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A robust permutation test for subvector inference in
linear regressions

Xavier D’Haultfœuille
CREST, ENSAE—Institut Polytechnique de Paris

Purevdorj Tuvaandorj
Department of Economics, York University

We develop a new permutation test for inference on a subvector of coefficients in
linear models. The test is exact when the regressors and the error terms are inde-
pendent. Then we show that the test is asymptotically of correct level, consistent,
and has power against local alternatives when the independence condition is re-
laxed, under two main conditions. The first is a slight reinforcement of the usual
absence of correlation between the regressors and the error term. The second is
that the number of strata, defined by values of the regressors not involved in the
subvector test, is small compared to the sample size. The latter implies that the
vector of nuisance regressors is discrete. Simulations and empirical illustrations
suggest that the test has good power in practice if, indeed, the number of strata is
small compared to the sample size.

Keywords. Linear regressions, permutation tests, exact tests, asymptotic validity,
heteroskedasticity.

JEL classification. C12, C15, C21.

1. Introduction

Inference in linear regressions is one of the oldest problems in statistics. The first tests,
developed by Student and Fisher, are still in use today, with their nice features of be-
ing exact with independent, normally distributed unobserved terms but also asymptot-
ically valid under homoskedasticity only. Heteroskedasticity is a common phenomenon,
however. As a result, many applied researchers nowadays rely instead on robust t- and
Wald tests based on robust variance estimators (White (1980)). These tests are not the
panacea, yet: they are only asymptotically valid, and may suffer from important distor-
tions in finite samples (MacKinnon (2013)), even if the unobserved terms are indepen-
dent of the regressors.

Recently, DiCiccio and Romano (2017) show that it is actually possible to construct
a test sharing the desirable properties of both approaches. Specifically, they develop a
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permutation test that is exact in finite samples under independence, but also asymptot-
ically valid under weak exogeneity conditions, allowing in particular for heteroskedas-
ticity. However, under general conditions, the exact validity of the test only holds for
inference on the whole vector of parameters. Most often, researchers are interested in
subvector (e.g., scalar) inference. When applied to such subvectors, their test is exact
only if the regressors corresponding to the subvector that is tested and other regressors
are independent. This condition is seldom satisfied in practice.1  DiCiccio and Romano
(2017) also develop a partial correlation test for specific components, analogous to the
residual permutation test of Freedman and Lane (1983) (see Toulis (2022) for an exten-
sion). Their test is asymptotically valid but is not exact in finite samples, even if the un-
observed terms are independent of the regressors.

The objective of this paper is to extend the results of DiCiccio and Romano (2017) by
developing a test on subvectors that is exact under a conditional independence assump-
tion but also consistent under a weaker exogeneity condition. To this end, we consider
a new, “stratified randomization” test (SR test hereafter) for a parameter vector β based
on a heteroskedasticity-robust Wald statistic in the partitioned regression

y =Xβ+Zγ + u, (1.1)

where X is the regressors matrix of interest, Z is the matrix of the nuisance regressors,
and u is the vector of error terms. The key idea is to stratify the data according to the
different values of Z and permute the set of observations within each stratum. It is exact
if X is independent of the error term u conditional on Z, without any restriction on the
dependence between X and Z.

The test is also asymptotically valid and has power against local alternatives under a
weak exogeneity condition. Specifically, we assume that X and u are uncorrelated con-
ditonal on Z. This condition is stronger than the usual condition of no correlation be-
tween u and (X , Z ), but weaker than the mean independence condition E[u|X , Z] = 0.
To obtain this result, we assume in particular that the number of strata S, equivalently
the cardinality of the empirical support of Z, is small compared to n. This condition fails
if Z has a continuous distribution. But it holds if the distribution of Z is discrete, with a
finite support or even an infinite one (as with, e.g., a Poisson distribution or a multivari-
ate extension of it) provided that some moment of Z is finite.

The main technical challenge for proving our asymptotic results is that as the sample
size tends to infinity, there may be a growing number of strata, some being large and oth-
ers small. We then consider separately “large” and “small” strata. For large strata, whose
number may still tend to infinity, we establish a permutation central limit theorem us-
ing Stein’s method (see, e.g., Chen, Goldstein, and Shao (2011), for an exposition of this
method). To this end, we derive a permutation version of the Marcinkiewicz–Zygmund
inequality, which to our knowledge, is also new. For small strata, the combinatorial cen-
tral limit theorem does not apply because the strata sizes may not tend to infinity. In-
stead, we use independence of units belonging to different strata, and the central limit
theorem for triangular arrays.

1An important exception is randomized experiments, where the treatment is often drawn independently
of all observed variables.



Quantitative Economics 15 (2024) A robust permutation test 29

We also study the performance of the SR test and other tests through simulations.
We show that the exactness of the SR test may endow it with a power advantage in some
DGPs where other tests are underpowered, at least for small to moderate n. Otherwise,
the SR test seems to have comparable power to other tests when S/n is small. In the
heteroskedastic case we explore, the SR test has a level closer to the nominal level than
most of the other tests we consider. We also study in simulations an approximate version
of the SR test, which may be useful when Z is not discrete or S/n is large. The approx-
imate SR test is the SR test based on the strata obtained by discretizing the index Zγ̂,
where γ̂ is the OLS estimator of γ. The approximate SR test displays some level of dis-
tortions, but still outperforms the partial correlation permutation test or the standard
heteroskedasticity-robust test in some cases.

Finally, we consider two applications. The first studies the effect of some policies
on traffic fatalities in the US, whereas the second revisits the effect of class size on stu-
dents’ achievement, using data from the project STAR (Student-Teacher Achievement
Ratio). In both cases, confidence intervals on the effect of the evaluated policy obtained
by inverting the SR test are informative. In the second application, the SR confidence
intervals are always smaller than the usual, so-called HC3, confidence intervals. We also
present evidence that inference based on the SR test may be preferable than that based
on robust standard errors with these data.

Related literature As mentioned above, the paper is most closely related to DiCiccio
and Romano (2017). We extend their work by developing subvector inference that is ex-
act under conditional independence between the covariates of interest and the unob-
served term. Another related work is Lei and Bickel (2021), who develop a cyclic permu-
tation test on subvectors. Their test is exact under a stronger independence condition
than ours, but without any restriction on the regressors. On the other hand, they do not
study the asymptotic behavior of their test under weaker conditions, and our simula-
tions strongly suggest that it is not asymptotically valid under heteroskedasticity.

The idea of a stratified (or a restricted) randomization appears in the context of
experimental designs (Edgington (1983), Good (2013)) and evaluation of treatment
with randomly assigned instruments (Imbens and Rosenbaum (2005)) and treatments
(Bugni, Canay, and Shaikh (2018)). While the theoretical results developed in this paper
are for observed units randomly sampled from some population, they are also directly
applicable in experimental settings where units are randomly assigned to treatments as
considered by the aforementioned studies.2 In particular, when applied to Imbens and
Rosenbaum’s (2005) setup, our results allow one to fully characterize the asymptotic dis-
tribution of their test statistic without restricting the strata sizes and, at the same time,
render it heteroskedasticity-robust.

2Lehmann (1975) calls the former the population model and the latter the randomization model. Regard-
ing the terms “permutation test” and “randomization test,” which are often used interchangeably, Edging-
ton and Onghena (2007) indicate that the former typically refers to permutation methods in population
model while the latter is used for permutation methods in randomization model. Related to this distinc-
tion, see Abadie, Athey, Imbens, and Wooldridge (2020) for obtaining standard errors in regressions in the
presence of design-based and/or sampling-based uncertainties.
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Yet another approach to constructing exact permutation tests in the presence of nui-
sance parameters is to condition, whenever available, on a sufficient statistic for the
nuisance parameters. This approach has been pursued by Rosenbaum (1984) for testing
sharp null of no treatment effect under the logit assumption for the propensity score.
However, in the absence of parametric assumptions as in our context, a low-dimensional
sufficient statistic cannot be obtained in general. The approximate SR test we consider
in the simulations is nonetheless related to Rosenbaum (1984) in the sense that it de-
pends only on the index Zγ̂, rather than on the full set of regressors Z.

Organization of the paper The paper is organized as follows. Section 2 introduces the
setup and develops the test. Section 3 studies the finite-sample and asymptotic prop-
erties of the test. In Section 4, we compare the performance of our test with alterna-
tive procedures through simulations. The two applications are considered in Section 5,
while Section 6 concludes. The Appendix gathers all proofs and additional results on the
project STAR.

2. The set-up and definition of the test

2.1 Construction of the test

Consider (1.1) where y = [y1, � � � , yn]′ is a n × 1 vector of dependent variables, X =
[X1, � � � , Xn]′ and Z = [Z1, � � � , Zn]′ are n × k and n × p regressors, where Z is assumed
to include the intercept, and u = [u1, � � � , un]′ is a n × 1 vector of exogenous error terms
(see Assumptions 1 and 2(b) below). β and γ are k × 1 and p × 1 vector of unknown
regression coefficients, respectively. We consider tests of the restriction3

H0 : β = β0. (2.1)

Remark 1. The tests of (2.1) are useful not only for usual linear models with exogenous
regressors, but also in the case of endogenous regressors. In the latter case, we have a
model y = Yδ+Zγ+u, where the endogenous set of regressors Y is instrumented by X .
Then, following the approach by Anderson and Rubin (1949), we can test for δ = δ0 by
testing that the X coefficients in the regression of y −Yδ0 on X and Z are equal to 0 (see
Tuvaandorj (2021), for such an approach with permutation tests).

To formally define our test, we introduce the following notation. Let Wi = (X ′
i , Z

′
i )

′,
W = [X , Z], and for any n × m matrix A, MA = In − A(A′A)−1A′. The set of all permu-
tations of {1, � � � , n} is denoted by Gn, with Id ∈Gn corresponding to the identity permu-
tation. For any π ∈ Gn and vector c = [c1, � � � , cn]′, we let cπ = [cπ(1), � � � , cπ(n)]′. Similarly,
for a matrix A with n rows, Aπ is the matrix obtained by permuting the rows accord-
ing to π. Let {z1, � � � , zS } denote the set of (distinct) observed values in the sample. Let
ns = |{i : Zi = zs}| for s ∈ {1, � � � , S}. Let also ys denote the subvector of y including the

3We thus do not consider tests on the intercept. These would require a different approach from that
considered below.
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rows i satisfying Zi = zs , and define Xs and Zs similarly. Without loss of generality, as-
sume that the vector y and matrices X and Z are arranged such that

[y, X , Z] =
⎡⎢⎣y

1 X1 Z1

...
...

...
yS XS ZS

⎤⎥⎦ . (2.2)

Let the corresponding partitioning of the error terms be u = [u1, � � � , uS ]′, and X̃ =
[X̃1′, � � � , X̃S′]′, where X̃s = M1sX

s and 1s denotes the ns × 1 vector of ones.4 Also, for
any vector v = [v1, � � � , vn]′, let �(v) denote the diagonal matrix with (i, i) element equal
to [Dv]2

i , with D≡ diag(M11 , � � � , M1S ) and define

g(W , v) = v′X̃
(
X̃ ′�(v)X̃

)−1
X̃ ′v.

We consider the following heteroskedasticity-robust Wald statistic for H0:

W = g(W , y −Xβ0 ). (2.3)

We now construct a permutation test based on W . The idea behind permutations tests
is that the distribution of some test statistic (W here) remains invariant under H0 if we
permute the data in an appropriate way. Then we reject H0 at the level α ∈ (0, 1) if the
test statistic on the initial data is larger than 100 × (1 −α)% of the test statistics obtained
on all possible permuted data.

First, we define the permuted version of W as

Wπ = g
(
W , (y −Xβ0 )π

)
.

Second, instead of considering permuted versions of the test statistic using elements of
Gn, as DiCiccio and Romano (2017), we focus on a subset of Gn. Specifically, we consider
permutations π such that for any k ∈ {1, � � � , n}, we have for all t ∈ {1, � � � , S},

t−1∑
s=1

ns < k≤
t∑

s=1

ns ⇒
t−1∑
s=1

ns < π(k) ≤
t∑

s=1

ns

(
with

0∑
s=1

ns = 0

)
.

That is, π shuffles rows only within each of the S strata, ensuring that Zπ =Z. We denote
by Sn the set of such “stratified” permutations. Clearly, Id ∈ Sn.

With the test statistic W , its permuted version Wπ and the set of admissible per-
mutations Sn in hand, we define a level-α stratified randomization test by following the
general construction of permutation tests. Let N ∈ {1, � � � , |Sn|}, possibly random but in-
dependent of y conditional on W , and let S′

n ⊂ Sn be such that (i) Id ∈ S
′
n; (ii) S′

n\{Id} is
obtained by simple random sampling without replacement of size N − 1 from Sn\{Id}.
Note that if N = |Sn|, we simply have S

′
n = Sn.5 Then let

W (1) ≤W (2) ≤ · · · ≤ W (N ),

4On the other hand, we do not modify the labels 1, � � � , n of the units. This means that y �= [y1, � � � , yn]′,
for instance (y is a permuted version of [y1, � � � , yn]′).

5 A practical way to obtain S
′
n is (i) to pick N ′ − 1 permutations at random from Sn, with replacement and

with equal probability, (ii) to add Id to this initial set, (iii) to delete the duplicates (if any) from this set.
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be the order statistics of (Wπ )π∈S′
n
. Let q = N − 	Nα
 (with 	x
 the integer part of x),

N+ = |{i ∈ {1, � � � , N } : W (i) >W (q)}| and N0 = |{i ∈ {1, � � � , N } : W (i) = W (q)}|. We define
the level-α test function φα by

φα =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if W >W (q),
Nα−N+

N0 if W = W (q),

0 if W <W (q).

(2.4)

Increasing N reduces the role of randomness but increases the computational cost of the
test. The exact result (Theorem 1 below) holds for any N but for the asymptotic results,

we will assume that N
p−→ ∞ as n → ∞.

The power of the test is directly related to |Sn| = ∏S
s=1 ns!. If |Sn| = 1, which occurs

if Z includes a continuous component,6 the test becomes trivial: φα = α. On the other
hand, if |Sn| > 1, the test is nontrivial, and we may have φα = 1 as soon as |Sn| ≥ 1/α:
this occurs if W > maxπ∈Sn:π �=Id Wπ . For instance, S = n − 4, ns1 = 3, ns2 = ns3 = 2 for
some (s1, s2, s3 ), and ns = 1 otherwise is sufficient to induce |Sn| ≥ 1/α for α ≥ 0.05. More
generally, even if Z has an infinite support, as with count data (e.g., Poisson distributed
variables), |Sn| may be large, and S/n small. We refer to Lemma 2 below for a formal
result along these lines.

2.2 Approximate test

As explained above, our test is trivial when Z is continuous. More generally, it may
also have low power with many strata. To circumvent these issues, we consider here an
approximate version of our initial proposal. Specifically, instead of constructing strata
based on {Zi}ni=1, we rely on a discretization of Ii ≡ Z′

iγ̂, with γ̂ the OLS estimator of
γ. Letting u1 = mini=1, ���,n Ii, uS+1 = maxi=1, ���,n Ii and us = u1 + (uS − u1 )(s − 1)/S for
s = 2, � � � , S, one such discretization is simply

S∑
s=1

s1
(
Ii ∈

[
us , us+1)),

where 1(·) denotes the indicator function. Intuitively, the number of strata S that one
chooses trades off size distortion and power. With a low S, the test is distorted because
there are still variations in {Ii} within each stratum, but we can expect larger power since
the effective sample size n− S is larger.

Because of the discretization, the test is not exact in general, even if X and u are
conditionally independent. While we leave the study of its asymptotic validity for future
research, we evaluate in Section 4.2 its performances and the impact of the choice of S
through Monte Carlo simulations.

6This is at least the case if the data are i.i.d. If not, we may have S < n with positive probability even if Z
includes a continuous component.
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2.3 Confidence regions

The confidence region for the parameters can be obtained by test inversion. Given the
duality between tests and confidence sets, the finite and large sample validity of the
confidence regions follow from the corresponding test results.

We recommend using the same set of permutations S′
n for different tested values β0

and the same random variable in case randomization is required for the test (namely,
when W = W (q) in (2.4) above), to avoid random fluctuations that could create “holes”
in the confidence region.7 Even if we do so, inverting the test may not lead to a convex
confidence region. In this case, taking the convex hull of the corresponding region is a
simple and conservative fix. This issue is not specific to our test but potentially arises
with all permutation tests for which the critical value depends on the parameter value
that is tested (β0 in our context). For discussions about permutation confidence inter-
vals and finding their endpoints, we refer to Garthwaite (1996), Good (2013), and Wang
and Rosenberger (2020).

3. Statistical properties of the test

3.1 Finite sample validity under conditional independence

First, we prove that the SR test is exact under conditional independence between X and
u. We rely on the following conditions.

Assumption 1 (Finite Sample Validity).

(a) For all s = 1, � � � , S, the vector us is exchangeable.

(b) Conditional on Z, X and u are independently distributed.

(c) rank(W ) = k+p with probability one.

Because all observations i in stratum s are such that Zi = zs, the first condition al-
lows for any dependence between Z and u. The first two conditions are thus weaker
than unconditional exchangeability of u and independence between u and W , the con-
ditions imposed by DiCiccio and Romano (2017, test statistic Un(X , Y )), and Lei and
Bickel (2021) to establish the exactness of their tests. A particular case where Condi-
tion (b) holds is stratified randomized experiment with homogeneous treatment ef-
fects. Let Xi ∈ {0, 1} denote the treatment variable of individual i, Zi be the vector of
strata dummies in and Yi(x) the potential outcome corresponding to treatment value
x ∈ {0, 1}. With homogeneous treatment effects, we have Yi(1) = β+Yi(0) for all i, with
Yi(0) ⊥⊥ Xi|Zi. Then, letting ui = Yi(0) − E[Yi(0)|Zi], we obtain (1.1) and Condition (b).
Condition (c) is maintained for convenience, as the Wald statistic in (2.3) and its permu-
tation versions would still be exchangeable when defined using a generalized inverse of
the covariance matrix estimator.

7 If the test is trivial (S = n), confidence intervals obtained by test inversion may be empty. To avoid this
issue, one can define the confidence interval as (−∞, ∞) in such cases, instead of randomizing.
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Theorem 1 (Finite Sample Validity). Let us suppose that (1.1), Assumption 1 and H0

hold. Then, for any 0 <α< 1,

E[φα|W ] = α.

Hence, the SR test is exact in finite samples. In particular, in stratified randomized
experiments, the test is exact for testing sharp null hypotheses of the kind Y (1)−Y (0) =
β. By focusing on permutations in Sn, we therefore extend the result of DiCiccio and
Romano (2017) to designs where X and Z are not independent. While the details of the
proof are given in the Appendix, the intuition of the result is as follows. First, one can
show that for the test to be exact, it suffices to prove that the (Wπ )π∈S′

n
are exchangeable,

conditional on W . Second, under H0,

D(y −Xβ0 )π = D(Zπγ + uπ ) =Duπ ,

since Zπ = Z. Then, because (y − Xβ0 )π in g(W , (y − Xβ0 )π ) is always premultiplied
by D, we have Wπ = g(W , uπ ). Conditional independence between X and u and ex-
changeability of us for all s then imply that the (Wπ )π∈S′

n
are exchangeable, conditional

on W .

3.2 Asymptotic validity under weaker exogeneity conditions

Next, we study the asymptotic validity of the SR test under weaker conditions than
conditional independence between X and u. To this end, we partly build on DiCiccio
and Romano (2017), who show that a randomization test based on the Wald statistic
(Un(X , Y ) in their paper) is of asymptotically correct level and heteroskedasticity-robust
if, in addition to usual moment and nonsingularity conditions, the data are i.i.d. and
E[Wiui] = 0.8 We present below analogous large sample results for the SR test under sim-
ilar conditions, displayed in Assumption 2 below.

Before we present these conditions, let us make some preliminary remarks and ad-
ditional definitions. First, the distribution of {(W ′

i , ui )′}ni=1 and β are allowed to change
with n. For notational convenience, we usually do not make this dependence on n ex-
plicit throughout the main text, though we do it in the Appendix. Second, in order to
derive the asymptotic distribution of the stratified randomization statistic, we make a
distinction between “large” and “small” strata as follows. Let cn be a sequence satisfying
cn ≥ n1/2 and cn/n→ 0 as n→ ∞, for example, cn = n1/2. Define

In ≡ {
s ∈ {1, � � � , S} : ns ≥ cn

}
,

Jn ≡ {1, � � � , S} \ In = {
s ∈ {1, � � � , S} : ns < cn

}
.

We explain below on why we separate strata this way. Now, let Xs = [Xs
1, � � � , Xs

ns ]′ with
Xs

i being k × 1, and us = [us1, � � � , usns ] (ns × 1) denote the regressor matrix and the vec-
tor of error terms in the sth stratum, respectively. The covariance matrix for the Wald

8A close inspection of the proof of Theorem 4.1 in DiCiccio and Romano (2017) reveals that their partial
correlation test, to which we compare our test below, also works if E[Wiui] = 0.
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statistic is defined as


n ≡ n−1
n∑

i=1

E
[(
Xi − E[Xi|Zi]

)(
Xi − E[Xi|Zi]

)′
u2
i |Zi

]
.

Define also the covariance matrices for the permutation statistic as VnI ≡ ∑
s∈In(ns/n)

σs2
u Qs and VnJ ≡∑

s∈Jn
(ns/n)σs2

u Qs, where σs2
u ≡ n−1

s

∑ns
i=1 E[u2

i |Zi = zs] and

Qs ≡ n−1
s

ns∑
i=1

E
[
XiX

′
i|Zi = zs

]− n−1
s

ns∑
i=1

E[Xi|Zi = zs]n−1
s

ns∑
i=1

E
[
X ′

i|Zi = zs
]
.

Let λmin(·) denote the smallest eigenvalue of a symmetric matrix. We impose the follow-
ing assumption on the strata.

Assumption 2 (Large Sample Validity).

(a) {(W ′
i , ui )′}ni=1 are independent.

(b) E[(X ′
i , 1)′ui|Zi = zs] = 0 for all n, s = 1, � � � , S and i = 1, � � � , n.

(c) There exist m> 2 and M0 < ∞ not depending on n such that sups,i E[‖Xi‖2m|Zi =
zs] <M0 and sups,i E[|ui|2m|Zi = zs] <M0.9

(d) There exists λ > 0 such that lim infn→∞ λmin(
n ) > λ a.s. If lim infn→∞ |In| ≥ 1

a.s. (resp., |Jn|
a.s.−→ ∞), we also have lim infn→∞ λmin(VnI ) > λ a.s. (resp.,

lim infn→∞ λmin(VnJ ) > λ a.s.).

(e) n−1S
a.s.−→ 0.

Conditions (a)–(c) are quite standard. Condition (c) is a usual moment condition
required for the central limit theorem with independent observations (White (2001),
Hansen (2022b)). Condition (b) is slightly stronger than the usual unconditional absence
of correlation between Wi and ui but weaker that the usual mean independence con-
dition E[ui|Wi] = 0, and, as such, allows for any form of heteroskedasticity.10 Consider
again the case of stratified randomized experiments, but now assume that treatment ef-
fects can be heterogeneous, still with E[Yi(1) − Yi(0)|Zi] = E[Yi(1) − Yi(0)]. Then (1.1)
holds, with β= E[Yi(1)−Yi(0)]. Besides, Var[ui|Wi] depends on Xi because of treatment
effect heterogeneity. However, E[ui|Wi] = 0, so Condition (b) holds.

Conditions (d)–(e) are more specific to our setup. The first imposes that the covari-
ance matrices corresponding to each large stratum are not degenerate. Condition (d)
also imposes the invertibility of the limit covariance matrix for Jn when the number of

9Here, sups,i is a shortcut for the supremum over s ∈ {1, � � � , S} and i ∈ {1, � � � , n}.
10 An example where Condition (b) holds but E[ui|Wi] �= 0, suppose that Xi is continuous, independent of

Zi (as in a standard randomized experiment) and has a nonlinear effect on Yi, so that E[Yi|Xi] = g(Xi )+Z′
iγ̃

for some vector γ̃ and nonlinear function g. If we consider the best linear prediction of Yi by (X ′
i , Z

′
i )

′, it
will take the form X ′

iβ+Z′
iγ, and ui ≡ Yi −X ′

iβ−Z′
iγ will satisfy Condition (b), though E[ui|Wi] �= 0.
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small strata is large. The latter can be replaced by the condition that limn→∞ VnJ exists;
then the limit could be degenerate.

To understand Condition (e), note that because the SR test uses deviations from
strata means, the “effective” sample size n − S should tend to infinity for the test to
be consistent. Condition (e) reinforces this requirement, since under the condition,
n − S = n(1 − n−1S)

a.s.−→ ∞. Condition (e) obviously holds if the {Zi}ni=1 are identically
distributed; with distribution independent of n, and Z1 has finite support. The following
lemma shows that it also holds if the support of Zi is in N

p, as with, for example, Pois-
son or geometric distributions (or multivariate versions of them), provided that some
moments of Zi are finite.

Lemma 2. Suppose that (Z1, � � � , Zn ) are independent and identically distributed with
distribution possibly depending on n, support included in N

p and E[‖Zi‖2p] < C0 < ∞,
with C0 independent of n. Then Assumption 2(e) holds.

Remark 2. S does not depend on the exact values in the support of Z. Hence, when
this support is countable but not in N

p, we can still apply Lemma 2 as follows. Let
{pr }r∈N be the probabilities associated with the support points {zr }r∈N of Z. Let σ de-
note a permutation of N such that pσ(1) ≥ pσ(2) ≥ · · · and define the random variable Z̃

as σ−1(r ) when Z = zr . By Lemma 2, n−1S
a.s.−→ 0 as long as E[Z̃] < ∞ or, equivalently,∑

r≥0
∑

j>r pσ(j) <∞.

For any finite set B, let U(B) denote the uniform distribution over B. To establish the
asymptotic properties of the SR test, we first study the asymptotic behavior of Wπ , with
π ∼ U(Sn ), conditional on the data.

Theorem 3 (Asymptotic Behavior of Wπ). Let (1.1) and Assumption 2 hold with β = βn

such that lim supn→∞ ‖βn‖ < ∞. Then, conditional on the data, Wπ d−→ χ2
k with proba-

bility tending to one.

The main technical difficulty, and the reason why we cannot apply the same proof
as in DiCiccio and Romano (2017), is that the number of strata may tend to infinity,
and there may be only small strata. To deal with these issues, we consider separately
large and small strata. For large strata, we prove the following combinatorial central limit
theorem with possibly many strata. Hereafter, we let Pπ denote the probability measure
of π.

Lemma 4 (Combinatorial CLT). Let S be an integer-valued random variable, S ≥ 1 and
s = 1, � � � , S denote strata of sizes ns ≥ 2, with

∑S
s=1 ns = n. Let π ∼ U(Sn ) and for each s,

{bsi }nsi=1 and {csi }nsi=1 be random variables satisfying:11

(a)
∑ns

i=1 b
s
i =∑ns

i=1 c
s
i = 0 a.s.;

(b) For σ2
n ≡∑S

s=1
1

ns−1 (
∑ns

i=1 b
s2
i )(

∑ns
i=1 c

s2
i ), σ2

n

p−→ σ2 > 0 as n→ ∞;

11Again, the distributions of S , {bsi }nsi=1 and {csi }nsi=1 are allowed to vary with n here.
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(c)
∑S

s=1 n
−1
s (

∑ns
i=1 |bsi |

3 )(
∑ns

i=1 |csi |3 )
p−→ 0 as n → ∞;

(d)
∑S

s=1(ns − 1)−1(
∑ns

i=1 b
s4
i )(

∑ns
i=1 c

s4
i )

p−→ 0 as n → ∞.

Let Tπ ≡∑S
s=1

∑ns
i=1 b

s
i c

s
π(i)/σn. Then Pπ(Tπ ≤ t )

p−→�(t ) for any t ∈R as n → ∞.

The proof of this lemma relies on Stein’s method with exchangeable pairs, and on
the following permutation version of the Marcinkiewicz–Zygmund inequality, which to
our knowledge, is also new.

Lemma 5 (Marcinkiewicz–Zygmund Inequality for Permutation). Let a1, � � � , an and
b1, � � � , bn be sequences of d × 1 real vectors and scalars, respectively, with

∑n
i=1 bi = 0.

Then, for any 1 < r < ∞, n > 1, and π ∼ U(Gn ) there exists a constant Mr depending only
on r such that

Eπ

[∥∥∥∥∥
n∑

i=1

aibπ(i)

∥∥∥∥∥
r]

≤Mrn
(r/2)∨1

(
n−1

n∑
i=1

‖ai‖r
)(

n−1
n∑

i=1

|bi|r
)

. (3.1)

The usual combinatorial central limit theorem, used in DiCiccio and Romano (2017),
would apply to a finite number of large strata; but here, the number of large strata, |In|,
may tend to infinity. We can accomodate that using Lemma 4. Still, to check Condition
(c) therein, we need to restrict the growth of |In|, by imposing that |In| ≤ Cn1/2 for some
C > 0 (see (A.14) in the proof of Theorem 3). This is why we imposed above cn ≥ n1/2.

For small strata, the combinatorial central limit theorem does not apply because
the strata sizes may not tend to infinity. Instead, we use the fact that all strata are in-
dependent. Then we check that the assumptions underlying a conditional version of
the Lindeberg CLT for triangular arrays hold. This is technical, however, and we have to
rely again on the Marcinkiewicz–Zygmund inequality, among other tools. Also, we rely
therein on the condition that strata are small enough in the sense that cn/n → 0. A sim-
ilar condition is used by Hansen and Lee (2019) to establish asymptotic normality of a
sample mean with potentially many clusters.

The asymptotic properties of the SR test are also based on the the asymptotic be-
havior of W , given in the following theorem. Hereafter, we let χ2

k(c) be the noncentral
chi-squared distribution with degrees of freedom k and noncentrality parameter c, for
any c ≥ 0.

Theorem 6 (Asymptotic Behavior of W). Let us suppose that (1.1) and Assumption 2
hold. Then:

1. If βn = β0 + hn−1/2 with h ∈ R
k fixed and G ≡ limn→∞ 


−1/2
n E[n−1X̃ ′X̃] exists,

W d−→ χ2
k(‖Gh‖2 ).12

2. If n1/2‖E[n−1X̃ ′X̃](βn −β0 )‖ → ∞, W p−→ ∞.

12If h = 0, we need not assume that limn→∞ 

−1/2
n E[n−1X̃ ′X̃] exists.
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As Theorem 3, Theorem 6 would be standard with a finite number of strata; but here
there may be many small strata. In particular, the result does not immediately follow
from the result of Wooldridge (2001), which is derived under the assumption that each
stratum frequency has a nondegenerate limit. To prove the result, we show that the as-
sumptions underlying a conditional Lindeberg CLT hold; see Lemma 13 in Appendix B.

Remark 3. Theorem 6 establishes the asymptotic normality of the within OLS estimator
for stratified regression models (Cameron and Trivedi (2009, Chapter 24.5)), with possi-
bly many small strata. Although we prove it for linear models only, we expect the result
to carry over to general M-estimation under stratified sampling.

The two previous results imply the following asymptotic properties of the SR test.
Below, q1−α(χ2

k ) denotes the 1 − α quantile of the χ2
k distribution.

Corollary 7. Suppose that (1.1) and Assumption 2 hold and Nn = |S′
n|

p−→ ∞. Then:

1. If βn = β0, limn→∞ E[φα] = α.

2. If βn = β0 + hn−1/2 and G ≡ limn→∞ 

−1/2
n E[n−1X̃ ′X̃] exists, limn→∞ E[φα] =

P[W∞ > q1−α(χ2
k )], where W∞ ∼ χ2

k(‖Gh‖2 ).

3. If n1/2‖E[n−1X̃ ′X̃](βn −β0 )‖ → ∞, limn→∞ E[φα] = 1.

The first result shows that the SR test is of asymptotically correct level. Combined
with Theorem 1, this result implies that under i.i.d. sampling and technical restrictions,
the SR test is exact under conditional independence between Xi and ui, and asymptoti-
cally valid under the weaker exogeneity restriction E[(X ′

i , 1)′ui|Zi = zs] = 0. The second
result in Corollary 7 states that the test has nontrivial power to detect local alternatives.
Finally, the third result implies that if E[n−1X̃X̃ ′] converges to symmetric positive defi-
nite matrix, the test is consistent for fixed alternatives, namely when βn = β �= β0.

4. Monte Carlo simulations

4.1 Main test

We first present some simulation evidence on the performance of the proposed test. We
consider the following model:

yi =Xiβ+ γ1 +
p∑

j=2

Zijγj + ui, i = 1, � � � , n,

where β = γ1 = 0, γj = 1 for j ≥ 2. We consider p ∈ {2, 4} and sample sizes n ∈
{50, 100, 500}. Then we consider three data generating processes (DGPs) with various
distributions for Xi and ui. In the three cases, the {Zij }

p
j=2 are i.i.d. and follow a Poisson

distribution with parameter 1. Then:
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– In DGP1, ui|Wi ∼ N (0, 1) and Xi = X∗
i , with

X∗
i = 1√

2

[
1√

p− 1

p∑
j=2

Zij + vi

]
, vi|Zi ∼ N (0, 1). (4.1)

– In DGP2,

ui =
[

1√
p− 1

p∑
j=2

(Zij − 1)

]
vi, P(vi = −1|Wi ) = P(vi = 1|Wi ) = 1

2

and Xi = exp(X∗
i ), with X∗

i defined by (4.1).

– In DGP3, ui|Wi ∼ N (0, (1 +X2
i )/(1 + exp(2))) (the constant 1 + exp(2) ensures that

Var(ui ) � 1) and Xi = exp(X∗
i ).

Remark that in the first two DGPs, ui is independent of Xi given Zi and so the
SR test has exact size. In DGP3, ui is heteroskedastic and the SR test may exhibit a
finite-sample size distortion. As seen below, DGP3 leads to overrejection of the usual
heteroskedasticity-robust test in finite samples. We aim at investigating the properties
of the SR test (and others) in these situations.

Table 1 shows some characteristics of W related to the SR test. With one Poisson
regressor, the largest stratum roughly corresponds to 40% of the whole sample, which
implies that the number of distinct permutations in Sn (E[|Sn|]) is very large, even with
n = 50. With three Poisson regressors, on the other hand, many strata have just size one,
and S is quite large compared to n. It is then interesting to investigate the power of the
test in this more difficult case.13

We consider the power curve on the interval [−0.5, 0.5]. We construct S′
n as explained

in footnote 5 above, with N ′ = 499. However, if |Sn| < 499, we simply consider all possible
permutations, so that S′

n = Sn.
We then compare our test with an asymptotic version of it (denoted by SRa in the

figures below), where the test statistic is the same but we use the χ2
1 asymptotic criti-

cal value instead of the distribution of the permutation statistic. Apart from the SR test,
we consider the cyclic permutation (CP) test of Lei and Bickel (2021), which is exact un-
der independence between W and u (but not conditional independence between X and

Table 1. Some characteristics of Z related to the SR test.

Statistics on Strata

p= 2 p= 4

n= 50 n= 100 n= 500 n= 50 n= 100 n= 500

E[|Sn|] 1.1 × 1043 4.3 × 10112 >10308 1.3 × 1012 3.4 × 1036 >10308

E[maxs=1, ���,S ns ] 20.8 40.3 191.8 5.0 8.4 32.4
E[S] 4.7 5.1 6.1 29.0 41.5 76.4

Note: For each n and p, the expectations are estimated using 3000 simulations from DGP1.

13 When increasing p further, for example to 10, strata have only size 1, and the SR test becomes trivial.
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u given Z). Following Lei and Bickel (2021, p. 406), we use 19 cyclic permutation sam-
ples and a stochastic algorithm to find an ordering of the data that improves power. We
also consider the partial correlation permutation test, denoted as PC, proposed by Di-
Ciccio and Romano (2017), which is asymptotically valid under simply no correlation
between W and u. Finally, we consider the sign test of Toulis (2022), which is asymp-
totically valid under symmetry of u, which holds in the three DGPs. For these two per-
mutation tests, we use 499 permutations drawn at random with replacement from Gn.
We also compare our test with the usual F-test, which is not heteroskedasticity-robust.
We use the F1,n−p−1 critical value for this test. Finally, we compare our test with the
heteroskedasticity-robust Wald tests. For the latter, we use the so-called HC1 and HC3
versions of the test. The former is the default in Stata and is widely used, whereas HC3
is often the recommended version of the test (see, e.g., Long and Ervin (2000)). In both
tests, we use the χ2

1 critical value.
In the first DGP and with p = 2, the performances of the permutation tests are overall

similar (see Figure 1). We just note that the CP test is slightly less powerful than the
others. Compared to standard tests, the SR test is slightly less powerful but no difference
can be detected when n = 500. With p = 4 and n < 500, the SR test is less powerful than
the PC and sign tests. This could be expected, because basically the test relies only on
n − S observations, and for p = 4 and n ∈ {50, 100}, n − S is much smaller than n (see
Table 1 above).14 However, the difference in power becomes very small when n = 500.
Interestingly, the CP test does not seem to have power for n = 50. We also notice that in
this yet homoskedastic model, the HC1 and HC3 Wald tests overreject when n = 50.

The second DGP is an instance where the SR test is the only exact one, among all the
tests we consider. Even without size correction, it also has generally larger power than
the PC test, except for n = 50 and p = 4 (see Figure 2). The sign test has better power
(especially when n ≤ 100) but is also distorted, with levels around 10% for n ≤ 100. The
HC1 and HC3 tests exhibit large distortions. With p = 2, they respectively reject the null
hypothesis in 33.0% and 16.1% of the samples with n = 100, and in 25.5% and 15.7% of
the samples with n = 500.

The last DGP corresponds to a case where no test is exact because of heteroskedas-
ticity, and all the tests we consider overreject in finite samples (see Figure 3). Overall,
the SR test exhibits reasonable level of distortion, with a level that never exceeds 7.4%
over the six combinations of n and p, and equal to 6.6% on average. Other tests have av-
erage rejection rates of 52.6% (CP), 5.7% (PC), 17.1% (sign), 30.3% (HC1), 11.2% (HC3),
and 62.8% (nonrobust). The CP test exhibits high level of distortions, which also increase
with n, confirming our conjecture that it is not heteroskedasticity-robust. Compared to
the PC test, which has a similar level, the SR test has a larger power both when p= 2 and
p = 4.

Of course, the ranking between the different tests in terms of level and power may
vary for other DGPs. Nevertheless, the simulations above suggest that the SR test can be
a good competitor to existing tests, especially in models with few additional covariates.

14 The tails of X also seem to affect the power of the SR test. Considering Xi = exp(X∗
i ) instead of Xi =

X∗
i , the power of the SR deteriorates compared to that of the CP and sign test (but improves compared to

the PC test, at least for p= 2).
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Figure 1. Power curves: DGP1. Note: The horizontal line is at the nominal level of the tests (5%).
“SR” stands for the stratified randomization test, “CP” is the cyclic permutation test of Lei and
Bickel (2021), “PC” is the partial correlation test in Section 4 of DiCiccio and Romano (2017),
and “Sign” is the sign test in Toulis (2022). “SRa” uses the same test statistic as SR but with the
asymptotic critical value, “HC1” and “HC3” are two heteroskedasticity-robust Wald tests and
“N-R” is the usual (nonrobust) F-test. Results based on 3000 simulations.

4.2 Approximate test

We now investigate the approximate version of our SR test, which handles continuous
Zs; see Section 2.2 above. To this end, we consider the same DGPs as above but now
assume that the {Zij }

p
j=2 are i.i.d. and follow a standard normal distribution, instead of a
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Figure 2. Power curves: DGP2. Note: Same as in Figure 1.

Poisson distribution. We refer to the corresponding DGPs as DGP1′, DGP2′, and DGP3′.
We also have to choose the number of strata S. As mentioned above, this involves a
trade-off between size distortion and power. Also, one should consider a larger num-
ber of strata when the correlation between Xi and Z′

iγ is high, since then the correlation
between yi − Xiβ0 and Xi within strata becomes larger. Guided by this, we use the fol-
lowing data-driven S:

S =
⌈

n

min
(
n1/2, 1 + 2/

∣∣ĉorr(X , Zγ̂)
∣∣)
⌉

, (4.2)
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Figure 3. Power curves: DGP3. Note: Same as in Figure 1.

where �x� is the smallest integer greater than or equal to x and ĉorr denotes the empirical

correlation coefficient. The rule in (4.2) generally leads to small strata sizes, around four

in DGP1′ and five in DGP2′ and DGP3′, as Table 2 shows.

The power curves are displayed in Figures 4–6; here, we compare our test with the PC

and HC3 tests. In DGP1′, the test exhibits almost no distortion. It is slightly less powerful

than the two other tests, but the difference gets attenuated as n increases. In DGP2′, the

test is hardly distorted with p = 2, with a level of at most 5.2%, and has, in general, better
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Table 2. Average number of strata in DGP1′–DGP3′ when using (4.2).

DGP

p= 2 p= 4

n= 50 n= 100 n= 500 n= 50 n= 100 n= 500

1′ 12.5 25.6 130.1 12.4 25.5 130.0
2′ 10.8 21.8 107.7 10.6 21.5 107.6
3′ 10.8 21.7 107.7 10.9 21.7 107.8

power than the PC test. It exhibits some distortion when p = 4 and n = 50, with a level of
7.4%, but this distortion quickly vanishes as n increases. Its power is higher than that of
the PC test for β< 0 and n= 100 but slightly lower otherwise. In DGP3′, the test appears
to have good power compared to the PC and HC3 tests, even with p = 4. It is also less
distorted than the HC3 test but more than the PC test, with an average over the six cases
of 7.1% versus respectively 9.9% and 4.7%. Finally, additional simulations with higher
p (e.g., p = 10), not presented here, suggest that the approximate SR test is not really
sensitive to the dimension of Z.

Overall, the results suggest that with the data-driven choice of S above, the test
is asymptotically valid and consistent, though we leave this question for future re-
search.

Figure 4. Power curves: DGP1′. Note: The horizontal line is at the nominal level of the tests
(5%). “App. SR” stands for the approximate stratified randomization test, “PC” is the partial cor-
relation test in Section 4 of DiCiccio and Romano (2017), and “HC3” is the heteroskedasticity-ro-
bust Wald test. Results based on 3000 simulations.
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Figure 5. Power curves: DGP2′. Note: Same as in Figure 4.

Figure 6. Power curves: DGP3′. Note: Same as in Figure 4.
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5. Applications

5.1 Driving regulations and traffic fatalities

We first apply the proposed randomization inference method to analyze the effect of
driving regulations on traffic fatalities in the US, using the same data and model as
Wooldridge (2015, Chapter 13). Specifically, we consider the linear model

�dthrtei = const +�openiβ+�admniγ + ui, (5.1)

where for any US state i, year t, and random variable Ai,t , we let �Ai =Ai,1990 −Ai,1985.
In (5.1), dthrte denotes traffic fatality rate, open is a dummy variable for having an open
container law, which illegalizes for passengers to have open containers of alcoholic bev-
erages, and admn is a dummy variable for having administrative per se laws, allowing
courts to suspend licenses after a driver is arrested for drunk driving but before the
driver is convicted. The OLS estimate is (β̂, γ̂) = (−0.42, −0.15), pointing toward a de-
terrent effect of the two types of laws on alcohol consumption by drivers.

The coefficient γ is never significant for any usual level, so we focus below on β.
We compute the confidence intervals based on the SR test inversion (SR confidence
interval hereafter) and those based on the CP and PC test inversion. We also consider
the inversion of the test of the full vector of parameters, considered by DiCiccio and
Romano (2017) in their Section 3 (PR confidence interval hereafter). By projecting the
corresponding confidence region over β, we obtain a confidence interval that is conser-
vative under independence, or asymptotically conservative under weaker conditions.
Finally, we consider the standard, nonrobust and robust confidence intervals.

For all confidence intervals based on permutation tests, we invert the tests of β = β0

for β0 ∈ {−1.7, −1.69, � � � , 0.3}. As recommended above, we use the same set of permu-
tations for all values of β0 that we test. This way, we obtain proper intervals for the four
permutation methods. We draw S

′
n as explained in footnote 5. For the other tests, we

draw uniformly and with replacement N ′ permutations from Gn. To limit the effect of
randomness, we use N ′ = 99,999 instead of 499 as in the simulations.15 Even though
we invert 201 tests and use a large number of permutations, the SR and PC confidence
intervals take on our computer just a few seconds to compute (see the last column of Ta-
ble 3 for computational times). The CP and PR confidence intervals, on the other hand,
are more computationally intensive. The reason for the CP method is that improving its
power requires finding an optimal ordering, a difficult optimization problem (see Sec-
tion 2.4 in Lei and Bickel (2021)). The PR confidence interval is very costly to compute
because it requires testing for values of (β, γ), and thus considering a grid in R

2 instead
of R.

The results are reported in Table 3. We consider confidence intervals with nominal
levels of 90% and 95%. The CP confidence intervals are by far the largest. Not surpris-
ingly, the PR confidence interval is also large for the 95% nominal level confidence in-
terval, though it remains much shorter than the CP confidence interval. And actually, it
is close to the SR, PC, and robust confidence intervals when considering a nominal level

15In this application, n= 51, S = 3 with maxs ns = 41, so the set Sn is large (|Sn| � 1.2 × 1055).
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Table 3. Confidence intervals (CIs) for β in the traffic fatalities data.

Test Statistic

95% Coverage 90% Coverage Computational
Time (in Sec.)CI Length CI Length

SR [−0.83, 0.24] 1.07 [−0.76, 0.05] 0.81 5.0
CP [−1.61, 0.27] 1.88 [−1.37, 0.03] 1.40 262.6
PC [−0.86, 0.21] 1.07 [−0.77, 0.03] 0.80 5.6
PR [−1.09, 0.19] 1.28 [−0.85, 0.00] 0.85 6.1 × 104

Nonrobust [−0.83, −0.01] 0.83 [−0.76, −0.07] 0.69 < 0.05
Robust HC3 [−0.90, 0.06] 0.96 [−0.82, −0.02] 0.80 < 0.05

Note: The confidence intervals are obtained by inverting tests. “SR” corresponds to the stratified randomization test, “CP”
is the cyclic permutation test of Lei and Bickel (2021), “PC” is based on the partial correlation statistic in Section 4 of DiCiccio
and Romano (2017) and “PR” is a projection of the confidence region on (β, γ) using DiCiccio and Romano’s (2017) first test
in Section 3. The SR, PC, and PR tests use 99,999 permutations (this number corresponds to N ′ for the SR test). “Nonrobust” is
the usual F-test, which is not heteroskedasticity-robust, and “Robust HC3” is the heteroskedasticity-robust Wald test with the
HC3 sandwich covariance matrix. Computational times (for one confidence interval) are obtained on Matlab (R2022a), with a
MacBook Air (M1, 2020) with 8Go of RAM.

of 90%. For both nominal levels, the SR and PC confidence intervals are very close. They
are also close to the robust confidence interval for the nominal level of 90%, but around
11% larger than this confidence interval for the nominal level of 95%. Finally, the non-
robust confidence intervals are the shortest of all intervals, being roughly 13% smaller
than the robust confidence intervals.

The SR confidence interval may be more reliable than the robust confidence inter-
val. To see why, note first that there is no evidence of heteroskedasticity: the White and
Breusch–Pagan tests have p-values of respectively 0.56 and 0.34, respectively. If indepen-
dence holds, the SR confidence interval has exact coverage, whereas the robust confi-
dence interval may exhibit some distortion. To evaluate this, we ran simulations, assum-
ing that ui is independent of Wi and is distributed according to the empirical distribution
of the residuals ûi. For nominal coverage of 95% and 90%, the robust confidence inter-
val includes the true parameter in only 89.8% and 86.3% of the samples, respectively.
Finally, there is strong evidence of nonnormal errors: the Shapiro–Wilk and Jarque–Bera
tests of normality on residuals have p-values of 0.0015 and 0.0012, respectively. As a re-
sult, the nonrobust confidence intervals based on normality may also exhibit distortion.
If one drops the normality assumption but maintains independence, the SR confidence
interval is the only one with exact coverage. Then one cannot exclude even at the 10%
level that the open container law has no effect on traffic fatalities.

5.2 Project STAR

Finally, we apply the SR test to the well-known dataset of the Project STAR experiment
(Achilles et al. (2008)). Imbens and Rubin (2015, Chapter 9) provide a detailed analysis
of the data using several stratified randomization-based inference methods. We follow
their regression analysis of stratified randomized experiments (Chapter 9.6) and focus
on schools with at least two regular classes and two small classes ignoring classes with
teacher’s aides. In the specifications considered below, there are at most 25 such schools
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that define the strata. The majority of schools have exactly 4 classes, and only a few have
5 or more classes.

The regression model considered by Imbens and Rubin (2015) is as follows:

yi =Xiβ+
S∑

s=1

Zs
i γs + ui, i = 1, � � � , n,

where the treatment variable Xi is the indicator for small classes, and the nuisance re-
gressors Zs

i = 1 (i ∈ s), s = 1, � � � , S, are the school (strata) indicators, and the outcome
variable is the class-level (teacher-level) average math test scores for kindergarten chil-
dren. We consider the class-level average reading test scores in addition to the math
scores, and Grade 1 and Grade 2 as well. As pointed out by Imbens and Rubin (2015), re-
stricting the analysis to class-level data avoids a possible violation of the no-interference
part of the Stable Unit Treatment Assumption (SUTVA).

We deviate in a minor way from Imbens and Rubin’s (2015) analysis by not standard-
izing the outcome variables to have mean 0 and standard deviation 1, because doing
so introduces a slight dependence in the observations although the exchangeability of
us , s = 1, � � � , S, would still be preserved. The results for standardized test scores are nev-
ertheless similar; see Table C.1 in Appendix C.16 The tests implemented are the same as
those in Table 3, except that we include the HC0 confidence interval, denoted as Robust
HC0 (IR),17 but do not include the projection-based test PR. The latter is computation-
ally prohibitive in the current application, as there are at least 15 regression coefficients
not under the test. We invert the tests of β = β0 for β0 ∈ {−40, −39.99, � � � , 39.99, 40}
using N ′ = 99,999 for each point.

The 95% confidence intervals are reported in Table 4. The number of possible per-
mutations is at least |Sn| = 9.47 × 1024 and S/n is at most 25/109 = 0.23 in the speci-
fications. As a general pattern, we can notice that the CP confidence intervals include
all the tested points in all of the specifications and the robust HC3 confidence intervals
are the second widest, while the HC0 and PC confidence intervals are the shortest. The
SR confidence intervals, though wider than the HC0 and PC confidence intervals, are
comparable with the nonrobust confidence intervals and always shorter than the HC3
confidence intervals.

The baseline results for the math test scores of kindergarten children analyzed by
Imbens and Rubin (2015) are noteworthy. In this case, there is no evidence of either
heteroskedasticity or nonnormality. The Breusch–Pagan test for heteroskedasticity has
p-value 0.32, so homoskedasticity assumption is supported at the conventional signif-
icance levels. The Jarque–Bera and Shapiro–Wilk tests for the residuals have p-values

16Also, we were unable to obtain exactly the same sample, and thus the same results, as Imbens and Ru-
bin (2015). There are 66 classes (34 small and 32 regular) and 15 schools (strata) in our sample, as opposed
to 68 classes (36 small and 32 regular) and 16 schools in theirs. However, our estimate of β (0.22) and stan-
dard error (0.09), calculated following the variance formula in Theorem 9.1 of Imbens and Rubin (2015), are
close to theirs (0.24 and 0.10, respectively; see Chapter 9.6.2 of Imbens and Rubin (2015)).

17The HC0 variance estimate is numerically identical to a sample analog of the variance formula in The-
orem 9.1 of Imbens and Rubin (2015).
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Table 4. 95% confidence intervals for β in the project STAR data.

Test Statistic

Nonstandardized Math Test Scores

Kindergarten Grade 1 Grade 2

CI Length CI Length CI Length

SR [0.20, 21.22] 21.02 [8.84, 23.68] 14.84 [2.37, 20.82] 18.45
CP ⊇[−40, 40] ≥80 ⊇[−40, 40] ≥80 ⊇[−40, 40] ≥80
PC [1.43, 20] 18.57 [9.76, 22.83] 13.07 [3.40, 19.62] 16.22
Nonrobust [−0.16, 21.55] 21.71 [9.07, 23.52] 14.45 [2.41, 20.66] 18.25
Robust HC3 [−1.16, 22.56] 23.72 [7.99, 24.59] 16.61 [1.24, 21.83] 20.59
Robust HC0 (IR) [1.73, 19.67] 17.94 [9.88, 22.70] 12.83 [3.62, 19.46] 15.84

BP, JB, SW pval 0.32, 0.89, 0.53 0.04, 0.04, 0.15 0.86, 0.02, 0.18
n, S, |Sn| 66, 15, 9.47 × 1024 109, 25, 1.68 × 1041 79, 18, 9.16 × 1029

Test Statistic

Nonstandardized Reading Test Scores

Kindergarten Grade 1 Grade 2

CI Length CI Length CI Length

SR [−1.24, 14.53] 15.77 [15.10, 30.91] 15.81 [3.80, 19.68] 15.88
CP ⊇[−40, 40] ≥80 ⊇[−40, 40] ≥80 ⊇ [−40, 40] ≥80
PC [−0.35, 13.59] 13.94 [16.14, 29.97] 13.83 [4.64, 18.74] 14.10
Nonrobust [−1.06, 14.27] 15.32 [15.12, 30.97] 15.86 [3.83, 19.59] 15.76
Robust HC3 [−2.27, 15.48] 17.75 [14.10, 31.99] 17.89 [2.83, 20.59] 17.76
Robust HC0 (IR) [−0.16, 13.38] 13.54 [16.26, 29.83] 13.57 [4.83, 18.58] 13.75

BP, JB, SW pval 0.23, 0.01, 0.10 0.00, 0.76, 0.93 0.77, 0.00, 0.02
n, S, |Sn| 66, 15, 9.47 × 1024 109, 25, 1.68 × 1041 79, 18, 9.16 × 1029

Note: The confidence intervals are obtained by inverting tests. The descriptions of the tests are the same as in Table 3.
The SR and PC tests use 99,999 permutations. Robust HC0 (IR) is a confidence interval based on the HC0 variance estimate,
calculated following the population variance in Theorem 9.1 of Imbens and Rubin (2015). BP, JB, and SW pval denote the p-
values of Breusch–Pagan homoskedasticity test, and Jarque–Bera and Shapiro–Wilk normality tests, respectively.

0.89 and 0.53, respectively, pointing toward Gaussian errors. As such, the tests with fi-
nite sample validity, that is, the nonrobust and SR tests, should be more reliable. And in
fact, they turn out to be very similar: if anything, the nonrobust confidence interval is
slightly longer. It also includes 0, contrary to the SR confidence interval. The HC0 and
PC confidence intervals also show a significant treatment effect.

For reading scores in kindergarten, all test results suggest that the class-size reduc-
tion has no signifcant effect, in contrast with the results for math test scores. But class
size reduction does seem to have an effect on both test scores in Grade 1 and Grade 2: all
tests suggest significant treatment effects. As in the first application, the Breusch–Pagan
and normality tests point to homoskedasticity and nonnormality of the error terms in
Grade 2, in which case the SR test could be the most reliable.

Inasmuch as the permutation tests should be more reliable than the nonpermu-
tation tests in experimental datasets such as the current one, and the analysis using
teacher-level samples guards effectively against a possible spillover in the students’ per-
formance, the results suggest that the class-size reduction has a small but significant
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effect on the math test scores for kindergarten children, and a bigger effect on the math
and reading test scores for Grade 1 and Grade 2 students but no effect on the reading
test scores for kindergarten children at teacher-level.

6. Conclusion

We develop a new permutation test for subvector inference in linear regressions. The
test has exact size in finite samples if the error terms ui are independent of the re-
gressors of interest Xi, conditional on other regressors Zi. If independence fails but
Cov(Xi, ui|Zi ) = 0, the test remains asymptotically valid with power against local alter-
natives under some conditions. The main one is that the number S of distinct rows of
(Z1, � � � , Zn )′ is negligible compared to the sample size n. Monte Carlo simulations sug-
gest that the test has good power compared to other tests when, indeed, n−1S is small,
and that it exhibits limited distortion without conditional independence. The two appli-
cations confirm that in some realistic designs, the test is informative and can thus be an
appealing alternative to existing methods.

A few questions are left for future research. First, some simulations we conducted
(not reported above) suggest that the condition n−1S → 0 could be replaced by the
weaker condition that the effective sample size n − S tends to infinity. Second, while
we show that the test is asymptotically valid if Cov(Xi, ui|Zi ) = 0, we do not establish fi-
nite sample guarantees in this setup.18 Finally, constructing a permutation test for sub-
vectors that is both exact under independence and asymptotically heteroskedasticity-
robust for any design remains an important challenge.

Appendix A: Proofs

A.1 Notation and abbreviations

Hereafter, we let 1 denote the n × 1 vector of ones, and 1s denote the ns × 1 vector of
ones. Otherwise, for any matrix A with n rows, the submatrix corresponding to stratum

s is denoted by As . Let
d= denotes equality in distribution. We recall that Pπ denotes the

probability measure of π ∼ U(Sn ), conditional on the data. Eπ[·] and Varπ[·] then denote
the expectation and variance operators corresponding to Pπ . �(·) denotes the cumula-
tive distribution function of a standard real normal distribution. Oa.s.(·) and oa.s.(·) mean
O(·) and o( ) almost surely.

We write “Tπ
n

d−→ T in probability” if a permutation statistic Tπ
n ∈ R

m converges in
distribution to a random variable T on a set with probability approaching to 1, that is,

Pπ[Tπ
n ≤ x]

p−→ P[T ≤ x] as n → ∞ for every x at which x �→ P[T ≤ x] is continuous.
For any matrix V (possibly a vector), we let ‖V ‖ denote its Frobenius norm. We write

“Un−Vn
p−→ 0 in probability,” if two random sequences Un and Vn satisfy Pπ[‖Un−Vn‖>

ε]
p−→ 0 as n → ∞ for any ε > 0.

18 See Theorem 2 in Toulis (2022) for an example of such guarantees. Note however that his result is
obtained under conditions for which our test is actually exact.
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Throughout the Appendix, we index all quantities in the main text that implicitly

depend on n by n (and thus replace, e.g., ui, S, S , and bsi by uni, Sn, Sn, and bsni, respec-

tively). Also, in the proofs of Theorems 3 and 6, E[As
ni] will be used as a shortcut for

E[Ani|Zni = zns], for any random variable Ani.

We will use the following stratum level notation in accordance with (2.2):

ys = [
ysn1, � � � , ysnns

]′
, Xs = [

Xs
n1, � � � , Xs

nns

]′
, us = [

usn1, � � � , usnns
]′

,

X̃ ≡ [
X̃1, � � � , X̃Sn

]′
, X̃s ≡M1sX

s = [X̃n1, � � � , X̃nns ]′,

X̃s
ni ≡ Xs

ni − X̄s , X̄s ≡ n−1
s

ns∑
i=1

Xs
ni,

ũ= [
ũ1′, � � � , ũSn′

]′ = [ũn1, � � � , ũnn]′, ũs ≡M1su
s = [

ũsn1, � � � , ũsnns
]′

,

ũsni = usni − ūs , ūs ≡ n−1
s

ns∑
i=1

usni, vs = Xs(β−β0 ) + us = [
vsn1, � � � , vsnns

]′
,

ṽ = [
ṽ1′, � � � , ṽSn′

]′ = [ṽn1, � � � , ṽnn]′, ṽs ≡M1s v
s = [

ṽsn1, � � � , ṽsnns
]′

,

ṽsni = vsni − v̄s, v̄s ≡ n−1
s

ns∑
i=1

vsni.

Finally, we use the abbreviations SLLN for the strong law of large of numbers, WLLN

for the weak law of large numbers, CLT for the central limit theorem, CMT for the con-

tinuous mapping theorem, and LHS and RHS for left-hand side and right-hand side,

respectively.

A.2 Theorem 1

We reason conditional on (W , N , π1, � � � , πN ) hereafter and let, without loss of general-

ity, π1 = Id. For any w = (w1, � � � , wN ), let w(1) < · · · <w(N ) be the corresponding ordered

vector, N+(w) = |{i ∈ {1, � � � , N } : w(i) >w(q)}| and N0(w) = |{i ∈ {1, � � � , N } : w(i) =w(q)}|.

Let us also define φ̃α(t, w1, � � � , wN ) = 1 if t > w(q), (Nα−N+(w))/N0(w) if t = w(q) and

0 otherwise. Then

φα = φ̃α
(
Wπ1 , Wπ1 , � � � , WπN

)
.

Now, we already showed in the text that Wπ = g(W , uπ ) for all π ∈ Sn. By Assump-

tion 1(a) and (b), the variables (uπ1 , � � � , uπN ) are exchangeable. Therefore, (Wπ1 , � � � ,

WπN ) are also exchangeable. As a result, because φ̃α is symmetric in its last N argu-

ments, we have, for all k≥ 1,

φα
d= φ̃α

(
Wπk , Wπ1 , � � � , WπN

)
.
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Therefore,

E[φα | W , N , π1, � � � , πN ] = 1
N

N∑
k=1

E
[
φ̃α

(
Wπk , Wπ1 , � � � , WπN

) | W , N , π1, � � � , πN

]

= 1
N

E

[
N∑

k=1

φ̃α
(
Wπk , Wπ1 , � � � , WπN

) ∣∣∣∣W , N , π1, � � � , πN

]

= 1
N

E
[
N+ + Nα−N+

N0 N0
∣∣∣∣W , N , π1, � � � , πN

]
= α.

A.3 Lemma 2

Because the support of Zni = (Zn1i, � � � , Znpi )′ is a subset of Np, we have

Sn ≤
p∏

j=1

max
i=1, ���,n

Znji.

As a result,

Sn

n
≤

p∏
j=1

( max
i=1, ���,n

Znji

n1/p

)
. (A.1)

Now, by Lemma 11 applied to |Znji|p/2, we have n−1/2 maxi=1, ���,n |Znji|p/2 a.s.−→ 0. As a re-

sult, maxi=1, ���,n |Znji|/n1/p a.s.−→ 0. The result follows in view of (A.1).

A.4 Theorem 3

Remark that Wπ = (n−1/2X̃ ′ṽπ )′(V̂ π )−1(n−1/2X̃ ′ṽπ ), where

V̂ π ≡ n−1
Sn∑
s=1

ns∑
i=1

X̃s
niX̃

s′
niṽ

s2
nπ(i).

Moreover, n−1/2X̃ ′ṽπ = n−1/2∑
s∈In X̃

s′ṽsπ + n−1/2∑
s∈Jn

X̃s′ṽsπ . We prove the result in
four steps.

First, we show the conditional asymptotic normality of n−1/2∑
s∈In X̃

s′ṽsπ , suitably
normalized, assuming lim infn→∞ |In| ≥ 1 a.s. The case lim infn→∞ |In| = 0 is treated in
the final step.

Second, we prove the same result on n−1/2∑
s∈Jn

X̃s′ṽsπ when |Jn|
a.s.−→ ∞. The cases

lim supn→∞ |Jn| = ∞ but lim infn→∞ |Jn| <∞, and lim supn→∞ |Jn| <∞ are treated in the
final step.

Third, we prove the convergence of V̂ π , in a sense that will be clarified below. Fi-
nally, we prove the conditional convergence in distribution of Wπ . Note that due to the
demeaning within each stratum, the strata of size 1 are discarded. So hereafter, we as-
sume without loss of generality that for all s ∈ {1, � � � , Sn}, ns ≥ 2.
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Step 1: Conditional asymptotic normality of n−1/2∑
s∈In X̃

s′ṽsπ when lim infn→∞ |In| ≥ 1

a.s Assuming lim infn→∞ |In| ≥ 1 a.s., we prove hereafter that

n−1/2Ṽ
−1/2
nI

∑
s∈In

ns∑
i=1

X̃s
niṽ

s
nπ(i)

d−→ N (0, Ik ) in probability, (A.2)

where

ṼnI ≡ n−1
∑
s∈In

1
ns − 1

ns∑
i=1

X̃s
niX̃

s′
ni

(
ns∑
i=1

ṽs2
ni

)
. (A.3)

We have

ṼnI = n−1
∑
s∈Jn

(
ns∑
i=1

X̃s
niX̃

s′
ni

)(
n−1
s

ns∑
i=1

ṽs2
ni

)

+ n−1
∑
s∈Jn

1
ns − 1

(
ns∑
i=1

X̃s
niX̃

s′
ni

)(
n−1
s

ns∑
i=1

ṽs2
ni

)
. (A.4)

Since 2(ns − 1) ≥ ns, by the Cauchy–Schwarz inequality and the fact that by Assump-

tion 2(e), n−1|In| a.s.−→ 0,

E

[∥∥∥∥∥n−1
∑
s∈In

1
ns − 1

(
ns∑
i=1

X̃s
niX̃

s′
ni

)(
n−1
s

ns∑
i=1

ṽs2
ni

)∥∥∥∥∥
]

≤ 2n−1
∑
s∈In

E

[(
n−1
s

ns∑
i=1

∥∥X̃s
ni

∥∥2

)(
n−1
s

ns∑
i=1

ṽs2
ni

)]
a.s.−→ 0. (A.5)

By Markov’s inequality, the second term in (A.4) is op(1). We establish in (A.50) in Step 3

below that

n−1
∑
s∈In

(
ns∑
i=1

X̃s
niX̃

s′
ni

)(
n−1
s

ns∑
i=1

ṽs2
ni

)
− V ∗

nI
p−→ 0,

where

V ∗
nI ≡ n−1

∑
s∈In

nsQ
s
n

(
n−1
s

ns∑
i=1

E
[
vs2
ni

])
. (A.6)

Therefore,

ṼnI − V ∗
nI

p−→ 0. (A.7)
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Since V ∗
nI = n−1∑

s∈In nsQ
s
n(n−1

s

∑ns
i=1 E[us2

ni ] + n−1
s

∑ns
i=1 E[(Xs′

ni(β − β0 ))2]) by Assump-
tion 2(b), for n large, we have

λmin
(
V ∗
nI
)≥ λmin(VnI ) + λmin

(
n−1

∑
s∈In

nsQ
s
nn

−1
s

ns∑
i=1

E
[(
Xs′

ni(β−β0 )
)2])

> λ. (A.8)

Hence, with probability approaching one, λmin(ṼnI ) > λ > 0. As a result, Ṽ −1/2
nI is well-

defined. By the Cramér–Wold device, it suffices to show that for τ ∈R
k \ {0k×1} fixed

n−1/2τ ′Ṽ −1/2
nI

∑
s∈In

ns∑
i=1

X̃s
niṽ

s
nπ(i)(

1 − n−1)1/2(
τ ′τ

)1/2
d−→ N (0, 1) in probability. (A.9)

We verify the conditions of Lemma 4 with bsni = n−1/2τ ′Ṽ −1/2
nI X̃s

ni, c
s
ni = ṽsni, and Sn = |In|.

Condition (a) holds because
∑ns

i=1 X̃
s
ni = 0 and

∑ns
i=1 ṽ

s
ni = 0 for each s. Furthermore,

σ2
n =

∑
s∈In

1
ns − 1

(
ns∑
i=1

bs2
ni

)(
ns∑
i=1

cs2
ni

)

=
∑
s∈In

1
ns − 1

ns∑
i=1

(
n−1/2τ ′Ṽ −1/2

nI X̃s
ni

)2

(
ns∑
i=1

ṽs2
ni

)

= τ ′Ṽ −1/2
nI n−1

∑
s∈In

1
ns − 1

ns∑
i=1

X̃s
niX̃

s′
ni

(
ns∑
i=1

ṽs2
ni

)
Ṽ

−1/2
nI τ

= τ ′τ

> 0,

where the last equality is by the definition of ṼnI in (A.3). Thus, Condition (b) holds. By
Hölder’s, Jensen’s, and cr-inequalities,(

n−1
s

ns∑
i=1

∣∣ṽsni∣∣3
)4/3

≤ n−1
s

ns∑
i=1

ṽs4
ni

≤ 16n−1
s

ns∑
i=1

vs4
ni

≤ 16n−1
s

ns∑
i=1

23(∥∥Xs
ni

∥∥4‖β−β0‖4 + us4
ni

)
.

Hence, E[(n−1
s

∑ns
i=1 |ṽsni|

3 )4/3] < C1 for some constant C1 and n−1
s

∑ns
i=1 |ṽsni|

3, s = 1, � � � ,
|In|, are uniformly integrable. By Theorem 9.7 of Hansen (2022b),

|In|−1 max
s∈In

n−1
s

ns∑
i=1

∣∣ṽsni∣∣3 p−→ 0. (A.10)
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Furthermore, by Jensen’s inequality,

n−1
∑
s∈In

ns∑
i=1

∥∥X̃s
ni

∥∥3 ≤ 8n−1
∑
s∈In

ns∑
i=1

∥∥Xs
ni

∥∥3

= 8n−1
n∑

i=1

‖Xni‖3

=Op(1), (A.11)

where the last equality is by the WLLN. Similarly,

|In|−1 max
s∈In

(
n−1
s

ns∑
i=1

ṽs4
ni

)
p−→ 0, (A.12)

n−1
∑
s∈In

ns∑
i=1

∥∥X̃s
ni

∥∥4 =Op(1). (A.13)

Condition (c) holds because

∑
s∈In

(
n−1
s

ns∑
i=1

∣∣bsni∣∣3
)(

n−1
s

ns∑
i=1

∣∣csni∣∣3
)

=
∑
s∈In

n−1
s

ns∑
i=1

∣∣n−1/2τ ′Ṽ −1/2
nI X̃s

ni

∣∣3 ns∑
i=1

∣∣ṽsni∣∣3
≤ ∥∥τ ′Ṽ −1/2

nI
∥∥3
n−1

∑
s∈In

ns∑
i=1

∥∥X̃s
ni

∥∥3
n−1/2 max

s∈In
n−1
s

ns∑
i=1

∣∣ṽsni∣∣3
≤ (

λmin(ṼnI )
)−3/2‖τ‖3n−1

n∑
i=1

‖X̃ni‖3n−1/2|In||In|−1 max
s∈In

n−1
s

ns∑
i=1

∣∣ṽsni∣∣3
p−→ 0,

where the convergence holds by the CMT, the fact that λmin(ṼnI ) − λmin(VnI )
p−→ 0,

λmin(VnI ) > λ> 0, (A.10), (A.11), and

n−1/2|In| ≤ n−1/2 n

min
s∈In

ns
≤ n1/2

cn
≤ 1. (A.14)

Then we have

n−2
∑
s∈In

n−1
s

(∑
i=1

bs4
ni

)(∑
i=1

cs4
ni

)

≤ ∥∥τ ′Ṽ −1/2
nI

∥∥4 ∑
s∈In

n−2
ns∑
i=1

∥∥X̃s
ni

∥∥4
n−1
s

ns∑
i=1

ṽs4
ni
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≤ ‖τ‖4(λmin(ṼnI )
)−2

(
n−1

n∑
i=1

‖X̃ni‖4

)(
n−1|In|

)(|In|−1 max
s∈In

n−1
s

ns∑
i=1

ṽs4
ni

)
p−→ 0,

where the first inequality is by the Cauchy–Schwarz inequality, the second inequality
is by the inequality ‖τ ′Ṽ −1/2

nI ‖2 ≤ ‖τ‖2/λmin(ṼnI ) followed by taking the maximum over
s ∈ In, and finally the convergence follows from (A.12) and (A.13). Thus, Condition (d)
holds. Hence, Lemma 4 applies and (A.9) holds.

Step 2: Conditional asymptotic normality of n−1/2∑
s∈Jn

Xs′M1s v
s
π when |Jn|

a.s.−→ ∞
First, rewrite

n−1/2
∑
s∈Jn

Xs′M1s v
s
π = n−1/2

∑
s∈Jn

ns∑
i=1

X̃s
niṽ

s
nπ(i). (A.15)

Let us define ṼnJ ≡ n−1∑
s∈Jn

Varπ[
∑ns

i=1 X̃
s
niṽ

s
nπ(i)]. We will show that when |Jn|

a.s.−→ ∞,

Ṽ
−1/2
nJ n−1/2

∑
s∈Jn

Xs′M1s v
s
π

d−→ N (0, Ik ) in probability. (A.16)

Observe that by Lemma S.3.4 of DiCiccio and Romano (2017),

Eπ

[
ns∑
i=1

X̃s
niṽ

s
nπ(i)

]
=
(
n−1
s

ns∑
i=1

X̃s
ni

)(
ns∑
i=1

ṽsni

)
= 0.

Conditional on the observables, due to the stratified permutation, the sum in (A.15) con-
sists of mean-zero and independent but not necessarily identically distributed terms.
Hence, to show (A.16), we verify the conditions of a multivariate Lindeberg CLT (e.g.,
Hansen (2022a), Theorem 9.3). These conditions are: for any ε > 0, as n→ ∞,

1

nλmin(ṼnJ )

∑
s∈Jn

Eπ

[∥∥∥∥∥
ns∑
i=1

X̃s
niṽ

s
nπ(i)

∥∥∥∥∥
2

1

(∥∥∥∥∥
ns∑
i=1

X̃s
niṽ

s
nπ(i)

∥∥∥∥∥
2

≥ nελmin(ṼnJ )

)]
a.s.−→ 0, (A.17)

lim inf
n

λmin(ṼnJ ) > λ a.s. (A.18)

Actually, we only prove below in-probability versions of these conditions, and then in-
voke a subsequence argument to conclude. First, let

V ∗
nJ ≡ n−1

∑
s∈Jn

nsQ
s
n

(
n−1
s

ns∑
i=1

E
[
vs2
ni

])
. (A.19)

By arguments similar to (A.4), (A.5), and (A.7) (see also (A.50) below),

ṼnJ − V ∗
nJ

p−→ 0. (A.20)
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By the CMT, λmin(ṼnJ ) − λmin(V ∗
nJ )

p−→ 0. Since 0 < λ < λmin(VnJ ) by Assumption 2(d),

an argument analogous to (A.8) yields λmin(V ∗
nJ ) > λ for n large. Hence, with probability

approaching one, λmin(ṼnJ ) > λ> 0.

Next, we verify an in-probability version of (A.17). By convexity of x �→ x4+δ, x > 0,

and Jensen’s inequality,

n−1
s

ns∑
i=1

∥∥X̃s
ni

∥∥4+δ ≤ 23+δ

(
n−1
s

ns∑
i=1

∥∥Xs
ni

∥∥4+δ + ∥∥X̄s
∥∥4+δ

)

≤ 24+δn−1
s

ns∑
i=1

∥∥Xs
ni

∥∥4+δ
, (A.21)

and similarly,

n−1
s

ns∑
i=1

∣∣ṽsni∣∣4+δ ≤ 24+δn−1
s

ns∑
i=1

∣∣vsni∣∣4+δ ≤ 24+δn−1
s

ns∑
i=1

23+δ
(∣∣usni∣∣4+δ + ∣∣Xs′

ni(β−β0 )
∣∣4+δ)

.

(A.22)

Moreover, since ns ≤ cn for all s ∈ Jn and
∑

s∈Jn
ns ≤ n, we have

n−1−δ/4
∑
s∈Jn

n
1+δ/4
s ≤ n−1−δ/4

(
max
s∈Jn

ns
)δ/4 ∑

s∈Jn

ns ≤ (cn/n)δ/4 → 0. (A.23)

Applying Lemma 5 with ai = X̃s
ni, bi = ṽsni, n = ns, and r = 2 + δ/2, we obtain

n−1−δ/4
∑
s∈Jn

Eπ

[∥∥∥∥∥
ns∑
i=1

X̃s
niṽ

s
nπ(i)

∥∥∥∥∥
2+δ/2]

≤M2+δ/2n
−1−δ/4

∑
s∈Jn

n
1+δ/4
s

(
n−1
s

ns∑
i=1

∥∥X̃s
ni

∥∥2+δ/2

)(
n−1
s

ns∑
i=1

∣∣ṽsni∣∣2+δ/2

)

≤ 0.5M2+δ/2n
−1−δ/4

∑
s∈Jn

n
1+δ/4
s

(
n−1
s

ns∑
i=1

∥∥X̃s
ni

∥∥4+δ + n−1
s

ns∑
i=1

∣∣ṽsni∣∣4+δ

)

≤ 23+δM2+δ/2n
−1−δ/4

∑
s∈Jn

n
1+δ/4
s

(
n−1
s

ns∑
i=1

∥∥Xs
ni

∥∥4+δ + n−1
s

ns∑
i=1

∣∣vsni∣∣4+δ

)

= op(1), (A.24)

where the second inequalty is by the convexity of x �→ x2 and the inequality a2 + b2 ≥
2ab, the third inequality is by (A.21) and (A.22), and the last equality is by Markov’s in-
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equality and (A.23). Note that

1

nλmin(ṼnJ )

∑
s∈Jn

Eπ

⎡⎢⎢⎢⎢⎢⎢⎣

∥∥∥∥∥
ns∑
i=1

X̃s
niṽ

s
nπ(i)

∥∥∥∥∥
2+δ/2

∥∥∥∥∥
ns∑
i=1

X̃s
niṽ

s
nπ(i)

∥∥∥∥∥
δ/2

1

(∥∥∥∥∥
ns∑
i=1

X̃s
niṽ

s
nπ(i)

∥∥∥∥∥
δ/2

≥ (
nελmin(ṼnJ )

)δ/4

)
⎤⎥⎥⎥⎥⎥⎥⎦

≤ 1(
nλmin(ṼnJ )

)1+δ/4
εδ/4

∑
s∈Jn

Eπ

[∥∥∥∥∥
ns∑
i=1

X̃s
niṽ

s
nπ(i)

∥∥∥∥∥
2+δ/2]

p−→ 0, (A.25)

where the first inequality is the Lyapunov’s inequality, and the convergence is by (A.24).

From (A.20) and (A.25), the convergences in (A.17) and (A.18) hold almost surely

along a subsequence {nl}; see, for example, Durrett (2010), Theorem 2.3.2. Therefore,

Ṽ
−1/2
nJ n

−1/2
l

∑
s∈Jn

Xs′M1s v
s
π = Ṽ

−1/2
nJ n

−1/2
l

∑
s∈Jn

ns∑
i=1

X̃s
niṽ

s
nπ(i)

d−→ N (0, Ik ) a.s. (A.26)

Since (A.26) holds for any subsequence of {nl}, using Durrett (2010), Theorem 2.3.2 in

the reverse direction, we obtain (A.16).

Step 3: Consistency of V̂ π Let V ∗ ≡ V ∗
nI + V ∗

nJ = n−1∑Sn
s=1 nsQ

s
n(n−1

s

∑ns
i=1 E[vs2

ni ]), where

V ∗
nI and V ∗

nJ are defined in (A.6) and (A.19). We prove the convergence of V̂ π − (V ∗
nI +

V ∗
nJ ) to 0 in two steps. First, we show Eπ[V̂ π ] − V ∗ p−→ 0. Second, we show V̂ π −

Eπ[V̂ π ]
p−→ 0. To that end, let Hn ∈ {In, Jn}, V̂ π

nH ≡ n−1∑
s∈Hn

∑ns
i=1 X̃

s
niX̃

s′
niṽ

s2
nπ(i), and

V ∗
nH = n−1∑

s∈Hn
nsQ

s
n(n−1

s

∑ns
i=1 E[vs2

ni ]).

Substep 1: Eπ[V̂ π ] − V ∗ p−→ 0 It suffices to show that Eπ[V̂ π
nH] − V ∗

nH
p−→ 0. By

Lemma S.3.4 of DiCiccio and Romano (2017), we have

Eπ
[
V̂ π
nH
]= Eπ

[
n−1

∑
s∈Hn

ns∑
i=1

X̃s
niX̃

s′
niṽ

s2
nπ(i)

]

=
∑
s∈Hn

ns

n

(
n−1
s

ns∑
i=1

X̃s
niX̃

s′
ni

)(
n−1
s

ns∑
i=1

ṽs2
ni

)

=
∑
s∈Hn

ns

n

(
n−1
s

ns∑
i=1

Xs
niX

s′
ni − X̄sX̄s′

)(
n−1
s

ns∑
i=1

vs2
ni − v̄s2

)
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= n−1
∑
s∈Hn

(
ns∑
i=1

Xs
niX

s′
ni

)(
n−1
s

ns∑
i=1

vs2
ni

)
− n−1

∑
s∈Hn

nsX̄
sX̄s′

(
n−1
s

ns∑
i=1

vs2
ni

)

− n−1
∑
s∈Hn

ns∑
i=1

X̃s
niX̃

s′
niv̄

s2. (A.27)

Consider the first summand in (A.27). We have

E

[
1
n

∥∥∥∥∥∑
s∈Hn

(
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Xs
niX
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n2 E

[∥∥∥∥∥
ns∑
i=1

(
Xs

niX
s′
ni − E

[
Xs

niX
s′
ni

])∥∥∥∥∥
2]}1/2{

E

[(
n−1
s

ns∑
i=1

vs2
ni

)2]}1/2

+
∑
s∈Hn

(
n−1
s

ns∑
i=1

E
[∥∥Xs
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s∈Hn
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s

n

)
= oa.s.(1). (A.28)

The first and second inequalities hold by the triangle and Cauchy–Schwarz inequalities

coupled with convexity of the Frobenius norm, respectively. The third inequality follows

by independence and Cauchy–Schwarz. The first equality is by Assumption 2(c) and the

last by

n−1
∑
s∈Hn

n
1/2
s ≤ n−1

Sn∑
s=1

n
1/2
s ≤ n−1S

1/2
n

(
Sn∑
s=1

ns

)1/2

= n−1/2S
1/2
n = oa.s.(1). (A.29)
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By Markov’s inequality and (A.28), we obtain

1
n

∑
s∈Hn

{
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](
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s
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E
[
vs2
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])} p−→ 0. (A.30)

To find the limit of the second summand in (A.27), first note that by the triangle inequal-
ity
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∥∥∥∥∥∑
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We bound each summand in (A.31) in turn. First,

∑
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(A.32)
where the inequalities follow respectively by the Cauchy–Schwarz and Jensen’s inequal-
ities. Let Xs

ni = [Xs
ni1, � � � , Xs

nik]′. By the Cauchy–Schwarz inequality again,

E
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])}4]
. (A.33)
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Using independence, the Cauchy–Schwarz inequality and the fact supn,s,i E[(Xs
nil −

E[Xs
nil])4] <C0 for some constant C0 < ∞, for l = 1, � � � , k,
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From (A.33) and (A.34), we obtain
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Combining this with (A.32) and using Assumption 2(c), we obtain
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Similarly, the second summand in (A.31) satisfies
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Consider the last summand in (A.31). By the triangle and Cauchy–Schwarz inequalities,
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62 D’Haultfœuille and Tuvaandorj Quantitative Economics 15 (2024)

Combining (A.31), (A.36), (A.37), and (A.38),
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∥∥∥∥∥∑
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Consider the last summand in (A.27). Since ns ≥ 1, n−1∑Sn
s=1 n

−1
s ≤ n−1Sn. On the

other hand, by convexity of x �→ x−1, S−1
n

∑Sn
s=1 n

−1
s ≥ 1

S−1
n

∑Sn
s=1 ns

= n−1Sn, so n−1Sn ≥
n−1∑Sn

s=1 n
−1
s ≥ n−2S2

n. Thus, n−1Sn
a.s.−→ 0 is equivalent to

n−1
Sn∑
s=1

n−1
s

a.s.−→ 0. (A.40)

From Assumption 2(c) and the WLLN for triangular array of random variables (see,
e.g., Hansen and Lee (2019, Theorem 1)), we have

n−1
n∑

i=1

‖Xni‖4 − n−1
n∑

i=1

E
[‖Xni‖4] p−→ 0. (A.41)

By the triangle and Jensen’s inequalities,

n−1
Sn∑
s=1

ns∑
i=1

∥∥X̃s
ni

∥∥4 ≤ 8n−1
Sn∑
s=1

ns∑
i=1

(∥∥Xs
ni

∥∥4 +
∥∥∥∥∥n−1

s

ns∑
i=1

Xs
ni

∥∥∥∥∥
4)

≤ 8n−1
Sn∑
s=1

ns∑
i=1

(∥∥Xs
ni

∥∥4 + n−1
s

ns∑
i=1

‖Xni‖4

)

≤ 16n−1
Sn∑
s=1

ns∑
i=1

∥∥Xs
ni

∥∥4

= 16n−1
n∑

i=1

‖Xni‖4

=Op(1). (A.42)

where the last equality is due to (A.41). Moreover,

E

[
n−1

Sn∑
s=1

ns∑
i=1

v̄s4

]
= E

[
n−1

Sn∑
s=1

nsv̄
s4

]

= n−1
Sn∑
s=1

n−1
s E

[(
n−1
s

ns∑
i=1

vs2
ni

)2]

≤ n−1
Sn∑
s=1

n−1
s E

[
n−1
s

ns∑
i=1

vs4
ni

]
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= Oa.s.

(
n−1

Sn∑
s=1

n−1
s

)
a.s.−→ 0, (A.43)

where the second equality is by independence, the first inequality follows by Jensen’s in-
equality, the second equality holds by Assumption 2(c), and the convergence is by (A.40).

Then, by the triangle and Cauchy–Schwarz inequalities,∥∥∥∥∥n−1
∑
s∈Hn

ns∑
i=1

X̃s
niX̃

s′
niv̄

s2

∥∥∥∥∥≤ n−1
Sn∑
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ns∑
i=1

∥∥X̃s
ni

∥∥2
v̄s2

≤
(
n−1

Sn∑
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∥∥X̃s
ni

∥∥4

)1/2(
n−1

Sn∑
s=1

ns∑
i=1

v̄s4

)1/2

= op(1), (A.44)

where we used (A.42), (A.43), and Markov’s inequality to obtain (A.44). Therefore, by
(A.30), (A.39), (A.44), and Markov’s inequality, we obtain

∥∥Eπ
[
V̂ π
nH
]− V ∗

nH
∥∥ p−→ 0. (A.45)

Hence, ‖Eπ[V̂ π ] − V ∗‖ p−→ 0.

Substep 2: V̂ π − Eπ[V̂ π ]
p−→ 0 We will show that the variance of each element of

V̂ π
nH ∈ {V̂ π

nI , V̂ π
nJ } converges in probability to 0. Using the fact that the permutations are

independent across different strata, that ns > 1 for all s and Lemma S.3.4 of DiCiccio and
Romano (2017), we have for (j, l) ∈ {1, � � � , k}2,
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≤ 2
∑
s∈Hn

ns

n2

(
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ns∑
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X̃s2
nijX̃

s2
nil

)
16

(
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ns∑
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)
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s
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X̃s2
nijX̃
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nil
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1≤i≤n
v4
ni
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, (A.46)

where the second inequality is due to n−1
s

∑ns
i=1 ṽ

s4
ni ≤ 16n−1

s

∑ns
i=1 v

s4
ni , which follows by

the triangle and Jensen’s inequalities, and vni ≡X ′
ni(β−β0 ) + uni. Now, since

sup
n,i

E
[|vni|4+δ

]
< 23+δ

(
E
[|uni|4+δ

]+ E
[‖Xni‖4+δ

]‖β−β0‖4+δ
)
<∞

for some δ > 0, we have

n−1 max
1≤i≤n

v4
ni = op(1); (A.47)

see, for example, Hansen (2022a), Theorem 9.7. Also,
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∑
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ns∑
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nijX̃

s2
nil ≤

(
n−1

∑
s∈Hn

ns∑
i=1
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X̃4
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)1/2(
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X̃4
nil

)1/2

= Op(1), (A.48)

where the equality holds by (A.42). Combining (A.46)–(A.48) with the Chebyshev’s in-
equality, we obtain

V̂ π
nH − Eπ

[
V̂ π
nH
] p−→ 0 in probability; (A.49)

hence, V̂ π − Eπ[V̂ π ]
p−→ 0 in probability.

Finally, (A.45) and (A.49) together give

n−1
∑
s∈In

ns∑
i=1

X̃s
niX̃

s′
niṽ

s2
nπ(i) − V ∗

nI
p−→ 0,

n−1
∑
s∈Jn

ns∑
i=1

X̃s
niX̃

s′
niṽ

s2
nπ(i) − V ∗

nJ
p−→ 0

(A.50)

in probability.

Step 4: Asymptotic distribution of Wπ , π ∼ U(Sn ) From (A.7) and (A.20) ṼnI + ṼnJ −
(V ∗

nI +V ∗
nJ )

p−→ 0 in probability, so by the CMT λmin(ṼnI + ṼnJ ) −λmin(V ∗
nI +V ∗

nJ )
p−→ 0
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in probability. Combining the latter with λmin(V ∗
nI +V ∗

nJ ) ≥ λmin(V ∗
nI ) +λmin(V ∗

nJ ) > λ>

0, with probability tending to 1,

λmin(ṼnI + ṼnJ ) > λ. (A.51)

To determine the asymptotic distribution of Wπ , we will show that

An ≡ (ṼnI + ṼnJ )−1/2n−1/2
Sn∑
s=1

Xs′M1su
s
π

d−→ N (0, Ik ) in probability. (A.52)

We will complete the proof by considering the following four cases:

Case 1: lim inf
n→∞ |In| ≥ 1 a.s. and |Jn| a.s.−→ ∞,

Case 2: lim inf
n→∞ |In| ≥ 1 a.s. and lim sup

n→∞
|Jn| <∞ a.s.,

Case 3: lim inf
n→∞ |In| ≥ 1 a.s. and lim sup

n→∞
|Jn| = ∞ a.s., but lim inf

n→∞ |Jn| <∞ a.s.,

Case 4: lim inf
n→∞ |In| = 0 a.s.

Case 1: lim infn→∞ |In| ≥ 1 a.s. and |Jn|
a.s.−→ ∞ Set in Lemma 12,

tn =
[
Ṽ

1/2
nI (ṼnI + ṼnJ )−1/2

Ṽ
1/2
nJ (ṼnI + ṼnJ )−1/2

]
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Ṽ
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Xs′M1su
s
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Ṽ
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Xs′M1su
s
π

⎤⎥⎥⎦ .

The two components of Xn are independent as they belong to different strata. (A.52)

then follows from (A.2), (A.16), and Lemma 12.

Case 2: lim infn→∞ |In| ≥ 1 a.s. and lim supn→∞ |Jn| < ∞ a.s. Since

n−1
∑
s∈Jn

ns ≤ n−1/2|Jn|
a.s.−→ 0,
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s
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E
[
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(
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∑
s∈Jn
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)
= oa.s.(1). (A.53)
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The latter combined with (A.50) gives ‖ṼnJ ‖ p−→ 0 in probability. By Chebyshev’s in-
equality, for any ε > 0,

Pπ

[∥∥∥∥n−1/2
∑
s∈Jn

Xs′M1s v
s
π

∥∥∥∥> ε

]
≤ ε−2‖ṼnJ ‖

p−→ 0. (A.54)

Moreover, from the fact that ‖ṼnJ ‖ p−→ 0 in probability and (A.51),∥∥(ṼnI + ṼnJ )−1/2Ṽ
1/2
nI − Ik

∥∥≤ ∥∥(ṼnI + ṼnJ )−1/2
∥∥∥∥Ṽ 1/2

nI − (ṼnI + ṼnJ )1/2
∥∥

≤ k1/2{λmin(ṼnI + ṼnJ )
}−1/2{

tr(ṼnJ )
}1/2

p−→ 0 in probability, (A.55)

where the second inequality uses the inequality ‖B‖ ≤ k1/2{λmin((B′B)−1 )}−1/2 for k× k

invertible matrix B, and the Powers–Størmer inequality ‖B1/2 −C1/2‖2 ≤ tr{((B−C )′(B−
C ))1/2} for k×k positive definite matrices B and C. By Slutsky’s lemma, (A.2), (A.54), and
(A.55),

An = (ṼnI + ṼnJ )−1/2Ṽ
−1/2
nI Ṽ

−1/2
nI n−1/2

∑
s∈I

Xs′M1su
s
π + (ṼnI + ṼnJ )−1/2

∑
s∈J

Xs′M1su
s
π

d−→ N (0, Ik ) in probability. (A.56)

(A.52) follows.

Case 3: lim infn→∞ |In| ≥ 1 a.s. and lim supn→∞ |Jn| = ∞ a.s., but lim infn→∞ |Jn| <∞ a.s.
Take a subsequence {nl}. If |Jnl | is bounded, then (A.54) holds for {nl}. As shown above,
this entails (A.52). If the subsequence {nl} is not bounded, there exists a further sub-
sequence nl(m) for which |Jnl(m)|

a.s.−→ ∞. Then, as shown above, (A.52) holds along
{nl(m)}. Finally, fix t ∈R

k and ε > 0, and consider

bn ≡ P
[∣∣Un(t )

∣∣> ε
]
, Un(t ) ≡ Pπ[An ≤ t] −�k(t),

where the inequality is understood elementwise. We proved that every subsequence
{bnl } of {bn} admits a further subsequence {bnl(m)} tending to 0. Hence, bn tends to 0
by Urysohn’s subsequence principle. (A.52) follows.

Case 4: lim infn→∞ |In| = 0 a.s. Take any subsequence {nl}. If |Inl | = 0 for all l, then

ṼnlI = 0 and ṼnlJ = ṼnlI + ṼnlJ . Since |Jn|
a.s.−→ ∞ in this case, (A.52) follows from (A.16).

If |Inl | �= 0 for some l, there exists a further subsequence nl(m) such that |Inl(m)|
a.s.−→ 0.

Then, since nl(m)−1∑
s∈Inl(m)

ns ≤ nl(m)−1nl(m)|Inl(m)|
a.s.−→ 0, we obtain, as in (A.53),

∥∥V ∗
nl(m)I

∥∥= oa.s.(1).
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Proceeding as in the second case above, the analogs of (A.54) and (A.55) hold:∥∥(Ṽnl(m)I + Ṽnl(m)J )−1/2Ṽ
1/2
nl(m)J − Ik

∥∥ p−→ 0 in probability, (A.57)

Pπ

[∥∥∥∥nl(m)−1/2
∑

s∈Inl(m)

Xs′M1s v
s
π

∥∥∥∥> ε

]
≤ ε−2‖Ṽnl(m)I‖

p−→ 0. (A.58)

As in (A.56), from Slutsky’s lemma, (A.16), (A.57), and (A.58), Anl(m)
d−→ N (0, Ik ) in prob-

ability. (A.52) again follows from Urysohn’s subsequence principle.
From (A.51) and the consistency of V̂ π , we obtain∥∥(ṼnI + ṼnJ )−1/2V̂ π(ṼnI + ṼnJ )−1/2 − Ik

∥∥
= ∥∥(ṼnI + ṼnJ )−1/2(V̂ π − ṼnI − ṼnJ

)
(ṼnI + ṼnJ )−1/2

∥∥
≤ ∥∥(ṼnI + ṼnJ )−1/2

∥∥2∥∥V̂ π − ṼnI − ṼnJ
∥∥

= tr
{

(ṼnI + ṼnJ )−1}∥∥V̂ π − ṼnI − ṼnJ
∥∥

≤ k
(
λmin(ṼnI + ṼnJ )

)−1∥∥V̂ π − ṼnI − ṼnJ
∥∥

p−→ 0 in probability.

Then, by the CMT,∥∥(ṼnI + ṼnJ )1/2(V̂ π
)−1

(ṼnI + ṼnJ )1/2 − Ik
∥∥ p−→ 0 in probability. (A.59)

By the CMT (e.g., Hansen (2022a), Theorem 10.5), (A.52), and (A.59) for π ∼ U(Sn ),

Wπ d−→ Wπ∞ ∼ χ2
k in probability.

A.5 Lemma 4

The proof is divided into two steps. In Step 1, an exchangeable pair is constructed. In
Step 2, the asympotic normality is derived by showing that the moment bounds on
Wasserstein distance converges in probability to 0.

Step 1: Exchangeable pair Write π as (π1, � � � , πSn ). Let Se be a r.v. in {1, � � � , Sn}, with
P(Se = s) = ps ≡ (ns − 1)/(n − Sn ) and (I, J ) be a uniformly chosen transposition from
nSe(nSe − 1) distinct pairs of indices (i, j), i, j = 1, � � � , ns in stratum Se. Both Se and (I, J )
are assumed independent of π. Then let π ′ = (π′

1, � � � , π′
Sn

) with π ′
s = πs if s �= Se and

π ′
Se

= πSe ◦ (I, J ). We first show that (π, π ′ ) is an exchangeable pair:

(
π, π′) d= (

π ′, π
)
. (A.60)
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Let π∗ ≡ π ◦ (i, j). If π ∼ U(Sn ) and (i, j) is a uniformly chosen transposition from the in-

dices i = 1, � � � , ns in stratum s, then π∗ ∼ U(Sn ) and π
d= π∗. Also, π = π∗ ◦ (i, j) because

of the transposition. Then, for all (A, B) ∈ S
2
n,

P
(
π ∈A, π′ ∈ B

)=
Sn∑
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P
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)
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Sn∑
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P
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)
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=
Sn∑
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1
ns(ns − 1)

ns∑
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P
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)
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=
Sn∑
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1
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P
(
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Sn∑
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1
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P
(
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)
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=
Sn∑
s=1

P
(
π ◦ (I, J ) ∈A, π ∈ B|s

)
ps

= P
(
π ◦ (I, J ) ∈A, π ∈ B

)
,

where the first equality is by the iterated expectations, the second is by the definition of

π ′, the third is by the fact that (I, J ) is a uniformly chosen transposition, the fourth is

by the definition of π∗, the fifth equality is by π
d= π∗ and (i, j) is independent of π, the

sixth is again by the fact that (I, J ) is a uniformly chosen transposition, and the seventh

is by the iterated expectations. Therefore, (A.60) holds.

Step 2: Asymptotic normality Note first that Eπ[Tπ ] = 0 and Varπ[Tπ ] = 1. Let π′ be as

above, asnij ≡ bsnic
s
nj and an = (asnij )s=1, ���,Sn,(i,j)∈{1, ���,ns }2 . Then Tπ′ − Tπ = σ−1

n (aS
e

nIπ(J ) +
aS

e

nJπ(I ) − aS
e

nIπ(I ) − aS
e
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1
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)
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= − 2
n− Sn

σ−1
n

Sn∑
s=1

ns∑
i=1

asniπ(i)

= −λTπ ,

where λ= 2/(n− Sn ). As a result, we also get E[Tπ′ − Tπ|Tπ , an] = −λTπ .
The (conditional) Wasserstein distance between Tπ and Z ∼ N (0, 1) is defined as

follows (see, e.g., Chen, Goldstein, and Shao (2011, Chapter 4)):

dW
(
Tπ , Z|an

)≡ sup
h∈L

∣∣Eπ
[
h
(
Tπ

)− h(Z )
]∣∣,

where L ≡ {h : R → R : ∀x, y ∈ R, |h(y ) − h(x)| ≤ |y − x|} denotes the collection of Lips-
chitz functions with Lipschitz constant 1.19 From Corollary 4.3 of Chen, Goldstein, and
Shao (2011),
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)≤
√

2
π

Varπ

(
E
[

1
2λ

(
Tπ′ − Tπ

)2
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3λ
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[∣∣Tπ′ − Tπ
∣∣3]. (A.61)

For the second term on the RHS of (A.61),

λ−1 E
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∣∣3|π, an
]
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≤ 16σ−3
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Sn∑
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s
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where the first equality is by iterated expectations, the first inequality is by convexity
of x �→ |x|3, and the second inequality uses

∑
i �=j |asniπ(j)|

3 = ∑
i,j �=π(i) |asnij|

3. Hence, by
Conditions (b), (c), and the CMT,
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)

p−→ 0. (A.62)

19 We use the Wasserstein distance because of its common usage in the literature on Stein’s method
(e.g., Chatterjee (2008), Chen, Goldstein, and Shao (2011), Chen (2021)), but we refer to Chapter 6 of Chen,
Goldstein, and Shao (2011) for combinatorial CLTs with π ∼ U(Gn ) that uses the Kolmogorov distance.
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Next, we will show that Varπ[ 1
2λ E[(Tπ′ − Tπ )2|π, an]]

p−→ 0. Note first that
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ns − 1
n− Sn

1
ns(ns − 1)

∑
i �=j

(
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)2
. (A.63)

Furthermore,∑
i �=j

(
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)2

=
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s
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s
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s
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s
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)
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as2
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∑
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s
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where the second equality uses the following identities:

∑
i �=j

(
as2
niπ(i) + as2

njπ(j)

)= 2(ns − 1)
ns∑
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as2
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∑
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s
njπ(j) =
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asnjπ(j)

(
n∑
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)
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s
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n∑
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(
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)
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∑
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s
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∑
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s
niπ(j) = −

ns∑
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as2
niπ(i).

From (A.63) and (A.64), we obtain

Varπ
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E
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Sn∑
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+ 2
∑
i �=j
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, (A.65)

where the inequality follows by Var[X +Y +Z] ≤ 3(Var[X] + Var[Y ] + Var[Z]).

Consider the first summand in (A.65). Let bs2 ≡ n−1
s

∑ns
j=1 b

s2
ni and cs2 ≡ n−1

s

∑ns
j=1 c

s2
ni .

Then we have

Sn∑
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p−→ 0, (A.66)

where the first equality is by Theorem 2 of Hoeffding (1951), the second uses asnij = bsnic
s
nj

and some algebra, the first inequality follows using Var(X ) ≤ E(X2 ), and the conver-

gence follows from Condition (d).

Next, for the second summand in (A.65),

Sn∑
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s Varπ

[(
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Sn∑
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s Eπ
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ns∑
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≤
Sn∑
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M4
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s

(
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bs4
ni

)(
ns∑
i=1

cs4
ni

)
p−→ 0, (A.67)



72 D’Haultfœuille and Tuvaandorj Quantitative Economics 15 (2024)

where the first inequality follows by Var[X] ≤ E[X2] and the definition of asniπ(i), the
second inequality is by Lemma 5 above, and the convergence holds by Condition (d).

Finally, consider the third summand (A.65). Remark that

∑
i �=j

asniπ(j)a
s
njπ(i) =

(
ns∑
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s
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)2

−
ns∑
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s2
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−
ns∑
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As a result,
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]
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{
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[(
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[
ns∑
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as2
niπ(i)

]}
p−→ 0, (A.68)

where we used Var(X + Y ) ≤ 2(Var(X ) + Var(Y )) and (A.66) and (A.67) to obtain the
convergence. Combining (A.65), (A.66), (A.67), (A.68), and CMT, we obtain

Varπ

(
E
[

1
2λ

(
Tπ′ − Tπ

)2
|π, an

])
p−→ 0. (A.69)

Combining (A.61), (A.62), and (A.69), we obtain dW(Tπ , Z|an )
p−→ 0. By Theorem 2.3.2

of Durrett (2010), for any subsequence {nl}, there exists a further subsequence {nl(m)}
such that dW(Tπ , Z|an )

a.s.−→ 0 along {nl(m)}. Since the Wasserstein distance bounds the
bounded Lipschitz distance from above,

dBL
(
Tπ , Z|an

)≤ dW
(
Tπ , Z|an

)
,

where

dBL
(
Tπ , Z|an

)≡ sup
h∈BL

∣∣Eπ
[
h
(
Tπ

)− h(Z )
]∣∣,

BL ≡
{
h : R→R : max

{
sup

x,y∈R,x �=y

∣∣h(x) − h(y )
∣∣

|x− y| , sup
x∈R

∣∣f (x)
∣∣}≤ 1

}
,

Eπ[h(Tπ ) − h(Z )]
a.s.−→ 0 along {nl(m)} for any Lipschitz function h : R → R with Lips-

chitz constant 1. By the Portmanteau theorem, Pπ(Tπ ≤ t )
a.s.−→ �(t ) along {nl(m)}. Now

using Theorem 2.3.2 of Durrett (2010) in the reverse direction gives Pπ(Tπ ≤ t )
p−→�(t )

along the full sequence {n}.
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A.6 Lemma 5

Let ε1, � � � , εn be independent Rademacher variables. Using Lemma 9 with ai = ai and
ξi = bπ(i), and the cr inequality, we obtain

Eπ

[∥∥∥∥∥
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i=1

aibπ(i)

∥∥∥∥∥
r]
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∥∥∥∥∥
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∥∥∥∥∥
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‖ai‖
)r}

. (A.70)

Consider the term E[‖∑n
i=1 aibπ(i)εi‖r ]. By Lemma 8,

E

[∥∥∥∥∥
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|bi|r
)

. (A.71)

where Eε[·] denotes the expectation with respect to εi, i = 1, � � � , n conditional on π, the
second inequality holds by convexity for r ≥ 2 and using (x + y )r ≤ xr + yr if r < 2 and
the last line holds since π ∼ U(Gn ). Similarly, by Lemma 8,

E
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. (A.72)
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Combining (A.70), (A.71), and (A.72) and noting that n
n−1 ≤ 2, we obtain (3.1) with

Mr ≡ 2r−1
{(

6r2

(r − 1)2

)r

+
(

8(4r − 1)
9r − 1

)r

2r
}
Kr .

A.7 Theorem 6

We prove the result in three steps. First, we derive the asymptotic distribution of
n−1/2X̃ ′u in n−1/2X̃ ′(y −Xβ0 ) = n−1/2X̃ ′X̃(β−β0 ) + n−1/2X̃ ′u. Then we show the con-
sistency of the covariance matrix estimate. The third step concludes.

Step 1: Asymptotic distribution of n−1/2X̃ ′u Rewrite
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)
. (A.73)

Remark that {Xs′M1su
s }s=1, ���,Sn are independent conditional on the σ-field generated by

Zn1, � � � , Znn. We first derive the asymptotic normality of the first summand of (A.73).
By Assumption 2(d), (B.6) holds, with �̄n = 
n. Let λn ≡ λmin(
n ). By Lyapunov and

Cauchy–Schwarz inequalities for any ε > 0, as n → ∞,
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Hence, (B.7) holds, with usni(X
s
ni − n−1

s

∑ns
i=1 E[Xs

ni]) in place of Xni. Then Lemma 13
yields
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d−→ N (0, Ik ). (A.74)
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Consider the second summand of (A.73). We have∥∥∥∥∥Var
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where the first and second equalities hold by independence (Assumption 2(a)) and As-
sumption 2(b), the first inequality is by Jensen’s inequality, the second inequality is by
Cauchy–Schwarz, the third inequality is by Assumption 2(c), and the last is by Assump-
tion 2(d). Then, by Chebyshev’s inequality,∥∥∥∥∥
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From (A.74), (A.75), and Slutsky’s lemma, we obtain
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Step 2: Consistency of the covariance matrix estimator Let


̂n ≡ n−1
Sn∑
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ni .
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We prove that 
̂n −
n
p−→ 0. Let us define
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By the WLLN, 
̃n −
n
p−→ 0. Therefore, it suffices to show that
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Note that


̂n = n−1
Sn∑
s=1

ns∑
i=1

X̃s
niX̃

s′
niv

s2
ni − 2n−1

Sn∑
s=1

ns∑
i=1

X̃s
niX̃

s′
niv

s
niv̄

s + n−1
Sn∑
s=1

ns∑
i=1

X̃s
niX̃

s′
niv̄

s2. (A.77)

Moreover, by the triangle inequality,
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From (A.35),
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By the Cauchy–Schwarz inequality applied twice,
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Then, again by the Cauchy–Schwarz inequality and (A.79),
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Similarly,
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By Markov’s inequality, (A.80), and (A.81), the first and second terms on the RHS of (A.78)
are op(1). By analogous arguments, the third term of (A.78) is also an op(1). Hence,
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Now, we showed in (A.44) that the third term in (A.77) is an op(1). Finally, consider the
second term in (A.77). By the triangle and Cauchy–Schwarz inequalities,∥∥∥∥∥n−1
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where the convergence holds due to (A.42), the fact that n−1∑Sn
s=1

∑ns
i=1 v

s4
ni = Op(1),

which holds by the WLLN, and (A.43).
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Step 3: Asymptotic distribution of W We first determine the limit of n−1X̃ ′X̃ . Rewrite

n−1X̃ ′X̃ = n−1
Sn∑
s=1

ns∑
i=1

X̃s
niX̃

s′
ni = n−1

Sn∑
s=1

ns∑
i=1

Xs
niX

s′
ni − n−1

Sn∑
s=1

nsX̄
sX̄s′. (A.82)

For the first summand of (A.82), by the WLLN,

n−1
Sn∑
s=1

ns∑
i=1

Xs
niX

s′
ni − n−1

Sn∑
s=1

ns∑
i=1

E
[
Xs

niX
s′
ni

] p−→ 0. (A.83)

Consider the second summand of (A.82). By the triangle inequality,

n−1

∥∥∥∥∥
Sn∑
s=1

{
nsX̄

sX̄s′ − ns E
[
X̄s

]
E
[
X̄s

]′}∥∥∥∥∥
≤

Sn∑
s=1

n−1

∥∥∥∥∥
ns∑
i=1

(
Xs

ni − E
[
Xs

ni

])
X̄s′

∥∥∥∥∥+
Sn∑
s=1

n−1

∥∥∥∥∥
ns∑
i=1

E
[
Xs

ni

](
X̄s − E

[
X̄s

])′∥∥∥∥∥. (A.84)

By the Cauchy–Schwarz inequality and convexity of x �→ ‖x‖2, the first summand of
(A.84) satisfies

Sn∑
s=1

n−1 E

[∥∥∥∥∥
ns∑
i=1

(
Xs

ni − E
[
Xs

ni

])(
n−1
s

ns∑
i=1

Xs′
ni

)∥∥∥∥∥
]

≤ n−1
Sn∑
s=1

{
E

[∥∥∥∥∥
ns∑
i=1

(
Xs

ni − E
[
Xs

ni

])∥∥∥∥∥
2]}1/2{

n−1
s

ns∑
i=1

E
[∥∥Xs

ni

∥∥2]}1/2

= Oa.s.

(
n−1

Sn∑
s=1

n
1/2
s

)

= oa.s.(1), (A.85)

where the first equality uses E[n−1
s ‖∑ns

i=1(Xs
ni − E[Xs

ni])‖2] = O(1), which holds by the
independence assumption and the last equality follows by (A.29). Similarly, for the sec-
ond summand of (A.84),

Sn∑
s=1

n−1

∥∥∥∥∥
ns∑
i=1

E
[
Xs

ni

](
n−1
s

ns∑
i=1

(
Xs

ni − E
[
Xs

ni

])′)∥∥∥∥∥= oa.s.(1). (A.86)

Combining (A.85) and (A.86), we obtain

n−1

∥∥∥∥∥
Sn∑
s=1

{
nsX̄

sX̄s′ − ns E
[
X̄s

]
E
[
X̄s

]′}∥∥∥∥∥ p−→ 0. (A.87)
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Moreover, by the triangle inequality and convexity of x �→ ‖x‖2,∥∥∥∥∥n−1
Sn∑
s=1

ns
{
E
[
X̄s

]
E
[
X̄s′]− E

[
X̄sX̄s′]}∥∥∥∥∥=

∥∥∥∥∥n−1
Sn∑
s=1

ns E
[(
X̄s − E

[
X̄s

])(
X̄s − E

[
X̄s

])′]∥∥∥∥∥
≤ n−1

Sn∑
s=1

E

[
n−1
s

∥∥∥∥∥
ns∑
i=1

(
Xs

ni − E
[
Xs

ni

])∥∥∥∥∥
2]

= n−1
Sn∑
s=1

E

[
n−1
s

ns∑
i=1

∥∥Xs
ni − E

[
Xs

ni

]∥∥2

]

= Oa.s.
(
n−1Sn

)
= oa.s.(1). (A.88)

(A.87) and (A.88) together yield n−1‖∑Sn
s=1{nsX̄sX̄s′ − ns E[X̄sX̄s′]}‖ p−→ 0. The latter

combined with (A.83) gives

n−1X̃ ′X̃ − E
[
n−1X̃ ′X̃

] p−→ 0. (A.89)

To determine the asymptotic distribution of W , rewrite



−1/2
n n−1/2X̃ ′(y −Xβ0 ) =


−1/2
n n−1/2X̃ ′X̃(βn −β0 ) +


−1/2
n n−1/2

Sn∑
s=1

Xs′M1su
s .

Using (A.76), (A.89), and G = limn→∞ 

−1/2
n E[n−1X̃ ′X̃], we obtain, if βn = β0 + hn−1/2,



−1/2
n n−1/2X̃ ′(y −Xβ0 )

d−→ N (Gh, Ik ).

By the same argument as in (A.59), 
1/2
n 
̂−1

n 

1/2
n

p−→ Ik. Then, by Slutsky’s lemma and
the CMT,

W d−→ W∞ ∼ χ2
k

(‖Gh‖2).
Under the fixed alternative H1 : β �= β0, since ‖
−1/2

n E[n−1X̃ ′X̃]n1/2(β−β0 )‖ → ∞, we

obtain W p−→ ∞.

A.8 Corollary 7

First, recall that S′
n includes π1 = Id. Let (π2, � � � , πNn ) denote the other permutations in

S
′
n, and πNn+1, � � � , π|Sn| be the remaining permutations in Sn. By Theorem 3, conditional

on the data and with probability tending to one, Wπ d−→ χ2
k. Hence, for any t ∈R,

Fn(t ) ≡ (|Sn| − 1
)−1

|Sn|∑
i=2

1
(
Wπi ≤ t

) p−→ P
[
χ2
k ≤ t

]
. (A.90)
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Take any subsequence of {n}. Since Nn
p−→ ∞, there exists a further subsequence {m}

such that Nm
a.s.−→ ∞. From Corollary 4.1 of Romano (1989), supt∈R | 1

Nm−1

∑Nm
i=2 1(Wπi ≤

t ) − Fn(t )| p−→ 0; hence, by the triangle inequality and (A.90), for any t ∈R,∣∣∣∣∣ 1
Nm − 1

Nm∑
i=2

1
(
Wπi ≤ t

)− P
[
χ2
k ≤ t

]∣∣∣∣∣≤ sup
t∈R

∣∣∣∣∣ 1
Nm − 1

Nm∑
i=2

1
(
Wπi ≤ t

)− Fn(t )

∣∣∣∣∣
+ ∣∣Fn(t ) − P

[
χ2
k ≤ t

]∣∣
p−→ 0.

As a result, the empirical cdf F̂Nm(t ) of Wπ on S
′
n satisfies

F̂Nm(t ) =N−1
m 1

(
Wπ1 ≤ t

)+ Nm − 1
Nm

1
Nm − 1

Nm∑
i=2

1
(
Wπi ≤ t

) p−→ P
[
χ2
k ≤ t

]
.

Since the cdf of χ2
k distribution is continuous and strictly increasing at its 1−α quan-

tile q1−α(χ2
k ), by Lemma 11.2.1 of Lehmann and Romano (2005), along the subsequence

{m},

W (q) p−→ q1−α
(
χ2
k

)
. (A.91)

By definition, E[φα] = P[W >W (q)] + Nα−N+
N0 P[W = W (q)]; hence,

P
[
W >W (q)]≤ E[φα] ≤ P

[
W ≥ W (q)]. (A.92)

Now, suppose first that βn = β0 + n−1/2h, with either h = 0 or h �= 0, fixed. By point 1 of

Theorem 6, equation (A.91), and Slutsky’s lemma, W −W (q) d−→ W∞ − q1−α(χ2
k ). Then,

by continuity of the cdf of the χ2
k(‖Gh‖2 ) distribution at all positive points,

lim
n→∞P

[
W >W (q)]= lim

n→∞P
[
W ≥ W (q)]= P

[
W∞ > q1−α

(
χ2
k

)]
.

Therefore, by the sandwich theorem, along the subsequence {m},

lim
n→∞ E[φα] = P

[
W∞ > q1−α

(
χ2
k

)]
.

By Urysohn’s subsequence principle, the convergence above holds along {n}. Points 1
and 2 follow. Now, suppose that n1/2‖βn −β0‖ → ∞. By point 2 of Theorem 6 and (A.91),

W −W (q) p−→ ∞ along {m}. Then (A.92) implies that

lim
n→∞ E[φα] = P

[∞ > q1−α
(
χ2
k

)]= 1.

Again, by Urysohn’s subsequence principle, the above result holds along {n}.
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Appendix B: Technical lemmas

The following lemmas are used in the proof of the permutation version of the Marcin-
kiewicz–Zygmund inequality.

Lemma 8 (Kahane–Khintchine Inequality). For all r ∈ [1, ∞), there exists a constant Kr

depending only on r such that for any d × 1 vectors x1, � � � , xn ∈ R
d and independent

Rademacher variables ε1, � � � , εn,

E

[∥∥∥∥∥
n∑

i=1

xiεi

∥∥∥∥∥
r]

≤Kr

(
n∑

i=1

‖xi‖2

)r/2

.

This is a special case of the general Kahane–Khintchine inequality; see Theorem 1.3.1
of de la Peña and Giné (2012). We also use the following lemma, which is a particular case
of Theorem 4.1 in Chobanyan and Salehi (2001).

Lemma 9. Let ξ1, � � � , ξn be exchangeable real random variables satisfying
∑n

i=1 ξi = 0
and let a1, � � � , an be vectors in R

d . Then, for any 1 < r < ∞, n > 1, and independent
Rademacher variables ε1, � � � , εn that are independent of ξ1, � � � , ξn,(

E

[
max

1≤k≤n

∥∥∥∥∥
k∑

i=1

aiξi

∥∥∥∥∥
r])1/r

≤ 6r2

(r − 1)2

(
E

[∥∥∥∥∥
n∑

i=1

aiξiεi

∥∥∥∥∥
r])1/r

+ 8(4r − 1)
(9r − 1)(n− 1)

(
E

[∣∣∣∣∣
n∑

i=1

ξiεi

∣∣∣∣∣
r])1/r n∑

i=1

‖ai‖. (B.1)

The first lemma used below is a SLLN for triangular array of rowwise independent
random variables, which follows from Theorem 1 and Corollary 1 of Hu, Moricz, and
Taylor (1989).

Lemma 10 (Triangular array SLLN). Let {Yni : i = 1, � � � , n; n = 1, 2, � � � } be an array of
row-wise independent random vectors that satisfies either

(a) for some δ > 0 supn,i E[‖Yni‖2+δ] <∞; or

(b) {Yni}ni=1 have identical marginal distributions with E[‖Yni‖2] <∞.

Then

n−1
n∑

i=1

(
Yni − E[Yni]

) a.s.−→ 0.

Proof. Let us first suppose that Condition (a) holds. Let Ynij be the jth element of Yni.
We have

E
[∣∣Ynij − E[Ynij ]

∣∣2+δ]≤ 21+δ
(
E
[|Ynij|2+δ

]+ E[Ynij ]2+δ
)
<∞.
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The result follows by applying Corollary 1 of Hu, Moricz, and Taylor (1989) with p = 1
and Xni = Ynij −E[Ynij ]. Now suppose that Condition (b) holds. Then, as above, E[|Ynij −
E[Ynij ]|2] < ∞ and the result follows from Theorem 1 of Hu, Moricz, and Taylor (1989).

The following lemma is useful to establish Lindeberg’s condition for the CLT and to
control the growth of the maximum of independent random variables.

Lemma 11. Let {Xni : i = 1, � � � , n; n = 1, 2, � � � } be an array of rowwise independent ran-
dom variables that satisfies either

(a) for some δ > 0 supn,i E[|Xni|4+δ] <∞; or

(b) {Xni}ni=1 have identical marginal distributions with supn,i E[X4
ni] <∞.

Let X̃ni ≡ Xni − X̄n with X̄n ≡ n−1∑n
i=1 Xni. Then, for any ε > 0, there exists C > 0 and n1

such that almost surely, for all n ≥ n1,

n−1
n∑

i=1

X2
ni1

(|Xni| >C
)
< ε, (B.2)

n−1/2 max
1≤i≤n

|Xni| a.s.−→ 0. (B.3)

Proof. For any C > 0,

n−1X2
ni = n−1X2

ni1
(
X2

ni ≤C2)+ n−1X2
ni1

(
X2

ni > C2)
≤ n−1C2 + n−1X2

ni1
(
X2

ni > C2)
≤ n−1C2 + n−1

n∑
j=1

X2
nj1

(
X2

nj > C2). (B.4)

Since the RHS of the inequality in the last line does not depend on i,

n−1 max
1≤i≤n

X2
ni ≤ n−1C2 + n−1

n∑
i=1

X2
ni1

(
X2

ni > C2).
By Lemma 10,

n−1
n∑

i=1

X2
ni1

(
X2

ni > C2)− n−1
n∑

i=1

E
[
X2

ni1
(
X2

ni > C2)] a.s.−→ 0. (B.5)

Fix ε > 0. By the Cauchy–Schwarz and Markov’s inequalities,

E
[
X2

ni1
(
X2

ni > C2)]≤ (
E
[
X4

ni

])1/2(E[1(X2
ni > C2)])1/2

≤ (
E
[
X4

ni

])1/2(E[X2
ni

]
/C2)1/2

< ε/4,
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where the last inequality follows for C sufficiently large. Then, in view of (B.5), there
exists n0 ∈N and C0 > 0 such that almost surely (a.s.) and for all n≥ n0,

n−1
n∑

i=1

X2
ni1

(
X2

ni > C2
0

)
< ε/2.

Next, choose n1 such that n−1
1 C2

0 ≤ ε/2. Then, by (B.4), we have a.s., for any n ≥
max(n0, n1 ), n−1 max1≤i≤nX

2
ni < ε. Thus, (B.2) and (B.3) hold.

We will also use the following simple lemma.

Lemma 12. Let Xn = (Xn1, � � � , XnK )′ be a random vector satisfying Xn
d−→ N (0, IK ).

Then, for any tn ∈R
K×L such that t ′ntn = IL and L≤K, t ′nXn

d−→ N (0, IL ).

Proof. By the Skorokhod representation theorem, there exists X̃n = (X̃n1, � � � , X̃nK )

and X̃ = (X̃1, � � � , X̃K ) with X̃n
d= Xn for all n, X̃ ∼ N (0, IK ) and such that X̃n

a.s.−→ X̃ .
Let tn be as in the lemma. Because∥∥t ′n(X̃n − X̃ )

∥∥≤ ‖tn‖‖X̃n − X̃‖ = L1/2‖X̃n − X̃‖ a.s.−→ 0,

we have t ′nX̃n = t ′nX̃ + op(1). Moreover, t ′nX̃ ∼ N (0, IL ). Thus, by Slutsky’s lemma,

t ′nX̃n
d−→ N (0, IL ). The result follows since t ′nX̃n has the same distribution as t ′nXn.

The conditional version of multivariate Lindeberg CLT stated in the next lemma is
obtained from Theorem 1 and Corollary 3 of Bulinski (2017).

Lemma 13. Let {Xns : s = 1, � � � , qn; n ∈ N} be a triangular array of d × 1 random vectors,
which are conditionally independent in each row given a σ-field An for all n ∈ N with
E[Xns|An] = 0 and �ns = E[XnsX

′
ns|An]. Let �̄n =∑qn

s=1 �ns and λn = λmin(�̄n ). Suppose

lim inf
n→∞ λn > 0 a.s., (B.6)

∀ε > 0
1
λn

qn∑
s=1

E
[‖Xns‖21

(‖Xns‖2 > ελn
)|An

] p−→ 0. (B.7)

Then

�̄
−1/2
n

qn∑
s=1

Xns
d−→ N (0, Id ). (B.8)

Proof. Let Yns = t ′�̄−1/2
n Xns where t ∈ R

d , t �= 0. We verify the conditions of Theo-
rem 1 of Bulinski (2017) for Yns . First, (Yns )1≤s≤qn are independent conditional on An.

Second, Var[Yns|An] = t ′�̄−1/2
n �ns�̄

−1/2
n t ≤ t ′�̄−1/2

n �̄n�̄
−1/2
n t = t ′t < ∞ a.s. Third, σ2

n ≡
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Var[
∑qn

s=1 Yns|An] = t ′t > 0 a.s. Fourth, on noting that E[Yns|An] = 0 and letting ε ≡ ε2

for any ε > 0, we have

1

σ2
n

qn∑
s=1

E
[
Y 2
ns1

(|Yns| ≥ εσn
)|An

]

≤ 1

σ2
n

qn∑
s=1

∥∥t ′�̄−1/2
n

∥∥2 E
[‖Xns‖21

(∥∥t ′�̄−1/2
n

∥∥2‖Xns‖2 > ε2σ2
n

)|An
]

≤ ‖t‖2

σ2
nλn

qn∑
s=1

E
[
‖Xns‖21

(
‖Xns‖2 >

ε2σ2
nλn

‖t‖2

)∣∣∣An

]

= 1
λn

qn∑
s=1

E
[‖Xns‖21

(‖Xns‖2 > ελn
)|An

]
p−→ 0,

where the first inequality is by Cauchy–Schwarz, the second is by t ′�̄−1
n t ≤ ‖t‖2/λn, the

equality uses ‖t‖2 = σ2
n , and the convergence uses (B.7). The result then follows from the

Cramér–Wold device and Theorem 1 and Corollary 3 of Bulinski (2017).

Appendix C: Additional results on the project STAR

Table C.1. 95% confidence intervals for β with standardized individual student scores.

Test Statistic

Standardized Math Test Scores

Kindergarten Grade 1 Grade 2

CI Length CI Length CI Length

SR [0.01, 0.42] 0.41 [0.25, 0.60] 0.35 [0.07, 0.53] 0.46
CP ⊇[−4, 4] ≥8 ⊇[−4, 4] ≥8 ⊇[−4, 4] ≥ 8
PC [0.03, 0.40] 0.37 [0.27, 0.58] 0.31 [0.10, 0.50] 0.40
Nonrobust [0.00, 0.44] 0.44 [0.25, 0.60] 0.35 [0.06, 0.53] 0.47
Robust HC3 [−0.02, 0.46] 0.48 [0.22, 0.62] 0.40 [0.03, 0.56] 0.53
Robust HC0 (IR) [0.03, 0.40] 0.36 [0.27, 0.58] 0.31 [0.10, 0.50] 0.40

BP, JB, SW pval 0.58, 0.63, 0.80 0.23, 0.63, 0.54 0.84, 0.70, 0.84
n, S, |Sn| 66, 15, 9.47 × 1024 109, 25, 1.68 × 1041 79, 18, 9.16 × 1029

(Continues)
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Table C.1. Continued.

Test Statistic

Standardized Reading Test Scores

Kindergarten Grade 1 Grade 2

CI Length CI Length CI Length

SR [−0.07, 0.44] 0.51 [0.32, 0.62] 0.30 [0.13, 0.52] 0.39
CP ⊇[−4, 4] ≥ 8 ⊇[−4, 4] ≥8 ⊇[−4, 4] ≥8
PC [−0.04, 0.41] 0.45 [0.34, 0.60] 0.26 [0.15, 0.50] 0.35
Nonrobust [−0.07, 0.44] 0.50 [0.32, 0.62] 0.30 [0.13, 0.53] 0.40
Robust HC3 [−0.10, 0.47] 0.58 [0.30, 0.64] 0.34 [0.10, 0.55] 0.45
Robust HC0 (IR) [−0.04, 0.40] 0.44 [0.34, 0.60] 0.26 [0.16, 0.50] 0.34

BP, JB, SW pval 0.28, 0.16, 0.34 0.02, 0.90, 0.91 0.77, 0.24, 0.57
n, S, |Sn| 66, 15, 9.47 × 1024 109, 25, 1.68 × 1041 79, 18, 9.16 × 1029

Note: This table is similar to Table 4, except that the dependent variable is the class average test scores when individual
student scores are normalized to have mean zero and standard deviation one across all the students in the schools with at least
2 regular and 2 small classes.
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