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Supplement to “Slow persuasion”
(Theoretical Economics, Vol. 18, No. 1, January 2023, 129–162)

Matteo Escudé
Department of Economics and Finance, LUISS

Ludvig Sinander
Department of Economics and Nuffield College, University of Oxford

Appendix H: Solving for the value function

In this Appendix, we explain how to solve for the sender’s value function using Propo-
sition 1. We detail in particular how the value is computed in the two-action example,
allowing us to draw Figure 1.

PartitionC \D into maximal intervals (Rk )Kk=1. (In the two-action example, the max-
imal intervals are [0, 2/3) and (2/3, 1].) Fix a continuity interval Rk. The homogeneous
part (without the u) of the differential equation (∂) has general solution AH1 − BH2 for
constantsA, B ∈ R, where

H1(p) := pξ(1 −p)1−ξ, ξ := 1/2 +
√

1/4 + 2rσ2/�λ and H2(p) :=H1(1 −p).

A particular solution may be obtained from formula (6.2) in Coddington (1961, ch.
3). Things are easier when the sender has expected-utility preferences, so that f (a, ·) is
affine, as u itself is then a particular solution. This is the case in the two-action example,
and in the three-action example below. In the expected-utility case, the value function
is given on each maximal interval Rk of C \D as

v(p) = u(p) +ARkH1(p) −BRkH2(p) for all p ∈Rk,

where the constants (ARk , BRk )Kk=1 are the unique ones that ensure that the properties
in Proposition 1 are satisfied: the boundary condition v= u on {0, 1}, the continuity of v
onD, and smooth pasting on C ∪D.

H.1 The two-action example (Section 4.1)

Here, D= {2/3}, and C contains [0, 2/3) and may or may not contain [2/3, 1]. In either
case,

v(p) =
{
A[0,2/3)H1(p) −B[0,2/3)H2(p) for p ∈ [

0, 1/2)

αp−β+A(2/3,1]H1(p) −B(2/3,1]H2(p) for p ∈ (2/3, 1
]
,
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where α = 3/2 and β = 1/2.1 The boundary conditions require that B[0,2/3) = 0 and
A(2/3,1] = 0. Continuity of v at 2/3 requires that

A[0,2/3)H1(2/3) = α(2/3) −β−B(2/3,1]H2(2/3).

If�λ is sufficiently high, then 2/3 ∈ C, in which case smooth pasting must hold at 2/3:

A[0,2/3)H
′
1(2/3) = α−B(2/3,1]H

′
2(2/3).

Thus the constants are uniquely pinned down.
If �λ is low, then 2/3 /∈ C, in which case v = u on [2/3, 1]. Thus B(2/3,1] = 0, whence

A[0,2/3) is pinned down by the continuity condition.
To determine which case applies for a given value of �λ, calculate A[0,2/3) assuming

that the first case applies. If

A[0,2/3)H1(2/3) ≥ u(1/2) = 1/2,

then the first case does indeed apply; if not, then not.

H.2 A three-action example

Consider the flow payoff u depicted in Figure 2. The underlying model has actions A =
{0, 1, 3}, flow payoff fS(a, p) = a for the sender, and payoffs fD(0, p) = 0, fD(1, p) = 2p−
1 and fD(3, p) = 14

3 p− 3 for the decision maker. Figure 2 depicts the concave envelope,
as well as the sender’s value function for high and low values of �λ.

Figure 2. Three-action example.

1If C contains [2/3, 1], then the expression for p ∈ (2/3, 1] holds since (HJB) must be satisfied in the
classical sense by Proposition 1. If not, then Proposition 1 requires that v = u, which amounts to setting
A(2/3,1] = B(2/3,1] = 0.



Supplementary Material Slow persuasion 3

Clearly, C contains [0, 1/2) and (1/2, 3/4), and does not contain [3/4, 1]. Thus the
value function offD is

v(p) =

⎧⎪⎪⎨
⎪⎪⎩
A[0,1/2)H1(p) −B[0,1/2)H2(p) for p ∈ [0, 1/2)

�+A(1/2,3/4)H1(p) −B(1/2,3/4)H2(p) for p ∈ (1/2, 3/4)

h,

where �= 1 and h= 3. The boundary condition at p= 0 again requires that B[0,1/2) = 0.
Continuity of v at 1/2 and at 3/4 requires that

A[0,1/2)H1(1/2) = �+A(1/2,3/4)H1(1/2) −B(1/2,3/4)H2(1/2)

and

�+A(1/2,3/4)H1(3/4) −B(1/2,3/4)H2(3/4) = h.

These are two equations in three unknowns.
If �λ is sufficiently high that 1/2 ∈ C, then smooth pasting must hold at 1/2, giving us

the third equation

A[0,1/2)H
′
1(1/2) =A(1/2,3/4)H

′
1(1/2) −B(1/2,3/4)H

′
2(1/2).

If �λ is sufficiently low that 1/2 /∈ C, then v(1/2) = u(1/2) = �. We thus obtain a third
equation from the requirement that v be continuous at 1/2:

A[0,1/2)H1(1/2) = �.

To discern which case applies, computeA[0,1/2) assuming that the first (information
arrives fast) case applies. If A[0,1/2)H1(1/2) ≥ �, then the fast-arrival case does indeed
apply; if not, then not.

Appendix I: Generic uniqueness of long-run beliefs

We claimed in Section 5.1 that provided v(p0 ) > u(p0 ), generically, all best replies of
the sender induce the same long-run beliefs (namely, the beliefs {p−, p+} defined in
Corollary 3).

To see how uniqueness can fail, consider the three-action example in supplemental
Appendix H.2. Figure 3a depicts the knife-edge case in which �λ is such that the fast-
information value function with the convex-flat shape in Figure 2a touches u at 1/2.2 In
this case, the sender is indifferent between providing and not providing information at
1/2, and strictly prefers to do so on (0, 1/2) and (0, 3/4). The best reply 	
 from Corol-
lary 2 stops at 1/2, inducing the long-run beliefs {p−, p+} = {1/2, 3/4} from Corollary 3.
But since the sender is indifferent at 1/2, she also has a best reply that provides informa-
tion at 1/2, which induces long-run beliefs {0, 3/4}.

2We thank Jeff Ely for pointing out this scenario.
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Figure 3. Knife-edge cases in which long-run beliefs are not unique.

This scenario is nongeneric in the sense that slightly increasing�λ puts us back in Fig-
ure 2a, where the sender strictly prefers to provide information at full tilt at 1/2, whereas
slightly decreasing �λ puts us in Figure 2b, where she strictly prefers to stop at 1/2.

Similarly, Figure 3b depicts the case in Section 4.1 in which �λ has exactly the value
needed for the fast-information value function with the convex shape in Figure 1a to
just touch u at 2/3. In this example, there is more multiplicity: the sender is indifferent
on [1/2, 1], so has best replies that induce any mean-p0 distribution of long-run beliefs
supported on {0} ∪ [2/3, 1]. (The best reply 	
 induces the beliefs {0, 2/3}.) Again, per-
turbing �λ makes the sender’s preference strict at 2/3, so that long-run induced beliefs
are unique (either {0, 2/3} or {0, 1}).

The nongenericity of multiplicity in these examples is a general phenomenon. Mul-
tiplicity occurs for some prior p0 with v(p0 )> u(p0 ) precisely if the sender is indifferent
between stopping and continuing at some p ∈ (0, 1) and weakly prefers to continue on
a neighborhood of p. In such cases, her preference becomes strict when �λ is perturbed
slightly.

Appendix J: Piecewise continuity is merely tie-breaking

We asserted in Section 2.3 that provided the decision-maker’s flow payoff fD is nonde-
generate in a mild sense, it is without loss of optimality for her to restrict attention to
piecewise continuous Markov strategiesA : [0, 1] → �(A).

To justify this claim, begin by recalling from Section 3 that the decision maker best-
replies to a Markov strategy of the sender by myopically maximizing fD(a, p) at each p.
Fix two actions a, a′ ∈ A, and write

ψ(p) := fD(a, p) − fD
(
a′, p

)
for their payoff difference. Say that ψ strictly up-crosses at p ∈ (0, 1) if and only if ψ(p) =
0 and for any ε > 0, there are p′ ∈ (p− ε, p) and p′′ ∈ (p, p+ ε) such that ψ(p′ ) < 0 <
ψ(p′′ ), strictly down-crosses if the reverse inequalities hold, and simply strictly crosses if
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either is the case. Write K ⊆ (0, 1) for the set on which ψ strictly crosses. We claim that
given some weak nondegeneracy condition on fD, the crossing set K is discrete, so that
the decision maker strictly prefers to switch actions only on a discrete set. (It suffices to
consider only two arbitrary actions a, a′ ∈ A because A is finite.)

To see what can go wrong, suppose that fD(a, p) = 0 and that p 	→ fD(a′, p) is a typ-
ical path of a standard Brownian motion. Then ψ is continuous, but the strict crossing
setK is nonempty with no isolated points (see, e.g., Theorem 9.6 in Karatzas and Shreve
(1991, ch. 2)). This preference dithers maniacally, wishing to switch actions back and
forth extremely frequently.

As a first pass, observe that if ψ is monotone, or more generally if ψ or −ψ has the
single-crossing property (ψ(p) ≥(>) 0 implies ψ(p′ ) ≥(>) 0 for p<p′), thenK is empty
or a singleton, so certainly discrete. These assumptions are satisfied by expected-utility
preferences.

A weak nondegeneracy condition that suffices is local single-crossing : for each
p ∈ K, we have either ψ ≥ 0 or ψ ≤ 0 on a left-neighborhood of p, and similarly on a
right-neighborhood. Then each p ∈K is manifestly the unique strict crossing of ψ on a
neighborhood, hence isolated. A sufficient condition for this is local monotonicity: for
eachp ∈K, we haveψ(p−ε) ≤ 0 ≤ψ(p+ε) for all sufficiently small ε > 0, or the reverse
inequality.

Appendix K: A very brief introduction to viscosity solutions

Crandall (1997), Katzourakis (2015) and Crandall, Ishii, and Lions (1992) provide
overviews of the theory of viscosity solutions of second-order differential equations.
Moll (2020), Evans (2010, ch. 10), Calder (2018) and Bressan (2011) give easier treat-
ments that deal mostly with first-order equations.

The general idea of viscosity solutions is as follows. If w is a viscosity solution of
(HJB), then it must satisfy (HJB) in the classical sense on any neighborhood on whichw′′
exists and is continuous. If w′′ does not exist at p ∈ [0, 1], we require instead that (HJB)
hold with the appropriate inequality when w′′(p) is replaced by φ′′(p) for some twice
continuously differentiable local approximation φ to w at p. (The formal definition was
given in Section 4.2.)

K.1 Illustration of the definition

Consider the three-action example from supplemental Appendix H.2 (Figure 2). Write C2

for the set of twice continuously differentiable functions (0, 1) → R. Begin by observing
that v is continuous, hence upper and lower semicontinuous.

Consider a p in whose vicinity v is twice continuously differentiable, for example,
p = 2/5. We may easily find φ1, φ2 ∈ C2 such that φ1 − v and v − φ2 are locally mini-
mized at p, as in Figure 4a. But in particular, we may choose φ ∈ C2 to coincide with
v on a neighborhood of p. Then φ− v and v − φ are both locally minimized at p, and
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Figure 4. Functions φ ∈ C2 that approximate v locally.

φ′′(p) = v′′(p). Since v is a viscosity subsolution (supersolution) by Theorem 1, and
u(p) = u
(p) = u
(p), it follows that

v(p) ≤(≥) u(p) +�λp
2(1 −p)2

2rσ2 max
{

0, v′′(p)
}

.

So (HJB) must be satisfied in the classical sense at p.
Next, consider a point at which v′′ is undefined, for example, p = 1/2. There

are many φ ∈ C2 such that φ − v has a local minimum at p; an example is depicted
in Figure 4b. Since v is a viscosity subsolution of (HJB) and u
(p) = u(p), we must
have

v(p) ≤ u(p) +�λp
2(1 −p)2

2rσ2 max
{

0, φ′′(p)
}

for any such φ. In fact, φ can be chosen so that φ′′(p) ≤ 0: the φ depicted in Fig-
ure 4c is affine, so hasφ′′(p) = 0. The subsolution condition therefore requires precisely
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that

v(p) ≤ inf
φ∈C2:

φ−v loc. min. at p

{
u(p) +�λp

2(1 −p)2

2rσ2 max
{

0, φ′′(p)
}} = u(p),

which holds (with equality, in fact).
By contrast, there are no φ ∈ C2 such that v−φ has a local minimum at p; a (failed)

attempt to find such aφ is drawn in Figure 4d. The fact that v is a viscosity supersolution
of (HJB) therefore has no bite at p= 1/2.

K.2 Some properties of viscosity solutions

There are other nonclassical notions of “solution” of a differential equation, most im-
portantly distributional solutions (e.g., Evans (2010, chs. 5–9)). But for many differential
equations, including HJB equations, viscosity solutions are the appropriate notion. The
chief reasons are twofold: viscosity solutions exist, and they satisfy a comparison prin-
ciple.

Begin with existence. Many HJB equations, including ours, fail to have a classical
solution. Many also fail to have nonclassical solutions of, for example, the distributional
variety. By contrast, HJB equations always have a viscosity solution.

The other virtue of viscosity solutions is that they satisfy a comparison principle (also
called a “maximum principle”) of the following kind: if w is a subsolution on (a, b), �w
is a supersolution on (a, b), and w ≤ �w on {a, b}, then w ≤ �w on (a, b). (See Crandall,
Ishii, and Lions (1992, Theorem 3.3).) Classical sub- and supersolutions also satisfy a
comparison principle, but other nonclassical notions of “solution” do not.

The comparison principle may be used to obtain uniqueness results; a standard
one is that the HJB equation has at most one viscosity solution with the right bound-
ary conditions satisfying a linear-growth condition. It follows that the value function is
the unique solution with the right boundary conditions and linear growth; see Fleming
and Soner (2006, ch. V). We use the comparison principle in this manner in the proofs
of Lemmata 1 and 3 (Appendices B and D).

The comparison principle may also be used to establish the continuity of solutions,
and thus of the value function. In particular, suppose that we have shown that the upper
(lower) semicontinuous envelope v
 (v
) of the value v is a subsolution (supersolution)
of the HJB equation, and that v
 = v
 on {0, 1}. (We do precisely this in the proof of
Theorem 1 in Appendix A.) A comparison principle then yields v
 ≤ v
, which since v
 ≤
v≤ v
 implies that v is itself a viscosity solution, hence continuous.

In our proof of Theorem 1 (Appendix A), we eschew this approach in favor of a di-
rect proof that v is continuous. We do this because we are not aware of a compari-
son principle that applies assuming only piecewise continuity of u. The closest result
that we know of is Theorem 3.3 in Soravia (2006), which would be applicable under
the additional hypotheses that u has only finitely many discontinuities and satisfies
u(p) ∈ [u(p−) ∧ u(p+), u(p−) ∨ u(p+)] at every p ∈ (0, 1).
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