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Value-based distance between information structures

Fabien Gensbittel
School of Economics, University of Toulouse 1 Capitole

Marcin Pęski
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We define the distance between two information structures as the largest possible
difference in value across all zero-sum games. We provide a tractable characteri-
zation of distance and use it to discuss the relation between the value of informa-
tion in games versus single-agent problems, the value of additional information,
informational substitutes, complements, or joint information. The convergence
to a countable information structure under value-based distance is equivalent to
the weak convergence of belief hierarchies, implying, among other things, that for
zero-sum games, approximate knowledge is equivalent to common knowledge.
At the same time, the space of information structures under the value-based dis-
tance is large: there exists a sequence of information structures where players
acquire increasingly more information, and ε > 0 such that any two elements of
the sequence have distance of at least ε. This result answers by the negative the
second (and last unsolved) of the three problems posed by Mertens in his paper
“Repeated Games” (1986).

Keywords. Value of information, universal type space.

JEL classification. C7.

1. Introduction

The role of information is of fundamental importance for economic theory. It is well
known that even small differences in information may lead to significant differences in
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behavior (Rubinstein (1989)). A recent literature on strategic (dis-)continuities has stud-
ied these differences intensively and in full generality. A typical approach is to consider
all possible information structures, modeled as elements of an appropriately defined
universal space of information structures, and study the differences in the strategic be-
havior across all games.

A similar methodology has not been applied to study the relationship between infor-
mation and the agents’ bottom line—their payoffs. There are perhaps a few reasons for
this. First, following Dekel, Fudenberg, and Morris (2006), Weinstein and Yildiz (2007),
and others, the literature has focused on interim rationalizability as the solution con-
cept. Compared with the equilibrium, this choice has several advantages: it is easier
to analyze, it is more robust from a decision-theoretic perspective, it can be factorized
through the Mertens–Zamir hierarchies of beliefs (Dekel, Fudenberg, and Morris (2006),
Ely and Peski (2006)), and it does not suffer from existence problems (unlike equilib-
rium; see Simon (2003)). However, the value of information is typically measured in the
ex ante sense, where solution concepts like Bayesian Nash equilibrium are more appro-
priate. Also, the multiplicity of solutions necessitates that the literature take a set-based
approach. This, of course, makes a quantitative comparison of the value of information
difficult. Last but not least, the freedom to choose games without any restrictions makes
the equilibrium payoff comparison between information structures trivial (see Section 7
for a detailed discussion of this point).

Despite the challenges, we find the questions concerning the strategic value of infor-
mation to be important and fascinating. How can we measure the value of information
on the universal type space? How much can a player gain (or lose) from additional in-
formation? Which information structures are similar in the sense that they always lead
to the same payoffs? In order to address these questions, and given the last point in the
previous paragraph, we must restrict the analysis to a class of games. We propose to
focus on zero-sum games. We do so for both substantive and pragmatic reasons. First,
the question of the value of information is of special importance when players’ interests
are opposing. With zero-sum games, the information has natural comparative statics: a
player is better off when her information improves and/or the opponent’s information
worsens (Peski (2008)). Such comparative statics are intuitive, and although they hold
in single-agent decision problems (Blackwell (1953)), they do not hold for general non-
zero-sum games, where better information may worsen a player’s strategic position and
where players may have incentive to engage in pre-game communication to manipu-
late information available to others. Second, many of the constructions in the strategic
discontinuities literature rely on special classes of games, like coordination games, or
betting games (Rubinstein (1989), Morris (2002), Ely and Peski (2011), Chen and Xiong
(2013) among others). This begs the question whether some of the surprising phenom-
ena, like the difference between approximate knowledge and common knowledge, ap-
ply in other classes of games. Our restriction allows for the clarification of this issue for
zero-sum games.

On the other hand, the restriction avoids all the problems mentioned above. Fi-
nite zero-sum games always have an equilibrium on common prior information struc-
tures (Mertens, Sorin, and Zamir (2015)) that depends only on the distribution over hi-
erarchies of beliefs. The equilibrium has decent decision-theoretic foundations (Brandt
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(2019)), and, even if it is not unique, the ex ante payoff always is unique and equal to the
value of the zero-sum game. Finally, as we demonstrate through numerous results and
examples, the restriction uncovers a rich internal structure of the universal type space.

We define the distance between two common prior information structures as
the largest possible difference in value across all zero-sum payoff functions that are
bounded by a constant. This has a straightforward interpretation as a tight upper bound
on the gain or loss moving from one information structure to another. Our first result
provides a characterization of the distance in terms of total variation distance between
sets of information structures. This distance can be computed as a solution to a convex
optimization problem.

The characterization is tractable in applications. In particular, we use it to describe
the conditions under which the distance between information structures is maximized
in single-agent problems (which are a subclass of zero-sum games). We provide bounds
to measure the impact of the marginal distribution over the state. We also use it in a se-
ries of results on the comparison of the value of information. A tight upper bound on the
value of an additional piece of information is defined as the distance between two type
spaces, in one of which one or two players have access to new information. We give con-
ditions when the value of new information is maximized in single-agent problems. We
describe the situations in which the value of one piece of information decreases when
another piece of information becomes available, i.e., the opposing players’ pieces of in-
formation are substitutes. Similarly, we show that, under some conditions, the value of
one piece of information increases when the other player receives an additional piece
of information, i.e., the opposing players’ pieces of information are complements.1 Fi-
nally, we show that the new information matters only if it is valuable to at least one of the
players individually. The joint information contained in the correlation between players’
signals is not valuable in the zero-sum games.

The second main result shows that the space of information structures is large under
value-based distance: there exists an infinite sequence of information structures un and
ε > 0 such that the value-based distance between each pair of structures is at least ε.
In particular, it is not possible to approximate the set of information structures with
finitely many well chosen information structures. In the proof, we construct a Markov
chain wherein the first element of the chain is correlated with the state of the world.
We construct an information structure un so that one player observes the first n odd
elements of the sequence and the other player observes the first n even elements. Our
construction implies that in information structure un+1, each player gets an extra signal.
Thus, having more and more information may lead... nowhere. This is unlike the single-
player case, where more signals correspond to a martingale and the values converge
uniformly over bounded decision problems.

The Markov construction implies that all the information structures n′ ≥ n have the
same nth order belief hierarchies (Mertens and Zamir (1985)). As a consequence, our
distance is not robust with respect to the product convergence of belief hierarchies. This

1Hellwig and Veldkamp (2009) studied the complementarity and substitutability of information on ac-
quisition decisions in a beauty contest game.
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observation may sound familiar to a reader of the strategic (dis)continuities literature.
However, we emphasize that the proof of our result is entirely novel. Among other rea-
sons, many earlier constructions heavily rely on coordination games (Rubinstein (1989),
Morris (2002), Ely and Peski (2011), Chen and Xiong (2013) among others). Such con-
structions cannot be done with zero-sum games.

More importantly, there are significant differences between strategic topologies and
the topology induced by value-based distance. For instance, the type spaces from the fa-
mous e-mail game example of Rubinstein (1989) or any approximate knowledge spaces
converge to the common knowledge of the state for value-based distance. More gen-
erally, we show that any sequence of countable information structures converges to a
countable structure under value-based distance if and only if the associated hierarchies
of beliefs converge in the product topology. The impact of higher-order beliefs becomes
significant only for uncountable information structures.

An important contribution is that our result leads to the solution of the last open
problem posed in Mertens (1986).2 Specifically, his Problem 2 asks about the equicon-
tinuity of the family of value functions over information structures across all (uniformly
bounded) zero-sum games. The positive answer would have implied the equicontinu-
ity of the discounted and average values in repeated games, which would have conse-
quences for convergence in the limit theorems.3 Our results, however, indicate that the
answer to the problem is negative.

Our paper adds to the literature on the topologies of information structures. Dekel,
Fudenberg, and Morris (2006) (see also Morris (2002)) introduce uniform-strategic
topologies, where two types are close if, for any (not necessarily zero-sum) game, the sets
of (almost) rationalizable outcomes are (almost) equal.4 There are two key differences
between that and our approach. First, the uniform-strategic topology applies to all (in-
cluding non-zero-sum) games. Our restriction allows us to show that some of the sur-
prising phenomena studied in this literature, like the difference between approximate
knowledge and common knowledge, are not relevant for zero-sum games. Second, we
work with ex ante information structures and the equilibrium solution concept, whereas
uniform-strategic topology is designed to work on the interim level, with rationalizabil-
ity. The ex ante equilibrium approach is more appropriate for value comparison and
other related questions. For instance, in the information design context, the quality of
the information structure is typically evaluated before players receive any information.

2Problem 1 asks about the convergence of the value, and it has been proved to be false in Ziliotto (2016).
Problem 3 asks about the equivalence between the existence of the uniform value and uniform convergence
of the value functions, and it has been proved to be false by Monderer and Sorin (1993) and Lehrer and
Monderer (1994).

3Equicontinuity of value functions is used to obtain limit theorems in several works such as Mertens and
Zamir (1971), Forges (1982), Rosenberg and Sorin (2001), Rosenberg (2000), Rosenberg and Vieille (2000),
Rosenberg, Solan, and Vieille (2004), Renault (2006), Gensbittel and Renault (2015), Venel (2014), and Re-
nault and Venel (2017).

4Dekel, Fudenberg, and Morris (2006) focus mostly on a weaker notion of strategic topology that differs
from the uniform strategic topology in the same way that pointwise convergence differs from uniform con-
vergence. Chen, di Tillio, Faingold, and Xiong (2010) and (2016) provide a characterization of strategic and
uniform-strategic topologies in terms of convergences of belief hierarchies.
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Finally, this paper contributes to a recent but rapidly growing field of information
design (Kamenica and Gentzkow (2011), Ely (2017), Bergemann and Morris (2015), to
name a few). In that literature, an agent designs or acquires information that is later
used in either a single-agent decision problem or a strategic situation. In principle, the
design of information may be divorced from the game itself. For example, a bank may
acquire software to process and analyze large amounts of financial information before
knowing what stock it will trade or a spy master allocates resources to different tasks
or regions before she understands the nature of future conflicts. Value-based distance
is a tight upper bound on the willingness to pay for a change in information structure.
Our results provide insight into the structure of the information designer’s choice space,
including its diameter and internal complexity.

2. Model

A (countable) information structure is an element u ∈ �(K×N×N) of the space of prob-
abilities over tuples (k, c, d), where K is a fixed finite set with |K| ≥ 2 and N is the set
of nonnegative integers.5 The interpretation is that k is a state of nature, and c and d

are the signals of player 1 (maximizer) and player 2 (minimizer), respectively. In other
words, an information structure is a two-player common prior Harsanyi type space over
K with at most countably many types. The set of information structures is denoted
by U = U(∞), and for L = 1, 2, � � �, U(L), denotes the subset of information structures
where each player receives a signal smaller than or equal to L− 1 with probability 1. If C
and D are nonempty countable sets, we always interpret elements u ∈ �(K × C × D)
as information structures, using fixed enumerations of C and D. In particular, if C

and D are finite with cardinality of at most L, we view u ∈ �(K × C × D) as an infor-
mation structure in U(L). For each u, v ∈ U , let us define the total variation norm as
‖u− v‖ =∑k,c,d |u(k, c, d) − v(k, c, d)|.

A payoff function is a mapping g : K× I×J → [−1, 1], where I, J are finite nonempty
action sets. The set of payoff functions with action sets of cardinality ≤ L is denoted by
G(L), and let G =⋃L≥1 G(L) be the set of all payoff functions.

Information structure u and payoff function g together define a zero-sum Bayesian
game �(u, g) played as follows. First, (k, c, d) is selected according to u, player 1 learns c,
and player 2 learns d. Next, simultaneously, player 1 chooses i ∈ I and player 2 chooses
j ∈ J, and finally the payoff of player 1 is g(k, i, j). The zero-sum game �(u, g) has a value
(the unique equilibrium, or minmax, payoff of player 1), which we denote by val(u, g).

We define the value-based distance between two information structures as the
largest possible difference in value across all payoff functions:

d(u, v) = sup
g∈G

∣∣val(u, g) − val(v, g)
∣∣. (1)

5The working paper version contains six additional appendices indexed by the letters G–L (G. Exam-
ples of computations using our distance and counterexamples; H. Study of the value of additional Black-
well experiments; I. Single-agent problems and other restrictions on the space of information structures;
J. Comparison of Nash equilibrium payoffs of several Bayesian games using our distance; K. Additional re-
sults related to Theorem 1; L. Extension of all the results from Sections 3 and 4 to uncountable information
structures).
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This has a straightforward interpretation as the tight upper bound on the gain or loss
from moving from one information structure to another. Since all payoffs are in [−1, 1],
it is easy to see that d(u, v) ≤ ‖u− v‖ ≤ 2.6

The distance (1) satisfies two axioms of a metric: the symmetry and the triangular
inequality. However, it is possible that d(u, v) = 0 for u 	= v. For instance, if we start
from an information structure u and relabel the player signals, we obtain an information
structure u′ that is formally different from u but “equivalent” to u. Say that u and v are
equivalent, and write u ∼ v if, for all game structures g in G, val(u, g) = val(v, g). We
let U∗ = U/ ∼ be the set of equivalence classes. Thus, d is a pseudo-metric on U and a
metric on U∗.

For each information structure u ∈ �(K×C ×D), there is a unique belief-preserving
mapping that maps signals c and d into induced Mertens–Zamir hierarchies of beliefs
c̃ ∈ �1 and d̃ ∈ �2, where �i is the universal space of player i’s belief hierarchies over
K (see Mertens, Sorin, and Zamir (2015)). The mapping induces a consistent prob-
ability distribution ũ ∈ �(K × �1 × �2 ) over the state and hierarchies of beliefs. Let
�0 = {ũ : u ∈ U } be the space of all such distributions. The closure of �0 (in the weak
topology, that is, the topology induced by the product convergence of belief hierarchies)
is denoted as �, where � is the space of consistent probability distributions induced by
generalized (measurable, possibly uncountable) information structures. The space � is
compact under weak topology; �0 is dense in � (see Corollary III.2.3 and Theorem III.3.1
in Mertens, Sorin, and Zamir (2015)). Note that, for a payoff function g and u ∈ �, one
can similarly define the value val(u, g) of the associated Bayesian game (see Proposition
III.4.2 in Mertens, Sorin, and Zamir (2015)).

3. Characterization of the distance

We start with the notion of garbling, used in Blackwell (1953) to compare statistical
experiments. A garbling is a mapping q : N → �(N). The set of all garblings is de-
noted by Q = Q(∞) and for each L = 1, 2, � � �, Q(L) denotes the subset of garblings
q : N → �({0, � � � , L − 1}). Given a garbling q and an information structure u, we define
the information structures q.u and u.q so that, for each k, c, d,

q.u(k, c, d) =
∑
c′

u
(
k, c′, d

)
q
(
c|c′) and u.q(k, c, d) =

∑
d′

u
(
k, c, d′)q(d|d′).

We will interpret garblings in two different ways. First, a garbling is seen as an informa-
tion loss in the sense of Blackwell’s comparison of experiments: suppose that (k, c′, d) is
selected according to u, c is selected according to probability q(c′ ), and player 1 learns c
(and player 2 learns d). The new information structure is exactly equal to q.u, where the
signal received by player 1 is deteriorated from garbling q. Similarly, u.q corresponds to
the dual situation where player 2’s signal is deteriorated. Further, garbling q can also be

6The inequality is a property of zero-sum games. For every game g ∈ G, let σ be an optimal strategy of
player 1 in �(u, g) and let τ be an optimal strategy of player 2 in �(v, g). Using the saddle-point property of
the value, the difference val(u, g) − val(v, g) is no larger than the differences of payoffs in �(u, g) and �(v, g)
when the players play (σ , τ) in both games. This difference is clearly no larger than ‖u− v‖.
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Figure 1. Illustrations of the sets from Theorem 1.

seen as a behavioral strategy of a player in a Bayesian game �(u, g): if the signal received
is c, play the mixed action q(c) (the sets of actions of g being identified with subsets of
N). The relation between the two interpretations plays an important role in the proof of
Theorem 1 below.

Theorem 1. For each L= 1, 2, � � � , ∞ and each u, v ∈ U(L),

sup
g∈G

(
val(v, g) − val(u, g)

)= min
q1,q2∈Q(L)

‖q1.u− v.q2‖. (2)

Hence,

d(u, v) = max
{

min
q1,q2∈Q(L)

‖q1.u− v.q2‖, min
q1,q2∈Q(L)

‖u.q1 − q2.v‖
}

.

If L<∞, the supremum in (2) is attained by some g ∈ G(L).

The first part of Theorem 1 finds a tight upper bound on the difference of value be-
tween all zero-sum games played on information structures v and u. It is equal to a total
variation distance between two sets of garblings of the original information structures:
the set Q.u = {q.u : q ∈ Q} of structures obtained from u by deteriorating information of
player 1 and the set v.Q = {v.q : q ∈ Q} obtained from v by deteriorating information of
player 2. The two sets are illustrated on Figure 1. (The direction up is better for player 1
and worse for player 2.)

The result simplifies the problem of computing the value-based distance. First, it
reduces the dimensionality of the optimization domain from payoff functions and strat-
egy profiles (to compute the value) to a pair of garblings. More importantly, the solu-
tion to the original problem (1) is typically a saddle point as it involves finding optimal
strategies in a zero-sum game. On the other hand, the function ‖q1.u − v.q2‖ is convex
in garblings (q1, q2 ), and if L < ∞, the domain of the optimization problem Q(L)2 is
convex and compact. Thus, for finite structures, the right-hand side of (2) is a convex,
compact, and finitely dimensional optimization problem.

Theorem 1 is closely related to the comparison of information structures. Say player
1 prefers u to v in every game; i.e., write u � v if, for all g ∈ G, val(u, g) − val(v, g) ≥ 0. The
definition extends Blackwell’s comparison of experiments to zero-sum games. If the two
sets from Figure 1 have nonempty intersection, the distance between them is equal to
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0 and player 1 prefers u to v. Conversely, if the two sets do not have an intersection,
then there are games for which the difference in value on v and u is positive (and arbi-
trarily close to the total variation distance), and player 1 does not prefer u to v. Hence
Theorem 1 implies the following corollary.

Corollary 1. u� v ⇐⇒ there exists q1, q2 in Q such that q1.u= v.q2.

The above result extends (Peski (2008)) to countable information structures (Peski
(2008) was stated only for finite structures).

The intuition of the proof of Theorem 1 is as follows. For simplicity, suppose that
the information structures u, v are in U(L), with L finite. We first show that, for each
game g, the difference in values is not higher than the right-hand side of (2). Using the
monotony of the value with respect to information, we have that

val(v, g) − val(u, g) ≤ val(v.q2, g) − val(q1.u, g) ≤ ‖v.q2 − q1.u‖
for arbitrary garblings q1 and q2 (see footnote 6 for the last inequality).

We now explain why the left-hand side of (2) is not smaller than the right-hand
side of (2). Fix g with action sets {0, � � � , L − 1} for each player. The starting point
is to identify each garbling with a mixed strategy in the Bayesian game �(u, g) in-
duced from information structure u. Using this identification, the expected payoff in
this game can be written as 〈g, q1.u.q2〉, where 〈g, u〉 =∑k,c,d g(k, c, d)u(k, c, d) and qi
are garbling/strategies. So val(u, g) = maxq1∈Q(L) minq2∈Q(L)〈g, q1.u.q2〉 =
minq2∈Q(L) maxq1∈Q(L)〈g, q1.u.q2〉. Among others, each player can use strategy Id which
plays the received signal. Because a best reply of player 1 induces a payoff not lower
than the value, we get supq1

〈g, q1.u〉 ≥ val(u, g). Similarly infq2〈g, v.q2〉 ≤ val(v, g). This
is true for all games g, so

sup
g

(
val(v, g) − val(u, g)

)≥ sup
g

inf
q1,q2∈Q(L)

〈g, v.q2 − q1.u〉.

Using a minmax theorem, one can show that supg∈G(L) infq1,q2∈Q(L)〈g, v.q2 − q1.u〉 =
minq1,q2∈Q(L) supg∈G(L)〈g, v.q2 − q1.u〉. Since supg∈G(L)〈g, v.q2 − q1.u〉 = ‖q1.u− v.q2‖ for
all q1, q2, we obtain supg∈G(L)(val(v, g)−val(u, g)) ≥ minq1,q2∈Q(L) ‖q1.u−v.q2‖. We leave
the complete proof to the Appendix.

4. Applications

The characterization from Theorem 1 is quite tractable. This section contains a few
straightforward applications.

4.1 The impact of the marginal over K

Among the many ways in which two information structures can differ, the most obvious
one is that they may have different distributions over states k. In order to capture the im-
pact of such differences, the next result provides tight bounds on the distance between
two type spaces with a given distribution overs the states.
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Proposition 1. For each p, q ∈ �K, each u, v ∈ U such that margK u = p, margK v = q,
we have ∑

k

|pk − qk| ≤ d(u, v) ≤ 2
(

1 − max
p′,q′∈�K

∑
k

min
(
pkq

′
k, p′

kqk
))

. (3)

If p = q, the upper bound is equal to 2(1 − maxk pk ).

The bounds are tight. The lower bound in (3) is reached when the two information
structures do not provide any information to any of the players. The upper bound is
reached with information structures where one player knows the state perfectly and the
other player does not know anything.

When p = q, Proposition 1 describes the diameter of the space of information struc-
tures with the same distribution p of states. The result is useful for, among other things,
information design questions, where such space is exactly the choice set when Nature
fixes the distribution of states, and the designer of information chooses how much in-
formation to acquire. In such a case, the diameter has an interpretation of the (tight)
upper bound on the potential gain/loss from moving between information structures.

4.2 Single-agent problems

A natural question is what games maximize value-based distance d. The next result
characterizes the situations when the maximum in (1) is attained by a special class of
zero-sum games: single-agent problems.

Formally, a payoff function g ∈ G(L) is a single-agent (player 1) problem if player 2’s
action set is a singleton, J = {∗}. Let G1 ⊂ G be the set of player 1 problems. Then, for
each g ∈ G1 and each information structure u, val(g, u) is the maximal expected payoff
of player 1 in problem g. Let

d1(u, v) := sup
g∈G1

∣∣val(u, g) − val(v, g)
∣∣≤ d(u, v). (4)

For any structure u ∈ �(K × C × D), we say that the players’ information is condi-
tionally independent if, under u, signals c and d are conditionally independent given k.

Proposition 2. Suppose that u, v ∈ �(K × C × D) are two information structures
with conditionally independent information such that margK×D u = margK×D v. Then
d(u, v) = d1(u, v).

Proposition 2 says that if two information structures differ only by one player’s addi-
tional piece of information, and the players’ information is conditionally independent
in both cases, then the maximum value-based distance (1) is attained in a single-agent
decision problem. Such problems form a relatively small subclass of games and they are
easier to identify.

The proof of Proposition 2 relies on the characterization from Theorem 1 and shows
that the minimum in the optimization problem is attained by the same pair of garblings
as in the single-agent version of the problem.
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4.3 Value of additional information: Games versus single agent

Consider two information structures u ∈ �(K × (C × C ′ ) × D) and v = margK×C×D u.
When moving from v to u, player 1 gains an additional signal c′. Because u represents
more information, u is (weakly) more valuable, and the value of the additional informa-
tion is defined as d(u, v), which is equal to the tight upper bound on the gain from the
additional signal. A corollary to Proposition 2 shows that if the signals of the two play-
ers are independent conditional on the state, the gain from the new information is the
largest in single-agent problems.

Corollary 2. Suppose that information in u (and, therefore, in v) is conditionally inde-
pendent. Then d(u, v) = d1(u, v).

4.4 Informational substitutes

Next we ask two questions about the impact of a piece of information on the value of
another piece of information. In both cases, we use some conditional independence
assumptions that are weaker than in Proposition 2. Suppose that

u ∈ �
(
K × (C ×C1 ×C2 ) ×D

)
and v = marg

K×(C×C1 )×D
u,

u′ = marg
K×(C×C2 )×D

u and v′ = marg
K×C×D

u.

When moving from v′ to u′ or v to u, player 1 gains an additional signal c2. The difference
is that, in the latter case, player 1 has more information that comes from signal c1. The
next result shows the impact of an additional signal on the value of information.

Proposition 3. Suppose that under u, c1 is conditionally independent from (c, c2, d)
given k. Then d(u′, v′ ) ≥ d(u, v).

Given the assumptions, the marginal value of signal c2 decreases when signal c1 is
also present. In other words, the two pieces of information are substitutes.

4.5 Informational complements

Another question is about the impact of an additional piece of information for the other
player on the value of information. Suppose that

u ∈ �
(
K × (C ×C1 ) × (D×D1 )

)
and v = marg

K×C×(D×D1 )
u,

u′ = marg
K×(C×C1 )×D

u and v′ = marg
K×C×D

u.

When moving from v′ to u′ or v to u, in both cases, player 1 gains additional signal c1.
However, in the latter case, player 2 obtains an additional piece of information from
signal d1. The next result shows the impact of the opponent’s signal on the value of
information.
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Proposition 4. Suppose that (c, c1 ) and d are conditionally independent given k. Then
d(u′, v′ ) ≤ d(u, v).

Given the assumptions, signal c1 becomes more valuable when the opponent also
has access to additional information. Hence, the two pieces of information are comple-
ments.

4.6 Value of joint information

Finally, we consider a situation where two players simultaneously receive additional in-
formation. Consider a distribution μ ∈ �(X ×Y ×Z ) over countable spaces. We say that
random variables x and y are ε-conditionally independent given z if∑

z

μ(z)
∑
x,y

∣∣μ(x, y|z) −μ(x|z)μ(y|z)
∣∣≤ ε.

Let u ∈ �(K × (C × C1 ) × (D × D1 )) and v = margK×C×D u. When moving from v to
u, both players receive a piece of additional information.

Proposition 5. Suppose that d1 is ε-conditionally independent from (k, c) given d, and
c1 is ε-conditionally independent from (k, d) given c. Then d(u, v) ≤ ε.

The proposition considers the potential scenario where the additional signal for
each player does not provide the respective player with any significant information
about the state of the world or the original information of the other player. While such
signals would be useless in a single-agent decision problem, they may be useful in a
strategic setting, as valuable information may be contained in their joint distribution.7

Nevertheless, Proposition 5 says that the information that is jointly shared by the two
players is not valuable in zero-sum games.

Despite its simplicity, Proposition 5 has powerful consequences. Below, we use it
to show that information structures with approximate knowledge of the state also have
approximate common knowledge of the state. More generally, we use it in the proof of
Theorem 3.

5. Large space of information structures

5.1 (U∗, d) is not totally bounded

In this section, we assume without loss of generality that K = {0, 1}.

Theorem 2. There exists ε > 0 and a sequence (ul ) of information structures such that
d(ul, up ) > ε if l 	= p.

7How useful it is depends on the solution concept. The joint information is important for Bayesian Nash
equilibrium and independent interim rationalizability; see the leading example of Ely and Peski (2006). The
joint information is not important by assumption for the Bayes correlated equilibrium of Bergemann and
Morris (2015) or interim correlated rationalizability of Dekel, Fudenberg, and Morris (2007).
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The theorem says that the space of information structures is large: it cannot be par-
titioned into finitely many subsets such that all structures in a subset are arbitrarily close
to each other.

The proof, with the exception of one step that we describe below, is constructive.
For fixed large N , we construct a probability μ over infinite sequences k, c1, d1, c2, d2, � � �
that starts with a state k followed by alternating signals for each player. The sequence
c1, d1, c2, d2, � � � follows a Markov chain on {1, � � � , N }, and state k only depends on
c1. In structure ul, player 1 observes signals (c1, c2, � � � , cl ), and player 2 observes
(d1, d2, � � � , dl ). Thus, the sequence of structures ul can be understood as fragments of a
larger information structure, where progressively more information is revealed to each
player. The theorem shows that the larger structure is not the limit of its fragments in
the value-based distance. In particular, there is no analog of the martingale convergence
theorem for the value-based distance for such sequences.

This has to be contrasted with two other settings, where the limits of information
structures are well defined. First, in the single-player case, any sequence of information
structures in which the player is receiving progressively more signals converges for dis-
tance d1. Second, the Markov property means that (a) the state is independent from all
players’ information, conditional on c1, and (b) each new piece of information is inde-
pendent from the previous pieces of information, conditional on the most recent infor-
mation of the other player. This ensures that the lth level hierarchy of beliefs of any type
in structure ul is preserved by all consistent types in structures up for p ≥ l. Therefore,
Theorem 2 exhibits a sequence of type spaces in which belief hierarchies converge in the
product topology. In particular, it shows that the knowledge of the lth level hierarchy of
beliefs for any arbitrarily high l is not sufficient to play ε-optimally in all finite zero-sum
games.

5.2 Last open problem of Mertens

Recall that, for each information structure u, ũ denotes the associated consistent prob-
ability distribution over belief hierarchies. Because each finite-level hierarchy of beliefs
becomes constant as we move along the sequence ul, it must be that sequence ũl con-
verges weakly in � to the limit ũl → μ̃. The limit is the consistent probability obtained
from the prior distribution μ. Theorem 2 shows that

lim sup
l

sup
g∈G

∣∣val(μ, g) − val
(
ul, g
)∣∣≥ ε.

In particular, the family of all functions (u �→ val(u, g))g∈G is not equicontinuous on �

equipped with the weak topology. This answers negatively the second of the three prob-
lems posed by Mertens (1986) in his repeated games survey from ICM: “This equiconti-
nuity or Lipschitz property character is crucial in many papers...” (see also footnote 2).

The importance of the Mertens question comes from the role that it plays in the
limit theorems of repeated games. The existence of a limit value has attracted a lot of
attention since the first results by Aumann and Maschler (1995) and Mertens and Zamir
(1971) for repeated games, and by Bewley and Kohlberg (1976) for stochastic games.
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Once the equicontinuity of an appropriate family of value functions is established, the
existence of the limit value is typically obtained by showing that there is at most one
accumulation point of the family (vδ ), for example, by showing that any accumulation
point satisfies a system of variational inequalities admitting at most one solution (see,
e.g., the survey Laraki and Sorin (2015) and footnote 3 for related works).

5.3 Comments on the proof

Fix α < 1
25 . We show that we can find a sufficiently high, even-valued N and a set S ⊆

{1, � � � , N }2 with certain mixing properties:

∣∣{i : (i, j) ∈ S
}∣∣� N

2
for each j,

∣∣{i : (i, j),
(
i, j′
) ∈ S
}∣∣� N

4
for each j, j′,

∣∣{i : (i, j),
(
i, j′
)
, (l, i) ∈ S

}∣∣� N

8
for each j, j′, l, etc.

The � means that the left-hand side is within α-related distance to the right-hand side.
Altogether, there are eight properties of this sort (see Appendix C.3) that essentially
mean that various sections of S are “uncorrelated” with one another.

We are unable to directly construct S with the required properties. Instead, we show
the existence of set S using the probabilistic method of Erdős (for a general overview
of the method, see Alon and Spencer (2008)). Suppose that sets S(i), for i = 1, � � � , N ,
are chosen independently and uniformly from all N

2 -element subsets of {1, � � � , N }. We
show that if N ≥ 108, then set S = {(i, j) : j ∈ S(i)} satisfies the required properties with
positive probability, proving that a set satisfying these properties exists. Our proof is not
particularly careful about optimal N (or about the largest ε allowing for the conclusions
of Theorem 2).

Given S, we construct probability distribution μ. First, state k is chosen with equal
probability, and c1 is chosen so that c1

N+1 is the conditional probability of k = 1. Next,
inductively, for each l ≥ 1, we make the following choices:

• We choose dl uniformly from set S(cl ) = {j : (cl , j) ∈ S} and conditionally indepen-
dently from k, � � � , dl−1 given cl.

• We choose cl+1 uniformly from set S(dl ) and conditionally independently from
k, � � � , cl given dl.

As a result, c1, d1, c2, d2,. . . follows a Markov chain.
To provide a lower bound for the distance between different information structures,

we construct a sequence of games. In game gp, player 1 is supposed to reveal the first
p pieces of her information; player 2 reveals the first p− 1 pieces. The payoffs are such
that it is a dominant strategy for player 1 to precisely reveal her first-order belief about
the state, which amounts to truthfully reporting c1. Furthermore, we verify whether the
sequence of reports (ĉ1, d̂1, � � � , ĉp−1, d̂p−1, ĉp ) belongs to the support of the distribution
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of the Markov chain. If it does, then player 1 receives payoff ε ∼ 1
10(N+1)2 . If it does

not, we identify the first report in the sequence that deviates from the support. The
responsible player is punished with payoff −5ε (and the opponent receives 5ε).

The payoffs and the mixing properties of matrix S ensure that players have incentives
to report their information truthfully. We check it formally and we show that if l > p,
then d(ul, up ) ≥ val(ul, gp+1 ) − val(up, gp+1 ) ≥ 2ε.

Our argument implies that the conclusion of Theorem 2 is true for ε = 2 × 10−17.
However, our argument is not optimized for the largest possible value of ε, and we
strongly suspect that the threshold ε is much larger.

6. Value-based topology

6.1 Relation to the weak topology

Previous sections discussed the quantitative aspect of value-based distance. Now we
analyze its qualitative aspect: topological information.

Theorem 3. Let u be in U∗. A sequence (un ) in U∗ converges to u for value-based distance
if and only if the sequence (ũn ) converges weakly to ũ in �0.

The result says that a convergence in value-based topology to a countable structure
is equivalent to the convergence in distribution of finite-order hierarchies of beliefs. In-
formally, around countable structures, the higher-order beliefs have diminishing impor-
tance.

The intuition of the proof is as follows: If u is finite, we surround the hierarchies c̃

for c ∈ C by sufficiently small and disjoint neighborhoods, so that all hierarchies in the
neighborhood of c̃ have similar beliefs about the state and the opponent. We do the
same for the other player. Weak convergence ensures that the converging structures
assign large probability to the neighborhoods. We show that any information about a
player’s hierarchy beyond the neighborhood to which it belongs is almost condition-
ally independent (in the sense of Section 4.6) from information about the state and the
opponents’ neighborhoods. By Proposition 5, only information about neighborhoods
matters, and the latter is similar to the information in limit structure u. If u is countable,
we also show that it can be appropriately approximated by finite structures.

There are two reasons why Theorem 3 is surprising: It seems to (a) convey a mes-
sage that is opposite to the literature on strategic (dis)continuities and (b) contradict
our discussion of Theorem 2. We deal with these two issues in order.

6.1.1 Strategic discontinuities For an illustration of the first issue, consider e-mail-
game information structures u from Rubinstein (1989).8 Player 1 always knows the state.
Player 2’s first-order belief attaches probability of at least 1

1+ε p
1−p

to one of the states,

8The e-mail-game information structure uε is as follows. There are two states 0 and 1, the latter with
probability p. Player 1 knows the state. If the state is 1, a message is sent to the other player, who, upon
receiving it, immediately sends it back. The message travels back and forth until it is lost, which happens
with independent and identically distributed (i.i.d.) probability ε > 0 each time it travels. The signal of
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where p < 1 is the initial probability of one of the states and ε is the probability of los-
ing the message. It is well known that as ε → 0, the Rubinstein type spaces converge in
the weak topology to the common knowledge of the state. Theorem 3 implies that the
Rubinstein type spaces also converge under value-based distance.

We can make the last point somehow more general. An information structure u ∈
�(K ×C ×D) exhibits ε knowledge of the state if there is a mapping κ : C ∪D→ K such
that

u
({
u
({
k= κ(c)

}
|c
)≥ 1 − ε

})≥ 1 − ε and u
({
u
({
k = κ(d)

}
|d
)≥ 1 − ε

})≥ 1 − ε.

In other words, the probability that any player assigns at least 1 − ε to some state is at
least 1 − ε.

Proposition 6. Suppose that u exhibits ε knowledge of the state and that v ∈ �(K ×
KC × KD ), where KC = KD = K, margK v = margK u, and v(k = kC = kD ) = 1. (In other
words, v is a common knowledge structure with the only information about the state.)
Then

d(u, v) ≤ 20ε.

Therefore, approximate knowledge structures are close to common knowledge
structures. The convergence of approximate knowledge type spaces to common knowl-
edge is a consequence of Theorem 3. The metric bound stated in Proposition 6 requires
a separate (simple) proof based on Proposition 5.

The above results seem to go against the main message of the strategic disconti-
nuities literature (Rubinstein (1989), Dekel, Fudenberg, and Morris (2006), Weinstein
and Yildiz (2007), Ely and Peski (2011), etc.), where the convergence of finite-order hi-
erarchies does not imply strategic convergence even around finite structures. There are
three important ways in which our setting differs. First, we rely on the ex ante equilib-
rium concept rather than interim rationalizability. We are also interested in payoff com-
parison rather than behavior. Second, we restrict attention to zero-sum games. Finally,
we only work with common prior type spaces.

We believe that each of these differences is important. First, if we worked with ra-
tionalizability, an argument due to Weinstein and Yildiz (2007) applies, and assuming
sufficient richness, it can be used to show that the resulting topology is strictly finer than
weak topology.9 Further, the ex ante focus and payoff comparison (but without restric-
tion to zero-sum games) lead to a topology that is significantly finer than weak topology
(in fact, so fine that it can be useless; see Section 7 for a detailed discussion). The role
of common prior is less clear. On the one hand, Lipman (2003) implies that, at least
from the interim perspective, a common prior does not generate significant restrictions

each player in uε is the number of messages she received. In Rubinstein (1989), a non-zero-sum coor-
dination game is considered and shown to have the property that the set of (Bayesian Nash) equilibrium
payoffs with uε does not converge to the set of equilibrium payoffs with u0, where u0 is simply the structure
corresponding to common knowledge of the state.

9We are grateful to Satoru Takahashi for clarifying this point.
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on finite-order hierarchies. On the other hand, we rely on the ex ante perspective, and
common prior is definitely important for Proposition 5, which plays an important role
in the proof.

Let us also mention that Proposition 6 is also related to Kajii and Morris (1997) (and
additional results in Morris and Ui (2005) and Oyama and Tercieux (2010)). In that paper,
the authors fix a game with complete information and study the robustness of equilibria
to perturbation of complete information in a similar way to our notion of ε knowledge.
They show that if the game has a unique correlated equilibrium, then for sufficiently
small ε, nearby games have an equilibrium with behavior close to the equilibrium of
the complete information game. Proposition 6 says that for zero-sum games that may
have multiple equilibria, equilibrium payoffs are robust to small amounts of incomplete
information.

6.1.2 Relation to Theorem 2 For the second issue, recall that Theorem 2 exhibits a se-
quence of countable information structures such that the hierarchies of beliefs converge
in the weak topology along the sequence, but the sequence does not converge in the
value-based distance. The limiting structure, namely the distribution of the realizations
of the infinite Markov chain, is uncountable. On the other hand, Theorem 3 says that
convergence in weak topology to a countable information structure is equivalent to con-
vergence in value-based distance. Together, the two results imply that, although weak
and value-based topologies are equivalent around countable structures U∗, they differ
beyond U∗. The impact of higher-order beliefs becomes significant only for uncountable
information structures.

Another way to illustrate the relation between two results is to observe that although
the two topologies coincide on U∗ � �0 and the latter has compact closure � under
weak topology, the completion of U∗ with respect to d is not compact. This should not
be confusing, as the “completion” is metric specific and not a purely topological notion,
and different metrics that induce the same topology can have different completions.

6.2 Pointwise value-based topology and completions

An alternative way to define a topology on the space of information structures would be
through the convergence of values. Say that a sequence of information structures (un )
converges pointwise to u if, for all payoff functions g ∈ G, limn→∞ val(un, g) = val(u, g).
Clearly, if (un ) converges to u for value-based distance, then it also converges to u point-
wise.

The topology of pointwise convergence is the weakest topology that makes the value
mappings continuous. Since val(μ, g) is also well defined for μ in �, pointwise conver-
gence is also well defined on �. Moreover by Theorem 12 of Gossner and Mertens (2020),
the topology of pointwise convergence coincides with the topology of weak convergence
on �. Using Theorem 3, we obtain the following corollary.

Corollary 3. On set U∗, the topology induced by value-based distance, the topology of
weak convergence, and the topology of pointwise convergence coincide. In particular, let
u be in U∗ and (un ) be in U∗. Then (un ) converges to u for value-based distance if and only
if for every g in G, val(un, g) −−−→

n→∞ val(u, g).
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A standard way to define a metric compatible with pointwise topology is the fol-
lowing. Consider any sequence (gn )n that is dense in the set of payoff functions⋃

L≥1[−1, 1]K×L2
in the sense10 that, for each g in [−1, 1]K×L2

and ε > 0, there exists
n such that |g(k, i, j) − gn(k, i, j)| ≤ ε for all (k, i, j) ∈ K × L2. The particular choice of
(gn )n will play no role in the sequel. Define now the distance dW on U∗ by

dW (u, v) =
∞∑
n=1

1
2n
∣∣val(u, gn ) − val(v, gn )

∣∣.
By density of (gn )n, we have dW (ul, u) −−−→

l→∞
0 if and only if, for all g, val(ul, g) −−−→

l→∞
val(u, g). The set U∗ equipped with dW is a metric space, and we denote by V its com-
pletion for dW . For this distance, U∗ is isometric to a dense subset of V , so that V can be
seen as the closure of U∗. Using Theorem 12 of Gossner and Mertens (2020), we have the
following result.

Theorem 4. V is homeomorphic to the space �, endowed with weak topology.

Proof. Define similarly distance dW on� as dW (μ, ν) =∑∞
n=1

1
2n | val(μ, gn )−val(ν, gn )|.

By construction, the mapping (u �→ ũ) from U∗ to �0 is an isometry for dW . So V is iso-
metric to the completion of �0 for dW . But on �, the topology induced by dW is weak
topology, and for this topology, � is the closure of �0. So the completion of �0 for dW

is �.

As a consequence, V is compact and does not depend on the choice of (gn ). It con-
tains not only the information structures with countably many types, but also the in-
formation structures with a continuum of signals, obtained as limits of sequences of
information structures with countably many types.

The main point of interest in Theorem 4 is that we can now view � as set V . We
can recover the exact space (�, weak) using values of zero-sum Bayesian games and the
completion of a metric space.11 This may be seen as a duality result between games and
information: � is defined with hierarchies of beliefs but with no reference to games and
payoffs, whereas V is defined by values of zero-sum games, with no explicit reference to
belief hierarchies. In particular, restricting attention to the values of zero-sum games is
still sufficient to obtain the full space � with weak topology. Now the construction of
V yields a new, alternative, interpretation of �, and one might possibly hope to deduce
properties of (�, weak) by transferring, via the homeomorphism, properties first proven
on V .

Finally, although dW and our value-based distance d induce the same topology on
U∗, their completions differ. Theorem 2 implies that completion W of U∗ for d is not

10To construct such a sequence, one can, for instance, proceed as follows. For each positive integer L,

consider a finite grid approximating [−1, 1]K×L2
up to 1/L, then define (gn )n by collecting the elements of

all grids.
11We could have worked from the beginning with possibly uncountable information structures, i.e., with

Borel probabilities over K × [0, 1] × [0, 1]. Endowing this set with distance dW yields a metric space directly
homeomorphic to �, with no need to go to completion since the space would already be complete.
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compact. Space W also contains information structures with a continuum of signals and
represents a new space of incomplete information structures with strong foundations
based on the suprema of differences between values of Bayesian games.

7. Payoff-based distance

In this section, we consider a version of distance (1) where the supremum is taken
over all (including non-zero-sum) games. Rubinstein’s e-mail game (Rubinstein (1989))
shows the relevance of almost conditional independent information for non-zero-sum
games (in the sense of Section 4.6). Therefore similar statements as Theorem 3 and
Proposition 6 do not hold when considering non-zero-sum games. We show the stronger
result that such a payoff-based distance between information structures is mostly trivial.

A non-zero-sum payoff function is a mapping g : K × I × J → [−1, 1]2, where I, J
are finite sets. Let Eq(u, g) ⊆ R

2 be the set of Bayesian Nash equilibrium (BNE) payoffs
in game g on information structure u. Assume that the space R

2 is equipped with the
maximum norm ‖x− y‖max = maxi=1,2 |xi − yi| and that the space of compact subsets of
R

2 is equipped with the induced Hausdorff distance dH
max. Let

dNZS(u, v) = sup
g is a non-zero-sum payoff function

dH
max
(
Eq(u, g), Eq(v, g)

)
. (5)

Then, clearly as in our original definition, 0 ≤ dNZS(u, v) ≤ 2.12

Contrary to the value in the zero-sum game, the BNE payoffs on information struc-
ture u cannot be factorized through distribution ũ ∈ � over the hierarchies of beliefs
induced by u. For this reason, we only restrict our analysis to information structures
that are non-redundant, which means that two different signals (occurring with positive
probability) induce two different hierarchies of beliefs. We do so because the depen-
dence of the BNE on redundant information is not yet well understood.13 For conve-
nience, we also restrict ourselves to information structures with finite support.

Let u ∈ �(K × C × D) be an information structure with finite support. A subset
A ⊆ K × C × D is a proper common knowledge component if u(A) ∈ (0, 1) and for
each signal s ∈ C ∪ D, u(A|s) ∈ {0, 1}. An information structure is simple if it does
not have a proper common knowledge component. As follows from Lemma III.2.7 in

12A very similar approach to closeness of information structures is taken in Monderer and Samet (1996)
and Kajii and Morris (1998). Monderer and Samet (1996) define a notion of distance dMS on common prior
information structures that relies on closeness of common belief events. They show that if two information
structures are ε-close, then any equilibrium on one of them is ε-close to an ε equilibrium on the other
structure. Kajii and Morris (1998) use the last property as their definition. They say that an information
structure is ε-close to another one if, for all bounded games, any equilibrium of one is ε-close to an ε

equilibrium of the other. Thus, the main difference between the approach on these two papers and our
metric dNZS is that we require ε-closeness to a (proper) equilibrium. Our metric dNZS is closer in spirit to
the value-based distance defined using zero-sum games and, arguably, it is easier to interpret for values of
ε that are far away from 0.

13See Sadzik (2008). An alternative approach would be to take an equilibrium solution concept that can
be factorized through the hierarchies of beliefs. An example is Bayes correlated equilibrium from Berge-
mann and Morris (2015).
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Mertens, Sorin, and Zamir (2015), each non-redundant information structure u with fi-
nite support has a representation as a finite convex combination of (non-redundant)
simple information structures14 u =∑α pαuα, where

∑
pα = 1, pα ≥ 0.

Theorem 5. Suppose that u, v are non-redundant information structures with finite
support. If u and v are simple, then

dNZS(u, v) =
{

0 if ũ= ṽ,

2 otherwise.

More generally, suppose that u =∑pαuα and v =∑qαvα are the decompositions into
simple information structures. We can always choose the decompositions so that ũα = ṽα
for each α. Then

dNZS(u, v) =
∑
α

|pα − qα|.

The distance between the two non-redundant simple information structures is bi-
nary: either 0 if the information structures are equivalent or 2 if they are not. In partic-
ular, the distance between all simple information structures that do not have the same
hierarchies of beliefs is trivially equal to its maximum possible value 2. The distance
between two non-redundant but not necessarily simple information structures, dNZS ,
depends on the similarity of their simple components after decomposition. Theorem 5
implies that (5) is too fine a measure of distance between information structures to be
useful.

The proof in the case of two non-redundant and simple structures u and v is
straightforward. Let ũ 	= ṽ. Earlier results have shown that there exists a finite game
g : K×I×J → [−1, 1]2 in which each type of player 1 in the support of ũ and ṽ reports her
hierarchy of beliefs as the unique rationalizable action (see Lemma 4 in Dekel, Fuden-
berg, and Morris (2006) and Lemma 11 in Ely and Peski (2011)). Second, Lemma III.2.7 in
Mertens, Sorin, and Zamir (2015) (or Corollary 4.7 in Mertens and Zamir (1985)) shows
that the supports of distributions ũ and ṽ must be disjoint (it is also a consequence of the
result in Samet (1998)). Therefore, we can construct a game in which, in addition to the
first game, player 2 chooses between two actions {u, v} and it is optimal for her to match
the information structure to which player 1’s reported type belongs. Finally, we multi-
ply the resultant game by ε > 0 and construct a new game in which, additionally, player
1 receives payoff 1 − ε if player 2 chooses u and a payoff of −1 + ε if player 2 chooses
v. Hence, the payoff distance between the two information structures is at least 2 − ε,

14Let us sketch the argument for this result. For each signal (type) s of a player in the support of u, we can
define N1(s) as the support of u(.|s). Then we repeat the construction for every signal in N1(s) and define
N2(s) as the union of N1(s) and all the sets obtained this way, N2(s) = N1(s) ∪ (

⋃
s̃∈N1(s) N1( s̃)). Repeating

this process, the sequence is eventually stationary, i.e., Nt+1(s) = Nt (s) for some integer t. We obtain a finite
set N(s) = Nt (s) having the property that the conditional distribution of u(.|N(s)) is a (non-redundant)
simple information structure with support N(s). There are finitely many different sets N(s) when s ranges
through all signals in the support of u and they form a partition of the support of u. The representation as
a convex combination follows directly from the construction.
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where ε is arbitrarily small. The resultant game has a BNE in the unique rationalizable
profile.15

8. Conclusion

In this paper, we have introduced and analyzed value-based distance on the space of
information structures. The main advantage of the definition is that it has a simple and
useful interpretation as the tight upper bound on the loss or gain from moving between
two information structures. This allows us to apply it directly to numerous questions
about the value of information, the relation between games and single-agent problems,
a comparison of information structures, etc. Additionally, we show that the distance
contains interesting topological information. On the one hand, the topology induced on
countable information structures is equivalent to the topology of weak convergence of
consistent probabilities over coherent hierarchies of beliefs. On the other hand, the set
of countable information structures is not entirely bounded for value-based distance,
which negatively solves the last open question raised in Mertens (1986), with deep im-
plications for stochastic games.

By restricting our attention to zero-sum games, we were able to reexamine the rele-
vance of many phenomena observed and discussed in the strategic discontinuities lit-
erature. While the distinction between approximate knowledge and approximate com-
mon knowledge is not important in situations of conflict, higher-order beliefs may mat-
ter on some potentially uncountably large structures. More generally, we believe that the
discussion of the strategic phenomena on particular classes of games can be a fruitful
line of future research. It is not the case that each problem must involve coordination
games. Interesting classes of games to study could be common interest games, potential
games, etc.16

Appendix A: Proof of Theorem 1

The proof of Theorem 1 relies on two main aspects: the two interpretations of garbling
(deterioration of signals and strategy) and the minmax theorem.

Part 1. We start with general considerations and first identify payoff functions with
particular infinite matrices. For 1 ≤L<∞, let G(L) be the set of maps from K×N×N to
[−1, 1] such that g(k, i, j) = −1 if i ≥L, j < L, g(k, i, j) = 1 if i < L, j ≥L, and g(k, i, j) =
0 if i > L, j > L. Elements in G(L) correspond to payoff functions with action set N for
each player, with any strategy ≥ L that is weakly dominated. We define G = G(∞) =⋃

L≥1 G(L); for each u and v in U , the values val(u, g) and val(v, g) are well defined, and
d(u, v) = supg∈G | val(u, g) − val(v, g)|.

For u ∈ U and g ∈ G, let γu,g(q1, q2 ) denote the payoff of player 1 in the zero-sum
game �(u, g) when player 1 plays q1 ∈ Q and player 2 plays q2 ∈ Q. Extending g to

15This construction relies on creating new games by adding externality to payoffs of one player that de-
pend only on the actions of the other player. Such techniques are available with non-zero-sum games, but
not with zero-sum games. We are grateful to a referee for pointing it out.

16As an example of work in this direction, Kunimoto and Yamashita (2018) studied an order on hierar-
chies and types induced by payoffs in supermodular games.
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mixed actions, as usual, we have γu,g(q1, q2 ) =∑k,c,d u(k, c, d)g(k, q1(c), q2(d)). No-
tice that the scalar product 〈g, u〉 =∑k,c,d g(k, c, d)u(k, c, d) is well defined and corre-
sponds to payoff γu,g(Id, Id), where Id ∈ Q is the strategy that plays the signal received
with probability 1. A straightforward computation leads to γu,g(q1, q2 ) = 〈g, q1.u.q2〉.
Consequently,

val(u, g) = max
q1∈Q

min
q2∈Q

〈g, q1.u.q2〉 = min
q2∈Q

max
q1∈Q

〈g, q1.u.q2〉.

For L = 1, 2, � � � , +∞ and g ∈ G(L), the max and min can be obtained by elements of
Q(L). Since both players can play the Id strategy in �(u, g), we have for all u ∈ U and
g ∈ G(L) that infq2∈Q(L)〈g, u.q2〉 ≤ val(u, g) ≤ supq1∈Q(L)〈g, q1.u〉. Notice also that for all
u and v in U(L), ‖u− v‖ = supg∈G(L)〈g, u− v〉.

Part 2. We now prove Theorem 1. Fix u, v in U(L), with L = 1, 2, � � � , +∞. For g ∈
G(L), we have infq1,q2∈Q(L)〈g, v.q2 − q1.u〉 ≤ val(v, g) − val(u, g), so

sup
g∈G(L)

(
val(v, g) − val(u, g)

)≥ sup
g∈G(L)

inf
q1,q2∈Q(L)

〈g, v.q2 − q1.u〉. (6)

For g ∈ G, q1, q2 ∈ Q(L), by monotonicity of the value with respect to information,
we have val(v.q2, g) ≥ val(v, g) and val(u, g) ≥ val(q1.u, g). So val(v, g) − val(u, g) ≤
d(q1.u, v.q2 ) ≤ ‖q1.u− v.q2‖. Therefore,

sup
g∈G

(
val(v, g) − val(u, g)

)≤ inf
q1,q2∈Q(L)

‖q1.u− v.q2‖

= inf
q1,q2∈Q(L)

sup
g∈G(L)

〈g, v.q2 − q1.u〉. (7)

We are now going to show that

sup
g∈G(L)

inf
q1,q2∈Q(L)

〈g, v.q2 − q1.u〉 = min
q1,q2∈Q(L)

sup
g∈G(L)

〈g, v.q2 − q1.u〉. (8)

Together with inequalities (6) and (7), it will give

sup
g∈G

(
val(v, g) − val(u, g)

)= sup
g∈G(L)

(
val(v, g) − val(u, g)

)= min
q1,q2∈Q(L)

‖q1.u− v.q2‖.

To prove (8), we will apply a variant of Sion’s theorem (see, e.g., Mertens, Sorin, and
Zamir (2015) Proposition I.1.3) to the zero-sum game with strategy spaces G(L) for the
maximizer, Q(L)2 for the minimizer, and payoff h(g, (q1, q2 )) = 〈g, v.q2 −q1.u〉. Strategy
sets G(L) and Q(L)2 are convex, and h is bilinear.

Case 1: L < +∞. Then �({0, � � � , L − 1}) is compact and Q(L)2 is compact for the
product topology. Moreover, h is continuous, so by Sion’s theorem, (8) holds. Further-
more, supg∈G(L)(val(v, g) − val(u, g)) is achieved, since G(L) is compact.

Case 2: L = +∞. We are going to modify the topology on Q to have compact Q(L)2

and lower semi-continuous h on (q1, q2 ). The idea is to identify 0 and +∞ in N. For-
mally, given q ∈ �(N) and a sequence (qn )n of probabilities over N, we define (qn )n con-
verges to q if and only if ∀c ≥ 1, limn→∞ qn(c) = q(c). It implies lim supn qn(0) ≤ q(0).
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�(N) is now compact, and we endow Q with the product topology so that Q(L)2 is it-
self compact. Fix g ∈G. We finally show that 〈g, q.u〉 is upper semi-continuous (u.s.c.) in
q ∈ Q and 〈g, v.q〉 is lower semi-continuous (l.s.c.) in q ∈ Q. For this, we take advantage
of the particular structure of G: there exists L′ such that g ∈G(L′ ).

For each q in �(N), we have for each k in K and d in N,

g(k, q, d) =
∑
c∈N

g(c)g(k, c, d)

= g(k, 0, d) +
L′−1∑
c=1

(
g(k, c, d) − g(k, 0, d)

)
q(c)

+
∑
c≥L′

(
g(k, c, d) − g(k, 0, d)

)
q(c).

For each c ≥ L′, we have g(k, c, d) − g(k, 0, d) ≤ 0. If (qn )n converges to q for our new
topology, limn

∑L′−1
c=1 (g(k, c, d) − g(k, 0, d))qn(c) = ∑L′−1

c=1 (g(k, c, d) − g(k, 0, d))q(c)
and, by Fatou’s lemma, lim supn

∑
c≥L′(g(k, c, d) − g(k, 0, d))qn(c) ≤∑c≥L′(g(k, c, d) −

g(k, 0, d))q(c). As a consequence, lim supn g(k, qn, d) ≤ g(k, q, d). This is true for each k

and d, and we easily obtain that 〈g, q.u〉 =∑k,c,d u(k, c, d)g(k, q(c), d) is u.s.c. in q ∈ Q.
Similarly, for each q ∈ �(N), k ∈ K, and c ∈ N, we can write g(k, c, q) = g(k, c, 0) +∑L′−1

d=1 (g(k, c, d) − g(k, c, 0))q(c) +∑d≥L′(g(k, c, d) − g(k, c, 0))q(c), with g(k, c, d) −
g(k, c, 0) ≥ 0 for d ≥L′, and show that 〈g, v.q〉 is l.s.c. in q ∈ Q.

Appendix B: Proofs for Section 4

B.1 Proof of Proposition 1

We prove the lower bound of (3). Let g(k) = 1pk>qk − 1pk≤qk . Then

d(u, v) ≥ val(u, g) − val(v, g) =
∑
k∈K

(pk − qk )g(k) =
∑
k∈K

|pk − qk|.

Now let us prove the upper bound of (3). Define ū and v in �(K × KC × KD ) with
K = KC = KD such that ū(k, c, d) = pk1c=k1d=k0 for some fixed k0 ∈ K (complete in-
formation for player 1, trivial information for player 2, and the same prior about k as u)
and v(k, c, d) = qk1c=k01d=k for all (k, c, d) (trivial information for player 1, complete
information for player 2, and the same beliefs about k as v). Since the value of a zero-
sum game is weakly increasing with player 1’s information and weakly decreasing with
player 2’s information, we have

sup
g∈G

(
val(u, g) − val(v, g)

)≤ sup
g∈G

(
val(ū, g) − val(v, g)

)= min
q1∈Q,q2∈Q

‖ū.q2 − q1.v‖,

where, according to Theorem 1, the minimum in the last expression is attained for gar-
blings with values in �K. Since player 2 has a unique signal in ū, only q2(.|k0 ) ∈ �K
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matters. We denote it by q′ = q2(.|k0 ). Similarly, we define p′ = q1(.|k0 ) ∈ �(K). Then

‖ū.q2 − q1.v‖ =
∑

(k,c,d)∈K3

∣∣pk1c=kq
′
d − qk1d=kp

′
c

∣∣
=
∑
k∈K

∣∣pkq
′
k − qkp

′
k

∣∣+pk

(
1 − q′

k

)+ qk
(
1 −p′

k

)
= 2 +

∑
k∈K

∣∣pkq
′
k − qkp

′
k

∣∣−pkq
′
k − qkp

′
k = 2
(

1 −
∑
k∈K

min
(
pkq

′
k, qkp

′
k

))
.

A similar inequality holds by inverting the roles of u and v, and the upper bound follows
from the fact that one can choose p′, q′ arbitrarily.

If p = q, then
∑

k∈K min(pkq
′
k, qkp′

k ) = ∑k∈K pk min(q′
k, p′

k ) ≤ ∑k∈K pkp
′
k ≤

maxk∈K pk, where the latter is attained by p′
k = q′

k = 1{k=k∗} for some k∗ ∈ K such that
pk∗ = maxk∈k pk.

B.2 Proof of Proposition 2

Let us start with general properties of d1. Let us define the set of single-agent infor-
mation structures as U1 = �(K × N) using the same convention that countable sets are
identified with subsets of N. Note that given u ∈ �(K × C × D), margK×C u ∈ U1. Let
G′

1 = {(g′ : K × I → R) : I finite} be the set of single-agent decision problems, and define
for u′, v′ ∈ U1, d′

1(u′, v′ ) = supg′∈G′
1

| val(v′, g′ ) − val(u′, g′ )|. It is easily seen that for any
u, v ∈ �(K ×C ×D),

d1(u, v) = d′
1
(
u′, v′)= max

{
min
q∈Q
∥∥u′ − q.v′∥∥, min

q∈Q
∥∥q.u′ − v′∥∥}, (9)

where u′ = margK×C u, v′ = margK×C v, q.u′(k, c) =∑s∈C u′(k, s)q(s)(c), and where the
last equality can be obtained by mimicking (and simplifying) the arguments of the proof
of Theorem 1.

We now prove Proposition 2. Using the assumptions, we have u(k) = v(k),
u(c, d|k) = u(c|k)u(d|k), and v(c′, d|k) = v(d|k)v(c′|k) = u(d|k)v(c′|k). For any pair of
garblings q1, q2,

‖u.q2 − q1.v‖ =
∑
k,c,d

∣∣∣∣∑
β

u(k, c, β)q2(d|β) −
∑
α

v(k, α, d)q1(c|α)

∣∣∣∣
=
∑
k,c

u(k)
∑
d

∣∣∣∣u(c|k)
∑
β

u(β|k)q2(d|β) −
(∑

α

v(α|k)q1(c|α)

)
u(d|k)

∣∣∣∣
=
∑
k,c

u(k)
∑
d

∣∣u(d|k)�(k, c) +�(k, d)u(c|k)
∣∣,

where�(k, d) = u(d|k)−∑β u(β|k)q2(d|β) and�(k, c) =∑α v(α|k)q1(c|α)−u(c|k). Be-
cause |x+ y| ≥ |x| + sgn(x)y for each x, y ∈R, we have∑

d

∣∣u(d|k)�(k, c) +�(k, d)u(c|k)
∣∣
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≥
∑
d

u(d|k)
∣∣�(k, c)

∣∣+ sgn
(
�(k, c)

)
u(c|k)

∑
d

�(k, d) =
∑
d

u(d|k)
∣∣�(k, c)

∣∣,
where the last equality comes from the fact that

∑
d �(k, d) = 0. Therefore, we obtain

‖u.q2 − q1.v‖ ≥
∑
k,c,d

u(k)
∣∣u(d|k)�(k, c)

∣∣
=
∑
k,c,d

u(k)

∣∣∣∣u(d|k)u(c|k) −
∑
α

u(d|k)v(α|k)q1(c|α)

∣∣∣∣= ‖u− q1.v‖.

We deduce that minq1,q2 ‖u.q2 − q1.v‖ = minq1 ‖u − q1.v‖. Inverting the roles of the
players, we also have minq1,q2 ‖v.q2 − q1.y‖ = minq1 ‖v− q1.u‖. We conclude that

d(u, v) = max
{

min
q1,q2

‖u.q2 − q1.v‖; min
q1,q2

‖v.q2 − q1.y‖
}

= max
{

min
q1

‖u− q1.v‖; min
q1

‖v − q1.u‖
}

= d1(u, v),

where the last equality follows from (9) together with the fact that margK×D u =
margK×D v.

B.3 Proof of Proposition 3

Because u� v,

d(u, v) = min
q2∈Q

min
q1∈Q

‖u.q2 − q1.v‖ ≤ min
q2∈Q

min
q1:C→�(C×C2 )

‖u.q2 − q̂1.v‖,

where in the right-hand side of the inequality, we use a restricted set of player 1’s gar-
blings. Precisely, for every garbling q1 : C → �(C ×C2 ), we associate garbling q̂1 defined
by q̂1(c′, c′

1, c′
2|c, c1 ) = 1{c1}(c′

1 )q1(c′, c′
2|c). Further, for any such q1 and an arbitrary gar-

bling q2, we have

‖u.q2 − q̂1.v‖

=
∑

k,c,c1,c2,d

∣∣∣∣∑
β

u(k, c, c1, c2, β)q2(d|β) −
∑
α

u(k, α, c1, d)q1(c, c2|α)

∣∣∣∣
=
∑

k,c,c1,c2,d

u(k, c1 ))

∣∣∣∣∑
β

u(c, c2, β|k, c1 )q2(d|β) −
∑
α

u(α, d|k, c1 )q1(c, c2|α)

∣∣∣∣.
Because of the conditional independence assumption, the above is equal to

=
∑

k,c,c2,d

(∑
c1

u(k, c1 )

)∣∣∣∣∑
β

u(c, c2, β|k)q2(d|β) −
∑
α

u(α, d|k)q1(c, c2|α)

∣∣∣∣
=
∑

k,c,c2,d

∣∣∣∣∑
β

u(k, c, c2, β)q2(d|β) −
∑
α

u(k, α, d)q1(c, c2|α)

∣∣∣∣= ∥∥u′.q2 − q1.v′∥∥.
Therefore, d(u, v) ≤ minq2 minq1:C→�(C×C2 ) ‖u′.q2 − q1.v′‖ = d(u′, v′ ).
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B.4 Proof of Proposition 4

We have d(u′, v′ ) = d1(u′, v′ ) = d1(u, v) ≤ d(u, v). The first equality comes from Propo-
sition 2; the second comes from the fact that u and u′ (v and v′, respectively) induce
the same distribution on player 1’s first-order beliefs, and the inequality comes from the
definition of the two distances.

B.5 Proof of Proposition 5

It is sufficient to show that if c1 is ε-conditionally independent from (k, d) given c, then
supg∈G val(u, g) − val(v, g) ≤ ε.

For this, let q2 : D×D1 → D be defined as q2(d, d1 )(d′ ) = 1d′=d . Let q1 : C → C ×C1

be defined as q1(c, c1|c) = u(c1|c). Then

‖u.q2 − q1.v‖ =
∑

k,c,c1,d

∣∣u(k, c, c1, d) − u(k, c, d)u(c1|c)
∣∣

=
∑
c

u(c)
∑

k,c1,d

∣∣u(k, c1, d|c) − u(k, d|c)u(c1|c)
∣∣≤ ε.

The claim follows from Theorem 1.

Appendix C: Proof of Theorem 2

N is a very large even-valued integer to be fixed later, and we write A = C = D =
{1, � � � , N }, with the idea of using C while speaking of the actions or signals of player
1 and using D while speaking of the actions and signals of player 2. We fix ε and α, to be
used later, such that 0 < ε < 1

10(N+1)2 and α = 1
25 . We will consider a Markov chain with

law ν on A, satisfying the following conditions.
• The law of the first state of the Markov chain is uniform on A.
• Given the current state, the law of the next state is uniform on a subset of size N/2.
• A few more conditions will be defined later.
A sequence (a1, � � � , al ) of length l ≥ 1 is said to be nice if it is in the support of the

Markov chain: ν(a1, � � � , al ) > 0. For instance, any sequence of length 1 is nice, and N2/2
sequences of length 2 are nice.

The remainder of the proof is split into three parts: We first define information struc-
tures (ul )l≥1 and payoff structures (gp )p≥1. Then we define two conditions UI1 and UI2
on the information structures and show that they imply the conclusions of Theorem 2.
Finally, we show, via the probabilistic method, the existence of a Markov chain ν satisfy-
ing all our conditions.

C.1 Information and payoff structures (ul )l≥1 and (gl )l≥1

For l ≥ 1, define the information structure ul ∈ �(K ×Cl ×Dl ) so that for each state k in
K, signal c = (c1, � � � , cl ) in Cl of player 1, and signal d = (d1, � � � , dl ) in Dl for player 2,

ul(k, c, d) = ν(c1, d1, c2, d2, � � � , cl, dl )

(
c1

N + 1
1k=1 +

(
1 − c1

N + 1

)
1k=0

)
.
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The following interpretation of ul holds: first select (a1, a2, � � � , a2l ) = (c1, d1, � � � , cl, dl )
in A2l according to Markov chain ν (i.e., uniformly among the nice sequences of length
2l); then tell (c1, c2, � � � , cl ) (the elements of the sequence with odd indices) to player 1
and (d1, d2, � � � , dl ) (the elements of the sequence with even indices) to player 2. Finally,
choose state k = 1 with probability c1/(N + 1) and state k = 0 with the complement
probability 1 − c1/(N + 1).

Notice that the definition is not symmetric among players: player 1’s first signal c1

is uniformly distributed and plays a particular role. The marginal of ul on K is uniform,
and the marginal of ul+1 over (K ×Cl × V l ) is equal to ul.

Consider a sequence of elements (a1, � � � , al ) of A that is not nice (i.e., such that
ν(a1, � � � , al ) = 0). We say that the sequence is not nice because of player 1 if min{t ∈
{1, � � � , l} : ν(a1, � � � , at ) = 0} is odd and not nice because of player 2 if min{t ∈ {1, � � � , l} :
ν(a1, � � � , at ) = 0} is even. Sequence (a1, � � � , al ) is now nice, or not nice because of player
1, or not nice because of player 2. A sequence of length 2 is either nice or not nice be-
cause of player 2.

For p ≥ 1, define payoff structure gp : K ×Cp ×Dp−1 → [−1, 1] such that, for all k in
K, c′ = (c′

1, � � � , c′
p ) in Cp, and d′ = (d′

1, � � � , d′
p−1 ) in Dp−1,

gp
(
k, c′, d′)= g0

(
k, c′

1

)+ hp
(
c′, d′), where g0

(
k, c′

1

)= −
(
k− c′

1

N + 1

)2

+ N + 2
6(N + 1)

,

hp
(
c′, d′)=

⎧⎪⎪⎨⎪⎪⎩
ε if

(
c′

1, d′
1, � � � , c′

p

)
is nice,

5ε if
(
c′

1, d′
1, � � � , c′

p

)
is not nice because of player 2,

−5ε if
(
c′

1, d′
1, � � � , c′

p

)
is not nice because of player 1.

One can check that |gp| ≤ 5/6 + 5ε ≤ 8/9. Regarding the g0 part of the payoff, con-
sider a decision problem for player 1 where c1 is selected uniformly in A and the state is
selected to be k= 1 with probability c1/(N+1) and k= 0 with probability 1−c1/(N+1).
Player 1 observes c1 but not k, and she chooses c′

1 in A and receives payoff g0(k, c′
1 ). We

have c1
N+1g0(1, c′

1 ) + (1 − c1
N+1 )g0(0, c′

1 ) = 1
(N+1)2 (c′

1(2c1 − c′
1 ) + (N + 1)((N + 2)/6 − c1 )).

To maximize this expected payoff, it is well known that player 1 should play her belief on
k, i.e., c′

1 = c1. Moreover, if player 1 chooses c′
1 	= c1, her expected loss from not having

chosen c1 is at least 1
(N+1)2 ≥ 10ε. Furthermore, the constant N+2

6(N+1) has been chosen
such that the value of this decision problem is 0.

Consider now l ≥ 1 and p ≥ 1. By definition, the Bayesian game �(ul, gp ) is played as
follows: First, (c1, d1, � � � , cl, dl ) is selected according to law ν of the Markov chain, player
1 learns (c1, � � � , cl ), player 2 learns (d1, � � � , dl ), and the state is k = 1 with probability
c1/(N + 1) and k = 0 otherwise. Then player 1 chooses c′ in Cp and player 2 chooses
d′ in Dp−1 simultaneously, and, finally, player 1’s payoff is gp(k, c′, d′ ). Notice that by
the previous paragraph about g0, it is always strictly dominant for player 1 to truthfully
report her first signal, i.e., choose c′

1 = c1. We will show in the next section that if l ≥ p

and player 1 simply plays the sequence of signals she has received, player 2 cannot do
better than also truthfully reporting his own signals, leading to a value not lower than
the payoff for nice sequences, which is ε. On the contrary, in game �(ul, gl+1 ), player



Theoretical Economics 17 (2022) Distance between information structures 1251

1 has to report not only the l signals she has received, but also an extra signal c′
l+1 that

she has to guess. In this game, we will prove that if player 2 truthfully reports his own
signals, player 1 will incur a payoff of −5ε with a probability of at least (approximately)
1/2, and this will result in a low value. These intuitions will prove correct in the next
section, under conditions UI1 and UI2.

C.2 Conditions UI and values

To prove that the intuition of the previous paragraph is correct, we need to ensure that
players have incentives to report their true signals, so we need additional assumptions
on the Markov chain.

Notations and definition. Let l ≥ 1, m ≥ 0, c = (c1, � � � , cl ) in Cl, and d = (d1, � � � , dm )
in Dm. We write

a2q(c, d) = (c1, d1, � � � , cq, dq ) ∈A2q for each q ≤ min{l, m},

a2q+1(c, d) = (c1, d1, � � � , cq, dq, cq+1 ) ∈ A2q+1 for each q ≤ min{l − 1, m}.

For r ≤ min{2l, 2m + 1}, we say that c and d are nice at level r, and we write c �r d if
ar(c, d) is nice.

In the next definition, we consider information structure ul ∈ �(K×Cl ×Dl ), and let
c̃ and d̃ denote the respective random variables of the signals of player 1 and player 2.

Definition 1. We say that the conditions UI1 are satisfied if for all l ≥ 1, all c =
(c1, � � � , cl ) in Cl, and c′ = (c′

1, � � � , c′
l+1 ) in Cl+1 such that c1 = c′

1, we have

ul
(
c′ �2l+1 d̃|c̃ = c, c′ �2l d̃

) ∈ [1/2 − α, 1/2 + α], (10)

and for all m ∈ {1, � � � , l} such that cm 	= c′
m, for r = 2m− 2, 2m− 1,

ul
(
c′ �r+1 d̃|c̃ = c, c′ �r d̃

) ∈ [1/2 − α, 1/2 + α]. (11)

We say that the conditions UI2 are satisfied if for all 1 ≤ p ≤ l, for all d ∈ Dl, for all
d′ ∈Dp−1, for all m ∈ {1, � � � , p− 1} such that dm 	= d′

m, for r = 2m− 1, 2m,

ul
(
c̃ �r+1 d

′|d̃ = d, c̃ �r d
′) ∈ [1/2 − α, 1/2 + α]. (12)

To understand the conditions UI1, consider the Bayesian game �(ul, gl+1 ), and as-
sume that player 2 truthfully reports his sequence of signals and that player 1 has re-
ceived signals (c1, � � � , cl ) in Cl. Equation (10) states that if the sequence of reported
signals (c′

1, d̃1, � � � , c′
l, d̃l ) is nice at level 2l, then whatever the last reported signal c′

l+1 is,

the conditional probability that (c′
1, d̃1, � � � , c′

l, d̃l, c
′
l+1 ) is still nice is in [1/2 − α, 1/2 + α]

(i.e., close to 1/2). Regarding (11), first notice that if c′ = c, then by construction
(c′

1, d̃1, � � � , c′
l, d̃l ) is nice and ul(c′ �r+1 d̃|c̃ = c, c′ �r d̃) = ul(c �r+1 d̃|c̃ = c) = 1 for each

r = 1, � � � , 2l − 1. Assume now that for some m = 1, � � � , l, player 1 misreports her mth
signal (i.e., reports c′

m 	= cm). Equation (11) requires that, given that the reported signals
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were nice thus far (at level 2m− 2), the conditional probability that the reported signals
are not nice at level 2m− 1 (integrating c′

m) is close to 1/2 and, moreover, if the reported
signals are nice at level 2m − 1, adding the next signal d̃m for player 2 has a probability
close to 1/2 of keeping the reported sequence nice. Conditions UI2 have a similar in-
terpretation, considering the Bayesian games �(ul, gp ) for p ≤ l, assuming that player 1
truthfully reports her signals and that player 2 plays d′ after having received d signals.

Proposition 7. Conditions UI1 and UI2 imply

∀l ≥ 1, ∀p ∈ {1, � � � , l}, val
(
ul, gp

)≥ ε, (13)

∀l ≥ 1, val
(
ul, gl+1)≤ −ε. (14)

As a consequence of this proposition, under the existence of a Markov chain satisfy-
ing conditions UI1 and UI2, we obtain Theorem 2:

If l > p, then d
(
ul, up

)≥ val
(
ul, gp+1)− val

(
up, gp+1)≥ 2ε.

Proof of Proposition 7. We assume that UI1 and UI2 hold. We fix l ≥ 1, work on
probability space K × Cl × Dl equipped with probability ul, and let c̃ and d̃ denote the
random variables of the signals received by the players.

Step 1. We first prove (13). Consider the game �(ul, gp ) with p ∈ {1, � � � , l}. We as-
sume that player 1 chooses the truthful strategy. Fix d = (d1, � � � , dl ) in Dl and d′ =
(d′

1, � � � , d′
p−1 ) in Dp−1, and assume that player 2 has received signal d and chooses to

report d′. Define the non-increasing sequence of events An = {c̃ �n d′}. We will prove
by backward induction that

∀n= 1, � � � , p, E
[
hp
(
c̃, d′)|d̃ = d, A2n−1

]≥ ε. (15)

If n = p, hp(c̃, d′ ) = ε on event A2p−1, implying the result. Assume now that for
some n such that 1 ≤ n < p, we have E[hp(c̃, d′ )|d̃ = d, A2n+1] ≥ ε. Since we have a non-
increasing sequence of events, 1A2n−1 = 1A2n+1 +1A2n−11Ac

2n
+1A2n1Ac

2n+1
, so by definition

of the payoffs, hp(c̃, d′ )1A2n−1 = hp(c̃, d′ )1A2n+1 + 5ε1A2n−11Ac
2n

− 5ε1A2n1Ac
2n+1

.

First assume that d′
n = dn. By construction of the Markov chain, ul(A2n+1|A2n−1, d̃ =

d) = 1, implying that ul(Ac
2n+1|A2n−1, d̃ = d) = ul(Ac

2n|A2n−1, d̃ = d) = 0. As a conse-
quence,

E
[
hp
(
c̃, d′)|d̃ = d, A2n−1

]= E
[
hp
(
c̃, d′)1A2n+1|d̃ = d, A2n−1

]
= E
[
E
[
hp
(
c̃, d′)|d̃ = d, A2n+1

]
1A2n+1|d̃ = d, A2n−1

]≥ ε.

Assume now that d′
n 	= dn. Assumption UI2 implies that

ul
(
Ac

2n|A2n−1, d̃ = d
)≥ 1/2 − α,

ul
(
A2n ∩Ac

2n+1|A2n−1, d̃ = d
)≤ (1/2 + α)2,

ul(A2n+1|A2n−1, d̃ = d) ≥ (1/2 − α)2.
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It follows that

E
[
hp
(
c̃, d′|d̃

)= d, A2n−1
]

= E
[
E
[
hp
(
c̃, d′)|d̃ = d, A2n+1

]
1A2n+1|d̃ = d, A2n−1

]
+ 5εul

(
Ac

2n|A2n−1, d̃ = d
)− 5εul

(
A2n ∩Ac

2n+1|A2n−1, d̃ = d
)

≥ ε

(
1
4

− α+ α2
)

+ 5ε
(

1
2

− α

)
− 5ε
(

1
4

+ α+ α2
)

= ε

(
3
2

− 11α− 4α2
)

≥ ε,

and (15) follows by backward induction.
Since A1 is an event that holds almost surely, we deduce that E[hp(c̃, d′ )|d̃ = d] ≥ ε.

Therefore, player 1’s truthful strategy guarantees payoff ε in �(ul, gp ).
Step 2. We now prove (14). Consider the game �(ul , gl+1 ). We assume that player 2

chooses the truthful strategy. Fix c = (c1, � � � , cl ) in Cl and c′ = (c′
1, � � � , c′

l−1 ) in Cl−1, and
assume that player 1 has received signal c and chooses to report c′. We will show that
player 1’s expected payoff is no larger than −ε, and assume without loss of generality
(w.l.o.g.) that c′

1 = c1. Consider the non-increasing sequence of events Bn = {c′ �n d̃}.
We will prove by backward induction that ∀n= 1, � � � , l, E[hl+1(c′, d̃)|c̃ = c, B2n] ≤ −ε.

If n = l, we have 1B2l = 1B2l+1 + 1B2l1Bc
2l+1

and hl+1(c′, d̃)1B2l = ε1B2l+1 − 5ε1B2l1Bc
2l+1

.

UI1 implies that |ul(B2l+1|c̃ = c, B2l ) − 1
2 | ≤ α, and it follows that

E
[
hl+1(c′, d̃

)
|c̃ = c, B2l

]= εul(B2l+1|c̃ = c, B2l ) − 5εul
(
Bc

2l+1|u= û, B2l
)

≤ ε

(
1
2

+ α

)
− 5ε
(

1
2

− α

)
≤ −ε.

Assume now that for some n = 1, � � � , l − 1, we have E[hl+1(c′, d̃)|c̃ = c, B2n+2] ≤ −ε.
We have 1B2n = 1B2n+2 + 1B2n1Bc

2n+1
+ 1B2n+11Bc

2n+2
, and by definition of hl+1,

hl+1(c′, d̃
)
1B2n = hl+1(c′, d̃

)
1B2n+2 − 5ε1B2n1Bc

2n+1
+ 5ε1B2n+11Bc

2n+2
.

First assume that c′
n+1 = cn+1; then ul(B2n+2|B2n, c̃ = c) = 1. Then

E
[
hl+1(c′, d̃

)
|c̃ = c, B2n

]= E
[
hl+1(c′, d̃

)
1B2n+2|c̃ = c, B2n

]
,

= E
[
E
[
hl+1(c′, d̃

)
|c̃ = c, B2n+2

]
1B2n+2|c̃ = c, B2n

]≤ −ε.

Assume to the contrary that c′
n+1 	= cn+1. Assumption UI1 implies that

ul
(
Bc

2n+1|B2n, c̃ = c
)≥ 1/2 − α,

ul
(
B2n+1 ∩Bc

2n+2|B2n, c̃ = c
)≤ (1/2 + α)2,

ul(B2n+2|B2n, c̃ = c) ≥ (1/2 − α)2.

It follows that

E
[
hl+1(c′, d̃

)
|c̃ = c, B2n

]
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= E
[
E
[
hl+1(c′, d̃

)
|c̃ = c, B2n+2

]
1B2n+2 |c̃ = c, B2n

]
− 5εul

(
Bc

2n+1|B2n, c̃ = c
)+ 5εul

(
B2n+1 ∩Bc

2n+2|B2n, c̃ = c
)

≤ −ε

(
1
4

− α+ α2
)

− 5ε
(

1
2

− α

)
+ 5ε
(

1
4

+ α+ α2
)

≤ −ε.

By induction, we obtain E[hl+1(c′, d̃)|c̃ = c, B2] ≤ −ε. Since B2 holds almost surely here,
we get E[hl+1(c′, d̃)|c̃ = c] ≤ −ε, showing that player 2’s truthful strategy guarantees that
the payoff of the maximizer is less than or equal to −ε, which concludes the proof.

C.3 Existence of an appropriate Markov chain

Here we conclude the proof of Theorem 2 by showing the existence of an even-valued
integer N and a Markov chain with law ν on A= {1, � � � , N } satisfying our conditions:

(1) The law of the first state of the Markov chain is uniform on A.
(2) For each a in A, there are exactly N/2 elements b in A such that ν(b|a) = 2/N .
(3) UI1 and UI2.
Letting P = (Pa,b )(a,b)∈A2 denote the transition matrix of the Markov chain, we must

prove the existence of P satisfying (2) and (3). The proof is nonconstructive and uses
the following probabilistic method, where we select (independently for each a in A) the
set {b ∈ A : Pa,b > 0} uniformly among the subsets of A with cardinal N/2. We will show
that when N goes to infinity, the probability of selecting an appropriate transition matrix
becomes strictly positive and, in fact, converges to 1.

Formally, let SA denote the collection of all subsets S ⊆ A with cardinality |S| = 1
2N .

We consider a collection (Sa )a∈A of i.i.d. random variables uniformly distributed over
SA defined on probability space (�N , FN , PN ). For all a, b in A, let Xa,b = 1{b∈Sa} and
Pa,b = 2

NXa,b. By construction, P is a transition matrix satisfying (2). Theorem 2 will
now follow from the following proposition.

Proposition 8.

PN (P induces a Markov chain satisfying UI1 and UI2 ) −−−−→
N→∞

1.

In particular, this probability is strictly positive for all sufficiently large N .

The remainder of this section is devoted to the proof of Proposition 8. We start with
probability bounds based on Hoeffding’s inequality.

Lemma 1. For any a 	= b, each γ > 0,

PN

(∣∣∣∣|Sa ∩ Sb| − 1
4
N

∣∣∣∣≥ γN

)
≤ 1

2
e4Ne−2γ2N .

Proof. Consider a family of i.i.d. Bernoulli variables (X̃i,j )i=a,b,j∈A of parameter 1
2 de-

fined on space (�, F , P). For i = a, b, define events L̃i = {
∑

j∈A X̃i,j = N
2 } and set-valued
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variables S̃i = {j ∈ A : X̃i,j = 1}. It is straightforward to check that the conditional law of
(S̃a, S̃b ) given L̃a ∩ L̃b under P is the same as the law of (Sa, Sb ) under PN . It follows that

PN

(∣∣∣∣|Sa ∩ Sb| − 1
4
N

∣∣∣∣≥ γN

)
= P

(∣∣∣∣|S̃a ∩ S̃b| − 1
4
N

∣∣∣∣≥ γN|L̃a ∩ L̃b

)

≤
P

(∣∣∣∣|S̃a ∩ S̃b| − 1
4
N

∣∣∣∣≥ γN

)
P(L̃a ∩ L̃b )

.

Using Hoeffding’s inequality, we have

P

(∣∣∣∣|S̃a ∩ S̃b| − 1
4
N

∣∣∣∣≥ γN

)
= P

(∣∣∣∣∑
j∈A

X̃a,jX̃b,j − 1
4
N

∣∣∣∣≥ γN

)
≤ 2e−2γ2N .

On the other hand, using Stirling’s approximation,17 we have

P(L̃a ∩ L̃b ) =

⎛⎜⎜⎜⎝ 1

2N
N!(
N

2
!
)2

⎞⎟⎟⎟⎠
2

≥
(

2N+1N− 1
2

2Ne2

)2

= 4

Ne4 .

We deduce that PN (||Sa ∩ Sb| − 1
4N| ≥ γN ) ≤ 1

2e
4Ne−2γ2N .

Lemma 2. For each a 	= b, for any subset S ⊆ A, and any γ ≥ 1
2N−2 ,

PN

(∣∣∣∣∑
i∈S

Xi,a − 1
2
|S|
∣∣∣∣≥ γN

)
≤ 2e−2Nγ2

and

PN

(∣∣∣∣∑
i∈S

Xi,aXi,b − 1
4
|S|
∣∣∣∣≥ γN

)
≤ 2e− 1

2Nγ2
.

Proof. For the first inequality, notice that Xi,a are i.i.d. Bernoulli random variables
with parameter 1

2 . Hoeffding’s inequality implies that

PN

(∣∣∣∣∑
i∈S

Xi,a − 1
2
|S|
∣∣∣∣≥ γN

)
≤ 2e−2γ2 N2

|S| ≤ 2e−2Nγ2
.

For the second inequality, let Zi = Xi,aXi,b. Notice that all variables Zi are i.i.d.

Bernoulli random variables with parameter p = 1
2 (

N
2 −1
N−1 ) = 1

4 − 1
4N−4 . Hoeffding’s in-

equality implies that

PN

(∣∣∣∣∑
i∈S

Zi − 1
4
|S|∣∣≥ γN

)
≤ PN

(∣∣∣∣∑
i∈S

Zi −p|S|
∣∣∣∣≥ 1

2
γN

)
≤ 2e−2γ2 N2

|S| ≤ 2e− 1
2Nγ2

,

where we used |S||p− 1
4 | ≤ N

4N−4 ≤ γN
2 for the first inequality.

17We have nn+ 1
2 e−n ≤ n! ≤ enn+ 1

2 e−n for each n.
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For each a 	= b and c 	= d, each γ > 0, define

Ya = 2
∑
i∈A

Xi,a, Yc = 2
∑
i∈A

Xc,i =N ,

Ya,b = 4
∑
i∈A

Xi,aXi,b, Yc
a = 4
∑
i∈A

Xi,aXc,i, Yc,d = 4
∑
i∈A

Xc,iXd,i,

Yc
a,b = 8

∑
i∈A

Xi,aXi,bXc,i, Yc,d
a = 8

∑
i∈A

Xi,aXc,iXd,i,

Yc,d
a,b = 16

∑
i∈A

Xi,aXi,bXc,iXd,i.

Lemma 3. For each a 	= b and c 	= d, each γ ≥ 64/N , each of the variables

Z ∈ {Ya, Yc , Ya,b, Yc,d , Yc
a , Yc

a,b, Yc,d
a , Yc,d

a,b

}
,

PN

(|Z −N| ≥ γN
)≤ e4Ne− N

32 ( γ
10 )

2
.

Proof. In case Z = Ya or Ya,b, the bound follows from Lemma 2 (for S = A). If case
Z = Yc , the bound is trivially satisfied. If Z = Yc,d , the bound follows from Lemma 1.

In case Z = Yc,d
a,b , notice that Yc,d

a,b = 16
∑

i∈Sc∩Sd Zi, where Zi = Xi,aXi,b. All vari-

ables Zi are i.i.d. Bernouilli random variables with parameter p = 1
4 − 1

4N−4 . Moreover,

{Zi}i 	=c,d are independent of Sc ∩ Sd . Enlarging the probability space, we can construct
a new collection of i.i.d. Bernoulli random variables Z′

i such that Z′
i = Zi for all i 	= c, d

and such that {(Z′
i )i∈A, Sc ∩ Sd } are all independent. Then |Yc,d

a,b − 16
∑

i∈Sc∩Sd Z
′
i| ≤ 32

and, because 1
2γN ≥ 32, we have

PN

(∣∣Yc,d
a,b −N

∣∣≥ γN
)≤ PN

(∣∣∣∣ ∑
i∈Sc∩Sd

Z′
i −

1
16

N

∣∣∣∣≥ 1
32

γN

)
.

Define the events

A=
{∣∣∣∣14
∣∣∣∣Sc ∩ Sd

∣∣∣∣−N

16

∣∣∣∣≥ 1
160

γN

}
, B =

{∣∣∣∣ ∑
i∈Sc∩Sd

Z′
i −

1
4

∣∣∣∣Sc ∩ Sd|| ≥ 1
40

γN

}
.

Then the probability can be further bounded by

≤ PN (A) + PN (B) ≤ 1
2
e4Ne−2N( 1

40γ)2 + 2e− 1
2N( 1

40γ)2 ≤ e4Ne−Nγ2

3200 ,

where the first bound comes from Lemma 1 and the second bound comes from the sec-
ond bound in Lemma 2.

The remaining bounds have proofs similar to (and simpler than) the case Z = Yc,d
a,b .

We omit the details in the interest of space.
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Finally, we describe an event E that collects these bounds. Recall that α = 1/25, and
define, for each a 	= b and c 	= d,

Ea,b,c,d =
{∣∣∣∣Ya,b

Ya
− 1

∣∣∣∣≤ 2α
}

∩
{∣∣∣∣Yc

a,b

Y c
a

− 1

∣∣∣∣≤ 2α
}

∩
{∣∣∣∣Yc,d

a

Y c
a

− 1

∣∣∣∣≤ 2α
}

∩
{∣∣∣∣Yc,d

a,b

Y c,d
a

− 1

∣∣∣∣≤ 2α
}

∩
{∣∣∣∣Yc,d

Y c − 1

∣∣∣∣≤ 2α
}

∩
{∣∣∣∣Yc

a

Yc − 1

∣∣∣∣≤ 2α
}

∩
{∣∣∣∣Yc,d

a

Y c,d
− 1

∣∣∣∣≤ 2α
}

.

Finally, let E =⋂a,b,c,d:a	=b and c 	=d Ea,b,c,d .

Lemma 4. We have

PN (E) > 1 − 7e4N5e− N
2,163,200 −−−→

n→∞ 1.

Proof. Take γ = α
1+α = 1

26 and let

Fa,b,c,d =
⋂

Z∈{Ya,Ya,b,Yc,d ,Yc,d ,Yc
a ,Yc

a,b,Yc,d
a ,Yc,d

a,b }

{|Z −N| ≤ γN
}

.

It is easy to see that Fa,b,c,d ⊆Ea,b,c,d . The probability that Fa,b,c,d holds can be bounded
from Lemma 3 (as soon as N ≥ 64

γ = 1664), as

PN (Fa,b,c,d ) ≥ 1 − 7e4Ne
− N

32.(260)2 .

The result follows since there are fewer than N4 ways of choosing (a, b, c, d).

Computations using the bound of Lemma 4 show that N = 52.106 is sufficient for
the existence of an appropriate Markov chain. Therefore, one can take ε = 3.10−17 in
the statement of Theorem 2. We conclude the proof of Proposition 8 by showing that
event E implies conditions UI1 and UI2.

Lemma 5. If event E holds, then conditions UI1 and UI2 are satisfied.

Proof. We fix law ν of the Markov chain on A and assume that it has been induced, as
explained at the beginning of Appendix C.3, by a transition matrix P satisfying E. For
l ≥ 1, we forget about the state in K and still let ul denote the marginal of ul over Cl ×Dl.
If c = (c1, � � � , cl ) ∈ Cl and d = (d1, � � � , dl ) ∈Dl, we have ul(c, d) = ν(c1, d1, � � � , cl, dl ).

Let us begin with condition UI2, which we recall here: for all 1 ≤ p ≤ l, for all d ∈ Dl,
for all d′ ∈ Dp−1, for all m ∈ {1, � � � , p− 1} such that dm 	= d′

m, for r = 2m− 1, 2m,

ul
(
c̃ �r+1 d

′|d̃ = d, c̃ �r d
′) ∈ [1/2 − α, 1/2 + α], (12)
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where (c̃, d̃) is a random variable selected according to ul. The quantity ul(c̃ �r+1 d
′|d̃ =

d, c̃ �r d
′ ) is thus the conditional probability of the event (c̃ and d′ are nice at level r + 1)

given that they are nice at level r and that the signal received by player 2 is d. We divide
the problem into different cases.

Case m> 1 and r = 2m − 1. The events {c̃ �2m d′} and {c̃ �2m−1 d′} can be decom-
posed as {

c̃ �2m−1 d
′}= {c̃ �2m−2 d

′}∩ {Xd′
m−1, c̃m = 1},{

c̃ �2m d′}= {c̃ �2m−2 d
′}∩ {Xd′

m−1, c̃m = 1} ∩ {Xc̃m,d′
m

= 1}.

So ul(c̃ �2m d′|d̃ = d, c̃ �2m−1 d′ ) = ul(Xc̃m,d′
m

= 1|d̃ = d, c̃ �2m−1 d′ ), and the Markov
property gives

ul
(
c̃ �2m d′|d̃ = d, c̃ �2m−1 d

′)= ul(Xc̃m,d′
m

= 1|Xd′
m−1, c̃m = 1, Xdm−1, c̃m = 1, Xc̃m,dm = 1)

=

∑
i∈U

Xi,d′
m
Xd′

m−1,iXdm−1,iXi,dm∑
i∈U

Xd′
m−1,iXdm−1,iXi,dm

.

This is equal to 1
2

Y
dm−1,d′

m−1
dm ,d′

m

Y
dm−1,d′

m−1
dm

if d′
m−1 	= dm−1 and to 1

2

Y
dm−1
dm ,d′

m

Y
dm−1
dm

if d′
m−1 = dm−1. In both cases,

E implies (12).
Case r = 2m. We have ul(c̃ �2m+1 d′|d̃ = d, c̃ �2m d′ ) = ul(Xd′

m, c̃m+1
= 1|d̃ = d, c̃ �2m

d′ ), and by the Markov property,

ul
(
c̃ �2m+1 d

′|d̃ = d, c̃ �2m d′)
= ul(Xd′

m, c̃m+1
= 1|Xdm, c̃m+1 = 1, Xc̃m+1,dm+1 = 1)

=

∑
i∈U

Xd′
m,iXdm,iXi,dm+1∑

i∈U
Xdm,iXi,dm+1

= 1
2

Y
d′
m,dm

dm+1

Ydm
dm+1

∈ [1/2 − α, 1/2 + α].

Case m= 1, r = 1.

ul
(
c̃ �2 d

′|d̃ = d, c̃ �1 d
′)

= ul
(
c̃ �2 d

′|d̃ = d
)= ul(Xc̃1,d′

1
= 1|Xc̃1,d1 = 1)

=

∑
i∈U

Xi,d′
1
Xi,d1∑

i∈U
Xi,d1

= 1
2

Yd1,d′
1

Yd1

∈ [1/2 − α, 1/2 + α].

The proof of condition UI1 being similar, it is omitted here.
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Appendix D: Proofs of Theorem 3

D.1 Theorem 3: Weak topology is contained in value-based topology

Assume that un ∈ �(K × Cn × Dn ) and u ∈ �(K × C × D) are information structures
such that d(un, u) → 0. Then, for all games g in G, | val(ũn, g) − val(ũ, g)| = | val(un, g) −
val(u, g)| → 0. By Theorem 12 in Gossner and Mertens (2020), the functions (val(., g))g
span the topology on �. So (ũn )n converges weakly to ũ.

D.2 Theorem 3: Value-based topology is contained in weak topology

Assume that un ∈ �(K×Cn ×Dn ) and u ∈ �(K×C ×D) are information structures such
that ũn converges to ũ in the weak topology. We will prove that

lim sup
n→∞

sup
g∈G

(
val(un, g) − val(u, g)

)≤ 0. (16)

Because we can switch the roles of players, this will suffice to establish that d(un, u) → 0.
Partitions of unity. We can assume without loss of generality that u is non-

redundant, and that all signals c and d have positive probability. We can associate sig-
nals c ∈ C ⊆ N and d ∈ D ⊆ N with the corresponding hierarchies of beliefs in �1 and
�2. In other words, we identify C ⊆ �1 as the (countable) support of ũ and D ⊆ �2 as
the smallest countable set such that, for each c ∈ C, φ1(K ×D|c) = 1 (i.e., D is the union
of countable supports of all beliefs of hierarchies in C). For each c ∈ C and d ∈ D, we
denote the corresponding hierarchies under u as c̃ and d̃. Also, let Cm = C ∩ {0, � � � , m}
and Dm =D∩ {0, � � � , m}.

Because �2 is Polish, for each m ∈N and each d ∈Dm, we can find continuous func-
tions κm

d : �2 → [0, 1] for m ∈ N, d ∈ {0, � � � , m} such that κm
d (d̃) = 1 for each d ∈ Dm,

κm
d ≡ 0 if d /∈ D, and

∑m
d=0 κ

m
d (θ2 ) = 1 for each θ2 ∈ �2. In other words, for each m,

{κm
d }0≤d≤m is a continuous partition of unity on space �2 with the property that, for each

d ∈ Dm, κm
d peaks at hierarchy d̃. Notice that for each c ∈ C and each d ∈ Dp, we have

Eφ1(c̃)[1{k}(·)κp
d (·)] ≥ u(k, d|c) and

∑
k∈K

p∑
d=0

∣∣Eφ1(c̃)
[
1{k}(·)κp

d (·)]− u(k, d|c)
∣∣= u
(
D \Dp|c

)
.

Because all hierarchies c̃, c ∈ C are distinct, there exist pm < ∞ and εm ∈ (0, 1
m ) for each

m such that, for any c, c′ ∈ Cm such that c 	= c′,

∑
k∈K

pm∑
d=0

∣∣Eφ1(c̃)
[
1{k}κ

pm

d

]−Eφ1(c̃′ )
[
1{k}κ

pm

d

]∣∣≥ 2εm.

Let

hm
c (θ1 ) =

∑
k

pm∑
d=0

∣∣Eφ1(θ1 )
[
1{k}κ

pm

d

]−Eφ1(c̃)
[
1{k}κ

pm

d

]∣∣.
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Then hm
c is a continuous function such that hm

c (c̃) = 0 and such that, if hm
c (θ1 ) ≤ εm for

some c ∈ Cm, then hm
c′ (θ1 ) ≥ εm for any c′ ∈ Cm such that c′ 	= c. For 0 ≤ c ≤ m+ 1, define

continuous functions

κm
c (θ1 ) = max

(
1 − 1

εm
hm
c (θ1 ), 0

)
for c ∈ Cm,

κm
c ≡ 0 if c /∈ C and κm

m+1(θ1 ) = 1 −
m∑
c=0

κm
c (θ1 ).

Then, for each m,
∑m+1

c=0 κm
c ≡ 1, and κm

c (θ1 ) ∈ [0, 1] for each c = 0, � � � , m + 1, which
implies that {κm

c }0≤c≤m+1 is a continuous partition of unity on space �1 such that, for
each c ∈ Cm, κm

c (c̃) = 1.
Conditional independence. For each information structure v ∈ �(K × C ′ × D′ ), de-

fine information structure Kmv ∈ �(K × C ′ × {0, � � � , m + 1} × D′ × {0, � � � , pm}) so that
Kmv(k, c′, ĉ, d′, d̂) = v(k, c′, d′ )κm

ĉ (c̃′ )κpm

d̂
(d̃′ ). Let δmv = 2εm + Kmv(ĉ = m + 1). We are

going to show that under Kmv, signal c′ is δmv-conditionally independent from (k, d̂)
given ĉ. Notice first that if Kmv(k, d′, d̂, c′, ĉ) > 0 for some ĉ ∈ Cm, then hm

ĉ (c̃′ ) ≤ εm. It
follows that

∑
k

pm∑
d̂=0

∣∣Kmv
(
k, d̂|ĉ, c′)−E

φ1( ˜̂c)

[
1{k}κ

p∗

d̂

]∣∣
=
∑
k

pm∑
d̂=0

∣∣Kmv
(
k, d̂|c′)−E

φ1( ˜̂c)[1{k}
[
κ
pm

d̂

]∣∣
=
∑
k

pm∑
d̂=0

∣∣Eφ1(c̃′ )
[
1{k}κ

pm

d̂

]−E
φ1( ˜̂c)

[
1{k}κ

pm

d̂

]∣∣= hm
ĉ

(
c̃′)≤ εm.

On the other hand,

∑
k

pm∑
d̂=0

∣∣Kmv(k, d̂|ĉ) −E
φ1( ˜̂c)

[
1{k}κ

p∗

d̂

]∣∣
=
∑
k

pm∑
d̂=0

∣∣∣∣ 1
Kmv(ĉ)

∑
c′∈C ′

Kmv
(
c′, ĉ
)
Kmv
(
k, d̂|ĉ, c′)−E

φ1( ˜̂c)[1{k}
[
κ
pm

d̂

]∣∣∣∣
≤
∑
c′∈C ′

Kmv
(
c′, ĉ
)

Kmv(ĉ)

∑
k

pm∑
d̂=0

∣∣Kmv
(
k, d̂|ĉ, c′)−E

φ1( ˜̂c)[1{k}
[
κ
pm

d̂

]∣∣= hm
ĉ

(
c̃′)≤ εm.

Hence,

m+1∑
ĉ=1

∑
c′

Kmv
(
ĉ, c′)∑

k, d̂

∣∣Kmv
(
k, d̂|ĉ, c′)−Kmv(k, d̂|ĉ)

∣∣
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≤ 2εm
m∑
ĉ=1

Kmv(ĉ) +Kmv(ĉ =m+ 1) ≤ δmv.

Define information structure Lmv = margK×{0, ���,pm}×{0, ���,m+1} K
mv. Then, because

d(Kmv, v) = 0, the proof of Proposition 5 implies that supg∈G(val(v, g) − val(Lmv, g))
≤ δmv.

Proof of claim (16). Observe that, for each k, ĉ, d̂,(
Lmun

)
(k, ĉ, d̂) = Eũn

(
κm
ĉ (θ1 )Eφ1(θ1 )

[
1{k}κ

pm

d̂

])
.

Because all the functions in brackets above are continuous, weak convergence ũn → ũ

implies that (Lmun )(k, ĉ, d̂) → (Lmu)(k, ĉ, d̂) for each k, ĉ, d̂. Because the information
structures Lmun and Lmu are described on the same and finite spaces of signals, the
pointwise convergence implies d(Lmun, Lmu) ≤ ‖Lmun − Lmu‖ → 0 as n → ∞. More-
over, if ĉ ∈ Cm and d̂ ∈Dpm

, the definitions imply that (Lmu)(k, ĉ, d̂) ≥ u(k, ĉ, d̂). There-
fore,

d
(
Lmu, u

)≤ ∥∥Lmu− u
∥∥≤ 2
(
u
(
C\Cm

)+ u
(
D\Dpm)) −→

n→∞ 0.

It follows that δmun = (Kmun )(ĉ =m+ 1) −→
n→∞ (Lmu)(ĉ =m+ 1) and

(
Lmu
)
(ĉ = m+ 1) = 1 − (Lmu

)(
Cm ×Dpm)≤ 1 − u

(
Cm ×Dpm)≤ u

(
C\Cm

)+ u
(
D\Dpm)

.

Together, we obtain for each m, n

sup
g∈G

(
val(un, g) − val(u, g)

)
≤ sup

g∈G

(
val(un, g) − val

(
Lmun, g

))
+ sup

g∈G

(
val
(
Lmun, g

)− val
(
Lmu
))+ sup

g∈G

(
val
(
Lmu
)− val(u, g)

)
≤ δmun + ∥∥Lmun −Lmu

∥∥+ (u(C\Cm
)+ u
(
D\Dpm))

.

Therefore,

lim sup
n→∞

sup
g∈G

(
val(v, g) − val

(
Lmv, g

))≤ 3
(
u
(
C\Cm

)+ u
(
D\Dpm))

.

When m→ ∞, the right-hand side converges to 0 as well.

Appendix E: Proof of Proposition 6

Let u′ ∈ �(K × (KC ×C ) × (KD ×D)) be defined so that u = margK×C×D u′ and u′({kC =
κ(c), kD = κ(d)}) = 1. Because u′ does not have any new information, we verify (for
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instance, using Proposition 5) that d(u, u′ ) = 0. We are going to show that C is 16ε-
conditionally independent from K × KD given KC . Notice that, because u exhibits ε

knowledge,

u′{kC 	= k or kD 	= k} ≤ u′{kC 	= k} + u′{kD 	= k}

≤ 2ε+ 2ε= 4ε.

Therefore,∑
k,kC ,kD

u′(kC )
∑
c

∣∣u′(k, kD, c|kC ) − u′(k, kD|kC )u′(c|kC )
∣∣

=
∑

k,kC ,kD

u′(k, kC , kD )
∑
c

∣∣∣∣u′(c|k, kC , kD ) −
∑
k′,kD ′

u′(c|k′, kC , k′
D

)
u′(k′, k′

D|kC

)∣∣∣∣
≤
∑
k

u′(k, k, k)
∑
c

∣∣∣∣u′(c|k, k, k) −
∑
k′,kD ′

u′(c|k′, kC = k, k′
D

)
u′(k′, k′

D|kC = k
)∣∣∣∣

+ 2u′{kC 	= k or kD 	= k}

≤
∑
k

u′(k, k, k)
∑
c

∣∣∣∣u′(c|k, k, k) − u′(c|k, k, k)
u′(k, k, k)
u′(kC = k)

∣∣∣∣
+
∑
k

u′(k, k, k)
∑
c

∑
k′ 	=k, or k′

D 	=k

∣∣u′(c|k′, kC = k, k′
D

)
u′(k′, k′

D|kC = k
)∣∣

+ 2u′{kC 	= k or kD 	= k}

≤
∑
k

u′(k, k, k)

∣∣∣∣1 − u′(k, k, k)
u′(kC = k)

∣∣∣∣+ 3u′{kC 	= k or kD 	= k}

≤
∑
k

∣∣u′(kC = k) − u′(k, k, k)
∣∣+ 3u′{kC 	= k or kD 	= k}

≤ 4u′{kC 	= k or kD 	= k} ≤ 16ε.

Because an analogous result applies to the information of the other player, Proposi-
tion 5 shows that

d
(
u′, v′)≤ 16ε,

where v′ = margK×KC×KD
u′. Because

d
(
v, v′)≤ ∑

k,kC ,kD

∣∣v(k, kC , kD ) − v′(k, kC , kD )
∣∣

≤ 2v′{kC 	= k or kD 	= k} = 2u′{kC 	= k or kD 	= k} ≤ 4ε,

the triangle inequality implies that

d(u, v) ≤ d
(
u, u′)+ d

(
u′, v′)+ d

(
v, v′)≤ 20ε.
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Appendix F: Proof of Theorem 5

Suppose that u and v are two simple and non-redundant information structures with
finite support. Let ũ and ṽ be the associated probability distributions over player 1’s
belief hierarchies. It is easy to show that if two non-redundant information structures
induce the same distributions over hierarchies of beliefs ũ = ṽ, then they are equivalent
from any strategic point of view, and, in particular, they induce the same set of ex ante
BNE payoffs. Hence, we assume that ũ 	= ṽ.

Let Hu = supp ũ and Hv = supp ṽ. Lemma III.2.7 in Mertens, Sorin, and Zamir (2015)
implies that the sets Hu and Hv are disjoint.

By adapting the construction made in Lemma 4 of Dekel, Fudenberg, and Morris
(2006) (see also Lemma 11 in Ely and Peski (2011)), there exists a nonzero sum payoff
function g(0) : K × (I × I0 ) × J → [−1, 1]2 such that I0 = Hu ∪ Hv and such that the set
of player 1’s rationalizable actions of type c ∈ C with hierarchy h(c) is contained in set
I×{h(c)}. In particular, in a BNE, each type of player 1 will report its hierarchy. Construct
game g(1) : K × (I × I0 ) × (J × {u, v}) → [−1, 1]2 with payoffs

g(1)
1 (k, i, i0, j, j0 ) = g(0)

1 (k, i, i0, j),

g(1)
2 (k, i, i0, j, j0 ) = 1

2
g(0)

2 (k, i, i0, j) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2

if j0 = u and i0 ∈Hu,

−1
2

if j0 = u and i0 /∈Hu,

0 if j0 = v.

Then the rationalizable actions of player 2 in game g(1) are contained in J × {u} for any
type in type space u and in J × {v} for any type in type space v.

Finally, for any ε ∈ (0, 1), construct game gε : K × (I × I0 ) × (J × {u, v}) → [−1, 1]2

with payoffs

gε1(k, i, i0, j, j0 ) = εg(0)
1 (k, i, i0, j, j0 ) + (1 − ε)

{
1 if j0 = u,

−1 if j0 = v,

gε2 ≡ g(1)
2 .

Then the BNE payoff of player 1 belongs to [1 − ε, 1] on structure u and [−1, −1 + ε] on
structure v. It follows that the payoff distance between the two type spaces is at least
2 − 2ε, for arbitrary ε > 0.

Next suppose that u and v are two non-redundant information structures with de-
composition u =∑α pαuα and v =∑α qαvα such that ũα = ṽα for each α. Let g be a
nonzero sum payoff function. Let σα be an equilibrium on uα with payoffs gα = g(σa ) ∈
R

2. Let sα be the associated equilibrium on vα (that can be obtained by mapping the
hierarchies of beliefs through an appropriate bijection) with the same payoffs gα. The
distance between payoffs is bounded by∥∥∥∑pαg(σα ) − qαg(sα )

∥∥∥
max

=
∥∥∥∑(pα − qα )ga

∥∥∥
max
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≤
∑

|pα − qα|‖gα‖max

≤
∑

|pα − qα|,

where the last inequality comes from the fact that payoffs are bounded.
On the other hand, let A = {α : pα > qα}. Using a similar construction as above,

we can construct game g(1) such that player 2’s actions have form J × {uA, uB}, and his
rationalizable actions are contained in set J × {uA} for any type in type space uα, α ∈ A,
and in J × {uB} otherwise. Further, we construct game g(ε) as above. Then any player 1’s
equilibrium payoff g(ε)

1,α is at least 1 − ε for any type in type space uα, α ∈ A, and −1 + ε

for any type in type space uα for α /∈ A. Denoting player 2’s equilibrium payoff as gε2,ε,
the payoff distance in game gε is at least

max
(∣∣∣∣∑

α

(pα − qα )g1,α

∣∣∣∣, ∣∣∣∣∑
α

(pα − qα )g2,α

∣∣∣∣)

≥
∣∣∣∣∑

α

(pα − qα )g1,α

∣∣∣∣
≥
[∑
α∈A

(pα − qα ) −
∑
α/∈A

(pα − qα )

]
(1 − ε) ≥ (1 − ε)

∑
|pα − qα|.

Because ε > 0 is arbitrary, the two above inequalities show that the payoff distance is
equal to

∑ |pα − qα|.
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Gospodarka, Społeczeństwo, 136–138. [1242]

Samet, Dov (1998), “Iterated expectations and common priors.” Games and Economic
Behavior, 24, 131–141. [1243]

Simon, Robert (2003), “Games of incomplete information, ergodic theory, and the mea-
surability of equilibria.” Israel Journal of Mathematics, 138, 73–92. [1226]

Venel, Xavier (2014), “Commutative stochastic games.” Mathematics of Operations Re-
search, 40, 403–428. [1228]

Weinstein, Jonathan and Muhamet Yildiz (2007), “A structure theorem for rationalizabil-
ity with application to robust predictions of refinements.” Econometrica, 75, 365–400.
[1226, 1239]

Ziliotto, Bruno (2016), “Zero-sum repeated games: Counterexamples to the existence of
the asymptotic value and the conjecture maxmin = limvn.” The Annals of Probability, 44,
1107–1133. [1228]

Co-editor Marina Halac handled this manuscript.

Manuscript received 8 March, 2021; final version accepted 27 August, 2021; available online 13
September, 2021.

http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:39/rosenberg2004stochastic&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:40/rosenberg2001operator&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:41/rosenberg2000maxmin&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:42/rubinsteinelectronic1989&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9
https://ideas.repec.org/a/aea/aecrev/v79y1989i3p385-91.html
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:44/samet1998iterated&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:45/simongames2003&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:46/venel2014commutative&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:47/weinstein2007structure&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:48/ziliottozero-sum2016&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:39/rosenberg2004stochastic&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:39/rosenberg2004stochastic&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:40/rosenberg2001operator&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:41/rosenberg2000maxmin&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:42/rubinsteinelectronic1989&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:44/samet1998iterated&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:45/simongames2003&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:46/venel2014commutative&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:47/weinstein2007structure&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:48/ziliottozero-sum2016&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:48/ziliottozero-sum2016&rfe_id=urn:sici%2F1933-6837%282022%2917%3A3%3C1225%3AVBDBIS%3E2.0.CO%3B2-9

	Introduction
	Model
	Characterization of the distance
	Applications
	The impact of the marginal over K
	Single-agent problems
	Value of additional information: Games versus single agent
	Informational substitutes
	Informational complements
	Value of joint information

	Large space of information structures
	(U*,d) is not totally bounded
	Last open problem of Mertens
	Comments on the proof

	Value-based topology
	Relation to the weak topology
	Strategic discontinuities
	Relation to Theorem 2

	Pointwise value-based topology and completions

	Payoff-based distance
	Conclusion
	Appendix A: Proof of Theorem 1
	Appendix B: Proofs for Section 4
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5

	Appendix C: Proof of Theorem 2
	Information and payoff structures (ul)l>=1 and (gl)l>=1
	Conditions UI and values
	Existence of an appropriate Markov chain

	Appendix D: Proofs of Theorem 3
	Theorem 3: Weak topology is contained in value-based topology
	Theorem 3: Value-based topology is contained in weak topology

	Appendix E: Proof of Proposition 6
	Appendix F: Proof of Theorem 5
	References

