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Appendix A: Theoretical results

A.1 Mean of the rational expectations equilibrium

Using (2.10)–(2.11) and (2.15)–(2.18), the mean of the REE satisfies

x∗ = (I − c1 )−1(c0 + c2u)

= (I − c1 )−1(I − b1c1 − b1 )−1(b0 + b1c2a) + (I − c1 )−1c2(I − ρ)−1a

= (I − c1 )−1(I − b1c1 − b1 )−1[b0 + (
b1c2(I − ρ) + (I − b1c1 − b1 )c2

)
(I − ρ)−1a

]
= [

(I − b1c1 − b1 )(I − c1 )
]−1[

b0 + b3(I − ρ)−1a
]

= (I − b1 − b2 )−1[b0 + b3(I − ρ)−1a
]
.

A.2 Autocorrelations in the multivariate linear model

The purpose of this Appendix is to compute the first-order autocorrelation coefficients
of the linear stochastic stationary system (2.24) and to show that these are continuous
functions with respect to (β1, β2, � � � , βn ) and the other parameters.
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Define X′
t = [x′

t , u
′
t ] − [x′, u′]. Rewrite model (2.24) as

Xt = B̂(β)Xt−1 + Ĉηt , (A.1)

where η′
t = [v′

t , ε
′
t ], B̂(β) = ( b1β

2+b2 b3ρ
0 ρ

)
, Ĉ = (

b4 b3
0 I

)
. The variance-covariance matrix

�̂ (0) and the autocovariance matrix �̂ (1) satisfy

�̂ (0) = E
[
XtX

′
t

] = B̂(β)�̂ (0)B̂
′
(β) + Ĉ�ηĈ

′
, (A.2)

�̂ (1) = E
[
XtX

′
t+1

] = �̂ (0)B̂
′
(β), (A.3)

where �η = (�v 0
0 �ε

)
.

In order to obtain an expression for �̂ (0), we use column stacks of matrices. Suppose
vec(K) is the vectorization of a matrix K and ⊗ is the Kronecker product.1 Under the
assumption that all eigenvalues of b1β

2 + b2 and ρ are inside the unit circle, based on a
property of Kronecker product,2 it is easy to see that all eigenvalues of B̂(β) ⊗ B̂(β) lie
inside the unit circle, and hence [I − B̂(β) ⊗ B̂(β)]−1 exist. Therefore,

vec
(
�̂ (0)

) = [
I − B̂(β) ⊗ B̂(β)

]−1
(Ĉ⊗ Ĉ) vec(�η ). (A.4)

From (A.4), we can obtain an expression for �̂ (0), and using (A.3), an expression for �̂ (1)
can be obtained.

Based on the properties of matrix operations, it is easy to see that the entries of
matrices �̂ (0) and �̂ (1) are continuous functions with respect to (β1, β2, � � � , βn ) and
the other parameters. Let �= diag[γ11(0), γ22(0), � � � , γnn(0)] (a diagonal matrix), where
γii(0)(i= 1, � � � , n) are the first n diagonal entries of �̂ (0). Let L= diag[γ11(1), γ22(1), � � � ,
γnn(1)] (a diagonal matrix), where γii(1) (i = 1, � � � , n) are the first n diagonal entries of
�̂ (1). Thus, the first-order autocorrelation coefficients of the linear stochastic stationary
system (2.24) G = L�−1 are continuous functions with respect to (β1, β2, � � � , βn ) and
the other parameters.

For example, in the case n= 1, following the procedures above with Mathematica or
Matlab software, one obtains

G(β) = [(
b2

3σ
2
ε + b2

4σ
2
v

)(
b1β

2 + b2
) + (

b2
3σ

2
ε − b2

4σ
2
v

(
b1β

2 + b2
)2)
ρ

− b2
4σ

2
v

(
b1β

2 + b2
)
ρ2 + b2

4σ
2
v

(
b1β

2 + b2
)2
ρ3]

/
[
b2

3σ
2
ε

(
1 + (

b1β
2 + b2

)
ρ
) + b2

4σ
2
v

(
1 − (

b1β
2 + b2

)
ρ
)(

1 − ρ2)].

In the special case b2 = 0 and b4 = 1, this expression is exactly the same as the first-
order autocorrelation in Hommes and Zhu (2014), which was calculated using another
approach.

1One property of column stacks is that the column stack of a product of three matrices is vec(ABC ) =
(C ′ ⊗A) vec(B). For more details on this and related properties, see Magnus and Neudecker (2019, Chap-
ter 2) and Evans and Honkapohja (2001, Section 5.7).

2The eigenvalues of Ǎ⊗ B̌ are the mn numbers λrμs , r = 1, 2, � � � ,m, s = 1, 2, � � � , n where λ1, � � � , λm are

the eigenvalues of m×m matrix Ǎ and μ1, � � � , μn are the eigenvalues of n× n matrix B̌ (see Lancaster and
Tismenetsky (1985)).
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A.3 Proof of Proposition 2 (stability under SAC-learning)

This Appendix derives the E-stability conditions for a BLE (α∗, β∗ ). Set γt = (1 + t )−1.
For the learning dynamics in (2.28) and (2.8),3 since all functions are smooth, the SAC-
learning rule satisfies the conditions (A.1)–(A.3) of Section 6.2.1 in Evans and Honkapo-
hja (2001, p. 124). In order to check the conditions (B.1)–(B.2) of Section 6.2.1 in Evans
and Honkapohja (2001, p. 125), we rewrite the system in matrix form as

Xt = Ã(θt−1 )Xt−1 + B̃(θt−1 )W t ,

where θ′
t = (αt , βt , Rt ), X′

t = (1, x′
t , x

′
t−1, u′

t ) and W ′
t = (1, v′

t , ε
′
t ),

Ã(θ) =

⎛⎜⎜⎜⎝
0 0 0 0

b0 + b1
(
I −β2)

α+ b3a b1β
2 + b2 0 b3ρ

0 I 0 0
a 0 0 ρ

⎞⎟⎟⎟⎠ ,

B̃(θ) =

⎛⎜⎜⎜⎝
1 0 0
0 b4 b3

0 0 0
0 0 I

⎞⎟⎟⎟⎠ .

Based on the properties of eigenvalues (see, e.g., Evans and Honkapohja (2001, p. 117)),
all the eigenvalues of Ã(θ) include 0 (multiple n+ 1), the eigenvalues of ρ and b1β

2 +b2.
Thus, based on the assumptions, all the eigenvalues of Ã(θ) lie inside the unit circle.
Moreover, it is easy to see all the other conditions in Section 6.2.1 in Evans and Honkapo-
hja (2001) are also satisfied.

Since xt is stationary, then the limits

σ2
i := lim

t→∞E(xi,t − αi )2, σ2
xixi,−1

:= lim
t→∞E(xi,t − αi )(xi,t−1 − αi )

exist and are finite. Hence, according to Section 6.2.1 in Evans and Honkapohja (2001,
p. 126), the associated ODE is⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dα

dτ
= x(α, β) −α,

dβ

dτ
=R−1[L−β�] =R−1�

[
L�−1 −β

]
,

dR

dτ
= �−R,

(A.5)

where R is a diagonal matrix with the ith diagonal entry Ri and �, L are also diago-
nal matrices, as defined in Section 2. As shown in Evans and Honkapohja (2001), a BLE
corresponds to a fixed point of the following ODE (A.6):⎧⎪⎨⎪⎩

dα

dτ
= x(α, β) −α,

dβ

dτ
= G−β.

(A.6)

3For convenience of theoretical analysis, one can set St−1 = Rt .
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Note that β and G are both diagonal matrices. The Jacobian matrix of (A.6) is, in fact,
equivalent to ((

I − b1β
∗2 − b2

)−1
(b1 + b2 − I ) �

0 DGβ

(
β∗) − I

)
,

where DGβ is a Jacobian matrix with the (i, j)-th entry ∂Gi
∂βj

, and the form of matrix �

is omitted since it is not needed in the proof. Therefore, if all the eigenvalues of (I −
b1β

∗2 − b2 )−1(b1 + b2 − I ) have negative real parts and all the eigenvalues of DGβ(β∗ )
have real parts less than 1, the SAC-learning (αt , βt ) converges to the BLE (α∗, β∗ ) as
time t tends to ∞.

A.4 Eigenvalues of matrix Bβ2 inside the unit circle

This Appendix shows the sufficiency condition for the existence of a BLE of (2.40) in
Corollary 1. The characteristic polynomial of Bβ2 is given by h(ν) = ν2 + c1ν+ c2, where

c1 = −β
2
y + [

γϕ+ λ(1 +ϕφy )
]
β2
π

1 + γϕφπ +ϕφy , c2 = λβ2
yβ

2
π

1 + γϕφπ +ϕφy .

Both of the eigenvalues of Bβ2 are inside the unit circle if and only if both of the following
conditions hold (see Elaydi (2005)):

h(1)> 0, h(−1)> 0,
∣∣h(0)

∣∣< 1.

It is easy to see h(−1)> 0, |h(0)|< 1 for any βi ∈ [−1, 1]. Note that

h(1) =
(
1 −β2

y

)(
1 − λβ2

π

) + γϕφπ +ϕφy − (γϕ+ λϕφy )β2
π

1 + γϕφπ +ϕφy

≥ ϕ
[
γ(φπ − 1) + (1 − λ)φy

]
1 + γϕφπ +ϕφy .

Thus, if γ(φπ − 1) + (1 − λ)φy > 0, then h(1)> 0. Therefore, both eigenvalues of Bβ2 lie
inside the unit circle for all βi ∈ [−1, 1].

A.5 First-order autocorrelations in the baseline NK model

This Appendix gives the expressions for the first-order autocorrelation coefficients for
the output gap and inflation in the NK baseline model. Through complicated calcula-
tions, the following expressions in terms of the structural parameters are obtained:

G1(βy , βπ ) = f̃1

g̃1
, (A.7)

G2(βy , βπ ) = f̃2

g̃2
, (A.8)
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where

f̃1 = σ2
y

{(
ρ+ λ1 + λ2 − λβ2

π

)[
1 − λβ2

π(ρ+ λ1 + λ2 )
]

+ [
λβ2

π(ρλ1 + ρλ2 + λ1λ2 ) − ρλ1λ2
][

(ρλ1 + ρλ2 + λ1λ2 ) − λβ2
πρλ1λ2

]}
+ σ2

π

{(
ϕφπ(ρ+ λ1 + λ2 ) −ϕβ2

π

)
)
[
ϕφπ −ϕβ2

π(ρ+ λ1 + λ2 )
]

+ [
ϕβ2

π(ρλ1 + ρλ2 + λ1λ2 ) −ϕφπρλ1λ2
]

· [ϕφπ(ρλ1 + ρλ2 + λ1λ2 ) −ϕβ2
πρλ1λ2

]}
,

g̃1 = σ2
y

{[(
1 + λ2β4

π

) − 2λβ2
π(ρ+ λ1 + λ2 ) + (

1 + λ2β4
π

)
(ρλ1 + ρλ2 + λ1λ2 )

]
− ρλ1λ2

[(
1 + λ2β4

π

)
(ρ+ λ1 + λ2 ) − 2λβ2

π(ρλ1 + ρλ2 + λ1λ2 )

+ (
1 + λ2β4

π

)
ρλ1λ2

]} + σ2
π

{[(
(ϕφπ )2 +ϕ2β4

π

) − 2ϕφπϕβ2
π(ρ+ λ1 + λ2 )

+ (
(ϕφπ )2 +ϕ2β4

π

)
(ρλ1 + ρλ2 + λ1λ2 )

]
− ρλ1λ2

[(
(ϕφπ )2 +ϕ2β4

π

)
(ρ+ λ1 + λ2 ) − 2ϕφπϕβ2

π

· (ρλ1 + ρλ2 + λ1λ2 ) + (
(ϕφπ )2 +ϕ2β4

π

)
ρλ1λ2

]}
, (A.9)

f̃2 = σ2
y

{
γ2[(ρ+ λ1 + λ2 ) − ρλ1λ2(ρλ1 + ρλ2 + λ1λ2 )

]}
+ σ2

π

{[
(1 +ϕφy )(ρ+ λ1 + λ2 ) −β2

y

] · [(1 +ϕφy ) −β2
y(ρ+ λ1 + λ2 )

]
+ [
β2
y(ρλ1 + ρλ2 + λ1λ2 ) − (1 +ϕφy )ρλ1λ2

]
· [(1 +ϕφy )(ρλ1 + ρλ2 + λ1λ2 ) −β2

yρλ1λ2
]}

,

g̃2 = σ2
y

{
γ2[1 + ρλ1 + ρλ2 + λ1λ2 − ρλ1λ2(ρ+ λ1 + λ2 ) − (ρλ1λ2 )2]}

+ σ2
π

{[(
(1 +ϕφy )2 +β4

y

) − 2(1 +ϕφy )β2
y (ρ+ λ1 + λ2 ) + (

(1 +ϕφy )2 +β4
y

)
· (ρλ1 + ρλ2 + λ1λ2 )

] − ρλ1λ2
[(

(1 +ϕφy )2 +β4
y

)
(ρ+ λ1 + λ2 )

− 2(1 +ϕφy )β2
y

· (ρλ1 + ρλ2 + λ1λ2 ) + (
(1 +ϕφy )2 +β4

y

)
ρλ1λ2

]}
, (A.10)

λ1 + λ2 = β2
y + (γϕ+ λ+ λϕφy )β2

π

1 + γϕφπ +ϕφy , (A.11)

λ1λ2 = λβ2
yβ

2
π

1 + γϕφπ +ϕφy . (A.12)

From these expressions, it is easy to see that G1(βy , βπ ) and G2(βy , βπ ) are analytic
functions with respect to βy and βπ , independent of α.

Finally, the covariance between output gap and inflation is given as

E(ytπt ) = (−σ2
y γ

(−(1 + γϕφπ +ϕφy )
(
1 + γϕφπ +ϕφy +β2

yρ
)

+β4
πλ

(
1 + γϕφπ +ϕφy +β2

yρ
)
(λ+ γϕ+ λϕφy )
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+β2
πρ

[
β4
yλ+β2

yλρ(1 + γϕφπ +ϕφy ) + γϕ(−1 + λφπ )(1 + γϕφπ +ϕφy )
]

−β2
yβ

6
πλ

2ρ
(
β2
yλ+ ρ(λ+ γϕ+ λϕφy )

))
+ σ2

πϕ
(−φπ(1 + γϕφπ +ϕφy )

[−β4
y −β2

yγρϕφπ + (1 +ϕφy )

· (1 + γϕφπ +ϕφy )
]

+β2
yβ

6
πλρ

[−γϕ(−β2
y + ρ+ ρϕφy

) + λρ(β4
y − (1 +ϕφy )2)]

+β4
π

(
γϕ

(
1 −β2

yρ+ϕφy
)
(1 + γϕφπ +ϕφy ) + λ(−1 +β2

yρ−ϕ(γφπ +φy )
)

· (β4
y − (1 +ϕφy )2) +β2

yλ
2ρφπ

(−β4
y + (1 +ϕφy )2)) +β2

πρ
[−β6

yλρφπ

+β2
yλρφπ(1 +ϕφy )(1 + γϕφπ +ϕφy ) − (−1 + λφπ )

· (1 +ϕφy )2(1 + γϕφπ +ϕφy ) +β4
y

(−1 −ϕ(γφπ +ϕy ) + λ(φπ +ϕφπφy )
)]))

/
((−1 + ρ2)(−1 +β2

yβ
2
πλ−ϕ(γφπ +φy )

)(
1 +β2

yρ
(−1 +β2

πλρ
) + γϕφπ

+ϕφy −β2
πρ(λ+ γϕ+ λϕφy )

)(
β4
y

(−1 +β4
πλ

2) + 2β2
yβ

2
πγϕ(−1 + λφπ )

+ (1 + γϕφπ +ϕφy )2 −β4
π(λ+ γϕ+ λϕφy )2)). (A.13)

A.6 E-stability of BLE for a baseline NK model

This Appendix shows the E-stability condition in Corollary 2. Based on Proposition 2, we
only need to show that both of the eigenvalues of (I −Bβ2 )−1(B− I ) have negative real
parts if γ(φπ − 1) + (1 − λ)φy > 0.

The characteristic polynomial of (I − Bβ2 )−1(B − I ) is given by h(ν) = ν2 − c1ν +
c2, where c1 is the trace and c2 is the determinant of matrix (I − Bβ2 )−1(B − I ). Direct
calculation shows that

c1 = −(1 − λ)
(
1 −β2

y

) − 2ϕ(γφπ +φy ) +ϕ(γ+ λφy )
(
1 +β2

π

)
�(1 + γϕφπ +ϕφy )

, (A.14)

c2 = ϕ
[
γ(φπ − 1) + (1 − λ)φy

]
�(1 + γϕφπ +ϕφy )

, (A.15)

where � = (1−β2
y )(1−λβ2

π )+γϕφπ+ϕφy−(γϕ+λϕφy )β2
π

1+γϕφπ+ϕφy .

Both of the eigenvalues of (I − Bβ2 )−1(B − I ) have negative real parts if and only if
c1 < 0 and c2 > 0 (these conditions are obtained by applying the Routh–Hurwitz criterion
theorem (see Brock and Malliaris (1989)). If γ(φπ−1)+(1−λ)φy > 0, from Appendix A.4,
it is easy to see that �> 0. Furthermore,

c1 ≤ −2ϕ
[
(γ(φπ − 1) + (1 − λ)φy

]
�(1 + γϕφπ +ϕφy )

< 0, c2 > 0.

Appendix B: Iterative E-stability algorithm for BLE

This section discusses the Iterative E-stability algorithm used in the approximation of
BLE. The first-order autocorrelation coefficients β∗ in a BLE are functions in terms of the
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Algorithm 1: Approximation of a BLE using Iterative E-stability

Denote the set of structural parameters by μ, and the first-order autocorrelation
function for a given μ byG(β(k), μ).
• Step (0): Initialize the vector of learning parameters at β(0).

• Step (I): At each iteration k, using the first-order autocorrelation functions, update
the vector of learning parameters as

β(k) =G(
β(k−1), μ

)
, (B.1)

whereG(β(k−1), μ) is known from iteration k− 1.

• Step (II): Terminate if ‖β(k) − β(k−1)‖p < ε, for a small scalar ε > 04 and a suitable
norm distance ‖ · ‖p, otherwise repeat Step (I).

structural parameters μ, which satisfy the nonlinear equilibrium conditionsG(β∗, μ) =
β∗ in (2.41). In order to find a BLE for a given μ, we use a simple fixed-point iteration,
which is formalized below in Algorithm 1.

A BLE (0, β∗ ) is locally stable under (B.1) if all eigenvalues of DGβ(β∗ ) lie inside
the unit circle. Then the equilibrium is said to be iteratively E-stable. When Algorithm 1
terminates for some K at a small prespecified ε, we say that it has converged to β(K).
Note that if Algorithm 1 converges, it converges to an approximate BLE since∥∥β(K+1) −β(K)

∥∥< ε ⇒ ∥∥G(
β(K)) −β(K)

∥∥< ε ⇒ G
(
β(K)) ≈ β(K).

Given a vector of initial values for the first-order autocorrelation coefficients of the
forward-looking variables, we use N = 200 iterations under (2.41) for each parameter
draw and use the resulting fixed point as an approximate BLE. The algorithm typically
takes less than 50 iterations to converge for a given parameter draw, hence N = 200 is a
conservative value.

Appendix C: Reduced-form matrices

Recall that we consider linear DSGE models in the following general form, as described
in Section 2.1:

xt = F
(
xet+1, ut , vt

) = b0 + b1x
e
t+1 + b2xt−1 + b3ut + b4vt , (C.1)

ut = a+ ρut−1 + εt . (C.2)

This Appendix derives the reduced-form matrices Â, B̂, and Ĉ for the equilibrium
models, and Ât, B̂t, and Ĉt for the learning models. The reduced-form matrices are used
for the Kalman filter discussed in Appendix D.

4In the remainder of this paper, we use the common L1-Norm as our norm distance, that is, ‖β(k) −
β(k−1)‖p = ∑N

j=1 |β(k)
j −β(k−1)

j |.
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C.1 Equilibrium models

REE Using the MSV solution, expectations under REE are given by

Etxt+1 = c0 + c2a+ c1xt + c2ρut . (C.3)

Plugging back into (C.1) and rewriting yields

Xt = Â+ B̂Xt−1 + Ĉηt , (C.4)

where Â = [ I−b1c1 −(b1c2ρ+b3 )
0 I

]−1[ b0+b1c0+b1c2a
a

]
, B̂ = [ I−b1c1 −(b1c2ρ+b3 )

0 I

]−1[ b2 0
0 ρ

]
, Ĉ =[ I−b1c1 −(b1c2ρ+b3 )

0 I

]−1[ b4 0
0 I

]
, X′

t = [x′
t , u

′
t ], η

′
t = [v′

t , ε
′
t ].

BLE Expectations under BLE are given by

Etxt+1 =α∗ +β∗2(xt−1 −α∗). (C.5)

Plugging back into (C.1) and rewriting yields

Xt+1 = Â+ B̂Xt−1 + Ĉηt , (C.6)

where Â= [
I −b3
0 I

]−1[ b0+b1α
∗−b1β

∗2α∗
a

]
, B̂= [

I −b3
0 I

]−1[ b1β
∗2+b2 0
0 ρ

]
, Ĉ = [

I −b3
0 I

]−1[ b4 0
0 I

]
.

C.2 Learning models

SAC-learning Expectations under SAC-learning are given by

Etxt+1 =αt−1 +β2
t−1(xt−1 −αt−1 ). (C.7)

Plugging back into (C.1) and rewriting yields

Xt = Ât−1 + B̂t−1Xt−1 + Ĉt−1ηt , (C.8)

where Ât−1 = [
I −b3
0 I

]−1[ b0+b1αt−1−b1β
2
t−1αt−1

a

]
, B̂t−1 = [

I −b3
0 I

]−1[ b1β
2
t−1+b2 0

0 ρ

]
, Ĉt−1 =[

I −b3
0 I

]−1[ b4 0
0 I

]
.

AR(2)-learning Expectations under AR(2)-learning are given by

Etxt+1 = αt−1 +β1,t−1xt−1 +β2,t−1xt−2. (C.9)

Plugging back into (C.1) and rewriting yields

Xt = Ãt−1 + B̃t−1Xt−1 + C̃t−1Xt−2 + D̃t−1ηt , (C.10)

where Ãt−1 = [
I −b3
0 I

]−1[ b0+b1αt−1
a

]
, B̃t−1 = [

I −b3
0 I

]−1[ b1β1,t−1+b2 0
0 ρ

]
, C̃t−1 = [

I −b3
0 I

]−1 ×[ b1β2,t−1 0
0 0

]
, D̃t−1 = [

I −b3
0 I

]−1[ b4 0
0 I

]
.

This can be further rewritten as

X̃t = Ât−1 + B̂t−1X̃t−1 + Ĉt−1ηt , (C.11)

where X̃t = [ Xt
Xt−1

]
, Ât−1 = [

I −B̃t−1
0 I

]−1[ Ãt−1
0

]
, B̂t−1 = [

I −B̃t−1
0 I

]−1[ 0 C̃t−1
I 0

]
, C̃t−1 =[

I −B̃t−1
0 I

]−1[ D̃t−1
0

]
.
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Pseudo-MSV and VAR(1)-learning Expectations under pseudo-MSV and VAR(1)-learn-

ing are given by

Etxt+1 = γ0,t−1 + γ1,t−1xt−1 + γ2,t−1ρut−1. (C.12)

Plugging back into (C.1) and rewriting yields

Xt = Ât−1 + B̂t−1Xt−1 + Ĉt−1ηt , (C.13)

where Ât−1 = [
I −b3
0 I

]−1[ b0+b1γ0,t−1
a

]
, B̂t−1 = [

I −b3
0 I

]−1[ b1γ1,t−1+b1 b2γ2,t−1ρ
0 ρ

]
, Ĉt−1 =[

I −b3
0 I

]−1[ b4 0
0 I

]
.

VAR(1)-learning is the special case with γ2,t−1 = 0.

Appendix D: Kalman filter and estimation

This section describes the Kalman filter used in the estimation of equilibrium and adap-

tive learning models.

D.1 Kalman filter for equilibrium models

For the REE model, expectations xet+1 are pinned down by the equilibrium conditions

(2.15)–(2.18). The fixed point of the system (2.15)–(2.18) is computed using standard

methods, as in Uhlig (1995).

For the BLE model, expectations xet+1 are pinned down by the equilibrium condi-

tions (consistency requirements) in (2.27). The fixed point associated with (2.27) is ap-

proximated by the iterative E-stability algorithm in (2.41), which converges to the corre-

sponding equilibrium persistence values β∗ (see Appendix B).

Both REE and BLE models can be written in the following recursive form:

Xt = Â+ B̂Xt−1 + Ĉηt , (D.1)

with X′
t = [x′

t , u
′
t ], η

′
t = [v′

t , ε
′
t ] and Â, B̂, and Ĉ matrices of structural parameters. REE

and BLE models are characterized by different matrices B̂ and Ĉ, as described in Ap-

pendix C.1. Given the linear structure of both models, the likelihood function can be

evaluated using a standard Kalman filter.

We denote the initial state vector and state covariance matrix by X0|0 and P 0|0, re-

spectively, while L refers to the number of shocks. The measurement equations are de-

noted by Y t = φ̄+φ1Xt , with Y t denoting the vector of observable variables.5 For every

5The SW07 model considered in this paper consists of GDP, consumption, wage and investment growth,
CPI inflation, hours worked, and interest rates.
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period t, the Kalman-filter recursions are given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt|t−1 = Â+ B̂Xt−1|t−1,

P t|t−1 = B̂P t−1|t−1B̂
′ + Ĉ�ηĈ

′
,

vt = Y t − φ̄−φ1Xt|t−1,

�t =φ1P t|t−1φ
′
1,

Xt|t =Xt|t−1 + P t|t−1φ
′
1�

−1
t vt ,

P t|t = P t|t−1φ
′
1�

−1
t φ1P t|t−1,

L(yt ) = −L
2

ln(2π ) − 1
2

ln |�t | − 1
2

(
v′
t�

−1
t vt

)
.

(D.2)

D.2 Kalman filter for learning models

Learning models can be represented as a recursive linear system after plugging in the
expectations

Xt = Ât−1 + B̂t−1Xt−1 + Ĉt−1ηt , (D.3)

with time-varying matrices B̂t−1, Ĉt−1, and perceived mean vector Ât−1, where the time
variation comes from agents’ PLM coefficients. The coefficients are updated every pe-
riod using the SAC-learning or constant gain recursive least squares algorithms in (3.2)–
(3.6). Given the t−1 timing structure discussed in Section 3.1, the learning models admit
a conditionally linear structure given the belief coefficients. Accordingly, the likelihood
function can be evaluated using the standard Kalman-filter recursions conditional on
the belief coefficients.

We denote the initial perceived covariance matrix and initial belief coefficients that
appear in the learning algorithms (3.2)–(3.6) by R0 and θ0. For every period t, the condi-
tionally linear Kalman-filter recursions are given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kalman-filter step:

Xt|t−1 = Ât−1 + B̂t−1Xt−1|t−1,

P t|t−1 = B̂t−1P t−1|t−1B̂
′
t−1 + Ĉt−1�ηĈ

′
t−1,

vt = Y t − φ̄−φ1Xt|t−1,

�t =φ1P t|t−1φ
′
1,

Xt|t =Xt|t−1 + P t|t−1φ
′
1�

−1
t vt ,

P t|t = P t|t−1φ
′
1�

−1
t φ1P t|t−1,

L(yt |Rt−1, θt−1 )

= −L
2

ln(2π ) − 1
2

ln |�t | − 1
2

(
v′
t�

−1
t vt

)
,

⎧⎪⎪⎨⎪⎪⎩
Learning step:

Rt = T1(Rt−1, Xt|t ),

θt = T2(θt−1, Xt|t , Rt ),

(D.4)

where T1 and T2 correspond to the updating equations for belief coefficients, as outlined
in (3.2)–(3.6). In this context, we treat the learning models as a temporary equilibrium
system, where the matrices B̂t−1 and Ĉt−1 and vector Ât−1 are updated every period.
The Kalman-filter step treats the model as a linear system for a given θt and returns the



Supplementary Material Behaviorial learning equilibria 11

likelihood function and state variables Xt|t . The state variables are used as an input to
update the belief coefficients in the learning step.

D.3 Estimation

The model parameters are estimated using standard Bayesian likelihood methods. This
consists of a posterior mode search step and a Monte Carlo Markov Chain (MCMC) step,
which are summarized below.

1. Prior distributions of the estimated parameters are specified. For the SW07 model
used in this paper, the prior distributions are summarized in Table E.1. We denote
the prior distribution function by p(μ).

2. The likelihood function p(μ) ∗L(yt |μ) is maximized using standard iterative gradi-
ent descent algorithms. We use the csminwel algorithm (Sims (1999)) available in
MATLAB software.

• The algorithm iteratively updates the parameters μ until convergence. We de-
note each iteration of parameter draws by μn.

• Equilibrium models: For every parameter draw μn, the equilibrium is calcu-
lated by finding the fixed point of (2.15)–(2.18) and (2.27) for REE and BLE
models, respectively. For the REE model the fixed point is found by using
Uhlig’s method (1995). For the BLE model, the iterative E-stability algorithm
in (B.1) with 200 iterations is used. Given the reduced-form matrices Â(μn ),
B̂(μn ) and Ĉ(μn ), the likelihood function p(μn ) ∗L(yt |μn ) is computed using
the Kalman- filter recursions in (D.2).

• Learning models: For every parameter draw μn, the reduced-form matrices
Ât−1(μn ), B̂t−1(μn ) and Ĉt−1(μn ) are recalculated at every period t of the
Kalman filter in (D.4). Given the reduced-form matrices, the likelihood func-
tion p(μn ) ∗L(yt |μn ) is computed.

• The parameter values μn are iteratively updated until the likelihood function
p(μn ) ∗L(yt |μn ) converges. The optimized parameter values μ∗ are referred to
as the posterior mode.

3. For each model, the MCMC algorithm is initialized at (μ∗, c�∗
μ ), where �∗

μ denotes
the covariance matrix of μ∗. c is a scaling coefficient tuned to obtain an average
acceptance ratio between 30 and 45%. For each model, we use two parallel chains
with 500,000 draws and discard the first half as a burn-in sample. The second half
of the chains is used to compute the posterior moments reported in Tables 1 and 3.

For the BLE model, the initial values of the first-order autocorrelation coeffi-
cients of the AR(1) beliefs β(0), that is, Step (0) of Algorithm 1 in Appendix B, are
fixed prior to the estimation. For forward-looking variables that are observable,
that is, inflation πt and hours worked lt , the initial values are set to the correspond-
ing first-order sample-autocorrelation over the estimation period. For the remain-
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ing latent forward-looking variables, we take the unconditional first-order autocor-
relations implied by the estimated REE. We keep the initial values β(0) fixed at these
values for all parameter draws μn. Parameter draws where the fixed-point iteration
fails to converge to a stationary equilibrium are discarded.

Appendix E: The Smets–Wouters 2007 model

E.1 Model descriptions

The model consists of 13 equations linearized around the steady-state growth path, sup-
plemented with seven exogenous structural shocks. We deviate from the benchmark
model by slightly restricting the parameter space of the model, where we assume all
shocks follow an AR(1) process.6 In this section, we briefly outline the resulting lin-
earized model economy that is used in our estimation. To start with the demand side
of the economy, the aggregate resource constraint is given by{

ỹt = cyct + iy it + zyzt + εgt ,

ε
g
t = ρgεgt−1 +ηgt ,

(E.1)

where ỹt , ct , it , and zt are the output, consumption, investment, and capital utilization
rate, respectively, while cy , iy , and zy are the steady-state shares in output of the respec-
tive variables. The second equation in (E.1) defines the exogenous spending shock εgt ,
where ηgt is an i.i.d-normal disturbance for spending. The consumption Euler equation
is given by{

ct = c1ct−1 + (1 − c1 )Etct+1 + c2(lt −Et lt+1 ) − c3(rt −Etπt+1 ) + εbt ,

εbt = ρbεbt−1 +ηbt ,
(E.2)

with c1 = λ
γ /(1 + λ

γ ), c2 = (σc−1)(wsslss/css )/(σc(1 + λ
γ )), c3 = (1 − λ

γ )/((1 + λ
γ )σc ), where

λ, γ, and σc denote the habit formation in consumption, steady-state growth rate, and
the elasticity of intertemporal substitution, respectively, while xss corresponds to the
steady-state level of a given variable x. The equation implies that current consumption
is a weighted average of the past and expected future consumption, expected growth
in hours worked and the ex ante real interest rate. εbt corresponds to the risk premium
shock modeled as an AR(1) process, where ηbt is an i.i.d-normal disturbance. Next, the
investment Euler equation is defined as{

it = i1it−1 + (1 − i1 )Et it+1 + i2qt + εit ,
εit = ρiεit−1 +ηit ,

(E.3)

with i1 = 1
1+β̄γ , i2 = 1

(1+β̄γ)(γ2φ)
, where β̄= βγ−σc ,φ is the steady-state elasticity of capi-

tal adjustment cost and β is the HH discount factor. qt denotes the real value of existing

6In particular, the benchmark model has more structure on the exogenous shocks, where the mark-up
shocks each follow an ARMA(1,1) process and the technology and government spending shocks follow a
VAR(1) process. We refer the reader to SW for more details about the microfoundations of the benchmark
model.
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capital stock. Similar to the consumption Euler, the equation implies that investment is
a weighted average of past and expected future consumption, as well as the real value
of existing capital stock. εit represents the AR(1) investment shock, where ηit is an i.i.d-
normal disturbance. The value of the capital-arbitrage equation is given by

qt = q1Etqt+1 + (1 − q1 )Et rkt+1 − (rt −Etπt+1 ) + 1
c3
εbt , (E.4)

with q1 = β̄(1 − δ), implying the real value of capital stock is a weighted average of its
expected future value and expected real rental rate on capital, net of ex ante real interest
rate and the risk premium shock. The production function is characterized as{

ỹt =φp
(
αkst + (1 − α)lt + εat

)
,

εat = ρaεat−1 +ηat ,
(E.5)

where kst denotes the capital services used in production, α is the share of capital in
production, and φp is (one plus) the share of fixed costs in production. εat denotes the
AR(1) total factor productivity shock. Capital is assumed to be the sum of the previous
amount of capital services used and the degree of capital utilization. Hence,

kst = kt−1 + zt . (E.6)

Moreover, the degree of capital utilization is a positive function of the degree of rental
rate, zt = z1r

k
t , with z1 = 1−ψ

ψ , ψ being the elasticity of the capital utilization adjustment
cost. Next, the equation for installed capital is given by

kt = k1kt−1 + (1 − k1 )it + k2ε
i
t , (E.7)

with k1 = 1−δ
γ , k2 = (1 − 1−δ

γ )(1 + β̄γ)γ2φ. The price mark-up equation is given by

μ
p
t = α(

kst − lt
) + εat −wt , (E.8)

which means the price mark-up μpt is the marginal product of the labor net of the cur-
rent wage. The NKPC is characterized as{

πt = π1Etπt+1 −π2μ
p
t + εpt ,

ε
p
t = ρpεpt−1 +ηpt ,

(E.9)

withπ1 = β̄γ,π2 = (1−βγξp )(1−ξp )/[ξp((φp−1)εp+1)], where ξp corresponds to the
degree of price stickiness, while εp denotes the Kimball goods market aggregator. The
equation implies that current inflation is determined by the expected future inflation,
the price mark-up, and the AR(1) price mark-up shock εpt , where ηpt is an i.i.d-normal
disturbance. The rental rate of capital is given by

rkt = −(kt − lt ) +wt , (E.10)
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which implies the rental rate of capital is decreasing in the capital-labor ratio and in-
creasing in the real wage. The wage mark-up is given as the real wages net of the marginal
rate of substitution between working and consuming. Hence,

μwt =wt − (σllt + 1
1 − λ/γ

(
ct − λ

γ
ct−1

)
, (E.11)

where σl denotes the elasticity of labor supply. The real wage equation is given by{
wt =w1wt−1 + (1 −w1 )(Etwt+1 +Etπt+1 ) −w2μ

w
t + εwt ,

εwt = ρwεwt−1 +ηwt ,
(E.12)

with w1 = 1/(1 + β̄γ) and w2 = ((1 − β̄γξw )(1 − ξw )/(ξw(φw − 1)εw + 1)). Hence, the
real wage is a weighted average of the past and expected wage, expected inflation, the
wage mark-up and the wage mark-up shock εwt , whereηwt is an i.i.d-normal disturbance.
Finally, monetary policy is assumed to follow a standard generalized Taylor rule:{

rt = ρrt−1 + (1 − ρ)(φππt +φyyt ) +φ�y(�yt ) + εrt ,
εrt = ρrεrt−1 +ηrt ,

(E.13)

where yt denotes the output gap and εrt is the AR(1) monetary policy shock, with ηrt the
i.i.d-normal disturbance. Hence, the monetary policy responds with output gap growth
on top of inflation and the output gap. In this paper, following the approach in Slo-
bodyan and Wouters (2012), the output gap is defined as the deviation of output from
the underlying productivity process, that is, yt = ỹt −�pεat . The prior distributions used
for all estimated parameters are provided in Table E.1.

We use U.S. historical quarterly macroeconomic data for the period 1966:I–2007:IV.
The observable variables used in the estimation are the (log-) difference of real GDP
(ydata
t ), real consumption (cdata

t ), real investment (invdata
t ), real wage (wdata

t ), log hours
worked (ldata

t ), inflation (πdata
t ), and the federal funds rate (rdata

t ) for the U.S. economy.
The measurement equations are given as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
(
log

(
ydata
t

)) = γ̄+ (yt − yt−1 ),

d
(
log

(
cdata
t

)) = γ̄+ (ct − ct−1 ),

d
(
log

(
invdata

t

)) = γ̄+ (invt − invt−1 ),

d
(
log

(
wdata
t

)) = γ̄+ (wt −wt−1 ),

log
(
ldata
t

) = l̄+ lt ,(
log

(
πdata
t

)) = π̄ +πt ,(
log

(
rdata
t

)) = r̄ + rt .

(E.14)

The construction of the time series follow the same steps as in Smets and Wouters (2007).

E.2 Deviations from the original model

Our model follows the original Smets and Wouters (2007) structure with minor devia-
tions. First, we use CPI inflation as our inflation measure instead of the GDP deflator
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Table E.1. Fixed parameters and the prior distributions of the estimated parameters for the
Smets–Wouters (2007) model.

Fixed Parameters
δ 0.025
φw 1.5
g 0.18
εp 10
εw 10

Prior Distribution Mean Var.

Parameters related to nominal and real frictions
φ Normal 4 1.5
σc Normal 1.5 0.375
λ Beta 0.7 0.1
ξw Beta 0.5 0.1
σl Normal 2 0.75
ξp Beta 0.5 (0.75) 0.1 (0.05)
ψ Beta 0.5 0.15
φp Normal 1.25 0.125
ιp Normal 0.5 0.15
ιw Normal 0.5 0.15

Policy related parameters
φπ Normal 1.5 0.25
ρ Beta 0.75 0.1
φy Normal 0.125 0.05
φ�y Normal 0.125 0.05

Steady-state related parameters
π̄ Gamma 0.625 0.1
β̄ Gamma 0.25 0.1
l̄ Normal 0 2
γ̄ Normal 0.4 0.1
α Normal 0.3 0.05

Parameters related to shock persistence
ρa Beta 0.5 0.2
ρb Beta 0.5 0.2
ρg Beta 0.5 0.2
ρi Beta 0.5 0.2
ρr Beta 0.5 0.2
ρp Beta 0.5 0.2
ρw Beta 0.5 0.2
ρga Beta 0.5 0.2

Shock variance parameters
ηa Inv. Gamma 0.1 2
ηb Inv. Gamma 0.1 2
ηg Inv. Gamma 0.1 2
ηi Inv. Gamma 0.1 2
ηr Inv. Gamma 0.1 2
ηp Inv. Gamma 0.1 2
ηw Inv. Gamma 0.1 2

γ Gamma 0.035 0.015
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used in the original model. Second, we define the output gap in the model as the de-
viation of output from its natural level based on the productivity process.7 Third, the
observable variables used in the estimation are the (log-) difference of real GDP, real
consumption, real investment, real wages, (log-) hours worked, inflation, and the fed-
eral funds rate for the U.S. economy. The model structure is the same as the original
SW except for three minor deviations. The first is the definition of the output gap: in the
original model, this is the deviation of output from its potential level, defined as output
in the presence of flexible prices and wages. Instead, we follow Slobodyan and Wouters
(2012) and define output gap as the deviation of output from its natural level based on
the productivity process.8 The second deviation involves the exogenous price and wage
mark-up shocks, which follow ARMA(1,1) processes in the original model. However, as
shown in Slobodyan and Wouters (2012), mark-up shocks are typically reduced to near
white noise processes once learning dynamics are introduced. In these cases, the AR(1)
and MA(1) parameters are typically locally unidentified. Therefore, we shut off the MA
component of these shocks. The third difference pertains to the prior distribution of
price stickiness ξp, which we tighten from ξp ∼ Beta(0.5, 0.2) to ξp ∼ Beta(0.75, 0.05).
This follows from our observations that the approximation algorithm may fail to find
an equilibrium, and thus break down for small values of ξp. Further, for the learning
models, we have an additional estimated parameter γ, that is, the constant gain value.
This is assigned a prior of γ ∼ Gamma(0.035, 0.015), which closely follows the assump-
tion in Slobodyan and Wouters (2012). The remainder of the model remains unchanged
and consists of 13 equations with 7 forward-looking variables, 7 exogenous shocks, and
7 state variables that enter into the model equations with a lag. There are 35 estimated
parameters including the constant gain for the adaptive learning models.
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