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Power laws in productivity and firm size are well documented empirical regular-
ities. As they are upper right-tail phenomena, this paper shows that assuming
asymptotic power functions for various model primitives (such as demand and
firm heterogeneity) are sufficient for matching these regularities. This greatly re-
laxes the functional-form restrictions in economic modeling and can be beneficial
in certain contexts. We demonstrate this in a modified Melitz (2003) model, which
embeds an innovation mechanism so as to endogenize the productivity distribu-
tion and generate both of the above-mentioned power laws. We also investigate
the model’s welfare implications with regard to innovation by conducting a quan-
titative analysis of the welfare gains from trade.

Keywords. Power law, firm heterogeneity, asymptotic power functions, regular
variation, innovation, gains from trade.

JEL classification. F12, F13, F41.

1. Introduction

In the literature concerning agent heterogeneity, in particular, firm heterogeneity, power
functions are often assumed in various key components of model setups. For exam-
ple, the constant elasticity of substitution (CES) utility function implies that demand
is a power function of price; the firm productivity distribution is often assumed to be
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Pareto (e.g., Melitz and Ottaviano (2008) and Chaney (2008), who assumes this in a
Melitz (2003) model) or Fréchet (Bernard, Eaton, Jensen, and Kortum (2003), Eaton and
Kortum (2002)).1 These assumptions are made for tractability, and they are often justi-
fied by enabling the models to generate power laws in productivity and firm size, which
are widely documented empirical regularities (see, for example, Axtell (2001), Luttmer
(2007), and Nigai (2017)). Formally, a distribution is said to exhibit a power law, and is
then called a power-law distribution, if its tail probability at the upper tail is given by a
power function, i.e., limx→∞ Pr(X ≥ x) = αx−ζ for some positive constants α and ζ.2

In principle, since power laws are in themselves upper right-tail phenomena, the
functional-form restrictions on these key setups for matching the power laws could
be relaxed, and in certain contexts, such a relaxation can be beneficial. For example,
the CES utility function has been shown to be quite restrictive as it implies constant
markups and homothetic demand Zhelobodko, Kokovin, Parenti, and Thisse (2012), and
the empirical firm size distribution is shown to follow a Pareto distribution only at the
upper right tail Nigai (2017). This paper aims to clarify what relaxations on these key
setups can be made, and we show them in the canonical trade model of Melitz (2003).
As the distribution of productivity drawn in the Melitz model is exogenously given, we
embed an innovation mechanism into Melitz (2003) so as to microfound the power laws
in both productivity and firm size.3

Our model starts with a simple relation between productivity, innovation effort, and
a firm’s capability. More innovation leads to higher productivity, and the higher a firm’s
capability, the less innovation effort is needed to achieve the same level of productiv-
ity. One feature of this relation is that productivity is determined jointly by effort and
capability in a multiplicative manner; we microfound this feature by a research and de-
velopment (R&D) process in which firms decide the complexity of their production pro-
cedures and conduct Bernoulli trials (experiments) to improve the performance of each
procedure. Firms differ in their probabilities of failure in these Bernoulli trials. We first
provide an illustrative example that embeds this relation into a standard Melitz model
(with a CES demand) as an innovation stage after entry and before production. As a
first cut, we show that if the distribution of the probability of failure across firms has a
finite and positive density near zero (i.e., those very capable firms), then the power laws
emerge.

We then show that power laws continue to hold when all functions as the primi-
tives of this model are generalized to asymptotic power functions (henceforth APFs).

1The Fréchet and Pareto distributions are tail-equivalent as their tail probabilities are asymptotically
proportional. Hence, the Fréchet distribution is also a power-law distribution and generates power laws in
firm size.

2It has been shown that the power laws in productivity and firm size provide a microfoundation for
the gravity equations (Arkolakis, Costinot, Donaldson, and Rodríguez-Clare (2019) and Chaney (2018)) and
that the few very large firms may be what matters the most for macroeconomic performance, i.e., granular
economies Gabaix (2011). Furthermore, the power-law coefficients are often tightly connected with welfare
evaluation (as suggested by Arkolakis, Costinot, and Rodríguez-Clare (2012) and Arkolakis et al. (2019)).
Thus it is important to understand the circumstances under which these power laws may emerge.

3Empirical evidence has shown that trade may induce changes in the productivity of surviving/active
firms; see, e.g., Pavcnik (2002), Lileeva and Trefler (2010), Bustos (2011), and Aghion, Bergeaud, Lequien,
and Melitz (2019).
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This class of functions is actually more general than it may seem at first glance. First,
when the demand is generalized to an APF (i.e., an asymptotic CES), many widely used
non-CES and/or non-homothetic preferences are included. Second, the innovation cost
function permits at least general polynomials. Third, the limit of density of the distribu-
tion of failure probability at zero can be either 0, a positive constant, or infinite, pro-
vided that the density is asymptotically a power function at the left tail. This actually
subsumes the limit condition in the illustrative example. As we will explain in Section 2,
this includes many well known and widely used distributions.

The key step involves mapping from model primitives as APFs via firms’ optimal
choices to power laws. Such a mapping is straightforward if the model primitives are
exact power functions, as in Chaney (2008). However, this is not a trivial task when
the primitives are not exact power functions because firms’ optimal choices need to be
properly taken care of when the underlying functional forms for demand and innova-
tion cost are unknown. Our contribution here is to utilize the tool of regular variation to
tackle this problem, as APFs are regularly varying.

All of the above-mentioned results are shown in a closed economy. We then go on to
show that these results continue to hold in a very general open-economy environment
where all model parameters are allowed to be country-specific. Interestingly, the tail
indices of both the productivity and the firm size distributions of each country depend
on the market with the largest competitiveness (largest price elasticities). As a result,
opening up to trade (weakly) fattens the right tails of both productivity and firm size
distributions.

Our setup on innovation is relatively simple in the sense that we use a general
functional relation to link productivity to innovation effort and firm capability. This
approach is adopted instead of using a more sophisticated setup because we seek to
demonstrate the techniques and the above-described results under a simple and stan-
dard setup for clarity. The approach can be applied to more sophisticated models of
innovation. For example, in the immense literature on innovation and growth, many
authors have assumed power functions for demand or underlying firm heterogeneity for
tractability so as to focus on dynamics for various purposes; see, e.g., Sampson (2016),
Desmet, Nagy, and Rossi-Hansberg (2018), and Hsieh, Klenow, and Nath (2021). Our
results can be used either to generalize their environments by means of APFs or as a jus-
tification for these more restrictive assumptions. Another strand of the literature focuses
on the relations between trade and innovation in static settings, such as Lileeva and Tre-
fler (2010), Bustos (2011), Bas and Ledezma (2015), Bonfiglioli, Crinó, and Gancia (2019),
and Aghion et al. (2019), in which either the underlying firm heterogeneity is assumed
to follow a Pareto distribution or the functional form is not specified for generality. In
terms of matching the power laws, our approach can thus be applied to these models
either as a generalization to those that assume the existence of a Pareto distribution or
as a refinement to those that keep the functional forms general.

Such an approach can be applied generally to models of agent heterogeneity. An ob-
vious example is indeed the model of Melitz (2003), as the power law in firm size emerges
if the demand and the distribution of productivity draws are each an APF. This approach
can also be applied to the model of Yeaple (2005), who shows how trade affects the wage
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distribution and skill premium. In light of our findings, it is a simple exercise to gener-
ate a power law in the wage distribution in his framework by assuming that worker skill
is distributed in the form of an APF and the marginal product of labor as a function of
worker skill is also an APF.

To further appreciate the role of APFs, it is important to distinguish our work from
that of Mrázová, Neary, and Parenti (2021), who show that if two firm variables of interest
are related by a power function, then the distribution of one variable following a gener-
alized power function (GPF) implies that the other variable also follows the same GPF
family. They emphasize the role of the CREMR (constant revenue elasticity of marginal
revenue) demand in linking firm productivity and sales so that both variables are in the
same GPF family. The concern in the current paper is different, as we focus on the envi-
ronment under which power laws would emerge. Most importantly, neither of the two
classes of functions, APFs and GPFs, subsumes the other; hence, none of the theoretical
results in either paper subsumes the other. It is permissible that the APFs for demand,
innovation cost, and failure probability are all of different families, and there can also be
applications of theorems by Mrázová, Neary, and Parenti (2021) that do not conform to
power laws.

To study the role of innovation in this modified Melitz model, the remainder of this
paper examines the effect of trade cost on the productivity distribution and conducts a
quantitative analysis of the welfare gains from trade. For this purpose and for tractabil-
ity, we focus on a symmetric-country world with CES preferences. Section 3 analyzes
how the productivity distribution is affected by trade liberalization. We show that a
lower variable trade cost increases (decreases) exporters’ (non-exporters’) innovation
effort. On the one hand, a lower trade cost implies a larger effective market size facing
the exporters. Hence, the exporters’ marginal benefit of having a higher productivity in-
creases, leading them to innovate more. On the other hand, non-exporters face more
import competition and make less profit as the prices of imported goods are reduced,
not only because of a lower variable trade cost, but also due to the fact that these foreign
exporters become more productive. Consequently, a lower trade cost negatively affects
the productivity of non-exporters.

Section 4 performs a quantitative analysis to clarify how innovation affects the wel-
fare gains from trade. To highlight the role played by innovation, we compare the wel-
fare gains from trade in this model with those in the Melitz (2003) model with a Pareto
productivity distribution. When firms’ R&D abilities are uniformly distributed, the re-
sulting productivity follows a Pareto distribution (with a jump at the exporting cutoff);
thus, such a parameterization is adopted. We calibrate the model to match the same
trade elasticity, domestic expenditure share, and share of exporters. Following Melitz
and Redding’s (2015) approach of comparing across models by fixing common param-
eters, we compare the two models conditional on the same trade elasticity and values
of the common parameters. Our quantitative analysis finds that the model with inno-
vation entails larger welfare gains from trade than the Melitz–Pareto model by about
40%.

This paper is closely related to the literature on power laws in firm size. Our central
contribution to this literature is to show the functional-form generality for various as-
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pects of a rather generalized general equilibrium model of trade in generating the power
laws. Thus, it is fundamentally different from the popular explanation of power laws
based on firm size dynamics that follow a random growth process; see, e.g., Luttmer
(2007), Acemoglu and Cao (2015), and König, Lorenz, and Zilibotti (2016).4 Recently,
Chaney (2014, 2018) and Geerolf (2017) have provided explanations for the power law
in firm size via network and firm hierarchy, respectively. Our mathematical mechanism
for power laws is different from Chaney (2014, 2018), which relies on “preferential at-
tachments” that are similar to random growth mathematically, but have interesting ap-
plications to trade. Our economic mechanism differs from Geerolf (2017), which builds
on the canonical firm-hierarchy model of Garicano (2000), but does not feature innova-
tion, selection, or trade. Moreover, in terms of the mathematical mechanism, Geerolf’s
(2017) application of the power law change of variable technique to his model is also
used here in our illustrative example, but his study does not explore APFs or use regular
variation.

Since Arkolakis, Costinot, and Rodríguez-Clare (2012; henceforth ACR), there has
been a revived and still growing literature on the welfare gains from trade (see Costinot
and Rodríguez-Clare (2015) for a survey). The literature on the gains from trade with
an innovation mechanism has built on dynamic models in which substantial dynamic-
innovation gains are found.5 By contrast, we show that gains from trade due to innova-
tion can also be substantial in a static general equilibrium model.6

2. Power laws in productivity and firm size

We start with a closed economy model to illustrate the mechanism of innovation. We
show how power laws for productivity and firm size emerge from such a model. Sec-
tion 2.3 shows that such results can easily be extended to a general open-economy en-
vironment.

2.1 Model setup

There are N individuals in the economy, each of whom is endowed with one unit of
labor. All individuals are identical in their income earned from wages w, and they spend
their income on a continuum of varieties, each of which is indexed by υ. Assume that
the aggregate inverse demand function is given by p = D(q(υ); A) on [q, ∞) with q ≥ 0.7

4Also see Gabaix (2009) for a survey of this random-growth approach. Even though König, Lorenz, and
Zilibotti (2016) also incorporate innovation, how innovation is used to generate power laws is quite different
from our study, as their approach is still primarily a random-growth process.

5For example, Hsieh, Klenow, and Nath (2021) find that the innovation mechanism may increase the
gains from trade by 31∼75%, while Impullitti and Licandro (2018) and Hsu, Riezman, and Wang (2020) find
that it can amplify the gains from trade by 2 and 4.5 times, respectively.

6As our model entails the local ACR formula, the innovation mechanism here does not contribute to any
extra gains from trade conditional on the domestic expenditure share and trade elasticity. However, our
quantitative exercise is different because we adopt the approach of Melitz and Redding (2015) to compare
the implications of different models conditional on the same parameters.
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That is, we assume that the inverse demand of a variety depends on all the other varieties
only through an aggregate variable A ∈ R. We assume that D is twice-differentiable and
that the law of demand holds: D′ < 0.8

On the production side, labor is the only input, and firms engage in monopolistic
competition. To enter, each entrant hires a κe amount of labor, which allows the entrant
to obtain a differentiated variety and a draw of an R&D parameter γ from a given dis-
tribution that we will explain shortly. For a firm to produce, κD units of labor as fixed
input are required. The productivity of a firm is endogenously determined and denoted
by ϕ. Denoting wages as w, the total cost of production as a function of output q is
w(q/ϕ+ κD ). A firm’s profit from production is

π(ϕ) ≡ max
q

π̃(q; ϕ) ≡ max
q

pq−wϕ−1q−wκD. (1)

A solution to this problem is denoted by q∗(ϕ). Note that if there are multiple optimal so-
lutions, q∗(ϕ) could refer to any one of them.9 In addition, π(ϕ) is a function regardless
of whether there are multiple values of q∗(ϕ).

Each firm determines its productivity by conducting R&D. That is, in addition to
the entry and production stages in Melitz (2003), there is a second stage in which firms
innovate to determine productivity. The R&D efforts are in terms of labor, and the labor
requirement k for a γ-type firm to acquire a productivity level ϕ is given by the function

k= γV (ϕ) + κR, (2)

where V (·) is twice-differentiable, strictly increasing, and convex on R+ with
limϕ→∞ V (ϕ) = ∞, and κR is the fixed cost of innovation. In this innovation cost func-
tion, γ is multiplicatively separable from V and serves as an inverse measure for a firm’s
R&D efficiency. This functional form can be microfounded by an R&D process in which
firms decide the complexity of their production procedures and conduct Bernoulli tri-
als (experiments) to improve the performance of each procedure. Firms differ in their
probabilities of failure γ ∈ (0, 1] in these Bernoulli trials. The cumulative distribution
function (c.d.f.) and the probability distribution function (p.d.f.) of the distribution of
γ are denoted by F(·) and f (·), respectively. Equation (2) suffices for our purposes; we
provide a microfoundation of this R&D process in Appendix A.1.

7We allow q > 0 for generality. There are demands with minimal consumption, such as the CREMR
demand given in Table 1.

8Such an inverse demand function can be generated by (but is not limited to) maximizing an additively
separable utility function U = ∫υ∈ϒ u(x(υ))dυ subject to the budget constraint

∫
υ∈ϒ p(υ)x(υ)dυ = w. The

sub-utility u(·) is defined on [x, ∞) with x≥ 0. Assume that u′ > 0 and u′′ < 0. The standard solution yields
the inverse demand function p = D(q(υ); A) ≡ u′( q(υ)

N )/A = u′(x(υ))/A on [q, ∞), where q ≡ Nx and A is
the Lagrange multiplier of an individual consumer’s problem and is a general equilibrium object. Note that
u′′ < 0 implies that D′ < 0. For forms of D(q(υ); A) other than u′(q(υ))/A, see Table 1 and the discussion
following Assumption 1.

9In a similar monopolistic-competition environment, Parenti, Ushchev, and Thisse (2017) show that the
profit-maximization problem entails a unique solution if and only if the marginal revenue is strictly de-
creasing. This requires the inverse demand function to be concave, linear, or not too convex. In general,
multiple solutions are possible if no constraint is imposed on D′′(·).
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A γ-type firm chooses an optimal productivity level ϕ that maximizes its total profit


(γ) ≡ max
ϕ

π(ϕ) −wγV (ϕ) −wκR, (3)

and the resulting optimal choice of ϕ is denoted by ϕ∗ = ϕ̃(γ). Again, if there are mul-
tiple optimal solutions, ϕ̃(γ) could refer to any one of them. At the beginning of the
second stage, a firm chooses to innovate if and only if 
(γ) ≥ 0, i.e., when the firm with
γ finds that its operating profit pq−wϕ−1q under ϕ̃(γ) and q∗(ϕ̃(γ)) is sufficient to cover
the innovation cost wγV (ϕ̃(γ)) + wκR and the fixed cost of production wκD. Any firm
that chooses to innovate must subsequently operate in the third stage because 
(γ) ≥ 0
implies that π(ϕ) > 0. As there may be firm selection, the set of surviving firms is de-
noted by �. The free-entry condition is

E(
) ≡
∫
�

(γ)dF(γ) =wκe. (4)

The goods market clearing condition is expressed as

Me

∫
�
q∗(ϕ̃(γ)

)
D
(
q∗(ϕ̃(γ)

)
; A
)
dF(γ) = wN , (5)

where Me is the number of entrants. The labor market clearing condition is N = Ne +
Nin +Np, where Ne, Nin, and Np are the masses of labor employed for entry, innovation,
and production, respectively: Ne =Meκe, Nin =Me

∫
�(γV (ϕ̃(γ)) +κR )dF(γ), and Np =

Me
∫
�( q

∗(γ)
ϕ̃(γ) + κD )dF(γ).

In sum, the model contains the following three stages.

Stage 1: Entry Stage. Each potential entrant decides whether to enter the market. If
an entrant decides to enter, he pays the fixed entry cost κe, obtains a differentiated
variety, and draws his type γ randomly from the distribution f (γ).

Stage 2: Innovation Stage. Given γ, each firm decides whether to innovate or not,
and if it does decide to, determines its productivity level ϕ. Those who innovate
proceed to the next stage and those who do not innovate exit the market.

Stage 3: Production/Consumption Stage. Each firm pays κD and determines its out-
put and price. Production and consumption take place and markets clear.

An equilibrium consists of {w, A, Me, �} such that the set of surviving firms � is de-
termined by 
(γ) ≥ 0, and {w, A, Me} are jointly determined by (4), (5), and the labor
market clearing condition. In such a closed-economy setting, one of these conditions is
made redundant by Walras’ law. We choose labor as the numéraire, and so w = 1.

Note that the free-entry condition implies that consumers’ total expenditure is equal
to the entry costs, innovation costs, and all of the production costs.10 In other words,
consumers are collectively the financiers for the firms in their entry and innovation
stages. To ensure that all firms that are willing to innovate (and subsequently produce)
get funded, we assume that financiers do not observe firm types. As entrants are ex ante
identical, the firm ownership is uniformly allocated to consumers.

10It is straightforward to verify this by plugging (1) and (3) into the free-entry condition (4).
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2.2 Equilibrium and power laws

This subsection provides an exposition of how power laws for both productivity and firm
size emerge. We first provide an illustrative example that differs from the Melitz model
only by having an innovation stage in which the variable innovation cost function V

is given by a power function. We show how a weak restriction on the underlying firm
heterogeneity f allows the power laws in productivity and firm size to emerge. By us-
ing regular variation, we then show that the power laws continue to hold when inverse
demand, innovation cost, and the underlying firm heterogeneity are all APFs.

2.2.1 Illustrative example using the Melitz model As in Melitz (2003), consider a CES

demand p = ( N
P1−σ )

1
σ q− 1

σ , where σ > 1. For tractability, we use a simple power function
for the innovation cost: k = γϕβ + κR, where β > 1. For any ϕ, a firm’s optimal output
in Stage 3 is given by q∗(ϕ) = N

P1−σ ( σ−1
σ )σϕσ . The operating profit is accordingly π(ϕ) =

N
P1−σ

( σ−1
σ )σ

σ−1 ϕσ−1 − κD.
In Stage 2, a γ-type firm decides its productivity level to maximize its total profit (3).

The resulting productivity as a function of γ is

ϕ̃(γ) ≡
[ N

P1−σ

(
σ − 1
σ

)σ

β

] 1
β−σ+1

γ
− 1

β−σ+1 . (6)

It is readily verified that the second-order condition is satisfied if and only if β > σ − 1,
i.e., the innovation cost function is sufficiently convex. This condition is imposed here.
A firm’s total profit becomes


(γ) = β− σ + 1
σ − 1

(
σ − 1
σ

) βσ
β−σ+1

(
N

βP1−σ

) β
β−σ+1

γ
− σ−1

β−σ+1 − κD − κR (7)

and, hence, there is a unique cutoff

γD =
[

1
κD + κR

β− σ + 1
σ − 1

(
σ − 1
σ

) βσ
β−σ+1

(
N

βP1−σ

) β
β−σ+1

]β−σ+1
σ−1

(8)

such that 
(γ) ≥ 0 if and only if γ ≤ γD.
An equilibrium consists of {P , Me, γD} such that γD is given by (8), and {P , Me} are

jointly determined by the price index formula P1−σ = Me{
∫ γD

0 [σ−1
σ ϕ̃(γ)]σ−1 dF(γ)} and

the free-entry condition
∫ γD

0 
(γ)dF(γ) = κe, where ϕ̃(γ) and 
(γ) are given by (6) and
(7).11

It is important to explore the implications of adding innovation to the Melitz model,
as this is the distinctive feature of our model. For this purpose, we study the comparative
statics of the innovation cost parameter β on the key equilibrium objects γD and Me.

Combining (8) with the free-entry condition, we have κe
κD+κR

= ∫ γD0 [( γDγ )
σ−1

β−σ+1 −1]dF(γ),

11Note that the price index is indeed the A defined in Section 2.1, and the price index formula is derived
from the goods market clearing condition.
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which implies that γD increases in β because the right-hand side increases in γD and
β > σ − 1. As innovation becomes more costly, equilibrium productivities are lowered
and competition is softened. Thus, selection becomes more lenient. It is readily verified
that Me = N

κe+(κD+κR )F(γD ) × ( 1
σ − σ−1

σ
1
β ). How Me changes in β is generally ambiguous

because the first multiplicative term decreases in β while the second term increases in β.
This ambiguity reflects two countervailing forces on the expected profit. First, higher
innovation costs imply that an entrant obtains a lower productivity, which lowers the
expected profit and discourages entry. Second, competition is softened because others
also obtain lower productivities, increasing the expected profit. However, if one assumes
F to be the uniform distribution (which we sometimes do in later parts of the paper
because it generates the Pareto distribution), then Me = σ−1

βσ
N
κe

, which means that the
first above-mentioned effect dominates.

Next, we examine the productivity and firm size distributions. Firm size is defined
by firm revenue s ≡ pq. It is readily verified that firm size as a function of γ is given by

s̃(γ) ≡
[

N

P1−σ

(
σ − 1
σ

)σ] β
β−σ+1

β
− σ−1

β−σ+1
σ

σ − 1
γ

− σ−1
β−σ+1 . (9)

Let G and Gs be the cumulative density functions of productivity ϕ and firm size s, re-
spectively; let g and gs denote the corresponding density functions. Clearly, a distri-
bution exhibiting a power law with a tail index ζ is equivalent to its density following
a power function with exponent −ζ − 1 at the right tail. It is often more convenient to
work with the equivalent definition in terms of density. By applying a change of variable,
the density functions of productivity and firm size are

g(ϕ) = f
(
ϕ̃−1(ϕ)

)
F(γD )

N

P1−σ

(
σ − 1
σ

)σ

(β− σ + 1)

β
ϕ−(β−σ+1)−1

gs(s) = f
(̃
s−1(s)

)
F(γD )

(
N

P1−σ

) β
σ−1 β− σ + 1

βσ

(
σ − 1
σ

)β

s−
β−σ+1
σ−1 −1.

Observe from (6) and (9) that both ϕ and s become arbitrarily large as γ approaches 0.

Hence, g(ϕ)/ϕ−(β−σ+1)−1 and gs(s)/s−
β−σ+1
σ−1 −1 approach constants if limγ→0 f (γ) =

K> 0. In other words, power laws emerge if the density of γ has a finite and posi-
tive limit at zero. If γ is uniformly distributed, then the above distributions are both
Pareto, a special case of power-law distributions. Note that the expected profit E(
)

is finite if and only if
∫ γD

0 γ
− σ−1

β−σ+1 f (γ)dγ < ∞. It is readily verified that the condition
limγ→0 f (γ) =K > 0 ensures that the expected profit is finite if β> 2(σ − 1).

The above mechanism is referred to as a power law change of variable close to the ori-
gin: if the density of a random variable x has a finite and positive limit at the origin, and
the variable of interest y is related to x in a reciprocal way, then y becomes arbitrarily
large as x goes to 0 and the distribution of y exhibits a power law tail.12 Since produc-
tivity ϕ is related to γ in a reciprocal way given by (6), the condition limγ→0 f (γ) =K > 0
entails a power law in the productivity distribution.

12This technique has already been used in physics; see Sornette (2006, Section 14.2.1).
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The above simple example illustrates how the addition of the innovation stage to
the Melitz model and a weak restriction on firm heterogeneity f can give rise to power
laws in both productivity and firm size. One naturally wonders how much the result
depends on the power-function assumptions on demand D and innovation cost V , and
what happens if the density f tends to infinity or zero when γ → 0. We will show that
the conditions on D, V , and f can all be generalized to asymptotic power functions
using regular variation. In particular, the limit condition limγ→0 f (γ) = K > 0 is simply a
special case of f being an APF, which can go to either zero, a positive constant, or infinity
when γ → 0.

2.2.2 Preliminaries: Regularly and smoothly varying functions We first provide some
preliminaries on regular variation. A function v(x) is regularly varying if for some ζ ∈ R

and for all t > 0, limx→∞ v(tx)/v(x) = tζ . This implies that one can write v(x) = xζl(x),
where l(x) is referred to as a slowly varying function, i.e., a regularly varying function
with ζ = 0. A smoothly varying function is defined as follows (see, e.g., Bingham, Goldie,
and Teugels (1989)).

Definition 1. A positive function v defined on some neighborhood of infinity varies
smoothly with index ζ ∈R if for all n ≥ 1,

lim
x→∞

xnv(n)(x)
v(x)

= ζ(ζ − 1) · · · (ζ − n+ 1),

where v(n)(x) denotes the nth derivative of v(x).

A smoothly varying function is a regularly varying function that does not oscillate
too much. More importantly, any regularly varying function can be approximated by
a smoothly varying function asymptotically (Theorem 1.8.2 of Bingham, Goldie, and
Teugels (1989)). Since we are concerned with the tail behavior of the productivity distri-
bution and operationally smoothly varying functions will be used, this theorem ensures
that our results also apply to regularly varying functions. Note that if l(x) is a smoothly
and slowly varying function, then Definition 1 implies that

lim
x→∞x

l′(x)
l(x)

= lim
x→∞x2 l

′′(x)
l(x)

= 0. (10)

We now formally state our assumptions on the demand and innovation cost functions.

Assumption 1. The inverse demand function of each variety can be expressed as p =
D(q; A) ≡ q− 1

σ Q(q; A), where σ > 1 and limq→∞Q(q; A) = CQ > 0.

That Q has a positive limit is an equivalent way of stating that the inverse demand
D is an asymptotic power function. This implies that Q is slowly varying and, hence, D
is regularly varying. As mentioned, we work with the smoothly varying representations
of these functions without loss of generality. As we will show shortly that there are one-
to-one mappings at the tails between γ → 0 and ϕ → ∞ and between ϕ → ∞ and q →
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Table 1. Examples of demands that satisfy Assumption 1.

Demand Class Functional Form Inverse Demand

Bipower Direct
q = âp−ν + ap−σ ≡ q(p)

p= q− 1
σ (â[q−1(q)]σ−ν + a)

1
σ

σ > ν ≥ 1, a > 0

Pollak (HARA)
q = â+ ap−σ

p= q− 1
σ a

1
σ (1 − â

q )−
1
σ

σ > 1, a > 0, â≤ 0

PIGL
q = âp−1 + ap−σ ≡ q(p)

p= q− 1
σ (â[q−1(q)]σ−1 + a)

1
σ

σ > 1, a > 0

QMOR
q = apr−1 + âp

r
2 −1 ≡ q(p)

p= q
1

r−1 (a+ â[q−1(q)]−
r
2 )

1
1−r

σ ≡ 1 − r > 1, a > 0

Bipower Inverse
p= âq−ν + aq− 1

σ

p= q− 1
σ (âq

1
σ −ν + a)

σ ≥ σν > 1, a > 0

CEMR (Inverse PIGL)
p= âq−1 + aq− 1

σ

p= q− 1
σ (âq

1−σ
σ + a)

σ > 1, a > 0

CREMR
p= a

q (q− â)
σ−1
σ

p= q− 1
σ a(1 − â

q )
σ−1
σ

σ > 1, a > 0, q > âσ

∞, the requirement that σ > 1 is needed to ensure that the demand is consistent with
monopoly pricing at these tails.

APF inverse demand functions are actually more general than they may appear at
first glance. Needless to say, they include the CES demand. As shown in Table 1, several
important classes of demand functions with variable demand elasticity also satisfy this
assumption.13 Assumption 1 includes several demand classes that exhibit “manifold
invariance” (Mrázová and Neary (2017)),14 including bipower direct demand, bipower
inverse demand, Pollak family demand, which is equivalent to the HARA (hyperbolic ab-
solute risk aversion) preference, PIGL (price-independent generalized linear) demand,
the QMOR (quadratic mean of order r) expenditure function, and CEMR (constant elas-
ticity of marginal revenue) demand. It also includes CREMR demand (Mrázová, Neary,
and Parenti (2021)).

Note that the conditions D′ < 0 and that limq→∞Q(q; A) = CQ > 0 imply that p =
D(q) > 0 for all q ∈ [q, ∞). Thus, any demand with a quantity intercept (such as the
linear demand) is excluded by Assumption 1. For a different reason, CARA (constant
absolute risk aversion) demand is also excluded because its price elasticity tends to 0
when q goes to infinity, which is inconsistent with the requirement that σ > 1.15

13Details are provided in the online appendix, which is available at https://wthsu.com.
14A demand manifold depicts the relation between price elasticity and the curvature of the demand func-

tion, and the demand manifolds in these two classes are invariant to changes in general equilibrium objects,
making them powerful tools for inferring demand/welfare by microlevel information such as firm sales and
markups.

15To see this, observe that the CARA demand can be written as q = a − b lnp, where a, b > 0. Its price
elasticity equals b/q.

https://wthsu.com
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Assumption 2. The innovation cost function can be written as k(ϕ) = γV (ϕ) + κR ≡
γϕβL(ϕ) + κR, where β> 1 and limϕ→∞ L(ϕ) = CL > 0.

The assumption on the innovation cost function parallels that on the inverse de-
mand function. That is, V is an asymptotic power function, L is slowly varying, and V is
regularly varying. Obviously, simple power functions are included, but general polyno-
mial functions are also included.

2.2.3 Equilibrium quantity and productivity One key step in the illustrative example
involves inverting (6). Such inversion is possible because q∗(ϕ) and ϕ̃(γ) are monotonic
functions in that example. Such a property is not guaranteed when the functional forms
of the inverse demand D and variable innovation cost V are generally unknown. By
dealing with the second- and third-stage problems in the limit with regular variation,
we now show that q∗(ϕ) and ϕ̃(γ) are indeed unique at least for firms with small γ.

For any given ϕ, the first- and second-order conditions for an interior solution q

from (1) in Stage 3 are

p′q+p−ϕ−1 = 0 (11)

p′′q+ 2p′ < 0. (12)

With the law of demand, these imply that |ε(q)| ≡ −p/(qp′ ) > 1 and μ(q) ≡
−(p′′q)/p′ < 2. That is, at the interior solution q, the demand elasticity must be greater
than 1 so as to be consistent with monopoly pricing, and the convexity of the demand
curve must be sufficiently small so as to satisfy the second-order condition.

Note that Assumption 1 regulates the inverse demand p = D(q; A) only for large
values of q. As there is no guarantee that the profit function will be strictly concave or
quasi-concave in the entire domain of q, there may exist corner solutions to the profit-
maximization problem or multiple solutions satisfying (11) and (12). The lemma below
shows that for firms with high productivity levels, the solution is interior and unique.
For these firms and with Assumption 1, (11) and (12) can be written as

ϕ= q
1
σ

[
Q×

(
1 − 1

σ
+ q

Q′

Q

)]−1

(13)

q− 1
σ −1Q

[
− 1
σ

(
1 − 1

σ

)
+ 2
(

1 − 1
σ

)
q
Q′

Q
+ q2Q

′′

Q

]
≡ π̃qq(q; ϕ) < 0. (14)

The following assumption is a restriction on demand around q that is needed for
equilibrium consistency, as will be explained in the proof of Lemma 1. It turns out that
this assumption also rules out the potential corner solution at q.

Assumption 3. The inverse demand function D is such that the revenues around q ≥ 0
remain finite. That is, limq→q s(q) <∞.

We have the following lemma.



Theoretical Economics 18 (2023) Innovation, firm size, and trade 353

Lemma 1. Suppose that Assumptions 1 and 3 hold, and consider those firms with
sufficiently large ϕ. There exists a unique solution to the third-stage problem, i.e.,
q∗(ϕ) is unique. Moreover, q∗(ϕ) strictly increases in ϕ, limϕ→∞ q∗(ϕ) = ∞, and
limϕ→∞ π(ϕ) = ∞.

Proof. Applying (10), qQ′
Q tends to 0 and Q tends to a constant when q → ∞. For a firm

with an arbitrarily large ϕ, there exists a large q that satisfies (13) because the term in the
brackets tends to a constant. However, there is a possibility that this firm with an arbi-
trarily large ϕ might choose a finite q > q such that the term Q · (1 − 1

σ + qQ′
Q ) tends to 0.

Nevertheless, plugging (13) into (1) entails π(ϕ) = q1− 1
σ Q( 1

σ − qQ′
Q ) − κD. Assumption 1

and (10) imply that when q becomes arbitrarily large as ϕ becomes arbitrarily large, then
the profit also becomes arbitrarily large. However, if a finite q > q is chosen, then be-

cause this q is such that either 1
σ − qQ′

Q tends to 1 or Q tends to 0, the resulting profit
must be finite. Let q̂(ϕ) denote the solution that entails the largest profit among the so-
lutions to (13) when ϕ is arbitrarily large. Thus, q̂(ϕ) is unique and limϕ→∞ q̂(ϕ) = ∞. As
a result, when ϕ (and, hence, q̂) becomes arbitrarily large, the second-order condition
(14) is satisfied because of (10). By applying the implicit function theorem on (13) and
noting that π̃qq(q̂(ϕ); ϕ) < 0, we have

dq̂

dϕ
= − ϕ−2

π̃qq
(
q̂(ϕ); ϕ

) > 0. (15)

Finally, the only concern with q̂(ϕ) not being the profit-maximizing quantity is that it
might be dominated by a corner solution at q.16 Suppose that q is an optimal solution
that leads to an infinite profit. This means that limq→q s(q) = ∞. Because this is implied
by the demand structure and applies to all firms/varieties, this would be inconsistent
with the equilibrium concept as it violates the consumers’ budget constraint. This must
be ruled out, and Assumption 3 serves this purpose. As a result, the possibility of a cor-
ner solution at q is ruled out. Hence, the optimal quantity q∗(ϕ) is given by q̂(ϕ) and is,
thus, unique.

As Assumption 3 is simply a restriction for equilibrium consistency, in this sense it
is not restrictive. If q > 0 and Assumption 3 is violated, then limq→q D(q; A) = ∞, i.e.,
q forms an asymptote of the demand curve and is indeed an optimal solution for firms.
For example, for the Pollak demand given in Table 1, if â ≤ 0 is changed to â > 0, then
q = â actually forms such an asymptote. When q = 0, it is possible that limq→0 s(q) < ∞
even when limq→0 D(q; A) = ∞ (such as the CES demand with σ > 1). Hence, in this
case, that q = 0 forms an asymptote is not an issue per se. This is why Assumption 3
is written in terms of sales rather than in terms of the inverse demand. For example,
Assumption 3 rules out the CES demand with σ ≤ 1. In sum, Assumption 3 rules out any
demand defined on [q, ∞) with q > 0 being an asymptote and any demand such that
limq→0 s(q) = ∞.

16Note that it is impossible for a profit-maximizing quantity to be a finite q0 > q ≥ 0 because this would
imply that limq→q0 p(q) = ∞, which violates the law of demand.
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In Stage 2, a firm chooses ϕ to maximize its profit. We consider the set of γs that
would choose sufficiently large ϕ. Then applying Lemma 1 and the envelope theorem,
the first- and second-order conditions of the second-stage problem can be written as

γ = q∗(ϕ)

ϕ2V ′(ϕ)
(16)

−2ϕ−3q∗(ϕ) +ϕ−2 ∂q
∗(ϕ)
∂ϕ

− γV ′′(ϕ) < 0. (17)

Here, the innovation cost function must be sufficiently convex so that (17) holds.
Lemma 2 below shows that the second-order condition holds for a large ϕ if and only
if β> σ − 1.

The question now becomes which γs would choose a large ϕ? It is intuitive that a
firm endowed with a higher R&D ability (smaller γ) innovates more and obtains a higher
productivity; as γ tends to 0, the productivity tends to infinity. The following lemma
formalizes this intuition.

Lemma 2. Suppose that Assumptions 1–3 hold and that β > σ − 1. Consider those firms
with sufficiently small γ. The optimal choice of ϕ exists and is unique. Such an optimal
choice is denoted by ϕ∗ = ϕ̃(γ). Moreover, ϕ∗ is strictly decreasing in γ, and, thus, the
inverse function exists and is denoted by γ̃(ϕ) and limϕ→∞ γ̃(ϕ) = 0.

Proof. Plugging (13) into (16), the first-order condition can be written as

γ =

[
Q(ϕ)

(
1 − 1

σ
+ q∗(ϕ)

Q′(ϕ)
Q(ϕ)

)]σ
L(ϕ)

[
β+ϕ

L′(ϕ)
L(ϕ)

] ϕ−(β−σ+1). (18)

Using (13)–(15) and (18), the left-hand side of (17) becomes

−Qσ

(
1 − 1

σ
+ q

Q′

Q

)σ

ϕσ−3

⎡⎢⎢⎣2 +
1 − 1

σ
+ q

Q′

Q

− 1
σ

(
1 − 1

σ

)
+ 2
(

1 − 1
σ

)
q
Q′

Q
+ q2Q

′′

Q

+
β(β− 1) + 2βϕ

L′

L
+ϕ2 L

′′

L

β+ϕ
L′

L

⎤⎥⎥⎦ . (19)

Assumptions 1 and 3 imply that Lemma 1 holds. Assumptions 1 and 2, Lemma 1,
and (10) imply that for large values of ϕ, (19) converges to −Cσ

Q( σ−1
σ )σ (β − σ +

1) limϕ→∞ ϕσ−3, which is strictly negative if and only if β > σ − 1. Thus, for a firm with
an arbitrarily small γ, there exists a large ϕ, denoted by ϕ∗, that satisfies (18) and the
second-order condition (17).
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However, there is a possibility that this firm with an arbitrarily small γ might choose
a finite ϕ such that either Q(ϕ)(1 − 1

σ + q∗(ϕ)Q
′(ϕ)

Q(ϕ) ) tends to 0 or β + ϕL′(ϕ)
L(ϕ) tends to

infinity so that (18) holds. Note that V ′ > 0 would be violated if limϕ→ϕ0 L(ϕ) = ∞ for
some finite ϕ0. With (13) and (18), (3) becomes


= Qσ ·
(

1 − 1
σ

+ q∗Q′

Q

)σ

⎡⎢⎢⎣
1
σ

− q∗Q′

Q

1 − 1
σ

+ q∗Q′

Q

− 1

β+ϕ
L′

L

⎤⎥⎥⎦ϕσ−1 − κR − κD. (20)

This implies that if Q(ϕ)(1 − 1
σ + q∗(ϕ)Q

′(ϕ)
Q(ϕ) ) tends to 0 or β+ϕL′(ϕ)

L(ϕ) tends to infinity at
some finite ϕ, then the profit is finite. By contrast, the profit becomes arbitrarily large for
an arbitrarily large ϕ. Thus, a finite ϕ would not be the solution to (18) when γ becomes
arbitrarily small. Hence, ϕ∗ is the unique solution and is denoted by ϕ̃(γ).

For large values of ϕ, it is readily verified that (17) implies that the derivative of the
right-hand side of (16) is negative. Hence, ϕ̃′(γ) < 0 and the inverse function γ̃(ϕ) is well
defined. Obviously, limϕ→∞ γ̃(ϕ) = 0.

As for the requirement for the inverse demand D for obtaining our main results,
σ > 1 stated in Assumption 1 is not only sufficient, but also necessary. To see this, first

recall that D(q; A) = q− 1
σ Q(q; A) and limq→∞ Q(q; A) = CQ > 0. In this setting, σ < 1 is

not permissible because this means that for firms with sufficiently small γ, the demand
elasticity is less than 1, which is inconsistent with monopolistic competition. When σ =
1, it is possible that the demand elasticity remains greater than 1 for all q (or for the large
q’s that are relevant for our purposes) even though its limit is 1. However, this implies

that firm sales approach a constant (limq→∞pq = limq→∞ q− 1
σ Q(q; A)q = CQ), which is

inconsistent with the power law in firm size.

2.2.4 Power laws for productivity and firm size We now show how the power laws
for productivity and firm size arise. Note that Lemma 2 and (20) imply that
limγ→0 
(γ) = ∞. Thus, the set of γs that survive must be nonempty, i.e., Pr(γ ∈ �) > 0.
Observe that the p.d.f. of productivity is

g(ϕ) = f
(
γ̃(ϕ)

)
Pr(γ ∈�)

∣∣J(ϕ)
∣∣,

where J(ϕ) = |∂γ̃(ϕ)/∂ϕ| is the Jacobian. Appendix A.2 shows that

∣∣J(ϕ)
∣∣= ∣∣∣∣ ∂∂ϕ q∗(ϕ)

ϕ2V ′(ϕ)

∣∣∣∣
= Qσ

L

(
1 − 1

σ
+ q∗Q′

Q

)σ

β+ϕ
L′

L

·

⎡⎢⎢⎣2 +
β(β− 1) + 2βϕ

L′

L
+ϕ2 L

′′

L

β+ϕ
L′

L
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+
1 − 1

σ
+ q∗Q′

Q

− 1
σ

(
1 − 1

σ

)
+ 2
(

1 − 1
σ

)
q∗Q′

Q
+ (q∗)2 Q′′

Q

⎤⎥⎥⎦ ·ϕ−(β−σ+1)−1. (21)

Our main result is the following proposition.

Proposition 1. Suppose that Assumptions 1–3 hold. Also suppose that f (γ) = γαm(γ),
where α > −1 and limγ→0 m(γ) = Cm, and that β > α+2

α+1 (σ − 1). Then, in equilibrium,
both the productivity and firm size distributions exhibit power laws with tail indices (α+
1)(β− σ + 1) and (α+1)(β−σ+1)

σ−1 , respectively.

We sketch the proof as follows; the detailed proof is relegated to Appendix A.2. Note
that α > −1 and β > α+2

α+1 (σ − 1) ensure that β > σ − 1; hence, with Assumptions 1–3,
Lemmas 1 and 2 hold. For the free-entry condition to hold, the expected profit must
be finite, i.e.,

∫
�
(γ)dF(γ) < ∞. Whether this integral is finite depends on the firms

with small γ, and what matters is essentially the orders of demand, σ , the innovation
cost function, β, and the distribution of the failure probability around γ = 0. We show in
Appendix A.2 that this is ensured when α> −1 and β> α+2

α+1 (σ − 1). Intuitively, the inno-
vation cost function must be sufficiently convex. Observe (21). First note that Assump-
tions 1 and 2, Lemmas 1 and 2, and (10) imply that Q(q; A) and L(ϕ) converge to some
constants CQ and CL, respectively, and that q∗ Q′

Q , ϕL′
L , (q∗ )2 Q′′

Q , and ϕ2 L′′
L all go to 0.

Thus, |J(ϕ)| converges to a power function of ϕ with exponent −(β−σ + 1) − 1 < 0. The
assumption on f (γ̃(ϕ)) allows us to write g(ϕ) = γ̃(ϕ)αm(γ̃(ϕ))

Pr(γ∈�) |J(ϕ)|, and (18) implies that
γ̃(ϕ)αm(γ̃(ϕ)) converges to a power function of ϕ with exponent −α(β − σ + 1). Thus,
the productivity distribution exhibits a power law with a tail index (α + 1)(β − σ + 1).
Following the same procedure, the firm size distribution also exhibits a power law with
a tail index (α+1)(β−σ+1)

σ−1 .
Proposition 1 establishes how power laws emerge from a general environment in

a standard general-equilibrium model. It connects with the empirical regularity in
firm size and provides a microfoundation for assuming power-law distributions in the
theoretical literature, e.g., the Pareto, Fréchet, and the two-piece distribution in Nigai
(2017). As mentioned, the class of APFs includes many widely used non-CES and non-
homothetic preferences for the inverse demand. For the innovation cost, it includes all
polynomial functions that are increasing unboundedly when ϕ goes to infinity and are
sufficiently convex so that β> α+2

α+1 (σ − 1).
That the distribution f (γ) is an asymptotic power function around 0 is also more

general than it seems. This includes many well known, widely used distributions such as
beta (which subsumes the uniform), gamma, F , and Weibull.17 Table 2 provides a list of
examples in this class.18 Compared with Geerolf’s (2017) power-law result, Proposition 1

17For the distributions that are defined on (0, ∞), proper truncation to the right is needed, as the distri-
bution of γ is on (0, 1].

18For 0 to be in the support of generalized Pareto, we require μ ≤ 0 for ξ ≥ 0 and μ≤ 0 ≤ μ− σ
ξ for ξ < 0.

The parameters of other distributions are all positive.
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Table 2. Examples of distributions that are asymptotic power functions at the left tail.

Distribution f (γ) ∝ Distribution f (γ) ∝

Beta γα(1 − γ)b−1 Kumaraswamy (1 + α)bγα(1 − γ1+α )b−1

Gamma γαe− γ
b Log-logistic ( 1+α

b )( γ
b )α[1 + ( γ

b )1+α]−2

F γα[b+ 2(1 + α)γ]−
2(1+α)+b

2 Rayleigh γ
a2 e

− γ2

2a2

Weibull (1+α)
b ( γ

b )αe−( γ
b )α Generalized Pareto 1

σ (1 + ξ γ−μ
σ )−(1+ 1

ξ )

Inverse Pareto b(1 + α)γα

is more general, as Geerolf’s key condition is equivalent to limγ→0 f (γ) = K > 0 used in
our illustrative example in Section 2.2.1 and is a special case here, i.e., α = 0.19

Note that Proposition 1 as our main result and the main result in Mrázová, Neary,
and Parenti (2021) do not subsume each other. Mrázová, Neary, and Parenti (2021) show
that if two firm variables of interest are related by a power function, then the distribution
of one variable following a “generalized power function” (GPF) implies that the other
variable also follows the same GPF family with a transformation of parameters.20 There
is some overlap between GPF distributions and the distributions as APFs, but neither is
a subset of the other. For example, the exponential distribution is an APF at the left tail,
as it is a special case of the gamma distribution with α = 0. However, the exponential
distribution is not a GPF, as mentioned in Appendix A.1 in their paper. On the other
hand, the log-normal distribution is not an APF at the left tail, but it is a GPF. The Pareto
distribution is a special case that is in both classes.

We now turn to a general open economy to investigate whether and how power laws
hold in that environment.

2.3 Power laws in an open economy

There are n+ 1 asymmetric countries indexed by i ∈ {0, 1, � � � , n} with the asymmetry in
possibly every aspect of the model. Not only can all the trade cost, entry cost, and fixed
cost of production parameters vary across countries, but the inverse demand function
Di, innovation cost function ki, and the density function of failure probability fi can
all be country-specific (hence {σi, βi, αi} can also be country-specific). Similar to the
closed-economy case, Assumptions 1–3 are assumed to hold with CQ,i and CL,i also al-
lowed to be country-specific.

The timing is the same as in the closed economy, and in the production stage each
firm can determine whether to export, and, if so, the price and quantity of exported

19Proposition 1 shows that the environment for the power laws to emerge can be generalized by APFs,
and this implies fewer constraints on the behaviors of firms that are not large. A relevant question is how
well firm behaviors under a particular set of APFs approximate the behaviors of large and productive firms
observed in the data. This depends on the speed at which the functions converge to power functions;
certain empirical tests on the goodness of fit are warranted. This interesting empirical question is beyond
the scope of the current paper and is left for future research.

20Note that their Proposition 1 actually allows the two variables y and z to be related by y = y0h(z)E ;
y and z being related by a power function is a special case.
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goods. Let τij ≥ 1 denote the iceberg trade cost. Assume strictly positive trade costs be-
tween any pair of countries, i.e., τij > 1 for all i �= j. That is, countries are geographically
segmented. After paying the fixed cost of production κD,i, the profit of a firm located in
country i obtained from selling to country j is

πij(ϕ) ≡ max
qij

[
Dj(qij ; A) − τijwi

ϕ

]
qij −wiκij , (22)

where κij is the fixed selling cost, and wi is the wage in country i. The second-stage
problem is


i(γ) ≡ max
ϕ,{Iij }

∑
j

[
πij(ϕ)Iij(γ)

]−wiκD,i −wiγVi(ϕ) −wiκR,i, (23)

where Iij = {0, 1} is the indicator function that indicates whether the firm with γ in coun-
try i sells to country j.

Similar to the closed-economy case, let q∗
ij(ϕ) and ϕ̃i(γ) denote optimal solutions to

(22) and (23), respectively. The set of surviving γs is denoted by �i ⊆ (0, 1]. The free-
entry condition is given by

E(
i ) =
∫
�i


i(γ)dFi(γ) =wiκe,i, (24)

The goods market clearing condition can be written as

wiNi =
∑
j

[
Me,j

∫
�j

Di

(
q∗
ji

(
ϕ̃i(γ)

)
; A
)
q∗
ji

(
ϕ̃i(γ)

)
Iji(γ)dFj(γ)

]
. (25)

The labor market clearing condition in country i is Ni = Ne,i + Nin,i + Np,i, where Ne,i,
Nin,i, and Np,i are the masses of labor employed for entry, innovation, and production,
respectively:

Ne,i = Me,iκe,i

Nin,i = Me,i

∫
�i

γVi
(
ϕ̃i(γ)

)
dFi(γ) +Me,iκR,i Pr(γ ∈�i )

Np,i = Me,i

∫
�i

∑
j

Iij(γ)

[
τijq

∗
ij

(
ϕ̃i(γ)

)
ϕ̃i(γ)

+ κij

]
dF(γ) +Me,iκD,i Pr(γ ∈�i ).

An equilibrium consists of {wi, Ai, Me,i, �i}ni=0 such that 
i(γ) ≥ 0 if and only if γ ∈
�i, and {wi, Ai, Me,i} are jointly determined by (24)-(25) and the labor market clearing
condition for all i ∈ {0, 1, � � � , n}.

The first-order condition for qij is similar to (13) and is given by

ϕ= wiτijq

1
σj

ij

[
Qj ×

(
1 − 1

σj
+ qij

Q′
j

Qj

)]−1

. (26)
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Assume that βi > σj −1 for all i and j. It is readily verified that parallels to Lemmas 1 and
2 both hold. Hence, for small γ and large ϕ, q∗

ij(ϕ) and ϕ̃i(γ) are monotonic functions
exhibiting similar properties to those mentioned in the two lemmas. Let γ̃i(ϕ) denote
the inverse function of ϕ̃i. Similar to (16), the first-order condition on ϕ is

γ =

∑
j

Iijτijq
∗
ij(ϕ)

ϕ2V ′
i (ϕ)

. (27)

Combining (26) with (27) yields

γ =

∑
j

Iijτ
1−σj

ij w
−σj

i Q
σj

j ·
(

1 − 1
σj

+ q∗
ij

Q′
j

Qj

)σj

·ϕσj−βi−1

Li ·
(
βi +ϕ

L′
i

Li

) . (28)

By the parallels to Lemmas 1 and 2, when ϕ becomes arbitrarily large, the firm must
sell to every market j because the fixed selling cost κij is fixed while the gross profit also
becomes arbitrarily large. Each component in the numerator of (28) is similar to those in
the closed-economy case. Thus, for an arbitrarily small γ, there exists a corresponding
large ϕ such that (28) holds with Iij = 1 for all j.

Appendix A.3.1 shows that if αi > −1 and βi >
αi+2
αi+1 (maxj σj − 1), then the expected

profit of entrants in each country remains finite. Since we are concerned with the tail
behavior of the productivity distribution, it suffices to focus on the rightmost piece of
the productivity distribution. The corresponding Jacobian is obtained by differentiating
(27): ∣∣Ji(ϕ)

∣∣= ∣∣∣∣∂γ̃i(ϕ)
∂ϕ︸ ︷︷ ︸
−

∣∣∣∣= −
n∑

j=0

∂

∂ϕ

τijq
∗
ij(ϕ)

ϕ2V ′
i (ϕ)

. (29)

Obviously, each component of (29) is similar to (21), and converges to a power function
of ϕ with exponent −(βi + 2 − σj ). Following the same argument in Proposition 1, Ap-
pendix A.3.2 shows that the productivity distribution exhibits a power law with the tail
index (αi + 1)(βi + 1 − maxj σj ).

Let sij denote a firm’s sales from i to j; thus the size of a firm that exports to all coun-

tries is s ≡∑n
j=0 sij . Noting that ∂s

∂ϕ =∑n
j=0

∂sij
∂ϕ =∑n

j=0
∂sij
∂q∗

ij

∂q∗
ij

∂ϕ and following a procedure

similar to that in the proof of Proposition 1, Appendix A.3.3 shows that the firm size dis-

tribution also follows a power law with the tail index
(αi+1)(βi+1−maxj σj )

maxj σj−1 . Thus, we have

the following proposition.

Proposition 2. Suppose that Assumptions 1–3 hold. For all i ∈ {0, 1, 2, � � � , n}, sup-
pose that fi(γ) = γαimi(γ) where αi > −1 and limγ→0 mi(γ) = Cm,i, and that βi >
αi+2
αi+1 (maxj σj − 1). Then the productivity distribution in each country i has a power law
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tail with a tail index of (αi + 1)(βi + 1 − maxj σj ), and the distribution of firm size has a

power law tail with a tail index of (αi+1)(βi+1−maxj σj )
maxj σj−1 .21

The tail indices of both the productivity and firm size distributions in each country i

are associated with its technology parameters αi and βi, as well as the largest price elas-
ticity of demand among all destination countries maxσj . However, they are not affected
by the level of trade cost or the size of the destination country. The key intuition hinges
on distinguishing the scaling and shape parameters of the firm size distribution. The tail
index is a shape parameter, which captures how firm sales change with underlying firm
heterogeneity. The most productive firms of any country i export to all countries. Their
sales in the most price-elastic country are most sensitive to changes in productivity, and
thus these sales dominate the sales to other countries in the limit in determining the
tail index. Obviously, the shape parameter αi of the distribution fi(γ) matters in the tail
index, as well as the innovation cost parameter βi as it influences firms’ productivity de-
cisions. By contrast, the level of trade cost and the size of the destination country affect
the scaling parameter of the firm size distribution but not the tail index.

Proposition 2 implies that adding a country to the trade network (i.e., that country
opens up to trade) causes the tails of both the productivity and firm size distributions in
each country to (weakly) become fatter. In the trade model by di Giovanni, Levchenko,
and Ranciére (2011), productivity and firm size distributions are assumed to be Pareto
and their tail indices are exogenous and are thus not affected by trade. They show that
trade may cause the empirical estimates of tail indices to be lower than the true ones.
However, Proposition 2 here implies a very different message from theirs because the
true tail indices in our model can be affected by trade opening. Another closely related
work is that by Bonfiglioli, Crinó, and Gancia (2019) who also show that trade fattens
the tail of the firm size distribution. Both their model and ours predict that trade in-
duces more innovation. However, despite the similarity in messages, the mechanisms
for how trade fattens the tail index differ. In our model, trade opening fattens the tail
index because of the addition of a more price-elastic market (maxj σj). By contrast, their
model assumes that innovating entrants make technological choices by choosing tail
indices directly subject to a certain investment cost before drawing their productivity;
trade amplifies the benefits of greater productivity and thus fatter tails are chosen.

2.4 Linking the model to the rise of top firms

To explore the links between our model and the firm size distribution in reality, we ex-
amine the changes in the tail index of firm size distribution over time using Compustat
for publicly listed firms in North America. Consistent with our model, a firm’s size is
measured by the real revenue of a firm;22 the “right tail” is defined in terms of the size

21The statement about tail indices here resembles the well known theorem that the tail index of a sum of
independent Pareto random variables is the minimum of the tail indices of these random variables. How-
ever, the different components of (29) are not literally independent random variables.

22Firms’ revenues are deflated by the gross domestic product (GDP) deflator obtained from the U.S. Bu-
reau of Economic Analysis.
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Figure 1. Time series of the tail index of the firm size distribution. The left panel depicts the
tail index for each year during 1970–2019 for firms with real revenues above 2500, 5000, and 7500
million dollars. The right panel depicts the tail index for the top 500, 750, and 1000 firms.

of real revenue and firm ranking. A tail index is estimated for each year during 1970–
2019 and by the approach proposed by Gabaix and Ibragimov (2011). The left panel of
Figure 1 shows the results for firms with real revenues above 2500, 5000, and 7500 mil-
lion dollars, whereas the right panel shows those for the top 500, 750, and 1000 firms.
Both panels show that the tail index generally declines over time, which is consistent
with the recent rise of top firms; see, e.g., Gabaix and Landier (2008), Autor, Dorn, Katz,
Patterson, and Van Reenen (2020), and De Loecker, Eeckhout, and Unger (2020).23

Both Autor et al. (2020) and De Loecker, Eeckhout, and Unger (2020) have shown
that the rise of top firms is positively associated with these firms’ innovation activities.
However, they do not investigate the underlying causes for innovation. In the lens of
this model, two potential reasons for the rise in innovation activities and top firms are
as follows. First, the drastic improvements in information and communication tech-
nologies (ICT) since 1970 implies the reduction in the innovation-cost parameter β. As
is well known, improvements in ICT facilitate information flow and knowledge diffu-
sion, which stimulate innovation activities and increase firm productivity and size. This
effect is larger for larger firms. Second, globalization may cause firms to innovate more
intensively. Proposition 2 predicts that the firm size distribution becomes fatter under
trade compared with autarky as more competitive markets (namely, those with larger
price elasticities) become accessible to top firms, prompting them to become more pro-
ductive by innovating more intensively.24

23Our exercise of showing the declining trend complements these studies as they show the rise of top
firms based on the markups, profit rates, market shares, or market values of these firms, but not the tail
index.

24While our theory operates at the limit where the top firms export to every country regardless of the
levels of trade costs, in reality not all of the top 1000 firms sell to all countries. Our model can mimic such
a more realistic scenario with a finite number of draws from the distribution of γ and with heterogeneous
trade costs facing firms. Similarly, as trade costs are reduced, top firms export to more countries and are
incentivized to become more productive by innovating more intensively.
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3. The effect of trade on the productivity distribution

This section analyzes the effects of trade on the productivity distribution. For tractabil-
ity, in this and the next sections, we follow Melitz (2003) by assuming n + 1 symmetric
countries and CES demand. In particular, for the welfare analysis in the next section, the
CES demand must be comparable with the ACR formula. Furthermore, for tractability
and in both sections, we assume a simple function for the innovation cost: k = γϕβ+κR.
We allow the distribution of γ to be general until Section 4.2, where we need to generate
a Pareto productivity distribution for comparison purposes. Given the functional-form
assumptions regarding the inverse demand and innovation cost, Assumptions 1 and 2
are satisfied. The profit-maximizing solution of q∗(ϕ) and ϕ̃(γ) must be interior and
unique as given by the relevant first- and second-order conditions. Thus, Assumption 3
is no longer needed.

To solve the model, we start with the production stage. It is readily verified that

πD(ϕ) = N

P1−σ

(
σ − 1
σ

)σ

σ − 1
ϕσ−1 − κD

πX(ϕ) = τ1−σ N

P1−σ

(
σ − 1
σ

)σ

σ − 1
ϕσ−1 − κX .

In the innovation stage, a firm decides its productivity level according to whether it
serves the foreign market or not. The profits of a non-exporting firm and an export-
ing firm are 
D = πD(ϕ) − γϕβ − κR and 
X = πD(ϕ) + nπX(ϕ) − γϕβ − κR, respec-
tively, where the domestic market is denoted by subscript D and each foreign market is
denoted by subscript X . The optimal productivities are

ϕ̃(γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
N

P1−σ

) 1
β−σ+1

[(σ − 1
σ

)σ

β

] 1
β−σ+1

γ
− 1

β−σ+1 for non-exporting firms

φ

(
N

P1−σ

) 1
β−σ+1

[(σ − 1
σ

)σ

β

] 1
β−σ+1

γ
− 1

β−σ+1 for exporting firms,

(30)

where φ≡ (1 + nτ1−σ )
1

β−σ+1 .
Since exporting decisions are made after the firm has made its innovation decision,

the firm chooses a higher productivity level if it plans to export afterward. The ratio φ

can thus be interpreted as the productivity advantages of the exporting firms versus the
non-exporting firms. As shown in the proof for Lemma 2, the second-order condition
is satisfied if β > σ − 1, and the solution given by (30) is indeed optimal. Therefore, the
resulting profits for a non-exporter and an exporter from the second stage are given by


D(γ) =
(N(σ − 1

σ

)σ

βP1−σ

) β
β−σ+1

β− σ + 1
σ − 1

γ
− σ−1

β−σ+1 − κD − κR (31)
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X(γ) =
(N(σ − 1

σ

)σ

βP1−σ

) β
β−σ+1 [β(1 + nτ1−σ

)
σ − 1

φσ−1 −φβ

]
γ

− σ−1
β−σ+1

− κD − κR − nκX . (32)

Observe that the gross profits are proportional to γ
− σ−1

β−σ+1 . The cutoffs are given by

γD =
[

1
κD + κR

(N(σ − 1
σ

)σ

βP1−σ

) β
β−σ+1

β− σ + 1
σ − 1

]β−σ+1
σ−1

(33)

γX =
{

1
nκX

(N(σ − 1
σ

)σ

βP1−σ

) β
β−σ+1 [β(1 + nτ1−σ

)
φσ−1

σ − 1
−φβ − β− σ + 1

σ − 1

]}β−σ+1
σ−1

, (34)

such that 
D(γ) ≥ 0 if and only if γ ≤ γD and 
X(γ) ≥
D(γ) if and only if γ ≤ γX . From
(33) and (34), we have

δ ≡ γX
γD

=
(
κD + κR

nκX

)β−σ+1
σ−1 [(

1 + nτ1−σ
) β
β−σ+1 − 1

]β−σ+1
σ−1 . (35)

If γD ≤ γX , then all operating firms are exporters, which is counterfactual. Thus, sim-
ilar to the literature, we consider only the case of γX < γD, i.e., δ < 1, which requires
trade frictions κX or τ to be sufficiently large relative to the fixed costs of production
and innovation κD + κR.

The free-entry condition is E(
) = ∫ γX0 
X(γ)dF(γ) + ∫ γDγX

D(γ)dF(γ) = κe. An

equilibrium is accordingly defined by (30), (33), (34), the free-entry condition, and the
price index

P1−σ = Me

[∫ γD

γX

(
σ − 1
σ

)σ−1

ϕ̃(γ)σ−1 dF(γ) +
∫ γX

0

(
σ − 1
σ

)σ−1

ϕ̃(γ)σ−1 dF(γ)

]

+ nMe

∫ γX

0
τ1−σ

(
σ − 1
σ

)σ−1

ϕ̃(γ)σ−1 dF(γ), (36)

where Me denotes the mass of entrants paying the entry cost. The price index is com-
posed of three terms. The first and second terms are associated with the prices charged
by domestic non-exporting and exporting firms, respectively. The third term is associ-
ated with the imported goods. Note that by (30), there is a jump in the function ϕ̃(γ) at
γX .

The following proposition establishes the unique existence of the equilibrium.

Proposition 3. Suppose that f (γ) = γαm(γ), where α > −1 and m(γ) is slowly varying
around the origin, β > α+2

α+1 (σ − 1), and δ < 1, where δ is defined by (35). Then E(
)
is a strictly increasing function of γD. If κe ∈ (0, E(
)|γD=1 ), then a unique equilibrium
exists, and there are both exporters and non-exporters in the economy. In addition, the
power laws in productivity and firm size hold.
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Figure 2. The effect of increasing trade cost τ. The solid (dashed) curve depicts the productivity
level ϕ(γ) before (after) the increase in trade cost τ. An increase in τ increases the selection cutoff
γD and decreases the exporting cutoff γX .

That the power laws hold follows immediately from Proposition 1. For the rest, see
Appendix A.4.

We explore how the iceberg cost τ affects the productivity distribution. The results
are summarized in the following proposition, and are illustrated in Figure 2. The proof
is relegated to Appendix A.5.

Proposition 4. Assume that the conditions of Proposition 3 hold. An increase in τ re-
sults in a higher γD and a lower γX . Productivity ϕ increases (decreases) for any non-
exporting (exporting) firm that remains non-exporting (exporting) after the shock. Pro-
ductivity decreases for any firm that switches from exporting to non-exporting after the
shock.

To see the intuition behind how τ affects the selection and exporting cutoffs, first
note that an increase in τ makes exporting more difficult so that firms must be more ef-
ficient in innovation to become exporters. Therefore, the exporting cutoff γX decreases.
Because having fewer exporters entails less import competition faced by the firms in the
domestic market, the selection of firms becomes more lenient and the surviving cutoff
γD increases.

Rearranging (33), we have P ∝ γ
1
β

D . Thus, a higher γD induced by a higher τ raises
the price index, which reflects the fact that differentiated goods are more expensive in
units of labor when trade frictions are larger. Due to less import competition, for non-
exporting firms that remain non-exporting, there is more incentive to acquire a higher
productivity, as is evident by observing (30) and (31). For exporting firms that continue
to export, their domestic profits also benefit from less import competition, but as their
productivity advantage φ shrinks with greater trade friction, their effective market sizes
may shrink (see (30) and (32)). The latter force dominates the former and, hence, their
productivities are actually reduced. A lower γX implies that some firms switch from



Theoretical Economics 18 (2023) Innovation, firm size, and trade 365

exporting to not exporting. For these firms, productivities decrease because of the loss
of the foreign market.

In terms of the empirical evidence, as most empirical studies are on trade liberal-
ization, it is easier to think of the case of a decreasing τ. That a decrease in τ results in
tougher selection and an increase in the fraction of exporters is the same prediction as
in the standard Melitz model; see Pavcnik (2002), Trefler (2004), and Bustos (2011) for
related empirical evidence. Moreover, in response to trade liberalization, Bustos (2011)
finds that both continuing and new exporters innovate more than non-exporters, and
Lileeva and Trefler (2010) find that new exporters innovate more and experience higher
productivity growth. These findings are consistent with the predictions in Proposition 4.
However, whether non-exporters conduct less R&D in response to trade liberalization
seems to be an open and interesting empirical question that could be an avenue for
future research.

4. Welfare gains from trade

This section shows the properties of welfare gains from trade in our model and then
carries out a corresponding quantitative analysis.

4.1 Welfare formula and trade elasticity

Welfare in both our model and the ACR framework is measured by Wj =wjNj/Pj , and the
trade elasticity is defined by ε = ∂ ln(Xij/Xjj )/∂ lnτ with i �= j. In ACR, technology choice
is also incorporated, and the choice is made simultaneously with production and sales.
Our model is different from the ACR framework because innovation occurs after entry
and before production and sales. Proposition 5 shows that the welfare gains from trade
in our model still follow the local ACR formula with a variable trade elasticity.25 The
proof is relegated to Appendix A.6.

Proposition 5. Suppose that the conditions of Proposition 3 hold. For a general dis-
tribution of γ, F(·), the welfare gains from trade follow the local ACR formula: d lnW

d lnτ =
1
ε
d lnλ
d lnτ = −(1 − λ).

It is readily verified with a numerical example that the trade elasticity, for which the
formula is given in Appendix A.6, is variable in τ and depends on the distribution of γ.
Section 3 shows that trade costs affect firm-level productivities as well as the selection
and exporting cutoffs. In particular, the productivity schedule across firm types has a
jump at the exporting cutoff γX , and trade costs affect the productivities of exporters
and non-exporters in opposite ways. It can be shown that if κX = 0, in which case ev-
ery surviving firm is an exporter, the trade elasticity equals 1 − σ . When all surviving
firms are exporters, the productivity schedule no longer has a jump, and trade costs af-
fect firm-level productivities in similar ways. As a result, trade costs affect trade flows

25One can obtain the gains from trade under large changes in τ by integrating over the local formula.
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only through the intensive margin in a multiplicative manner, and the trade elasticity
becomes a constant.26

4.2 Quantitative analysis of welfare gains from trade

Here we conduct a quantitative analysis of the welfare gains from trade. In particular,
to assess the role of innovation quantitatively, we compare our model with the Melitz
model with the Pareto productivity distribution (henceforth MP), as both our model and
MP satisfy the (local) ACR formula, differing only in how the productivity distribution
is generated. Formally, the density function of the productivity distribution in the MP
model is denoted by gMP(ϕ) = θMPϕ−θMP−1, where θMP > σ − 1 is the tail index. The
trade elasticity in MP is εMP = −θMP. Note that in general, the price index can be written
as P1−σ = P1−σ

D + nP1−σ
X , where P1−σ

D and P1−σ
X are the components of P1−σ in which

the goods are from domestic and foreign firms, respectively. Thus, λ ≡ P1−σ
D /P1−σ . In

MP,

λMP =
[

1 + nτ1−σ

(
ϕX

ϕD

)σ−θMP−1]−1

=
[

1 + nτ−θMP
(
κX

κD

) σ−θMP−1
σ−1

]−1

.

As mentioned, since ε = d ln( 1−λ
nλ )/d lnτ under the symmetric country setting,

d lnW MP

d lnτ
= 1

εMP

d lnλMP

d lnτ
= −(1 − λMP).

We now turn to our model, which is hereafter referred to as IN (innovation). To iso-
late the effect of innovation, we assume that γ is uniformly distributed so that the re-
sulting productivity distribution is similar to the Pareto distribution with the tail index
θ ≡ β−σ + 1, except that there is a jump at γX when κX > 0. The domestic expenditure
share in our model is

λ =
1 + [φσ−1 − 1

](γX
γD

)1− σ−1
θ

1 + [(1 + nτ1−σ
)
φσ−1 − 1

](γX
γD

)1− σ−1
θ

, (37)

where γX/γD is given by (35).
To quantify the model, we calibrate the values of σ , β, n, τ, and κX/(κD + κR ). We

calibrate these parameters from the viewpoint of the United States in 2002. Feenstra and
Weinstein (2017) report that the median of markups in the United States is 1.3. Taking
this median as a representative value for our constant-markup model, σ ≈ 4.33. Under

26As is evident from ACR’s proof, a constant trade elasticity is a strong restriction. There could be various
reasons why trade elasticity becomes a variable. For example, Melitz and Redding (2015) show that trade
elasticity becomes a variable in the Melitz (2003) model when the productivity distribution deviates from
the Pareto; Hsu, Lu, and Wu (2020) show that it becomes a variable in the Bertrand competition model in
Bernard et al. (2003) when the productivity draw is from the log-normal distribution instead of the Fréchet
distribution.
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the uniform distribution of γ, δ (see (35)) is the fraction of exporters among all (surviv-
ing) firms. As documented by Bernard, Jensen, Redding, and Schott (2007), this fraction
in the United States in 2002 equals 0.18.

Denote domestic absorption as DA and imports as M . By definition, λ then equals
(DA−M )/DA. Using data from Penn World Table 9.0 (PWT 9.0), λ is 0.853 in 2002 for the
United States.27 To better fit our symmetric-country model, the number of countries,
n+ 1, is computed as the ratio of the world GDP to that of the United States. Using PWT
9.0, this number equals 4.41. We, therefore, set n = 3. We adopt the estimate of the
trade elasticity in Simonovska and Waugh (2014), which is 4.63.28 Thus, θMP = 4.63. We
calibrate β, κX/(κD + κR ), and τ to match λ = 0.853, δ = 0.18, and ε = 4.63 using (35),
(37), and the ε formula given in Appendix A.6. The result is β = 7.838, κX/(κD + κR ) =
0.572, and τ = 2.097. This implies that the tail index θ = 4.51, which is rather close to
θMP.

Given the calibrated parameters, we compute the local welfare gains for both the IN
and MP models.29 We also compare the welfare gains by moving from autarky to the
current level of trade cost τ for both models. As the global ACR formula applies to the

MP model, W MP

W MP
τ→∞

= (λMP )
− 1

θMP . The global ACR formula does not apply to our IN model,

but combining (33) and (35) into the free-entry condition yields

W

Wτ→∞
= Pτ→∞

P
=
{

1 + n1− θ
σ−1

(
κX

κD + κR

)1− θ
σ−1 [(

1 + nτ1−σ
)β
θ − 1

] θ
σ−1

} 1
β

.

From autarky to the calibrated τ, IN and MP entail 3.5% and 2.5% of the welfare
gains, respectively. Hence, the gains from trade in IN are 40% larger than those in MP.
The welfare elasticities to trade cost, d lnW/d lnτ, are −0.147 and −0.108, for IN and MP,
respectively. This implies that for small changes in τ, the welfare gains in IN are 36.1%
higher than those in MP; this is quite similar to the case that compares with autarky.

The welfare elasticity, which is given by 1 − λ as in Proposition 5, increases when
τ decreases in both the IN and MP models. The gains from trade (compared with au-
tarky) are simply the integral of the welfare elasticity from τ → ∞ to the current τ. The
IN model entails higher gains from trade than the MP model because λ < λMP at every
value of τ. To see this, recall from Proposition 4 that a reduction in trade cost induces
exporters to innovate more and become more productive and non-exporters to inno-
vate less and become less productive. Hence, the productivity advantage of exporters
vs. non-exporters widens with trade liberalization at a higher rate than the MP model.
In autarky, the domestic expenditure λ = 1 in both models; once a country opens to

27We also use the U.S. input–output table (obtained from Organization for Economic Cooperation and
Development (OECD) input–output tables) as our alternative data set to compute λ. We compute DA by
subtracting the net exports from the total value added across industries. With this alternative data set, λ
equals 0.862 and is similar to that computed with PWT 9.0.

28See their Table 7.
29It should be clear at this point that the fixed costs of innovation and production are isomorphic in our

model, as κD +κR is what determines the selection cutoff. Correspondingly, as there is no innovation stage
in the MP model, κD is what determines the selection cutoff. Thus, we interpret the calibrated κX/(κD+κR )
as the κX/κD in the MP model.
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trade, the rate of decrease in λ is larger in the IN model, implying that λ < λMP at every
value of τ <∞.

5. Conclusion

This paper has demonstrated that with an innovation stage added to a standard gen-
eral equilibrium model of trade, power laws for both productivity and firm size could
emerge in a rather general environment. The conditions placed on the inverse demand,
innovation cost, and underlying firm heterogeneity being APFs are all more general than
it may seem: the demand class includes various non-CES and non-homothetic prefer-
ences; the class of innovation cost functions includes all polynomial functions that are
sufficiently convex and increasing unboundedly when productivity goes to infinity; the
density of firm heterogeneity includes many well known, widely used distributions. All
of these results hold in a very general open economy in which all parameters can be
country-specific and all bilateral trade costs can be country-pair-specific. Our approach
can generally be applied to other topics that concern agent heterogeneity and power
laws, as discussed in the Introduction.

Conditional on the same trade elasticity and values of the common parameters,
quantitatively our model yields 40% higher welfare gains from trade than the Melitz–
Pareto model. This suggests the importance of incorporating innovation in a trade
model because innovation naturally reacts to changes in trade cost. The economics
is fundamentally a market-size effect that works differently for exporters and non-
exporters.

Welfare gains from trade critically depend on the tail indices of the power laws,
which depend on the price elasticities and how costly it is to engages in innovation.
Interestingly, trade plays an important role because the market with the greatest com-
petitiveness (largest price elasticities) dominates and determines the tail index. This
provides an important angle to comprehend trade wars. For example, the Trump ad-
ministration’s sharp increase in tariffs against Chinese products, regardless of whether
it benefits or hurts the United States or the global economy, will certainly have a strong
negative impact on the Chinese aggregate economy and welfare, because the United
States tends to be the largest and most competitive market and, thus, affects the top
Chinese firms the most.

Appendix

A.1 Microfoundation for innovation cost function

Each firm determines its productivity level by engaging in R&D activities in the follow-
ing manner. The production process involves a continuum of procedures, and the firm
chooses the size of the continuum, a. How well the firm performs in each procedure
(which we term the quality of the procedure) depends on the outcome of a sequence
of experiments that the firm conducts. For each procedure, every firm starts off with
one quality unit. When the first experiment is successful, then the firm obtains one ad-
ditional quality unit for this procedure and can continue to conduct the second experi-
ment. Recursively, every successful experiment results in one additional quality unit and
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the chance to conduct the next experiment. If the experiment fails, however, no more
experiments will be performed and the quality of the procedure is finalized. Firms differ
in their probabilities of failure, γ ∈ (0, 1]. The probability of obtaining quality y = 1, 2, � � �
for a procedure is, therefore, (1 − γ)y−1γ, i.e., y is geometrically distributed.

Each procedure requires a worker, say, a research assistant, to perform the experi-
ments. Therefore, the mass of research assistants employed by the firm equals the size
of the continuum of procedures, a. The productivity ϕ is a function of the total quality
of all a procedures, aE(y ): ϕ≡ B(aE(y )) = B(a

∑∞
y=1(1 −γ)y−1γy ) = B( a

γ ). The function
B(·) is strictly increasing and concave on R+, and lima→∞ B( a

γ ) = ∞. The concavity of
B(·) reflects the management burden for the firm to manage these research assistants.
Inverting the above equation yields k = γV (ϕ) +κR, where V ≡ B−1 is strictly increasing
and convex in ϕ and limϕ→∞ V (ϕ) = ∞. For a firm to perform all these experiments, a
fixed cost, κR, such as setting up a laboratory is required. Thus, the total labor require-
ment for a firm to acquire productivity ϕ is k= γV (ϕ) + κR.

A.2 Proof of Proposition 1

We prove this proposition in three steps. In the first step, we show that β > α+2
α+1 (σ − 1)

must hold for the expected profit to be finite to ensure equilibrium existence. In the
second and third steps, we show that the productivity and firm size distributions exhibit
power laws.

Step 1. We require
∫
�
(γ)dF(γ) <∞ for the free-entry condition to be well defined.

Since 
(γ) is finite for all γ > 0, the only concern for the expected profit to explode is
when γ is close to 0. Note that using (13) and (18), we can write


(γ) =
(

1
L

1

β+ϕ
L′

L

) σ−1
β−σ+1(

1 − 1
σ

+ q∗Q′

Q

) (1+β)(σ−1)
β−σ+1

×Q
βσ

β−σ+1

⎛⎜⎜⎝ 1
σ

− q∗Q′

Q
−

1 − 1
σ

+ q∗Q′

Q

β+ϕ
L′

L

⎞⎟⎟⎠γ
− σ−1

β−σ+1 − κR − κD.

The expected profit is finite if
∫
�[
(γ) + κR + κD]γαm(γ)dγ < ∞. Assumptions 1 and 2

and limγ→0 m(γ) = Cm imply that

lim
γ→0

[

(γ) + κR + κD

]
γ

− σ−1
β−σ+1

m(γ) =
CmC

σβ
β−σ+1
Q

(
σ − 1
σ

) σβ
β−σ+1

C
σ−1

β−σ+1
L β

β
β−σ+1

(
β− σ + 1
σ − 1

)
;

hence, for any ω> 0, there exists a γ > 0 such that for any γ < γ,

[

(γ) + κR + κD

]
γ

− σ−1
β−σ+1

<

CmC
σβ

β−σ+1
Q

(
σ − 1
σ

) σβ
β−σ+1

C
σ−1

β−σ+1
L β

β
β−σ+1

(
β− σ + 1
σ − 1

)
+ω.
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By picking a sufficiently small γ and noting that γ < 1, we have∫ γ

0

[

(γ) + κR + κD

]
f (γ)dγ

<

⎡⎢⎢⎢⎢⎣
CmC

σβ
β−σ+1
Q

(
σ − 1
σ

) σβ
β−σ+1

C
σ−1

β−σ+1
L β

β
β−σ+1

(
β− σ + 1
σ − 1

)
+ω

⎤⎥⎥⎥⎥⎦
∫ 1

0
γ
α− σ−1

β−σ+1 dγ.

It follows that
∫ 1

0 γ
α− σ−1

β−σ+1 dγ <∞ if α>−1 and β> α+2
α+1 (σ − 1).

Step 2. Starting from the definition of the Jacobian and using (15), we have

∣∣J(ϕ)
∣∣= ∣∣∣∣∂γ̃(ϕ)

∂ϕ

∣∣∣∣= q∗(ϕ)

ϕ2V ′(ϕ)

(
2ϕ−1 + V ′′(ϕ)

V ′(ϕ)

)
+ 1

ϕ2V ′(ϕ)

ϕ−2

π̃qq
(
q∗(ϕ); ϕ

) .

Then, by (13), (14), and Assumptions 1 and 2, we can replace V ′(ϕ), V ′′(ϕ), q∗(ϕ), and
π̃qq(q∗(ϕ); ϕ) to obtain (21) as

∣∣J(ϕ)
∣∣= Qσ

L

(
1 − 1

σ
+ q∗Q′

Q

)σ

β+ϕ
L′

L

·

⎡⎢⎢⎣2 +
β(β− 1) + 2βϕ

L′

L
+ϕ2 L

′′

L

β+ϕ
L′

L

+
1 − 1

σ
+ q∗Q′

Q

− 1
σ

(
1 − 1

σ

)
+ 2
(

1 − 1
σ

)
q∗Q′

Q
+ (q∗)2 Q′′

Q

⎤⎥⎥⎦ ·ϕ−(β−σ+1)−1.

By Assumptions 1 and 2, Lemmas 1 and 2, and (10), we have

lim
ϕ→∞

∣∣J(ϕ)
∣∣

ϕ−(β−σ+1)−1
=

Cσ
Q

(
σ − 1
σ

)σ

(β− σ + 1)

CLβ
.

The p.d.f. of productivity is, therefore,

g(ϕ) = f
(
γ̃(ϕ)

)
Pr(γ ∈�)

∣∣J(ϕ)
∣∣= f

(
γ̃(ϕ)

)
Pr(γ ∈�)

∣∣J(ϕ)
∣∣

ϕ−(β−σ+1)−1
ϕ−(β−σ+1)−1

= m
(
γ̃(ϕ)

)
Pr(γ ∈�)

⎡⎢⎢⎣Qσ

L

(
1 − 1

σ
+ q

Q′

Q

)σ

β+ϕ
L′

L

⎤⎥⎥⎦
α ∣∣J(ϕ)

∣∣
ϕ−(β−σ+1)−1

ϕ−(1+α)(β−σ+1)−1.

As ϕ becomes arbitrarily large, m(γ̃(ϕ)), the bracketed term, and |J(ϕ)|
ϕ−(β−σ+1)−1 converge to

constants. It thus follows that the productivity distribution exhibits a power law with a
tail index (1 + α)(β− σ + 1).
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Step 3. By (13) and Lemma 1, firm size in terms of sales s is a function of ϕ:

s = ϕσ−1Qσ

(
1 − 1

σ
+ q∗Q′

Q

)σ−1

. (38)

By Assumptions 1 and 2 and Lemmas 1 and 2, there are one-to-one mappings at the tails

between s → ∞ and ϕ → ∞, and between ϕ → ∞ and γ → 0, such that limϕ→∞ s = ∞.

Let s(ϕ) denote the firm size with productivity ϕ as defined by (38); ϕ(s) denotes its

inverse function. Combining (18) and (38), we have

γ̃
(
ϕ(s)

)≡ γ̃(s) = γ = Qσ

L

(
1 − 1

σ
+ q

Q′

Q

)σ

β+ϕ
L′

L

[
Qσ

(
1 − 1

σ
+ q

Q′

Q

)σ−1]β−σ+1
σ−1

s−
β−σ+1
σ−1 ,

which converges to a power function of s with exponent −β−σ+1
σ−1 under Assumptions 1

and 2.

Using (13) and (14), we have

∂s(ϕ)
∂ϕ

= ∂s

∂q∗
∂q∗

∂ϕ
=

1 − 1
σ

+ q∗Q′

Q

1
σ

(
1 − 1

σ

)
− 2
(

1 − 1
σ

)
q∗Q′

Q
− (q∗)2Q′′

Q

q∗ϕ−2 > 0. (39)

Using (13), (38), and (39), we obtain the Jacobian |Js(s)|:

∣∣Js(s)
∣∣= ∣∣∣∣∂γ̃(s)

∂s

∣∣∣∣= ∣∣∣∣∂γ̃(ϕ)
∂ϕ

∂ϕ(s)
∂s

∣∣∣∣=
∣∣J(ϕ)

∣∣
ϕ−(β−σ+1)−1

ϕ−(β−σ+1)−1
(
∂s(ϕ)
∂ϕ

)−1

=
∣∣J(ϕ)

∣∣
ϕ−(β−σ+1)−1

1
σ

(
1 − 1

σ

)
− 2
(

1 − 1
σ

)
q∗Q′

Q
− (q∗)2Q′′

Q(
1 − 1

σ
+ q∗Q′

Q

)−(β−σ+1)

Q− σ(β−σ+1)
σ−1

s−
β−σ+1
σ−1 −1.

The density of the firm size distribution gs(s) can be expressed as

gs(s) = m
(
γ̃(s)

)[
γ̃(s)

]α
Pr(γ ∈�)

∣∣Js(s)
∣∣= m

(
γ̃(s)

)
Pr(γ ∈�)

∣∣Js(s)
∣∣

s−
β−σ+1
σ−1 −1

(
γ̃(s)

s−
β−σ+1
σ−1

)α

s−
(α+1)(β−σ+1)

σ−1 −1.

By Assumptions 1 and 2, Lemmas 1 and 2, and (10), we know that |Js(s)|/s−β−σ+1
σ−1 −1,

γ̃(s)α/s−αβ−σ+1
σ−1 , and m(γ̃(s)) converge to constants as s tends to infinity. Therefore, the

firm size distribution exhibits a power law with a tail index (α+1)(β−σ+1)
σ−1 .
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A.3 Derivation for Section 2.3

A.3.1 Finiteness of expected profit Let k̄ ≡ arg maxk σk. We can rewrite (28) by extract-
ing ϕσk̄−βi−1 as

γ =

⎡⎢⎢⎢⎣∑
j

Iijτ
1−σj

ij w
−σj

i Q
σj

j ·
(

1 − 1
σj

+ q∗
ij

Q′
j

Qj

)σj

Li ·
(
βi +ϕ

L′
i

Li

) ϕσj−σk̄

⎤⎥⎥⎥⎦ϕσk̄−βi−1. (40)

We can also rewrite (26) as

qij = Q
σj

j ×
(

1 − 1
σj

+ qij
Q′

j

Qj

)σj

w
−σj

i τ
−σj

ij ϕσj . (41)

Using Assumptions 1 and 2, (40), and (41), the total profit becomes


i =
∑
j

Iij

(
pijqij − τijwiϕ

−1qij
)−wiγϕ

βiLi −wi

(∑
j

Iijκij + κD,i + κR,i

)

=

∑
j

Iij

⎛⎜⎜⎜⎝
1
σj

− qij
Q′

j

Qj

1 − 1
σj

+ qij
Q′

j

Qj

− 1

βi +ϕ
L′
i

Li

⎞⎟⎟⎟⎠Q
σj

j

(
1 − 1

σj
+ qij

Q′
j

Qj

)σj

w
1−σj

i τ
1−σj

ij ϕσj−σk

⎡⎢⎢⎢⎣∑
j

Iijτ
1−σj

ij w
−σj

i Q
σj

j ·
(

1 − 1
σj

+ q∗
ij

Q′
j

Qj

)σj

Li ·
(
βi +ϕ

L′
i

Li

) ϕσj−σk̄

⎤⎥⎥⎥⎦
σ
k

−1

σ
k̄

−βi−1

× γ

σ
k

−1

σ
k̄

−βi−1

−wi

(∑
j

Iijκij + κD,i + κR,i

)
.

As ϕ̃i(γ) and q∗
ij(ϕ) exist and are unique, Assumptions 1 and 2 and (10) imply that


i +wi

(∑
j

Iijκij + κD,i + κR,i

)

γ

σ
k̄

−1

σ
k̄

−βi−1

converges to a constant as γ becomes infinitesimal. Recall that αi >−1 for all i; the same
procedure as in Appendix A.2 implies that E(
i ) < ∞ if βi >

αi+2
αi+1 (σk̄ − 1).
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A.3.2 Productivity distribution Following the same procedure as in Appendix A.2, (26),
and (27) yields

∂

∂ϕ

τijq
∗
ij(ϕ)

ϕ2V ′
i (ϕ)

= −τijq
∗
ij(ϕ)

ϕ2V ′
i (ϕ)

[
2ϕ−1 + V ′′

i (ϕ)
V ′
i (ϕ)

]
+ τij

ϕ2V ′
i (ϕ)

∂q∗
ij(ϕ)

∂ϕ

= −
w

−σj

i τ
1−σj

ij Q
σj

j

Li(ϕ)

(
1 − 1

σj
+ qij

Q′
j

Qj

)σj

βi +ϕ
L′
i(ϕ)

Li(ϕ)

·

⎡⎢⎢⎣2 +
βi(βi − 1) + 2βiϕ

L′
i(ϕ)

Li(ϕ)
+ϕ2 L

′′
i (ϕ)

Li(ϕ)

βi +ϕ
L′
i(ϕ)

Li(ϕ)

+
1 − 1

σj
+ qij

Q′
j

Qj

− 1
σj

(
1 − 1

σj

)
+ 2
(

1 − 1
σj

)
qij

Q′
j

Qj
+ q2

ij

Q′′
j

Qj

⎤⎥⎥⎥⎦ϕ−(βi−σj+1)−1

≡ −Jijϕ
−(βi−σj+1)−1. (42)

Using (29), we have

∣∣Ji(ϕ)
∣∣= ∣∣∣∣∣

n∑
j=0

∂

∂ϕ

τijq
∗
ij(ϕ)

ϕ2V ′
i (ϕ)

∣∣∣∣∣=
(∑

j

Jijϕ
σj−σk̄

)
ϕ−(βi−σk̄+1)−1. (43)

As Jij converges to a constant,
∑

j Jijϕ
σj−σk̄ converges to a constant because ϕσj−σk̄ → 0

for all j �= k and ϕσj−σk̄ = 1 for j = k.
As a result, the productivity distribution is given by

gi(ϕ) = mi

(
γ̃i(ϕ)

)
Pr(γ ∈�i )

γ̃i(ϕ)αi
∣∣Ji(ϕ)

∣∣
= mi

(
γ̃i(ϕ)

)
Pr(γ ∈�i )

(
γ̃i(ϕ)

ϕσk̄−βi−1

)αi
(∑

j

Jijϕ
σj−σk̄

)
ϕ−(1+αi )(βi−σk̄+1)−1.

From Assumptions 1 and 2, (10), (40), (42), and limγ→0 mi(γ) = Cm,i, the distribution of
ϕ exhibits a power law with a tail index (αi + 1)(βi + 1 − maxj σj ).

A.3.3 Firm size distribution For firms with sufficiently large ϕ, the firm size s is defined
as the sum of export revenue s ≡∑j sij . As ϕ̃i(γ) and q∗

ij(ϕ) exist and are unique, and

since sij = pijqij = q
1− 1

σj

ij Qj , the functions sij(γ), sij(ϕ), sij(qij ) and their inverse functions
exist. Moreover, sij is decreasing in γ and increasing in both ϕ and qij . When γ becomes

arbitrarily small, both ϕ and sij become arbitrarily large. By (26) and s =∑j q
1− 1

σj

ij Qj , we



374 Chen, Hsu, and Peng Theoretical Economics 18 (2023)

have

ϕ= s
1

σ
k̄

−1

∑
j

[
w

1−σj

i τ
1−σj

ij

[
Qj ×

(
1 − 1

σj
+ qij

Q′
j

Qj

)]σj−1

Qjϕ
σj−σk̄

] 1
σ
k̄

−1

. (44)

Deriving ∂q∗
ij/∂ϕ using (26) and applying the product rule to sij = q

1− 1
σj

ij Qj yields

∂sij(ϕ)
∂ϕ

= ∂sij

∂q∗
ij

∂q∗
ij

∂ϕ
=

1 − 1
σj

+ q∗
ij

Q′
j
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1
σj

(
1 − 1

σj

)
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(
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j

Qj

wiτijϕ
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(
1 − 1

σj
+ q∗
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j

Qj
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Qj ×

(
1 − 1

σj
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j

Qj
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σj

(
1 − 1

σj
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(
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j

Qj
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i τ
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As a result,

∂s(ϕ)
∂ϕ

=
n∑

j=0

∂sij(ϕ)/∂ϕ

ϕσj−2 ϕσj−2 =
(

n∑
j=0

∂sij(ϕ)/∂ϕ

ϕσj−2 ϕσj−σk̄

)
ϕσk̄−2. (46)

Using (29), (43), (44), (45), and (46), the absolute value of the Jacobian term |Js,i(ϕ)| is
thus ∣∣Js,i(ϕ)

∣∣≡ ∣∣∣∣∂γ̃i(s)
∂s

∣∣∣∣= ∣∣∣∣∂γ̃i(ϕ)
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.

As a result, the above equation along with (40) yields the firm size distribution gs,i(s):

gs,i(s) = mi

(
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)
Pr(γ ∈�i )
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.



Theoretical Economics 18 (2023) Innovation, firm size, and trade 375

From (10), (40), (43), (44), (45), Assumptions 1 and 2, and limγ→0 mi(γ) = Cm,i, each

of the multiplicative terms besides s
− (αi+1)(βi−σ

k̄
+1)

σ
k̄

−1 −1
converges to a constant. Thus, the

firm size distribution exhibits a power law with a tail index (αi+1)(βi+1−maxj σj )
maxj σj−1 .

A.4 Proof of Proposition 3

Applying the symmetric-country assumption to Proposition 2 implies that E(
) < ∞
under α> −1 and β> α+2

α+1 (σ −1). Using (31)–(33), the definition of φ, and recalling that
γX/γD = δ < 1, we can restate the expected profit as a function of γD,

E(
) = (κD+κR )γ
σ−1

β−σ+1
D

{
�D+[(1+nτ1−σ

) β
β−σ+1 −1

]
�X

}−(κD+κR )F(γD )−nκXF(γX ),

where �z ≡ ∫ γz0 γ
− σ−1

β−σ+1 dF(γ) for z ∈ {D, X}. In equilibrium, γD solves the free-entry
condition. Using (35), it is then readily verified that

∂E(
)
∂γD

= (κD + κR )
σ − 1

β− σ + 1
γ

σ−1
β−σ+1 −1

D

[
(�D − �X ) + (1 + nτ1−σ

) β
β−σ+1 �X

]
> 0.

Note that both �D and �X are positive and increasing in γD; thus, limγD→∞ γ
σ−1

β−σ+1
D �D =

limγD→∞ γ
σ−1

β−σ+1
D �X = ∞. Since both F(γD ) and F(γX ) are less than 1, it follows that

limγD→∞ E(
) = ∞. Since E(
) is bounded from above by E(
)|γD=1, for any κe ∈
(0, E(
)|γD=1 ) there exists a unique γD such that the free-entry condition holds, hence
establishing the uniqueness of equilibrium.

A.5 Proof of Proposition 4

We first derive the effect of τ on the surviving cutoff γD. Totally differentiating E(
) with
respect to τ yields dγD

dτ = − ∂E(
)/∂τ
∂E(
)/∂γD

. We have obtained ∂E(
)/∂γD in Appendix A.4.
Partially differentiating the expected profit with respect to τ yields

∂E(
)
∂τ

= − (σ − 1)β
β− σ + 1

nτ−σ

1 + nτ1−σ
(κD + κR )γ

σ−1
β−σ+1
D

(
1 + nτ1−σ

) β
β−σ+1 �X .

This then leads to

dγD
dτ

= βγD
nτ−σ

1 + nτ1−σ

(
1 + nτ1−σ

) β
β−σ+1 �X

(�D − �X ) + (1 + nτ1−σ
) β
β−σ+1 �X

> 0.

The effect of τ on the exporting cutoff γX is defined by dγX
dτ = δdγD

dτ + dδ
dτ γD; therefore,

dγX
dτ

= δβγDnτ
−σ

1 + nτ1−σ

[ (
1 + nτ1−σ

) β
β−σ+1 �X

(�D − �X ) + (1 + nτ1−σ
) β
β−σ+1 �X

−
(
1 + nτ1−σ

) β
β−σ+1(

1 + nτ1−σ
) β
β−σ+1 − 1

]
.
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The first and second terms in the brackets are less than and greater than 1, respectively.
We thus conclude that dγX/dτ < 0. Combining (33) and (30), we obtain the equilibrium
productivity

ϕ̃(γ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(κD + κR )

1
β γ

σ−1
β(β−σ+1)
D

(
β− σ + 1
σ − 1

)− 1
β

γ
− 1

β−σ+1 if γ ∈ (γX , γD]

φ(κD + κR )
1
β γ

σ−1
β(β−σ+1)
D

(
β− σ + 1
σ − 1

)− 1
β

γ
− 1

β−σ+1 if γ ∈ [0, γX ].

(47)

For the effect on productivity, taking derivatives of (47) yields

dϕ̃(γ)
dτ

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(κD + κR )
1
β nτ−σ

(
1 + nτ1−σ

) σ−1
β−σ+1 �Xγ

σ−1
β(β−σ+1)
D

(�D − �X ) + (1 + nτ1−σ
) β
β−σ+1 �X

×
(
β− σ + 1
σ − 1

)−β+1
β

γ
− 1

β−σ+1 > 0 for non-exporting firms

−φ
(κD + κR )

1
β nτ−σ

(
1 + nτ1−σ

) σ−1
β−σ+1 �Xγ

σ−1
β(β−σ+1)
D

(�D − �X ) + (1 + nτ1−σ
) β
β−σ+1 �X

×
(
β− σ + 1
σ − 1

)−β+1
β

γ
− 1

β−σ+1 < 0 for exporting firms.

The claims on the comparative statics of ϕ thus follow.

A.6 Proof of Proposition 5

We can write the price index as P1−σ = P1−σ
D + nP1−σ

X , where P1−σ
D and nP1−σ

X are
the components of P1−σ in which the goods are from domestic and foreign firms, re-
spectively. Therefore, the share of expenditure on domestic products is defined by
λ ≡ P1−σ

D /P1−σ , and the share of expenditure on goods from a foreign country is defined
by λX = P1−σ

X /P1−σ = (1 − λ)/n. Plugging (30) into (36) and using the above definitions
yields

λ = �D + (φσ−1 − 1
)
�X

�D + [(1 + nτ1−σ
)
φσ−1 − 1

]
�X

(48)

λX = φσ−1τ1−σ�X

�D + [(1 + nτ1−σ
)
φσ−1 − 1

]
�X

. (49)

From (33) and (34) we have

d lnγD = βd lnP (50)

d lnγX = βd lnP + d lnδ. (51)

Note that the assumptions of Proposition 3 ensure that E(
) < ∞; hence, �D and �X

are both finite. We further define the shorthand notation ηz ≡ γ
1− σ−1

β−σ+1
z f (γz )�−1

z , where
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z ∈ {D, X}. The welfare is defined as the real income W ≡ N/P . It thus follows from (50)
that d lnW

d lnτ = − 1
β

d lnγD
d lnτ . With E(
) given in Appendix A.4, E(
) = κe yields

γ
σ−1

β−σ+1
D = κe + (κD + κR )F(γD ) + nκXF(γX )

(κD + κR )
{
�D + [(1 + nτ1−σ

) β
β−σ+1 − 1

]
�X

} .

By log-differentiating the above equation, combining the definitions of ηD and ηX with

the free-entry condition, and noting that (1 + nτ1−σ )
β

β−σ+1 = (1 + nτ1−σ )φσ−1, one can
obtain d lnγD = β(1 −λ)d lnτ with a few algebraic manipulations. The welfare elasticity
is accordingly d lnW

d lnτ = λ − 1. With symmetric countries, the trade elasticity equals ε =
d ln(λX/λ)/d lnτ. The ACR formula is restated as d lnW

d lnτ = d lnλ/d lnτ
d ln(λX/λ)/d lnτ = λ − 1. Thus,

our model entails the local ACR formula.
For the trade elasticity, recall that d lnδ = d ln(γX/γD ) by (50) and (51), and d lnγD/

d lnτ = β(1 − λ). Using (48) and (49), log-differentiating λX/λ with respect to τ thus
yields

ε = (σ − 1)
�D − �X

�D + (φσ−1 − 1
)
�X

d lnφ
d lnτ

+ (1 − σ )

+ �D

�D + (φσ−1 − 1
)
�X

ηX

d ln
γX
γD

d lnτ
+ �D

�D + (φσ−1 − 1
)
�X

(ηX −ηD )β(1 − λ).

It is readily verified with a numerical example that the trade elasticity is variable in τ and
depends on the distribution of γ.
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