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Supplementary Material

Supplement to “Local projections, autocorrelation, and
efficiency”

(Quantitative Economics, Vol. 14, No. 4, November 2023, 1199–1220)

Amaze Lusompa
Research Department, Federal Reserve Bank of Kansas City

This Online Appendix presents a number of complementary results. Section A.1
presents auxiliary propositions and lemmas for theorems in the paper, while Sec-
tion A.2 presents proofs of the theorems. Section A.3 discusses why it is possible
to extend LP to handle time-varying parameters. Section A.4 presents additional
robustness checks and Monte Carlos. Section A.5 discusses bootstrapping theory
and inference with LP GLS. Section A.6 discusses structural identification. Sec-
tion A.7 presents an application to Gertler and Karadi (2015). Lastly, Section A.8 is
a “how to” section for the code.

Preliminaries

The proofs rely on several results from Goncalves and Kilian (2007) who focus on uni-
variate autoregressions. As noted in Goncalves and Kilian (2007), multivariate general-
izations are possible for all of their results but at the cost of more complicated notation.
Define the matrix norm ‖C‖2

1 = supl �=0 l
′Cl/l′l, that is, the largest eigenvalue of C. When

C is symmetric, this is the square of the largest eigenvalue of C. A couple of useful in-
equalities are ‖AB‖2 ≤ ‖A‖2

1‖B‖2 and ‖AB‖2
1 ≤ ‖A‖2‖B‖2

1. Let E∗(·) and var∗(·) denote
the expectation and variance with respect to the bootstrap data conditional on the orig-
inal data:

B̂(k, h, OLS) −B(k, h) = U1T �̂
−1
k +U2T �̂

−1
k +U3T �̂

−1
k ,

B̂(k, h, GLS) −B(k, h) = U1T �̂
−1
k +U2T �̂

−1
k +U3T �̂

−1
k −U4T �̂

−1
k ,

where

U1T =
{

(T − k−H )−1
T−H∑
t=k

( ∞∑
j=k+1

B(h)
j yt−j+1

)
X ′

t,k

}
,

U2T =
{

(T − k−H )−1
T−H∑
t=k

εt+hX
′
t,k

}
,

U3T =
{

(T − k−H )−1
T−H∑
t=k

(
h−1∑
l=1

�lεt+h−l

)
X ′

t,k

}
,
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U4T =
{

(T − k−H )−1
T−H∑
t=k

(
h−1∑
l=1

�̂lε̂t+h−l,k

)
X ′

t,k

}
.

The mixingale central limit theorem will be useful in proving several results (cf. White
(2001, pp. 124–125)).

Definition. Let {rt , Ft } be an adapted stochastic sequence with E(r2
t ) < ∞. Then

{rt , Ft } is an adapted mixingale if there exists finite nonnegative sequences {ct } and {γi}
such that γi → 0 as i → ∞ and (

E
(
E(rt|Ft−i )

2))1/2 ≤ ctγi.

Theorem. Mixingale CLT. Let {rt , Ft } be a stationary ergodic adapted mixingale with

γi = Op(i−1−δ ) for some δ > 0. Then var({(T − k − H )−1/2∑T−H
t=k rt })

p−→∑∞
p=−∞ cov(rt ,

rt−p ) < ∞, and if
∑∞

p=−∞ cov(rt , rt−p ) > 0,{
(T − k−H )−1/2

T−H∑
t=k

rt

}
d−→N

(
0,

∞∑
p=−∞

cov(rt , rt−p )

)
.

A.1. Auxiliary propositions and lemmas

A.1.1 Propositions

Proposition 2. Under Assumption 3,∥∥B̂(k, h, OLS) −B(k, h)
∥∥ p−→ 0.

Proof. ∥∥B̂(k, h, OLS) −B(k, h)
∥∥≤ {‖U1T ‖ + ‖U2T ‖ + ‖U3T ‖}∥∥�̂−1

k

∥∥
1.

Lemma A.1 in Goncalves and Kilian (2007) establishes that ‖�̂−1
k ‖1 is bounded in prob-

ability, so consistency in LP OLS consists of showing that ‖U1T ‖, ‖U2T ‖, and ‖U3T ‖ con-
verge in probability to 0. This was shown in Jordà and Kozicki (2011), but assuming the

errors are i.i.d. However, their proof showing ‖U3T ‖ p−→ 0 is incorrect. It is incorrect be-
cause (

∑h−1
l=1 �lεt+h−l )X ′

t,k is assumed to be independent across time. It is not. Here, I
will present a correct proof under the more general conditions stated in Assumption 3
(which include Jordà and Kozicki (2011) as a special case). A correct proof is

‖U3T ‖2 = (T − k−H )−2 trace

{
T−H∑
m=k

T−H∑
n=k

(
h−1∑
l=1

�lεn+h−l

)′(h−1∑
l=1

�lεm+h−l

)
X ′

m,kXn,k

}
,

by the cyclic property of traces:

E‖U3T ‖2 = (T − k−H )−2 trace
T−H∑
m=k

T−H∑
n=k

E

{(
h−1∑
l=1

�lεn+h−l

)′(h−1∑
l=1

�lεm+h−l

)
X ′

m,kXn,k

}
.
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For |n−m| > h− 1,

E

{(
h−1∑
l=1

�lεn+h−l

)′(h−1∑
l=1

�lεm+h−l

)
X ′

m,kXn,k

}
= 0,

by the martingale difference assumption. So,

E‖U3T ‖2

= (T − k−H )−2 trace
T−H∑
m=k

∑
|n−m|<h

E

{(
h−1∑
l=1

�lεn+h−l

)′(h−1∑
l=1

�lεm+h−l

)
X ′

m,kXn,k

}
.

Note that∣∣∣∣∣E
{(

h−1∑
l=1

�lεn+h−l

)′(h−1∑
l=1

�lεm+h−l

)
X ′

m,kXn,k

}∣∣∣∣∣
≤
(
E

[{(
h−1∑
l=1

�lεn+h−l

)′(h−1∑
l=1

�lεm+h−l

)}2])1/2(
E
[{
X ′

m,kXn,k
}2])1/2

by the Cauchy–Schwarz inequality. E[(X ′
m,kXn,k )2] = Op(k2 ) and |E([(

∑h−1
l=1 �l ×

εn+h−l )′(
∑h−1

l=1 �lεm+h−l )]2 )| < ∞ due to the finite fourth moments of ε and∑∞
h=0 ‖�h‖<∞. Consequently, for |n−m| ≤ h− 1,

trace

{(
E

[{(
h−1∑
l=1

�lεn+h−l

)′(h−1∑
l=1

�lεm+h−l

)}2])1/2(
E
[{
X ′

m,kXn,k
}2])1/2

}
= Op(k).

Since h is finite, it follows that

E‖U3T ‖2

= (T − k−H )−2 trace
T−H∑
m=k

∑
|n−m|<h

E

{(
h−1∑
l=1

�lεn+h−l

)′(h−1∑
l=1

�lεm+h−l

)
X ′

m,kXn,k

}

≤ k× constant
T − k−H

.

Therefore, ‖U3T ‖ = Op( k1/2

(T−k−H )1/2 )
p−→ 0. To complete the proof of consistency, it just

needs to be shown that ‖U1T ‖ p−→ 0 and ‖U2T ‖ p−→ 0. The proof that ‖U1T ‖ p−→ 0 is un-
affected by allowing for conditional heteroskedasticity, so the proof of convergence in

Jordà and Kozicki (2011) (their Proposition 1) can be used. The proof that ‖U2T ‖ p−→ 0
follows from Lemma A.2, part C in Goncalves and Kilian (2007).

Proposition 3. Under Assumption 3, and assuming that �(k, h, OLS) is positive defi-
nite, then for LP OLS,

(T − k−H )1/2l(k)′ vec
[
B̂(k, h, OLS) −B(k, h)

] d−→ N
(
0, �(k, h, OLS)

)
,
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where

�(k, h, OLS) =
h−1∑

p=−h+1

cov
(
r(h),OLS
t , r(h),OLS

t−p

)
.

Proof. Under the assumptions, Lewis and Reinsel (1985) used to show asymptotic nor-
mality of the limiting distribution of the VAR(∞), Jordà and Kozicki (2011) showed the
asymptotic normality of the limiting distribution of the LP(∞). It turns out Jordà and
Kozicki (2011) use the incorrect central limit theorem. Jordà and Kozicki’s (2011) proof
follows the same argument as Lewis and Reinsel (1985). Lewis and Reinsel (1985) use a
martingale CLT to prove asymptotic normality. This is not possible with LP because

r(h),OLS
t+h = l(k)′ vec

{(
εt+h +

h−1∑
l=1

�lεt+h−l

)
X ′

t,k�
−1
k

}
,

is not a martingale difference sequence. Since εt is stationary and ergodic, r(h),OLS
t+h is

stationary and ergodic by Theorem 3.35 in White (2001). Here, I will show the corrected
proof of LP OLS under the more general conditions of Assumption 3 using the mixingale
CLT. The proof will proceed by showing

1. {r(h),OLS
t , Ft } is an adapted mixingale with γi = Op(i−1−δ ) for some δ > 0.

Note that when i > h − 1, E[r(h),OLS
t |Ft−i] = 0 by the martingale difference sequence

assumption on the errors. Let ct = (E(E(r(h),OLS
t |Ft−i )2 ))1/2�, where � = hν/(ν+1) for any

ν > 0, and γi = i−(ν+1)/ν . Note that −(ν + 1)/ν < −1 for any ν > 0 and δ= 1/ν.

Proposition 4. Under Assumption 3, for LP GLS,∥∥(T − k−H )1/2l(k)′ vec
[
B̂(k, h, GLS) −B(k, h)

]
− (T − k−H )1/2l(k)′ vec

[
U2T�

−1
k +U3T�

−1
k −U4T�

−1
k

]∥∥= op(1).

Proof. To show∥∥(T − k−H )1/2l(k)′ vec
[
B̂(k, h, GLS) −B(k, h)

]
− (T − k−H )1/2l(k)′ vec

[
U2T�

−1
k +U3T�

−1
k −U4T�

−1
k

]∥∥= op(1),

we need to show that∥∥(T − k−H )1/2l(k)′ vec[U1T +U2T +U3T −U4T ]
(
�̂−1
k − �−1

k

)∥∥ p−→ 0,

and ∥∥(T − k−H )1/2l(k)′ vec
[
U1T�

−1
k

]∥∥ p−→ 0.

Jordà and Kozicki (2011) already showed that∥∥(T − k−H )1/2l(k)′ vec
{

[U1T +U2T +U3T ]
(
�̂−1
k − �−1

k

)}∥∥ p−→ 0,
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under the assumption that the errors are i.i.d. (see their Proposition 2). Under Assump-
tion 3, their proof still holds since Goncalves and Kilian (2007) showed k1/2‖�̂−1

k −
�−1
k ‖1 = op(1) (see their Lemma A.1). From Proposition 2 in Jordà and Kozicki (2011),

we know that ‖√T − k−HU1T�
−1
k ‖ p−→ 0. So, to complete the proof, I just need to show∥∥(T − k−H )1/2l(k)′ vec

[
U4T

(
�̂−1
k − �−1

k

)]∥∥ p−→ 0.

Since 0 < M1 ≤ ‖l(k)‖2 ≤ M2 < ∞, it suffices to show that ‖(T − k − H )1/2U4T (�̂−1
k −

�−1
k )‖ p−→ 0. Note that√

T − k−HU4T
(
�̂−1
k − �−1

k

)
=
{

(T − k−H )−1/2
T−H∑
t=k

(
h−1∑
l=1

�̂lε̂t+h−l,k

)
X ′

t,k

}(
�̂−1
k − �−1

k

)

=
{

(T − k−H )−1/2
h−1∑
l=1

�̂l

T−H∑
t=k

(
εt+h−l +

( ∞∑
j=k+1

Ajyt+h−l−j

)

− (B̂(k, 1) −B(k, 1)
)
Xt+h−l−1,k

)
)X ′

t,k

}(
�̂−1
k − �−1

k

)
,

since ε̂t,k = εt + (
∑∞

j=k+1 Ajyt−j ) − (B̂(k, 1) −B(k, 1))Xt−1,k ). So,∥∥√T − k−HU4T
(
�̂−1
k − �−1

k

)∥∥
≤

h−1∑
l=1

‖�̂l‖
(∥∥∥∥∥
{[

k(T − k−H )
]−1/2

T−H∑
t=k

(
εt+h−l +

( ∞∑
j=k+1

Ajyt+h−l−j

)

− (B̂(k, 1) −B(k, 1)
)
Xt+h−l−1,k

)
)X ′

t,k

}∥∥∥∥∥
)

× {k1/2
∥∥(�̂−1

k − �−1
k

)∥∥
1

}
.

By Theorem 2, ‖�̂l‖ p−→ ‖�l‖ < ∞ for each 1 ≤ l ≤ h − 1. We know from Goncalves and

Kilian (2007) that k1/2‖(�̂−1
k − �−1

k )‖1
p−→ 0. Since h− 1 is finite, I just need to show that(∥∥∥∥∥

{[
k(T − k−H )

]−1/2
T−H∑
t=k

(
εt+h−l +

( ∞∑
j=k+1

Ajyt+h−l−j

)

− (B̂(k, 1) −B(k, 1)
)
Xt+h−l−1,k

)
)X ′

t,k

}∥∥∥∥∥
)

,

is bounded for each 1 ≤ l ≤ h− 1:(∥∥∥∥∥
{[

k(T − k−H )
]−1/2

T−H∑
t=k

(
εt+h−l +

( ∞∑
j=k+1

Ajyt+h−l−j

)
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− (B̂(k, 1) −B(k, 1)
)
Xt+h−l−1,k )

)
X ′

t,k

}∥∥∥∥∥
)

≤
∥∥∥∥∥[k(T − k−H )

]−1/2
T−H∑
t=k

εt+h−lX
′
t,k

∥∥∥∥∥
+
∥∥∥∥∥[k(T − k−H )

]−1/2
T−H∑
t=k

( ∞∑
j=k+1

Ajyt+h−l−j

)
X ′

t,k

∥∥∥∥∥
+
∥∥∥∥∥−[k(T − k−H )

]−1/2
T−H∑
t=k

(
B̂(k, 1) −B(k, 1)

)
Xt+h−l−1,kX

′
t,k

∥∥∥∥∥.

‖[k(T −k−H )]−1/2∑T−H
t=k εt+h−lX

′
t,k‖ is bounded since it was shown in Theorem 2 that

∥∥∥∥∥(T − k−H )−1
T−H∑
t=k

εt+h−lX
′
t,k

∥∥∥∥∥= Op

((
k

T − k−H

)1/2)
.

Jordà and Kozicki (2011) show that ‖[k(T − k − H )]−1/2∑T−H
t=k (

∑∞
j=k+1 Ajyt+h−l−j ) ×

X ′
t,k‖ p−→ 0 (see their Proposition 2). For the final term, note that

∥∥∥∥∥[k(T − k−H )
]−1/2

T−H∑
t=k

(
B̂(k, 1) −B(k, 1)

)
Xt+h−l−1,kX

′
t,k

∥∥∥∥∥
≤
(
T − k−H

k

)1/2∥∥(B̂(k, 1) −B(k, 1)
)∥∥︸ ︷︷ ︸

bounded

∥∥∥∥∥(T − k−H )−1
T−H∑
t=k

Xt+h−l−1,kX
′
t,k

∥∥∥∥∥
1︸ ︷︷ ︸

bounded

.

Proposition 5. Under Assumption 4,

(T − k−H )1/2 vech[
̂−
]
d−→ N(0, V22 ).

Proof. Substituting out ε̂t,k = εt + (
∑∞

j=k+1 Ajyt−j ) − (B̂(k, 1) −B(k, 1))Xt−1,k ),

√
T − k−H
̂ =

√
T − k−H

T−H∑
t=k

ε̂t,kε̂
′
t,k

T − k−H

=
√
T − k−H

T−H∑
t=k

εtε
′
t

T − k−H
+
√
T − k−H

T−H∑
t=k

εt

( ∞∑
j=k+1

Ajyt−j

)′

T − k−H︸ ︷︷ ︸
Op(

√
T−k−H

∑∞
j=k+1 ‖Aj‖)
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−

T−H∑
t=k

εtX
′
t−1,k

T − k−H︸ ︷︷ ︸
Op(( k

T−k−H )1/2 )

√
T − k−H

(
B̂(k, 1) −B(k, 1)

)′︸ ︷︷ ︸
d−→

+
√
T − k−H

T−H∑
t=k

( ∞∑
j=k+1

Ajyt−j

)
ε′
t

T − k−H︸ ︷︷ ︸
Op(

√
T−k−H

∑∞
j=k+1 ‖Aj‖)

+
√
T − k−H

T−H∑
t=k

( ∞∑
j=k+1

Ajyt−j

)( ∞∑
j=k+1

Ajyt−j

)′

T − k−H︸ ︷︷ ︸
Op(

√
T−k−H(

∑∞
j=k+1 ‖Aj‖)2 )

−

T−H∑
t=k

( ∞∑
j=k+1

Ajyt−j

)
X ′

t−1,k

T − k−H︸ ︷︷ ︸
Op(k1/2

∑∞
j=k+1 ‖Aj‖)

√
T − k−H

(
B̂(k, 1) −B(k, 1)

)′︸ ︷︷ ︸
d−→

−
√
T − k−H

(
B̂(k, 1) −B(k, 1)

)︸ ︷︷ ︸
d−→

T−H∑
t=k

Xt−1,kε
′
t

T − k−H︸ ︷︷ ︸
Op(( k

T−k−H )1/2 )

−
√
T − k−H

(
B̂(k, 1) −B(k, 1)

)︸ ︷︷ ︸
d−→

T−H∑
t=k

Xt−1,k

( ∞∑
j=k+1

Ajyt−j

)′

T − k−H︸ ︷︷ ︸
Op(k1/2

∑∞
j=k+1 ‖Aj‖)

+
√
T − k−H

(
B̂(k, 1) −B(k, 1)

)︸ ︷︷ ︸
d−→

T−H∑
t=k

Xt−1,kX
′
t−1,k

T − k−H︸ ︷︷ ︸
bounded

× (B̂(k, 1) −B(k, 1)
)′︸ ︷︷ ︸

Op(( k
T−k−H )1/2 )

.
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It follows that∥∥∥∥∥∥∥∥∥∥∥
√
T − k−H vech[
̂−
] −

√
T − k−H vech

⎡⎢⎢⎢⎢⎢⎣
T−H∑
t=k

εtε
′
t −


T − k−H

⎤⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥
= op(1).

Since εt is mixing, by Theorem 3.49 in White (2001), εtε′
t is mixing of the same order.

Assuming V22 is finite and positive definite, by the strong mixing central limit theorem

(Theorem A.8 in Lahiri (2003)), (T −k−H )1/2 vech[
̂−
]
d−→N(0, V22 ). To show that V22

is finite and positive definite, note that absolute summability of fourth-order cumulants
implies absolute summability of fourth-order moments (it follows from Hannan (1970,
equation (5.1) on p. 23)). Absolute summability of the fourth-order moments of ε implies
V22 < ∞, and since the autocovariances of εtε′

t are absolutely summable, V22 is positive
definite by assumption.

Proposition 6. Assume that yt+1 = ayt + εt+1, where |a| < 1 and εt is an i.i.d. process
with E(εt ) = 0 and var(εt ) = σ2. If the true lag order is known, then

√
T
(
b̂(h),GLS − ah

) d−→N
(
0,
[{

1 − a2h−2}+ h2a2h−2](1 − a2)).
Proof. Define �̂= 1

T−H (
∑T−H

t=1 y2
t ),

b̂(h),GLS =
(
T−H∑
t=1

y2
t

)−1(T−H∑
t=1

yt
(
yt+h − b̂(h−1),GLSε̂t+1 − · · · − b̂(1),GLSε̂t+h−1

))
.

Substituting out yt+h = ahyt + ah−1εt+1 + · · · + aεt+h−1 + εt+h yields

b̂(h),GLS =
(
T−H∑
t=1

y2
t

)−1(T−H∑
t=1

yt
(
ahyt + [ah−1εt+1 − b̂(h−1),GLSε̂t+1

]+ · · ·

+ [aεt+h−1 − b̂(1),OLS ε̂t+h−1
]+ εt+h

))
,

√
T −H

(
b̂(h),GLS − ah

) =

⎡⎢⎢⎢⎢⎢⎣
h−1∑
p=1

1√
T −H

T−H∑
t=1

yt
[
apεt+h−p − b̂(p),GLSε̂t+h−p

]
�̂

⎤⎥⎥⎥⎥⎥⎦

+

1√
T −H

T−H∑
t=1

ytεt+h

�̂
.
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It follows from Lemma 5 that

√
T −H

(
b̂(h),GLS − ah

) =
(
h−1∑
p=1

b̂(p),GLSah−p−1

)
︸ ︷︷ ︸

plim=(h−1)ah−1

1√
T −H

T−H∑
t=1

ytεt+1

�̂

+

1√
T −H

T−H∑
t=1

ytεt+h

�̂
.

1√
T−H

∑T−H
t=1 ytεt+1

�̂
and

1√
T−H

∑T−H
t=1 ytεt+h

�̂
jointly converge to a normal distribution due to the

mixingale CLT (see proof of Proposition 3 for setup). Therefore,

√
T −H

(
b̂(h),GLS − ah

) d−→N
(
0,
[{

1 − a2h−2}+ h2a2h−2](1 − a2)).
A.1.2 Lemmas

Lemma 1. If Assumption 3 holds,∥∥∥∥∥(T − k−H )1/2l(k)′ vec
[
B̂(k, h, GLS) −B(k, h)

]

− (T − k−H )−1/2l(k)′ vec

[(
T−H∑
t=k

εt+hX
′
t,k

)
�−1
k

]

+ l(k)′
(
h−1∑
l=1

{
�−1
k �′

(h−l−1),k ⊗�l

})
vec
[√

T − k−H
(
B̂(k, 1) −B(k, 1)

)]∥∥∥∥∥= op(1).

Proof. From Proposition 4, we know that∥∥(T − k−H )1/2l(k)′ vec
[
B̂(k, h, GLS) −B(k, h)

]
− (T − k−H )1/2l(k)′ vec

[
U2T�

−1
k +U3T�

−1
k −U4T�

−1
k

]∥∥= op(1),

and

(T − k−H )1/2l(k)′ vec
[
U2T�

−1
k +U3T�

−1
k −U4T�

−1
k

]
= (T − k−H )−1/2l(k)′ vec

{(
T−H∑
t=k

εt+hX
′
t,k

)
�−1
k +

T−H∑
t=k

(
h−1∑
l=1

�lεt+h−l

)
X ′

t,k�
−1
k

−
T−H∑
t=k

(
h−1∑
l=1

�̂lε̂t+h−l

)
X ′

t,k�
−1
k

}
.
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Note that

(T − k−H )−1/2
T−H∑
t=k

(
h−1∑
l=1

�̂lε̂t+h−l,k

)
X ′

t,k�
−1
k

= (T − k−H )−1/2
T−H∑
t=k

h−1∑
l=1

�̂l

( ∞∑
j=k+1

Ajyt+h−l−j

)
X ′

t,k�
−1
k︸ ︷︷ ︸

op(1)

+ (T − k−H )−1/2
T−H∑
t=k

h−1∑
l=1

�̂lεt+h−lX
′
t,k�

−1
k

− (T − k−H )−1/2
T−H∑
t=k

h−1∑
l=1

�̂l

(
B̂(k, 1) −B(k, 1)

)
Xt+h−l−1,kX

′
t,k�

−1
k ,

where the first term converges to zero since h − 1 is finite, ‖�̂l‖ p−→ ‖�l‖ < ∞, ‖�−1
k ‖1 <

∞, and Theorem 1 in Lewis and Reinsel (1985). Since ‖�̂(h−l−1),k‖, ‖�̂k‖, and ‖�̂l‖ are
consistent and bounded in probability∥∥∥∥∥

(
h−1∑
l=1

{
�̂−1
k �̂′

(h−l−1),k ⊗ �̂l

})∥∥∥∥∥ p−→
∥∥∥∥∥
(
h−1∑
l=1

{
�−1
k �′

(h−l−1),k ⊗�l

})∥∥∥∥∥<∞.

Therefore,∥∥∥∥∥(T − k−H )−1/2l(k)′ vec

{
T−H∑
t=k

(
h−1∑
l=1

�lεt+h−l

)
X ′

t,k�
−1
k −

T−H∑
t=k

(
h−1∑
l=1

�̂lε̂t+h−l

)
X ′

t,k�
−1
k

}

− l(k)′
(
h−1∑
l=1

{
�−1
k �′

(h−l−1),k ⊗�l

})
vec
[√

T − k−H
(
B̂(k, 1) −B(k, 1)

)]∥∥∥∥∥= op(1),

and∥∥∥∥∥(T − k−H )1/2l(k)′ vec
[
B̂(k, h, GLS) −B(k, h)

]

− (T − k−H )−1/2l(k)′ vec

[(
T−H∑
t=k

εt+hX
′
t,k

)
�−1
k

]

+ l(k)′
(
h−1∑
l=1

{
�−1
k �′

(h−l−1),k ⊗�l

})
vec
[√

T − k−H
(
B̂(k, 1) −B(k, 1)

)]∥∥∥∥∥= op(1).

Lemma 2. Under Assumption 5, for the reduced form wild bootstrap∥∥B̂∗(k, h, GLS) − B̂(k, h)
∥∥ p∗

−→ 0.
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Proof. This will be a proof by induction. Assume the consistency for the previous h− 1

horizons has been proven. Hence, ‖�̂∗
l ‖

p∗
−→ ‖�̂l‖<∞ for 1 ≤ l ≤ h− 1,∥∥B̂∗(k, h, GLS) − B̂(k, h)

∥∥
≤
∥∥∥∥∥(T − k−H )−1

T−H∑
t=k

ε̂∗
t+h,kX

′
t,k

∥∥∥∥∥∥∥�̂−1
k

∥∥
1

+
h−1∑
l=1

∥∥�̂∗
l

∥∥∥∥∥∥∥(T − k−H )−1
T−H∑
t=k

ε̂∗
t+1,kX

′
t,k

∥∥∥∥∥∥∥�̂−1
k �̂(h−l−1),k�̂

−1
k

∥∥
1.

‖�̂−1
k ‖1, ‖�̂∗

l ‖, and ‖�̂−1
k �̂(h−l−1),k�̂

−1
k ‖1 are bounded in probability, so it is sufficient to

show that∥∥∥∥∥(T − k−H )−1
T−H∑
t=k

ε̂∗
t+h,kX

′
t,k

∥∥∥∥∥ p∗
−→ 0 and

∥∥∥∥∥(T − k−H )−1
T−H∑
t=k

ε̂∗
t+1,kX

′
t,k

∥∥∥∥∥ p∗
−→ 0.

The proofs are the same, so I will just show E∗[‖{(T −k−H )−1∑T−H
t=k ε̂∗

t+h,kX
′
t,k}‖2]

p∗
−→

0. Note that

(T − k−H )−2 trace

{[
T−H∑
n=k

ε̂∗
n+h,kX

′
n,k

]′[T−H∑
m=k

ε̂∗
m+h,kX

′
m,k

]}

= (T − k−H )−2 trace

{
T−H∑
m=k

T−H∑
n=k

ε̂∗′
n+h,kε̂

∗
m+h,kX

′
m,kXn,k

}
,

by the cyclic property of traces. Note that

E∗ trace

{
T−H∑
m=k

T−H∑
n=k

ε̂∗′
n+h,kε̂

∗
m+h,kX

′
m,kXn,k

}
= trace

{
T−H∑
m=k

ε̂′
m+h,kε̂m+h,kX

′
m,kXm,k

}

= Op
(
(T − k−H )k

)
,

since E∗[ε̂∗′
n+h,kε̂

∗
m+h,k] = 0 for m �= n. It follows that

E∗
∥∥∥∥∥
{

(T − k−H )−1
T−H∑
t=k

ε̂∗
t+h,kX

′
t,k

}∥∥∥∥∥
2

≤ (T − k−H )−2Op
(
[T − k−H]k

)
= Op

(
k

T − k−H

)
p∗
−→ 0.

To complete the proof, note that the horizon 1 LP is a VAR, and the proof of consistency
is provided by Lemma A.5 in Goncalves and Kilian (2007).

Lemma 3. Under Assumption 3,∥∥V̂11(k, H )
∥∥ p−→ ∥∥V11(k, H )

∥∥.
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Proof. Let V̂11(k, H ) = (T − k−H )−1∑T−H
t=k

ˆRScore(H )
t+1

ˆRScore(H )
t+1

′
. Define

Fk,m,n = E
[
(Xt−m,k ⊗ Ir )εt+1ε

′
t+1(Xt−n,k ⊗ Ir )′

]
.

Let F̂k,m,n = (T −k−H )−1∑T−H
t=k [(Xt−m,k⊗Ir )εt+1ε

′
t+1(Xt−n,k⊗Ir )′] and sk,0 = Ikr2×kr2 .

For m, n= 0, � � � , H − 1 and i, j = 0, � � � , H,

l(k)′ŝk,i(T − k−H )−1
T−H∑
t=k

[(
�̂−1
k Xt−m,k ⊗ Ir

)
ε̂t+1ε̂

′
t+1

(
�̂−1
k Xt−n,k ⊗ Ir

)′]
ŝ′k,jl(k)

− l(k)′sk,iE
[(
�−1
k Xt−m,k ⊗ Ir

)
εt+1ε

′
t+1
(
�−1
k Xt−n,k ⊗ Ir

)′]
s′k,jl(k)

= l(k)′ŝk,i
(
�̂−1
k ⊗ Ir

)
F̂k,m,n

(
�̂−1
k ⊗ Ir

)′
ŝ′k,il(k)

− l(k)′sk,i
(
�−1
k ⊗ Ir

)
Fk,m,n

(
�−1
k ⊗ Ir

)′
sk,jl(k)

= l(k)′ŝk,i
(
�̂−1
k ⊗ Ir

)
[F̂k,m,n − Fk,m,n]

(
�−1
k ⊗ Ir

)′
s′k,jl(k)

+ l(k)′
[
ŝk,i
(
�̂−1
k ⊗ Ir

)− sk,i
(
�−1
k ⊗ Ir

)]
F ′
k,m,n

(
�−1
k ⊗ Ir

)′
s′k,jl(k)

+ l(k)′s′k,i

(
�−1
k ⊗ Ir

)
F̂k,m,n

[
ŝk,j
(
�̂−1
k ⊗ Ir

)− sk,j
(
�−1
k ⊗ Ir

)]′
l(k).

Since ‖ŝk,h‖ p−→ ‖sk,h‖ < ∞, ‖�̂−1
k ‖ p−→ ‖�−1

k ‖ < ∞, ‖Fk,m,n‖ < ∞, ‖l(k)′‖ < ∞, and 2H +
1 is finite, then showing ‖V̂11(k, H )‖ p−→ ‖V11(k, H )‖ simplifies to showing ‖F̂k,m,n −
Fk,m,n‖ p−→ 0 for m, n = 0, � � � , H − 1. Convergence follows same argument as the proof
of Theorem 2.2 in Goncalves and Kilian (2007).

Lemma 4. Under Assumption 5,∥∥V̂ lr(k, H )
∥∥ p−→ ∥∥V (k, H )

∥∥,

where

V̂ lr(k, H ) =
[
V̂ lr

11(k, H ) V̂12(k, H )
V̂21(k, H ) V̂22

]
,

V̂ lr
11(k, H ) =

∑
p=−

(T − k−H )−1
T−H∑
t=k

ˆRscore(H )
t+1

ˆRscore(H )
t+1−p

′
,

V̂12(k, H ) =
∑

p=−

(T − k−H )−1
T−H∑
t=k

{ ˆRscore(H )
t+1 vec

[
ε̂t+1−pε̂

′
t+1−p − 
̂

]′
Lr
}

,

V̂22 =
∑

p=−

(T − k−H )−1L′
r

{
T−H∑
t=k

(
vec
(
ε̂t+1ε̂

′
t+1
)
, vec

(
ε̂t+1−pε̂

′
t+1−p

)′)

− vec(
̂) vec(
̂)′
}
Lr .
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Proof. First, note that∥∥∥∥∥
[

(T − k−H )−1
T−H+1∑
t=k+1

RStrucScore(H )
t RStrucScore(H )

t−p

′
]

−E
[
RStrucScore(H )

t RStrucScore(H )
t−p

′]∥∥∥∥∥=Op

(
k

(T − k−H )1/2

)
.

The proof follows the same argument as the proof of Theorem 2.2 in Goncalves and Kil-
ian (2007) (in particular, their proof that A3 = Op( k

(T−k−H )1/2 )). Before applying their
proof, replace the setup in the beginning of their proof with the setup in Lemma 3

but applied to RStrucScore(H )
t . Note that RStrucScore(H )

t = [RScore(H )
t

′
, vech(εt+1ε

′
t+1 −


)′]′, and convergence is not affected by also accounting for vech(εt+1ε
′
t+1 − 
)′ due

to cumulant condition on ε and since it is finite-dimensional. The explicit setup of
RStrucScore(H )

t is omitted due to brevity. It follows that∥∥∥∥∥
∑

p=−

{[
(T − k−H )−1

T−H+1∑
t=k+1

RStrucScore(H )
t RStrucScore(H )

t−p

′
]

−E
[
RStrucScore(H )

t RStrucScore(H )
t−p

′]}∥∥∥∥∥=Op

(
k

(T − k−H )1/2

)
p−→ 0.

Therefore, I just need to show∥∥∥∥∥
∑

p=−

(T − k−H )−1
T−H+1∑
t=k+1

[ ˆRStrucScore
(H )
t

ˆRStrucScore(H )
t−p

′

− RStrucScore(H )
t RStrucScore(H )

t−p

′]∥∥∥∥∥ p−→ 0.

The proof will proceed in three parts. First, I will show ‖V̂22‖ p−→ ‖V22‖, second ‖V̂12(k,

H )‖ p−→ ‖V12(k, H )‖, and lastly ‖V̂ lr
11(k, H )‖ p−→ ‖V11(k, H )‖.

To show ‖V̂22‖ p−→ ‖V22‖, note since ‖(B̂(k, 1) − B(k, 1)‖ = Op( k1/2

T 1/2 ), ‖Xt−1,k‖ =
Op(k1/2 ), and by Theorem 1 and in Lewis and Reinsel (1985),

‖ε̂t,k‖ ≤ ‖εt‖︸︷︷︸
Op(1)

+
∥∥∥∥∥
( ∞∑
j=k+1

Ajyt−j

)∥∥∥∥∥︸ ︷︷ ︸
Op(

∑∞
j=k+1 Aj )

+∥∥−(B̂(k, 1) −B(k, 1)
)
Xt−1,k )

∥∥︸ ︷︷ ︸
Op( k

T1/2 )

,

implying ‖ε̂t,k − εt‖ = Op( k
T 1/2 ). It follows that ‖ε̂t,kε̂t,kε̂t−p,kε̂t−p,k − εtεtεt−pεt−p‖ =

Op( k
T 1/2 ). Therefore,∥∥∥∥∥(T − k−H )−1

T−H+1∑
t=k+1

[ε̂t,kε̂t,kε̂t−p,kε̂t−p,k − εtεtεt−pεt−p]

∥∥∥∥∥ = Op

(
k

T 1/2

)
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=⇒
∥∥∥∥∥

∑
p=−

(T − k−H )−1
T−H+1∑
t=k+1

[ε̂t,kε̂t,kε̂t−p,kε̂t−p,k − εtεtεt−pεt−p]

∥∥∥∥∥ = Op

(
k

T 1/2

)
.

Since ‖
̂−
‖ =Op([T − k−H]−1 ) by Proposition 5, ‖V̂22 − V22‖ =Op( k
T 1/2 ) =Op(( k

4

T ×
4

T )1/4 )
p−→ 0.

Now we show ‖V̂12(k, H )‖ p−→ ‖V12(k, H )‖. Using an analogous setup as Lemma 3, it
suffices to show that∥∥∥∥∥

∑
p=−

(T − k−H )−1
T−H+1∑
t=k+1

{
(Xt−m,k ⊗ Ir )

[
ε̂t vec

[
ε̂t−pε̂

′
t−p − 
̂

]′
− εt vec

[
εt−pε

′
t−p −


]′]
Lr
}∥∥∥∥∥ p−→ 0

for m = 1, � � � , H. ‖ε̂t,k − εt‖ = Op( k
T 1/2 ) implies ‖ε̂t,kε̂t−p,kε̂t−p,k − εtεt−pεt−p‖ =

Op( k
T 1/2 ). Therefore,

∥∥(Xt−m,k ⊗ Ir )
[
ε̂t vec

[
ε̂t−pε̂

′
t−p − 
̂

]′ − εt vec
[
εt−pε

′
t−p −


]′]
Lr

∥∥= Op

(
k2

T 1/2

)
,

since (Xt−m,k ⊗ Ir ) is kr2 × r. It follows that∥∥∥∥∥
[

∑
p=−

(T − k−H )−1
T−H+1∑
t=k+1

{
l(k)′(Xt−m,k ⊗ Ir )ε̂t vec

[
ε̂t−pε̂

′
t−p − 
̂

]′
Lr
}]

−
[

∑
p=−

(T − k−H )−1
T−H+1∑
t=k+1

{
l(k)′(Xt−m,k ⊗ Ir )εt vec

[
εt−pε

′
t−p −


]′
Lr
}]∥∥∥∥∥

= Op

(
k2

T 1/2

)
,

which implies ‖V̂12(k, H ) − V12(k, H )‖ =Op( k2

T 1/2 ) =Op(( k
8

T
4

T )1/4 )
p−→ 0.

Now we show ‖V̂ lr
11(k, H )‖ p−→ ‖V11(k, H )‖. Using an analogous setup as Lemma 3, it

suffices to show that∥∥∥∥∥
∑

p=−

(T − k−H )−1
T−H+1∑
t=k+1

(Xt−m,k ⊗ Ir )
[
ε̂t ε̂

′
t−p − εtε

′
t−p

]
(Xt−p−n,k ⊗ Ir )′

∥∥∥∥∥ p−→ 0,

for m, n = 1, � � � , H. Since ‖ε̂t,kε̂t−p,k − εtεt−p‖ = Op( k
T 1/2 ), it follows that

∥∥(Xt−m,k ⊗ Ir )
[
ε̂t ε̂

′
t − εtε

′
t−p

]
(Xt−p−n,k ⊗ Ir )′

∥∥= Op

(
k3

T 1/2

)
,
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since (Xt−m,k ⊗ Ir ) is kr2 × r. It follows that∥∥∥∥∥
∑

p=−

(T −k−H )−1
T−H+1∑
t=k+1

(Xt−m,k⊗Ir )
[
ε̂t ε̂

′
t−p−εtε

′
t−p

]
(Xt−p−n,k⊗Ir )′

∥∥∥∥∥=Op

(
k3

T 1/2 

)
.

This implies that ‖V̂ lr
11(k, H ) − V11(k, H )‖ =Op( k3

T 1/2 ) =Op(( k
8

T
k8

T
k8

T
8

T )1/8 )
p−→ 0.

Lemma 5. Under the assumptions used for Proposition 6, for any integer 1 ≤ p ≤ h− 1,

1√
T −H

T−H∑
t=1

yt
[
apεt+h−p − b̂(p),GLSε̂t+h−p

]
�̂

= b̂(p),GLSah−p−1︸ ︷︷ ︸
plim=ah−1

√
T −H(â− a)︸ ︷︷ ︸

d−→
+ op(1).

Proof.

1√
T −H

T−H∑
t=1

yt
[
apεt+h−p − b̂(p),GLS ε̂t+h−p

]
�̂

=

1√
T −H

T−H∑
t=1

yta
pεt+h−p

�̂

−

1√
T −H

T−H∑
t=1

yt b̂
(p),GLSε̂t+h−p

�̂
.

Substitute out ε̂t+h−p = (a− â)yt+h−p−1 + εt+h−p,

=

1√
T −H

T−H∑
t=1

yta
pεt+h−p

�̂
−

1√
T −H

T−H∑
t=1

yt b̂
(p),GLS((a− â)yt+h−p−1 + εt+h−p

)
�̂

=

1√
T −H

T−H∑
t=1

yta
pεt+h−p

�̂
−

1√
T −H

T−H∑
t=1

yt b̂
(p),GLS(a− â)yt+h−p−1

�̂

−

1√
T −H

T−H∑
t=1

yt b̂
(p),GLSεt+h−p

�̂

= (ap − b̂(p),GLS)︸ ︷︷ ︸
plim=0

1√
T −H

T−H∑
t=1

ytεt+h−p

�̂︸ ︷︷ ︸
d−→

− b̂(p),GLS(a− â)

1√
T −H

T−H∑
t=1

ytyt+h−p−1

�̂
,
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where convergence in distribution is due to the mixingale central limit theorem. It fol-
lows that

1√
T −H

T−H∑
t=1

yt
[
apεt+h−p − b̂(p),GLS ε̂t+h−p

]
�̂

= op(1) + b̂(p),GLS(â− a)

1√
T −H

T−H∑
t=1

ytyt+h−p−1

�̂
.

Substituting out yt+h−p−1 = ah−p−1yt + ah−p−2εt+1 + · · · + aεt+h−p−2 + εt+h−p−1

= op(1) + b̂(p),GLSah−p−1︸ ︷︷ ︸
plim=ah

√
T −H(â− a)︸ ︷︷ ︸

d−→
+ b̂(p),GLS(â− a)︸ ︷︷ ︸

plim=0

×

1√
T −H

T−H∑
t=1

yt
(
ah−p−2εt+1 + · · · + aεt+h−p−2 + εt+h−p−1

)
�̂︸ ︷︷ ︸
d−→

,

where convergence in distribution is due to the mixingale central limit theorem. Conse-
quently,

1√
T −H

T−H∑
t=1

yt
[
apεt+h−p − b̂(p),GLS ε̂t+h−p

]
�̂

= b̂(p),GLSah−p−1︸ ︷︷ ︸
plim=ah−1

√
T −H(â− a)︸ ︷︷ ︸

d−→
+op(1).

A.2. Proofs of theorems

Proof of Theorem 2. To show consistency of LP GLS, it suffices to show that ‖U4T ‖ p−→
0 because∥∥B̂(k, h, GLS) −B(k, h)

∥∥≤ (‖U1T ‖ + ‖U2T ‖ + ‖U3T ‖ − ‖U4T ‖)∥∥�̂−1
k

∥∥
1.

From Proposition 2, we know ‖�̂−1
k ‖1 is bounded in probability and that ‖U1T ‖, ‖U2T ‖,

and ‖U3T ‖ converge in probability to 0. The proof showing ‖U4T ‖ p−→ 0 will be a proof
by induction. Assume the consistency for the previous h− 1 horizons has been proven.

Hence, ‖�̂l‖ p−→ ‖�l‖< ∞ for 1 ≤ l ≤ h− 1. Note ε̂t,k = εt + (
∑∞

j=k+1 Ajyt−j ) − (B̂(k, 1) −
B(k, 1))Xt−1,k ). Therefore,

U4T =
h−1∑
l=1

�̂l

{
(T − k−H )−1

T−H∑
t=k

(
εt+h−l +

( ∞∑
j=k+1

Ajyt+h−l−j

)
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− (B̂(k, 1) −B(k, 1)
)
Xt+h−l−1,k

)
X ′

t,k

}
.

By Lemma A.2, part C, in Goncalves and Kilian (2007), we know that ‖{(T − k −
H )−1∑T−H

t=k εt+h−lX
′
t,k}‖ p−→ 0, for 1 ≤ l ≤ h−1. Since h−1 is finite and ‖�̂l‖ p−→ ‖�l‖< ∞,

∥∥∥∥∥
h−1∑
l=1

�̂l

{
(T − k−H )−1

T−H∑
t=k

εt+h−lX
′
t,k

}∥∥∥∥∥
≤

h−1∑
l=1

‖�̂l‖︸ ︷︷ ︸
bounded

∥∥∥∥∥
{

(T − k−H )−1
T−H∑
t=k

εt+h−lX
′
t,k

}∥∥∥∥∥︸ ︷︷ ︸
plim=0

p−→ 0.

To show ‖U4T ‖ p−→ 0, it now suffices to show that∥∥∥∥∥
h−1∑
l=1

�̂l

{
(T −k−H )−1

T−H∑
t=k

(( ∞∑
j=k+1

Ajyt+h−l−j

)
− (B̂(k, 1)−B(k, 1)

)
Xt+h−l−1,k

)
X ′

t,k

}∥∥∥∥∥
converges in probability to 0. Owing to h− 1 is finite and ‖�̂l‖ p−→ ‖�l‖ < ∞, this simpli-
fies to showing∥∥∥∥∥

{
(T − k−H )−1

T−H∑
t=k

( ∞∑
j=k+1

Ajyt+h−l−j

)
X ′

t,k

}

−
{

(T − k−H )−1
T−H∑
t=k

((
B̂(k, 1) −B(k, 1)

)
Xt+h−l−1,k

)
X ′

t,k

}∥∥∥∥∥ p−→ 0.

By Theorem 1 in Lewis and Reinsel (1985), ‖{(T − k − H )−1∑T−H
t=k ((

∑∞
j=k+1 Aj ×

yt+h−l−j ))X ′
t,k}‖ p−→ 0. Now all that is left to show is ‖{(T − k − H )−1∑T−H

t=k ((B̂(k, 1) −
B(k, 1))Xt+h−l−1,k )X ′

t,k}‖ p−→ 0. Note that∥∥∥∥∥
{

(T − k−H )−1
T−H∑
t=k

((
B̂(k, 1) −B(k, 1)

)
Xt+h−l−1,k

)
X ′

t,k

}∥∥∥∥∥
≤
∥∥∥∥∥
{(

B̂(k, 1) −B(k, 1)
)∥∥∥∥∥︸ ︷︷ ︸

plim=0

∥∥∥∥∥(T − k−H )−1
T−H∑
t=k

Xt+h−l−1,kX
′
t,k

}∥∥∥∥∥
1︸ ︷︷ ︸

bounded

p−→ 0.

Since this is a proof by induction, it was assumed that the first h− 1 horizons are consis-
tent, so the first term converges in probability to 0. The second term is bounded due to
‖�̂k‖1 = ‖(T −k−H )−1∑T−H

t=k Xt,kX
′
t,k‖1 being bounded and since the autocovariances
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are absolutely summable. It follows that∥∥∥∥∥�̂l

{
(T −k−H )−1

T−H∑
t=k

((
εt+h−l +

( ∞∑
j=1

Ajyt+h−l−j

)
−
(

k∑
i=1

Âiyt+h−l−i

)))
X ′

t,k

}∥∥∥∥∥ p−→ 0,

for each 1 ≤ l ≤ h − 1. Therefore, ‖U4T ‖ p−→ 0. To complete the proof by induction, note
that the horizon 1 LP is a VAR, and the consistency results for the VAR were proved in
Goncalves and Kilian (2007, Lemma A.2).

Proof of Theorem 3. By Lemma 1 and Proposition 5, we know that∥∥∥∥∥∥∥∥∥∥∥∥∥

⎛⎜⎜⎜⎜⎜⎜⎜⎝
l(k, H )′

⎡⎢⎢⎢⎢⎣
√
T − k−H vec

[
B̂(k, H, GLS) −B(k, H )

]
...√

T − k−H vec
[
B̂(k, 2, GLS) −B(k, 2)

]√
T − k−H vec

[
B̂(k, 1, OLS) −B(k, 1)

]

⎤⎥⎥⎥⎥⎦
√
T − k−H vech[
̂−
]

⎞⎟⎟⎟⎟⎟⎟⎟⎠

− (T − k−H )−1/2
T−H∑
t=k

StrucScore(H )
t+H

∥∥∥∥∥∥∥∥∥∥∥∥∥
= op(1),

where

StrucScore(H )
t+H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
l(k, H )′

⎡⎢⎢⎢⎢⎣
(
�−1
k Xt,k ⊗ Ir

)
εt+H + sk,H

(
�−1
k Xt,k ⊗ Ir

)
εt+1

...(
�−1
k Xt,k ⊗ Ir

)
εt+2 + sk,2

(
�−1
k Xt,k ⊗ Ir

)
εt+1(

�−1
k Xt,k ⊗ Ir

)
εt+1

⎤⎥⎥⎥⎥⎦
vech

(
εt+1ε

′
t+1 −


)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

To use the mixingale CLT, I need to show:

1. {ζ′StrucScore(H )
t , Ft } is an adapted mixingale with γi = Op(i−1−δ ) for some δ > 0

ζ = [ζ′
11, ζ′

21]′ is a {[r(r + 1)/2] + 1} × 1 Cramer–Wold device where ζ11 is a scalar.
It follows from Proposition 3 that {Score(H )

t , Ft } is an adapted mixingale with ct =
(E(E(Score(H )

t |Ft−i )2 ))1/2�, where �=Hν/(ν+1) for any ν > 0, and γi = i−(ν+1)/ν . By The-
orem 3.49 and Lemma 6.16 in White (2001),(

E
(
E
(
ζ′

21 vech
(
εtε

′
t −


)
|Ft−i

)2))1/2 ≤ 2
(
21/2 + 1

)
α(i)1/4(E[(ζ′

21 vech
(
εtε

′
t −


))4])1/4
.

By Assumption 4, α(i)1/4 = Op(i−(ν+1)/ν ) since α(m) = Op(m−4(ν+1)/ν ). So, {ζ′
21 vech(εt ×

ε′
t − 
), Ft } is an adapted mixingale sequence with ct = 2(21/2 + 1)(E[(ζ′

21 vech(εtε′
t −
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))4])1/4 and γi = i−(ν+1)/ν . It follows by Minkowski’s inequality that {ζ′StrucScore(H )
t , Ft }

is an adapted mixingale sequence with

ct = (E(E(ζ′
11StrucScore(H )

t |Ft−i

)2))1/2
�+ 2

(
21/2 + 1

)(
E
[(
ζ′

21 vech
(
εtε

′
t −


))4])1/4
,

where � = Hν/(ν+1) and γi = i−(ν+1)/ν . Therefore, {ζ′StrucScore(H )
t , Ft } is a mixingale of

size γi =Op(i−(ν+1)/ν ).

Proof of Theorem 4. Let

yt+1 = ayt + εt+1,

|a| < 1 and εt is an i.i.d. process with E(εt ) = 0 and var(εt ) = σ2. This implies thatE(yt ) =
0 and the var(yt ) =E(y ′

tyt ) = σ2

(1−a2 )
. The LP GLS model at horizon h is

yt+h − b̂(h−1),GLSε̂t+1 − · · · − b̂(1),GLSε̂t+h−1 = b(h)yt + ũ(h)
t+h.

Note that

lim
T→∞

var
[√

T −H
(
b̂(h),OLS − ah

)]
= lim

T→∞{var
[√

T −H
(
b̂(h),GLS − ah

)− √
T −H

(
b̂(h),GLS − b̂(h),OLS)]

= lim
T→∞

{
var
[√

T −H
(
b̂(h),GLS − ah

)]+ var
[√

T −H
(
b̂(h),OLS − b̂(h),GLS)]

+ 2 cov
[√

T −H
(
b̂(h),GLS − ah

)
,
√
T −H

(
b̂(h),OLS − b̂(h),GLS)]}.

In order to show that the GLS estimator is at least as efficient, it suffices to show that

lim
T→∞

{
2 cov

[√
T −H

(
b̂(h),GLS − ah

)
,
√
T −H

(
b̂(h),OLS − b̂(h),GLS)]}≥ 0.

By Proposition 6,

√
T −H

(
b̂(h),GLS − ah

) p−→ (h− 1)ah−1

1√
T −H

T−H∑
t=1

ytεt+1

�̂
+

1√
T −H

T−H∑
t=1

ytεt+h

�̂
.

By Proposition 6, we also know that

√
T −H

[
b̂(h),OLS − b̂(h),GLS] p−→

1√
T −H

T−H∑
t=1

yt

(
h−1∑
p=1

apεt+h−p

)
�̂

− (h− 1)ah−1

1√
T −H

T−H∑
t=1

ytεt+1

�̂
.
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So,

lim
T→∞

cov
[√

T −H
[
b̂(h),OLS − b̂(h),GLS], √

T −H
{
b̂(h),GLS − ah

}]

=E

⎡⎢⎢⎢⎢⎢⎢⎣(h− 1)ah−1

1√
T −H

T−H∑
m=1

ymεm+1

�̂
×

1√
T −H

T−H∑
n=1

yn

(
h−1∑
p=1

apεn+h−p

)
�̂

⎤⎥⎥⎥⎥⎥⎥⎦

−E

⎡⎢⎢⎢⎢⎢⎣(h− 1)ah−1

1√
T −H

T−H∑
m=1

ymεm+1

�̂
× (h− 1)ah−1

1√
T −H

T−H∑
n=1

ynεn+1

�̂

⎤⎥⎥⎥⎥⎥⎦

+E

⎡⎢⎢⎢⎢⎢⎢⎣
1√

T −H

T−H∑
m=1

ymεm+h

�̂
×

1√
T −H

T−H∑
n=1

yn

(
h−1∑
p=1

apεn+h−p

)
�̂

⎤⎥⎥⎥⎥⎥⎥⎦

−E

⎡⎢⎢⎢⎢⎢⎣
1√

T −H

T−H∑
m=1

ymεm+h

�̂
× (h− 1)ah−1

1√
T −H

T−H∑
n=1

ynεn+1

�̂

⎤⎥⎥⎥⎥⎥⎦ .

Since �̂
p−→ σ2

(1−a2 )
, we have

= lim
T→∞

((
1 − a2)
σ2

)2
{

(h− 1)ah−1 1
T −H

E

[
T−H∑
m=1

T−H∑
n=1

ymεm+1yn

(
h−1∑
p=1

apεn+h−p

)]

− a2(h−1)(h− 1)2 1
T −H

E

[
T−H∑
m=1

T−H∑
n=1

ymεm+1ynεn+1

]

+ 1
T −H

E

[
T−H∑
m=1

T−H∑
n=1

ymεm+hyn

(
h−1∑
p=1

apεn+h−p

)]

− 1
T −H

ah−1(h− 1)E

[
T−H∑
m=1

T−H∑
n=1

ymεm+hynεn+1

]}

=
((

1 − a2)
σ2

)2
{

(h− 1)ah−1
h−1∑
p=1

ah−1 σ4(
1 − a2) − a2(h−1)(h− 1)2 σ4(

1 − a2)
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+
h−1∑
p=1

a2p σ4(
1 − a2) − a2(h−1)(h− 1)

σ4(
1 − a2)

}

= (1 − a2)︸ ︷︷ ︸
positive

{(
h−1∑
p=1

a2p

)
− a2(h−1)(h− 1)

}
︸ ︷︷ ︸

nonnegative

,

where the second to last equality is due to independence of the errors. Note that the last
term is nonnegative since(

h−1∑
p=1

a2p

)
a2(h−1)(h− 1)

=

h−1∑
p=1

a2(p−h+1)

h− 1
≥ 1, for h= 2, 3, � � � ,

where the inequality is due to p+1 ≤ h and |a| < 1. Therefore, GLS is more efficient since

lim
T→∞

var
[√

T −H
(
b̂(h),OLS − ah

)]
= lim

T→∞
{
var
[√

T −H
(
b̂(h),GLS − ah

)]︸ ︷︷ ︸
positive

+ var
[√

T −H
(
b̂(h),OLS − b̂(h),GLS)]︸ ︷︷ ︸
positive

+ 2 cov
[√

T −H
(
b̂(h),GLS − ah

)
,
√
T −H

(
b̂(h),OLS − b̂(h),GLS)]}︸ ︷︷ ︸

nonnegative

.

Proof of Theorem 5. Note that ŝk,h can replace ŝ∗k,h in ˆRStrucScore
(H ),∗
t+1 since

plim{(T − k − H )−1/2∑T−H
t=k

ˆRStrucScore
(H ),∗
t+1 } is unaffected by the change. To see why,

note that∥∥∥∥∥
(
h−1∑
l=1

{
�̂−1
k �̂′

(h−l−1),k ⊗ �̂∗
l − �̂l

})
(T − k−H )−1/2

T−H∑
t=k

(
�−1
k Xt,k ⊗ Ir

)
εt+1

∥∥∥∥∥
≤
∥∥∥∥∥(T − k−H )1/2

(
h−1∑
l=1

{
�̂−1
k �̂′

(h−l−1),k ⊗ �̂∗
l − �̂l

})∥∥∥∥∥
1︸ ︷︷ ︸

Op(k1/2 )

×
∥∥∥∥∥(T − k−H )−1

T−H∑
t=k

(
�−1
k Xt,k ⊗ Ir

)
εt+1

∥∥∥∥∥︸ ︷︷ ︸
Op( k1/2

T1/2 )

= Op

(
k

T 1/2

)
.

‖l(k, H )′‖ is bounded by assumption and can be ignored. The first term after the in-
equality is Op(k1/2 ) because ‖�̂−1

k ‖1 and ‖�̂′
(h−l−1),k‖1 are consistent and bounded in

probability and ‖�̂∗
l − �̂l‖ = Op( k1/2

T 1/2 ) by Lemma 2. The second term is Op( k1/2

T 1/2 ) by
Proposition 2.
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Due to independence of the blocks, var∗((T − k−H )−1/2∑T−H
t=k

ˆRStrucScore
(H ),∗
t+1 ) =

V̂ lr(k, H ) by Lemma 4. Moreover, by Lemma 4 we know that ‖V̂ lr(k, H )‖ p−→ ‖V (k, H )‖.
Note that

(T − k−H )−1/2
T−H∑
t=k

ˆRStrucScore
(H ),∗
t+1 =

N∑
j=1

(N )−1/2()−1/2
∑

s=1

ˆRStrucScore
(H ),∗
k+s+(j−1)

=
N∑
j=1

Q∗
j ,

where Q∗
j = (N )−1/2()−1/2∑

s=1
ˆRStrucScore

(H ),∗
k+s+(j−1). It follows that E∗[Q∗

j ] = 0,

E∗[Q∗
j Q

∗
s ] = 0 for s �= j, and E∗[Q∗

j Q
∗
j ] = V̂ lr (k,H )

N . To show asymptotic normality, I will
use the CLT for triangular arrays of independent random variables, Theorem 27.3 in
Billingsley (1995). We need to show

1. N∑
j=1

E∗(Q∗
j Q

∗
j
′) p∗

−→ V (k, H ),

2. N∑
j=1

E∗(∣∣ζ′Q∗
j

∣∣2+ξ)
[

N∑
j=1

E∗((ζ′Q∗
j

)2)](2+ξ)/2

p∗
−→ 0,

where ζ is a {[r(r + 1)/2] + 1} × 1 Cramer–Wold device. The first condition has already
been proven. For a Lyapunov condition, set ξ = 2. The denominator is bounded since

E∗[(ζ′Q∗
j

)2] = (N )−1 ()−1
∑

n=1

∑
m=1

ζ ˆRStrucScore
(H )
m+(r−1)

(
ζ ˆRStrucScore

(H )
n+(r−1)

)′
︸ ︷︷ ︸

ζV̂ lr (k,H )ζ′=Op(1)

= Op
(
N−1).

Therefore,

N∑
j=1

E∗[(ζ′Q∗
j

)2]= Op(1) =⇒
[

N∑
j=1

E∗((ζ′Q∗
j

)2)]2

= Op(1).

To show the numerator converges in probability to 0, note that since η has finite fourth
moments and (ζ′Q∗

j )2 =Op(N−1 ),

N∑
j=1

E∗(∣∣ζ′Q∗
j

∣∣4)= N∑
j=1

E∗[(ζ′Q∗
j

)2(ζ′Q∗
j

)2]= Op
(
N−1) p−→ 0.
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A.3. Structural breaks and time-varying parameter LP

Since autocorrelation is explicitly modeled, it is possible to estimate the time-varying
parameter LP. This was thought not possible before because the Kalman filter and other
popular techniques used to estimate time-varying parameter models require that the
error term is uncorrelated or that the autocorrelation process is specified (Hamilton
(1994)). Researchers are often interested in whether there is parameter instability in re-
gression models. As noted in Granger and Newbold (1977), macro data encountered in
practice are unlikely to be stationary. Stock and Watson (1996) and Ang and Bekaert
(2002) show many macroeconomic and financial time series exhibit parameter insta-
bility. It is also commonplace for regressions with macroeconomic time series to display
heteroskedasticity of unknown form (Stock and Watson (2007)), and in order to do valid
inference, the heteroskedasticity must be taken into account. Parameter instability can
occur for many reasons such as policy changes, technological evolution, changing eco-
nomic conditions, etc. If parameter instability is not appropriately taken into account,
it can lead to invalid inference, poor out-of-sample forecasting, and incorrect policy
evaluation. Moreover, as shown in Granger (2008), time-varying parameter models can
approximate any nonlinear model (nonlinear in the variables and/or the parameters),
which makes them more robust to model misspecification.

It is worth reiterating that the GLS procedure presented in Section 2 and the con-
sistency and asymptotic normality of the procedure assumes stationarity.1 Nonstation-
arity can be caused by unit roots or structural breaks. When nonstationarity is caused
by structural breaks, all methods will break down if they do not properly take into ac-
count change(s) in the parameters. Stationarity guarantees that the model has a linear
time-invariant VMA representation. If the data are not stationary and structural breaks
are the cause, then the procedure may not eliminate autocorrelation. To understand
why it matters if structural breaks are present, note that if the data are not stationary,
it is possible for the estimated horizon 1 LP residuals to be uncorrelated since the VAR
can still produce reasonable one-step ahead forecasts when the model is misspecified
(Jordà (2005)). A “Wold representation” exists for nonstationary data, but the impulse
responses for this VMA representation are allowed to be time dependent (Granger and
Newbold (1977), Priestley (1988)).2 Assuming there is no deterministic component, any
time-series process can be written as

yt = εt +
∞∑
i=1

�i,tεt−i,

1If unit roots are the cause, consistency can still hold if the errors have enough moments (Jordà (2009)),
so the procedure would still eliminate autocorrelation, but asymptotic normality of the results could break
down in general. That being said, inference would be valid in the presence of unit roots in certain cases (see
Jordà (2009, Proposition 4) for details). Montiel Olea and Plagborg-Møller (2022) show that lag augmenta-
tion with LP can handle unit roots more generally.

2Nonstationarity in economics typically refers to explosive behavior (e.g., unit roots), but nonstationarity
is more general and refers to a distribution that does not have a constant mean and/or variance over time.
Depending on the true model, differencing may not make the data stationarity (Leybourne, McCabe, and
Tremayne (1996), Priestley (1988)).
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where �i,t is now indexed by the horizon and time period and var(εt ) = 
t . Using re-
cursive substitution, the time dependent Wold representation can be written as a time
dependent VAR or a time dependent LP. It can be shown that a time dependent version
of Theorem 1 exists. The horizon h time dependent LP is

yt+h = B(h)
1,t yt +B(h)

2,t yt−1 + · · · + e(h)
t+h,

where

e(h)
t+h = �h−1,tεt+1 + · · · +�1,tεt+h−1 + εt+h,

B(h)
1,t = �h,t .

If impulse responses are time dependent at higher horizons, but a time-invariant version
of LP GLS is applied, autocorrelation may not be eliminated at these horizons because
the time-invariant LP are misspecified. In other words, if the data are nonstationary and
the nonstationarity is caused by structural breaks, the time-invariant version of LP GLS
may not eliminate autocorrelation in the residuals since the estimates of the impulse
responses may not be consistent. In this sense, LP GLS is a type of general misspecifi-
cation test, because if one had estimated LP using OLS and HAC standard errors, the
autocorrelation in the residuals would not hint toward potential misspecification since
the residuals are inherently autocorrelated.

Just like the time-invariant case, k can be infinite in population but will be truncated
to a finite value in finite samples. Similar to the time-invariant transformation, one can
do a GLS transformation ỹ(h)

t+h = yt+h − B̂(h−1)
1,t ε̂t+1,k − · · · − B̂(1)

1,t ε̂t+h−1,k. Then one can
estimate horizon h via the following equation:

ỹ(h)
t+h = B(h)

1,t yt +B(h)
2,t yt−1 + · · · +B(h)

k,t yt−k+1 + ũ(h)
t+h,k.

Estimation is carried out in the same way as in the time-invariant case, except the mod-
els are being estimated with time-varying parameters.

Just like a static LP model can be less sensitive to model misspecification than a static
VAR, a time-varying parameter LP model may be less sensitive to model misspecification
than a time-varying parameter VAR. If the true model is time varying, then the misspeci-
fication of the VAR can extend to the time variation as well. Due to the iterative nature of
the VAR, misspecification in time variation would be compounded in the construction
of the impulse responses alongside other misspecifications in the VAR. Time-varying
parameter LP, however, allow for the amount and nature of time variation to change
across horizons. Since time-varying parameter models can also approximate any non-
linear model, time-varying parameter LP can do a better job capturing the time variation
in the impulse responses at each horizon.3

As noted in Granger and Newbold (1977), macro data encountered in practice are
unlikely to be stationary, implying that the Wold representation may be time dependent.

3This will depend on the nature of the time variation in the Wold representation and how time variation
is modeled when estimating (i.e., random walk, nonparametric, etc.).
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If the impulse responses of the Wold representation are time dependent, since time-
varying parameter models can approximate any form of nonlinearity (Granger (2008)),
a time-varying version of LP GLS may be applied. The time-varying parameter version
of the above GLS procedure presented in Section 2 will be able to eliminate autocorrela-
tion as long as the parameter changes are not so violent that a time-varying parameter
model cannot track them. All else equal, the more adaptive the time-varying parameter
model, the better the time-varying parameter model will be able to track changes and
the better the approximation.4 If the nature of the time dependence is known, that is,
the researcher knows when the structural breaks occur or the nature of the time varia-
tion, then that specific time dependent model can be applied to the LP GLS procedure.
The conditions under which this procedure is consistent and asymptotically normal,
as well as the proofs for consistency and asymptotic normality could vary depending
on the type of time-dependent model being used and the estimation procedure and is
therefore left for future research.

A.4. Robustness checks and additional Monte Carlos

The coverage distortion results for the bootstrap and analytical VARs in the empirically
calibrated VAR(16) Monte Carlos is alarming. Due to sample size limitations, it could
be the case that the some of the estimates of the empirically calibrated VAR(16)’s are
erratic and are the source of the distortions. As a robustness check, I generate the data
using a VAR(10), VAR(12), and VAR(14), and estimated the data for all of the models
using 8 lags. For the fiscal VAR when the data was generated using the VAR(10), coverage
could drop as low as approximately 80%, but would be at least in the mid-80s overall.
Distortions show up significantly when estimating the VAR(12) and VAR(14). For the
technology VAR, there are coverage distortions for some parameters and horizons for the
VAR(10) and they only get worse for the VAR(12) and VAR(14). As another robustness
check, I also generate the data using a VAR(8), then estimate the models using 4 lags
and then 6 lags. The severe coverage distortions for the fiscal and technology VAR exist
when both 4 and 6 lags are used in estimation.

As discussed in Poskitt and Yao (2017), the two sources of estimation error for struc-
tural impulse responses identified via long-run restrictions can be broken down into
“truncation bias” and “identification bias,” which we can think of as estimation error
for the Wold coefficients and estimation error for the long-run identification restriction.
To help pinpoint how this affects the Poskitt and Yao (2017) Monte Carlo, I present the
results for just the Wold coefficients. Select results are presented in Figure A.1.

LP OLS and the analytical VAR have the best coverage, which is at or near the nom-
inal level throughout. The different LP GLS bootstrap estimators have close to nominal
coverage for around the first 8 or so horizons for all of the impulse responses, but at
longer horizons coverage would dip for 2 of the four impulse responses to the mid-80s
for the nonbias adjusted estimator and low to mid-80s for the bias adjusted estimator.5

4Baumeister and Peersman (2013) show via Monte Carlo simulations that time-varying parameter mod-
els are able to capture discrete breaks in a satisfactory manner should they occur.

5Additional Monte Carlo evidence shows that the dip is only temporary and coverage returns to approx-
imately nominal level after horizon 15.
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Figure A.1. Coverage rates for 95% confidence intervals and average length for RBC VARMA.
Note: Bias-adjusted LP GLS bootstrap (LP GLS Boot BA), LP GLS bootstrap (LP GLS Boot), Ana-
lytical LP GLS estimator (LP GLS), LP OLS with equal-weighted cosine HAC standard errors (LP
OLS), Bias-adjusted VAR bootstrap (VAR Boot BA), Analytical VAR estimator (VAR).

For the analytical LP GLS estimator, coverage would be at or near the nominal level for
the first 8 or so horizons for all of the impulse responses, while it could drop as low as
approximately 80% for higher horizons for 2 of the 4 impulse responses. The VAR boot-
strap had serious coverage distortions with coverage falling as low as 38% for one im-
pulse response and 55% for another. The VAR bootstrap had the shortest average length
throughout followed by the LP GLS estimators. The average length of the analytic VAR
and LP OLS, however, could be significantly larger than all of the other estimators at
longer horizons.

Inspired by Barnichon and Matthes (2018), Jordà, Òscar, Singh, and Taylor (2020),
I include the following MA(35) generated using Gaussian basis functions:

yt = εt +
35∑
i=1

θiεt−i, εt ∼N(0, 1),

where

θi = θ∗
i

35∑
i=1

θ∗
i

, θ∗
i = αexp

{
−
(
j −β

δ

)2}
for j = 1, � � � , 35, and α = 1, β = 6, δ= 12.

The parameters are chosen so that the true impulse response is hump shaped, which is
thought to be a common occurrence in macro (Auclert, Rognlie, and Straub (2020)), and
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Figure A.2. Coverage rates for 95% confidence intervals and average length for MA(35). Note:
Bias-adjusted LP GLS bootstrap (LP GLS Boot BA), LP GLS bootstrap (LP GLS Boot), Analytical
LP GLS estimator (LP GLS), LP OLS with equal-weighted cosine HAC standard errors (LP OLS),
Bias-adjusted VAR bootstrap (VAR Boot BA), Analytical VAR estimator (VAR).

the cumulative impulse response sums up to 1. The results are presented in Figure A.2.
Here, the LP estimators have at least 88% coverage for all horizons and approximately
95% coverage for most horizons. The bootstrap VAR estimator, on the other hand, has
about 90% coverage for the first 1 or 2 horizons before coverage drops precipitously.
The analytic VAR estimator had coverage comparable if not slightly better than the LP
estimators. There are little to no efficiency gains from using the LP GLS estimators as
all of the estimators except for the VAR bootstrap have approximately the same average
length throughout.

I redo several of the Monte Carlos in Kilian and Kim (2011). I start with the following
VAR (1):

yt+1 =A1yt + εt+1, εt ∼N(0, 
),

where

A1 =
[
A11 0
0.5 0.5

]
, A11 ∈ {0.5, 0.9, 0.97}, and 
=

[
1 0.3

0.3 1

]
.

Despite the model being simplistic, it has been a benchmark in the literature. For this
DGP, the bias-adjusted VAR bootstrap performs the best overall. The LP GLS bootstraps
also perform well, but they are not as efficient, and for the persistent eigenvalues, the
coverage is slightly worse than the bias-adjusted VAR. The analytical LP GLS, LP OLS,
and the analytical VAR performance deteriorates the most when the eigenvalues are
more persistent. Despite this, all of the estimators have coverage of at least 80% for all
horizons. The LP GLS estimators are more efficient than the LP OLS estimator. Select
results are presented in Figure A.3.

The following is from Kilian and Kim (2011) based on quarterly investment growth,
inflation, and the commercial paper rate:

yt+1 = A1yt + εt+1 +M1εt , εt ∼ N
(
0, PP ′),
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Figure A.3. Coverage rates for 95% confidence intervals and average length for VAR(1) models.
Note: Bias-adjusted LP GLS bootstrap (LP GLS Boot BA), LP GLS bootstrap (LP GLS Boot), Ana-
lytical LP GLS estimator (LP GLS), LP OLS with equal-weighted cosine HAC standard errors (LP
OLS), Bias-adjusted VAR bootstrap (VAR Boot BA), Analytical VAR estimator (VAR).

where

A1 =
⎡⎢⎣ 0.5417 −0.1971 −0.9395

0.04 0.9677 0.0323
−0.0015 0.0829 0.808

⎤⎥⎦ , M1 =
⎡⎢⎣−0.1428 −1.5133 −0.7053

−0.0202 0.0309 0.1561
0.0227 0.1178 −0.0153

⎤⎥⎦ ,

P =
⎡⎢⎣ 9.2352 0 0

−1.4343 3.607 0
−0.7756 1.2296 2.7555

⎤⎥⎦ .

All of the estimators have at least 90% for all parameters. The average length for the LP
GLS estimators are quite a bit shorter than the LP OLS estimator. Also, note that the av-
erage length of the VAR analytic confidence intervals are much wider than the bootstrap
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Figure A.4. Coverage rates for 95% confidence intervals and average length for VARMA(1, 1).
Note: Bias-adjusted LP GLS bootstrap (LP GLS Boot BA), LP GLS bootstrap (LP GLS Boot), Ana-
lytical LP GLS estimator (LP GLS), LP OLS with equal-weighted cosine HAC standard errors (LP
OLS), Bias-adjusted VAR bootstrap (VAR Boot BA), Analytical VAR estimator (VAR).

VAR confidence intervals and even the LP GLS intervals. Select results are presented in
Figure A.4.

In summary for the Kilian and Kim (2011) data generating processes, the LP GLS
bootstraps performed well, but not as well as the bias-adjusted bootstrap VAR. The LP
GLS analytical estimator tended to perform better than the LP OLS, but all three of these
estimators had coverage that tended to fall off more when estimators had more per-
sistent eigenvalues. Surprisingly for the VARMA(1, 1) DGP, most estimators had average
lengths shorter than the infinite-order analytic VAR estimator. Relative to Kilian and Kim
(2011), the LP estimators used in these Monte Carlos performed much better. The poor
performance of LP estimators in Kilian and Kim (2011) was due to two reasons. First, Kil-
ian and Kim (2011) were limited to using the LP estimators of the time. They used a block
bootstrap LP estimator and an LP OLS estimator with Newey–West standard errors. The
drawbacks of using a standard block bootstrap for LP are discussed in the next section
(Section A.5). Moreover, Newey–West standard errors have well-known coverage distor-
tions (Müller (2014)). The equal-weighted cosine HAC standard errors of Lazarus, Lewis,
Stock, and Watson (2018) is a much better alternative. Monte Carlos with Newey–West
standard errors are not included, but preliminary Monte Carlo evidence corroborates
the claim that equal-weighted cosine HAC standard errors are a better alternative rel-
ative to standard Newey–West. Second, not explicitly modeling for autocorrelation and
doing a GLS correction appears to have negatively affected the LP performance in the
Kilian and Kim (2011) Monte Carlos.

A.5. Bootstrapping inference

As noted in Brüggemann, Jentsch, and Trenkler (2016), structural inference using the
standard wild bootstrap is invalid. The intuition behind their result is that if you ap-
ply a wild bootstrap to the errors, it cannot properly mimic the fourth-order moments,
and since fourth-order moments are needed to calculate V12(k, H ) = V21(k, H )′ and V22,
structural inference based on the wild bootstrap would be invalid. A standard block
bootstrap on y could be used, but for LP if one wants to calculate a statistic which
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is a function of parameters from multiple horizons, that is, a cumulative multiplier, it
has the drawback that the blocks would need to be of length H + k + . To appreciate
this point, note that up to this point, when a researcher wants to conduct joint infer-
ence using LP OLS via a block bootstrap, they would first need to construct all possible
{yt+H , � � � , yt−k+1} tuples to preserve the joint dependence. Then blocks of  consecu-
tive tuples are concatenated together to create bootstrap samples of the data, which are
then used to construct LP estimates. This is equivalent to sampling random blocks of
size H + k +  and concatenating them. To highlight why this is relevant in practice,
think of the application of Gertler and Karadi (2015) as implemented in Ramey (2016).
Impulse responses were estimated 48 horizons out and the regressions included 2 lags.
If one wanted to calculate the cumulative impact of a monetary policy shock for the 48
horizons, H = 48 and k= 2, and the block length would be 50 + . If one were to instead
estimate impulse horizons 16 horizons out, the block length would be 18 + . Consid-
ering the bias variance tradeoff involved in choosing a block length, having the block
length also depend on H and k is clearly an undesirable feature.

To overcome these issues, I propose a hybrid score block wild bootstrap. This boot-
strap combines the score wild bootstrap Kline and Santos (2012), with the block wild
bootstraps of Shao (2011) and Yeh (1998). Brüggemann, Jentsch, and Trenkler (2016) ar-
gue that the block wild bootstrap leads to invalid inference, but that result is due to the
way they implemented the bootstrap. The key is to recognize since we are not doing in-
ference on the error terms, we do not need to bootstrap the error terms and generate the
dependent variable like you would in a traditional wild bootstrap. This can be seen by
using the structural version of the rearranged score. Note that

RStrucScore(H )
t+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
l(k, H )′

⎡⎢⎢⎢⎢⎣
(
�−1
k Xt−H+1,k ⊗ Ir

)
εt+1 + sk,H

(
�−1
k Xt,k ⊗ Ir

)
εt+1

...(
�−1
k Xt−1,k ⊗ Ir

)
εt+1 + sk,2

(
�−1
k Xt,k ⊗ Ir

)
εt+1(

�−1
k Xt,k ⊗ Ir

)
εt+1

⎤⎥⎥⎥⎥⎦
vech

(
εt+1ε

′
t+1 −


)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where RStrucScore(H )
t+1 is the rearranged “structural” score where the ε′s line up. Apply-

ing the block wild bootstrap to the sample analogue of the rearranged score leads to a
valid bootstrap. Let η be a zero mean unit variance random variable with finite fourth
moments. For simplicity, assume T − k − H = N where N is the number of blocks of

length  is the length of each block. Define ˆRStrucScore(H )
t+1 as the sample analogue of

RStrucScore(H )
t+1 ; anywhere a parameter is not known, the estimated sample analogue

would be used, that is, �̂−1
k for �−1

k . Instead of multiplying the rearranged scores by the
i.i.d. {ηk+1, � � � , ηT−H+1}, yielding

ˆRStrucScore
(H ),∗
t = ˆRStrucScore(H )

t ηt ,

one would create

ˆRStrucScore
(H ),∗
t = ˆRStrucScore(H )

t η[t/].
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In other words, cut {
ˆRStrucScore(H )

k+1, � � � , ˆRStrucScore(H )
T−H+1} into N blocks of length 

and multiply the jth block by ηj to get the bootstrap sample { ˆRStrucScore
(H ),∗
k+1 , � � � ,

ˆRStrucScore
(H ),∗
T−H+1}. This can be implemented simply by applying the block wild boot-

strap to [
ε̂∗
t,k(

ε̂t,kε̂
′
t,k − 
̂

)∗
]

=
[

ε̂t,k(
ε̂t,kε̂

′
t,k − 
̂

)]η[t/],

and replacing the corresponding sample analogues with their bootstrap quantities. To

summarize:

1. Decide on the number of bootstrap draws, J, and the maximum number of impulse

response horizons to be estimated, H.

2. Use the FGLS procedure described in Section 3 to obtain estimates of {B(h)
1 , � � � ,

B(h)
k } for each horizon the H horizons. The horizon 1 LP yields estimates of

{ε̂t,k, (ε̂t,kε̂′
t,k − 
̂)}Tt=k+1.

3. Divide {ε̂t,k, (ε̂t,kε̂′
t,k− 
̂)}Tt=k+1, into N blocks of length . For each bootstrap draw,

J, generate N zero mean unit variance random normal variables η, and multiply

the jth block by ηj where

[
ε̂∗
t,k(

ε̂t,kε̂
′
t,k − 
̂

)∗
]

=
[

ε̂t,k(
ε̂t,kε̂

′
t,k − 
̂

)]η[t/].

Then bootstrap draws can be created for each horizon by

B̂∗(k, 1, OLS) = B̂(k, 1, OLS ) + (T − k−H )−1

{
T−H∑
t=k

ε̂∗
t+1,kX

′
t,k

}
�̂−1
k ,

B̂∗(k, 2, GLS) = B̂(k, 2, GLS) + (T − k−H )−1

({
T−H∑
t=k

ε̂∗
t+2,kX

′
t,k

}
�̂−1
k

+
1∑

l=1

�̂∗
l

{
T−H∑
t=k

ε̂∗
t+1,kX

′
t,k

}
�̂−1
k �̂(h−l−1),k�̂

−1
k

)
,

...

B̂∗(k, h, GLS) = B̂(k, h, GLS) + (T − k−H )−1

({
T−H∑
t=k

ε̂∗
t+h,kX

′
t,k

}
�̂−1
k

+
h−1∑
l=1

�̂∗
l

{
T−H∑
t=k

ε̂∗
t+1,kX

′
t,k

}
�̂−1
k �̂(h−l−1),k�̂

−1
k

)
,
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and


̂∗ = 
̂+ (T − k−H )−1
T−H∑
t=k

(
ε̂t,kε̂

′
t,k − 
̂

)∗
.

Note that �̂∗
l = B̂∗(l),GLS

1 . The draws of 
̂∗ are not guaranteed to be positive semi-definite.

Whenever 
̂∗ is not positive semidefinite, the entire iteration is redone with new draws
of η.6 The bootstrap can also be implemented with bias adjustment if desired. The bias
of the LP parameters can be calculated by applying the bias correction of West and Zhao
(2019) to the FGLS LP models.7

Since the X ′s are fixed and the joint autocovariances of
[ ε∗

t,k

(εt,kε
′
t,k−
)∗

]
are preserved

for  lags, the score block wild bootstrap properly mimics the fourth-order moments of
ε needed to yield consistent estimates of V12(k, H ) = V21(k, H )′ and V22 if  → ∞ at a
suitable rate. The bootstrap would yield consistent estimates of V11(k, H ), whether or
not  grows.

Assumption 5. Let Assumption 4 hold. Assume that in addition that η[t/] is i.i.d. with
E|η[t/]|4 ≤ �< ∞,

k8

T
→ 0; T , k → ∞.

8

T
→ 0; T ,  → ∞.

Theorem 5 (Validity of bootstrap for structural inference). Under Assumption 5,⎛⎜⎜⎜⎜⎜⎜⎜⎝
l(k, H )′

⎡⎢⎢⎢⎢⎣
√
T − k−H vec

[
B̂∗(k, H, GLS) − B̂(k, H, GLS)

]
...√

T − k−H vec
[
B̂∗(k, 2, GLS) − B̂(k, 2, GLS)

]√
T − k−H vec

[
B̂∗(k, 1, OLS) − B̂(k, 1, OLS)

]

⎤⎥⎥⎥⎥⎦
√
T − k−H vech

[

̂∗ − 
̂

]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
d∗−→ N

(
0, V (k, H )

)
.

Proof. See Section A.2.

Since structural inference only involved the first and second moments of the rear-
ranged score, and since the rearranged score has a mean of 0, applying the block wild
bootstrap to the rearranged score is valid since it preserves the first and second moments
of the score, which is all we need to in order to do structural inference. By bootstrap-
ping the rearranged score, the structural inference problems discussed in Brüggemann,
Jentsch, and Trenkler (2016) are avoided entirely. Theorem 5 includes the sieve VAR as a

6In the empirical application, only a handful of iterations had to be redone.
7Whether or not one should bias adjust in practice is debatable. Bias adjustment can push sample esti-

mates further away from the true values, and bias adjustment can increase the variance (Efron and Tibshi-
rani (1993)).
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special case, thus the bootstrap also provides a sieve extension of Brüggemann, Jentsch,
and Trenkler (2016).8

There are no great rules of thumb for choosing  in general. Since the block length
involves a bias variance tradeoff with longer block lengths yielding less biased test statis-
tics with larger variances and shorter block lengths yielding the opposite, data depen-
dent rules such as those listed in Chapter 7 of Lahiri (2003), but which optimize cover-
age, should be developed in future research. In the case where one is only interested in
the reduced form impulse responses, one can simply set  = 1 and not sample 
̂∗. Using
standard arguments, the Delta method can applied.9

A.6. Structural identification

This subsection briefly discusses structural identification in LP GLS. These techniques
can be applied to both the bootstrapped LP and the analytical LP. In the analytical case,
confidence intervals can be constructed using the delta method. For an extensive review
of structural identification in VARs and LP, see Ramey (2016), and for an extensive treat-
ment of identification in VARs and LP using external instruments, see Stock and Watson
(2018). Going back to the infinite-order horizon 1 LP,

yt+1 = B(1)
1 yt +B(1)

2 yt−1 + · · · + εt+1,

and let εt =R(L)st where st is a vector of structural shocks and R(L) is a lag polynomial.
It is often the case that the researcher may not know all of the identifying restrictions

in R(L), but the researcher has an instrument that they believe can trace out impulse
responses of interest. The impulse responses of interest can instead be estimated by LP
instrumental variable regressions (LP-IV). Plagborg-Møller and Wolf (2022) show that
in order for LP-IV to be valid, three conditions need to be satisfied. Decompose st into
s1,t and s2,t where s1,t is the structural shock of interest at time t and s2,t represents all
other structural shocks at time t. Let zt be an instrument that the researcher believes can
trace out the impulse responses of s1,t . The instrument must satisfy the following three
conditions:

(i) E[s1,t z̃t ] �= 0,

(ii) E[s2,t z̃t ] = 0,

(iii) E[st+j z̃t ] = 0 for j �= 0,

where z̃t is the population residual from projecting zt on all lags of zt , yt . The first two
conditions are just the standard relevance and exogeneity conditions for instrumental

8It should be noted that Brüggemann, Jentsch, and Trenkler (2016) use a moving block bootstrap in a
traditional recursive design VAR bootstrap setup, while here I apply a block wild bootstrap to the score.
Note that the score bootstraps avoids the second-order bias created by recursive design bootstraps (see
Kilian (1998) for a demonstration of the second-order bias).

9It is possible to write a more general delta method theorem to include a wider range of statistics (albeit
it may require additional conditions). See, for example, Corollary 1 in Inoue and Kilian (2002).
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variable regression. The third condition is a lead-lag exogeneity condition, which guar-
antees that the instrument, z̃t , is only identifying the impulse response of the shock s1,t .
If the third condition is not satisfied, then z̃t will amalgamate the impulse responses at
different horizons. In the case where z̃t is a vector of multiple instruments, the condi-
tions are easily extended (Plagborg-Møller and Wolf (2022)).

Researchers typically estimate LP-IV via two-stage least squares (2SLS). For exam-
ple, say I want to estimate the structural impulse response, g(h), the impact a shock to
monetary policy has on output at horizon h. Let output be denoted as output t and the
monetary policy variable mpt . One can estimate LP-IV by estimating

output t+h = g(h)mpt + control variables + error (h)
t+h,

via 2SLS and using z̃t as an instrument for mpt .10 Alternatively, the impulse responses
of shocks to s1,t can be recovered if zt is included as an endogenous variable in the sys-
tem, and ordering it first in a recursive identification scheme (Plagborg-Møller and Wolf
(2021)).11 Let ẙt = [ ztyt ]where yt contains mpt , output t , and the control variables at time t,
then the horizon 1 LP/VAR is

ẙt+1 = B̊(1)
1 ẙt + B̊(1)

2 ẙt−1 + · · · + ε̊t+1.

Since zt is ordered first due to its exogeneity, the residual for the zt equation, ε̊1,t , will
be able to trace out the structural impulse responses of interest.12 Going back to the
monetary policy example, the impulse response g(h) can be constructed as the impulse
response of output t+h to ε̊1,t divided by the impulse response of mpt to ε̊1,t . Hence, by
imbedding zt as an endogenous variable in the system and ordering it first in a recursive
identification scheme, one can just estimate the reduced form impulse responses of ẙt
via their preferred LP GLS method and construct the structural impulse responses of
interest.

A.7. Application to Gertler and Karadi (2015)

For an empirical application, I redo the analysis of Gertler and Karadi (2015). One of the
reasons why the Gertler and Karadi (2015) analysis is so interesting is because there has
been tension in the literature about the results. Using a Proxy SVAR, Gertler and Karadi
(2015) find an increase in the 1-year Treasury rate leads to a decrease in both industrial
production and CPI. Several papers have challenged different aspects of the method-
ology and implementation of Gertler and Karadi (2015) (Ramey (2016), Brüggemann,

10The increasing variance problem may be particularly problematic with LP-IV, because the increasing
variance can weaken the strength of instrument for h ≥ 1 if one is estimating a cumulative multiplier di-
rectly.

11In the literature, a triangular (recursive) ordering is often called a cholesky ordering because people
often apply a cholesky decomposition to impose the ordering. It should be noted that the cholesky normal-
izes the variances of the structural shocks to unity. If one does not want to normalize the structural shocks,
one can instead use the LDL decomposition to impose recursive the ordering.

12Even if the control variables are exogenous to the system, any VARX can be written as a VAR with the
exogenous variables ordered first in a block recursive scheme.
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Jentsch, and Trenkler (2016), Stock and Watson (2018), Jentsch and Lunsford (2022)).13

Treating the high frequency identification instrument as the structural monetary policy
shock and using Newey–West standard errors, Ramey (2016) finds that an increase in the
the high frequency identification instrument leads to a significant decrease in CPI and
a significant increase in industrial production.14 Output does not respond for at least a
year, and inflation does not respond for at least 30 months. Both output and CPI respond
more slowly relative to the Gertler and Karadi (2015) results.

To standardize comparisons so all of the methods are valid under the same assump-
tions, I will compare the results of the invertibility robust LP GLS IV, the invertibility
robust LP-IV with the equal-weighted cosine HAC standard errors, and the invertibility
robust recursive SVAR. All of these methods are valid in the presence of conditional het-
eroskedasticity, are invertibility robust (i.e., they are consistent in the presence of omit-
ted variables), and are estimated over the same sample period. The system of macroe-
conomic variables I use includes output (growth rate of industrial production), inflation
(growth rate of CPI), the 1-year Treasury yield, the excess bond premium spread, and a
high frequency identification instrument.15 I do the baseline analysis using the surprise
to the 3-month ahead fed funds futures (ff4_tc) as the instrument, and the data spans
1990M1–2012M6. All of the data was obtained from the Ramey (2016) data repository.

First, I estimate the system using the LP GLS bootstrap (without bias adjustment)
based on 20,000 replications using the procedure detailed in Section A.5. The high fre-
quency instrument is ordered first in the system. I use 12 lags in estimation as in Gertler
and Karadi (2015) and a block length of 10, but the results are qualitatively similar across
alternative choices for these parameters. For each bootstrap draw, I apply the recursive
decomposition as discussed in Section A.6, and the 90% confidence intervals for each
horizon are the are the 5% and 95% quantiles of the structural impulse response of inter-
est across all of the bootstrap draws for that horizon. Section A.8 discusses the software
suite used for LP GLS IV in context of this specific application.

The LP GLS IV bootstrap results for output and inflation are presented in the top
panel of Figures A.5. In general, I cannot reject the null hypothesis that a change in the
1-year Treasury has no impact on output or inflation during the first 4 years. F-test indi-
cates the instrument is relevant, with a bootstrap F-statistic of approximately 25.16

13Jentsch and Lunsford (2022, 2019) prove the invalidity of the Proxy SVAR bootstrap used in Gertler
and Karadi (2015) and show that it can dramatically underestimate uncertainty. Ramey (2016), Stock and
Watson (2018) point out that the high frequency identification instruments are correlated, thus violating the
lead-lag exogeneity condition discussed in Section A.6. The Proxy SVAR used in Gertler and Karadi (2015)
assumes invertibility, which is akin to assuming that the SVAR system does not have any omitted variables
(Stock and Watson (2018)).

14As noted in Stock and Watson (2018), constructed measures of shocks have measurement error, which
in general leads to bias if the measure is treated as the true shock.

15These are the same variables used in Gertler and Karadi (2015), Ramey (2016), except they use logs
of industrial production and CPI. The assumptions of these techniques are based on stationary data
and Monte Carlos in this paper only compare stationary data generating processes. Moreover, the equal-
weighted cosine HAC standard errors were not designed to handle persistent regressors (Lazarus et al.
(2018)).

16Instrument strength varied with block length and the number of lags, but the instrument strength was
generally approximately 20 or higher.
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Figure A.5. LP GLS bootstrap results with 90% confidence intervals (top panel). Invertibility
robust invertibility-robust recursive SVAR results (middle panel) and the LP-IV results (bottom
panel) with 90% confidence intervals.

Next, I estimate the invertibility-robust recursive SVAR. To implement, I repeat the
procedure discussed in Section A.5, but only estimate the horizon 1 LP (since the hori-
zon 1 LP is the VAR). The VAR is not bias adjusted. I also use 12 lags, 20,000 bootstrap
replications, and a block length of 10. The bootstrap draws are used to construct the
VAR approximation of the Wold coefficients, then for each bootstrap draw, I apply the
recursive decomposition as discussed in Section A.6 to trace out the structural impulse
responses. The LP-IV with the equal-weighted cosine HAC standard errors results are es-
timated using the 2SLS procedure discussed in Section A.6, where the control variables
are the 12 lags of output, inflation, the 1-year Treasury yield, the excess bond premium,
and the high frequency identification instrument. The results for the invertibility-robust
recursive SVAR and the LP-IV are presented in Figure A.5 (in the middle and bottom
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panels respectively). As can be seen, one would in general still fail to reject the null hy-
pothesis that monetary policy has no affect on output and inflation.17

The results are consistent with what Nakamura and Steinsson (2018) refer to as the
“power problem.” That is, the signal-to-noise ratio may be too small to estimate the im-
pact of monetary policy on lower frequency macroeconomic variables such as output
and inflation with any precision. The high frequency identification shocks are changes
in the federal funds futures in a tight window (e.g., 30 minutes) around an FOMC meet-
ing. Even if the identification scheme is valid, the shocks may be too small to deter-
mine changes in output and inflation, which are monthly variables that are probably
impacted by a host of structural shocks. The horizon h structural impulse response of
output to the 1-year Treasury yield, for example, is the horizon h response of output to
the high frequency instrument divided by the contemporaneous response of the one-
year Treasury yield to the instrument. Even if the instrument is relevant (the contempo-
raneous response of the 1-year Treasury yield to the instrument is nonzero and is esti-
mated with precision), if the response of output to the instrument cannot be estimated
with any precision, no meaningful inference can be done. The high frequency instru-
ments have an insignificant impact on output and inflation, despite being relevant. The
results indicate that maybe the high frequency identification shocks cannot be used to
determine the impact that monetary policy has on lower frequency aggregate variables
like output and inflation.

A.8. How to section for code

This section details how to use the LP GLS IV code and the reduced form LP GLS boot-
strap code and tries to be as self-contained as possible. To illustrate how to use the LP
GLS IV code, I will walk through how the Gertler and Karadi (2015) application figures
were constructed using LP GLS IV. The code is

[Structural_IRF , fstat ] = lp_gls_boot_iv(y, arp, nstraps, maxh, blocksize, badj ),

where the inputs are:

• y is the r × T matrix of data,

• arp is the desired lag length,

• nstraps is the number of bootstrap draws,

• maxh is the max horizon one wants to estimate,

• blocksize is the block size for the block bootstrapping,

• badj is an indicator variable which is 1 if one wants to bias adjust and 0 if one does
not want to bias adjust.18

17As a robustness check, I also used the change in 1-month ahead fed futures as an instrument. The
results were qualitatively and quantitative similar and the conclusions to follow remain unchanged.

18The econometrics toolbox is required for bias adjustment. It is debatable whether you should do bias
adjustment (see Efron and Tibshirani (1993)). So, depending on what you are doing, you may or may not
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The outputs are:

• Structural_IRF is the r × maxh × nstraps matrix structural impulse responses

• fstat is the bootstrap first stage F-statistic.

For this code, the order of the variables in y is important. The first row is the instru-
ment (e.g., HFI instrument). The second row is the independent variable that needs to
be instrumented (1-year Treasury). The order of the rest of the variables does not matter.
What is outputted is the structural impulse responses of the other variables to the instru-
mented independent variables (e.g., output’s responses to an exogenous change in the
1-year Treasury, inflation’s responses to a exogenous change in the 1-year Treasury, etc.).
The specific code used in the Gertler and Karadi (2015) application was

[Structural_IRF , fstat ] = lp_gls_boot_iv(y, 12, 20,000, 48, 10, 0).

Structural_IRF (i, h, :) gives the bootstrap draws of structural impulse responses for
the impact of 1 unit increase in the 1-year Treasury has on variable i at horizon h,
and 90% confidence intervals can be calculated by quantile (Structural_IRF (i, h, :), [0.05
0.95]). For example, since output is the 3rd variable, the bootstrap draws of structural
impulse responses for the impact of 1 unit increase in the 1-year Treasury has on out-
put for horizon 15 is given by Structural_IRF (3, 15, :), and 90% confidence intervals
can be calculated by quantile (Structural_IRF (3, 15, :), [0.05 0.95]). Since inflation is the
4th variable, the bootstrap draws of structural impulse responses for the impact of 1
unit increase in the 1-year Treasury has on inflation for horizon 27 is given by Struc-
tural_IRF (4, 27, :), and 90% confidence intervals can be calculated by quantile (Struc-
tural_IRF (4, 27, :), [0.05 0.95]).

For those interested in the reduced form LP GLS code, the scripts Testing_Code_
VAR(1) and Testing_Code_VARMA(1, 1) in the data replication files walk through how to
estimate the Wold impulse responses using the VAR(1) and VARMA(1, 1) models from
Section A.4. The function to estimate the Wold irfs is

[Beff , Sigma_hold] = lp_gls_boot(y, arp, nstraps, maxh, blocksize, badj, full ),

where the inputs are mostly the same as the LP GLS IV code:

• y is the r × T matrix of data,

• arp is the desired lag length,

• nstraps is the number of bootstrap draws,

• maxh is the max horizon one wants to estimate,

• blocksize is the block size for the block bootstrapping,

want to bias adjust. Code uses bias adjustment from West and Zhao (2019). See bias code folder in the
replication files and West and Zhao (2019) for more details.
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• badj is an indicator variable, which is 1 if one wants to bias adjust and 0 if one does
not want to bias adjust,

• full is an optional input where full = 0 gives the Wold coefficients while full = 1
gives all of the LP parameters for each horizon. If full is not included as an input,
the default will just give the Wold coefficients.

The outputs are:

• Beff is the r × r × maxh × nstraps matrix of the wold impulse responses bootstrap
replications (default). For example, Beff (:, :, h, n)′ gives the nth bootstrap draw of
the horizon h Wold impulse. If full = 1 is included as an input, Beff gives the
(1 + kr ) × r × maxh × nstraps matrix of all of the LP estimates. For example, if
full = 1, Beff (:, :, h,n) gives the nth bootstrap draw of B(k, h)′ = (B(h)

1 , � � � , B(h)
k )′ as

defined in the paper, but with the addition of an intercept (which would be the first
column).

• Sigma_hold is the r × r × nstraps matrix of the covariance matrix bootstrap horizon
1 LP (VAR) residuals replications.
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