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A machine learning projection method for
macro-finance models

Vytautas Valaitis
School of Economics, University of Surrey

Alessandro T. Villa
Economic Research Department, Federal Reserve Bank of Chicago

We use supervised machine learning to approximate the expectations typically
contained in the optimality conditions of an economic model in the spirit of the
parameterized expectations algorithm (PEA) with stochastic simulation. When
the set of state variables is generated by a stochastic simulation, it is likely to suf-
fer from multicollinearity. We show that a neural network-based expectations al-
gorithm can deal efficiently with multicollinearity by extending the optimal debt
management problem studied by Faraglia, Marcet, Oikonomou, and Scott (2019)
to four maturities. We find that the optimal policy prescribes an active role for
the newly added medium-term maturities, enabling the planner to raise financial
income without increasing its total borrowing in response to expenditure shocks.
Through this mechanism, the government effectively subsidizes the private sector
during recessions.

Keywords. Machine learning, incomplete markets, projection methods, optimal
fiscal policy, maturity management.

JEL classification. C63, D52, E32, E37, E62, G12.

1. Introduction

In this paper, we exploit the computational gains that derive from the robustness to
multicollinearity of neural networks to extend the optimal debt management problem
studied by Faraglia et al. (2019) to four maturities. The hedging benefits provided by the
additional maturities allow the government to respond to expenditure shocks by raising
financial income without increasing the total outstanding debt. Through this mecha-
nism, the government effectively subsidizes the private sector in recessions.
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We use a neural network (NN) in a supervised machine learning fashion to ap-
proximate the expectation terms typically contained in the optimality conditions of an
economic model, in the spirit of the Parameterized Expectations Algorithm (PEA) with
stochastic simulation, introduced by den Haan and Marcet (1990) and in a similar fash-
ion to Duffy and McNelis (2001). On the one hand, stochastic simulation methods allow
us to tackle problems with a high number of state variables, since they calculate so-
lutions only in the states that are visited in equilibrium (i.e., the ergodic set). On the
other hand, when the set of state variables is generated by a stochastic simulation, it
is likely to suffer from multicollinearity. In this context, this paper makes two contri-
butions. First, we show that an NN-based expectations algorithm can deal efficiently
with multicollinearity by extending the optimal debt management problem studied by
Faraglia et al. (2019) to four maturities. Second, we show that the optimal debt man-
agement policy prescribes an active role for the medium-term maturities, enabling the
planner to raise financial income without increasing its total borrowing in response to
expenditure shocks. We consider this problem a particularly interesting economic ap-
plication that also poses significant computational challenges for four reasons.

First, the number of state variables increases in the number and length of maturi-
ties available. Second, this class of problems includes forward-looking constraints, and
the problem can be made recursive at the cost of adding even more state variables. Fol-
lowing Marcet and Marimon (2019), we formulate the recursive Lagrangian to solve for
the time-inconsistent optimal policy under full commitment with multiple maturities.
When markets are incomplete, the Ramsey planner needs to keep track of all promises
made in the previous periods. Because of these reasons, optimal maturity management
problems suffer from the curse of dimensionality (see Bellman (1961)). For example, the
optimal debt management problem with four maturities considered in Section 4 fea-
tures 46 state variables. Third, because of the maturities, many of these state variables
are multicollinear when the model is solved by using a stochastic simulation approach.1

Fourth, this class of problems does not have a stochastic steady state, as documented in
Aiyagari, Marcet, Sargent, and Sappala (2002), and tends to frequently hit the borrow-
ing and lending constraints. Such properties render the model particularly hard to solve
using perturbation methods around a particular point.2

In Section 4, we use the methodology to study the optimal government debt man-
agement policy when the Ramsey planner can issue an increasing number of debt in-

1The state space includes lagged values of the same variables (e.g., lagged values of outstanding bonds
and Lagrange multipliers). Multicollinearity in the state space might prevent standard regression-based al-
gorithms from converging because the estimated regression coefficients may never stabilize due to high
estimation variance and because misspecification of the true policy function under multicollinearity may
lead to severe prediction bias, as we show in Section 2.5. Alternatively, people have used the stochastic sim-
ulation based on regularization (see Judd, Maliar, and Maliar (2011)) or have extended the PEA algorithm
to condensed PEA; see Faraglia et al. (2019). In Section 5, we discuss how the NN-based expectations algo-
rithm improves upon these methods.

2Bhandari, Evans, Golosov, and Sargent (2017b) propose a method that allows one to approximate a
system around a current level of government debt, and Lustig, Sleet, and Yeltekin (2008) on the other hand,
solve the optimal fiscal policy problem in incomplete markets with seven maturities up to 7 periods using
value function iteration on a sparse grid.
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struments with different maturities. Intuitively, the prices of longer maturities are typ-
ically more responsive to shocks than prices of shorter maturities. This differential re-
sponse creates opportunities for hedging by borrowing in long-term and saving in short-
term bonds. In this case, the value of liabilities falls by more than the value of assets
in response to negative shocks (see Angeletos (2002), Buera and Nicolini (2004) and
Faraglia et al. (2019)). Additionally, the fact that short bond prices are not as respon-
sive to shocks allows the planner to smooth the price of new debt issuance by rebal-
ancing the portfolio toward the longer maturities in economic booms and toward the
shorter maturities in recessions. We find that the planner actively uses the additional
medium-term maturities to exploit both the hedging and the price smoothing benefits.
The government holds leveraged positions in all bonds and rebalances the portfolio with
more emphasis on the shorter maturities in recessions. We find that, when the number
of available maturities increases from two to three (and four), the total amount of out-
standing debt becomes procyclical. The additional maturities allow the government to
respond to expenditure shocks by raising financial income without increasing the total
outstanding debt. Through this mechanism, the government effectively subsidizes the
private sector in recessions, resulting in higher leisure and less volatile labor taxes.

1.0.0.1 Literature review This paper contributes to two strands of literature: (i) numer-
ical methods in economics and (ii) optimal fiscal policy.

In terms of methods, this paper builds on the seminal work of den Haan and Marcet
(1990), who introduced PEA. The idea of using neural networks to parameterize deci-
sion rules in a similar fashion to PEA goes back to Duffy and McNelis (2001). Our paper
contributes to this literature by showing that an NN-based expectations algorithm can
deal efficiently with multicollinearity by extending the optimal debt management prob-
lem studied by Faraglia et al. (2019) to more than two maturities. In particular, we exploit
the computational gains to study the optimal government debt management problem of
Faraglia et al. (2019) with three and four maturities, which yields new economic insights.
Note that PEA has been extended more recently (see Faraglia, Marcet, Oikonomou, and
Scott (2014) and Faraglia et al. (2019)) to deal with multicollinearity (condensed PEA)
and overidentification (Forward-States PEA). Our methodology builds on condensed
PEA and Forward-States PEA, in the context of optimal fiscal policy, allowing for ma-
chine learning to reduce the state space endogenously and handling multicollinearity
effectively when a stochastic simulation approach is adopted. In contrast, condensed
PEA achieves this result by introducing an external loop that tests a subset of the state
space as a candidate to solve the model.

In contemporaneous work, Maliar, Maliar, and Winant (2021) and Maliar and Maliar
(2022) discuss how neural networks can handle multicollinearity. In particular, they do
so in the context of the Krusell and Smith (1998) model. We complement their work by
demonstrating the robustness to multicollinearity in the context of optimal fiscal policy.
Additionally, we show that the interaction between the capability of a neural network to
deal with multicollinearity and its flexibility in approximating generic policy functions
plays an important role in generating unbiased predictions. In Section 2.5, we show that
if a researcher precommits to approximate the policy functions with polynomials that
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are misspecified then, under multicollinearity among the state variables, the predictions
will be biased. Thanks to the flexible nonparametric nature of a neural network, which
does not require making ex ante assumptions about the functional form of the policy
functions, this problem disappears.

PEA can potentially be used in combination with other standard econometric tech-
niques that tackle the problem of multicollinearity, as in Judd, Maliar, and Maliar (2011).
Similar to our paper, Judd, Maliar, and Maliar (2011) adopt a stochastic simulation ap-
proach and show how already established methods in econometrics can be used to alle-
viate the multicollinearity problem using a multicountry neoclassical growth model. We
discuss the relation between our method and the methods of Faraglia et al. (2019) and
Judd, Maliar, and Maliar (2011) in greater detail in Section 5.

Other papers that use machine learning to solve economic models include Schei-
degger and Bilionis (2019), Azinovic, Gaegauf, and Scheidegger (2022), Fernández-
Villaverde, Hurtado, and Nuño (2023), and Duarte, Duarte, and Silva (2023). Fernández-
Villaverde, Hurtado, and Nuño (2023) use deep neural networks to approximate the ag-
gregate laws of motion in a heterogeneous agents model featuring strong nonlineari-
ties and aggregate shocks. Duarte, Duarte, and Silva (2023) casts the economic model
in continuous time and uses neural networks to approximate the Bellman equation.
Maliar, Maliar, and Winant (2021) and Azinovic, Gaegauf, and Scheidegger (2022) ap-
proximate all the model equilibrium conditions using neural networks and use the sim-
ulated data to train them. Azinovic, Gaegauf, and Scheidegger (2022) solve the life-cycle
model with borrowing constraints, aggregate shocks, and financial frictions using un-
supervised machine learning. The main difference of our paper is to leverage on super-
vised machine learning to deal effectively with the problem of multicollinearity typical
of stochastic simulation approaches. In this context, we show how our algorithm can
alleviate the curse of dimensionality, allowing us to explore the problem of the optimal
maturity structure of government debt in a more realistic environment.

Our application also contributes to the strand of literature on optimal fiscal policy.
In particular, it is relevant to the literature on the optimal maturity structure of govern-
ment debt.3

 Lustig, Sleet, and Yeltekin (2008) find that the optimal policy prescribes an
almost exclusive role to the longest maturity in a model with no-lending constraints and
a New Keynesian model where bonds are nominal. In our setting, we allow for govern-
ment lending and study the hedging benefits of a choice between multiple maturities
of real bonds. Bhandari et al. (2017b) study the optimal maturity structure in an open
economy with two maturities, and Bigio, Nuño, and Passadore (2023) allow for a finite
number of maturities in an economy with liquidity costs of issuing debt, where liquid-
ity costs differ by maturity. Faraglia et al. (2019) is the closest paper to ours and studies
the role of frictions in a closed economy with two types of bonds. Solving the Ramsey
problem considered in this paper is particularly challenging, as the dimension of its
state space increases significantly in function of the length of the maturities and the
number of bonds. Moreover, this class of problem includes forward-looking constraints,

3Aiyagari et al. (2002), Angeletos (2002), Buera and Nicolini (2004), Lustig, Sleet, and Yeltekin (2008),
Faraglia et al. (2019), Bhandari et al. (2017b), and Bigio, Nuño, and Passadore (2023).
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so the commonly used recursive representation can not be adopted. Marcet and Mari-
mon (2019) provide an alternative formulation to solve for the time-inconsistent opti-
mal contract under full commitment: a recursive Lagrangian or saddle-point functional
equation. The solution involves adding even more state variables to the original prob-
lem. These additional state variables, necessary to recursify the problem, create history
dependence. In this context, we use our methodology to extend the literature to study
optimal debt management with three and four maturities in a closed economy. We find
that the optimal policy prescribes an active role for the medium-term bonds. The addi-
tional maturities enable the planner to raise financial revenue without increasing the to-
tal outstanding debt, in response to a positive expenditure shock. We show that, through
this mechanism, the government uses the additional maturities to effectively subsidize
the private sector in recessions, resulting in more leisure and less volatile labor taxes.

The paper is organized as follows. Section 2 is a user guide that introduces the reader
to PEA, machine learning, and how to combine them in a simple Neoclassical Invest-
ment Model example. Section 3 introduces the reader to the problem of multicollinear-
ity using a one-bond economy studied in Aiyagari et al. (2002) and describes the de-
tails of the NN-based expectations algorithm using a general model with N maturities.
Section 4 presents and discusses the calibration and the quantitative results for the ex-
tended model with three and four maturities. Section 5 discusses and compares the NN-
based expectations algorithm to other state-of-the-art methods. Section 6 concludes.

2. User guide: Machine learning and PEA

This section serves as an introduction to supervised machine learning. Specifically, it
focuses on how to use it to solve a dynamic economic model in a similar fashion to PEA
with stochastic simulation.4 Hence, the purpose of this section is solely to introduce the
methodology in a simple environment. The method allows us to investigate more real-
istic models of increased complexity. Its benefits are highlighted in the application pre-
sented in Section 3 and arise from the ability of the algorithm to approximate nonlinear
policy functions in the presence of a large and multicollinear state space.

2.1 Environment

The typical dynamic model contains intertemporal Euler equations, intratemporal Euler
equations, and laws of motion

f Inter(ct ,Xt ) = βE[
g(ct+1,Xt+1 )|Xt

]
,

f Intra(ct ,Xt ) = 0,

Xt+1 = h(Xt , ct , ξt+1 ),

4For a general introduction to machine learning, the reader can refer to Hastie, Tibshirani, and Friedman
(2009). For a course tailored to economists, the reader can refer to the lecture notes by Jesús Fernández-
Villaverde available here: https://www.sas.upenn.edu/~jesusfv/teaching.html.

https://www.sas.upenn.edu/~jesusfv/teaching.html
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where ct ∈ R
C is a vector ofC controls (withE dynamic choices andC−E static choices),

Xt ∈ R
S is a vector of endogenous and exogenous state variables, β ∈ (0, 1) is a time-

discount factor, f Inter : RC × R
S → R

E , f Intra : RC × R
S → R

C−E , g : RC × R
S → R

E , and
ξt+1 ∈ R

I is a vector of innovation shocks. For example, in the stochastic neoclassical
investment model, ct corresponds to consumption, f Inter corresponds to the marginal
utility of consumption, f Intra does not apply if the model does not include intratemporal
choices (e.g., labor), g≡ f (ct+1 )(zt+1αK

α−1
t+1 +1−δ),Xt ≡ {Kt , zt } is a vector that contains

capital stock and TFP, and h(Xt , ct , ξt+1 ) is a function that describes the laws of motion
for capital stock, given by the resource constraint Kt+1 = (1 − δ)Kt − ct + ztKαt and the
TFP Markov process, that is,

Xt+1 = h(Xt , ct , ξt+1 ) =
(
Kt+1

logzt+1

)
=

(
(1 − δ)Kt − ct + ztKαt

ρ logzt + ξt+1

)
.

The typical PEA approximates the conditional expectations in the intertemporal Euler
equations as polynomial functions of the state spaceXt ,

∀e ∈ [1, E] : E
[
ge(ct+1,Xt+1 )|Xt

] � Pn(Xt ; ηe ).

The polynomial typically used in the PEA is

Pn(Xt ; ηe ) = exp

(
ηe,0 +

P∑
p=1

S∑
s=1

[
ηe,p,s · (lnXs,t )p

])
,

where ηe = [ηe,0, ηe,1,1, � � � , ηe,1,S , � � � ]. For a given sequence of exogenous aggregate
shocks {ξt }Tt=1, an initial guess of the polynomials’ parameters η1, the standard stochas-
tic PEA (described in Algorithm 1) aims to find parameters ηn = {ηn1, � � � , ηnE } that solve
all Euler equations and all laws of motion.

WhenX ≡ {Xt }
T−1
t=T0

is generated by a stochastic simulation as in Algorithm 1, the ma-

trix XTX is often ill-conditioned.5 Hence, with a finite-precision computer, the inverse
ofXTX cannot be computed reliably and it is challenging to compute the linear regres-
sion in line 9 of Algorithm 1. This problem potentially leads to jumps in the regression
coefficients and failure to converge.

Moreover, in the simple illustrative case of the neoclassical investment model, a first-
order polynomial (P = 1) is enough to approximate the expectation term in the Euler
equation. Generically speaking, richer models that feature a larger state space and non-
linearities require the use of higher-order approximation (P � 1) and/or cross-state
terms. These circumstances further aggravate the multicollinearity problem as the ma-
trix X̂T X̂ , with X̂ ≡ {Xt ,X2

t , � � �}Tt=0, is even more ill-conditioned.

2.2 Supervised machine learning

In this paper, we use machine learning as a tool to learn how to represent the func-
tion that maps from the set of simulated state variables {Xt }Tt=0 to the set of simulated

5Let λ = λ1, � � � , λS be the vector of eigenvalues of the matrix XTX , such that λ1 ≥ λ2 ≥ · · · ≥ λS ≥ 0.
Ill-conditioning refers to the fact that the ratio λ1/λn is large, implying the matrix is close to being singular.
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Algorithm 1 Stochastic (simulations) PEA.

Precondition: initial state X0, sequence {ξt }Tt=0, initial guess η1
n, and dampening 0 <

w< 1
1: while ηin converges do
2: for t ← 0 to T do 
 GenerateX ≡ {Xt }Tt=0
3: ct ← Solve f Intra(ct ,Xt ) = 0 and f Inter(ct ,Xt ) = βPn(Xt ; ηn )
4: Xt+1 ← h(Xt , ct , ξt+1 )
5: end for
6: for t ← 0 to T − 1 do 
 Generate Y ≡ {yt }

T−1
t=0

7: yt ← g(ct+1,Xt+1 )
8: end for
9: η̂in ← (XTX )−1XTY 
 Regress to find new weights

10: ηi+1
n ← w · η̂in + (1 −w) ·ηin 
 Update with dampening

11: end while

terms {yt }
T−1
t=0 . For example, in the neoclassical investment model with log-utility over

consumption, this would serve the purpose of representing the function

P(Kt , zt ) = E
[
c−1
t+1

(
zt+1αK

α−1
t+1 + 1 − δ)|Kt , zt

]
.

Machine learning proposes a flexible structure for the function P and infers a function
from the generated data {Xt }

T−1
t=T0

(which we label training data) to the set of generated

examples {yt }
T−1
t=T0

(which we label training examples). This particular task of using ma-
chine learning to learn a function that maps from inputs to outputs based on training
data and examples is referred in the literature as supervised learning. And neural net-
works are a powerful class of universal approximators able to deal with strong nonlin-
earities.

2.3 Fitting neural networks

In the NN-based expectations algorithm, the equivalent of the regression phase is called
the training phase. As described in Supplemental Appendix C (Valaitis and Villa (2024)),
a neural network is characterized by unknown weights {w, ψ}.6 Similar to a regression,
the objective is to seek weights such that the neural network fits the samples {Xt , yt }

T−1
t=0 .

More precisely, the problem is to find

{w0,m, wm;m= 1, 2, � � � ,M }, {ψ0,e, ψe; e= 1, 2, � � � , E},

such that the sum of squares

R(w, β) =
E∑
e=1

T−1∑
t=0

(
yt,e −Fe(Xt ; w, ψ)

)2

6Appendix C contains details about the neural network structure used in this section.
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is minimized. In a standard linear regression setting, typically (but not necessarily) this
problem is solved analytically. This problem could also be solved using a gradient itera-
tive procedure (e.g., gradient descent). This approach is typically more robust to multi-
collinearity since it does not require inverting the matrix X̂T X̂ . An iteration n of gradient
descent updates the weights of the neural network according to

w(n+1)
m =w(n)

m − γr
K∑
k=1

∂Rk(w)
∂wm

, (1)

ψ(n+1)
e =ψ(n)

e − γr
K∑
k=1

∂Rk(w)
∂ψe

, (2)

where the gradient can be derived using the chain rule for differentiation. More specif-
ically, the partial derivatives ∂Rk(w)

∂wm
and ∂Rk(w)

∂βe
in equations (1) and (2) can be effi-

ciently computed through a two-pass algorithm called backpropagation (Rumelhart,
Hinton, and Williams (1986)). Backpropagation applies the chain-rule sequentially, iter-
ating from the output layer to the input layer. Each neuron in the hidden layer receives
and dispatches information only from and to neurons that are directly connected. For
this reason, this process can be efficiently parallelized. When the backpropagation algo-
rithm is applied to a single-layer neural network, it is known as the delta rule (Widrow
and Hoff (1960)). One cycle through the full training samples is called a training epoch.
In other words, completing a training epoch means that all training samples have had
a chance to update the model parameters. Batch (or offline) learning builds the model
digesting the entire training set at once, whereas online training allows the network to
update the weights as new observations come in. The former is typically implemented
by batch gradient descent, when the latter can typically handle larger training sets and
is implemented by stochastic gradient descent. When the neural network weights are
updated, the speed at which the model changes can be updated through the parameters
γr in equations (1) and (2). The parameter γr is called the learning rate and it is simi-
lar in spirit to a dampening parameter. Intuitively, it represents how quickly the model
“learns.” It can either be a constant (for batch learning) or optimized dynamically at
each update by minimizing the error function.

Other aspects that can affect the fitting of the neural network are: (i) the initial
weights, (ii) the problem of overfitting, (iii) inputs normalization, and (iv) the number
of neurons. Initial neural network weights are chosen as near zero random values. Fig-
ure C.2 suggests that when the weight α is close to zero, the sigmoid approaches a linear
function. This choice of initial weights allows the model to adapt to nonlinearities start-
ing from the linear case.7 In practical terms, we solve the model by first initializing the
neural network to a simplified version of the model. For example, before solving the neo-
classical investment model as described in Algorithm 2, it is possible to solve the model
analytically (in this particular case, by setting δ= 1), simulate an equilibrium sequence

7Substantial research effort has been put into choosing the initial weights depending on the specific
neural network architecture (e.g., see Glorot and Bengio (2010) for deep neural networks).
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with the analytical solution, and use it to train the neural network. In a more compli-
cated scenario, such as the optimal maturity management problem presented in this
paper, we first solve the model without debt (i.e., the government only uses the income
from taxes to finance government expenditure) to first initialize the neural network. The
model should not overfit the data. Since stochastic simulation methods (such as PEA)
only explore a subset of the ergodic set of state variables (i.e., those combinations of
state variables simulated in the equilibrium), we optimize the model for out-of-sample
predictions. We split the simulated data randomly in the training set (in-sample) and
validation set (out-of-sample) with a 70–30 proportion, respectively.8 The number of
epochs is determined by maximizing the neural network’s performance on the valida-
tion set. All inputs are normalized to have mean zero and unitary standard deviation.
This procedure ensures that all inputs have a comparable magnitude. If some inputs
were of a bigger order of magnitude, the weights linked to those inputs would experi-
ence a faster update speed.9 This could potentially impair the learning process and lead
to a slower convergence, or worse, mean squared prediction errors. The choice of the
number of neurons in the hidden layer should be guided by the trade-off between in-
sample fit and out-of-sample performance, as illustrated in Figure 1 (the figure refers
to the neoclassical growth model that we present as an illustrative example in the next
section). Increasing the number of hidden units tends to increase the in-sample fit but
leads to overfitting. We select the number of units by minimizing the mean squared pre-
diction error calculated on the validation set.

2.4 Example: Neural networks and PEA applied to the neoclassical investment model

This section describes the implementation of the NN-based expectations algorithm ap-
plied to the neoclassical investment model. We use Matlab and we leverage on the Statis-
tics and Machine Learning Toolbox. The illustrative example code, together with the
comparison with other methods and the procedure that selects the optimal number of
neurons, is publicly available.10 The purpose of using Matlab and disseminating this ap-
plication is to facilitate the adoption of machine learning in economics with well-known
tools in an easy-to-adopt package. In this example, we use a single layer neural network
with 12 neurons (this number of neurons minimizes the mean squared prediction error
out-of-sample as shown in Figure 1).

We first calculate the steady state, which is particularly useful to build a guess to
initialize the neural network weights. The command feedforwardnet(12) creates a neural
network with one hidden layer that contains 12 neurons. By default, this neural network
is trained (through the function train) with Levenberg–Marquardt backpropagation, and

8We did not find a significant difference in allocations and forecast errors when we changed the training
set to be 50% and 90% of the sample.

9In the context of deep neural networks, the distribution of each layer’s inputs varies during the training
phase, since the weights of the previous layers change as well. Typically, this requires adopting lower learn-
ing rates and carefully choosing initial parameters. This problem is known as internal covariate shift. In this
context, batch normalization can achieve higher a learning rate (see Ioffe and Szegedy (2015)) by reducing
the problem of internal covariate shift.

10Downloadable from https://www.alessandrotenzinvilla.com/research.html

https://www.alessandrotenzinvilla.com/research.html
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Figure 1. Root Mean Squared Error (RMSE) in function of the number of neurons in the hidden
layer. Note: The figure shows the relation between the number of hidden units and neural net-
work performance in the neoclassical growth model. Solid blue line—network performance on
the training set. Dashed purple line—network performance on the validation set. Circles show
network performance for a specific number of units. Lines represent the moving averages.

has a maximum number of epochs set to 1000. We generate an initial data set using the
deterministic steady state and substituting the value of the shock.

We then proceed to solve the model using the equivalent of Algorithm 1, except we
use the neural network to approximate the expectation contained in the optimality con-
ditions of the model. We call this the NN-based expectations algorithm, and a detailed
description of the code is laid out in Algorithm 2.

In a more complex environment with a large state space—where a stochastic sim-
ulation approach is desirable—the advantages of this method lie in the interaction be-
tween a satisfactory approximation of the model nonlinearities and the degree of multi-
collinearity among the simulated states. In PEA, the choice of polynomials is quite arbi-
trary as the policies’ functional forms are ex ante unknown (one has to rely on an ex post
accuracy test to make sure that the approximation is satisfactory). If the functional form
of the chosen approximator cannot satisfactorily approximate the equilibrium policies,
the presence of multicollinearity can lead to bias in the parameter estimates. The neural
network does not suffer from this problem as it is a universal approximator. In the next
section, we conclude the user guide illustrating this point.

2.5 Neural networks and multicollinearity

One general problem is that the functional form, not just the parameters, that links the
state variables and the approximated terms is ex ante unknown. A standard practice is
to make these approximations using polynomials with order and cross-terms typically
chosen through trial and error. When the policies are correctly specified, multicollinear-
ity leads to consistent, yet noisy parameter estimates. However, if the chosen functional
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Algorithm 2 NN-based expectations algorithm applied to the neoclassical growth
model.
Precondition: parametersβ, α, δ, ρ,σε, k1, and ε; utility functions u(c) = log(c), uc(c) =

c−1.

1: 
 Simulate log AR(1) process and an initial guess for k and c
2: log(zt+1 ) ← ρ · log(zt ) + ξt+1

3: kI,t ← [(1 −β(1 − δ))/(β · α · zt )]1/(α−1)

4: cI,t ← zt · kαI,t − δ · kI,t

5: 
 Create and train the NN using the initial kI and z alongside the RHSt
6: Net ← feedforwardnet(12)
7: RHSt ← uc(cI,t+1 )[α · zt+1 · kα−1

I,t+1 + 1 − δ]
8: Net ← train(Net, [kI,t , zt ], RHSt )
9: kold ← kI

10: 
 Solve the model
11: while error> ε do
12: 
 Generate {ct }Tt=1 and {kt }Tt=1
13: for t ← 1 to T do
14: 
 The output of the function Net is the expectation object, given the current

state
15: Et[RHSt+1] ← Net([kt ; zt ])
16: ct ← u−1

1 (β ·Et[RHSt+1])
17: kt+1 ← zt · kαt + (1 − δ) · kt − ct
18: end for
19: 
 Train the NN using the new k and z alongside the above RHS
20: RHSt ← uc(ct+1 ) · (α · zt+1 · kα−1

t+1 + 1 − δ)
21: Net ← train(Net, [kt , zt ], RHSt )
22: 
 Checking convergence and updating kold

23: error ← max(|kold,t − kt|)
24: kold,t ← kt
25: end while

forms are not suitable to approximate the true policy functions, multicollinearity can
potentially lead to severely biased and less precise predictions, as we show in the follow-
ing simple example.

For simplicity, imagine that we would like to approximate the policy function of the
neoclassical investment model with two TFP shocks, full depreciation δ = 1, and log-
utility u(c) = log c. The true functional form of the policy function for the capital choice
(in this simple case it can be solved analytically) is

kt+1(kt , z1,t , z2,t ) = βαexp(z1,t ) exp(z2,t )kαt , (3)
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where the true parameters are α = 0.36, β = 0.95, and z1,t is a log-AR(1) process with
persistence 0.8 and standard deviation of the innovation shock 0.0224. Moreover, z2 is
determined using the following formula:

z2 = λẑ2 + (1 − λ)z1,

where ẑ2 is a log-AR(1) process with persistence 0.8 and standard deviation of the inno-
vation shock 0.0224.

We generate, through stochastic simulation, equilibrium sequences {Xt , yt }Tt=0
where yt = kt+1, and Xt = [kt z1,t z2,t ] is a vector that contains the three state variables.
The objective is to use {Xt , yt }Tt=0 in order to infer the functional form of equation (3).
When X ≡ {Xt }Tt=0 is generated by a stochastic simulation as in Algorithm 1, the ma-
trix XTX is often ill-conditioned. We simulate different degrees of multicollinearity by
randomly generating sequences {x1,t }Tt=0 and {x2,t }Tt=0 with different degrees of corre-
lation (i.e., different values of λ ∈ [0, 1]), and we calculate the associated {yt }Tt=0 using
equation (3). We evaluate the success of the prediction in function of different degrees
of multicollinearity using a (i) linear polynomial and a (ii) neural network. Note that on
purpose we incorrectly assume that the mapping between state variables and policy is
linear yt = β1x1,t + β2x2,t + β3x3,t .11 Also note that the neural network has a flexible
non-parametric nature and, therefore, does not require making ex ante assumptions
about the functional form of the policy functions. The success of the prediction is as-
sessed using the mean squared prediction error (MSPE), which is the average prediction
error at time t over many training samples. The error can be decomposed in bias and
variance terms

MSPEt = E
[
(yt − ŷt )2] = [

yt −E(ŷt )
]2︸ ︷︷ ︸

Bias2
t

+E
[
ŷt −E(ŷt )

]2︸ ︷︷ ︸
Variancet

. (4)

Figure 2 reports the average MSPE for the entire validation set in function of the correla-
tion between the two exogenous shocks {x2,t }Tt=0 and {x3,t }Tt=0. Note that the higher the
correlation, the higher the multicollinearity between {x2,t }Tt=0 and {x3,t }Tt=0.

The higher the correlation between the state variables, the higher the inaccuracy of
the polynomial regression model. Moreover, if we decompose the MSPE using equation
(4), we find that most of the prediction error comes from the bias squared term as shown
in Figures B.2 and B.3 in Appendix B.4. Because of its nonparametric nature, the neural
network adapts to the shape of the function to approximate without having to guess
the functional form ex ante. This experiment suggests that the nonparametric nature
of a neural network is particularly handy in solving economic models characterized by
policy functions with functional forms that are ex ante unknown and that potentially

11We purposely choose a polynomial that cannot correctly approximate the true policy functions, since
often the true functional form is ex ante unknown. We check that the results are robust to many types of
misspecification. However, the purpose of the following example is simply to illustrate the possibility that
misspecification under multicollineatity can lead to biased predictions. This problem would not arise with
a universal approximator, such as neural networks, because they do not require prespecification of the
functional form.
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Figure 2. Mean squared prediction error with a neural network and a polynomial. Note: The fig-
ure shows the mean squared prediction error 1/n

∑n
t=1[yt −E(ŷt )]2 in function of the correlation

between x2 and x3. Blue line with circles—NN, purple line with crosses—polynomial regression.

contain significant nonlinearities and whose domain presents multicollinear states.12

In the next section, we illustrate the use of neural networks in a model that contains
such features.

3. Model and solution method

The model we work with is an extension of the one-bond economy analyzed in Aiya-
gari et al. (2002) and extended to two bonds in Faraglia et al. (2019). We work with this
model for two reasons. First, it is a difficult computational problem that features a large
multicollinear state-space with nonlinearities difficult to approximate with a parametric
approach (i.e., borrowing and lending constraints).13 Second, extending Faraglia et al.
(2019) to more than two maturities is a relevant economic problem since it helps in de-
termining the optimal maturity structure of government debt. We start by introducing
the reader to a one-bond economy with a single maturity ofN periods. We then present
our methodology in a general model with N maturities. The numerical advantages of
our methodology allow us to explore the optimal maturity structure of government debt
with three bonds. Quantitative results are presented in Section 4.

3.1 Illustrative model: One-bond economy

The economy is populated by a representative household with preferences over con-
sumption c and leisure l. The representative household chooses sequences of consump-

12Note that another option would be to specify a rich polynomial structure with many higher order and
cross-terms. One problem with such approach is that higher-order terms of the same variable are extremely
multicollinear.

13The nonparametric nature of a neural network makes it suited to approximating policy functions with
strong nonlinearities, which would be harder to capture with polynomials.
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tion {ct }∞t=0 and leisure {lt }∞t=0 to maximize its time-0 expected lifetime utility

E0

∞∑
t=0

βt
[
u(ct ) + v(lt )

]
,

subject to the budget constraint

pNt b
N
t+1 + ct = (1 − τt )(1 − lt ) +pN−1

t bNt ,

where bNt indicates an N-periods maturity bond and pNt is its corresponding price.14

The only source of aggregate risk in the economy is an exogenous stream of government
expenditures {gt }∞t=0. In each period, the government can finance gt by: (i) levying a pro-
portional labor tax τt and (ii) by issuing a nonstate contingent bond with maturity of N
periods. Hence, the government’s budget constraint is

gt +pN−1
t bNt = τt(1 − lt ) +pNt bNt+1.

The aggregate resource constraint of the economy is ct + gt = 1 − lt , where 1 − lt is the
period’s GDP. We assume the government can buy back and reissue the entire stock of
outstanding debt in each period. The government sets taxes and issues debt to solve a
Ramsey taxation problem. We adopt the primal approach and assume the government’s
ability to borrow and lend is bounded. Under these conditions, the government’s prob-
lem is

max
{ct }∞t=0,{bt }∞t=0

E0

∑
t

βt
[
u(ct ) + v(1 − ct − gt )

]
,

subject to a sequence of measurability constraints15

bNt+1β
N
Et[uc,t+N ] − bNt βN−1

Et[uc,t−1+N ] − gtuc,t + (uc,t − vl,t )(gt + ct ) = 0,

with borrowing and lending limits16

M̄ ≥ bNt+1, M ≤ bNt+1.

The government’s optimality conditions are

uc,t − vl,t +μt
(
ucc,tct + uc,t + vll,t(ct + gt ) − vl,t

)
+ ucc,t(μt−N −μt−N+1 )bNt−N+1 = 0, (5)

μt = Et(uc,t+N )−1
[
Et(uc,t+Nμt+1 ) + ξU ,t

βN
− ξL,t

βN

]
, (6)

bNt+1β
N
Et(uc,t+N ) = bNt βN−1

Et(uc,t+N−1 ) − gtuc,t − (uc,t − vl,t )(gt + ct ), (7)

14In principle, households are able to trade government securities in the secondary market. However,
since we assume households are identical, there is no trade in equilibrium and, for ease of notation, we
omit these trades from the household’s budget constraint.

15See Aiyagari et al. (2002) for details on how to use the recursive Lagrangian approach in this context.
16M̄N ≥ bNt+1 is the government saving constraint, which is equivalent to a household’s borrowing con-

straint.
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Figure 3. Autocorrelation function of the equilibrium bond sequence. Note: The figure shows
the autocorrelation function of bNt . The numbers are obtained after simulating the model equi-
librium dynamics for T = 5000.

where μt is the Lagrange multiplier on the time t measurability constraint, and ξU ,t and
ξL,t are the Lagrange multipliers on the upper and the lower bounds, respectively. By
issuing debt at time t, the government commits to increasing taxes and/or to reissuing
debt at time t +N . When the government sets taxes between time t and time t +N , it
needs to take into account its past actions in the form of all lags of the state variables up
toN . More formally, the Ramsey planner’s state spaceXt is

Xt =
{
gt , {μt−i}Ni=1,

{
bNt−i

}N−1
i=0

}
.

The state space contains 2N+1 variables, with many lags of the same state variable (e.g.,
μ), which tend to be highly correlated with each other. Moreover, equation (6) reveals
that the Lagrange multiplier on the implementability constraint μt follows a random
walk, creating an additional source of multicollinearity between the state variables. We
solve the model with maturity N = 10, and we report in Figure 3 the autocorrelation
function of the simulated equilibrium bond’s sequence {bNt }. It is clear that the previous
10 lags of the same variable, which are all part of the state space, are highly correlated
with each other in the simulated sequence.

For this reason, the model is hardly solvable using PEA (Algorithm 1). In the lit-
erature, this problem has been tackled by an algorithm called condensed PEA. Con-
densed PEA proposes to approximate the expected values in equations ((5), (6), and
(7)) using functions of a subset XC

t of the state space Xt (XC
t is also called the core

set). These approximations are Et(uc,t+N ) � P1(XC
t ; η1 ), Et(uc,t+N−1 ) � P2(XC

t ; η2 ) and
Et(uc,t+Nμt+1 ) � P3(XC

t ; η3 ), where both the functions and the core set (including its
cardinality) are ex ante unknown. The subset XC of the information set X is selected
through an iterative procedure called condensed PEA. In essence, this method adds
an additional loop to PEA and keeps extracting orthogonal components from the state
space, similar to the Principle Component Analysis (PCA), but the number of factors
does not have to be chosen ex ante. A more detailed description of the procedure can be
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found in Section 5, Algorithm 4, where we compare our methodology to existing ones in
the literature. In the next section, we present our methodology in a model with N ma-
turities. Due to the presence of multiple lagged bonds, the multicollinearity problem is
further accentuated.

3.2 Optimal maturity management withN bonds

The economy is populated by a representative household with preferences over con-
sumption c and leisure l. The representative household chooses sequences of consump-
tion {ct }∞t=0 and leisure {lt }∞t=0 to maximize its time-0 expected lifetime utility:

E0

∞∑
t=0

βt
[
u(ct ) + v(lt )

]
,

subject to the budget constraint:

N∑
i=1

pitb
i
t+1 + ct = (1 − τt )(1 − lt ) +

N∑
i=1

pi−1
t bit ,

where bit indicates an i-periods maturity bond andpit is its corresponding price. The only
source of aggregate risk in the economy is an exogenous stream of government expendi-
tures {gt }∞t=0. In each period, the government can finance gt by: (i) levying a proportional
labor tax τt and (ii) by issuing nonstate contingent bonds with maturity 1, � � � ,N . The
government’s budget constraint reads

N∑
i=1

pi−1
t bit = τtht − gt +

N∑
i=1

pitb
i
t+1.

3.2.0.1 Sequential formulation of the Ramsey problem Combining the technology con-
straint, ct + gt = ht , with the household’s labor optimality condition, 1 − τt = vl,t/uc,t ,
yields an expression for surplus

st ≡ τtht − gt = ct − (1 − τt )ht = ct − vl,t
uc,t

(ct + gt ).

Substitute bonds prices pi,t , pinned down by the household’s Euler equations, to get

N∑
i=1

bitEt

[
βi−1uc,t+i−1

uc,t

]
= st +

N∑
i=1

bit+1Et

[
βi
uc,t+i
uc,t

]
,

with borrowing and lending limits17

∀i : M̄ ≥ bit+1, M ≤ bit+1, M̄total ≥
N∑
i=1

bit+1, Mtotal ≤
N∑
i=1

bit+1.

17M̄N ≥ bNt+1 is the government saving constraint, which is equivalent to a household’s borrowing con-
straint.
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The optimality conditions are

ct : uc,t − vl,t +μt
[
uc,t − vl,t + ucc,tc+ vll,t(ct + gt )

]
+

N∑
i=1

(μt−i −μt−i+1 )bit−i+1ucc,t = 0,

∀i, bit+1 : μt = [Etuc,t+i]−1
[
Etμt+1uc,t+i +

ξiU ,t

βi
− ξiL,t

βi
+ ξTotal

U ,t

βi
− ξTotal

L,t

βi

]
,

μt :
N∑
i=1

bitEt

[
βi−1uc,t+i−1

uc,t

]
= st +

N∑
i=1

bit+1Et

[
βi
uc,t+i
uc,t

]
,

where ξU ,t and ξL,t are the Lagrange multipliers on the upper and the lower bounds, re-
spectively, and ξTotal

U ,t and ξTotal
L,t are the Lagrange multipliers on the upper and the lower

bounds on the total bond portfolio. In the following section, we describe our compu-
tational strategy in detail. Details on the implementation and results using Epstein–Zin
preferences can be found in Appendix A.

3.3 NN-based expectations algorithm

In this section, we describe the main algorithm, which is an extension of the basic idea
illustrated in Section 2.4, applied to an optimal fiscal policy model with incomplete mar-
kets and multiple maturities. Here, we present the key steps, while implementation de-
tails can be found in Appendix B.1. There are N bonds available with maturities from 1
to N periods. The state space at time t is It = {gt , {{bit−k}N−1

k=0 }Ni=1, {μt−k}Nk=1}. The neu-
ral network needs to approximate Et[uc,t+i], Et[μt+iuc,t+i], and Et[uc,t+i−1] in function
of It . We model these relationships using one single-layer neural network ANN (It ). In
particular, if the long maturity isN > 1, then the terms to approximate are

ANN i
1(It ) = E[uc,t+i|It ] for i= [1, � � � ,N ],

ANN i
2(It ) = E[μt+1uc,t+i|It ] for i= [1, � � � ,N ],

ANN i
3(It ) = E[uc,t+i−1|It ] for i= [1, � � � ,N ].

For example, in the two-bond case there are six terms to approximate and, if the short
bond has 1 period maturity, they reduce to five.18 Given starting values for μt and {bit }

N
i=1

and initial weights for ANN , simulate a sequence of {ct }Tt=1, {μt }Tt=1 and {{bit+1}Ni=1}Tt=1 as
follows:19

18Use S and N to denote short- and long-bond maturities, respectively. The six terms are Et (uc,t+N ),
Et (uc,t+N−1 ), Et (uc,t+N−1μt+1 ), Et (uc,t+S ), Et (uc,t+S−1 ), and Et (uc,t+Sμt+1 ). The term that does not require
approximation in the latter case is Et (uc,t+S−1 ), which becomes just uc,t when S = 1.

19The network can be initially trained using an educated guess for {bit+1}Ni=1, ct , μt . It is important that
the initial training sequence is not constant. More details can be found in Appendix B.1.
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1. As suggested by Maliar and Maliar (2003), we initially restrict the solution artifi-
cially within tight bounds on all debt instruments, and refine the solution grad-
ually while we open the bounds slowly. These bounds are particularly important
and initially need to be tight and open slowly, since the neural network at the be-
ginning can only make accurate predictions around zero debt, that is, our initial-
ization point. Additionally, we use penalty functions instead of the ξ-terms to avoid
out of bound solutions.20 Since μt is identified by the first-order condition for bit , it
is overidentified if the number of available maturities is greater than one:

∀i : μt = ANN i
1(It )−1

[
ANN i

2(It ) + ξiU ,t

βi
− ξiL,t

βi
+ ξTotal

U ,t

βi
− ξTotal

L,t

βi

]
.

We tackle this problem by using the forward-states approach described in Faraglia
et al. (2019). This involves approximating the expected value terms at time t + i

with functions of the state variables that are relevant at t + 1 instead of t and in-
voking the law of iterated expectations, such that we calculate EtANN i(It+1 ) in-
stead of ANN i(It ). This is done in two steps. First, we replace the ANN i(It ) terms
in the optimality conditions with EtANN i(It+1 ) and, instead of approximating
Et(uc,t+i ), Et(uc,t+i−1 ), and Et(uc,t+iμt+1 ), we use the information set It+1 to ap-
proximate Et+1(uc,t+i ), Et+1(uc,t+i−1 ), and Et+1(uc,t+iμt+1 ). Then we use Gaussian
quadrature to calculate the conditional expectations of the neural network evalu-
ated at It+1.

2. To perform the stochastic simulation, choose T big enough and find {ct }Tt=1, {μt }Tt=1
and {{bit+1}Ni=1}Tt=1 that solve the following system of (N + 2)T equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μt =
[
EtANN i

1(It+1 )
]−1

×
[
EtANN i

2(It+1 ) + ξiU ,t

βi
− ξiL,t

βi
+ ξTotal

U ,t

βi
− ξTotal

L,t

βi

]
, ∀i,

uc,t − vl,t +μt
[
uc,t − vl,t + ucc,tc+ vll,t(ct + gt )

]
+

N∑
i=1

(μt−i −μt−i+1 )bit−i+1ucc,t = 0,

N∑
i=1

bitβ
i−1

EtANN i
3(It+1 ) = uc,t st +

N∑
i=1

bit+1β
i
EtANN i

1(It+1 ).

(8)

The system of equations (8) contains multiple Lagrange multipliers (arising from
the inequality constraints). This poses a significant computational challenge. Ide-
ally, one would numerically solve the unconstrained model and then verify that
the constraints do not bind and if, for example, MN binds, set bNt+1 = M̄N and find
the associated values for consumption and leisure. In a multiple-bond model, this
is challenging because after setting bNt+1 = M̄N , one needs to check if other con-
straints do not bind in the recomputed solution, and if they do, enforce them and

20We also find that including ξ terms explicitly in the training set improves prediction accuracy. More
details can be found in Appendix B.1.
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recalculate the solution again, and so on. To overcome this challenge, we augment
the objective function with the following differentiable penalty function:

∀i : �
(
bit+1

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ

2
· (bit+1 − M̄i

)2

+
∫

log
(
1 +φ · (bit+1 − M̄i

))
dbit+1 if bit+1 > M̄

i,

0 ifMi ≤ bit+1 ≤ M̄i,
φ

2
· (Mi − bit+1

)2

+
∫

log
(
1 +φ · (M̄i − bit+1

))
dbit+1 if bit+1 <M

i,

where φ controls the severity of the penalty. More details can be found in Ap-
pendix B. The system of equations (8) can be rederived after including the afore-
mentioned penalty function. We solve the system of equations (8) using the
Levenberg–Marquardt algorithm. Since this is a local solver, there is no guaran-
tee that the system is solved globally given a particular initial guess. In our imple-
mentation, we attempt to solve the system for at most maxrep number of different
starting points. If the solution errors are below our specified threshold, the algo-
rithm proceeds with the solution and moves to the next period t. If the solution
errors are not below our specified threshold, we pick the solution with the lowest
error.

3. If the solution error in the stochastic simulation is large, or a reliable solution could
not be found, the algorithm automatically restores the previous period neural net-
work and performs the stochastic simulation with a reduced bound. More specif-
ically, if an unreliable solution has been detected in iteration i, the algorithm re-
stores the iteration i−1’s environment and performs the stochastic simulation with

Boundi−1 = α · Boundi−1 + (1 − α) · Boundi−2.

4. If the solution calculated shrinking the bound at iteration i− 1 is still not satisfac-
tory, the algorithm does not go back another iteration but uses the same neural
network and tries to lower the Boundi−1 again toward Boundi−2. Once a reliable
solution is found, the algorithm proceeds to calculate the solution for iteration i
again, but with

Boundi = Boundi−1 + (Boundi−1 − Boundi−2 ).

In this way, if an error is detected multiple times we guarantee that both Boundi
and Boundi−1 keep shrinking toward Boundi−2, and there should exist a point
close enough to Boundi−2 such that the system can be reliably solved with both
Boundi−1 and Boundi.

5. If the solution found at iteration i is satisfactory, the neural network enters the
learning phase supervised by the implied model dynamics, the bounds are in-
creased, and a new iteration starts.
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We repeat this procedure until the neural network predictions converge and the sim-
ulated sequences of {bit }

N
i=1 and ct do not change.21 Algorithm 3 describes the algorithm

in greater detail and Appendix B.1 contains more details.

4. Numerical results

In this section, we exploit the computational gains that derive from the robustness to
multicollinearity of the NN-based expectations algorithm to study the optimal matu-
rity management problem of Section 3 with four maturities of 1, 5, 10, and 15 periods.
Specifically, we are interested in the effects on policy and allocations arising from the
additional hedging opportunities with respect to a portfolio with only a short and a long
maturity. We first present the calibration and then our numerical results.

4.1 Calibration

We calibrate the model following the strategy of Faraglia et al. (2019). Specifically, we use
additively separable utility in consumption and leisure

u(c) = c1−γ

1 − γ , v(l) = χ l
1−ηl

1 −ηl
with γ = 1.5 and ηl = 1.8, respectively. We calibrate χ such that households spend on
average 2/3 of their time endowment on leisure in the steady state, which gives a value
of 2.87.

We set β to 0.96 and for the sake of comparison, we follow the calibration strategy
for gt from Faraglia et al. (2019). We assume that gt follows an AR(1) process gt = μg +
ρggt−1 +εt , εt ∼N(0, σ2

g ) with ρg equal to 0.95. Then we look for the value ofμg such that
government expenditure is on average equal to 25% of GDP. This gives a value of 0.0042.
Lastly, we set the value for σg such that gt is always at least 15% and at most 35% of GDP
in a simulated sample of ten thousand periods, which gives a value of 0.0031. Note that
such parameterization is also broadly aligned with the estimates from the data.22

The government has four debt instruments at its disposal. We set maturities to 1, 5,
10, and 15 years and denote b1, b5, b10, b15 as short, medium, and long and very long
bonds, respectively. In addition to debt limits on individual bonds, we introduce a total
debt limit of ±100% of GDP both in our benchmark model with only short and long
bonds and in our calibration with four bonds. A fixed limit on total debt allows us to
make a fair comparison and isolate the effects of the hedging benefits of the additional
bond on the household’s welfare. Table 1 summarizes the parameter values.

Before proceeding, it is worth noting that we tested our methodology with the two-
bond case. Our results in a two-bond model confirms the findings of Angeletos (2002)
and Faraglia et al. (2019), where the optimal debt portfolio includes a negative short
bond position and a positive long bond position, as shown in Table 2. Moreover, as also

21There is no need to check μt , which can be backed out analytically from the first-order condition for ct .
22We obtain very similar estimates using the sum of government consumption and gross investment

from the NIPA tables.
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Algorithm 3 NN-based expectations algorithm applied to optimal maturity manage-
ment.

Precondition: parameters from Table 1; utility functions u(c) = c1−γ
1−γ , uc(c) = c−γ , i = 0,

Bound(0) = 0.

1: 
 Simulate AR(1) process
2: gt+1 ← μg + ρg · gt + εt+1

3: 
 Create and train the NN using initial conditions
4: Net ← feedforwardnet(Num. Neurons)

5: 
 Solve the model
6: while Bound(i)<Bmax OR OutofBoundIter<NumOutofBound do
7: 
 Generate {ct }Tt=1, {μt }Tt=1, and {{bit+1}Ni=1}Tt=1
8: for t ← 1 to T do
9: for r ← 1 to maxrep do

10: xg ← {c(r )guess, b(r )1
guess, � � � , b(r )Nguess}

11: {ct(r ), μt(r ), {bit+1(r )}Ni=1, residuals(r )} ← Solve (8) |{ANN (It+1 ), Bound(i), xg}
12: end for
13: r∗ ← minr residuals(r )
14: {ct , μt , {bit+1}Ni=1} ← {ct(r∗ ), μt(r∗ ), {bit+1(r∗ )}Ni=1}
15: end for
16: if residuals(r∗ )> threshold then Restart from line 7 with a smaller bound
17: end if
18: 
 Train the NN using the new simulated sequences
19: It ← {gt , {{bit−k}N−1

k=0 }Ni=1, {μt−k}Nk=1}

20: RHSi1,t ← uc,t+i for i= [1...N ]
21: RHSi2,t ← μt+iuc,t+i for i= [1...N ]
22: RHSi3,t ← uc,t+i−1 for i= [1...N ]
23: Net ← train(Net, It+1, RHSt )
24: 
 Checking convergence and updating {biold,t }

N
i=1 and cold,t

25: errorb ← max(|{biold,t }
N
i=1 − {bit }

N
i=1|)

26: errorc ← max(|cold,t − ct|)
27: if max(errorb, errorc )< ε then Break
28: end if
29: {biold,t }

N
i=1 ← {bit }

N
i=1

30: cold,t ← ct
31: Bound(i) ← Bound(i) + BoundStep
32: if Bound(i)> M̄ then
33: Bound(i) ← M̄

34: OutofBoundIter ← OutofBoundIter + 1
35: end if
36: i← i+ 1
37: end while
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Table 1. Calibrated parameters.

Parameter Value

Preferences Discount factor β 0.96
Risk aversion γ 1.5
Labor disutility χ 2.87
Leisure curvature ηl 1.8

Government Average gt μg 0.0042
Volatility of gt σg 0.0031
Autocorr. of gt ρg 0.95
Debt limits M̄,M, M̄total,Mtotal ± 100% of GDP

shown in Table 2, the bond portfolio positions are large and volatile as in Buera and
Nicolini (2004).

4.2 Optimal debt management with three and four bonds

Tables 2 and 3 summarize the equilibrium outstanding debt-to-GDP ratio for each ma-
turity and for each model with an increasing number of bonds. Moments are calcu-
lated given a sequence of government expenditure shocks with persistence and volatility
specified in Table 1.

As shown in Tables 2 and 3, the optimal policy includes an active use of all avail-
able maturities. Table 2 shows that the average position of each maturity is significantly
different from zero and that bond positions are volatile, suggesting their active use re-
sponding to expenditure shocks. Table 3 shows the correlations of all the maturities with
government expenditure and among themselves. First, it shows the position of short
maturity is positively correlated with expenditure shocks while the other maturities are
negatively correlated. Second, short maturity is negatively correlated with all other ma-
turities. These two together suggest that, in addition to holding a leveraged portfolio on
average, it is optimal to rebalance the portfolio toward shorter maturities. As shown in

Table 2. Selected bond moments: means and variances.

Model E(b1/GDP ) E(b5/GDP ) E(b10/GDP ) E(b15/GDP )

1 Bond 0.017 - - -
2 Bonds −0.03 - 0.343 -
3 Bonds −0.555 0.704 0.632 -
4 Bonds −0.63 0.884 0.908 −0.173

σ(b1/GDP ) σ(b5/GDP ) σ(b10/GDP ) σ(b15/GDP )

1 Bond 0.243 - - -
2 Bonds 0.1 - 0.122 -
3 Bonds 0.591 0.34 0.533 -
4 Bonds 0.218 0.266 0.27 0.374

Note: The table shows the average outstanding debt for each maturity. Moreover, the table also reports the standard devi-
ations of each outstanding position.
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Table 3. Selected bond moments: correlations.

Model ρ(gt , b1
t ) ρ(gt , b5

t ) ρ(gt , b10
t ) ρ(gt , b15

t )

1 Bond 0.549 - - -
2 Bonds 0.707 - −0.482 -
3 Bonds 0.35 −0.181 −0.302 -
4 Bonds 0.762 −0.094 −0.212 −0.22

ρ(b1
t , b5

t ) ρ(b1
t , b10

t ) ρ(b10
t , b5

t ) ρ(b15
t , b1

t ) ρ(b15
t , b5

t ) ρ(b15
t , b10

t )

1 Bond - - - - - -
2 Bonds - −0.796 - - - -
3 Bonds −0.944 −0.985 0.931 - - -
4 Bonds −0.458 −0.565 0.918 0.047 −0.877 −0.82

Note: The table shows the correlations between each maturity of outstanding debt and government expenditure. Moreover,
the table also reports the cross-correlations among the bonds.

Table 4, the additional hedging benefits of the additional maturities are reflected in a
higher average leisure and a lower consumption volatility, while the economy sustains
a lower average consumption. Labor tax volatility and autocorrelation also decrease sig-
nificantly, while the average level rises.

Next, we inspect the economic mechanism of how hedging benefits provided by the
additional maturities affect household allocations and taxes. As known since Angele-
tos (2002), differences in long and short bond prices provide a tool to hedge against
shocks by borrowing in long bonds and accumulating assets in the short term. Since
long prices are more volatile than short prices, when a negative shock hits, the value of
government liabilities falls more than the value of government assets, thus providing in-
surance against negative shocks. In addition to decreasing the government’s liabilities,
the differential response of long and short prices also affects the terms of issuing new
debt. Since long prices fall more than shorter ones, it becomes cheaper for the planner
to obtain funds by issuing shorter debt. This is why we observe portfolio rebalancing
and a negative correlation between the long and short bonds.

Table 5 shows how optimal debt management affects government finances as we
increase the number of debt instruments.

To inspect how this rebalancing matters for the government’s budget, we decom-
pose government income into labor tax income and net financial income, which is the
inflow from issuing new bonds minus the outflow due to outstanding debt. Most im-

Table 4. Allocations and policies.

Model E(ct ) σ(ln(ct )) E(lt ) σ(ln(lt )) E(τt ) σ(ln(τt )) ρ(ln(τt ), ln(τt−1 ))

1 Bond 0.252 0.029 0.666 0.006 0.247 0.121 0.971
2 Bonds 0.250 0.029 0.668 0.004 0.255 0.106 0.929
3 Bonds 0.248 0.028 0.670 0.005 0.27 0.10 0.914
4 Bonds 0.247 0.027 0.671 0.006 0.274 0.091 0.841

Note: The table shows the effects of the optimal policy on consumption and leisure as the number of bonds increases.
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Table 5. Government income and borrowing.

Description Moment 1 Bond 2 Bonds 3 Bonds 4 Bonds

Corr. Debt/GDP and gt ρ(
∑
i b
i
t

yt
, gt ) 0.547 0.136 −0.079 −0.131

Corr. Net Financial Income
and gt

ρ(
∑
i(p

i
tb
i
t+1 −pi−1

t bit ), gt ) 0.186 0.405 0.416 0.511

Corr. Net Financial Income
(constant price) and gt

ρ(
∑
i(E(pit )b

i
t+1 −E(pi−1

t )bit ), gt ) 0.078 0.11 −0.103 0.019

Av. Net Financial Income (%) E(
∑
i p

i
t b
i
t+1−pi−1

t bit
yt

) −0.142 −0.845 −2.213 −2.569

Av. Labor Tax Income (%) E( τt (1−lt )
yt

) 24.7 25.5 27.0 27.4

Note: The table shows selected moments from the models with one, two, three, and four maturities. The first row shows
the correlation between the outstanding debt/GDP ratio and expenditure shocks. Rows two and three show the correlation
between government financial income and expenditure shocks. The last two rows show the average net financial income and
the average labor tax income. Net Financial Income is defined as the inflow from issuing new debt at the net of the cost of buy-
ing back the outstanding debt. Net Financial Income (constant price) is the counterfactual and corresponds to Net Financial
Income holding bond prices fixed at their average values.

portantly, as the number of maturities increases, the correlation between total debt and
government expenditures changes sign, as shown in the first row of Table 5.

In the one- and two-bond economy, the government borrows from the private sec-
tor to finance expenditure shocks. In the three- and four-bond economy, the govern-
ment reduces its total debt to subsidize the private sector and smooth its consumption.
At the same time, net financial income becomes even more positively correlated with gt
and allows for smoother labor taxes, despite a falling total debt in bad times. The reduc-
tion of total debt together with rising financial income is achieved precisely because the
planner holds leveraged positions and responds to expenditure shocks by substituting
to short bonds.

As further evidence of this mechanism, we construct a counterfactual measure of
net financial income assuming that bond prices were fixed at their mean values. The
counterfactual correlation is reported in the third row of Table 5. The low correlation
here suggests that the comovement between net financial income and government ex-
penditures is achieved by exploiting the differential response of short, medium, and long
prices. This indicates that if prices were constant, portfolio rebalancing would have little
effect on the cyclicality of financial income and the government’s budget.

Looking at the averages in rows four and five, we see that as the number of maturities
increases, the government becomes a net payer to the private sector and collects a larger
share of its income in labor taxes. This happens because the increase in labor taxes out-
weights the decrease in average labor supply. Although average household labor income
falls, the household is compensated for holding government debt.

5. Comparison with alternative methods

There are other simulation-based numerical methods designed to address the issue of
multicollinearity among state variables. In this section, we discuss and compare our
method to the two most prominent ones: the Condensed PEA (C. PEA) used in Faraglia
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et al. (2019) and the generalized stochastic simulation algorithm (GSSA) described in
Judd, Maliar, and Maliar (2011).

5.1 Relation to condensed PEA

This method extracts orthogonal components from the information set. The method is
similar to the Principle Component Analysis (PCA), except that the number of factors
does not have to be chosen ex ante. Algorithm 4 reports the pseudocode of condensed
PEA and highlights with colors the part of condensed PEA that changes when the NN-
based Expectations Algorithm (NN EA) is implemented. In this section, we solve the
model with a short one-period bond and a long ten-period bond using both algorithms.
The model is solved with individual bonds bounds M̄ , M set at ±100%. As reported in
Table 6, the two algorithms reach a similar outcome, but the NN-based expectations
algorithm is significantly faster. The speed gains mainly come from the removal of the
external loop (lines 1, 13, 14, 15, 16, and 17 in condensed PEA) as the neural network
digests the information set at once.

On the one hand, eliminating the external loop (line 1) reduces the complexity of
the algorithm significantly, since condensed PEA requires testing an unknown num-
ber of combinations of core regressors. On the other hand, our algorithm requires sub-
stituting OLS (lines 10 and 11) with a neural network training algorithm, which has
higher complexity. Note that the computation time of one entire simulation from 1 to T
(lines 3–9) takes significantly more time under condensed PEA.23 In total, the condensed

Algorithm 4 From condensed PEA to NN-based EA.

23Lines 3–9 of Algorithm 4 take on average 34 s for condensed PEA, whereas the neural network training
phase took around 15 s. Lines 13–16 of Algorithm 4 take on average 0.003 s for condensed PEA, whereas the
neural network training phase took around 0.21 s.
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Table 6. Moments condensed PEA versus NN EA.

Method Time Forecast Error E(ct ) E(lt ) E(τt ) σ(ln(ct )) σ(ln(lt )) σ(ln(τt )) ρ(S̃t , S̃t−1 )

C. PEA 203,810 s 0.373 0.256 0.663 0.219 0.024 0.007 0.116 0.798
NN EA 23,744 s 0.391 0.256 0.664 0.222 0.024 0.007 0.123 0.869

Note: The table shows the equilibrium moments calculated with condensed PEA and the NN Expectations Algorithm

(NN EA). The forecast error is calculated as
∑T
t=1

∑E
e=1 |ye,t − Ê(ye,t )|, where ye,t here is used to indicate the realized value

correspondent to each expectation Ê(yt ) predicted by either condensed PEA or NN EA. Bond bounds are set as M̄ ,M at ±100%.

We follow Faraglia et al. (2019) and calculate S̃t = b̃1
t

b̃1
t +b̃10

t
as the ratio between the market value of short-term debt b̃1

t and the

market value of the total outstanding debt b̃1
t + b̃10

t . The computation times are obtained using MATLAB 2023a and a computer
with an Intel(R) Core(TM) i7-8750H CPU (9 M Cache, up to 4.10 GHz) with RAM 16 GB.

PEA needed to cycle 4 times before the core set XC,k converged. This means that con-
densed PEA required approximately four times more iterations than NN EA.

Note that, as the number of maturities increases, the condensed PEA requires testing
a much higher number of combinations of core regressors. In this sense, NN EA is a more
scalable approach. On a related note, in Appendix B.2, we also present a comparison
between condensed PEA and our algorithm based on time complexity. Our calculations
show that NN EA has a lower time complexity than condensed PEA, if condensed PEA
requires more than one loop on the core set of state variables to converge.

5.2 Relation to GSSA

Next, we compare our methodology to the GSSA method proposed by Judd, Maliar, and
Maliar (2011). GSSA resolves the multicollinearity problem using standard economet-
ric techniques (i.e., single value decomposition, principal components, and ridge re-
gression), combined with stochastic simulation. We solve the government debt man-
agement problem with one maturity using GSSA.24 In particular, we use ridge regres-
sion since, as noted in Judd, Maliar, and Maliar (2011), it works best under severe multi-
collinearity.25 In our application, ridge regression combined with stochastic simulation
works when bond constraints are loose, whereas when the constraints are tight, ridge
regression coefficients fail to converge. As we illustrate in details in Appendix B.3, the
reason lies in the fact that ridge regression requires choosing penalty parameters. This
choice presents nontrivial challenges. In our application, the simulated data changes
in each iteration since we are solving the model with an iterative procedure. In princi-
ple, this should require updating the penalty parameters in each iteration. However, in
our experience, changing penalty parameters at each iteration also creates instability as
the simulated data is endogenous to the penalty choice in the previous iterations. For
this reason, we fix the penalty parameters (see Appendix B.3 for more details on how we
choose the penalty parameters) during the whole procedure and, since the simulated
debt sequence tends to change significantly with each iteration when the bond con-
straints are tight, the algorithm fails to converge. Recall that, as explained in Section 3.3,

24We also attempted to solve the model with two maturities but we were not successful.
25Our application features a very ill-conditioned matrixXTX , especially when the number of maturities

increases.
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our algorithm initially restricts the solution artificially within tight bounds on all debt
instruments, and refines the solution gradually while it opens the bounds slowly. To con-
clude, the challenges in choosing (or fixing) the penalty parameters, combined with the
frequent changes in debt sequences in each iteration induced by initially tight bounds,
render ridge regression with stochastic simulation hard to scale in our application. Fur-
ther details can be found in Appendix B.3.

6. Conclusion

In this paper, we exploit the computational gains that derive from the robustness to
multicollinearity of neural networks to extend the optimal debt management problem
studied by Faraglia et al. (2019) to four maturities. The hedging benefits provided by the
additional maturities allow the government to respond to positive expenditure shocks
by raising financial income without increasing the total outstanding debt. We show that,
through this mechanism, the government uses the additional maturities to effectively
subsidize the private sector in recessions, resulting in more leisure and less volatile la-
bor taxes.
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