here, V̂ar[ri,t ] denotes the sample variance of forecast revisions. We can then compare
the value of σ̃2

η in equation (11) to our independent estimates of noise. If σ̃2
η in equation

(11) is larger than our estimate of noise, that would suggest robustness to measurement
error: More measurement error is necessary to explain the empirical finding (assuming
that the true value is zero) than is plausible given the amount of noise in the data.15

Results The results of this exercise (using one- and two-quarter ahead forecasts) are
given in Table 6. The first two rows of the table show the estimated slope coefficients
from Coibion–Gorodnichenko regressions using consensus as well as individual fore-
casts. Consistent with previous findings in the literature, the consensus estimates are all
positive, while the estimates from the micro data are all negative. We next calculate the
amount of measurement error that would be necessary to explain the negative micro-
level estimates, under the assumption that the true coefficient is zero. The resulting es-
timates of measurement error are fairly high, at around 0.90–1.00 percentage points.

15Measurement error can only explain negative values of β̂m. Of course, we recognize that our simple
calibration exercise does perform proper statistical inference as we compare point estimates and not their
population values.
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Table 6. Micro CG estimates: robustness to measurement error.

h= 0 h= 1 h= 2 h= 3

Consensus 0.39 0.35 0.84 1.15
Individual −0.36 −0.34 −0.33 −0.32
Revisions (S.D.) 1.56 1.41 1.48 1.58
Implied Measurement Error (S.D.), φ= 0 0.94 0.82 0.85 0.90
Implied Measurement Error (S.D.), φ= 0.20 1.05 0.92 0.95 1.01
Estimated Noise (S.D.) 0.95 0.99 0.97 0.72

Note: The table investigates the robustness of micro-level estimates of the Coibion and Gorodnichenko (2015) regression
to measurement error. The first row shows the estimated slope coefficient in the Coibion–Gorodnichenko regression when
consensus forecasts are used (for h = 1), as in equation (8). The second row shows the results when individual forecasts are
used (for h= 1), as in equation (9). The third row gives the sample standard deviation of forecast revisions. The fourth and fifth
rows give the standard deviation of measurement error that is necessary to generate the empirical micro estimates, assuming
that the true coefficient is zero, using the formula in equation (11). The fourth row assumes that measurement error is serially
uncorrelated (φ= 0), while the fifth row assumes that the first-order autocorrelation of measurement error isφ= 0.20. The final
row gives our estimates of the standard deviation of noise, with the number of factors selected by the growth-ratio statistic of
Ahn and Horenstein (2013) after subtracting the consensus forecast from the individual forecasts, as in Table 3.

Economically, roughly one-third of the variation in forecast revisions would need to be
attributed to measurement error to explain the observed negative micro-level coeffi-
cients. In addition, the amount of measurement error required is very close to our es-
timated levels of noise. Since noise is likely to arise for multiple reasons, measurement
error being just one of them, we conclude that the micro-level estimates appear to be
robust to realistic amounts of measurement error.

4.3 Using noise to estimate and test economic models

Our estimates of noise can be used to estimate and test theoretical models of expecta-
tions, as we now illustrate using the noisy-information model introduced in Section 2.2.
We also show how, under additional assumptions on the expectation-formation process,
our estimates can be leveraged to quantify the level of measurement error.

The noisy-information model posits a link between the amount of noise in individ-
ual signals—and thereby expectations—and persistence in forecast errors. Intuitively, if
forecast errors are persistent, the model suggests that agents are subject to a strong in-
formation friction. Vice versa, for a given level of noise, the model makes a prediction
for how persistent forecast errors should be. We can therefore test the model by check-
ing if these two predictions are consistent with each other. To the best of our knowledge,
this prediction of the noisy-information model has not previously been tested, arguably
because past research could not quantify the level of noise in expectations.

Noise-based estimate of information frictions In the noisy-information model of Sec-
tion 2.2, forecast errors follow an AR(1) process with heterogeneous (forecaster-specific)
coefficients:

xt+1 − Fi,t[xt+1] = ρ(1 −Gi )︸ ︷︷ ︸
φi

{
xt − Fi,t−1[xt ]

} + (εt+1 − ρGiωi,t ). (12)
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If the information friction is greater (i.e.,Gi is lower), forecast errors are more persistent.
Hence, following Ryngaert (2018), we can back out the level of information frictions from
the persistence of forecast errors. To do, we regress forecast errors ei,t ≡ xt+1 − Fi,t[xt+1]
on lagged forecast errors forecaster-by-forecaster; denote the estimated persistence of
forecast errors by φ̂i. Then we estimate the Kalman gain as Ĝi = 1 − φ̂i/ρ̂, where ρ̂ is the
estimated persistence of inflation. This approach is standard in the literature (Coibion
and Gorodnichenko (2012), Ryngaert (2018)). The only difference here is that, since
we allow the information friction to vary across forecasters, we estimate equation (12)
forecaster-by-forecaster.

At the same time, the variance of noise in this model equals

Vari[νi,t ] = ρ2G2
i σ

2
i,ω

1 − ρ2(1 −Gi )2 . (13)

Our estimates of noise provide us with a value for the left-hand side. As discussed above,
the Kalman gain, Gi, can be estimated from the persistence of forecast errors. There-
fore, we can calculate the value of σ2

i,ω that is necessary for the model to generate the
observed level of noise. However, σ2

i,ω and Gi are not independent—less informative
signals decrease the Kalman gain. Hence, we can plug in the obtained value for σ2

i,ω to
the standard filtering formula to produce another estimate of the Kalman gain. If the
noisy-information model provides a good approximation to the observed expectations,
the two Kalman gain estimates should, on average, be close to each other.

Since our estimation leverages individual-level data, it is important to allow for po-
tential measurement error. In particular, measurement error attenuates the estimated
persistence of forecast errors toward zero. Hence, failing to account for measurement
error may underestimate the level of information frictions. For this reason, we show
our results for a range of assumptions on what fraction of noise in expectations is due
to measurement error, and we use measurement-error-adjusted estimates of forecast-
error persistence. The full details are provided in Appendix D (Section D.3).

Results Figure 2 shows the estimated Kalman gain parameters using the two alterna-
tive identification schemes. Under the assumption that forecasts are measured without
error, the standard estimate of the (average) Kalman gain is Ĝ≈ 0.77. The standard es-
timate is somewhat higher than the estimate based on the amount of noise in expecta-
tions. Without measurement error, the noise-based estimator yields a value of Ĝ≈ 0.65.
Intuitively, at Ĝ ≈ 0.77, the noisy-information model predicts that the level of noise in
expectations should be lower than what we measure in the data. For this reason, the
noise-based estimate is lower. In turn, the noise-based estimate predicts a higher per-
sistence for forecast errors than is the case in the data. For the two estimates to be con-
sistent, one needs to attribute around 50% of the noise in expectations to measurement
error.

The Kalman gain estimates we obtain are slightly higher than those in the existing
literature.16 Based on the findings by Ryngaert (2018), we conjecture that part of the

16For example, Coibion and Gorodnichenko (2015) find Ĝ ≈ 0.46 using a different estimation strategy

that uses forecast revisions; Ryngaert (2018) finds values of Ĝ between 0.40 and 0.50.
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Figure 2. Noise-based estimate of information frictions. Note: Estimated average Kalman gain
for one-quarter-ahead forecasts, as the fraction of noise attributed to measurement error is var-
ied. The standard estimate backs out the Kalman gain from the autocorrelation of forecast errors.
The alternative estimate identifies the Kalman gain from the estimated level of noise. For a given
estimate of the variance of noise, V̂ari[νi,t ], we attribute a fraction α to measurement error and
then use (1 − α)V̂ari[νi,t ] to calculate the implied value for the variance of idiosyncratic shocks,
σ2
i,ω, and the Kalman gain.

difference may be due to a behavioral bias that is not captured in the baseline noisy-
information model (e.g., underestimated persistence of actual inflation). However, test-
ing this hypothesis is challenging and goes beyond the current paper. In particular, if
the information friction is heterogeneous across forecasters, we can no longer use data
from individual forecasters in panel regressions to estimate the perceived persistence,
as in Ryngaert (2018).

Our estimates can also be used to calibrate information structures in macro models
with incomplete information. Our estimates imply that the signal-to-noise ratio, σ2

ε/σ
2
ω,

the key parameter in such models, implicit in our estimates is 0.81.17 For comparison,
Melosi (2014) estimates a DSGE model in which firms receive noisy signals about mon-
etary policy and productivity. Melosi finds that the signal-to-noise ratio for the produc-
tivity signal is around 0.66, while it is only 0.09 for the signal about monetary policy
(his Table 2). Since professional forecasters have strong incentives to pay attention to
inflation—just as firms have strong incentives to pay attention to productivity—it is re-
assuring that the two estimates are fairly similar.

5. Conclusions

This paper proposes a method for quantifying noise in survey expectations. The basic
idea is to estimate a factor model using panel data on individual expectations, purge
expectations of the common factor structure, and thereby recover noise.

In an empirical application to inflation expectations, we found that noise is large
and pervasive. In our data, noise is as important as bias for explaining forecast accuracy,
at least at short forecasting horizons. These findings lend strong support to the view by

17To estimate σ2
ε , we fit an AR(1) model to actual inflation and calculate the variance of the residuals.
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Daniel Kahneman cited at the beginning of this paper that “noise is extremely impor-
tant.” Given that noise has so far received relatively little attention in the literature on
expectations, our findings also accord with Kahneman’s statement that “bias has been
overestimated at the expense of noise.”

Since noise can lead to substantial forecast errors, practitioners may wish to use
forecasting methods that are less susceptible to noise. Noise can be reduced by com-
bining forecasts from different statistical models. Forecasting firms may also ask multi-
ple employees to produce independent forecasts. Averaging such forecasts would help
diminish human-induced noise. Our findings also caution against favoring judgmental
forecasts over statistical algorithms. A key advantage of algorithms is that they always
provide the same output for a given set of inputs. Humans are more noisy.

The present paper also has implications for researchers using micro data on expecta-
tions. Our results suggest that it is important to be mindful of noise in individual expec-
tations. Some of that noise may be caused by measurement error. While measurement
error in expectations has been the subject of much research in applied micro,18 it ap-
pears to have received less attention in macro and finance. Our paper provides an easy
way to check whether empirical results are robust to realistic amounts of measurement
error.

Do people act upon the noise in their expectations? Addressing this question lies
beyond the scope of the present paper. However, there are reasons to speculate that the
answer may be “yes.” One reason is the existing evidence on expectation formation from
incentivized lab experiments (e.g., He and Kučinskas (2019), Landier, Ma, and Thesmar
(2019)). This literature finds that even the best-fitting empirical models of expectations
have fairly low R-squared’s at the individual level. In the field, the evidence on volatility
and large volume of trade in financial markets is suggestive of an important role played
by noisy expectations (Shiller (1980), Kyle (1985), Black (1986), Augenblick and Lazarus
(2018)). More directly, Bailey, Cao, Kuchler, and Stroebel (2018) document that house-
holds’ investment decisions are affected by house prices experienced by their geograph-
ically distant friends. Producing direct evidence on the relationship between noise and
actions may be worthy of future research.

Appendix: Contents

• Section A: detailed description of the data used in our empirical analysis;

• Section B: extensions to the basic noisy information model;

• Section C: additional robustness and specifications tests of our baseline model;

• Section D: relevant proofs and implementation details for the empirical exercises
reported in the main text.

18For example, see Manski (2004), Manski and Molinari (2010), Drerup, Enke, and von Gaudecker (2017),
Giustinelli, Manski, and Molinari (2018).
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Appendix A: Data appendix

Data construction largely follows the procedure in Kučinskas and Peters (2022). We
download data for individual responses from the website of the Federal Reserve Bank
of Philadelphia (https://www.philadelphiafed.org/surveys-and-data/pgdp). The down-
loaded file contains forecasts of the GDP deflator index for the past quarter (PGDP1),
current quarter (PGDP2), and the next four quarters (PGDP3 up to PGDP6); see the Fed-
eral Reserve Bank of Philadelphia (2017, pp. 20–22). We use forecasts for all available
forecast horizons in our analysis.

First, we calculate forecasts of quarterly inflation rates, annualized, from the fore-
casts of the price deflator. These are calculated as

Fi,t[xt+h] = 100
[(

PGDP(h+ 2)
PGDP(h+ 1)

)4

− 1
]

for h ∈ {0, 1, � � � , 4}.

For realizations, we use the Real-Time Data Set for Macroeconomists, which is also
provided by the Philadelphia Fed (https://www.philadelphiafed.org/surveys-and-data/
real-time-data-research/real-time-data-set-for-macroeconomists). We use the first-
release data for “Price Index for GNP/GDP (P).” In 1995Q4, the first-release data for infla-
tion is not available. In this period, we use the second-release data.

To match forecasts and actuals, we align the forecasts to the date for which they
were made. For example, the one-quarter ahead forecast made in the 1970Q1 survey is
matched with the actual inflation reported for 1970Q2.

Appendix B: Extending the noisy-information model

The baseline noisy-information model in Section 2.2 may seem fairly restrictive. How-
ever, nothing in the arguments in that section hinges on the special properties of
the setup. In particular, the baseline noisy-information model can be generalized in a
straightforward manner to account for both richer dynamics of the target variable as
well as other drivers of expectations such as behavioral biases and strategic behavior.

We first extend the model to allow for richer dynamics in the target variable and then
discuss how the model can capture strategic behavior and behavioral biases. Suppose
the target variable, xt , is generated by

xt = Axt−1 + εt ,

where xt = (x1,t , x2,t , � � � , xM ,t )� is an M-dimensional vector, A is an (M ×M ) matrix
with all eigenvalues within the unit circle, and εt is a vector of normally distributed
shocks with mean zero and covariance matrix �ε. Without loss of generality, we can as-
sume that �ε is diagonal, so that εt can be interpreted as a structural shock to xt . Finally,
to avoid degenerate cases, we assume that �ε is strictly positive definite.

As before, the agents do not observe xt directly. Instead, they observe noisy signals.
First, forecasters observe a private (idiosyncratic) signal of xt given by

s(i)
i,t = xt +ωi,t .

https://www.philadelphiafed.org/surveys-and-data/pgdp
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/real-time-data-set-for-macroeconomists
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/real-time-data-set-for-macroeconomists
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The idiosyncratic shocks ωi,t are normally distributed, uncorrelated across forecast-
ers, have mean zero and covariance matrix �i,ω. The covariance matrix �i,ω is allowed
to vary across forecasters. Second, forecasters observe a public signal—common to all
forecasters—given by

s(p)
t = xt + vt .

Again, vt is normally distributed, has mean zero and covariance matrix �v. The idiosyn-
cratic shocks ωi,t and shocks to public signals vt are uncorrelated at all leads and lags.
Collecting all signals to a single vector

si,t︸︷︷︸
(2M×1)

=
(

s(i)
i,t

s(p)
t

)
,

we can cast the model into standard state-space form as

xt = Axt−1 + εt ;

si,t = Hxt + wi,t ,
(14)

where

H =
(

Ir
Ir

)
, wi,t =

(
ωi,t
vt

)
, and Vari[wi,t ] ≡�i,w =

(
�i,ω 0M×M

0M×M �v

)
.

Provided that all eigenvalues of A lie inside the unit circle (Hamilton (1994, Proposi-
tion 13.1)), in the steady state, one-step-ahead forecasts are given by

Fi,t[xt+1] = A
{

Gisi,t + (Ir − GiH)Fi,t−1[xt ]
}

, (15)

where Gi is the (M × 2M ) steady-state Kalman gain matrix defined by

Gi = PiH�(
HPiH� +�i,w

)−1
;

Pi = A
[
Pi − PiH�(

HPiH� +�i,w
)−1HPi

]
A� +�ε,

with Pi an (M ×M ) matrix.
We can now iterate on equation (15) in the same way as in the baseline model.19

Performing the same steps as before, we can arrive at the approximate factor model
representation in equation (3). The only economic difference, relative to the baseline
model, is that (i) factors now contain not only the structural shocks εt but also the shock
to the public signal, νt ; and (ii) noise now combines shocks to private signals about all
variables in xt . The shock to the public signal, νt , can be interpreted as capturing ani-
mal spirits or market sentiment (Angeletos and La’O (2013)). Part (ii) implies that noisy
expectations about, say, inflation can partly stem because GDP growth is observed with
noise.

19Hamilton (1994, Proposition 13.2) shows that the eigenvalues of (A − AGiH) are all strictly within the
unit circle provided that at least one of �ε or �i,w is strictly positive definite. Hence, we can take limits when
iterating on equation (15).
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Strategic behavior

Huo and Pedroni (2020, Theorem 1) show that a model with information frictions (as
above) but with strategic behavior is equivalent to a model without strategic behavior in
which the private signals are discounted. Hence, the model above accounts for the pos-
sibility that forecasters are strategic such as wishing to be close to the average forecast
or facing tournament incentives (Ottaviani and Norman (2006)). The only difference in
a model with strategic concerns would be a different covariance matrix for the idiosyn-
cratic shocks �i,ω.

Misperceived parameters

Nothing in the arguments above relied on the actual properties of the data-generating
process. Hence, we can interpret A, �i,ω, etc., as perceived parameters of the data-
generating process. These parameters may well be different from the actual parameters
of the model, denoted by A∗, �∗

i,ω, etc. Various biases can be captured by model misspec-
ification. For example, in the univariate case with M = 1, A>A∗ represents an extrap-
olation bias. Ignoring mean reversion, as in the natural-expectations model of Fuster,
Laibson, and Mendel (2010), can similarly be captured by a deviation of A from A∗. For
that, one could specify the true model as an AR(2) process (via A∗) but postulate that
the agents misperceive the process for xt to be an AR(1) by setting the relevant param-
eters in A to zero. Similarly, misperceptions in �i,ω or �ν can capture an overprecision
bias (Daniel, Hirshleifer, and Subrahmanyam (1998), Odean (1998), Broer and Kohlhas
(2018)).

Diagnostic expectations

It is also straightforward to extend the model to allow for diagnostic expectations (Bor-
dalo, Gennaioli, and Shleifer (2018), Bordalo et al. (2020)). First, rewrite equation (15)
as

Fi,t[xt+1] = AFi,t−1[xt ] + AGi
{

si,t − HFi,t−1[xt ]
}︸ ︷︷ ︸

surprise

.

Here, the term in the curly brackets denotes the expectational “surprise,” that is, the
difference between the realized signal and its t − 1 expectation. We can then define di-
agnostic expectations (abusing notation slightly) as F∗

i,t[xt+1] as

F∗
i,t[xt+1] = Fi,t[xt+1] +�AGi

{
si,t − HFi,t−1[xt ]

}︸ ︷︷ ︸
diagnostic component

,

where � = diag(θ1, θ2, � � � , θM ) and θm ≥ 0 is the diagnosticity parameter for the mth
element for xt form= 1, � � � ,M . It is straightforward to check that this specification nests
the models analyzed in (Bordalo, Gennaioli, and Shleifer (2018), Bordalo et al. (2020)) as
special cases.
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All in all, the model above captures a wide variety of existing models of expectations,
including a general signal structure, information frictions, behavioral biases, and strate-
gic behavior.

Appendix C: Additional robustness checks

C.1 Realized inflation and noise

In Section 3.3.1, we saw that our estimates of noise are not predictive of future inflation.
As an additional robustness check, we perform the following exercise. We estimate an
extended model in which we also include the actual (or realized) inflation as a right-
hand side variable:

Fi,t[xt+h] = bi,0 + δixt+h +λ�
i ft + νi,t .

Given that we estimate the model by least squares, this specification automatically en-
sures that the estimated noise terms ν̂i,t are orthogonal to realized inflation. The results
of this exercise are shown in Table C.1.

While the estimates of noise are smaller, as they should be, the differences are very
small. This finding further suggests that our baseline noise estimates do not have pre-
dictive power for actual inflation.

C.2 Serial correlation in noise

A potential concern with our procedure is that the estimated noise levels νi,t may be
serially correlated. Indeed, as shown in Table C.2, noise is serially correlated, with first-
order autocorrelation coefficients fluctuating around 0.08–0.25 depending on the spec-
ification and forecast horizon. The concern with serial correlation has to do both with

Table C.1. Noise: orthogonalized w.r.t. realizations.

Single Factor (Consensus) Multiple Factors

K = 0 K = 1 K = 2 K = 3 R= 1 R= 2 R= 3 R= 4

h= 0 1.09 1.05 1.00 0.97 1.09 0.93 0.81 0.71
(0.07) (0.06) (0.06) (0.06) (0.06) (0.04) (0.04) (0.03)

h= 1 0.96 0.92 0.89 0.86 0.96 0.80 0.71 0.61
(0.06) (0.06) (0.06) (0.06) (0.06) (0.04) (0.04) (0.03)

h= 2 0.97 0.93 0.90 0.87 0.95 0.80 0.70 0.60
(0.07) (0.06) (0.06) (0.06) (0.06) (0.05) (0.04) (0.03)

h= 3 1.00 0.97 0.94 0.92 0.99 0.82 0.70 0.59
(0.08) (0.08) (0.08) (0.08) (0.07) (0.05) (0.04) (0.03)

h= 4 1.05 1.00 0.96 0.93 1.05 0.86 0.69 0.60
(0.08) (0.08) (0.08) (0.07) (0.08) (0.06) (0.04) (0.03)

Note: Estimates of noise orthogonalized w.r.t. actual realizations of inflation. Standard deviations of noise (averages across
forecasters) with standard errors in parentheses shown. The estimation procedure is the same as in Table 2, except that realized
inflation is included as a right-hand side variable.
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Table C.2. Average autocorrelation of noise: baseline estimates.

Single Factor (Consensus) Multiple Factors

K = 0 K = 1 K = 2 K = 3 R= 1 R= 2 R= 3 R= 4

h= 0 0.11 0.13 0.10 0.11 0.12 0.10 0.07 0.07
h= 1 0.14 0.15 0.14 0.12 0.15 0.14 0.11 0.08
h= 2 0.18 0.18 0.18 0.16 0.21 0.14 0.10 0.08
h= 3 0.22 0.22 0.21 0.18 0.25 0.22 0.19 0.13
h= 4 0.22 0.25 0.24 0.21 0.22 0.20 0.15 0.10

Note: Average autocorrelation of noise for the baseline noise estimates. The estimation procedure is the same as in Table 2.

model specification as well as with how noise should be defined conceptually. Concep-
tually, one may argue that noise should be serially uncorrelated. As shown in Section 2.2,
the standard noisy-information model predicts that noise should be serially correlated.
For that reason, our baseline estimation allows for serially correlated noise. However, it
is not unreasonable to define noise by saying it should be serially uncorrelated. From a
model-specification perspective, serially correlated noise may indicate that the dynam-
ics of individual forecasts are not captured well enough.

We first note that the estimated levels of serial correlation are not large enough to
substantially change the results. Using a simple AR(1) approximation, a back-of-the-
envelope calculation suggests that removing an autocorrelation of 0.20 would reduce
the estimated variance of noise by only 4%.20

To further investigate this potential issue, however, we expand our baseline model
to include the lagged forecast as a right-hand side variable, that is,21

Fi,t[xt+h] = bi,0 + δi Fi,t−1[xt+h−1] +λ�
i ft + νi,t .

The model above is a factor-augmented AR(1), and the lagged forecast term should soak
up most of the serial correlation that is present in our baseline estimates of noise. The
resulting estimates of noise are provided in Table C.3. These estimates are somewhat
smaller than our baseline results, but overall they are fairly similar. Conceptually, these
results are reassuring in that they suggest that irrespective of whether we require noise
to be serially uncorrelated or not, the magnitude of noise is going to be fairly similar.

C.3 More stringent definition of noise

Building on the previous section, we next estimate noise levels using a more stringent
definition of noise. Specifically, we require estimated noise to be orthogonal to both (i)
realized inflation (so that noise is not predictive of realized inflation); and (ii) lagged

20Suppose that noise follows νi,t = ρνi,t−1 +ωi,t . Then Vari[νi,t ] = Vari[ωi,t ]/(1 − ρ2 ) and so Vari[ωi,t ] =
Vari[νi,t ](1−ρ2 ). Hence, for a given estimate of Vari[νi,t ], accounting for an autocorrelation level of ρ= 0.20
would only reduce the variance by a factor of 1 − 0.202 = 0.96.

21Note that estimating this equation requires lagged forecasts, which reduces our sample somewhat and
makes the resulting sample slightly different from our baseline sample.
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Table C.3. Noise: orthogonalized w.r.t. lagged forecast.

Single Factor (Consensus) Multiple Factors

K = 0 K = 1 K = 2 K = 3 R= 1 R= 2 R= 3 R= 4

h= 0 1.02 0.96 0.91 0.87 0.99 0.81 0.66 0.57
(0.06) (0.06) (0.06) (0.05) (0.06) (0.04) (0.03) (0.02)

h= 1 0.87 0.82 0.78 0.74 0.88 0.69 0.56 0.47
(0.06) (0.06) (0.06) (0.05) (0.05) (0.04) (0.03) (0.02)

h= 2 0.88 0.85 0.81 0.76 0.85 0.69 0.55 0.46
(0.07) (0.06) (0.06) (0.06) (0.05) (0.04) (0.03) (0.02)

h= 3 0.89 0.85 0.82 0.77 0.84 0.69 0.56 0.44
(0.07) (0.07) (0.07) (0.07) (0.06) (0.04) (0.03) (0.02)

h= 4 0.88 0.82 0.77 0.72 0.85 0.66 0.52 0.41
(0.08) (0.07) (0.07) (0.06) (0.06) (0.04) (0.03) (0.02)

Note: Estimates of noise orthogonalized w.r.t. lagged forecast. Standard deviations of noise (averages across forecasters)
with standard errors in parentheses shown. The estimation procedure is the same as in Table 2, except that the lagged forecast
is included as a right-hand side variable.

forecast (so that the possibility of serially correlated noise is reduced). We operationalize
this definition by estimating

Fi,t[xt+h] = bi,0 + γ1,ixt+h + γ2,i Fi,t−1[xt+h−1] +λ�
i ft + νi,t .

That is, we include realized inflation and lagged forecast as control variables in our
estimation. As expected from the previous results that included realized inflation and
lagged forecasts separately, the resulting estimates of noise are lower but not by much.
As shown in Table C.4, the resulting estimates of noise fairly comparable to those in Ta-
ble C.3.

Table C.4. Noise: more stringent definition.

Single Factor (Consensus) Multiple Factors

K = 0 K = 1 K = 2 K = 3 R= 1 R= 2 R= 3 R= 4

h= 0 0.98 0.92 0.87 0.83 0.93 0.77 0.64 0.53
(0.06) (0.06) (0.05) (0.05) (0.04) (0.03) (0.03) (0.02)

h= 1 0.84 0.79 0.75 0.71 0.82 0.67 0.53 0.45
(0.06) (0.05) (0.05) (0.05) (0.04) (0.03) (0.02) (0.02)

h= 2 0.85 0.82 0.77 0.73 0.82 0.66 0.53 0.43
(0.06) (0.06) (0.05) (0.05) (0.05) (0.03) (0.03) (0.02)

h= 3 0.86 0.83 0.79 0.74 0.81 0.67 0.54 0.42
(0.07) (0.07) (0.07) (0.07) (0.05) (0.04) (0.03) (0.02)

h= 4 0.84 0.79 0.73 0.68 0.83 0.62 0.49 0.38
(0.07) (0.07) (0.07) (0.06) (0.06) (0.04) (0.03) (0.02)

Note: Estimates of noise using a more stringent definition of noise. Standard deviations of noise (averages across fore-
casters) with standard errors in parentheses shown. The definition ensures that the estimated noise is orthogonal to both (i)
realized inflation; and (ii) lagged forecast.
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C.4 Alternative subsamples: Outliers, IDs, and larger cross-sections

Next, we reestimate our baseline model on different subsamples to investigate the po-
tential effects of certain data issues in the SPF on our results. We also investigate the
robustness of our results to the choice of the minimum number of participants in the
SPF survey waves.

A natural concern is that our estimates of noise may be biased upward if outliers
are present in the sample. These outliers could be, for example, the result of data col-
lection or input errors. Looking at the minimum and maximum values of forecasts in
Table 1, there are no obviously “crazy” values. In part, this is to be expected, given that
the respondents of the survey are professional forecasters. This feature of the data set is
very different from survey data on household expectations. However, some forecasts are
fairly extreme, with the values for 1-year-ahead forecasts, for example, ranging from the
low of −19.45% to the high of 29.75%. We note that these values need not be outliers but
could, in fact, be due to noise.

To investigate the potential effect of outliers, we use the Tukey’s rule and remove all
observations that fall outside [q1 − 1.5 · IQR, q3 + 1.5 · IQR] where qi is the ith quartile,
and IQR is the interquartile range of all forecasts for that particular horizon. Table C.5
shows that the absolute levels of noise goes down somewhat once outliers are removed
and are in the range of 0.40–0.85.

Another potential concern is that our estimates of noise may be contaminated by
measurement error in forecaster IDs. Specifically, the Survey of Professional Forecast-
ers assigns an ID to each forecaster. In theory, this ID should be unique to each fore-
caster. However, as originally pointed out by Stark (1997) and discussed by Federal Re-
serve Bank of Philadelphia (2017, p. 34), sometimes certain forecaster IDs reappear in
the data set after a long period of nonparticipation in the survey. Such reappearances
suggest that some forecaster IDs may be reassigned to other survey participants. Such

Table C.5. Is noise driven by outliers?

Single Factor (Consensus) Multiple Factors

K = 0 K = 1 K = 2 K = 3 R= 1 R= 2 R= 3 R= 4

h= 0 0.87 0.84 0.80 0.77 0.85 0.76 0.67 0.61
(0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02)

h= 1 0.74 0.72 0.69 0.67 0.72 0.65 0.57 0.50
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.02)

h= 2 0.72 0.69 0.67 0.65 0.70 0.61 0.53 0.47
(0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02)

h= 3 0.70 0.67 0.65 0.63 0.68 0.60 0.52 0.46
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.02)

h= 4 0.71 0.65 0.62 0.59 0.68 0.60 0.50 0.43
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.02)

Note: Estimates of noise with outliers removed by Tukey’s rule. Standard deviations of noise (averages across forecasters)
with standard errors in parentheses shown. Specifically, we calculate the first and third quartiles of individual forecasts, de-
noted by q1 and q3, with the resulting interquartile range given by IQR = q3 − q1. Then we remove all forecasts that fall outside
[q1 − 1.5 · IQR, q3 + 1.5 · IQR]. Otherwise, the procedure is the same as in Table 2.
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Table C.6. Noise estimates: “No gaps” subsample.

Single Factor (Consensus) Multiple Factors

K = 0 K = 1 K = 2 K = 3 R= 1 R= 2 R= 3 R= 4

h= 0 1.12 1.09 1.06 1.04 1.12 0.94 0.83 0.73
(0.09) (0.08) (0.08) (0.08) (0.08) (0.06) (0.05) (0.04)

h= 1 0.99 0.94 0.92 0.89 0.99 0.82 0.70 0.62
(0.09) (0.08) (0.08) (0.08) (0.08) (0.06) (0.05) (0.04)

h= 2 0.91 0.89 0.86 0.83 0.90 0.73 0.64 0.56
(0.08) (0.08) (0.08) (0.07) (0.08) (0.05) (0.04) (0.03)

h= 3 0.99 0.96 0.94 0.92 0.99 0.80 0.69 0.57
(0.10) (0.10) (0.10) (0.10) (0.09) (0.07) (0.05) (0.04)

h= 4 1.03 0.99 0.94 0.89 1.06 0.91 0.68 0.58
(0.11) (0.11) (0.10) (0.09) (0.10) (0.07) (0.05) (0.04)

Note: Estimates of noise for a subsample of forecasters with “no gaps” in survey participation. Standard deviations of noise
(averages across forecasters) with standard errors in parentheses shown. Specifically, we remove all forecaster IDs for which
the maximum length of time between two forecasts is more than 5 years.

measurement error in forecaster IDs may problematic for our purposes since it can con-
found noise with differences in factor loadings and lead to an overestimation of noise.

To investigate this concern, we drop forecasters that reappear in the sample after
an absence of 5 years or more. The results are shown in Table C.6. The estimated noise
levels are very similar in this restricted “no gaps” subsample.

Finally, we investigate the robustness of our estimates to the choice of the mini-
mum cross-sectional dimension. Table C.7 shows the results once we impose a mini-
mum cross-sectional dimension of at least 30 at all survey dates; we keep the minimum
number of time series observations to 20. As shown in Table C.8, this sample restriction
reduces the effective sample size substantially. However, our estimates of noise remain

Table C.7. Noise: larger cross-section.

Single Factor (Consensus) Multiple Factors

K = 0 K = 1 K = 2 K = 3 R= 1 R= 2 R= 3 R= 4

h= 0 0.65 0.59 0.55 0.53 0.67 0.58 0.48 0.41
(0.03) (0.03) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03)

h= 1 0.63 0.58 0.55 0.52 0.63 0.54 0.45 0.39
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

h= 2 0.69 0.65 0.61 0.59 0.67 0.58 0.49 0.41
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.04)

h= 3 0.72 0.67 0.62 0.58 0.89 0.65 0.55 0.43
(0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.04)

h= 4 0.80 0.76 0.72 0.69 0.86 0.73 0.67 0.58
(0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.04)

Note: Estimates of noise after imposing a minimum cross-sectional dimension of 30. Standard deviations of noise (averages
across forecasters) with standard errors in parentheses shown. The estimation procedure is the same as in Table 2.
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Table C.8. Sample sizes with different sample selection criteria.

Nmin Tmin 0 10 20 30 40

0 7712 7245 6370 5149 4225
10 7703 7236 6361 5140 4216
20 7526 7063 6007 2380 0
30 6809 4566 1632 0 0
40 3761 0 0 0 0

Note: The number of nowcasts available in the data set after imposing that each forecaster makes at least Tmin forecasts and
each survey has at least Nmin forecasters. Both conditions are imposed simultaneously. To do so, we apply the two conditions
iteratively until the sample size no longer changes.

fairly similar. The key difference is that the amount of noise for shorter forecasting hori-
zons is reduced.

C.5 Is noisiness a forecaster-specific trait?

As a final robustness test, we check if, for a given forecaster, the level of noise is positively
correlated across different forecasts. Economically, it is natural to expect that “noisiness”
is a forecaster-specific trait, with some forecasters more noisy than others. In contrast,
if our estimates of noise are an artefact of certain modeling choices, one may expect the
level of noise to be uncorrelated across different forecasts.

To empirically test this, we calculate the standard deviation of noise for all forecaster-
horizon pairs, and calculate the correlation matrix of these measures. Table C.9 docu-
ments that for a given forecaster, our measure of noise is strongly positively correlated
across different forecast horizons. The smallest correlation coefficient is 0.55, and most
coefficients lie between 0.60 and 0.80. We conclude that noisiness appears to be fore-
caster specific. This finding also suggests that our estimates of noise are not just captur-
ing measurement error, as it is less immediate why measurement error should exhibit
such within-forecaster correlation (rather than being something that is common to all
forecasters).

Table C.9. Correlation between noise at various horizons.

h= 0 h= 1 h= 2 h= 3 h= 4

h= 0 1.00 0.78 0.74 0.70 0.67
h= 1 0.78 1.00 0.91 0.55 0.57
h= 2 0.74 0.91 1.00 0.62 0.56
h= 3 0.70 0.55 0.62 1.00 0.61
h= 4 0.67 0.57 0.56 0.61 1.00

Note: Correlation matrix of noise estimates in inflation forecasts at different horizons. From our estimates of noise ν̂i,t , we
calculate the standard deviations of noise for each forecaster i and forecast horizon h, denoted by σ̂i,h . We then report the
correlation matrix of σ̂i,h . Forecast horizon h runs from 0 (nowcasts) to 4 (1-year-ahead forecast). The number of factors used
for estimating noise levels is chosen by the growth-ratio statistic of Ahn and Horenstein (2013) after subtracting the consensus
forecast from the individual forecasts, as shown in Table 3.
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Appendix D: Implementation details

D.1 Standard errors for predictability regressions

Consider the following DGP for individual forecasts:

xei,t = bi,0 +λ�
i ft + νi,t , (16)

where for notational simplicity we let xei,t ≡ Fi,t[xt+h] and drop the horizon superscript

for the noise term νi,t . After estimating the common component λ�
i ft , we define the

corresponding residual as ν̂i,t = xei,t − δ̂i − λ̂
�
i f̂t . We wish to use ν̂i,t in the predictive

regression of the form:

xt = αi + γiν̂i,t + error.

Since the sample mean of ν̂i,t is zero, the OLS estimator of γi is given by

γ̂i =
(

1
T

T∑
t=1

ν̂2
i,t

)−1(
1
T

T∑
t=1

ν̂i,txt

)
.

Assuming that νi,t are uncorrelated with xt , the OLS estimator is consistent for the true
value γi = 0 as both N and T increase. However, due to the estimation of bi,0 and λi
in the first step regression inference on γ̂i is complicated by the generated regressors
problem.

Careful inspection of Theorem 3 in Bai (2003) shows that under the assumption that
both

√
T/N → 0 and

√
N/T → 0, the asymptotic variance of the estimator γ̂i is driven

by

1√
T

T∑
t=1

xtνi,t −
(∑

t

xt
∑
t

ftxt
)

×

⎛⎜⎜⎝
1

∑
t

f′t∑
t

ft
∑
t

ftf′t

⎞⎟⎟⎠
−1

× 1√
T

⎛⎜⎜⎝
∑
t

νi,t∑
t

ftνi,t

⎞⎟⎟⎠ .

In particular, we need to evaluate the variance-covariance matrix �i of⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
T

T∑
t=1

xtνi,t

1√
T

T∑
t=1

νi,t

1√
T

T∑
t=1

ftνi,t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 1√

T

T∑
t=1

ztνi,t ,
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where

zi,t ≡ (xt , 1, ft )′,

is an (R+ 2)-dimensional vector of “common covariates.” As ft are unobserved, to oper-
ationalize the estimation of the variance-covariance matrix we replace it with the factor
estimates, that is,

ẑi,t = (xt , 1, f̂t )′.

Here, f̂t is the R-dimensional vector of estimated common factors in equation (16).
Then, under the assumption that νi,t ’s are serially uncorrelated, a consistent estimator
of �i is given by

�̂i = 1
T

T∑
t=1

ẑt ẑ′
t(ν̂i,t )

2.

The asymptotic variance-covariance matrix of γ̂i can then be estimated as

�̂γi = ξ̂2
i v̂′�̂iv̂,

where

ξ̂i =
(

1
T

T∑
t=1

ν̂2
i,t

)−1

,

while the “bread part” v̂ is defined as

v̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

−

⎛⎜⎜⎜⎜⎜⎝
1

1
T

T∑
t=1

f̂′t

1
T

T∑
t=1

f̂t
1
T

T∑
t=1

f̂t f̂′t

⎞⎟⎟⎟⎟⎟⎠

−1 ⎛⎜⎜⎜⎜⎜⎝
1
T

T∑
t=1

xt

1
T

T∑
t=1

f̂txt

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is an (R+ 2)-dimensional vector. The corresponding standard error of γ̂i is given

by
√
�̂γi/T .

If the data set is balanced, the “bread part” v̂ is common to all forecasters. If the
dataset is unbalanced, as in our empirical application, v̂ should be calculated separately
for each individual i. The reason is that only the values of xei,t ’s for the dates on which
the forecaster is active are used in estimating the factor loadings and individual fixed
effects. Therefore, when calculating the corrected standard errors in practice, the sum-
mations are performed only over the dates on which the corresponding forecaster is
active.

If we relax the no-serial-correlation assumption, then the only thing that requires
modification is the formula for �̂γi . A simple Newey–West type of the estimator for the
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long-run variance is given by

�̂i = 1
T

T∑
t=1

ẑt ẑ′
t(ν̂i,t )

2 + 1
T

L∑
�=1

T∑
t=�+1

w�
(
ẑi,t ẑ′

i,t−� + ẑt−�ẑ′
t

)
(ν̂i,t ν̂i,t−� ),

with w� = 1 − �/(L+ 1) for some prespecified L.

D.2 MSE decomposition

In this section, we provide the empirical implementation details for the MSE decompo-
sition in Section 3.2. First, we estimate the variance of the irreducible error following the
method proposed by Kučinskas and Peters (2022). We start by simplifying the decompo-
sition in Eq. (7) by assuming that there is only one structural shock present (M = 1), as
in the model of Section 2.2, yielding

MSEcons. = (b̄0 )2 +Var[ε1,t ]

(+∞∑
�=1

b̄2
1,�

)
+Var[ε1,t ].

Note that M = 1 should be thought of as an approximation that lumps all structural
shocks into one composite measure; see the discussion of composite bias coefficients in
Kučinskas and Peters (2022). We estimate the unconditional bias, b̄0, by the sample aver-
age of consensus forecast errors, and we estimate the bias coefficients b̄1,� from the uni-
variate impulse-response function of forecast errors (estimated with local projections
with four lags of forecast errors as controls), as in Kučinskas and Peters (2022).

Next, we estimate the variance of irreducible error as

̂Var[ε1,t ] = M̂SEcons. − ˆ̄b2
0

1 +
L∑
�=1

ˆ̄b2
1,�

,

where M̂SEcons. denotes the sample mean-squared forecast error of the consensus fore-
cast, L is the number of bias coefficients we estimate, and variables with hats denote
sample estimates. In our application, the truncation parameter is set to L = 12. Note
that this approach of estimating irreducible error does not require us to take a stand
on the true data-generating process. The formula above is very intuitive: We obtain the
magnitude of irreducible error by subtracting the effects of biases (both conditional and
unconditional) from the MSE of the consensus forecast.

With the estimate of ̂Var[ε1,t ] at hand, we can directly estimate the conditional bias
component in equation (6) by subtracting the estimates of the unconditional-bias term,
the variance of irreducible error, and the variance of noise from the forecaster-level MSE.
Finally, we average equation (6) across forecasters.
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D.3 Noisy-information model

In this section, we provide the details behind the empirical implementation of the exer-
cise in Section 4.3. To model measurement error, we assume that instead of observing
the true expectations, denoted by F∗

i,t[xt+1], we only observe

Fi,t[xt+1] = F∗
i,t[xt+1] +ηi,t ,

where ηi,t is i.i.d. measurement error with mean zero and variance σ2
i,η. (We use as-

terisks to denote the true, but unobserved, values.) The level of measurement error is
allowed to vary across forecasters. Since ei,t+1 = e∗i,t+1 −ηi,t , in a regression of

ei,t+1 = ci +φiei,t + ui,t ,

estimated by OLS, we have that for each i= 1, � � � ,N ,

plimT→∞ φ̂i =
Covi

[
e∗i,t+1, e∗i,t

]
Vari

[
e∗i,t+1

] + σ2
i,η

= ρ(1 −Gi )
Vari

[
e∗i,t+1

]
Vari

[
e∗i,t+1

] + σ2
i,η

, (17)

where the second-equality uses equation (12). Hence, with measurement error, the OLS
estimate of φi is biased downwards, and the Kalman gain estimate is biased upwards
(i.e., the information friction is underestimated).

We use the attenuation-bias formula in equation (17) to adjust the empirical OLS
estimates for measurement error. In particular, let

κi ≡
Vari

[
e∗i,t+1

]
Vari

[
e∗i,t+1

] + σ2
i,η

.

We discuss the strategy for estimating κi below. However, for a given consistent esti-
mator of κi, say κ̂i, we clearly can consistently estimate the Kalman gain by

Ĝstand.
i = 1 − φ̂i

ρ̂κ̂i
, (18)

where ρ̂ denotes a consistent estimator of ρ. We call equation (18) the “standard” esti-
mator of the Kalman gain to distinguish it from our new “noise-based” estimator below.

We are now ready to state the complete empirical procedure:

1. Estimate the variance of noise, Vari[νi,t ], forecaster-by-forecaster using a factor
model, yielding an estimate V̂ari[νi,t ].

2. Obtain estimates ρ̂ and σ̂2
ε using an OLS regression of xt+1 on xt .

3. Assume that a fraction α ∈ [0, 1] of the forecaster-specific noise estimated in step
(1) is due to measurement error.

(a) Standard approach:
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i. Estimate the persistence of forecast errors forecaster-by-forecaster:

ei,t+1 = ci +φiei,t + ui,t .

Denote the resulting OLS estimate by φ̂i.

ii. Calculate forecaster-specific measurement error via σ̂2
i,η = αV̂ari[νi,t ].

iii. Estimate the attenuation factor as κ̂i = {V̂ari[ei,t+1] − σ̂2
i,η}/V̂ari[ei,t+1].

iv. Obtain the “standard estimate” of the Kalman gain, Ĝstand.
i , via equation

(18).

v. Since this procedure does not guarantee that Ĝstand.
i ∈ [0, 1], as it should in

theory, we set values Ĝstand.
i > 1 to 1, and values Ĝstand.

i < 0 to 0.

vi. We obtain our final estimate Ĝstand. by taking an average of Ĝstand.
i across

forecasters.

(b) Noise-based approach:

i. Use equation (13) and the assumed level of α to estimate the variance of
idiosyncratic shocks as

σ̂2
i,ω = (1 − α)V̂ari[νi,t ]

(
1 − ρ̂2(1 − Ĝstand.

i

)2)
ρ̂2(Ĝstand.

i

)2 ,

using the estimated Ĝstand.
i .

ii. Calculate the “noise-based” estimate of the Kalman gain as

Ĝnoise
i = �̂i

�̂i + σ̂2
i,ω

,

where

�̂i =
−(

1 − ρ̂2)σ̂2
i,ω + σ̂2

ε +
√[(

1 − ρ̂2
)
σ̂2
i,ω − σ̂2

ε

]2 + 4σ̂2
i,ωσ̂

2
ε

2
.

iii. We obtain our final estimate Ĝnoise by taking an average of Ĝnoise
i across

forecasters.
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