
Bird, Daniel; Frug, Alexander

Article

Monotone contracts

Theoretical Economics

Provided in Cooperation with:
The Econometric Society

Suggested Citation: Bird, Daniel; Frug, Alexander (2022) : Monotone contracts, Theoretical
Economics, ISSN 1555-7561, The Econometric Society, New Haven, CT, Vol. 17, Iss. 3, pp. 1041-1073,
https://doi.org/10.3982/TE4842

This Version is available at:
https://hdl.handle.net/10419/296379

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by-nc/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3982/TE4842%0A
https://hdl.handle.net/10419/296379
https://creativecommons.org/licenses/by-nc/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Theoretical Economics 17 (2022), 1041–1073 1555-7561/20221041

Monotone contracts

Daniel Bird
Eitan Berglas School of Economics, Tel Aviv University

Alexander Frug
Department of Economics and Business, Universitat Pompeu Fabra and Barcelona School of Economics

We develop a framework for deriving dynamic monotonicity results in long-term
stochastic contracting problems with symmetric information. Specifically, we
construct a notion of concave separable activity that encompasses many preva-
lent contractual components (e.g., wage, effort, level of production, etc.). We then
provide a tight condition under which such activities manifest a form of senior-
ity in every contracting problem in which they are present: any change that oc-
curs in the level of the activity over time favors the agent. Our work unifies and
significantly generalizes many existing results and can also be used to establish
monotonicity results in other settings of interest.

Keywords. Dynamic contracting, activities, seniority.

JEL classification. D86.

1. Introduction

Interactions between a principal and an agent often take place in complex and dy-
namic environments: seasonality and random shocks affect demands, workers accu-
mulate skills, and business opportunities arrive and disappear at random. Contracts
are used to specify the obligations of each party and, in particular, how these obliga-
tions should respond to changes in the contracting environment. Faithfully describing
realistic contracting environments and deriving optimal contracts therein is eminently
difficult. A standard approach is to fully characterize the optimal contracts in a “styl-
ized” contracting problem that captures the essential features of the original setting.
This approach has been used to derive valuable insights into qualitative features of real-
life phenomena in a wide array of economic settings. For example, Milton and Holm-
ström (1982), Holmström (1983), and Postel-Vinay and Robin (2002a,b) study compet-
itive labor markets and derive a downward wage rigidity property; Krueger and Uhlig
(2006) study competitive insurance markets and show that changes in the terms of in-
surance contracts always favor the insured; Albuquerque and Hopenhayn (2004) study
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entrepreneur financing and find that an entrepreneur’s access to capital increases over
time; Fudenberg and Rayo (2019) and Bird and Frug (2021) study effort dynamics and
show that a worker’s effort decreases over time; and Forand and Zápal (2020) study dy-
namic project selection and find that project selection criteria change in the agent’s fa-
vor as time goes by.

In this paper, we take an alternative approach to studying the qualitative features
of desirable contracts that circumvents the need to fully characterize optimal contracts.
We develop a conceptual framework and use it to establish a general dynamic mono-
tonicity result that unifies and remarkably generalizes most of the monotonicity results
developed in the above-mentioned papers.1 Furthermore, the framework we develop
is significantly more general not only with respect to the potential complexity of the
environment in which the interaction occurs, but also in terms of the structure of the
contractual components encompassed by our result. Thus, in addition to offering a gen-
eralization and unification of several seemingly unrelated results in the existing litera-
ture, our framework paves the way for deriving related results for new, more intricate,
contractual components in richer settings.

The key restrictions we impose are that information is symmetric and that only
the principal has commitment power. We model a contracting problem as a stochas-
tic game—in each period, the players play a randomly drawn stage game, observe its
outcome, and collect payoffs—in which the principal commits to a long-term strategy
and the agent re-optimizes his play at every history. As the calendar time, previous stage
games, and players’ past moves may affect the games the players will play in the fu-
ture, the class of contracting problems we consider is fairly general. It accommodates
a wide variety of settings, including, but not limited to, settings where the agent’s cost
of effort depends on past events, there is seasonality in demand, there is uncertainty
about the principal’s ability to provide compensation in the future, there are long-term
(or storable) investment opportunities, or there are research and development processes
that may change future production methods and costs.

The main notion we develop is that of activity. Broadly speaking, an activity is a
recurring component of the interaction for which the players have monotone and op-
posite preferences. Examples include worker’s daily effort, monthly wage, production
volume, level of authority of a bureaucrat or a unit in an organization, financing to an
entrepreneur, quality of supplied products, and more. Some activities are unilaterally
controlled by one of the players (e.g., worker’s effort) while others are jointly controlled
by both players (e.g., a situation where output depends on the agent’s effort as well as
the amount of resources provided by the principal). Our analysis will show that the class
of jointly controlled activities gives rise to a strategic aspect that is absent in the case of
the unilaterally controlled activities.2

Two characteristics of activities will play an important role in our analysis: concav-
ity and separability. An activity is concave if the principal’s activity-related payoff is a

1The only exceptions are Albuquerque and Hopenhayn (2004) and Fudenberg and Rayo (2019). In Sec-
tion 7, we discuss the connection between their monotonicity results and our result.

2The activities in the above papers, with the exception of Forand and Zápal (2020), are unilaterally con-
trolled activities.
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strictly concave function of the agent’s activity-related payoff. An activity is separable if
changes within the activity do not affect the distribution of games that the players will
play in the future. Note that the separability requirement allows events unrelated to the
activity to affect the availability of the activity in the future. Hence, situations where the
availability of an activity is endogenous and/or path-dependent fall within the scope of
our analysis.

Our main result identifies a property of concave separable activities that guarantees
that, in optimum, and irrespective of the exact details of the contracting problem, the
level of the activity changes over time only in the direction that favors the agent (Theo-
rem 1). Furthermore, our result is tight in the sense that under mild technical require-
ments, for every concave separable activity that fails to satisfy the property, there exist
contracting problems in which, as time goes by, the level of the activity changes in the
opposite direction (Proposition 1).

The essence of the mechanism behind our result can be described as “incentive-
constrained smoothing.” Intuitively, consider an incentive-compatible contract and, for
each concave separable activity, consider the joint play induced by the contract in all
components of the interaction except for that specific activity. Mechanically, this play
can be thought of as imposing incentive-compatibility constraints on how the desig-
nated activity can be played over time. The concavity of the activity implies that smooth-
ing out fluctuations in the activity-play over time is profitable. However, in general, such
smoothing may destabilize incentive compatibility by creating new (within-activity) de-
viation opportunities. In this light, an additional contribution of this paper is in showing
how a relatively standard intertemporal smoothing argument can be extended to much
richer models of dynamic contracting and, in particular, in identifying tight limits im-
posed by short-run activity-specific strategic incentives.

The rest of the paper is organized as follows. In Sections 2 and 3, we define the con-
tracting environment and develop the notion of activity. Section 4 reports the main re-
sult of the paper (Theorem 1). Section 5 offers a (partial) converse of Theorem 1, and
Section 6 is devoted to some robustness results. We review the related literature in Sec-
tion 7 and offer concluding remarks in Section 8. All proofs are relegated to Appendix A.

2. Contracting environment

We consider dynamic interactions between a principal and an agent that can be rep-
resented as follows. In each period t ∈ {1, 2, � � � , T }, where T ≤ ∞, the players play a
randomly drawn (strategic-form) stage game G(t ), observe the outcome of G(t ), and
receive payoffs. The game in period t is drawn from a commonly known history-
dependent distribution f (ht ), where ht lists the realized (stage) games in all previous
periods (G(1), � � � , G(t − 1)) and the players’ actions in those games. We impose the fol-
lowing measurability constraint on f (·): for any ht , s > 0, and strategy profiles in periods
t, � � � , t + s − 1, the distribution of the periodic game in period t + s is well defined. We
refer to a stochastic process f (·) as a contracting problem.

We assume that the only asymmetry between the players is in their ability to commit.
While the principal enjoys full commitment power, the agent cannot commit to a course
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of play. Thus, it is convenient to think of the principal’s problem at the beginning of the
interaction in terms of committing to a contract that the agent would find optimal to
follow at any history. Formally, a contract specifies, for every finite history ht , an action
profile in every stage game that can be realized at3 ht . A contract is incentive compati-
ble if, for every pair (ht , G(t )), the agent’s continuation strategy (from period t onward)
specified by the contract is a best response to the principal’s continuation strategy spec-
ified by the contract. We assume that the players maximize (discounted) expected utility
and use the same positive discount factor δ. Hence, the principal’s objective is to select
an incentive-compatible contract that maximizes his expected discounted value at time
zero.

3. Concave separable activities

In this section, we develop the main concept of the paper, which can be used to draw
economically relevant conclusions in complex or even partially specified contracting
problems (we illustrate some applications in Section 4.2). We start by defining an activ-
ity and presenting some examples, after which we define a notion of separability with
respect to a contracting problem.

3.1 Activities

We denote a strategic-form game between a principal and an agent by G = 〈Sp, Sa;
up, ua〉, where Si and ui : Sp × Sa →R are, respectively, the action space and the von
Neumann–Morgenstern (vNM) utility function of player i ∈ {a, p}.

Definition 1 (Activity). An activity is a pair (G, �), where G = 〈Sp, Sa; up, ua〉 and
� ⊆ Sp × Sa such that there exist a real-valued nondegenerate interval L and a bijection
η : L→ � for which the functions up ◦η : L→R and ua ◦η : L→ R are continuous and
strictly monotone in opposite directions.

To define when an activity is available in a given period, we first define the addition
operator ⊕ for games. Roughly speaking, the game G1 ⊕ G2 is played when the players
play the games G1 and G2 simultaneously “side by side” and their payoffs are added.

Definition 2 (The ⊕ Operator). Given a pair of strategic-form games between a prin-
cipal and an agent, G1 = 〈S1

p, S1
a; u1

p, u1
a〉 and G2 = 〈S2

p, S2
a; u2

p, u2
a〉. The strategic-form

game G1 ⊕G2 is defined as 〈Sp, Sa; up, ua〉, where, for i ∈ {p, a}, Si := S1
i × S2

i , and, for all
action profiles ((s1

p, s2
p ), (s1

a, s2
a )) ∈ Sp×Sa, ui : Sp×Sa →R satisfies ui((s1

p, s2
p ), (s1

a, s2
a )) =

u1
i (s1

p, s1
a ) + u2

i (s2
p, s2

a ).

Using this operator, we can now state the following definition.

3We assume that the contract is deterministic in the sense that it assigns to each history and realized
game a deterministic action profile. Nevertheless, since the action space in G(t ) can be uncountable, our
framework can accommodate “mixing” by the principal by considering G(t ) to be a game where the prin-
cipal’s strategies are lotteries over his actions in a more basic strategic-form game.
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Definition 3 (Activity in a Contracting Problem). The activity (G, �) is available in pe-
riod t if the realized game in t, G(t ), can be written as G′ ⊕G for some game G′.

It is useful to emphasize certain aspects of the above definitions. In essence, an ac-
tivity is a part of the interaction over which the players have opposite preferences, and
that can be measured in terms of linearly ordered levels (the interval L) and adjusted
continuously. Note that the definition of activity is agnostic about the choice of L. A
particularly useful candidate, especially in general arguments, is L = ua(�), i.e., mea-
sure the activity in terms of the agent’s activity-related payoff; however, when specific
applications are considered, alternative units (e.g., production volume) may be natural
and convenient. Furthermore, note that the above definition of an activity is silent about
the player’s preference over outcomes of G outside of �. Thus, our results will apply only
to the play of action profiles in �.

Additionally, defining when an activity is part of an interaction via the operator ⊕
imposes important restrictions on the relation between the activity and the rest of the
interaction in periods when the activity is available. First, the players’ payoffs in the ac-
tivity game G are additively separable from other payoffs obtained in the same period.
Second, the action space in periods when the activity is available must have a cross-
product structure. This rules out the possibility that activity-related actions impose re-
strictions on the players’ possible actions outside of G and vice versa.

Since there is a bijection between � and an interval L, and the players’ preferences
are strictly monotone in opposite directions on L, an activity can be thought of as a
means of transferring utility between the players. Given an activity (G, �), let Up(u)
denote the principal’s payoff from the (unique) action profile in � for which the agent’s
payoff is u. Formally, Up : ua(�) →R is defined as

Up(u) = up ◦ (ua|� )−1(u),

where (ua|� ) is ua restricted to the domain �.

Definition 4 (Concavity). An activity (G, �) is concave if Up(·) is strictly concave.

In other words, an activity is concave if the principal’s marginal loss due to an in-
crease in the agent’s utility from the activity is strictly increasing.4

3.2 Examples of activities

In this section, we illustrate how certain components of different economic interactions
can be formulated as activities. The usefulness of this stems from the fact that typically
identifying an activity within an interaction is much easier than solving for the optimal
contract therein, and our analysis in the following sections will allow us to draw im-
portant and general qualitative conclusions (e.g., downward wage rigidity) that do not
depend on the exact details of the interaction. We provide two examples. The first is
the wage paid by the principal, and the second is the agent’s labor provision as part of a
jointly controlled production process.

4In Corollary 1 below, we will provide a weaker version of our result for the case where Up(·) is weakly
concave.
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Wage Suppose that when w ≥ 0 is the agent’s wage (in a given period), the principal’s
and agent’s payoffs from wage are −w and g(w), respectively, for some increasing func-
tion g(·). The formulation of wage as an activity is (Gwage, �wage ), where

Gwage = 〈
Sp = R+, Sa = {a∅}; up(w, a∅ ) = −w, ua(w, a∅ ) = g(w)

〉
,

and �wage, in this case, is equal to the set of all possible outcomes of Gwage. The inter-
pretation of the players’ action spaces in the activity game Gwage is that the principal
unilaterally controls the wage paid to the agent. If the function g(·) is strictly concave,
then this activity is concave.5 A crucial aspect of the activity, which is necessary for our
main result, is that the activity-related payoff—e.g., utility from wage—is independent
of other actions—e.g., effort—in that period. In Section 4.3, we illustrate an example
where such dependence occurs and show how partial conclusions, similar to those in
our main result, can be inferred in such cases.

Next, we illustrate a jointly controlled activity. An important feature of such activities
is that � is typically a proper subset of the action space of the activity game. We adapt
an idea that appeared in Albuquerque and Hopenhayn (2004).

Labor in joint production Consider a production process where, first, the principal
provides capital k, after which the agent can either supply labor l or reallocate the cap-
ital provided by the principal for his private benefit. Moreover, suppose that the output
is given by z(l, k) = min{l, k} and that the value of output z for the principal is π(z). In
addition, suppose that the principal’s marginal cost of capital, the agent’s marginal cost
of labor, and the agent’s marginal utility from capital used for private benefit are all 1.
This activity can be represented as (Gz , �z ), where

Gz = 〈
Sp =R+, Sa =R+ ∪ {steal}; up(k, sa ), ua(k, sa )

〉
,

where

up(k, sa ) =
{

−k if sa = steal

π
(
z(sa, k)

) − k if sa �= steal,
ua(k, sa ) =

{
k if sa = steal

−sa if sa �= steal,

and

�z = {
(sp, sa ) ∈R

2+ : sp = sa
}

.

Note that, in this example, there are two types of action profiles that do not belong to �z :
those where the agent steals the capital and those where the input bundle is inefficient
(k �= l). The activity is concave if π(·) is strictly concave.

5This activity is an example from a class of activities that are unilaterally controlled by one of the play-
ers. A natural activity that is unilaterally controlled by the agent is his effort. A possible representation of
this activity is Geffort = 〈Sp = {p∅}, Sa = R+; up(p∅, e) = π(e), ua(p∅, e) = −c(e)〉, where π(·) and c(·) are,
respectively, the principal’s profit and the agent’s cost of effort, and �effort is again the set of all possible
outcomes of Geffort.
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3.3 Separability

Up until now, we have only considered the relation between an activity and other parts
of the interaction within a stage game. Next, we define a notion of separability that
places a dynamic restriction on the contracting problem. Intuitively, this notion im-
poses that changes in the activity level do not affect the distribution of periodic games
in the future. Whether or not a given activity satisfies this notion depends on the con-
text of the contracting problem. For example, in many cases (e.g., low-level employees),
it is reasonable to assume that changes in the agent’s effort will have no impact on his
prospects in the labor market. However, in other cases (e.g., chief executive officers),
the firm’s profitability—which is impacted by the agent’s effort—acts as a publicly ob-
served signal about the agent’s skill (i.e., “career concerns” à la Holmström (1999)), and
so changing the agent’s effort can impact his prospects in the labor market. Thus, while
in the former case the agent’s effort may satisfy the dynamic separability constraint, in
the latter case it will not.

Definition 5 (Separability With Respect to a Contracting Problem). An activity (G, �)
is separable with respect to f (·) if, for any pair of same-length histories ht , ĥt along
which the sequence of realized games {G(τ)}t−1

τ=1 is identical, the statement below holds:
If there is s < t such that

(i) G(s) =G′ ⊕G for some G′ and

(ii) the sequence of outcomes of (G(1), � � � , G(s − 1), G′, G(s + 1), � � � , G(t − 1)) is
identical under ht and ĥt ,

then f (ht ) = f (ĥt ).

Notice that our notion of separability is inherently asymmetric. It only requires that
changes in the action profile in the activity game G not affect the stochastic process ac-
cording to which future games are drawn. By contrast, changes that affect the future
distribution of games through actions outside the activity game G are entirely legiti-
mate. Thus, this notion of separability does not rule out situations where the availability
of activities is endogenously controlled by the players.

The object of interest in this paper is concave activities that are separable with re-
spect to the contracting problem under consideration. We refer to such activities as
concave separable activities.

4. Monotonicity of concave separable activities

We first illustrate the workings of the main result with a simple example. Consider a
four-period contracting problem in which the agent exerts effort in periods 1 and 3,
and the principal compensates him in periods 2 and 4. In the present illustration, we
will mainly focus on the compensation component of the interaction. Therefore, we
will simplify the part related to effort as much as possible by assuming that the prin-
cipal’s and agent’s possible actions in periods t ∈ {1, 3} are, respectively, Sp(t ) = {p∅}
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and Sa(t ) = {0, xt }, where xt > 0 measures the agent’s cost of effort required in period t.
Moreover, we restrict attention to cases where it is strictly optimal for the principal to in-
centivize positive effort in both t = 1 and t = 3, and assume that players do not discount
the future.

Assume first that compensation is provided via (Gwage, �wage ) (the periodic wage
activity that is specified in the first example in Section 3.2). If (Gwage, �wage ) is con-
cave, it is immediate that the cheapest way to compensate the agent for his total effort
(x1 + x3 ) is to pay him a wage worth (x1 + x3 )/2 utils in each of periods 2 and 4. When
x1 ≥ x3, this form of compensation satisfies all incentive-compatibility constraints and
is thus uniquely optimal. If, on the other hand, x1 < x3, this form of compensation is
not incentive compatible in period6 3. To restore incentive compatibility, some of the
compensation must be postponed from period 2 to 4, which would lead to an increas-
ing compensation over time. A decreasing compensation plan (where the wage paid in
period 4 is strictly lower than that paid in period 2), however, is suboptimal for all x1

and x3.
An alternative way to frame the argument (which will make transparent the role of

Property 1 that we define below) is as follows. Suppose that a decreasing compensa-
tion plan is proposed. Reducing the compensation in period 2 by a small amount and
increasing it in period 4 so that the agent’s total utility from wage remains the same de-
creases the overall cost of compensation (this is a basic smoothing argument). If the
original decreasing compensation plan was part of an incentive-compatible contract,
then, a fortiori, so is the modified compensation plan, because deferring compensa-
tion only relaxes some of the incentive-compatibility constraints of the forward-looking
agent.

The above argument relies on the implicit assumption that changing the level of
compensation in a given period does not create new deviation opportunities for the
agent. Assume now that compensation in our example is provided via a more complex
concave activity for which the agent’s deviation payoff does vary with the level of com-
pensation. To fix ideas, suppose that our agent is a civil servant who is compensated
by being granted a higher level of authority. To keep the illustration concise, we will as-
sume that, given any level of authority, the civil servant decides whether or not to abuse
his authority, and that abusing authority provides him with the highest payoff (within
the activity game) for every authority level granted by the principal. Denote this activity
by (Gauthority, �authority ), where

Gauthority = 〈
Sp = [y, y], Sa = {use, abuse}; up(sp, sa ), ua(sp, sa )

〉
and

�authority = [y, y] × {use}.

As before, start with a decreasing and incentive-compatible compensation plan
(now via (Gauthority, �authority )) and consider a smoothing modification that reduces the

6Recall that compensation is nonnegative and so the only threat available for the principal from period
3 onward is to provide a compensation of zero in period 4. Since x3 > x1, the compensation for the average
effort is insufficient to incentivize the agent to exert the necessary effort in period 3.
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principal’s cost of compensation while keeping the agent’s total utility from compen-
sation fixed. What is now unclear is whether this modification results in an incentive-
compatible contract. To understand when this is indeed the case, we now analyze the
agent’s considerations in periods 2 and 4.

The smoothing modification decreases the civil servant’s periodic payoff from fol-
lowing the contract in period 2. However, by construction (in particular, since period 2
is the first period involved in the modification), the civil servant’s continuation payoff
from following the contract does not change in period 2. Hence, to guarantee that the
smoothing modification did not create opportunities for profitable deviations in that
period, it must be the case that the civil servant’s payoff from abusing authority in pe-
riod 2 did not increase. A sufficient condition for this is that ua(y, abuse) ≥ ua(y ′, abuse)
for any y, y ′ such that ua(y, use) > ua(y ′, use).

On the other hand, since period 4 is the last period of the smoothing modification,
the civil servant’s periodic payoff and his continuation payoff in period 4 increase by
the same amount. Hence, to guarantee that the smoothing modification did not gen-
erate opportunities for profitable deviations in period 4, the change in the civil ser-
vant’s payoff from abusing authority in period 4 must be bounded from above by the
increase in his payoff from following the contract in that period. A sufficient condition
for this is that ua(y ′, abuse) − ua(y, abuse) ≤ ua(y ′, use) − ua(y, use) for any y, y ′ such
that ua(y ′, use) > ua(y, use).

The above illustration contains a number of special features. One important such
feature is that the distribution of periodic games did not depend on the players’ past
actions; that is, all activities were separable with respect to the contracting problem. If
an activity is not separable with respect to a contracting problem, then by choosing the
activity level, the principal attempts not only to maximize his activity-related payoff, but
also to improve the distribution of future stage games. Clearly, in certain interactions,
the latter motive may be the dominating one. For example, if the principal is evaluated
for promotion based on the output on the last day of each month, he has an incentive
to require exceptionally high effort on that day. Thus, separability of an activity with
respect to the contracting problem is essential in order to obtain a general monotonicity
result for that activity.

4.1 Main result

To state the key condition of our main result, we define the following activity-specific
functions.7 Given an activity (G, �), the function Ūa : � → R maps every action profile
σ ∈ � to the agent’s highest payoff in G provided that the principal’s action is8 σp (where
σp is the principal’s part of the action profile σ):

Ūa(σ ) = sup
sa∈Sa

ua(σp, sa ).

7To simplify notation, we do not explicitly add (G, �) as an argument of these functions, but leave this
dependence implicit.

8To ease notation, we define the mapping Ūa on action profiles in � rather than on the principal’s actions
consistent with these profiles.
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Next, given a pair of distinct action profiles σ1, σ2 ∈ �, we define the function

φ
(
σ1, σ2) = Ūa

(
σ1) − Ūa

(
σ2)

ua
(
σ1) − ua

(
σ2) .

Note that since φ(·, ·) is defined only for distinct action profiles and by the definition of
activity ua(σ1 ) �= ua(σ2 ) whenever σ1 �= σ2, the function φ(·, ·) is well defined.

Property 1. The activity (G, �) satisfies Property 1 if φ(σ1, σ2 ) ∈ [0, 1] for every pair of
distinct action profiles σ1, σ2 ∈ �.

Property 1 restricts the extent to which the agent’s incentives to deviate (within
the activity-game G) may vary between action profiles in �. For any (distinct) profiles
σ1, σ2 ∈ �, two magnitudes need to be compared: (i) the difference between the agent’s
payoffs under σ1 and σ2, and (ii) the difference between the agent’s maximal attainable
payoffs when only the principal plays in accordance with σ1 and σ2. Property 1 holds if,
for any σ1, σ2 ∈ �, (i) and (ii) do not have opposing signs, and the absolute value of (i) is
at least as large as the absolute value of (ii).

In many cases, it is easy to verify that Property 1 holds. For instance, if an activity
is unilaterally controlled by the principal (i.e., the agent’s action space in the activity-
game is a singleton), then the numerator and denominator of φ(·, ·) are always identical.
Hence, Property 1 holds at the upper bound, φ(σ1, σ2 ) ≡ 1. On the other hand, if an
activity is unilaterally controlled by the agent (i.e., the principal’s action space in the
activity-game is a singleton), then the two terms in the numerator of φ(·, ·) are the same,
and, therefore, for such activities, Property 1 holds at the lower bound, φ(σ1, σ2 ) ≡ 0.
The following lemma summarizes the above discussion.

Lemma 1. Unilaterally controlled activities satisfy Property 1.

It follows that the activity of periodic wage (first example described in Section 3.2)
satisfies Property 1. By contrast, the joint-production example (second example in Sec-
tion 3.2) does not satisfy Property 1: in order to increase production, both players need
to provide more inputs. Since providing labor is costly to the agent, it follows that an
increase in the intended production decreases the agent’s payoff. On the other hand,
“more capital on the table” increases the agent’s deviation payoff. As the numerator and
denominator of φ(·, ·) are of opposing signs, Property 1 does not hold.

The activities in most of the papers we mentioned earlier are unilaterally controlled
and, hence, Property 1 readily holds. Below, we show that Property 1 draws the exact lim-
its to the standard smoothing arguments, imposed by short-term activity-specific incen-
tives. Notably, a condition similar to our Property 1 appeared as part of Assumption A.3
in Ray (2002), who considers an abstract repeated-game setting with partial commit-
ment.9

9Ray’s assumption also imposes continuity of payoffs from other contractual components. Such conti-
nuity is crucial for Ray’s construction, which relies not on the curvature of payoffs but rather on the possibil-
ity of marginally modifying several contractual components to enable the principal to appropriate surplus.
We compare our model and results to Ray (2002) in Section 7.
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Given an activity (G, �), we refer to a player’s payoff from action profiles in � as his
activity-related payoff.

Definition 6 (Nondecreasing Agent’s Activity Payoff). Fix a contracting problem f (·),
an incentive-compatible contract therein, and an activity (G, �). The agent’s activity-
related payoff is nondecreasing over time if there is zero probability of observing a
history in which there exist two periods t < s such that (G, �) is available in both pe-
riods, the action profiles played in G in these periods are both members of �, and
ua(σt ) > ua(σs ).

We are now ready to state the main result of the paper.

Theorem 1. Let (G, �) be a concave activity that is separable with respect to f (·). If
(G, �) satisfies Property 1, then, under any optimal contract, the agent’s activity-related
payoff is nondecreasing over time.

4.2 Implications and applications of Theorem 1

Theorem 1 unifies and significantly generalizes many classic as well as more recent re-
sults in the literature. A substantial strand of literature has shown that an employee’s
wage (at a given workplace) rises over time when there are fluctuations in the value of
his outside option. See, for example, Milton and Holmström (1982), Holmström (1983),
and Postel-Vinay and Robin (2002a,b). To derive their results, these papers specify a
full-blown model of the labor market that embeds fluctuations in the worker’s outside
option, and then use that specific structure to obtain the downward rigidity of wage di-
rectly. This standard approach is inherently limited as it derives the result only for the
particular specification under consideration.

By contrast, our result establishes the downward rigidity of wage in any contracting
problem where wage constitutes a concave separable activity, as is the case in all the
aforementioned papers. Similarly, our result establishes the upward rigidity of effort in
any contracting problem where effort constitutes a concave separable activity. Thus, our
result suggests a general insight into seniority-based dynamics in stochastic contracting
problems: a worker’s effort can only decrease over time while his wage can only increase.

In addition, our approach draws connections between seemingly unrelated mono-
tonicity results that have been derived in the literature. For example, in addition to the
body of literature on wage dynamics mentioned above, our result generalizes mono-
tonicity results regarding the dynamics of insurance contracts (Marcet and Marimon
(1992), Krueger and Uhlig (2006)), dynamic project selection (Forand and Zápal (2020)),
and effort dynamics (Bird and Frug (2021)). The objects of interest in each of these pa-
pers are concave separable activities that satisfy Property 1, and, hence, Theorem 1 de-
livers the qualitative monotonicity results derived directly in all of these papers.10

10In Forand and Zápal (2020) there are multiple projects that can be thought of as weakly concave sepa-
rable activities. Their result follows from two corollaries of Theorem 1 that we establish in Section 4.3.
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In Appendix B we establish the connection between Theorem 1 and some of the
aforementioned monotonicity results in a more formal manner. In particular, we first
construct the exact mapping between the models suggested in those papers and our
general framework. Then we show that the objects of interest in those papers can be
represented as concave separable activities that satisfy Property 1 and, hence, by Theo-
rem 1, must exhibit a monotone dynamics under an optimal contract.

Theorem 1 can also be used to establish related monotonicity results in other set-
tings of interest. Examples of possible applications of Theorem 1 include the following
situations.

Power allocation in organizations It is well known that within large organizations, in-
centives are often provided via the reallocation of power rather than via monetary trans-
fers (e.g., Cyert and March, 1963; Aghion and Tirole, 1997; Li, Matouschek, and Powell,
2017). “Excess power,” i.e., the power a division manager has beyond what is required for
him to perform his job, can sometimes be represented as a concave separable activity.11

Our result shows that the evolution of a division manager’s power is inherently related
to his potential benefit from abusing his power.

Consider, for example, a setting in which a division manager is occasionally required
to exert an extreme amount of effort to deal with shocks in the firm’s business environ-
ment. If the potential for “abuse” of power is low, then increasing the manager’s power
should have a small impact on his incentive to deviate and Property 1 is likely to hold.
In this case, Theorem 1 implies that, regardless of the exact details of the contracting
problem, if the manager’s power in the organization increases after such a shock, then
the increase will be permanent. If, on the other hand, the potential for abuse of power
is high, then after a shock, the manager’s power in the organization may increase tem-
porarily and then decrease back to its former level.

Quality provision over time In a dynamic interaction between a supplier (the principal)
and a client (the agent), the quality of the supplied goods may be an important compo-
nent of the contractual terms. In some cases, quality provision constitutes a concave
separable activity.12 In such cases, as quality is unilaterally controlled by the supplier, it
will satisfy Property 1 (Lemma 1). Hence, by Theorem 1, quality can only increase over
time, regardless of the details of the contracting problem.

Foreign investments Consider a setting of foreign direct investment or entrepreneur
financing (à la Thomas and Worrall (1994) and Albuquerque and Hopenhayn (2004))
where, in some periods, a lender (the principal) finances production by an entrepreneur
(the agent) who may default on his debts. In the above papers, the amount of funding in
each period is not an activity, as the chosen level of funding restricts the entrepreneur’s
actions in the rest of the interaction.13 However, in alternative specifications of such

11We used an example of such an activity to provide the intuition for Theorem 1.
12For example, if the supplier has access to a competitive market where he can sell the goods he does not

sell to the client, and the market’s marginal valuation for quality is higher than the client’s.
13Albuquerque and Hopenhayn (2004) derive a monotonicity result that relies on this restriction. We

discuss their result in detail in Section 7.
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financing problems, the (periodic) funding may constitute a concave separable activ-
ity. If the entrepreneur’s payoff from defaulting is such that Property 1 holds, then by
Theorem 1, the level of funding can only increase over time regardless of the exact spec-
ification of the financing problem.

4.3 Two corollaries of Theorem 1

In this section, we offer two corollaries of Theorem 1 that further extend the set of eco-
nomic settings where results analogous to Theorem 1 hold.14 First, recall the role of the
concavity assumption in our characterization: smoothing the agent’s activity-related
payoff is strictly profitable for the principal. If an activity is only weakly concave (i.e.,
Up(ua ) is only weakly concave), then smoothing the agent’s activity-related payoff does
not decrease the principal’s profit. Hence, we can establish the following corollary.15

Corollary 1. Let (G, �) be a weakly concave activity that is separable with respect to
f (·). If (G, �) satisfies Property 1 and an optimal contract exists, then there exists an
optimal contract in which the agent’s activity-related payoff is nondecreasing over time.

Recall that a (stage) game can represent the principal randomizing over a finite set
of alternatives, and observe that an activity based on such a game is weakly concave.
Corollary 1 is particularly important for this class of activities.

Second, in a contracting problem with multiple activities (e.g., a problem where an
agent exerts effort in return for wage), qualitative properties of the joint dynamics can
be inferred. In particular, consider a contracting problem that contains two concave
separable activities that satisfy Property 1. In an optimal contract, the marginal cost of
increasing the agent’s activity-related payoff via one activity today must be no greater
than the marginal cost of doing so via the other activity in the future. In other words,
observing the level of a single activity in a given period establishes a bound on the level
of every activity in the contracting problem in the future.

Corollary 2. Let (G̃, �̃) and (Ĝ, �̂) be two concave activities that satisfy Property 1 and
are separable with respect to f (·), and consider a history where (G̃, �̃) is available in pe-
riod s and (Ĝ, �̂) is available in period t > s. If the selected action profiles in G̃ and Ĝ in
those periods are, respectively, σ̃ ∈ �̃ and σ̂ ∈ �̂, then16 Ũ ′

p(ũa(σ̃ )) ≤ Û ′
p(ûa(σ̂ )).

In addition to linking the dynamics of genuinely distinct activities, Corollary 2 en-
ables us to draw useful inferences about components of an interaction that resemble

14The proofs of these corollaries are analogous to the proof of Theorem 1 and are, therefore, omitted.
15The agent’s activity-related payoff from a concave separable activity is nondecreasing over time under

every optimal contract, and so Theorem 1 can be phrased in a way that holds vacuously if an optimal con-
tract does not exist. By contrast, the agent’s activity-related payoff from a weakly concave separable activity
may not be nondecreasing over time under some optimal contracts, and so the corollary cannot be phrased
in a way that holds vacuously if an optimal contract does not exist.

16We denote payoff functions associated with (G̃, �̃) by a tilde, and those associated with (Ĝ, �̂) by a hat.
Moreover, recall that for a concave activity, we denote by U ′

p(·) the right-hand side derivative of Up(·).
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activities, but do not satisfy additive separability in their payoffs or do not have the cross-
product structure of the strategy space. For instance, consider an interaction where the
agent performs different types of tasks and his utility from wage in a given period de-
pends on the task performed in that period. In particular, suppose that there are two
possible tasks: a regular task that is always available and requires an effort of e = 1, and
an opportunity task that arrives occasionally and, if implemented, demands the agent’s
full attention—i.e., it replaces the regular task—and requires an effort of e = 2. In each
period, the principal chooses wage w ∈R+ and the agent’s utility from wage is

√
w/e.

The game played in “regular periods,” i.e., when only the regular task is available, is

Greg = 〈
Sp = R+, Sa = {1}; up(w, 1) = π(1) −w, ua(w, 1) = √

w
〉
,

where π(1) denotes the principal’s profit from the regular task. The game Greg, together
with � being the set of all its outcomes, forms the activity of wage in regular periods. In
“opportunity periods,” the periodic game is

Gopp =
〈
Sp =R+, Sa = {1, 2}; up(w, e) = π(e) −w, ua(w, e) =

√
w

e

〉
,

where π(2) denotes the principal’s profit from the opportunity task. Note that this game
reflects both the selection among mutually exclusive tasks and the choice of wage. Since
the agent’s utility from wage is task-dependent, we need two “different activities” to for-
mally represent wage in opportunity periods. In addition, since tasks are mutually ex-
clusive, while the set � varies with the selected task, in order to satisfy the cross-product
structure, the activity game for these two activities is identical and given by Gopp. This,
in turn, implies that even the wage payments in periods when the regular task is per-
formed require two distinct activities since Gopp �= Greg. Hence, to fully describe the
dynamics of wage, formally, we need to consider three wage-related activities. By The-
orem 1, the wage paid via each of these activities separately will never decrease over
time. Corollary 2 complements the analysis and links the different activities. In particu-
lar, while wage need not be monotone over time, it can only decrease between a period
in which the opportunity task is performed and a period in which the regular task is
performed.

5. Tightness of Theorem 1

Our characterization in Theorem 1 is tight in the sense that under mild technical con-
ditions, the level of an activity that does not satisfy Property 1 changes over time in the
principal’s favor in some contracting problems. To illustrate this point, we first consider
variants of the joint-production activities from the second example in Section 3.2, after
which we provide a formal (partial) converse to Theorem 1.

Recall that Property 1 holds if 0 ≤ φ(σ1, σ2 ) and φ(σ1, σ2 ) ≤ 1 for all σ1, σ2 ∈ �.
Therefore, to demonstrate that the dynamics of an activity that does not satisfy Prop-
erty 1 may be inconsistent with the dynamics implied by Theorem 1, we present two
counterexamples. In particular, for the case where φ(·, ·) < 0, we consider a production
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technology under which capital and labor are complements, whereas for the case where
φ(·, ·) > 1, we consider a production technology where capital and labor are (strong)
substitutes. In each case, we construct a counterexample by an appropriate choice of
compensation and production opportunities. For simplicity, we assume that the players
do not discount the future.

Pay at the end For the case where Property 1 is violated because φ(·, ·) < 0, consider a
slightly modified version of our joint-production activity where the production function
is z(k, l) = min{l, k/2}, where, as before, l is the agent’s labor input and k is the capital
provided by the principal. Moreover, assume that there are production opportunities in
periods 1 and 2. To further simplify the example, suppose that the principal has very
limited discretion on how to provide compensation to the agent: the principal can only
decide whether or not to pay the agent a compensation of 1 at the end of the interaction
(period 3).

Optimal production requires that if the agent provides l units of labor, then the prin-
cipal provides k(l) = 2l units of capital. Hence, we set � = {(k, l) ∈ R

2+ : k = 2l}. Let

σ̂ = (2l̂, l̂) and σ̃ = (2l̃, l̃) for l̂ �= l̃. Under our assumptions that both the agent’s marginal
cost of labor and his marginal utility from reallocating capital are 1, we obtain

φ(σ̂ , σ̃ ) = 2l̂ − 2l̃

−l̂ − (−l̃)
= −2.

As the main focus of the present illustration is on the agent’s incentives, we prefer not
to provide a specific π(·) that makes the activity concave, but simply assume that the
principal seeks to maximize aggregate production, and that, given a fixed level of ag-
gregate production, he seeks to minimize the variance in the production level between
periods. Due to the minimum production technology, this is equivalent to maximizing
the agent’s aggregate labor l1 + l2 (where lt denotes the agent’s labor in period t ∈ {1, 2}),
where, between pairs (l1, l2 ) that add up to the same total, the principal prefers the one
with the minimal difference between l1 and l2. Under these assumptions, the optimal
contract can be identified by solving the linear programming problem

max{l1 + l2} such that

IC1 : 1 − l1 − l2 ≥ 2 · l1
IC2 : 1 − l2 ≥ 2 · l2,

where ICt is the agent’s incentive-compatibility constraint in period t. The unique solu-
tion to this linear programming problem is (l1 = 2

9 , l2 = 1
3 ). That is, the optimal contract

induces an increasing labor schedule, and, hence, the agent’s activity-related payoff de-
creases over time in contrast to the dynamics implied by Theorem 1.

To understand the intuition for this counterexample, observe that the agent’s contin-
uation utility after he provides labor in period 2 is 1 (since only the compensation in pe-
riod 3 is left), whereas his continuation utility after he provides labor in period 1 is 1 − l2.
Accordingly, the threat of losing the continuation utility is greater in period 2 than in
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period 1. This, in turn, implies that the agent’s gain from deviating in the activity-game
(U(k(lt ), lt ) −ua(k(lt ), lt ) = k(lt ) + lt = 3lt ) under an incentive-compatible contract can
be greater in period 2 than in period 1. Since this gain is increasing in labor, the maximal
amount of labor the agent can be asked to provide is higher in period 2 than in period 1.

Carrot and stick For the the case where Property 1 is violated because φ(·, ·) > 1, con-
sider the production function z(l, k) = l + k/2 and suppose that there is an “output tar-
get” of 1 that must be fulfilled in the periods in which the activity is available. Due to
the output target, to make this activity concave, we assume that the principal’s cost of
providing capital is given by an increasing and strictly convex function c(·). Under this
production technology, the principal’s optimal capital input as a function of the agent’s
labor input is k(l) = 2 · (1 − l). This activity is given by

Gz = 〈
Sp =R+, Sa =R+ ∪ {steal}; up(k, sa ), ua(k, sa )

〉
,

where

up(k, sa ) =
{
π(1) − c(k) if sa ≥ 1 − k

−c(k) else ,
ua(k, sa ) =

{
k if sa = steal

−sa if sa �= steal,

and

� = {
(k, l) ∈R

2+ : k= 2 · (1 − l)
}

.

Note that for any distinct (l, k), (l′, k′ ) ∈ �,

φ
(
(l, k),

(
l′, k′)) = k′ − k(−l′

) − (−l)
= 2

(
1 − l′

) − 2(1 − l)

l − l′
= 2.

The specification of the contracting problem is as follows. In period 1, the agent
chooses whether to opt out—which secures him a payoff of 0—or to participate. If the
agent participates, then there are production opportunities in periods 2 and 4, and the
principal’s compensation opportunities are as follows: he can provide a compensation
of 1 at the end of the interaction (period 5), and in period 3, he can either offer a com-
pensation of 1

2 or impose a fine of 1. The agent’s incentive-compatibility constraints
are

IC1 :
1
2

+ 1 − l2 − l4 ≥ 0

IC2 :
1
2

+ 1 − l2 − l4 ≥ 2(1 − l2 ) − 1

IC4 : 1 − l4 ≥ 2(1 − l4 ).

Note that IC4 is equivalent to l4 ≥ 1, while the assumed production target and tech-
nology give l4 ≤ 1. Thus, a contract is incentive compatible only if l4 = 1. Moreover,
the incentive-compatibility constraints in periods 1 and 2 evaluated at l4 = 1 jointly
imply that the agent’s labor input in period 2 must equal 1

2 . Thus, the only incentive-
compatible contract has the agent’s labor increase from l2 = 1

2 to l4 = 1.
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Intuitively, in this counterexample, the principal’s ability to punish the agent for de-
viating in period 2 is greater than his ability to punish the agent for deviating in pe-
riod 4. Accordingly, the agent’s gain from deviating in the activity-game (U(k(lt ), lt ) −
ua(k(lt ), lt ) = k(lt ) + lt = 2 − lt ) can be greater in period 2 than in period 4. Since this
gain is decreasing in labor, the principal may have to require more labor in period 4
than in period 2. Indeed, due to the choice of compensation opportunities, the prin-
cipal must require a full unit of labor in period 4, but cannot require that amount of
labor in both periods, and so the agent’s labor increases over time. Hence, the agent’s
activity-related payoff decreases over time under the optimal contract, in contrast to the
dynamics implied by Theorem 1.

To establish a converse result to Theorem 1 beyond the above examples, we need to
address two relatively technical points. First, in both counterexamples, � is chosen in
such a way that it is suboptimal for the principal to specify an action profile outside of
� in the activity-game G. In general, as the definition of an activity is agnostic about the
choice of �, it may be the case that the principal will select action profiles outside of �
under an optimal contract. For example, consider the joint-production activity-game
Gz , where z = min{l, k/2}, that is paired with the inefficient set of input bundles �′

z =
{(k, l) ∈ R

2+ : k = 2l + 1}. Even though (Gz , �′
z ) is a well defined activity, any contract

in which the principal selects an action profile in �′
z is worse than some contract in

which he assigns capital efficiently. Hence, an action profile in �′
z will never be played

under an optimal contract in any contracting problem. To circumvent such problems, in
our converse result we restrict attention to activities that satisfy the following efficiency
notion.

Definition 7 (Strictly Pareto-Efficient Activity). An activity (G, �) is strictly Pareto-
efficient if the payoffs associated with every action profile in � are on the Pareto frontier
of the convex hull of the payoff set of G, and are not a convex combination of payoffs
associated with action profiles outside of �.

Second, Property 1 stipulates that a “small change” in the agent’s activity-related
payoff does not have a large impact on his deviation payoff. Thus, a class of activities
that obviously fail to satisfy Property 1 are those for which the agent’s deviation payoff
is discontinuous with respect to his activity-related payoff. To bypass the need to use
a solution concept that is suitable for such discontinuous contracting problems (e.g.,
ε-optimality), we restrict attention to activities for which the function ūa : ua(�) →R,
defined as

ūa(ua ) = Ūa
(
η(ua )

)
,

where η : ua(�) → � is a bijection that satisfies the requirements in the definition of the
activity, is continuous.17 In our converse result we fully construct optimal contracts. To
simplify their derivation, we further assume that ūa(·) is differentiable.

17An alternative converse to Theorem 1 that does not impose continuity on ūa(·) and uses ε-optimality
as a solution concept is available upon request.
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Proposition 1. Let (G, �) be a strictly Pareto-efficient concave activity for which ūa(·) is
differentiable and Property 1 does not hold. There exists a contracting problem f (·) with
respect to which (G, �) is separable such that the agent’s activity-related payoff decreases
over time under the optimal contract.

6. Robustness

A natural question that arises is whether the dynamics of activities that “almost” sat-
isfy Property 1 can admit arbitrary decreases in the agent’s activity-related payoff or if
any such decreases will be “small.” It turns out that violations of the upper and lower
bounds of Property 1 have an asymmetric impact on the possible dynamics of a con-
cave separable activity. In particular, given a sequence of activities that are identical on
� and for which the infimum of φ(·, ·) converges to 0, the size of the maximal decrease in
the agent’s activity-related payoff converges to 0 as well. On the other hand, if the supre-
mum of φ(·, ·) exceeds 1 even slightly, then there exist contracting problems in which a
large decrease in the agent’s activity-related payoff is observed.

To illustrate the intuition for the first result alluded to above, consider, for example,
a parametrized family of activities, {(Gc , �)}c∈R++ , such that, within �, all of the activi-
ties are identical and satisfy ua(�) = [0, 1] and Up(u) = −u2/2 (recall that Up(u) is the
principal’s payoff from the unique action profile in � from which the agent’s payoff is
u), whereas the agent’s payoffs in Gc outside of � are such that Ūc

a(σ ) = 1 + c − cua(σ )
(where Ūc

a(σ ) is the agent’s highest payoff in Gc when the principal plays σp). This spec-
ification is convenient because for every such (Gc , �), φ(σ , σ ′ ) = −c for any pair of dis-
tinct action profiles18 σ , σ ′ ∈ �.

Consider a contracting problem with no discounting with respect to which (Gc , �) is
separable and in which it is available in periods 1 and 2. Moreover, assume that u1 > u2

under an optimal contract, where ut is the agent’s (Gc , �)-related payoff in period t. By
a standard smoothing argument, decreasing the agent’s activity-related payoff in period
1 by a small ε and increasing it in period 2 by the same ε is profitable for the principal.
Therefore, our assumption that u1 > u2 is part of an optimal contract implies that the
aforementioned modification is not incentive compatible. Since φ(·, ·) ≤ 1, increasing
the agent’s activity-related payoff in period 2 cannot violate the incentive-compatibility
constraint in that period. Therefore, the above modification must violate the incentive-
compatibility constraint in period 1.

Reducing the agent’s activity-related payoff by ε in period 1 has two effects. First,
it reduces the agent’s utility in that period (on the path of play) by ε; second, it in-
creases the agent’s payoff from deviating in that period by εc. Thus, increasing the
agent’s activity-related payoff in period 2 by (1 + c)ε restores incentive compatibility.
The principal’s marginal profit from such a modification is −U ′

p(u1 ) + U ′
p(u2 )(1 + c).

Since U ′
p(ua ) = −ua and ut ≤ 1, the marginal profit from this modification is positive if

u1 −u2 > c. Hence, u1 > u2 can be consistent with optimality only if u1 −u2 ≤ c (i.e., the
bound on the decrease in agent’s utility from period 1 to period 2 vanishes with c).

18 For this specificaiton φ(σ , σ ′ ) = Ūa(σ )−Ūa(σ ′ )
ua(σ )−ua(σ ′ ) = (1+c−cua(σ ))−(1+c−cua(σ ′ ))

ua(σ )−ua(σ ′ ) = −c.
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While the above example has a very specific structure, the main part of the argu-
ment—that smoothing a decrease in the agent’s activity-related payoff when φ(·, ·) ≤ 1
can violate the incentive-compatibility constraint only in the earlier period—is general.
This observation plays a fundamental role in our robustness result. In particular, it im-
plies that if smoothing the agent’s activity-related payoff between two periods violates
incentive compatibility, then the principal can always restore incentive compatibility
by increasing the agent’s activity-related payoff in the later period. Hence, if φ(·, ·) is
bounded from below (and does not exceed 1), we can place an upper bound on the
size of a decrease in the agent’s activity-related payoff by comparing the marginal gain
from smoothing the agent’s activity-related payoff and the marginal cost of increasing
his aggregate (discounted) activity-related payoff.

Proposition 2. Consider a set of concave activities {(Gc , �)}c∈R++ for which �, (ua|� ),
and (up|� ) are identical, ua(�) is compact, and (Gc , �) are such that φ(·, ·) ⊆ [−c, 1].
There exists a set of positive numbers {Mc }c∈R+ for which limc→0 M

c = 0, such that the
agent’s (Gc , �)-related payoff does not decrease over time by more than Mc in any con-
tracting problem with regard to which (Gc , �) is separable.

On the other hand, if φ(·, ·) > 1, then smoothing a decrease in the agent’s activity-
related payoff can violate the incentive-compatibility constraint only in the later period.
Consequently, smoothing a decrease in the agent’s activity-related payoff may require
the principal to increase the agent’s continuation utility in the nonactivity part of the
contracting problem. However, as some contracting problems do not contain such com-
pensation opportunities (or providing additional compensation is prohibitively costly),
a large decrease in the agent’s activity-related payoff can be observed if φ(·, ·) > 1.

Proposition 3. Let (G, �) be a strictly Pareto-efficient concave activity for which ūa(·)
is differentiable, ua(�) is compact, and φ(·, ·) is bounded from below by 1 + c for some
c > 0. There exists a contracting problem with respect to which (G, �) is separable,
in which, under the optimal contract, the agent’s activity-related payoff decreases by
maxσ ,σ ′∈�{ua(σ ) − ua(σ ′ )}.

7. Literature review

The monotonicity result we derive embeds many results that have been mentioned
throughout the paper. Milton and Holmström (1982), Holmström (1983), and Postel-
Vinay and Robin (2002a,b) analyze labor markets and establish that an employee’s wage
does not decrease over time. Marcet and Marimon (1992) and Krueger and Uhlig (2006)
study the dynamics of insurance contracts and show that the transfer received by the
insured does not decrease over time. Forand and Zápal (2020) show that project selec-
tion criteria shift in the agent’s favor as time goes by, and Bird and Frug (2021) show that
while wage increases over time, the effort on similar tasks decreases over time.

Clearly, there are many dynamic monotonicity results that arise due to mechanisms
other than the incentive-constrained smoothing mechanism analyzed in the present pa-
per. Such results are prevalent in the literature on wage dynamics, which predicts the
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deferral of compensation for a multitude of reasons.19 For example, Becker (1962) and
Parsons (1972) emphasize the effect of relationship-specific investment, Freeman and
Medoff (1984) highlight the role of labor unions and collective bargaining, and Salop and
Salop (1976), Lazear (1981), Carmichael (1983), and Akerlof and Katz (1989) illustrate the
impact of asymmetric information.

As in our setting, Albuquerque and Hopenhayn (2004) and Fudenberg and Rayo
(2019) assume symmetric information and full commitment on the part of the princi-
pal, and obtain a dynamic monotonicity result. However, the results in these papers do
not follow from Theorem 1. Albuquerque and Hopenhayn (2004) consider a model of
entrepreneur financing where the entrepreneur’s profit from production in a given pe-
riod, which depends on the capital he receives, is an upper bound on his repayment to
the lender in that period. Thus, the cross-product structure of available actions does not
hold and so (periodic) financing is not an activity. Moreover, the mechanism that gen-
erates the monotonicity result in Albuquerque and Hopenhayn (2004) is different from
our “incentive-constrained smoothing” mechanism and so their result does not require
concavity of the payoff functions but only quasi-concavity. At the start of the interac-
tion in their model, the entrepreneur owes a large debt to the lender and, hence, has a
low continuation utility. Since the entrepreneur’s deviation payoff in a given period is
increasing in the size of the loan he received in that period, the entrepreneur’s continu-
ation utility limits the size of the loan he can receive. As time goes by, the entrepreneur
repays the initial debt and his continuation utility increases, and, hence, it becomes in-
centive compatible for him to receive larger and more efficient loans. Fudenberg and
Rayo (2019) show that an apprentice’s unskilled effort decreases over time. However,
the unskilled effort in their model is not an activity: first, the sum of the apprentice’s
skilled and unskilled effort must be less than 1 (which violates the cross-product struc-
ture of available actions), and second, the apprentice’s cost of effort is a function of his
aggregate effort level (which violates separability of payoffs).

Our dynamic monotonicity result relies on the assumptions that there is symmetric
information and that the principal has full commitment power. Earlier work on stochas-
tic environments has shown that if one (or both) of these assumptions is relaxed, opti-
mal outcomes may necessitate non-montone dynamics. For example, Möbius (2001),
Hauser and Hopenhayn (2008), and Samuelson and Stacchetti (2017) show this in the
context of “trading favors,” and Li, Matouschek, and Powell (2017), Bird and Frug (2019),
and Lipnowski and Ramos (2020) show this in the context of dynamic project selection.

Another related paper is Ray (2002), who studies a model where the principal has
partial commitment power in a repeated (and constant across periods) interaction. Ray
shows that regardless of the exact details of the interaction, if it is not possible to sup-
port unconstrained efficient agreements in all periods, then there is a form of transition
in the agent’s favor as time goes by. Specifically, Ray shows that the periodic contract
converges over time to the agent’s preferred contract.20 The driving force behind Ray’s

19See Prendergast (1999), Edmans and Gabaix (2009), and Pavan (2017) for a review of this literature.
20Thomas and Worrall (2018) generalize Ray’s results to a setting where both agents can take an action,

and neither of them can commit. Moreover, they establish that in their setting, efficient (relational) con-
tracts may exhibit qualitative properties that cannot occur in Ray’s setting.
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result is that compensating the agent in a future period for his current actions increases
his liability (should he deviate) in the intermediate periods. In an environment where
unconstrained Pareto efficiency is precluded by limited liability, this enables the princi-
pal to increase his payoff by offering agreements that are nearer to the Pareto frontier in
those intermediate periods.21 By contrast, we do not study the evolution of the agent’s
payoffs over time (which, in fact, can exhibit any dynamics due to the fluctuations in the
environment), but rather show that certain components of the contract shift monoton-
ically in the agent’s favor due to an activity-specific incentive-constrained smoothing
motive.

8. Concluding remarks

Persistent asymmetric information The methodology developed in this paper can be
extended beyond symmetric information environments and used to derive monotonic-
ity results in contracting problems endowed with certain types of asymmetric informa-
tion. Consider, for example, a model in which the agent works on stochastically arriving
tasks in which the agent’s productivity of effort is strictly concave and his cost of effort
is linear. However, assume that the marginal cost of effort is the agent’s private infor-
mation and is constant over time. In such a model, there is a screening element in the
principal’s problem that is absent in this paper. Since the arrival of tasks is stochastic
and the agent can stop working at any time, finding the optimal intertemporal alloca-
tion of information rents is a complex problem. Nevertheless, we now briefly explain
how our methodology can be used to show that the optimal effort schedule for every
type of agent is non-increasing over time.

In principle, in this screening problem there are two possible reasons for offering a
contract with an increasing effort schedule to a certain type of agent: either to maximize
the principal’s profit from that agent type or to reduce the cost of providing information
rents to other agent types. From Theorem 1, we know that an increasing effort sched-
ule does not maximize the principal’s profit from his interaction with any single agent
type. Hence, an increasing effort schedule can only be offered to a certain agent type if
it reduces the cost of providing information rents to other agent types.

Incentive compatibility in this model requires that, given a “menu of contracts,” ev-
ery agent type (weakly) prefers accepting the contract intended for him (and adhering
to its terms indefinitely) to selecting a contract intended for another type, adhering to
its terms until an arbitrary point of time in the interaction and then disregarding it. No-
tice that smoothing a decrease in one agent-type’s effort schedule (weakly) reduces every
agent-type’s payoff from selecting that contract and adhering to its terms until any given
point in time. Hence, smoothing a decrease in the effort schedule of one agent type
(weakly) reduces the cost of providing information rents to other agent types. Thus, in
optimum, the principal will offer contracts with a non-increasing effort schedule to all
agent types.

21Lazear (1981), among others, shows that similar mechanisms are relevant also in dynamic contracting
problems with full commitment.



1062 Bird and Frug Theoretical Economics 17 (2022)

Unconnected support for activity levels Our definition of an activity requires that the set
of possible activity levels be a real-valued interval. This assumption, which may seem
like a mere simplification, is, in fact, necessary for our main result. Consider a contract-
ing problem with an infinite horizon and a discount factor of δ = 1

2 . Moreover, assume
that in each of the first two periods the agent can exert an effort of e ∈ {0, 1, 2}, and that
in every period the principal can provide compensation worth 2 utils to the agent.

Requiring high effort (e= 2) in period 1 and low effort (e= 1) in period 2 is not incen-
tive compatible: the agent’s discounted cost of effort is 2 + δ = 5

2 , whereas his maximal
discounted utility from compensation from period 2 onward is δ · 2/(1 − δ) = 2. Thus,
requiring high effort in both periods is also not a viable option. However, requiring low
effort in period 1 and high effort in period 2 is incentive compatible: in both periods the
agent’s discounted cost of effort is 2, which is exactly his discounted utility from future
wages if the principal provides compensation from period 2 onward. Therefore, under
the optimal contract, the agent’s effort increases over time, even though Property 1 holds
and effort is separable with respect to the contracting problem.

Appendix A: Proofs

We use the following notation in the proofs. We denote a generic periodic game by G̃, a
generic action profile therein by s(G̃), and a generic finite history by h̃. Let ω̃ = (h̃, G̃)
denote the history and the game that has been realized following that history. We refer
to ω̃ as the state.

Proof of Theorem 1. For a generic contract X and state ω̃, denote by X(ω̃) the ac-
tion profile suggested by X at ω̃. For any ω̃ at which (G, �) is available and the action
profile that is played in G under X is an element of �, we sometimes replace s(G̃) with
(σ(ω̃), s−G(ω̃)), where σ(ω̃) is the action profile that is played in G at ω̃.

Consider an incentive-compatible contract C and suppose that there exists a state ωt

for which there exist �> 0, p> 0, and a set t ′ of states of length t ′ > t that are consistent
with ωt such that (i) (G, �) is available at ωt and at every ωt ′ ∈t ′ , and the action profile
in G, specified by C, in those states is an element of �, (ii) ua(σ(ωt )) − ua(σ(ωt ′ )) ≥ �

for every ωt ′ ∈t ′ , and (iii) Pr(t ′|ωt , C ) = p.
Next we show that the continuation of C at ωt is suboptimal by modifying the

activity-play relative to C. Such modifications do not alter the distribution of periodic
games, since (G, �) is separable with respect to f (·).

We begin by defining a continuation contract at ωt that smooths out the decrease in
the agent’s payoff from (G, �) under C. Fix an ε > 0 for which ε+ ε

pδ(t′−t ) <� and define

Ĉ by making the following modifications to the activity-play under C.
First, given the action profile suggested by C at ωt , (σ(ωt ), s−G(ωt )), define

Ĉ(ωt ) = (
σ̂(ωt ), s−G(ωt )

)
,

where σ̂(ωt ) is the action profile in � for which ua(σ̂(ωt )) = ua(σ(ωt )) − ε. This action
profile exists since, by the choice of ε, it provides the agent with an activity-related payoff
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that is between two feasible activity-related payoffs, and by the definition of an activity,
the set of possible activity-related payoffs is an interval.

In the subsequent steps, we denote a generic sequence of periodic games and their
play between periods t1 and t2 by �t2

t1 = {G(τ), s(G(τ))}t2τ=t1 .
Second, we modify the contract so that the first change does not alter the path of

play in the periods up to t ′. Formally, for τ ∈ {t + 1, � � � , t ′ − 1} and any (�τ−1
t+1 , G(τ)) that

are consistent with some ωt ′ ∈t ′ , define

Ĉ
(
ωt ,

(
σ̂(ωt ), s−G(ωt )

)
, �τ−1

t+1 , G(τ)
) = C

(
ωt ,

(
σ(ωt ), s−G(ωt )

)
, �τ−1

t+1 , G(τ)
)
.

Third, we decrease the agent’s payoff from (G, �) in period t ′. For any ωt ′ =
(ωt , (σ(ωt ), s−G(ωt )), �t ′−1

t+1 , G(t ′ )) ∈ t ′ and action profile suggested by C at ωt ′ ,
(σ(ωt ′ ), s−G(ωt ′ )), define

Ĉ
(
ωt ,

(
σ̂(ωt ), s−G(ωt )

)
, �t ′−1

t+1 , G
(
t ′
)) = (

σ̂(ωt ′ ), s−G(ωt ′ )
)
,

where σ̂(ωt ′ ) is the strategy profile in � for which ua(σ̂(ωt ′ )) = ua(σ(ωt ′ )) + ε
pδt

′−t
. This

profile exists for the same reason described above.
Finally, we modify the contract so that the previous changes do not alter the path of

play after t ′. Formally, for any τ > t ′, and any �t ′−1
t+1 that is consistent with some ωt ′ ∈ t ′

and (�τ−1
t ′+1, G(τ)) that are consistent with C, define

Ĉ
(
ωt ,

(
σ̂(ωt ), s−G(ωt )

)
, �t ′−1

t+1 , G
(
t ′
)
,
(
σ̂(ωt ′ ), s−G(ωt ′ )

)
, �τ−1

t ′+1, G(τ)
)

= C
(
ωt ,

(
σ(ωt ), s−G(ωt )

)
, �t ′−1

t+1 , G
(
t ′
)
,
(
σ(ωt ′ ), s−G(ωt ′ )

)
, �τ−1

t ′+1, G(τ)
)
.

Lemma A.1. Ĉ is incentive compatible.

Proof. For all states ωs such that s ≥ t ′ and ωs /∈ t ′ , Ĉ is identical to C and so Ĉ is
incentive compatible at such states.

At ωt ′ ∈ t ′ , the agent’s continuation utility from following the contract increases by
ua(σ̂(ωt ′ )) −ua(σ(ωt ′ )) while his deviation payoff increases by Ūa(σ̂(ωt ′ )) − Ūa(σ(ωt ′ )).

By Property 1, Ūa(σ̂(ωt′ ))−Ūa(σ(ωt′ ))
ua(σ̂(ωt′ ))−ua(σ(ωt′ )) ≤ 1. Since ua(σ̂(ωt ′ )) − ua(σ(ωt ′ )) > 0, it follows that

Ūa(σ̂(ωt ′ )) − Ūa(σ(ωt ′ )) ≤ ua(σ̂(ωt ′ )) − ua(σ(ωt ′ )) and so Ĉ is incentive compatible at
ωt ′ . Since Ĉ and C are identical at all states (strictly) between periods t and t ′, it follows
that Ĉ is incentive compatible at all such states.

At ωt , by the construction of Ĉ, if the agent does not deviate, then the expected
discounted increase in his payoff in period t ′ equals the decrease in his payoff at ωt .

By Property 1, 0 ≤ Ūa(σ̂(ωt ))−Ūa(σ(ωt ))
ua(σ̂(ωt ))−ua(σ(ωt )) . Since ua(σ̂(ωt )) < ua(σ(ωt )), it follows that

Ūa(σ̂(ωt )) ≤ Ūa(σ(ωt )). Thus, Ĉ is incentive compatible at ωt .

Lemma A.2. The principal’s continuation payoff at ωt under Ĉ is greater than his contin-
uation payoff under C.
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Proof. Since the activity-related payoff is additively separable from any other payoff in
the contracting problem, conditional on ωt , the contract Ĉ outperforms the contract C
if

Up
(
ua

(
σ(ωt )

) − ε
) +pδt

′−t
∫

Up

(
ua

(
σ(ωt ′ )

) + ε

pδt
′−t

)
dμ

>Up
(
ua

(
σ(ωt )

)) +pδt
′−t

∫
Up

(
ua

(
σ(ωt ′ )

))
dμ,

where μ denotes the distribution of states in t ′ induced by the contract C, conditional
on ωt . We establish that this inequality holds via the following smoothing argument.
Since Up(·) is concave, it has left- and right-hand side derivatives, which we denote,
respectively, by ∂−Up(·) and ∂+Up(·),

Up
(
ua

(
σ(ωt )

) − ε
) +pδt

′−t
∫

Up

(
ua

(
σ(ωt ′ )

) + ε

pδt
′−t

)
dμ

>Up
(
ua

(
σ(ωt )

)) − ε · ∂+Up
(
ua

(
σ(ωt )

) − ε
)

+pδt
′−t

∫ (
Up

(
ua

(
σ(ωt ′ )

)) + ε

pδt
′−t

· ∂−Up

(
ua

(
σ(ωt )

) −�+ ε

pδt
′−t

))
dμ

=Up
(
ua

(
σ(ωt )

)) +pδt
′−t

∫
Up

(
ua

(
σ(ωt ′ )

))
dμ

− ε

(
∂+Up

(
ua

(
σ(ωt )

) − ε
) − ∂−Up

(
ua

(
σ(ωt )

) −�+ ε

pδt
′−t

))

>Up
(
ua

(
σ(ωt )

)) +pδt
′−t

∫
Up

(
ua

(
σ(ωt ′ )

))
dμ,

where the first inequality follows from the fact that Up(·) is decreasing and strictly con-
cave, and the second inequality follows from the same fact and the choice of ε.

If the agent’s activity-related payoff is not nondecreasing over time under C, then
there exists a set of length-t states with positive measure, t , at which (G, �) is avail-
able and the action profile in G (specified by C) in those states is an element of �, such
that for each ωt ∈ t , there exists a set t ′(ωt ) that satisfies the following properties:
(i) t ′(ωt ) is a set of states of length t ′, where t ′ > t, that are consistent with ωt ; (ii) (G, �)
is available at each ωt ′ ∈ t ′(ωt ), and the action profile in G (specified by C) in those
states is an element of �; (iii) there exists � > 0 such that ua(σ(ωt )) − ua(σ(ωt ′ )) ≥ �

for every ωt ′ ∈ t ′(ωt ); and (iv) Pr(t ′(ωt )|ωt ) = p for some p > 0. To obtain a contract
that is better than C, at every ωt ∈t , perform the modification described above. This is
feasible as each modification is performed on the continuation contract from a distinct
state, and thus these modifications are mutually exclusive. Moreover, these modifica-
tions do not violate incentive compatibility at states ωs , where s < t, as, by construction,
the modification performed at ωt does not change the agent’s continuation utility at that
state.
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Proof of Proposition 1. To establish this result, we construct a counterexample with
two parameters, u′, u′′ ∈ ua(�), and select appropriate parameter values for each vi-
olation of Property 1. The counterexample is an interaction where, in period 1, the
agent chooses whether to enter the interaction or quit. In period 2, the players play the
activity-game G. In period 3, the agent can either quit the interaction or continue, and
the principal can either continue with the interaction by giving the agent a payoff of −u′
or quit by giving the agent a payoff of −ūa(u′ ). In period 4, the players play the activity-
game G, and in period 5 the principal can either capitalize on the interaction by giving
the agent a payoff of −u′′ and receive a (large) payoff himself, or quit the interaction by
giving the agent a payoff of −ūa(u′′ ).

Formally, the counterexample is constructed from the games

G1 = 〈
Sp = {p∅}, Sa = {Q, E}; up(·, ·) ≡ ua(·, ·) ≡ 0

〉

G3 =
〈
Sp = Sa = {Q, C}; up(·, ·) ≡ 0, ua(sp, sa ) =

{
−u′ if sp = C

−ūa(u′ ) if sp = Q

〉

G5 =
〈
Sp = {Q, C}, Sa = {a∅}; up(sp, a∅ ) =

{
m if sp = C

0 if sp =Q,

ua(sp, a∅ ) =
{

−u′′ if sp = C

− ūa
(
u′′) if sp =Q

〉

Gn = 〈
Sp = {p∅}, Sa = {a∅}; up(·, ·) ≡ ua(·, ·) ≡ 0

〉
,

where m is a (sufficiently) large positive number. The contracting problem is given by
f (·) = Gn if either player played Q in the past. Otherwise f (ht ) = Gt for t ∈ {1, 3, 5} and
f (ht ) =G for t ∈ {2, 4}. Finally, we assume that δ= 1.

First, we restrict attention to contracts in which whenever (G, �) is available, the
specified action profile is an element of �. Hence, we can denote by σt the action profile
that should be played in period t ∈ {2, 4}. Under an optimal contract the principal must
incentivize the agent to enter and then incentivize him to play his action in the action
profile σt without quitting the interaction. Note that in this counterexample, it is without
loss of generality to assume that after the agent deviates, the principal quits. Thus, the
incentive-compatibility constraints are

IC1 : ua(σ2 ) − u′ + ua(σ4 ) − u′′ ≥ 0

IC2 : ua(σ2 ) − u′ + ua(σ4 ) − u′′ ≥ Ūa(σ2 ) − ūa
(
u′)

IC3 : −u′ + ua(σ4 ) − u′′ ≥ −u′

IC4 : ua(σ4 ) − u′′ ≥ Ūa(σ4 ) − ūa
(
u′′).

We now show that there exist u′ > u′′ such that under the unique optimal contract,
ua(σ2 ) = u′ and ua(σ4 ) = u′′. Note that for such a contract, all incentive-compatibility
constraints are binding. Since Up(·) is a strictly concave and decreasing function, this
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implies that a contract can be both incentive compatible and more profitable than the
one suggested above only if ua(σ2 ), ua(σ4 ) ∈ (u′′, u′ ).

Case 1: φ(σ ′′, σ ′ ) = −c for some distinct σ ′′, σ ′ ∈ � and c > 0. Due to the differentia-
bility of ūa(·), there exists u∗ ∈ ua(�) for which dūa

du (u∗ ) ≤ −c. Moreover, as any discon-

tinuity of the function dūa
du (·) is an essential discontinuity, there exists a nondegenerate

interval to the left or to the right of u∗ on which dūa
du (·) ≤ − c

2 . Let J be one such interval.
The concavity of Up(·) implies that we can choose u′′ < u′ ∈ J such that for any ε ∈

(0, u′ − u′′ ) it holds that Up(u′ ) + Up(u′′ ) > Up(u′ − ε) + Up(u′′ + ε(1 + c
2 )) (we prove

that such values exist in Lemma A.3 that is established below). In order for σ2, σ4 to
satisfy IC1, where ua(σ2 ), ua(σ4 ) ∈ (u′′, u′ ) and ua(σ2 ) = u′ − ε̃, it must be that ua(σ4 ) ≥
u′′ + ε̃(1 + c

2 ). However, by the choice of u′′ and u′, for any such σ2 and σ4, it holds that
Up(ua(σ2 )) +Up(ua(σ4 )) <Up(u′ ) +Up(u′′ ).

Case 2: φ(σ ′′, σ ′ ) = 1 + c for some distinct σ ′′, σ ′ ∈ � and c > 0. In this case, by an
analogous argument to the one used in Case 1, there exists an interval J ⊂ ua(�) on
which dūa

du (·) ≥ 1 + c
2 . Set u′′ and u′ to be the endpoints of J. Note that the action profile

σ4 for which ua(σ4 ) = u′′ is the only one in � for which the agent’s activity-related payoff
is an element of J and IC4 holds.

To complete the proof, we must show that the restriction we imposed on the con-
tracting space (by which the action profile in even periods is an element of �) is without
loss of generality. To see this, note that under an optimal contract, neither player quits
the interaction along the path of play. Moreover, the agent must receive a nonnegative
utility from any incentive-compatible contract (otherwise he will play Q in period 1).
Since the agent’s utility in the contract defined above is zero, it follows that if this con-
tract were suboptimal in the unrestricted contracting space, the players’ payoffs in the
above contract in period 2 or 4 would be Pareto-dominated by the average of two ac-
tion profiles in G (outside of �). However, this contradicts the assumption that (G, �) is
strictly Pareto efficient.

Lemma A.3. Consider a concave activity (G, �). For any k > 0 and u1 ∈ int(ua(�)), there
exists ũ2 ∈ ua(�) such that ũ2 < ũ1 and, for any ε > 0,

Up(ũ1 ) +Up(ũ2 ) >Up(ũ1 − ε) +Up
(
ũ2 + ε(1 + k)

)
. (1)

Proof. As Up(·) is concave, it is absolutely continuous on any compact interval that is
a subset of ua(�), and, hence, differentiable a.e., and (1) can be written as

∫ ũ1

ũ1−ε
U ′
p(u)du >

∫ ũ2+ε(1+k)

ũ2

U ′
p(u)du. (2)

As Up(·) is concave, the left-hand side of (2) is bounded from below by εU ′
p(ũ1 ), and the

right-hand side of (2) is bounded from above by (1 + k)εU ′
p(ũ2 ). Select ũ2 < ũ1 at which

Up(·) is differentiable and U ′
p(ũ1 ) > (1 + k)U ′

p(ũ2 ).
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Proof of Proposition 2. Consider the activity (Gc , �) and a contracting problem f (·)
with respect to which that activity is separable. Suppose that under a given incentive-
compatible contract there exist ωt , �> 0, p> 0, and a set of states t ′ of length t ′ > t that
are consistent with ωt such that (i) (G, �c ) is available at ωt and at every ωt ′ ∈ t ′ , and
the action profile in G in those states is an element of �, (ii) ua(σ(ωt )) − ua(σ(ωt ′ )) ≥ �

for every ωt ′ ∈t ′ , and (iii) Pr(t ′|ωt ) = p.
Consider modifications of the continuation contract at ωt that are analogous to the

modification of Ĉ in the proof of Theorem 1, with the exception that at period t ′ the
agent’s activity-related payoff is increased by αε for some α> 1

pδt
′−t

(as opposed to by ex-

actly ε
pδt

′−t
). Recall that such changes are always feasible for a sufficiently small ε (since

the agent’s activity-related payoff is between two feasible values) and do not impact
the distribution of future games (since (Gc , �) is separable). Furthermore, as α > 1

pδt
′−t

and φ(·, ·) ≤ 1, such changes (weakly) relax the incentive-compatibility constraints at all
states apart from ωt .

For any α < 1
pδt

′−t

∂−Up(ua(σ(ωt )))
∂+Up(ua(σ(ωt′ ))) , where ∂−Up(·) and ∂+Up(·) are, respectively, the

left- and right-hand side derivatives of Up(·), the above modification is profitable for
sufficiently small ε. Moreover, as φ(·, ·) ≥ −c, the above modification is incentive com-

patible at ωt if α ≥ 1+c
pδt

′−t
. Thus, if ∂−Up(ua(σ(ωt′ ))+�)

∂+Up(ua(σ(ωt′ ))) > 1 + c, there exists a modification

that is both profitable and incentive compatible.
Define

Xc =
{
x : x > 0 and ∃u ∈ ua(�) s.t.

∂−Up(u+ x)
∂+Up(u)

≤ 1 + c

}
.

It follows, that if �> sup{Xc } there exists a modification of the contract under consider-
ation that is both profitable and incentive compatible.

Since Up(·) is concave, it is differentiable a.e., and, hence, the set Xc is nonempty
for any c > 0. As ua(�) is compact, sup{Xc } is finite and so we can set Mc = sup{Xc }.
Finally, note that Mc decreases when c decreases, and that since Up(·) is strictly concave,
limc→0 M

c = 0.

Proof of Proposition 3. The proof of this result uses the same counterexample used
in the second part of the proof of Proposition 1. To construct a decrease of size
maxσ ,σ ′∈�(ua(σ ) − ua(σ ′ )) in the agent’s activity-related payoff under the unique op-
timal contract, use that counterexample and set the endpoints of J to be the payoffs that
support the maximum.

Appendix B: Monotonicity of concave separable activities in selected

papers

In this appendix, we apply Theorem 1 to obtain the monotonicity results of selected
papers.
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Milton and Holmström (1982)

Consider the model presented in Milton and Holmström (1982) for a specific level of
education e. The contracting problem in that paper has the following components:22

A parametrized quitting game

Gm
q =

〈
Sp = {p∅}, Sa = {Q, C}; up(p∅, sa ) ≡ 0, ua(p∅, sa ) =

⎧⎨
⎩

m

1 − δ
if sa =Q

0 if sa = C

〉
,

where m is the belief about the agent’s ability and Q (C ) represents the agent’s choice to
quit (continue with) his current employer.

A parametrized profit game (that signals the agent’s ability)

G
y
π =

〈
Sp = {p∅}, Sa = {a∅}; , up(p∅, a∅ ) = y

δ2 , ua(p∅, a∅ ) = 0
〉
,

where y is the output generated by the agent.
A null game

GN = 〈
Sp = {p∅}, Sa = {a∅}; up(p∅, a∅ ) = ua(p∅, a∅ ) = 0

〉
.

A game that represents the activity of wage,

Gwage =
〈
Sp =R+, Sa = {a∅}; up(w, a∅ ) = −w

δ
, ua(w, a∅ ) = U(w)

δ

〉
,

where w is the agent’s wage and U(w) is his strictly concave vNM utility function from
wage.

The function f (·) is given as G(1) = Gm1
q , where m1 is the prior expectation over

the agent’s ability. If the agent chooses Q, then in all future periods G(t ) = GN ; other-
wise, G(2) = Gwage and G(3) = G

y1
π , where y1 is drawn from a normal distribution with

mean m1 and precision p1 = p̂1
p̂1+1 , where p̂1 is the prior precision of the distribution

over the agent’s ability (h1 in their paper). The construction of f (·) proceeds in an iter-
ative manner. If, in a history ht , there exists a period in which the agent chose Q in a
quitting game, then G(t ) = GN . Otherwise, if t = 3(n− 1) + 1 (for some positive integer
n), then G(t ) = Gmn

q , where mn is drawn according to a normal distribution with expec-
tation pn−1mn−1+yn−1

pn−1+1 and precision pn = pn−1 + 1; if t = 3(n − 1) + 2, then G(t ) = Gwage;

and if t = 3n, then G(t ) =G
yn
π , where yn is drawn according to a normal distribution with

expectation mn and precision 1+pnpn−1
pnpn−1

.
In this contracting problem, (Gwage, �wage ) (where �wage = R+ × a∅) is a concave

separable activity. Moreover, it satisfies Property 1 as it is unilaterally controlled by the
principal. Hence, Theorem 1 implies that the wage of an agent who has not quit does
not decrease over time.

22The interaction in each period of Milton and Holmström (1982) (as well as some of the other papers we
refer to in this appendix) consists of distinct subperiods. Hence, to embed their model in our framework,
we must map each period in their model into multiple periods in our framework, and scale payoffs to adjust
for discounting.
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Holmström (1983)

We consider the multiperiod version of this paper and focus on the contracting problem
between the firm and a single worker it has hired. The contracting problem in this paper
has the following components:

A parametrized quitting game

Gs
q =

〈
Sp = Sa = {Q, C};

up(sp, sa ) =
{
�(s) if sa = sp = C

0 otherwise,
a(sp, sa ) =

{
0 if sa = sp = C

V (s) otherwise

〉
,

where Q represents the agent’s choice to quit or the firm’s decision to fire him, s is the
state, and V (s) and �(s) are the agent’s value of quitting and the firm’s value of employ-
ing the worker in state s, respectively.

A null game

GN = 〈
Sp = {p∅}, Sa = {a∅}; up(p∅, a∅ ) = ua(p∅, a∅ ) = 0

〉
.

A game that represents the activity of wage,

Gwage =
〈
Sp =R+, Sa = {a∅}; up(w, a∅ ) = −w

δ
, ua(w, a∅ ) = U(w)

δ

〉
,

where w is the agent’s wage, and U(w) is his strictly concave vNM utility function from
wage.

The function f (·) is given as G(1) = Gs1
q , where s1 is the initial state, if either

player chooses Q, then in all future periods G(t ) = GN ; otherwise, G(2) = Gwage and
G(3) = Gs3

q , where s3 is the realized state. The construction of f (·) proceeds in an it-
erative manner. If, in a history ht , there exists a period in which a player chose Q in
Gs

q, then G(t ) = Gn. Otherwise, in an even period, G(t ) = Gwage, and in an odd period,
G(t ) = Gst

q .
The pair (Gwage, �wage ) is a concave activity (for �wage =R+ ×a∅) that satisfies Prop-

erty 1. Moreover, it is separable with respect to f (·) if the evolution of st is exogenous
(as in Holmström (1983)). Therefore, Theorem 1 implies that the wage of an agent who
has not quit or been fired does not decrease over time, regardless of the evolution of his
productivity and outside options. Note that in Holmström (1983) the evolution of these
two objects is interconnected; however, this is not needed to obtain this result.

Marcet and Marimon (1992)

We consider the contracting problem analyzed in Section 4 of this paper, where there is
symmetric information and the investor (principal) has full commitment power. More-
over, Marcet and Marimon study socially efficient outcomes; hence, in general, the man-
ager’s (who is the agent in their model) consumption is not necessarily an activity, as
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both players may prefer to increase his consumption. To circumvent this problem, we
assume that the weight the planner assigns to the manager’s utility is 0 (λ = 0). The
contracting problem in this paper consists of the following components:

A parametrized investment game

GI
θ,k =

〈
Sp = Sa = R

+; up(c, i) = h(k) − c − i

δ
, ua(c, i) = u(c)

δ

〉
,

where k is the capital stock, i is the investment in capital, c is the manager’s consump-
tion and u(c) is his strictly concave utility function from consumption, h(k) is the pro-
duction function (denoted by f (k) in their paper), and θ is an investment shock.

A parametrized (contract) breaching game

GB
θ,k =

〈
Sp = {p∅}, Sa = ∪{A, B}; up(p∅, sa ) = 0, ua(p∅, sa ) =

{
0 if sa =A

V a(k, θ) if sa = B

〉
,

where A (B) represents the agent’s choice to adhere (breach) the contract, and va(k, θ)
is his value from an autarkic regime with an initial state of (k, θ).

A null game

GN = 〈
Sp = {p∅}, Sa = {a∅}; up(p∅, a∅ ) = ua(p∅, a∅ ) = 0

〉
.

The function of f (·) is given as G(1) = GB
θ1,k1

for some initial state (θ1, k1 ). If the

agent chooses B in period 1, then G(t ) = GN for all t ≥ 2. Otherwise, G(2) = GI
θ1,k1

and

G(3) = GB
θ2,k2

, where θ2 follows from θ1 via an autoregressive (AR1) process, and k2 =
dk1 + g(i1; θ1 ) for some d ∈ [0, 1] and capital accumulation function g(·; ·). The con-
struction of f (·) follows in an iterative manner. If the agent has played B in the past, then
G(t ) =GN . Otherwise, in a period where t = 2n− 1 (for some integer n), the players play
the game G(t ) = GB

θn,kn
, where θn follows an AR1 process and kn = dkn−1 + g(i2n−2; θn ),

and in period t + 1 = 2n, the players play the game G(t + 1) =GI
θn,kn

.
As long as the agent has adhered to the contract, the concave activity (G, �) given by

〈
Sp =R+, Sa = {a∅}; up(c, a∅ ) = −w, ua(c, a∅ ) = u(c)

〉
and �= R+ ×a∅ is available in every odd period. Moreover, this activity is separable with
respect to the contracting problem, and since it is unilaterally controlled by the princi-
pal, it satisfies Property 1. Hence, Theorem 1 implies that the manager’s consumption is
nondecreasing over time under an optimal contract.

Forand and Zápal (2020)

The contracting problem in this paper consists of a finite family of games parametrized
by (va, vp ) ∈ R

2 (representing different projects) that arrive according to an exogenous
distribution,

Gva,vp = 〈
Sp = [0, 1], Sa = {0, 1}; up(sp, sa ) = saspvp, ua(sp, sa ) = saspva

〉
,
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where va and vp are, respectively, the agent’s and principal’s payoffs from implementing
the project, sa represents the agent’s consent to implement the project, and sp represents
the probability that they implement it.23

For any Gva,vp such that vavp < 0, (Gva,vp , �va,vp ) is a weakly concave separable ac-
tivity for �va,vp = {(sp, sa ) : sa = 1}. Since the authors assume that the set of projects is
finite and any deviation provides the agent with a payoff of 0, an optimal contract exists.
Hence, Corollary 1 implies that there exists an optimal contract under which the agent’s
utility from every type of project is nondecreasing over time. Moreover, Corollary 2 es-
tablishes that there is a threshold such that a project is implemented if and only if the
marginal cost of providing 1 util to the agent is below that threshold.
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