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Characterizing the top cycle via strategyproofness

Felix Brandt
Department of Computer Science, Technische Universität München

Patrick Lederer
Department of Computer Science, Technische Universität München

Gibbard and Satterthwaite have shown that the only single-valued social choice
functions (SCFs) that satisfy nonimposition (i.e., the function’s range coincides
with its codomain) and strategyproofness (i.e., voters are never better off by mis-
representing their preferences) are dictatorships. In this paper, we consider set-
valued social choice correspondences (SCCs) that are strategyproof according to
Fishburn’s preference extension and, in particular, the top cycle, an attractive SCC
that returns the maximal elements of the transitive closure of the weak majority
relation. Our main theorem shows that, under mild conditions, the top cycle is the
only non-imposing strategyproof SCC whose outcome only depends on the quan-
tified pairwise comparisons between alternatives. This result effectively turns the
Gibbard–Satterthwaite impossibility into a complete characterization of the top
cycle by moving from SCFs to SCCs. We also leverage key ideas of the proof of this
statement to obtain a more general characterization of strategyproof SCCs.

Keywords. Top cycle, strategyproofness, Condorcet, preference extension.

JEL classification. D71.

1. Introduction

One of the most influential results in microeconomic theory, the Gibbard–Satterthwaite
theorem, states that dictatorships are the only single-valued social choice functions
(SCFs) that are nonimposing (i.e., every alternative is returned for some preference pro-
file) and strategyproof (i.e., voters are unable to obtain a better outcome by misrepre-
senting their preferences) when there are at least three alternatives. The convenient but
rather restrictive assumption of single-valuedness has been criticized by various schol-
ars. For instance, Gärdenfors (1976) asserts that “[resoluteness] is a rather restrictive
and unnatural assumption.” In a similar vein, Kelly (1977) writes that “the Gibbard–
Satterthwaite theorem [. . . ] uses an assumption of singlevaluedness, which is unreason-
able” and Taylor (2005) that “if there is a weakness to the Gibbard–Satterthwaite theo-
rem, it is the assumption that winners are unique.” The problem with single-valuedness
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is that it is in conflict with the basic fairness notions of anonymity and neutrality, which
require that all voters and all alternatives are treated equally. For example, if half of the
voters favor a and the other half b, there is no fair way of selecting a single winner be-
cause both alternatives are equally acceptable. In the context of social choice, these
fairness conditions are imperative because elections should be unbiased. One way to
deal with this problem is to identify a set of winning candidates with the understand-
ing that one of these candidates will eventually be selected by some tie-breaking rule
independent of the voters’ preferences. Ties can, for example, be broken by lottery or by
letting a chairperson or a committee pick the winner.1

As a result, a large body of research investigates so-called social choice correspon-
dences (SCCs), which return sets of alternatives. In particular, several papers have
shown statements that mimic the negative consequences of the Gibbard–Satterthwaite
theorem (e.g., Duggan and Schwartz (2000), Barberà, Dutta, and Sen (2001), Ching and
Zhou (2002), Benoît (2002), Sato (2014)). These results are based on relatively strong as-
sumptions about the manipulators’ preferences over sets (which in turn are based on
the voters’ beliefs about how ties are broken). For example, all of these results rely on
the assumption that a voter who prefers a to b to c will engage in a manipulation in
which the outcome changes from set {a, c} to set {b}. However, it is quite possible that
no voter entertains such preferences over sets. By contrast, the voters’ preferences over
sets we surmise in this paper are systematically deduced from their preferences over
alternatives, which leads to a weaker notion of strategyproofness. In more detail, we
consider a preference extension attributed to (Fishburn (1972)), according to which a
manipulation is only successful if the manipulator can change the outcome from a set
Y to another set X such that he prefers all alternatives in X \ Y to all alternatives in Y

and all alternatives in X to all alternatives in Y \ X . Two natural justifications for this
extension are the existence of a chairperson who breaks ties or of a priori probabilities
of the voters how ties are broken (see, e.g., Gärdenfors (1979), Ching and Zhou (2002),
Erdamar and Sanver (2009), Brandt, Saile, and Stricker (2022)). The resulting notion of
strategyproofness, often called Fishburn strategyproofness, allows for positive results.
For example, the rather indecisive omninomination rule, which returns all alternatives
that are top-ranked by at least one voter, is strategyproof according to this notion.

A particularly promising approach to construct attractive strategyproof SCCs is to
focus on the pairwise comparisons between alternatives (see, e.g., Gärdenfors (1976),
MacIntyre and Pattanaik (1981), Bandyopadhyay (1983), Campbell and Kelly (2003),
Brandt (2015)). For instance, Brandt (2015) shows that several attractive SCCs that only
rely on the pairwise majority relation, such as the uncovered set and the bipartisan set,
satisfy a strategyproofness notion which is slightly weaker than Fishburn strategyproof-
ness. In this paper, we thus focus on the class of pairwise (aka C2) SCCs, whose out-
come only depends on the weighted majority comparisons. This class was introduced
by Fishburn (1977) and includes many important SCCs such as Borda’s rule, Copeland’s

1These tie-breaking rules are common in real-world elections. Tied elections on the state level within
the U.S. are sometimes decided by lottery. The U.S. Vice President acts as the President of the Senate and
frequently breaks ties in the Senate. If no candidate in a U.S. presidential election obtains an absolute
majority of the voters, then the House of Representatives elects the winner among the best three candidates.
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rule, the top cycle, the essential set, the Simpson–Kramer rule, Kemeny’s rule, ranked
pairs, and Schulze’s rule (see Chapters 3 and 4 in Brandt, Conitzer, Endriss, Lang, and
Procaccia (2016), for an overview of these SCCs). Indeed, it is well known that almost all
other SCCs (e.g., positional scoring rules or runoff rules) are manipulable according to
Fishburn’s preference extension (see, e.g., Taylor (2005, pp. 44–51)).

A prominent concept that arises from pairwise comparisons between alternatives is
that of a Condorcet winner, an alternative that is preferred to every other alternative by
a majority of voters (Condorcet (1785)). Condorcet winners need not exist, but many
scholars agree that an SCC should uniquely return the Condorcet winner whenever one
exists. The nonexistence of Condorcet winners can be addressed by extending the no-
tion of Condorcet winners to so-called dominant sets of alternatives. A set of alternatives
X is dominant if every element of X is preferred to every element not in X by a majority
of voters. Dominant sets are guaranteed to exist since the set of all alternatives is trivially
dominant, and they can be ordered by set inclusion.2 These observations have led to
the definition of the top cycle, an SCC that returns the unique smallest dominant set for
any given preference profile. This set consists precisely of the maximal elements of the
transitive closure of the weak majority relation. The top cycle has been reinvented sev-
eral times and is known under various names such as Good set (Good (1971)), Smith set
(Smith (1973)), weak closure maximality (Sen (1977)), and GETCHA (Schwartz (1986)).

In this paper, we characterize the class of strategyproof pairwise SCCs under rela-
tively mild and common technical assumptions, namely the conditions of nonimposi-
tion, homogeneity, and neutrality. Our first result shows that every strategyproof pair-
wise SCC that satisfies these conditions always returns a dominant set. An important
variant of this characterization is obtained when replacing nonimposition and neutral-
ity with set not-imposition (every set of alternatives is returned for some preference pro-
file): the top cycle is the only strategyproof pairwise SCC that satisfies set nonimposition
and homogeneity. This result effectively turns the Gibbard–Satterthwaite impossibility
theorem into a complete characterization of the top cycle by moving from SCFs to SCCs.

On top of strategyproofness, the top cycle is very robust in terms of changes to the
set of feasible alternatives and preferences of the voters: it is invariant under remov-
ing losing alternatives as well as modifications of preferences between losing alterna-
tives, and has been characterized repeatedly by choice consistency conditions implied
by the weak axiom of revealed preference. Finally, it is one of the most straightforward
Condorcet extensions and can be easily computed. The main disadvantage of the top
cycle is its possible inclusion of Pareto-dominated alternatives. We believe that this
drawback is tolerable because empirical results suggest that the top cycle only rarely
contains Pareto-dominated alternatives. This is due to the fact that Pareto dominances
are increasingly unlikely for large numbers of voters and the persistent observation that
an overwhelming number of real-world elections admit Condorcet winners (see, e.g.,
Regenwetter, Grofman, Marley, and Tsetlin (2006), Laslier (2010), Gehrlein and Lepel-
ley (2011), Brandt and Seedig (2016)). In these cases, the top cycle consists of a single

2Assume for contradiction that two dominant sets, X , Y , are not contained in each other. Then there
exists x ∈ X \Y and y ∈ Y \X . The definition of dominant sets requires that x is majority-preferred to y and
that y is majority-preferred to x, a contradiction.
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Pareto-optimal alternative. Moreover, as we point out in Remark 8, the SCC that re-
turns the top cycle of the subset of Pareto-optimal alternatives satisfies all our axioms
except pairwiseness. In particular, this SCC satisfies strategyproofness with respect to
Fishburn’s extension.

2. Related work

Gärdenfors (1979) initiated the study of strategyproofness with respect to Fishburn’s
preference extension. He attributed this extension to Fishburn because it is the weak-
est extension that satisfies a set of axioms proposed by Fishburn (1972). A small num-
ber of SCCs were shown to be Fishburn strategyproof, sometimes by means of stronger
strategyproofness notions: the Pareto rule—which returns all Pareto-optimal alterna-
tives (Feldman (1979)), the omninomination rule—which returns all top-ranked alter-
natives (Gärdenfors (1976)), the Condorcet rule—which returns the Condorcet winner
whenever one exists and all alternatives otherwise (Gärdenfors (1976)), the SCC that re-
turns the Condorcet winner whenever one exists and all Pareto-optimal alternatives oth-
erwise (Brandt and Brill (2011)), and the top cycle (Bandyopadhyay (1983), Brandt and
Brill (2011), Sanver and Zwicker (2012)). All other commonly studied SCCs fail Fishburn
strategyproofness (see, e.g., Taylor (2005), Brandt, Brill, and Harrenstein (2016)). A uni-
versal example showing the Fishburn manipulability of many SCCs is given in Figure 2
of Section 3.

More recently, the limitations of Fishburn strategyproofness were explored. Brandt
and Geist (2016) studied majoritarian SCCs, that is, SCCs whose outcome only depends
on the pairwise majority relation, and showed that no majoritarian SCC satisfies Fish-
burn strategyproofness and Pareto optimality. The condition of majoritarianess can be
replaced with the much weaker condition of anonymity when allowing for ties in the
preferences (Brandt, Saile, and Stricker (2022)). Both results were obtained with the help
of computer-aided theorem proving techniques. Brandt and Geist (2016, Remark 3) ob-
served that, in the absence of majority ties, the top cycle could be the finest majoritarian
Condorcet extension that satisfies Fishburn strategyproofness when there are at least
five alternatives. A computer verified this claim for five, six, and seven alternatives using
24 hours of runtime. The claim now follows immediately from our Theorem 1 (see also
Remark 3), irrespective of majority ties.

Ching and Zhou (2002) considered a much stronger notion of strategyproofness
based on Fishburn’s preference extension: they require that the outcome when voting
honestly is comparable and preferred to every choice set obtainable by a manipulation
according to Fishburn’s extension. Their main result shows that only constant and dicta-
torial SCCs are strategyproof according to this definition. Barberà, Dutta, and Sen (2001)
derive a similar conclusion for a weaker notion of strategyproofness based on Fishburn’s
extension (but still stronger than the one considered in this paper). In their model, vot-
ers submit preference relations over sets of alternatives that adhere to certain structural
restrictions. When these restrictions are given by Fishburn’s extension, they prove that
only dictatorships satisfy strategyproofness and unanimity.
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Several choice-theoretic characterizations of the top cycle exist. When assuming
that choices from two-element sets are made according to majority rule, the influen-
tial characterization by Bordes (1976) entails that the top cycle is the finest SCC satis-
fying β+, an expansion consistency condition implied by the weak axiom of revealed
preference.3  Ehlers and Sprumont (2008) have shown that, in the absence of majority
ties, the refinement condition can be replaced with two contraction consistency con-
ditions. Brandt (2011), Houy (2011), and Brandt, Brill, Seedig, and Suksompong (2018)
provide further characterization using choice consistency conditions. We are not aware
of a characterization of the top cycle using strategyproofness.

3. Preliminaries

Let N = {1, 2, � � � } denote an infinite set of voters and A a finite set of m alternatives.
Moreover, let F(N) denote the set of all finite and nonempty subsets of N. Intuitively, N
is the set of all possible voters, whereas an element N ∈ F(N) represents a concrete elec-
torate. Given an electorate N ∈ F(N), each voter i ∈ N has a preference relation repre-
sented by a strict total order �i on A. The set of all preference relations on A is denoted
by R(A). A preference profile R is a vector of preference relations, that is, R ∈ R(A)N

for some electorate N ∈ F(N). The set of all preference profiles on A is denoted by
R∗(A) = ⋃

N∈F(N) R(A)N .
For a preference profile R ∈ R∗(A), let

gR(x, y ) = ∣∣{i ∈N : x�i y}
∣∣ − ∣∣{i ∈ N : y �i x}

∣∣ (Majority margin)

be the majority margin of x over y in R. It describes how many more voters prefer x to
y than y to x. Whenever gR(x, y ) ≥ 0 for some pair of alternatives, we say that x weakly
(majority) dominates y, denoted by x �R y. Note that the relation �R, which we call
majority relation, is complete. Its strict part will be denoted by �R, that is, x �R y if and
only if x�R y and not y �R x, and its indifference part by ∼R, that is, x∼R y if and only if
x�R y and y �R x. Whenever the number of voters is odd, there can be no majority ties
and �R is antisymmetric. We will extend both individual preference relations and the
majority relation to sets of alternatives using the shorthand notation X � Y whenever
x� y for all x ∈X and y ∈ Y .

The majority relation gives rise to a number of important concepts in social choice
theory. A Condorcet winner is an alternative x such that x �R A \ {x}. In a similar vein,
a Condorcet loser is an alternative x with A \ {x} �R x. Neither Condorcet winners nor
Condorcet losers need to exist, but whenever they do, each of them is unique. A natural
extension of these ideas to sets of alternatives is formalized via the notion of dominant
sets. A nonempty set X ⊆ A is dominant if X �R A \X . Whenever a Condorcet winner
exists, it forms a singleton dominant set. In contrast to Condorcet winners, dominant
sets are guaranteed to exist since the set of all alternatives A is trivially dominant. For ev-
ery majority relation �R, the set of dominant sets is totally ordered by set inclusion, that

3This result was recently rediscovered by Evren, Nishimura, and Ok (2019).
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Figure 1. A preference profile with N = {1, 2, 3, 4} and A = {a, b, c, d, e} (left-hand side) and
the corresponding weighted majority graph (right-hand side). An edge from x to y with weight w
denotes that gR(x, y ) =w. Edges with weight 0 are bidirectional since, in this case, both alterna-
tives weakly majority dominate each other. The smallest dominant set, {a, b, c}, is highlighted in
gray.

is, each majority relation induces a hierarchy of dominant sets that are strictly contained
in each other.2

For an illustration of these concepts, consider the example given in Figure 1, which
shows a preference profile R and its majority relation. The weights on the edges of the
majority relation indicate the majority margins. The profile R neither admits a Con-
dorcet winner nor a Condorcet loser since each alternative has at least one incoming
and outgoing edge. There are two dominant sets, {a, b, c} and {a, b, c, d, e}. Note that the
notions of Condorcet winners and dominant sets are independent of the exact weights
of the edges but only depend on their directions.

Social choice correspondences

This paper is concerned with social choice correspondences (SCCs). An SCC maps a pref-
erence profile to a nonempty subset of alternatives called the choice set, that is, it is a
function of the form f : R∗(A) → 2A \ {∅}. Note that we employ a so-called variable pop-
ulation framework, so SCCs are defined for all electorates. In this paper, we focus on two
important classes of SCCs: majoritarian SCCs and pairwise SCCs. An SCC f is called ma-
joritarian if its outcome merely depends on the majority relation, that is, f (R) = f (R′ )
for all R, R′ ∈ R∗(A) with �R = �′

R. Furthermore, an SCC f is pairwise if its outcome
merely depends on the majority margins, that is, f (R) = f (R′ ) for all R, R′ ∈ R∗(A) with
gR = gR′ . Majoritarian SCCs can be interpreted as functions that map an unweighted
graph (A, �R ) to a nonempty subset of its vertices, while pairwise SCCs may addition-
ally use the majority margins gR(x, y ) as weights of the edges. The classes of majoritar-
ian and pairwise SCCs are very rich and contain a variety of well-studied SCCs. For in-
stance, Copeland’s rule, the uncovered set, and the bipartisan set are majoritarian, and
Borda’s rule, the Simpson–Kramer rule, the essential set, Kemeny’s rule, ranked pairs,
and Schulze’s rule are pairwise (the interested reader may consult Chapters 3 and 4 in
Brandt et al. (2016) for definitions of these SCCs). All SCCs listed above, except Borda’s
rule, are Condorcet extensions, that is, they uniquely return the Condorcet winner when-
ever one exists.

We say that an SCC f is a refinement of an SCC g if f (R) ⊆ g(R) for all preference pro-
files R ∈ R∗(A). In this case, g is also said to be coarser than f . For example, Copeland’s
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rule, the uncovered set, the essential set, Kemeny’s rule, ranked pairs, and Schulze’s rule
are known to be refinements of the top cycle while the Condorcet rule is a coarsening of
the top cycle.

The top cycle is a majoritarian SCC that returns the smallest dominant set for a given
preference profile. Every preference profile admits a unique smallest dominant set be-
cause dominant sets are ordered by set inclusion. Alternatively, the top cycle can be
defined based on paths with respect to the majority relation. A path from an alternative
x to an alternative y in �R is a sequence of alternatives (x1, � � � , xk ) such that x1 = x,
xk = y, and xi �R xi+1 for all i ∈ {1, � � � , k− 1}. The transitive closure �∗

R of the majority
relation contains all pairs of alternatives (x, y ) such that there is a path from x to y in �R.
Then the top cycle can be defined as the set of alternatives that are maximal according
to �∗

R:

TC(R) =
⋂

{X ⊆ A : X �R A \X} = {
x ∈A : x�∗

R A
}

. (Top cycle)

In other words, the top cycle consists precisely of those alternatives that reach every
other alternative on some path in the majority graph. For instance, the top cycle of the
example profile in Figure 1 is {a, b, c}. Here, it is important that we interpret majority
ties as bidirectional edges as otherwise there would be no path from a to b.4

On top of majoritarianess and pairwiseness, which restrict the informational basis
of SCCs, we now introduce a number of additional properties of SCCs.

• An SCC is nonimposing if for every alternative x ∈ A there is a profile R ∈ R∗(A)
such that f (R) = {x}.

• An SCC is neutral if f (R′ ) = π(f (R)) for all electorates N ∈ F(N), profiles R, R′ ∈
R(A)N , and permutations π : A→A such that x�i y if and only if π(x) �′

i π(y ) for
all alternatives x, y ∈A and voters i ∈N .

• An SCC is homogeneous if for all preference profiles R ∈ R∗(A), f (R) = f (kR) where
the profile kR consists of k copies of R.

Nonimposition is a mild decisiveness requirement demanding that every alternative will
be selected uniquely for some configuration of preferences. It is weaker than Pareto
optimality and unanimity (an alternative that is top-ranked by all voters has to be elected
uniquely). Neutrality requires that if alternatives are relabeled in a preference profile,
the alternatives in the corresponding choice set are relabeled accordingly. Homogeneity
states that cloning the entire electorate will not affect the choice set. All three of these
properties are very mild and satisfied by all SCCs typically considered in the literature,
including the top cycle.

4There is a refinement of the top cycle, sometimes called the Schwartz set or GOCHA, which is defined as
the union of undominated sets, or alternatively, as the set of alternatives that reach every other alternative
on a path according to �R (rather than �R) (see, e.g., Schwartz (1972), Deb (1977), Schwartz (1986)). We
will not consider it further because it violates rather mild consistency and strategyproofness conditions.
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Fishburn’s extension and strategyproofness

An important desirable property of SCCs is strategyproofness, which demands that vot-
ers should never be better off by lying about their preferences. To make this formally pre-
cise for social choice correspondences, we need to make assumptions about the voters’
preferences over sets. In this paper, we extend the voters’ preferences over alternatives
to incomplete preference over sets by using Fishburn’s preference extension. Given two
sets of alternatives X , Y ⊆ A, X �= Y , and a preference relation �i, Fishburn’s extension
is defined by

X �F
i Y if and only if X \Y �i Y and X �i Y \X. (Fishburn’s extension)

Fishburn’s extension is frequently considered in social choice theory and can be justi-
fied in various ways (see, e.g., Gärdenfors (1979), Ching and Zhou (2002), Erdamar and
Sanver (2009), Brandt, Saile, and Stricker (2022)). For example, one motivation assumes
that a single alternative will eventually be selected from each choice set according to a
linear tie-breaking ordering (such as the preference relation of a chairperson) and that
voters are unaware of the concrete ordering used to break ties. Then set X is preferred to
set Y if and only if for all tie-breaking orderings, the voter weakly prefers the alternative
selected from X to that selected from Y and there is at least one ordering for which this
comparison is strict. Another motivation is based on a function that assigns an a pri-
ori weight to each alternative such that each choice set can be mapped to a lottery over
the chosen alternatives such that the probabilities are proportional to the alternatives’
weights. Again the voters are unaware of the concrete weight function and prefer set X
to set Y if and only if for all utility functions consistent with their ordinal preferences
and all a priori weight functions, the expected utility derived from X is higher than that
derived from Y .

Strategyproofness based on Fishburn’s extension can be defined as follows. An SCC f

is (Fishburn) strategyproof if for all electorates N ∈ F(N) and profiles R ∈ R(A)N , there
is no profile R′ ∈ R(A)N such that �j = �′

j for all j ∈N \ {i} and f (R′ ) �F
i f (R).

Even though Fishburn strategyproofness seems like a relatively weak strategyproof-
ness notion, it is only satisfied by very few SCCs. In particular, the omninomination
rule, the Pareto rule, the top cycle, and the Condorcet rule are Fishburn strategyproof,
while virtually all other commonly studied SCCs fail Fishburn strategyproofness. As an
example of this claim, we give an example demonstrating the Fishburn manipulability
of plurality rule (which chooses the alternatives top-ranked by most voters) and many
other SCCs in Figure 2.

4. Results

Our first result is a complete characterization of pairwise strategyproof SCCs in terms
of dominant set rules. An SCC is a dominant set rule if for every preference profile R,
it returns a dominant set with respect to �R. Examples of dominant set rules are the
top cycle, the Condorcet rule (which returns the Condorcet winner if it exists and all al-
ternatives otherwise), and the Condorcet nonloser rule (which returns all alternatives
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Figure 2. Example showing the Fishburn manipulability of plurality rule. Plurality rule chooses
{a, c} for the left profile and {c} for the right profile, so voter 5 can manipulate by deviating from
the profile on the left to the one on the right. The same example shows that many other pop-
ular SCCs are Fishburn manipulable, for example, Borda’s rule, Nanson’s rule, Black’s rule, the
maximin rule, Bucklin’s rule, Young’s rule, and Kemeny’s rule (we refer to Brandt et al. (2016) for
definitions of these SCCs).

but a Condorcet loser). Observe that—even though dominant set rules may seem rather
restricted—they allow for a fair degree of freedom in the choice of dominant sets. For
instance, dominant set rules can take the majority margins into account. This is demon-
strated by the SCC that returns an alternative x as unique winner if gR(x, y ) > 2 for all
y ∈ A \ {x} and otherwise returns all alternatives. It is also possible to define rather un-
natural dominant set rules such as the SCC that returns the smallest dominant set when-
ever the majority graph contains a cycle with identical weights and the second smallest
dominant set otherwise.

For our analysis, it suffices to consider the particularly simple subclass of robust
dominant set rules: a dominant set rule f is robust if f (R′ ) ⊆ f (R) for all preference
profiles R, R′ such that f (R) is dominant in R′. In other words, if the choice set f (R) for
some profile R is also dominant in another profile R′, then no alternative outside of f (R)
can be chosen for R′. It is easily seen that the top cycle, the Condorcet rule, and the Con-
dorcet nonloser rule are robust dominant set rules, whereas the two artificial examples
given above fail this condition. Moreover, robust dominant set rules are majoritarian
and, therefore, also homogeneous.

Our first theorem shows that—under mild additional assumptions—robust domi-
nant set rules are the only pairwise SCCs that satisfy strategyproofness.

Theorem 1. Let f be a pairwise SCC that satisfies nonimposition, homogeneity, and neu-
trality. Then f is strategyproof if and only if it is a robust dominant set rule.

The direction from right to left is relatively straightforward: every robust dominant
set rule f is strategyproof because robustness prohibits successful manipulations of
dominant set rules. Consider, for example, that voter i manipulates from a profile R

to another profile R′ such that f (R′ ) � f (R). According to Fishburn’s extension, we have
that f (R′ ) �i f (R) \ f (R′ ). Moreover, f (R′ ) �R′ A \ f (R′ ) because f (R′ ) is dominant in
�R′ . Since voter i can only weaken alternatives in f (R′ ) against those in f (R) \ f (R′ )
when moving from R to R′, f (R′ ) will only be strengthened against f (R) \ f (R′ ) when
moving from R′ to R. Hence, f (R′ ) �R f (R) \ f (R′ ). This implies that f (R′ ) is also dom-
inant in �R because f (R′ ) � f (R) and f (R) is dominant in R. Since f (R′ ) is dominant
in both R and R′, robustness implies f (R) ⊆ f (R′ ), which is at variance with our initial
assumption that f (R′ ) � f (R). A similar argument applies to the case that f (R′ ) � f (R)
where strategyproofness now implies that f (R′ ) \ f (R) �i f (R).
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The converse direction—every pairwise SCC that satisfies nonimposition, homo-
geneity, neutrality, and strategyproofness is a robust dominant set rule—is much more
difficult to prove. As a first step, we investigate the consequences of strategyproofness
for pairwise SCCs. It turns out that we can abstract away from the concrete preferences
of the voters and derive multiple axioms that describe how the choice set is affected
when modifying the pairwise comparisons between pairs of alternatives. For instance,
we show that rearranging unchosen alternatives in the voters’ preferences does not af-
fect the choice set of strategyproof and pairwise SCCs. The proofs of these implications
heavily use the fact that two voters with preferences inverse to each other can be added
to a preference profile without affecting the outcome of pairwise SCCs. As a second step,
we use these axioms to derive some insights on the structure of choice sets returned by
pairwise SCCs that satisfy strategyproofness, nonimposition, homogeneity, and neutral-
ity. In more detail, we show for such an SCC f that (i) it chooses a single winner if and
only if it is the Condorcet winner and (ii) for every alternative x ∈ A, either f (R) = {x} or
there is an alternative y ∈ f (R) \ {x} such that y �R x. The first condition is called strong
Condorcet consistency, and we show that every pairwise, homogeneous, strategyproof,
and strongly Condorcet-consistent coarsening of the top cycle is a robust dominant set
rule. As the last step, we show that every pairwise SCC that satisfies the given axioms is
a coarsening of the top cycle, which completes the proof of the theorem.

Theorem 1 has a number of important and perhaps surprising consequences. For
instance, it implies that every strategyproof and pairwise SCC that satisfies the given
conditions has to be majoritarian. In other words, every such SCC completely ignores
the absolute values of majority margins, even though these values allow for the defini-
tion of more sophisticated SCCs.5 Moreover, Theorem 1 entails that many strategyproof-
ness notions are equivalent under the assumptions of the theorem because robust dom-
inant set rules satisfy much stronger notions of strategyproofness than Fishburn strate-
gyproofness (see Remark 6).

Another interesting consequence of Theorem 1 is that the top cycle is the finest pair-
wise SCC that satisfies strategyproofness, nonimposition, homogeneity, and neutrality
since it returns the smallest dominant set for any given preference profile. As shown
in the sequel, we can turn this observation into a characterization of the top cycle by
replacing nonimposition and neutrality with set nonimposition. An SCC f satisfies set
nonimposition if for every nonempty set X ⊆ A, there is a profile R such that f (R) = X .
In other words, every set is chosen for some preference profile R, which is in line with
the original motivation of nonimposition for SCFs: the functions’s image coincides with
its codomain. For neutral and pairwise SCCs, set nonimposition can be interpreted as a
weak efficiency notion. To see this, assume that there is some set X ⊆A that is never re-
turned by f . Now, consider a profile R such that X �i A\X for all i ∈ N and x∼R y for all
x, y ∈ X and x, y ∈A\X . Neutrality and pairwiseness imply that f can only return X , A,
or A \X . Since f never returns X by assumption, we have that A \X ⊆ f (R). However,
every voter i ∈N prefers X to A \X and the choice set of f is thus very inefficient.

5This insight resembles the fact that individual preference intensities can usually not be used by strate-
gyproof voting rules (see, e.g., Nandeibam (2013), Ehlers, Majumdar, Mishra, and Sen (2020)). Note, how-
ever, that majority margins represent collective preference intensities.
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The following lemma shows how set nonimposition can be used to single out the top
cycle among all robust dominant set rules.

Lemma 1. The top cycle is the only robust dominant set rule that satisfies set non-
imposition.

Proof. It has already been stated that TC is a robust dominant set rule. Moreover, TC
satisfies set nonimposition because every set X is the smallest dominant set for every
profile R such that x∼R y for all x, y ∈X , and X �R A \X ; the existence of such a profile
follows from McGarvey’s construction (McGarvey (1953)).

For the other direction, consider a robust dominant set rule f �= TC . Since f is not
the top cycle, there is a profile R with dominant sets D1, � � � , Dk such that Di ⊆ Dj if
and only if i ≤ j and f (R) = Di with i ≥ 2. This means that there is no profile R′ such
that f (R′ ) =D1 since otherwise, robustness from R′ to R implies that f (R) ⊆ f (R′ ) =D1

because f (R′ ) is dominant in �R. In other words, f violates set nonimposition and the
top cycle is consequently the only robust dominant set rule that satisfies this axiom.

The combination of Theorem 1 and Lemma 1 already characterizes the top cycle as
the only pairwise SCC that satisfies strategyproofness, set nonimposition, homogene-
ity, and neutrality. It turns out that neutrality is not required for this characterization
as the insights of the proof of Theorem 1 can be leveraged to establish that only ro-
bust dominant set rules satisfy pairwiseness, strategyproofness, set nonimposition, and
homogeneity. In particular, the axioms of Theorem 2 also imply strong Condorcet con-
sistency, which together with our previous insights and Lemma 1 yields the following
characterization.

Theorem 2. The top cycle is the only pairwise SCC that satisfies strategyproofness, set
nonimposition, and homogeneity.

We conclude the paper with a number of remarks.

Remark 1 (Independence of the axioms). We can show that all of the axioms, except
nonimposition, are required for the direction from left to right of Theorem 1. If we only
omit pairwiseness, the omninomination rule satisfies all required axioms but is no dom-
inant set rule. If we dismiss neutrality, the following SCC based on two special alterna-
tives a and b satisfies all requirements, but is no dominant set rule: f ab returns {a} if
a �R A \ {a, b} and a �R b; otherwise it returns the outcome of the Condorcet rule. All
axioms except homogeneity are satisfied by the SCC TC∗, which returns the top cycle
with respect to the relation x �∗

R y if and only if gR(x, y ) ≥ −1. However, TC∗ is no ro-
bust dominant set rule because it depends on the majority margins. It is open whether
nonimposition is required for Theorem 1. We discuss a variant of Theorem 1, which uses
strong Condorcet consistency instead of neutrality and nonimposition in the Appendix.
For this variant, it is easy to prove that all axioms are indeed required.
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For the converse direction of Theorem 1, none of the auxiliary axioms is required.
In particular, every robust dominant set rule is homogeneous and pairwise because ro-
bustness entails majoritarianess. Moreover, these SCCs satisfy strategyproofness regard-
less of whether they are neutral or nonimposing. For instance, the SCC that chooses the
set {a, b, c} if it is a dominant set and all alternatives otherwise is neither neutral nor
nonimposing, but it is a robust dominant set rule and strategyproof.

For Theorem 2, we can show the independence of all axioms. Borda’s rule only vio-
lates strategyproofness, the Condorcet rule only violates set nonimposition, the omni-
nomination rule only violates pairwiseness, and TC∗ only violates homogeneity.

Remark 2 (Tournaments). A significant part of the literature focuses on the special case
when there are no majority ties and the majority graph is a tournament (see, e.g., Laslier
(1997), Brandt, Brill, and Harrenstein (2016)). This, for example, happens when the
number of voters is odd. In the absence of majority ties and when m≤ 4, there is a strat-
egyproof SCC known as the uncovered set, which satisfies all requirements of Theorem 1
but is no dominant set rule. When m ≥ 5, the uncovered set violates strategyproofness
and Theorem 1 holds even in the absence of majority ties.

Remark 3 (Dropping homogeneity). The example given in Remark 1 for the indepen-
dence of homogeneity only shows that robustness might be violated if we dismiss ho-
mogeneity, but the considered SCC is still a dominant set rule. It turns out that this ob-
servation is true in general if we mildly strengthen nonimposition to unanimity (a unan-
imously top-ranked alternatively will be selected uniquely): every pairwise SCC that sat-
isfies strategyproofness, unanimity, and neutrality is a dominant set rule if m �= 4. The
last condition is required because of the uncovered set discussed in Remark 2. By weak-
ening robustness, one can thus obtain an alternative characterization of strategyproof
SCCs based on weak robustness: an SCC f is weakly robust if f (R′ ) ⊆ f (R) for all prefer-
ence profiles R, R′ such that gR(x, y ) ≤ gR′(x, y ) for all x ∈ f (R), y ∈ A \ f (R). Then, if
m �= 4, every pairwise SCC that satisfies unanimity and neutrality is strategyproof if and
only if it is a weakly robust dominant set rule.

Remark 4 (Weakening neutrality). Another variant of Theorem 1 can be obtained by
weakening neutrality to the following condition: x ∈ f (R) if and only if y ∈ f (R) for ev-
ery preference profile R and all pairs of alternatives x, y ∈ A such that gR(x, y ) = 0 and
gR(x, z) = gR(y, z) for all z ∈ A \ {x, y}. This condition is void if there is an odd number
of voters. As a result, homogeneity becomes more important for the proof as some steps
only work for an even number of voters.

Remark 5 (Weakening nonimposition). In the presence of neutrality, nonimposition
can be weakened to a condition that merely requires that the SCC returns a singleton
set for at least one profile. If we weaken neutrality, this is no longer possible and our
proof suggests that, among the three auxiliary axioms, nonimposition plays the most
important role as it is crucial for deriving strong Condorcet consistency.
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Remark 6 (Strengthening strategyproofness). Fishburn strategyproofness is a rather
weak strategyproofness notion, which makes the direction from left to right in our char-
acterizations strong. However, robust dominant set rules—especially the top cycle—are
actually much more resistant against manipulation. To formalize this, we introduce a
new preference extension, denoted by �F+, based on the relation �∃

i over the subsets of
A. This relation is defined as X �∃

i Y if and only if X = ∅, Y = ∅, or there are alternatives
x ∈ X , y ∈ Y such that x�i y. Then

X �F+
i Y if and only if

X \Y �i Y \X and X \Y �∃
i X ∩Y and X ∩Y �∃

i Y \X .

Clearly, X �F
i Y implies X �F+

i Y , and consequently, �F+-strategyproofness is stronger
than Fishburn strategyproofness. We define an even stronger notion of strategyproof-
ness based on the �F+ extension as follows: an SCC f is strongly �F+-strategyproof
if f (R) �F+

i f (R′ ) for all voters i ∈ N and preference profiles R, R′ with �j = �′
j for

all j ∈ N \ {i}. Strong �F+-strategyproofness requires that all choice sets for manip-
ulated preference profiles are comparable to the original choice set, making it much
stronger than both�F+-strategyproofness and Fishburn strategyproofness. Strong Fish-
burn strategyproofness can be defined analogously. The top cycle is strongly �F+-
strategyproof. Interestingly, Ching and Zhou (2002) have shown that only dictatorial and
constant SCCs satisfy the slightly stronger notion of strong Fishburn strategyproofness,
which obviously rules out the top cycle.

Remark 7 (Group strategyproofness). An SCC f is group strategyproof if for all prefer-
ence profiles R, R′ and sets of voters G ⊆ N such that �j = �′

j for j ∈ N \ G, it holds

that f (R′ ) �F
i f (R) for some voter i ∈ G. Since every robust dominant set rule is group

strategyproof, it follows from Theorem 1 that strategyproofness is equivalent to group
strategyproofness for pairwise SCCs that satisfy homogeneity, nonimposition, and neu-
trality.

Remark 8 (Pareto optimality). The main disadvantage of the top cycle is that it may
return Pareto-dominated alternatives. In fact, every strategyproof pairwise SCC that sat-
isfies our assumptions violates Pareto optimality. However, it is possible to circumvent
this impossibility by first removing all Pareto-dominated alternatives and then comput-
ing the top cycle of the remaining alternatives. This SCC, TC(PO) where PO stands for
the Pareto rule, was already considered by Bordes (1979) and can be shown to be strat-
egyproof. In fact, it satisfies all conditions of Theorem 1 except pairwiseness since it is
not possible to compute the set of Pareto-dominated alternatives based on the majority
margins only. Interestingly, the “converse” SCC, PO(TC ), which first computes the top
cycle and then removes all Pareto-dominated alternatives, is nested in between TC(PO)
and TC but violates strategyproofness.

Remark 9 (Fishburn efficiency). As discussed in the previous remark, the top cycle fails
Pareto optimality. However, the top cycle satisfies the weaker notion of Fishburn effi-
ciency, which requires that for every profile R, there is no set of alternatives X such that
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X �F
i f (R) for all i ∈ N . Fishburn efficiency can be seen as a weak form of ex ante effi-

ciency, where outcomes are compared before ties are broken. It is easy to see that the
top cycle is the only robust dominant set rule satisfying this axiom since every other such
rule already violates set nonimposition. It can moreover be shown that the top cycle is
the coarsest majoritarian SCC that satisfies Fishburn efficiency, that is, every majoritar-
ian SCC f that is Fishburn efficient satisfies that f (R) ⊆ TC(R) for all preference profiles
R. Since the top cycle is also the finest majoritarian SCC that satisfies Fishburn strat-
egyproofness, neutrality, and nonimposition, it can be completely characterized using
strategyproofness and efficiency.

Remark 10 (Beyond the majority relation). Dominant set rules can be defined with re-
spect to any complete binary relation derived from the preference profile. To formalize
this idea, let the information base I(R) denote a function that maps R ∈ R∗(A) to a com-
plete binary relation �I(R) on A. Applying a dominant set rule to �I(R) clearly results in
an SCC. Moreover, if I(R) is local (i.e., a �I(R) b if and only if a �I(R′ ) b for all a, b ∈ A

and R, R′ ∈ R(A)N such that a �i b if and only if a �′
i b for all i ∈ N) and monotone

(i.e., a �I(R) b implies a �I(R′ ) b for all a, b ∈ A, and R, R′ ∈ R∗(A) such that R′ is de-
rived from R by reinforcing a against b in the preference relation of a voter i), then every
robust dominant set rule on �I(R) is strategyproof. This proves, for instance, that domi-
nant set rules based on supermajority relations (i.e., a�I(R) b if and only if gR(a, b) ≥ −k

for some k ∈ N) or on shifted majority relations (i.e., a �I(R) b if gR(a, b) > k, a ∼I(R) b if
gR(a, b) = k, and b �I(R) a otherwise) are strategyproof.

For some information bases I(R), it is even possible to prove statements analogous
to Theorem 1 when demanding exclusive dependence on I(R). To this end, we say an
SCC is I(R)-based for some information basis I(R) if f (R) = f (R′ ) for all preference
profiles R, R′ ∈ R∗(A) such that �I(R) = �I(R′ ). This extends the definition of majori-
tarianess. For instance, it is easy to derive from our proof that robust dominant set
rules on a supermajority relation I(R) are the only neutral, nonimposing, strategyproof,
and I(R)-based SCCs. An equivalent statement holds for shifted majority relations I(R)
when defining neutrality based on �I(R).

Remark 11 (Fixed electorates). A nonstandard assumption in our model is that of a vari-
able electorate. This assumption is necessary, because when fixing the number of voters,
the Pareto rule satisfies all axioms of Theorem 1 and Theorem 2 but fails to be a domi-
nant set rule. We now sketch two approaches to adapt our results to a fixed electorate
framework. First, we may replace pairwiseness and homogeneity with majoritarianess.
Since the construction of McGarvey (1953) allows us to build every majority relation with
at most m2 voters, we need at most m2 + 2 voters for our results to hold under majoritar-
ianess. The second approach is to restrict attention to profiles whose maximal majority
margin is bounded by a constant c ≥ 2. This is possible because we never need to in-
crease the maximal majority margin to a value larger than c in our proofs.6 Using again

6This is not in conflict with the fact that we sometimes use homogeneity to duplicate preference profiles
in the proof, because it is either possible to entirely avoid these homogeneity applications, or to ensure that
all majority margins are 1 before duplicating the profile.
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McGarvey’s construction, every profile with a majority margin of at most c can be built
with cm2 voters and we thus need at most cm2 + 2 voters for our proof. Hence, we can
show that every nonimposing, neutral, strategyproof, homogeneous, and pairwise SCC
is a robust dominant set rule for profiles with maximal majority margin of at most c if
there are cm2 + 2 voters (here, homogeneity is defined for majority margins).

Appendix: Omitted proofs

This Appendix contains the proofs of Theorems 1 and 2. Proof sketches for these results
were given in Section 4 and we here focus on the details. Since the proofs are rather
involved, we divide them into multiple lemmas, which are organized in subsections to
highlight related ideas. In particular, we discuss additional notation in Appendix A.1,
some general results on the structure of the top cycle in Appendix A.2, implications of
Fishburn strategyproofness for pairwise SCCs in Appendix A.3, a variant of Theorem 1
that relies on strong Condorcet consistency in Appendix A.4, and finally the proofs of
our main results in Appendix A.5.

A.1 Notation

Before discussing our proofs, we need to introduce some additional notation. First, we
specify how we denote preference relations. We usually write preference relations as
comma-separated lists. In these lists, we use lex(X ) and lex(X )−1 to indicate that the
alternatives in a set X are ordered lexicographically or inversely lexicographically. For
instance, a, lex({b, c}), d is equivalent to a, b, c, d and means that a is preferred to b, b
to c, and c to d. Similarly, a, lex({b, c})−1, d is equivalent to a, c, b, d. Furthermore, we
occasionally interpret a voter’s preference relation as a set of tuples and use set opera-
tions such as set intersections and set differences to form new preference relations. In
particular, we write �i |X to denote the restriction of �i to X , that is, �i |X = �i ∩ X2.
We use the same notation for the majority relation, that is, �R |X denotes the restriction
of �R to X . For instance, �R |X = �′

R |X means that the majority relations of R and R′
agree on the alternatives in X .

The second important concept is that of cycles in the majority relation. A cycle in a
majority relation �R is a sequence of q ≥ 2 alternatives (a1, � � � , aq ) such that ai �R ai+1

for all i ∈ {1, � � � , q − 1}, aq �R a1, and ai �= aj for all distinct i, j ∈ {1, � � � , q}. Informally, a
cycle is a path in �R that starts and ends at the same alternative and visits every alterna-
tive on the cycle (except the first one) only once. For instance, in the majority graph in
Figure 1, C = (a, b, c) is a cycle. While slightly overloading notation, we denote with C

both the ordered sequence of alternatives that defines a cycle and the set of alternatives
contained in the cycle.

Finally, we introduce the notions of connectors and connected sets. The con-
nected set Ax of an alternative x ∈ A in a profile R contains all alternatives (except
x) that drop out of the top cycle if we remove x from the preference profile, that is,
Ax = TC(R) \ (TC(R|A\{x} ) ∪ {x}). The notion of connected sets helps us to distinguish
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the alternatives in the top cycle further: we say an alternative x ∈ A is a connector in
R if Ax �= ∅. This means intuitively that, if we remove x from the preference profile, x
and additional alternatives drop out of the top cycle. In other words, x connects the
alternatives in Ax to the rest of the top cycle. Note that an alternative x /∈ TC(R) can-
not be a connector since Ax = ∅ for these alternatives and that connectors only exist if
|TC(R)| ≥ 3.

A.2 Structure of the top cycle

For the proofs of our results, it will be helpful to have a deeper understanding of the
structure of the top cycle. In more detail, we first show that the top cycle is closely con-
nected to cycles in the majority relation. Moulin (1986) has shown such a statement
under the assumption that there are no majority ties: there is a cycle in the majority re-
lation �R that connects all the alternatives in TC(R). Since we need to allow for majority
ties, we generalize this result by interpreting majority ties as bidirectional edges.

Lemma 2. Let R be a preference profile. It holds for a set X ⊆A with |X| ≥ 2 that TC(R) =
X if and only if there is a cycle C = (a1, � � � , a|X| ) in �R such that C = X and X �R A \X .
Furthermore, TC(R) = {x} if and only if x is the Condorcet winner in R.

Proof. We first prove that TC(R) = {x} if and only if x is the Condorcet winner in R.
Thus, note that {x} = TC(R) implies that x �R A \ {x} because the top cycle returns a
dominant set. Hence, x is the Condorcet winner if it is the unique winner of the top
cycle. Next, let x denote the Condorcet winner in a preference profile R. It follows that
x �R A \ {x} and, therefore, {x} is a dominant set. Even more, it is obviously the smallest
dominant set, and thus TC(R) = {x}, which proves the first claim.

Next, we focus on sets of alternatives X ⊆ A with |X| ≥ 2 and show first that if
X = TC(R), there is a cycle C in �R such that C = X and X �R A \ X . Since the lat-
ter condition directly follows from the definition of the top cycle, we only have to show
that there is a cycle in �R containing all alternatives in X . Note for this that if there
is an alternative x ∈ X with x �R X \ {x}, this alternative is the Condorcet winner and
TC(R) = {x} �= X . Consequently, for every alternative x ∈ X , there is another alternative
y ∈X \{x} such that y �R x. This means that there is a cycle in �R |X . Let C = (a1, � � � , aq )
denote an inclusion maximal cycle in �R |X and assume for contradiction that there is
an alternative y ∈X \C.

As a first step, consider the case that there are two distinct alternatives ai, aj ∈ C

such that ai �R y and y �R aj . In this case, we can extend the cycle C by adding
y, which contradicts the inclusion maximality of C. Note for this that we can find
two alternatives ak, ak+1 ∈ C such that ak+1 is the successor of ak in C, ak �R y, and
y �R ak+1. Otherwise, it holds for all al ∈ C that al �R y implies for its successor al+1

in C that al+1 �R y. If we start at ai and subsequently apply this argument along the
cycle C, we derive eventually that al �R y for all al ∈ C, which contradicts that y �R aj .
Hence, there must be such alternatives ak and ak+1 and we can extend the cycle C to
C ′ = (a1, � � � ak, y, ak+1, � � � , aq ).
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As a consequence of the last case, it holds for all alternatives x ∈ X \ C that either
x �R C or C �R x. We partition the alternatives in X \ C with respect to these two op-
tions into the sets X1 = {x ∈ X \ C : x �R C} and X2 = {x ∈ X \ C : C �R x}. If X1 = ∅,
then C �R A \ C, which contradicts that X = TC(R) because C is a smaller dominant
set than X . If X2 = ∅ or X1 �R X2, then X1 �R A \ X1, which again contradicts that
X = TC(R) because X1 is now a smaller dominant set than X . Thus, both X1 and X2

are nonempty and there is a pair of alternatives x1 ∈ X1, x2 ∈ X2 such that x2 �R x1.
However, this means that we can extend the cycle C by adding x1 and x2 as a1 �R x2,
x2 �R x1, and x1 �R a2. This contradicts the inclusion maximality of C and, therefore,
the initial assumption that C �=X was incorrect.

Finally, we prove that TC(R) = X for a set X ⊆ A with |X| ≥ 2 if there is a cycle
C = (a1, � � � , a|X| ) in �R with C = X and X �R A \ X . Note for this that X is a domi-
nant set in �R if it satisfies these conditions. Since dominant sets are totally ordered by
set inclusion and the top cycle is the smallest dominant set, it follows that TC(R) ⊆ X .
Next, assume that X \ TC(R) �= ∅, which means that TC(R) �R X \ TC(R) because of
the definition of the top cycle. However, then there cannot be a cycle in �R that con-
nects all alternatives in X because there is no path from an alternative in X \ TC(R) to
an alternative in TC(R). This contradicts our assumptions, and thus the assumption
X \ TC(R) �= ∅ was incorrect. Hence, it follows that X = TC(R).

Lemma 2 is one of the most important insights for our subsequent proofs as the
existence of the cycle provides paths between all alternatives x, y ∈ TC(R). This insight
will also be used in the next lemma, where we investigate connected sets.

Lemma 3. Let R be a preference profile and suppose that x is a connector in R. Moreover,
let y ∈ Ax denote an alternative in the connected set of x. It holds that Ay ⊆ Ax unless
x�R A \ {x, y}.

Proof. Consider an arbitrary preference profile R and a connector x in R. Note that the
existence of a connector implies that k = |TC(R)| ≥ 3. Thus, let C = (a1, � � � , ak ) denote
a cycle connecting the alternatives in TC(R); such a cycle exists because of Lemma 2.
Since connectors need to be in the top cycle, it follows that there is an index i such that
x = ai. In the sequel, we assume without loss of generality that x = a1 since we can
decide on the starting point of the cycle.

As a first step, we show that there is an index l ∈ {2, � � � , k − 1} such that Ax =
{al+1, � � � , ak}. Consider for this the profile R−x = R|A\{x} derived from R by remov-
ing x from the preference profile. We next determine the top cycle in R−x because
Ax = TC(R) \ (TC(R−x ) ∪ {x}). First, note that TC(R−x ) ⊆ TC(R) \ {x} because all alter-
natives in TC(R) \ {x} �= ∅ still strictly dominate all alternatives outside of this set. This
implies that a2, the successor of x = a1 on C, is in TC(R−x ) because it can reach every
other alternative ai ∈ TC(R) \ {a1, a2} via �R−x : we can simply traverse the cycle C to go
from a2 to ai. Now, if a2 �R TC(R) \ {a1, a2}, then a2 is the Condorcet winner in R−x, and
thus Ax = {a3, � � � , ak}, so l = 3 satisfies our condition. Otherwise, let h1 ∈ {3, � � � , k} de-
note the largest index such that ah1 �R a2. It follows from the definition of the top cycle
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that ah1 ∈ TC(R−x ) because a2 ∈ TC(R−x ), and thus {a2, � � � , ah1 } ⊆ TC(R−x ) because all
these alternatives can reach ah1 by traversing the cycle C. It is easy to see that we can re-
peat this argument: if {a2, � � � , ah1 } �R {ah1+1, � � � , ak}, then TC(R−x ) = {a2, � � � , ah1 } and
Ax = {ah1+1, � � � , ak}. Otherwise, we can find the largest index h2 ∈ {h1 + 1, � � � , k} such
that ah2 dominates an alternative in {a2, � � � , ah1 }. Then it follows that ah2 ∈ TC(R−x ),
and consequently, {a2, � � � , ah2 } ⊆ TC(R−x ) because we can traverse the cycle C to find
a path for every such alternative ai to ah2 . By repeating this argument, we eventually
arrive at an index l such that Ax = {al+1, � � � , ak} since Ax �= ∅.

Next, consider an arbitrary alternative y ∈Ax. Our goal is to prove that Ay ⊆Ax, and
thus we consider the profile R−y = R|A\{y}. We will show that TC(R−x ) ∪ {x} ⊆ TC(R−y )
because then Ay = TC(R) \ (TC(R−y ) ∪ {y}) ⊆ TC(R) \ (TC(R−x ) ∪ {x}) = Ax. For this,
we employ a case distinction with respect to y and first suppose that y is not the di-
rect predecessor of x on C, that is, y = ai for some i < k. Hence, let y ′ = ai+1 denote
the successor of y on C and note that our previous insights show that y ′ ∈ Ax, too. It
holds that y ′ ∈ TC(R−y ) because y ′ can reach every alternative aj ∈ TC(R) \ {y, y ′} in
�R−y by traversing the cycle C. Next, note that TC(R−x ) �R−x y ′ because y ′ /∈ TC(R−x )
and, therefore, also TC(R−x ) �R−y y ′. This proves that TC(R−x ) ⊆ TC(R−y ) because
y ′ ∈ TC(R−y ). In particular, x′ = a2, the successor of x= a1 on the cycle C, is in TC(R−y )
because x′ ∈ TC(R−x ). Since x �R−y x′, it follows also that x ∈ TC(R−y ), which proves
that TC(R−x ) ∪ {x} ⊆ TC(R−y ), and thus Ay ⊆ Ax.

As second case, suppose that y = ak, that is, y is the direct predecessor of x= a1 on C.
In this case, we immediately derive that x ∈ TC(R−y ) because we can again traverse the
cycle C to find a path from x to every other alternative ai ∈ TC(R) \ {x, y} in �R−y . Next,
it is important that there is an alternative z ∈ A \ {x, y} such that z �R x. If there is no
such alternative, then x �R A \ {x, y} and we have nothing to show as this is the excep-
tion stated in the lemma. Since z �= y and z �R x, it follows also that z ∈ TC(R) and
z ∈ TC(R−y ). Now, if z ∈ Ax, then TC(R−x ) ⊆ TC(R−y ) because TC(R−x ) �R z. Con-
versely, if z ∈ TC(R−x ) = TC(R) \ (Ax ∪ {x}), we use the fact that there is a cycle C ′
connecting the alternatives TC(R−x ) in �R−x . This cycle exists also in �R, and since
y /∈ TC(R−x ), also in �R−y . Hence, there is a path from every alternative ai ∈ TC(R−x )
to z, which proves that TC(R−x ) ∪ {x} ⊆ TC(R−y ). Thus, it follows also in this case that
Ay ⊆Ax, which proves the lemma.

A.3 Implications of strategyproofness

In the context of pairwise SCCs, it is inconvenient to work with the preference relations
of individual voters since the main idea of these SCCs is to abstract away from profiles.
However, strategyproofness requires information about a voter’s preference relation to
deduce which choice sets are possible before and after a manipulation. To mitigate this
tradeoff, we analyze the implications of strategyproofness for pairwise SCCs in this sec-
tion. This leads to the definition of four axioms, all of which are satisfied by every pair-
wise and strategyproof SCC. Also, the first three of these axioms are weakened versions of
a property known as set-monotonicity (see Brandt (2015), Brandt, Brill, and Harrenstein
(2016)).
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In more detail, we investigate how the choice set of a strategyproof and pairwise
SCC is allowed to change if a voter reinforces or weakens an alternative against some
other alternatives. Formally, reinforcing an alternative a against some other alternative
b in the preference relation of voter i means that voter i switches from b �i a to a �′

i b

and nothing else changes in voter i’s preference relation or in the preference relations
of other voters. Conversely, weakening an alternative a against some other alternative b

in the preference relation of voter i means that voter i reinforces b against a. Note that
weakening or reinforcing an alternative a against another alternative b requires that a
and b are adjacent in �i, that is, there is no alternative z ∈A \ {a, b} such that a �i z �i b

or b �i z �i a.
Depending on whether the alternatives a and b are chosen, strategyproofness has

different consequences when reinforcing a against another alternative b. The first case
that we consider is to reinforce a chosen alternative a against another alternative b.
A natural requirement in this situation is monotonicity, which demands that a chosen
alternative is still chosen after reinforcing it (see, e.g., Moulin (1988)). Unfortunately,
we cannot show that strategyproofness implies monotonicity for pairwise SCCs. For in-
stance, assume that a voter submits b, a, c, and {a, c} is chosen. Next, voter i reinforces
a against b and as result {b, c} is chosen. In this example, Fishburn’s set extension does
not allow to compare {a, c} to {b, c}, and hence, this is no violation of strategyproofness.
As a consequence, we consider a weakened variant of monotonicity, which we refer to
as weak monotonicity (WMON). This axiom requires that, if a voter reinforces a chosen
alternative a against another alternative b, then a is still in the choice set unless b is
chosen after the manipulation but not before.

Definition 1 (Weak monotonicity (WMON)). An SCC f satisfies weak monotonicity
(WMON) if a ∈ f (R) implies a ∈ f (R′ ) or b ∈ f (R′ ) \ f (R) for all alternatives a, b ∈ A, and
preference profiles R, R′ for which there is a voter i such that �′

j = �j for all j ∈ N \ {i}
and �′

i = �i \ {(b, a)} ∪ {(a, b)}.

WMON has multiple important consequences. First, if we reinforce a chosen alterna-
tive a against another chosen alternative b, it guarantees that a remains chosen because
b /∈ f (R′ ) \ f (R). Second, if we reinforce a chosen alternative a against an unchosen
alternative b, either a ∈ f (R′ ) and b /∈ f (R′ ), or a /∈ f (R′ ) and b ∈ f (R′ ). If both alterna-
tives were chosen after this step, we could reinforce b against a in voter i’s preference
relation to revert back to the original preference profile R, and WMON implies that b

remains chosen. However, this is in conflict with the assumption that b is not chosen
for R. Conversely, it follows directly from the definition of WMON that it is not possible
that a, b /∈ f (R′ ) if a ∈ f (R). Finally, it should be mentioned that monotonicity implies
weak monotonicity because it requires that a chosen alternative a remains chosen af-
ter reinforcing it. Or, put differently, monotonicity excludes additionally the case that a
becomes unchosen and b becomes chosen after reinforcing a against b.

Unfortunately, WMON does not guarantee that weakening an unchosen alternative
means that the unchosen alternative remains unchosen. We thus introduce weak set-
monotonicity (WSMON) as our second axiom, which is concerned with what happens if
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we weaken an unchosen alternative not against a single alternative but against all other
alternatives.

Definition 2 (Weak set-monotonicity (WSMON)). An SCC f satisfies weak set-
monotonicity (WSMON) if f (R) = f (R′ ) for all preference profiles R, R′ for which a
voter i ∈ N and an alternative a /∈ f (R) exist such that �j = �′

j for all j ∈ N \ {i},
�i |A\{a} = �′

i |A\{a}, a�i A \ {a}, and A \ {a} �′
i a.

The idea of WSMON is that moving an unchosen alternative from the first place to
the last place in a voter’s preference relation should not affect the outcome. This is a
weaker variant of set-monotonicity, which requires that weakening an unchosen alter-
native against a single alternative does not affect the choice set. Unfortunately, we can-
not prove this stronger variant because we cannot even prove monotonicity at this point.
However, pushing the top-ranked alternative to the bottom of the preference ranking is
a rather common operation in the analysis of strategyproof SCCs, which is often referred
to as push-down lemma (see, e.g., Zwicker (2016)).

The third situation that we are concerned with is that a voter only reorders uncho-
sen alternatives. Intuitively, such an operation should not change the choice set as no
relevant comparisons change. This idea is formalized as independence of unchosen
alternatives (IUA).

Definition 3 (Independence of unchosen alternatives (IUA)). An SCC f satisfies inde-
pendence of unchosen alternatives (IUA) if f (R) = f (R′ ) for all preference profiles R, R′
for which a voter i ∈N and alternatives B ⊆A\ f (R) exist such that �j = �′

j for all voters
j ∈N \ {i} and �i \ �i |B = �′

i \ �′
i |B.

Independence of unchosen alternatives, also called independence of losers, is a
well-known axiom (see, e.g., Laslier (1997), Brandt (2011, 2015)), which requires that the
choice set is invariant with respect to modifications of preferences between unchosen
alternatives. In particular, if a voter reinforces an unchosen alternative against another
unchosen alternative, the choice set is not allowed to change. Just like WMON and WS-

MON, IUA is implied by set-monotonicity.
Finally, we introduce an axiom with a different spirit than the previous ones: instead

of asking whether an alternative a is chosen after weakening or reinforcing it, we ask
whether alternatives that are not involved in the swap are chosen or not. Intuitively, it
seems plausible that if an alternative is not affected by a manipulation, its membership
in the choice set should not change. However, this condition, whose spirit is similar
to the localizedness property used in the characterization of strategyproof randomized
social choice functions by Gibbard (1977), is extremely restrictive. Here, we consider a
weaker variant: if a voter changes his preference relation between some alternatives B

and the inclusion of the alternatives in B in the choice set is unaffected by this modifica-
tion, then the choice set should not change at all. This idea leads to weak localizedness
(WLOC), which is formalized below.
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Definition 4 (Weak localizedness (WLOC)). An SCC f satisfies weak localizedness
(WLOC) if f (R) = f (R′ ) for all preference profiles R, R′ for which a voter i ∈ N and al-
ternatives B ⊆ A exist such that �j = �′

j for all voters j ∈ N \ {i}, �i \ �i |B = �′
i \ �′

i |B,
and B ∩ f (R) = B ∩ f (R′ ).

To the best of our knowledge, neither WLOC nor similar axioms have been studied
before for social choice correspondences. Furthermore, it should be mentioned that
WLOC—even though it might seem weak when considered in isolation—is quite pow-
erful when combined with other axioms. For instance, the combination of WMON and
WLOC implies that swapping two chosen alternatives can only affect the choice set if the
weakened alternative becomes unchosen.

We now prove that strategyproof and pairwise SCCs satisfy all axioms discussed in
this section.

Lemma 4. Every strategyproof and pairwise SCC satisfies WMON, WSMON, IUA, and WLOC.

Proof. Let f denote a strategyproof and pairwise SCC. We consider each axiom listed
in the lemma separately, but each proof relies on the same idea: we assume for contra-
diction that f fails the considered axiom, which means that there are two profiles R and
R′ that differ in the preference relation of a single voter i and f (R) and f (R′ ) violate the
conditions of the axiom. Next, we add two new voters i∗ and j∗ with inverse preferences
such that voter i∗ the can make the same modification as voter i. This leads to new pref-
erence profiles R1 and R2 such that f (R1 ) = f (R) and f (R2 ) = f (R′ ) due to pairwise-
ness. Finally, we can choose the preference relation of voter i∗ such that deviating from
R1 to R2 is a manipulation, and thus obtain a contradiction to the strategyproofness of
f .

WMON: Following the idea explained above, we assume for contradiction that f vi-
olates WMON. This means that there are preference profiles R, R′, alternatives a ∈ f (R),
b ∈ A \ {a}, and a voter i ∈ N such that �′

j = �j for all j ∈ N \ {i} and �′
i = �i \ {(b, a)} ∪

{(a, b)}, but a /∈ f (R′ ) and b /∈ f (R′ ) \ f (R). Next, we let R1 denote the profile derived
from R by adding the voters i∗ and j∗. The preference relations of these voters are shown
below, where Ā=A\ {a, b} and f̄ (R) = f (R)\ {a, b}. Moreover, the profile R2 evolves out
of R1 by letting voter i∗ swap a and b:

�1
i∗ = lex

(
Ā \ f (R)

)
, lex

(
f̄ (R) ∩ f

(
R′)), b, a, lex

(
f̄ (R) \ f (

R′))

�1
j∗ = lex

(
f̄ (R) \ f (

R′))−1
, a, b, lex

(
f̄ (R) ∩ f

(
R′))−1

, lex
(
Ā \ f (R)

)−1

Since the preference relations of voter i∗ and j∗ are inverse in R1, pairwiseness im-
plies that f (R1 ) = f (R). Moreover, this axiom also requires that f (R2 ) = f (R′ ). It then
follows that voter i∗ can manipulate by deviating from R1 to R2 as he prefers all alterna-
tives in f (R′ ) \ f (R) to those in f (R) and all alternatives in f (R′ ) to those in f (R) \ f (R′ ).
This can be seen by making a case distinction on whether b ∈ f (R): if b /∈ f (R), then
our contradiction assumption implies that b /∈ f (R′ ), too. Hence, no alternative in
(f (R) \ f (R′ )) ∪ {b} is chosen, which ensures that this is a manipulation for voter i∗
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since a ∈ f (R) \ f (R′ ). Conversely, if b ∈ f (R), then b is either in f (R) ∩ f (R′ ) or in
f (R) \ f (R′ ). Both cases constitute again a manipulation as b �i∗ f (R) \ (f (R′ ) ∪ {b})
and (f (R) ∩ f (R′ )) \ {b} �i∗ b. Hence, switching from R1 to R2 is in all cases a manipula-
tion for voter i∗, which contradicts the strategyproofness of f . Consequently, the initial
assumption that f violates WMON was incorrect.

WSMON: As second case, assume that f fails WSMON. Thus, there are preference pro-
files R, R′, a voter i ∈ N , and an alternative a /∈ f (R) such that R and R′ only differ in
the fact that a �i A \ {a} and A \ {a} �′

i a, but f (R) �= f (R′ ). Consider the profile R1,
which is derived from R by adding the voters i∗ and j∗ with the preferences shown be-
low. Moreover, R2 evolves out of R1 by letting voter i∗ make a into his least preferred
alternative:

�1
i∗ = a, lex

(
A \ (

{a} ∪ f (R)
))

, lex
(
f (R) ∩ f

(
R′)), lex

(
f (R) \ f (

R′))

�1
j∗ = lex

(
f (R) \ f (

R′))−1
, lex

(
f (R) ∩ f

(
R′))−1

, lex
(
A \ (

{a} ∪ f (R)
))−1

, a

It is again easy to verify that f (R1 ) = f (R) and f (R2 ) = f (R′ ) because of pairwise-
ness. Thus, voter i∗ can manipulate f by switching from R1 to R2 because he prefers all
alternatives in A\f (R) to all alternatives in f (R) and all alternatives in f (R)∩f (R′ ) to all
alternatives in f (R) \ f (R′ ). This contradicts the strategyproofness of f and, therefore,
the initial assumption that f violates WSMON was incorrect.

IUA: Third, assume that f violates IUA, which means that there are preference profiles
R, R′, a voter i ∈N , and a set of alternatives B ⊆A \ f (R) such that �j = �′

j for all voters

j ∈N \ {i}, �i \ �i |B = �′
i \ �′

i |B, and f (R) �= f (R′ ). Now, consider the profile R1 derived
from R by adding two voters i∗ and j∗. The preference relations of these two voters are
shown below, where Ā = A \ B, �i |B indicates that the alternatives in B are ordered as
in �i, and �−1

i |B that the alternatives in B are ordered exactly inverse to �i. Moreover,
let R2 denote the profile derived from R1 by letting voter i∗ order the alternatives in B as
voter i does in R′:

�1
i∗ =�i |B, lex

(
Ā \ f (R)

)
, lex

(
f (R) ∩ f

(
R′)), lex

(
f (R) \ f (

R′))

�1
j∗ = lex

(
f (R) \ f (

R′))−1
, lex

(
f (R) ∩ f

(
R′))−1

, lex
(
Ā \ f (R)

)−1
, �i |−1

B

Just as before, we infer from pairwiseness that f (R1 ) = f (R) and f (R2 ) = f (R′ ).
However, this means that voter i∗ can manipulate by deviating from R1 to R2: by con-
struction, he prefers all alternatives in A \ f (R) to all alternatives in f (R), and all alter-
natives in f (R) ∩ f (R′ ) to all alternatives in f (R) \ f (R′ ). Since f (R) �= f (R′ ), this is in
conflict with strategyproofness.

WLOC: Finally, suppose for contradiction that f violates WLOC. Hence, there are two
preference profiles R, R′, a nonempty set of alternatives B ⊆ A, and a voter i ∈ N such
that �j = �′

j for all j ∈ N \ {i}, �i \ �i |B = �′
i \ �′

i |B, f (R) ∩ B = f (R′ ) ∩ B, but f (R) �=
f (R′ ). Once again, we derive a new profile R1 from R by adding two voters i∗ and j∗.
The preferences of these voters are shown below, where Ā = A \ B and f̄ (R) = f (R) \
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B. Moreover, let R2 denote the profile derived from R1 by letting voter i∗ arrange the
alternatives in B according to �′

i:

�1
i∗ = lex

(
Ā \ f (R)

)
, �i |B, lex

(
f̄ (R) ∩ f

(
R′)), lex

(
f̄ (R) \ f (

R′))

�1
j∗ = lex

(
f̄ (R) \ f (

R′))−1
, lex

(
f̄ (R) ∩ f

(
R′))−1

, �−1
i |B, lex

(
Ā \ f (R)

)−1

Also in this case, pairwiseness shows that f (R1 ) = f (R) and f (R2 ) = f (R′ ). Thus,
voter i∗ can manipulate by switching from R1 to R2 because f (R′ ) �1

i∗ f (R) \ f (R′ ) and
f (R′ ) \ f (R) �1

i∗ f (R). For both claims, it is important that B is disjoint to both f (R) \
f (R′ ) and f (R′ ) \ f (R) since an alternative x ∈ B is in f (R) if and only if it is in f (R′ ).
Hence, the first claim follows directly as the alternatives in f (R) \ f (R′ ) are the least
preferred ones of voter i∗, and the second claim follows since f (R′ ) \ f (R) ⊆ A \ (B ∪
f (R)). Thus, deviating from R1 to R2 is a manipulation for voter i∗, which contradicts
the strategyproofness of f .

A.4 Consequences of strong Condorcet consistency

In this section, we prove a variant of Theorem 1 which relies on strong Condorcet con-
sistency instead of neutrality and nonimposition. This axiom requires of an SCC f

that f (R) = {x} if and only if x is the Condorcet winner in R. Less formally, strongly
Condorcet-consistent SCCs have to elect the Condorcet winner whenever there is one,
and cannot elect a single alternative in the absence of a Condorcet winner. The main
result of this section states that robust dominant set rules are the only SCCs that
satisfy pairwiseness, homogeneity, strong Condorcet consistency, and strategyproof-
ness. As we will see in Appendix A.5, the combination of pairwiseness, homogeneity,
strategyproofness, neutrality, and nonimposition implies strong Condorcet consistency,
which means that this auxiliary claim is actually more general than Theorem 1. More-
over, the axioms of Theorem 2 imply strong Condorcet consistency and we can therefore
use the results of this section also to characterize the top cycle.

For proving the results of this section, we rely on the lemmas of the previous sub-
sections. In particular, we often say that we reinforce an alternative x against another
alternative y without specifying which voter reinforces x against y. This is possible be-
cause we can always add two voters with inverse preferences such that one of them can
perform the required manipulation. Adding these two voters does not affect the choice
set because of pairwiseness and the consequences of the deviation will be specified by
the axioms of Appendix A.3. Hence, we can abstract away from the exact preference pro-
files and focus on the majority margins. For the readers’ convenience, we repeat the four
axioms of the last section because they form the basis of the following proofs. Let f be a
pairwise SCC, a, b ∈ A, and R, R′ ∈ R∗(A).

• WMON: If R′ is derived from R by reinforcing a against b and a ∈ f (R), then a ∈ f (R)
or b ∈ f (R′ ) \ f (R).

• WSMON: If R′ is derived from R by weakening a against all other alternatives x ∈
A \ {a} and a /∈ f (R), then f (R) = f (R′ ).
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• IUA: If R′ is derived from R by reordering some alternatives in A \ f (R), then f (R) =
f (R′ ).

• WLOC: If R′ is derived from R by reordering the alternatives in B ⊆ A such that
f (R) ∩B = f (R′ ) ∩B, then f (R) = f (R′ ).

As shown in Appendix A.3, every strategyproof and pairwise SCC satisfies these ax-
ioms. We now use these properties to show our first key insight, namely that all such
SCCs that satisfy strong Condorcet consistency also satisfy a new property called Con-
dorcet stability (COS). This axiom requires that there should be no alternative—within
or outside of the choice set—that strictly dominates all other alternatives in the choice
set. Note that COS implies that an alternative can only be a single winner if it weakly
dominates every other alternative.7

Definition 5 (Condorcet stability (COS)). An SCC f satisfies Condorcet stability (COS)
if for every preference profile R, there is no alternative x ∈ A such that x �R f (R) \ {x}
whenever f (R) \ {x} is nonempty.

This condition is equivalent to requiring that every alternative is weakly dominated
by another chosen alternative unless it is the unique winner, that is, for every alternative
x ∈ A with f (R) �= {x} there is an alternative y ∈ f (R) \ {x} such that y �R x. It is thus
closely connected to the notion of external stability, which requires that for every alter-
native x ∈ A \ f (R), there is an alternative y ∈ f (R) such that y �R x (see, e.g., Miller,
Grofman, and Feld (1990), Duggan (2013)). Indeed, Condorcet stability is a stronger
requirement than external stability as it also includes a notion of internal stability.

As we show next, the conjunction of our axioms implies COS.

Lemma 5. Every pairwise SCC that is strategyproof and strongly Condorcet consistent sat-
isfies COS.

Proof. Let f denote a pairwise SCC that satisfies strategyproofness and strong Con-
dorcet consistency. First, recall that strong Condorcet consistency requires that f (R) =
{x} if and only if x is the Condorcet winner in R. Hence, strong Condorcet consistency
implies COS for all profiles R with a Condorcet winner x because f (R) = {x} entails
x �R A \ {x}. Next, we focus on profiles without a Condorcet winner and assume for
contradiction that f fails COS for such a profile. More formally, this assumption means
that there is a profile R without a Condorcet winner and an alternative a ∈ A such that
a �R f (R) \ {a}. It follows from the absence of a Condorcet winner that there is at least
one alternative x with x�R a, but no such alternative is chosen. Hence, we can repeat-
edly use WSMON to weaken the alternatives x with x �R a against all other alternatives
until we arrive at a profile R′ such that a �R′ A \ {a}. Now, WSMON implies that the
choice set does not change during these steps, and thus it holds that f (R′ ) = f (R). This

7This axiom is quite useful for characterizing SCCs that are strategyproof in profiles that admit a Con-
dorcet winner: a majoritarian and nonimposing SCC is strategyproof in such profiles if and only if it satisfies
COS.
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means in particular that |f (R′ )| ≥ 2 because strong Condorcet consistency requires that
|f (R)| ≥ 2. However, a is the Condorcet winner in R′, and consequently, strong Con-
dorcet consistency also shows that f (R′ ) = {a}. These two observations contradict each
other, and consequently, the assumption that f violates COS was incorrect.

COS plays an important role in our proofs because we can use it to force an alterna-
tive into the choice set. In particular, the combination of strong Condorcet consistency
and COS have rather strong consequences: the first axiom states that we choose a single
winner if and only if it is the Condorcet winner and the second one requires therefore
that every alternative is weakly dominated by a chosen alternative if there is no Con-
dorcet winner. We now use this interaction to prove our first lemma for pairwise SCCs
that satisfy homogeneity, strategyproofness, and strong Condorcet consistency.

Lemma 6. Let f denote a pairwise SCC that satisfies strong Condorcet consistency, ho-
mogeneity, and strategyproofness. If TC(R) ⊆ f (R) for all profiles R, then f is a robust
dominant set rule.

Proof. Let f denote a pairwise, homogeneous, strategyproof, and strongly Condorcet-
consistent SCC. We prove this lemma in three steps: first, we show that if TC(R) ⊆ f (R)
for all profiles R, then f is a dominant set rule. Next, we prove that, if f is a dominant set
rule, our assumptions require it to be majoritarian. As last point, we show that f is even
robust if it is a majoritarian dominant set rule. Combining all three steps thus shows the
lemma.

Step 1: If TC(R) ⊆ f (R) for all profiles R, f is a dominant set rule.
We prove this claim by contradiction, and thus assume that f always chooses a su-

perset of TC but is no dominant set rule. This means that there is a profile R such that
f (R) is no dominant set in �R, which implies that f (R) �= TC(R). Moreover, there is no
Condorcet winner in R, because otherwise strong Condorcet consistency would require
that f chooses this alternative as unique winner, which would contradict that f (R) is no
dominant set. We infer from this observation that |TC(R)| > 1 because TC is strongly
Condorcet consistent. Next, note that there are alternatives a ∈ f (R) and b ∈ A \ f (R)
such that b �R a because f (R) is no dominant set. Even more, a /∈ TC(R); otherwise,
b would also be in TC(R) because b �R a, which would imply that TC(R) � f (R) since
b /∈ f (R). However, this contradicts our assumptions.

Next, let x denote an alternative in TC(R) ⊆ f (R), which implies that x �R a. We
repeatedly reinforce a against x until we arrive at a profile R′ such that a�R′ x. Moreover,
let R̄′ denote the last profile constructed before R′, that is, x �R̄′ a and a single voter
needs to reinforce a against x to derive R′. First, we show that f (R̄′ ) = f (R) and for
this consider two consecutive profiles R̂ and R̂′ in the sequence that leads from R to
R̄′. This means that R̂′ is derived from R̂ by reinforcing a against x. Moreover, it holds
that �R = �R̂ =�R̂′ because the majority relation between a and x has not changed yet.

This implies that TC(R) = TC(R̂) = TC(R̂′ ) and, therefore, x ∈ TC(R̂) ⊆ f (R̂) and x ∈
TC(R̂′ ) ⊆ f (R̂′ ). Now, if a ∈ f (R̂), then WMON implies that a ∈ f (R̂′ ) since a is reinforced
against x to derive R̂′. Finally, WLOC implies then that f (R̂) = f (R̂′ ) because a and x
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are both chosen before and after the manipulation. Since we start this process at the
profile R with {a, x} ⊆ f (R), it follows from a repeated application of this argument that
f (R̄′ ) = f (R).

Finally, we show that {b, x} � f (R′ ) but {b, x} ⊆ TC(R′ ). This contradicts the assump-
tion that TC is always contained in f , and thus proves that our initial assumption that
f is no dominant set rule was incorrect. First, we show that {b, x} � f (R′ ). Observe for
this that b /∈ f (R̄′ ) = f (R) and that {a, x} ⊆ f (R̄′ ) = f (R). Since R′ is derived from R̄′ by
reinforcing a against x, WMON implies that a ∈ f (R′ ). Now, if x ∈ f (R′ ), it follows from
WLOC that the choice set is not allowed to change, which implies that b /∈ f (R′ ). This
means that b ∈ f (R′ ) is only possible if x /∈ f (R′ ), so {b, x} � f (R′ ). Next, we prove the
second claim that {b, x} ⊆ TC(R′ ). For proving this, it is important that |TC(R)| > 1 and
that �R′ differs from �R only in the fact that a�R′ x and x �R a. The first point means
that there is a cycle C in �R connecting all alternatives in TC(R) because of Lemma 2
and the second one that this cycle also exists in �R′ . Hence, there is a path from x to
every alternative y ∈ TC(R) \ {x}. Moreover, there is a path from x to every alternative
z ∈ A \ TC(R) because we can go from x to another alternative y ∈ TC(R) \ {x} using
the cycle C and from y to z because y �R′ z. This means that x ∈ TC(R′ ) as it reaches
every other alternative on some path. Furthermore, a ∈ TC(R′ ) because a �R′ x, and
b ∈ TC(R′ ) because b�R′ a. This shows that {b, x} ⊆ TC(R′ ), even though {b, x} � f (R′ ).
Hence, TC(R′ ) � f (R′ ), which contradicts the assumption that TC(R) ⊆ f (R) for all pro-
files R. This proves that the assumption that f is no dominant set rule was incorrect.

Step 2: If f is a dominant set rule, it is majoritarian.
Our goal in this step is to show that if f is a dominant set rule, it is majoritarian. Thus,

assume for contradiction that f is a dominant set rule but violates majoritarianess. The
latter point means that there are two preference profiles R and R′ such that �R = �R′
but f (R) �= f (R′ ). We assume that both R and R′ are defined by an even number of
voters. This is without loss of generality as we can just duplicate the profiles if required.
The majority relations do not change by this step since the majority margins are only
doubled, and the choice sets do not change because of homogeneity. Thus, we can also
work with these larger profiles instead. Next, observe that f (R) �= f (R′ ) implies that
gR �= gR′ because f is pairwise. Moreover, f (R) and f (R′ ) are both dominant sets in �R

because f is a dominant set rule. Since dominant sets are ordered by set inclusion, it
follows that f (R) � f (R′ ) or f (R′ ) � f (R). We assume without loss of generality that
f (R) is a subset of f (R′ ); otherwise, we can just exchange the role of R and R′ in the
subsequent arguments. Our goal is to transform R into a profile R∗ such that gR∗ =
gR′ and f (R∗ ) ⊆ f (R) � f (R′ ). This is in conflict with the pairwiseness of f and shows
therefore that the assumption f (R) �= f (R′ ) was incorrect.

We use the largest majority margin c = maxx,y∈A gR(x, y ) in R for the derivation of
R∗. In more detail, we first construct a profile R1 such that gR1 (x, y ) = c for all alterna-
tives x, y ∈ A with x �R y. For this, we repeatedly use the following steps: first, identify
a pair of alternatives x, y ∈ A such that x �R y but the majority margin between x and y

is not c yet. Then reinforce x against y. By repeating these steps, we eventually arrive at
a profile R1, which satisfies gR1 (x, y ) = c for all x, y ∈ A with x �R y. We show next that
f (R1 ) ⊆ f (R) by a case distinction with respect to x and y. For this, consider a single
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step of our process, and let R̄ denote the profile before reinforcing x against y and R̄′
denote the profile after reinforcing x against y. If x /∈ f (R̄) and y /∈ f (R̄), it follows from
IUA that f (R̄) = f (R̄′ ). If x ∈ f (R̄) and y /∈ f (R̄), it follows from WMON that x ∈ f (R̄) and
y /∈ f (R̄′ ) because we have x �R y and, therefore, also x �R̄′ y. Hence, if y ∈ f (R̄′ ), then
x ∈ f (R̄′ ) as f chooses a dominant set. However, this is in conflict with WMON: if we
revert the swap, this axiom implies that y ∈ f (R̄), which contradicts our assumptions.
Thus, x ∈ f (R̄′ ), y /∈ f (R̄′ ), and WLOC implies that f (R̄) = f (R̄′ ). As a third point, note
that x /∈ f (R̄) and y ∈ f (R̄) are impossible because we assume that x �R y. Hence, this
case contradicts that f (R̄) is a dominant set. The last case is that x ∈ f (R̄) and y ∈ f (R̄).
In this case, it follows from WMON that x ∈ f (R̄′ ). If now also y ∈ f (R̄′ ), WLOC implies
that f (R̄) = f (R̄′ ). Conversely, if y /∈ f (R̄′ ), then f (R̄′ ) � f (R̄). Otherwise, an alternative
z ∈ A \ f (R̄) is in f (R̄′ ), which is in conflict with the fact that f (R̄′ ) is a dominant set
since y �R̄′ z because y ∈ f (R̄) and z /∈ f (R̄). Hence, we derive in all possible cases that
f (R̄′ ) ⊆ f (R̄). By repeatedly applying this argument, it follows that f (R1 ) ⊆ f (R).

Next, note that �R1 = �R because we only increase the majority margins between
alternatives x, y ∈ A with x �R y. Furthermore, there are only two possible majority
margins in R1: if x ∼R1 y, then gR1 (x, y ) = 0 and if x �R1 y, then gR1 (x, y ) = c. This
means that we can use homogeneity to derive a profile R2 with smaller majority mar-
gins: we set gR2 (x, y ) = 2 for all alternatives x, y ∈ A with x �R1 y and gR2 (x, y ) = 0 for
all alternatives x, y ∈ A, with x ∼R1 y. Such a preference profile R2 exists because we
can use McGarvey’s construction to build a preference profile for all majority margins
that have the same parity (McGarvey (1953)). It follows from homogeneity and pair-
wiseness that f (R2 ) = f (R1 ) because we can just multiply R2 such that all majority mar-
gins are equal to those in R1. Note here that the assumption that R is defined by an
even number of voters is important because it ensures that c is a multiple of 2. As last
point, observe that �R2 = �R = �R′ because we did not change the sign of a majority
margin. Moreover, gR2 (x, y ) ≤ gR′(x, y ) for all x, y ∈ A because R′ is defined by an even
number of voters. Hence, if x �R′ y, then gR′(x, y ) ≥ 2 = gR2 (x, y ), and if x ∼R′ y, then
gR2 (x, y ) = gR′(x, y ) = 0.

As a last step, we derive a preference profile R3 with gR3 = gR′ from R2 by applying
the same process as in the construction of R1: we repeatedly identify a pair of alterna-
tives x, y ∈ A such that x �R y and the current majority margin between x and y is less
than the one in R′, and reinforce x against y. Clearly, this process results in a profile R3

with gR3 = gR′ and the same arguments as for R1 show that f (R3 ) ⊆ f (R2 ). We derive
therefore from pairwiseness that f (R′ ) = f (R3 ) ⊆ f (R2 ) ⊆ f (R1 ) ⊆ f (R) � f (R′ ), which
is a contradiction because the last subset relation is by assumption strict. Hence, our
initial assumption was incorrect and f is indeed majoritarian.

Step 3: If f is a majoritarian dominant set rule, it is robust.
As a last step, we show that f is robust if it is a majoritarian dominant set rule.

Thus, assume for contradiction that f is a majoritarian dominant set rule that fails
robustness. This means that there are two preference profiles R and R′ such that
f (R) is dominant in �R′ , but f (R′ ) � f (R). As a consequence, there is an alternative
y ∈ f (R′ ) \ f (R). Moreover, since f (R) is dominant in �R′ , it follows that f (R) �R′ y,
and hence f (R) � f (R′ ) as f is a dominant set rule. We derive a contradiction to this



864 Brandt and Lederer Theoretical Economics 18 (2023)

assumption by constructing two preference profiles R2 and R3 such that f (R2 ) = f (R),
f (R3 ) = f (R′ ), and �R2 = �R3 . These observations are conflicting since �R2 = �R3 re-
quires that f (R2 ) = f (R3 ) because of majoritarianess, but f (R) �= f (R′ ). Note that we
assume in the sequel that both R and R′ are defined by an even number of voters as we
want to introduce majority ties. This is without loss of generality as f is homogeneous.

First, we explain how to derive R2 from R. As a first step, we reorder the alternatives
in A \ f (R) to derive a profile R1 with �R1 |A\f (R) = �R′ |A\f (R). As a consequence of
IUA, it follows that f (R1 ) = f (R) since this step does not affect chosen alternatives. Next,
let Di∗ denote the dominant set in R1 that is currently chosen, that is, f (R1 ) = Di∗ . We
derive the profile R2 by repeating the following procedure with R1 as starting profile:
in the current preference profile R̄, we choose a pair of alternatives x, y ∈ Di∗ such that
y �R̄ x and reinforce x against y until we arrive at a profile R̄′ with x ∼R̄′ y. It follows from
WMON and majoritarianess that x ∈ f (R̄′ ) if x, y ∈ f (R̄). Moreover, as f is a dominant set
rule, x ∈ f (R̄′ ) implies y ∈ f (R̄′ ) because y �R̄′ x. Hence, we infer from WLOC that f (R̄) =
f (R̄′ ) if x, y ∈ f (R̄). Since f (R1 ) = D∗

i , we can thus repeat this process until we arrive at
a profile R2 with x ∼R2 y for all x, y ∈Di∗ , and it follows from the previous argument that
f (R1 ) = f (R2 ). Moreover, the majority relation of R2 is completely specified: we have
f (R) �R2 A \ f (R), x∼R2 y for all x, y ∈ f (R), and �R2|A\f (R) =�R′|A\f (R).

Finally, we apply the same construction as for R2 to derive the profile R3 from
R′. In more detail, observe that, by assumption, Di∗ = f (R) is dominant in �R′ and
Di∗ � f (R′ ). Hence, we can use the same construction as for R2 to introduce major-
ity ties between all alternatives in Di∗ in �R′ . The same reasoning as in the previous
paragraph shows that this step does not change the choice set, and it hence holds for
the resulting profile R3 that f (R′ ) = f (R3 ). In particular, R3 has now the same ma-
jority relation as R2, which is in conflict with majoritarianess since �R2 = �R3 but
f (R2 ) = f (R) �= f (R′ ) = f (R3 ). This is a contradiction to our assumptions and f is there-
fore robust if it is a majoritarian dominant set rule.

Lemma 6 presents a simple criterion for deciding when a strategyproof, homoge-
neous, pairwise, and strongly Condorcet-consistent SCC f is a robust dominant set rule,
namely when TC(R) ⊆ f (R) for all profiles R. Our next goal is to prove that every such
SCC meets this condition without further assumptions. Hence, suppose for contradic-
tion that this is not the case, that is, there are an SCC f that satisfies all our axioms
and a profile R such that TC(R) � f (R). If such a profile R exists, we may as well fo-
cus on the profile Rf that minimizes the size of the top cycle among all profiles R with
TC(R) � f (R). Furthermore, for every SCC f , we define kf ∈ {1, � � � , m+ 1} as the maxi-
mal value such that TC(R) ⊆ f (R) for all preference profiles R with |TC(R)| < kf . Note
that kf = |TC(Rf )| if TC(R) is not always a subset of f (R), and kf = m+ 1 otherwise.

As the next step, we show that kf ≥ 4 for all pairwise SCCs f that satisfy strate-
gyproofness, homogeneity, and strong Condorcet consistency. In general, this means
that such SCCs can only fail to choose a superset of the top cycle if TC(R) is sufficiently
large. For the special case where m≤ 3, Lemmas 6 and 7 already imply that f needs to be
a robust dominant set rule because the size of the top cycle is bounded by the number
of alternatives.
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Lemma 7. Let f denote a pairwise SCC that satisfies strong Condorcet consistency, strate-
gyproofness, and homogeneity. Then kf ≥ 4.

Proof. Let f denote a pairwise SCC that satisfies strong Condorcet consistency, ho-
mogeneity, and strategyproofness. Furthermore, suppose for contradiction that there
is a profile R∗ such that k = |TC(R∗ )| ≤ 3 but TC(R∗ ) � f (R∗ ). We proceed with a case
distinction with respect to |TC(R∗ )| to derive a contradiction for the three possible cases.

Case 1: |TC(R∗ )| = 1
If |TC(R∗ )| = 1, there has to be a Condorcet winner in R∗ since TC is strongly Con-

dorcet consistent. Consequently, the strong Condorcet consistency of f requires that
f (R∗ ) = TC(R∗ ), which contradicts the assumption that TC(R∗ ) � f (R∗ ).

Case 2: |TC(R∗ )| = 2
The top cycle only elects two alternatives x, y ∈ A if x ∼R∗ y and {x, y} �R∗ A \ {x, y}.

Hence, strong Condorcet consistency requires that f chooses at least two alternatives. In
turn, COS implies then that both x and y are chosen because x is the only alternative that
dominates y and y is the only alternative that dominates x. This shows that TC(R∗ ) ⊆
f (R∗ ) and we again have a contradiction.

Case 3: |TC(R∗ )| = 3
Next, assume there are three alternatives a, b, and c such that TC(R∗ ) = {a, b, c}, but

{a, b, c} � f (R∗ ). First, note that strong Condorcet consistency requires that |f (R∗ )| ≥ 2
because there is no Condorcet winner in R∗; otherwise, it would hold that |TC(R∗ )| = 1
as TC uniquely chooses the Condorcet winner whenever it exists. Next, observe that,
according to Lemma 2, there has to be a cycle C that connects a, b, c since TC(R∗ ) =
{a, b, c}. Without loss of generality, suppose that C = (a, b, c), that is, a �R∗ b, b �R∗ c,
c �R∗ a. Moreover, we also suppose without loss of generality that a /∈ f (R∗ ) because
TC(R∗ ) � f (R∗ ). COS then implies that b ∼R∗ c and {b, c} ⊆ f (R∗ ), because otherwise
no chosen alternative dominates b or c. Next, consider the profile R1 derived from R∗
by reinforcing b against c, so we have b �R1 c instead of b ∼R∗ c. First, note that there
is no Condorcet winner in R1, and thus strong Condorcet consistency requires us to
choose at least two alternatives. Hence, COS implies that a ∈ f (R1 ) because it is the
only alternative that dominates b in R1. Moreover, WMON shows that b ∈ f (R1 ) since we
swap two chosen alternatives to derive R1 from R∗. Finally, the contraposition of WLOC

implies that c /∈ f (R1 ) since a ∈ f (R1 ) \ f (R∗ ). These observations entail that a ∼R1 b,
because otherwise no chosen alternative dominates a, which violates COS. Thus, we
can repeat the previous steps by reinforcing a against b, which results in a profile R2

such that a �R2 b, b �R2 c, {a, c} ⊆ f (R2 ), and b /∈ f (R2 ). Hence, COS implies once again
that c ∼R2 a and we can again break this majority tie to derive the profile R3. In more
detail, all edges of C are now strict, and a /∈ f (R3 ). This contradicts COS because b �R3

A \ {a, b}. Hence, no chosen alternative dominates b and the assumption that TC(R∗ ) �
f (R∗ ) was incorrect.

Due to Lemma 7, it follows that every pairwise SCC that satisfies strategyproofness,
homogeneity, and strong Condorcet consistency can only fail to choose a superset of the
top cycle if |TC(R)| ≥ 4. Hence, we subsequently investigate profiles with a top cycle that
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contains at least 4 alternatives. For this, we first need to discuss some auxiliary lemmas
and start by showing that a pairwise SCC f that satisfies homogeneity, strategyproofness,
and strong Condorcet consistency must choose almost all alternatives of the top cycle
for profiles R with |TC(R)| = kf ≥ 4.

Lemma 8. Let f denote a pairwise SCC that satisfies strong Condorcet consistency, homo-
geneity, strategyproofness, and 4 ≤ kf ≤ m. It holds that |TC(R) ∩ f (R)| ≥ kf − 1 for all
profiles R with |TC(R)| = kf .

Proof. Let f denote a pairwise SCC that satisfies all axioms of the lemma and assume
that kf ∈ {4, � � � , m}. Furthermore, suppose for contradiction that there is a profile R

such that |TC(R)| = kf and |f (R) ∩ TC(R)| ≤ kf − 2. This means that at least two al-
ternatives of the top cycle are not chosen, that is, the set X = TC(R) \ f (R) contains
at least two alternatives. Next, let x ∈ X denote one of these alternatives. We pro-
ceed with a case distinction with respect to the connected set Ax and first suppose that
X �Ax ∪ {x}. Because of the definition of connected sets, this assumption means that
X ∩ TC(R−x ) �= ∅, where R−x = R|A\{x} denotes the profile derived from R by remov-
ing x. We use this fact to derive a contradiction as follows: starting at R, we repeatedly
weaken x against all alternatives until we derive a profile R′ in which x is the Condorcet
loser. WSMON entails for every step that the choice set does not change, which means
that f (R) = f (R′ ). Moreover, TC(R′ ) = TC(R) \ (Ax ∪ {x}) because for the top cycle it
is irrelevant whether an alternative is a Condorcet loser or not present at all. However,
this means that TC(R′ ) � f (R′ ) because X ∩ TC(R′ ) �= ∅, but X ∩ f (R′ ) = X ∩ f (R) = ∅.
Since |TC(R′ )| ≤ |TC(R) \ {x}| < kf , this contradicts the definition of kf , which requires
that TC(R̄) ⊆ f (R̄) for all profiles R̄ with |TC(R̄)| < kf .

As second case, suppose that X ⊆ Ax ∪ {x}. In this case, consider a second alterna-
tive y ∈ X \ {x}, which means that y ∈ Ax. We want to use Lemma 3. Note that there
is an alternative z ∈ f (R) with z �R x because of COS and strong Condorcet consis-
tency. Hence, x does not dominate all other alternatives but y and Lemma 3 conse-
quently shows that Ay ⊆ Ax. In particular, this means that x /∈ Ay ∪ {y} and, therefore,
X �Ay ∪ {y}. Hence, we can use the same argument as in the last case to derive a con-
tradiction by focusing on y. Since both cases result in a contradiction, it follows that the
assumption |TC(R) ∩ f (R)| ≤ kf − 2 was incorrect, that is, |TC(R) ∩ f (R)| ≥ kf − 1 holds
for all profiles R with |TC(R)| = kf .

Lemma 8 is important because it implies for all profiles R with |TC(R) ∩ f (R)| <
|TC(R)| = kf that there is a single alternative of the top cycle which is unchosen. As
we demonstrate next, this insight can be used to strengthen the axioms in Appendix A.3
when we restrict attention to profiles R, R′ with |TC(R)| = |TC(R′ )| = kf . In particular,
the next lemma is concerned with what happens when we weaken an alternative y ∈
f (R) ∩ TC(R) against multiple alternatives X ⊆ f (R) ∩ TC(R) when |TC(R)| = kf .

Lemma 9. Let f denote a pairwise SCC that satisfies strong Condorcet consistency, homo-
geneity, strategyproofness, and 4 ≤ kf ≤m, and consider two preference profiles R, R′ such
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that TC(R) = TC(R′ ) and |TC(R)| = kf . If there are a set of alternatives X ⊆ f (R)∩TC(R)
and an alternative y ∈ (f (R) ∩ TC(R)) \X such that gR′(x, y ) = 2 + gR(x, y ) for all x ∈X ,
and gR′(x′, y ′ ) = gR(x′, y ′ ) for all other pairs of alternatives, it holds that f (R) = f (R′ ) or
f (R′ ) ∩ TC(R′ ) = TC(R′ ) \ {y}.

Proof. Consider a pairwise SCC f that satisfies homogeneity, strategyproofness, and
strong Condorcet consistency and let R, R′, X , and y be defined as in the lemma. In
particular, it holds that gR′(x, y ) = gR(x, y ) + 2 for all x ∈ X , and gR′(x′, y ′ ) = gR(x′, y ′ )
for all other pairs of alternatives. This means that we can transform R into a profile
R∗ with the same majority margins as R′ by reinforcing all alternatives in X against y.
Consequently, the lemma follows if we show that X ⊆ f (R′ ): if also y ∈ f (R′ ), then WLOC

entails that f (R) = f (R′ ), and if y /∈ f (R′ ), then Lemma 8 implies that f (R′ ) ∩ TC(R′ ) =
TC(R′ ) \ {y} because |TC(R′ )| = kf ≥ 4 and y ∈ TC(R′ ) \ f (R′ ).

Thus, suppose for contradiction that X � f (R′ ). Then Lemma 8 shows that there is
an alternative z ∈X such that f (R′ ) ∩ TC(R′ ) = TC(R′ ) \ {z} because X ⊆ TC(R′ ). More-
over, we assume that X∪{y} ⊆ f (R). We can turn these observations into a manipulation
of f by adding two voters i∗ and j∗ with inverse preferences to R. In more detail, the pro-
file R1 consists of R and the voters i∗ and j∗ whose preference relations are specified sub-
sequently. In the definitions of these preference relations, we use f̄ (R) = f (R)\ (X ∪ {y})
and X̄ = X \ {z}:

�1
i∗ = lex

(
A \ f (R)

)
, lex

(
f̄ (R) ∩ f

(
R′)), y, lex(X̄ ), z, lex

(
f̄ (R) \ f (

R′))

�1
j∗ = lex

(
f̄ (R) \ f (

R′))−1
, z, lex(X̄ )−1, y, lex

(
f̄ (R) ∩ f

(
R′))−1

, lex
(
A \ f (R)

)−1

Since the preferences of these voters are inverse, it follows from pairwiseness that
f (R1 ) = f (R). Next, we derive R2 from R1 by letting voter i reinforce all alternatives in X

against y. Since we derive R′ from R by the same modification, pairwiseness shows that
f (R2 ) = f (R′ ). However, this means that voter i∗ can manipulate by deviating from R1

to R2. Note for this that f (R′ ) \ f (R) �i∗ f (R) because A \ f (R) �i∗ f (R). Furthermore,
it holds that f (R′ ) �i∗ f (R) \ f (R′ ) because the alternatives in f (R) \ f (R′ ) = (f̄ (R) \
f (R′ )) ∪ {z} are bottom-ranked by voter i∗. Finally, since z ∈ f (R) \ f (R′ ), this is indeed
a manipulation for voter i∗. Hence, the assumption that X � f (R′ ) was incorrect, which
proves the lemma.

Lemma 9 significantly strengthens WMON for profiles R, R′ with TC(R) = TC(R′ )
and |TC(R)| = kf ≥ 4 and alternatives in TC(R). In particular, we can now reinforce
sets of alternatives against single alternatives and there are only two possible outcomes
under the given assumptions. Therefore, we ensure in the following that the premises
of Lemma 9 are always true: in all subsequent profiles R, it holds that |TC(R)| = kf , we
only modify the preferences between alternatives in the top cycle, and the top cycle will
never change. As the next step, we derive a profile R for which all majority margins are
known, |TC(R)| = kf , and TC(R) � f (R).
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Lemma 10. Let f denote a pairwise SCC that satisfies strong Condorcet consistency, ho-
mogeneity, and strategyproofness. If 4 ≤ kf ≤ m, there is a profile R such that TC(R) �
f (R), |TC(R)| = kf , and there is a cycle C = (a1, � � � , akf ) in �R |TC(R) with gR(akf , a1 ) = 2
and gR(ai, aj ) = 2 for all other indices i, j ∈ {1, � � � , kf } with i < j.

Proof. Let f denote a pairwise SCC that satisfies strong Condorcet consistency, homo-
geneity, and strategyproofness, and suppose that kf ∈ {4, � � � , m}. Moreover, consider a
profile R∗ such that TC(R∗ ) � f (R∗ ) and kf = |TC(R∗ )|; such a profile exists by the defi-
nition of kf . Additionally, we assume in the sequel that R∗ is defined by an even number
of voters. This is possible as we can simply duplicate the profile R∗ if it is defined by an
odd number of voters. This step does neither affect the top cycle nor f since both SCCs
are homogeneous, and we can thus work with this larger profile if R∗ was defined by an
odd number.

We prove this lemma in two steps: first, we construct a profile R̂1 such that TC(R∗ ) =
TC(R̂1 ) � f (R̂1 ) and there is a pair of alternatives a, b ∈ TC(R̂1 ) with b �R̂1 A \ {a, b}.
This profile is essential since COS shows now that a must be chosen, even after various
manipulations. Based on this insight, we construct as the second step a profile R̂2 that
satisfies all requirements of our lemma.

Step 1: Constructing the profile R̂1.
Our first goal is to construct a profile R̂1 such that TC(R∗ ) = TC(R̂1 ) � f (R̂1 ) and

there is a pair of alternatives a, b ∈ TC(R̂1 ) with b �R̂1 A \ {a, b}. For this, consider a
cycle C = (a1, � � � , akf ) in �R∗ that contains all alternatives in TC(R∗ ); such a cycle ex-
ists because of Lemma 2. Furthermore, let b = ai+1 denote an arbitrary alternative in
TC(R∗ ) ∩ f (R∗ ) and let a = ai denote its predecessor on the cycle C. Our goal is to rein-
force b against all alternatives A \ {a, b} such that b �R A \ {a, b}.

The first key insight for this is that strong Condorcet consistency and COS entail that
there is always a chosen alternative c that dominates b if there is no Condorcet winner.
Based on this observation, we repeat the following steps starting at profile R∗: in the
current profile R′, we identify an alternative c ∈ f (R′ ) \ {a, b} with c �R′ b and reinforce
b against c. First, note that during all of these steps, b remains chosen because of WMON

and the fact that we only swap chosen alternatives. Next, observe that these steps do not
affect the cycle C because c is not the predecessor of b. Hence, Lemma 2 implies that
the top cycle does not change and that c ∈ TC(R∗ ) = TC(R′ ) because c �R′ b. The latter
observation and Lemma 9 also entail that not all alternatives in the top cycle are chosen
after reinforcing b against c because either c is now unchosen or the choice set is not
allowed to change at all. Thus, this process terminates at a profile R1 such that b �R1

f (R1 ) \ {a, b}, TC(R1 ) = TC(R∗ ) � f (R1 ), and {a, b} ⊆ f (R1 ). The last point is true since
WMON shows that b ∈ f (R1 ) and COS requires that a ∈ f (R1 ) because a�R1 b and b �R1

f (R1 ) \ {a, b}. We are done after this step if b �R1 A \ {a, b} but this is not guaranteed.
Hence, assume that there are alternatives x ∈ A \ f (R1 ) with x �R1 b. Note that

this assumption implies that x ∈ TC(R1 ) because b ∈ TC(R∗ ) = TC(R1 ). We want to
repeatedly identify such an alternative x ∈ TC(R1 ) \ f (R1 ) with x �R1 b and reinforce
b against x. WMON and WLOC imply for each of these steps that either the choice set
does not change, or b becomes unchosen and x chosen. In particular, this means that
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after such a step, not all alternatives of the top cycle are chosen because the top cycle
is not affected by these changes. However, we cannot guarantee that b remains chosen
during these steps and, therefore, we need to treat the case that we arrive at a profile R2

with b /∈ f (R2 ) separately. Given such a profile R2, we show how we can find another
profile R3 such that b ∈ f (R3 ), TC(R∗ ) = TC(R3 ) � f (R3 ), and gR3 (b, x) = gR2 (b, x) for
all x ∈ A. For this, note that the cycle C = (a1, � � � , akf ) exists also in R2, and thus

TC(R2 ) = TC(R∗ ). Since |TC(R∗ )| = kf , Lemma 8 shows that TC(R2 ) \ {b} ⊆ f (R2 ) if
b /∈ f (R2 ). In particular, this means that c = ai+2 (i.e., the successor of b on C) is in f (R2 ).
We apply next a similar idea as in the construction of R1: at every preference profile R′,
we reinforce c against a chosen alternative x ∈ f (R′ ) \ {b, c} with x �R′ c. Just as in the
first step, Lemma 9 implies that c remains chosen during these steps and that we never
choose all alternatives of TC(R′ ). Also, we do not flip any edge in the cycle C during
this process because we never reinforce c against its predecessor b. Hence, neither the
top cycle nor a majority margin involving b change. Finally, this process terminates at a
profile R3 such that c �R3 f (R3 ) \ {b, c} and c ∈ f (R3 ). Moreover, COS now requires that
b ∈ f (R3 ) because c �R3 A \ {b, c}, that is, if b /∈ f (R3 ), no chosen alternative dominates
c. Hence, profile R3 indeed satisfies all our requirements.

Thus, if b drops out of the choice set after reinforcing it against an unchosen al-
ternative, we can apply this construction to derive a profile R3 with b ∈ f (R3 ) and
TC(R∗ ) = TC(R3 ) � f (R3 ). At this point, we can simply repeat the same constructions
used in the derivation of R1 and R2, and eventually, we will arrive at a profile R̂1 such
that b �R̂1 A \ {a, b} because the majority margins of b are non-decreasing during all
steps and strictly decreasing during the constructions of R1 and R2. Also, none of the
constructions requires us to invert edges of the cycle C, and thus TC(R̂1 ) = TC(R∗ ),
whereas Lemma 9 shows that TC(R̂1 ) � f (R̂1 ).

Step 2: Constructing the profile R̂2.
As a second step, we construct the profile R̂2 that satisfies all requirements of the

lemma. In more detail, R̂2 has to satisfy that TC(R∗ ) = TC(R̂2 ) � f (R̂2 ) and that there
is a cycle C = (a1, � � � , akf ) in �R̂2 that connects all alternatives in TC(R̂2 ) such that
gR̂2 (akf , ai ) = 2 and gR̂2 (ai, aj ) = 2 for all other indices i, j ∈ {1, � � � , kf } with i < j. For

the construction of this profile, let R1 denote the profile constructed in the last step, and
let C = (a1, � � � , akf ) denote a cycle that connects all alternatives x ∈ TC(R∗ ) = TC(R1 )
in �R1 . By construction, there are alternatives a, b ∈ TC(R1 ) such that b �R1 A \ {a, b}.
In the sequel, we assume without loss of generality that b = a1 since we can pick the
starting point of the cycle. This means that a = akf , that is, a is the predecessor of b on
the cycle C, because a is the only alternative that dominates b. Finally, recall that R∗
and, therefore, also R1 are defined by an even number of voters, which implies that the
majority margins are even.

The central observation for the construction of R̂2 is that COS and strong Condorcet
consistency guarantee that a ∈ f (R1 ) because a is the only alternative that dominates
b. Even more, this is true as long as b �R A \ {a, b} and a�R b. We use this observation
to reinforce a = akf against the alternatives x ∈ TC(R1 ) \ {a1, akf−1, akf }: in each step,

we identify an alternative x ∈ TC(R1 ) \ {a1, akf−1, akf } with x�R′ a in the current profile
R′ and reinforce a against x. As mentioned before, COS implies that a has to be chosen
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during all steps. Moreover, if x /∈ f (R′ ), it follows from WMON that x remains unchosen
after this step; otherwise, we could revert the modification and WMON entails that x ∈
f (R′ ), contradicting our previous assumption. Hence, WLOC implies that the choice set
cannot change in this case. Conversely, if x ∈ f (R′ ), it follows either that x is no longer
chosen after this step, or that the choice set is not allowed to change because of WLOC.
In particular, this shows that not all alternatives in TC(R∗ ) = {a1, � � � , akf } are chosen

after this step. Hence, we can repeat these steps until we arrive at a profile R2 such that
a �R2 A\ {a, a1, akf−1}. Also note that gR2 (a, x) = 2 for all x ∈ TC(R1 )\ {a, a1, akf−1} with
x�R1 a because we only reinforce a against such alternatives x until a strictly dominates
them. Finally, none of these steps involves an edge of the cycle C, which implies that
TC(R2 ) = TC(R1 ) = TC(R∗ ). Hence, TC(R2 ) = TC(R∗ ) � f (R2 ).

As the next step, we reinforce a against b if a ∼R2 b, and against its predecessor akf−1

on the cycle C until gR3 (a, akf−1 ) = −2 if gR2 (a, akf−1 ) ≤ −4. This results in a new profile

R3 and, by the same arguments as before, it follows that not all alternatives in TC(R∗ )
are chosen. Also, it is easy to see that the top cycle did not change since a �R3 b and
akf−1 �R3 a. As a last point, observe that all new outgoing edges a �R2 x have weight 2
and that the incoming edge from akf−1 has a weight of at most 2.

Finally, note that a dominates each alternative x ∈A \ {a, akf−1} in R3, and thus COS

and strong Condorcet consistency imply now that akf−1 must be chosen. Hence, we can
repeat the previous steps for akf−1, or more generally, we can traverse along the cycle
C using these steps. Thus, we repeat this process until we applied our constructions to
a1. It follows from the construction that each edge in the final profile R̂2 has weight 2.
Furthermore, the cycle C also exists in the final profile R̂2 and thus, TC(R̂2 ) = TC(R∗ ).
Moreover, it is a consequence of COS, WMON, and WLOC that TC(R̂2 ) � f (R̂2 ). Finally,
it follows for the profile R̂2 that a1 dominates each alternative but akf , and each alter-
native ai with 1 < i < kf dominates all alternatives aj with j > i. This claim follows by
inspecting our construction in more detail: if j = i+ 1, that is, if aj is the successor of ai
in C, this follows immediately as we do not break the cycle. If j > i+ 1, we first apply our
construction to aj ensuring that aj dominates ai. Later, we apply our construction to ai,
which reverts this edge and ensures that it has a weight of 2. Since this majority margin
will not be modified anymore, this proves that the profile R̂2 indeed satisfies all criteria
of the lemma.

If we consider a pairwise SCC f that satisfies all required axioms but is no robust
dominant set rule, Lemma 10 states the exact majority margins of a profile R∗ such
that TC(R∗ ) � f (R∗ ) and |TC(R∗ )| = kf ≤ m. As a last step, we derive a contradiction
to this by showing that TC(R∗ ) ⊆ f (R∗ ) is required. By considering the contraposition of
Lemma 10, we infer from this that kf /∈ {4, � � � , m}. Together with Lemma 7, this means
that kf = m + 1, which shows that every pairwise SCC that satisfies strong Condorcet
consistency, homogeneity, and strategyproofness is a robust dominant set rule.

Lemma 11. Every pairwise SCC that satisfies strong Condorcet consistency, homogeneity,
and strategyproofness is a robust dominant set rule.
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Proof. Assume for contradiction that there is a pairwise SCC f that satisfies strate-
gyproofness, homogeneity, and strong Condorcet consistency, but is no robust dom-
inant set rule. The contraposition of Lemma 6 shows that there is a profile R such
that TC(R) � f (R). On the other hand, Lemma 7 shows that TC(R) ⊆ f (R) for all
profiles R with |TC(R)| ≤ 3. These claims contradict each other if m ≤ 3, and thus
we focus on the case that m ≥ 4. Hence, let kf ∈ {4, � � � , m} denote the maximal value
such that TC(R) ⊆ f (R) for all profiles R with |TC(R)| < kf . Moreover, let R̄ de-
note a profile such that TC(R̄) � f (R̄) and |TC(R̄)| = kf ; such a profile exists because
of the definition of kf . Next, we apply Lemma 10 to derive a profile R∗ such that
TC(R∗ ) = TC(R̄), TC(R∗ ) � f (R∗ ), and the alternatives TC(R∗ ) = {a1, � � � , akf } can be or-
dered such that gR∗(akf , a1 ) = 2 and gR∗(ai, aj ) = 2 for all other indices i, j ∈ {1, � � � , kf }
with i < j. Furthermore, TC(R∗ ) \ f (R∗ ) contains a single alternative aj because of
Lemma 8.

For deriving a contradiction to this assumption, we will consider a number of
profiles related to R∗. In particular, our subsequent construction will mimic neu-
trality since f needs not be neutral. Thus, we define profile Rπ given some permu-
tation π : TC(R∗ ) → TC(R∗ ) as follows: gRπ (x, y ) = gR∗(x, y ) if x ∈ A \ TC(R∗ ) or
y ∈ A \ TC(R∗ ) and gRπ (π(ai ), π(aj )) = gR∗(ai, aj ) for all ai, aj ∈ TC(R∗ ). Less for-
mally, Rπ is constructed as follows: we derive the majority margins of Rπ by re-
ordering the edges between alternatives x, y ∈ TC(R∗ ) according to π but we do not
reorder the edges to alternatives outside of the top cycle. For a better readabil-
ity, we refer to π(ai ) as aπi from now on. In particular, the construction of Rπ im-
plies that gRπ (aπkf , aπ1 ) = 2 and gRπ (aπi , aπj ) = 2 for all i, j ∈ {1, � � � , kf } with i < j.

Furthermore, we define �l
π as the set of permutations π ′ with π(ai ) = π′(ai ) for

i ∈ {l, � � � , kf }, that is, all permutations π ′ ∈ �l
π agree with π on the alternatives

{al, � � � , akf }.
Based on the profiles Rπ , we next prove the lemma. For this, let j∗ denote the small-

est index such that aπj∗ /∈ f (Rπ ) for some permutation π on TC(R∗ ). Moreover, let π∗

denote the corresponding permutation, that is, aπ
∗

j∗ /∈ f (Rπ∗
). Given the value j∗ and the

profile Rπ∗
, we prove the lemma in three steps. First, we show that {aπ1 , aπ2 , aπkf } ⊆ f (Rπ )

for all permutations π. This means in particular that j∗ ∈ {3, � � � , kf − 1}. Next, we

show that f (Rπ ) = f (Rπ∗
) for all permutations π ∈ �

j∗
π∗ . This observation implies that

aπj∗ = aπ
∗

j∗ /∈ f (Rπ ) for all these permutations. Finally, we use this insight to derive a con-
tradiction. All profiles used for Steps 2 and 3 are depicted exemplarily in Figure 3 for the
case that kf = 6.

Step 1: {aπ1 , aπ2 , aπkf } ⊆ f (Rπ ) for all permutations π : TC(R∗ ) → TC(R∗ )

Consider an arbitrary preference profile Rπ . First, note that there is no Condorcet
winner in this profile since there is no Condorcet winner in R∗, and thus strong Con-
dorcet consistency requires that |f (Rπ )| ≥ 2. As a consequence, COS requires that
aπ1 ∈ f (Rπ ) and aπkf

∈ f (Rπ ) because aπ1 is the only alternative that dominates aπ2 and aπkf
is the only alternative that dominates aπ1 . As a last point, suppose for contradiction that
aπ2 /∈ f (Rπ ). Since |TC(Rπ )| = kf , it follows from Lemma 8 that TC(Rπ ) \ {aπ2 } ⊆ f (Rπ ),
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Figure 3. The (weighted) majority relations used in the proof of Lemma 11 for kf = 6. Alterna-
tives outside of the top cycle are not depicted, and we assume that j∗ = 4 and aπ1 /∈ f (R̂), where

π denotes a permutation in �
j∗
π∗ . Alternatives placed in an ellipse have identical relationships to

all alternatives outside of the ellipse, and all missing edges point downwards. All directed edges
indicate a majority margin of 2 and all bidirectional edges indicate a majority margin of 0. Green
(light gray) alternatives are chosen and red (dark gray) ones are unchosen by f .

in particular that aπ3 ∈ f (Rπ ). As the next step, we reinforce aπ3 twice against aπ1 to de-
rive a profile R′ with gR′(aπ3 , aπ1 ) = 2. Note that aπ1 needs to stay chosen during these
steps because it is still the only alternative dominating aπ2 and WMON implies that aπ3
remains also chosen. Hence, it follows from WLOC that f (R′ ) = f (Rπ ), which means
that aπ2 /∈ f (R′ ). However, aπ2 is the only alternative that dominates aπ3 in R′, and thus
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COS is violated. This is a contradiction, and thus the assumption that aπ2 /∈ f (Rπ ) was
incorrect.

Step 2: f (Rπ ) = f (Rπ∗
) for all permutations π ∈�

j∗
π∗

For proving this step, we consider the profiles Rπ,l for every l ∈ {1, � � � , j∗ − 1}, which
differs from Rπ in the fact that gRπ,l (aπi , aπj ) = 0 for all i, j ∈ {1, � � � , l, kf }. Intuitively,

Rπ,l is derived Rπ by introducing a large set of tied alternatives {aπ1 , � � � , aπl , aπkf } in

the majority relation. Our goal is to show that f (Rπ ) = f (Rπ,j∗−1 ) for all permuta-

tions π ∈ �
j∗
π∗ . This implies that f (Rπ ) = f (Rπ′

) for all such permutation π, π ′ be-
cause gRπ,l = gRπ′ ,l for all π, π ′ ∈ �l+1

π∗ and l ∈ {1, � � � , j∗ − 1}. For deriving this state-

ment, we show inductively that f (Rπ ) = f (Rπ,l ) for all π ∈ �
j∗
π∗ and all l ∈ {1, � � � , j∗ −

1}.
First, we focus on the induction basis l = 1 and consider therefore an arbitrary per-

mutation π ∈�
j∗
π∗ . Note that Rπ,1 only differs from Rπ by the fact that gRπ,1 (aπkf , aπ1 ) = 0

instead of 2. Hence, we can derive Rπ,1 from Rπ by reinforcing aπ1 against aπkf
. Fur-

thermore, we have shown in the last step that {aπ1 , aπkf } ⊆ f (Rπ ), and COS requires that

both alternatives are chosen in f (Rπ,1 ) because aπkf
is still the only alternative that dom-

inates aπ1 and aπ1 is the only alternative that dominates aπ2 . Consequently, WLOC shows
that f (Rπ ) = f (Rπ,1 ).

For the induction step, assume that there is a value l ∈ {1, � � � , j∗ − 2} such that
f (Rπ ) = f (Rπ,l ) for all π ∈ �

j∗
π∗ . We need to prove that this claim is also true for l + 1.

Hence, note that for every permutation π ∈ �
j∗
π∗ , it holds that {aπ1 , � � � , aπj∗−1, aπkf } ⊆

f (Rπ ) because of the definition of j∗ and Step 1. Next, we explain how to derive
Rπ,l+1 from Rπ for an arbitrary permutation π ∈ �

j∗
π∗ : first, we reinforce aπ1 against

aπkf
to derive the profile R̄π . It follows from the same argument as in the induction

basis that f (R̄π ) = f (Rπ ). Next, we reinforce all alternatives aπi with i ∈ {2, � � � , l + 1}
against aπ1 . COS requires for the resulting profile R̂π that aπ1 is chosen because it is
still the only alternative dominating aπ2 and Lemma 9 shows therefore that f (R̂π ) =
f (Rπ ). Furthermore, observe that gR̂π (aπ1 , aπi ) = 0 for all i ∈ {2, � � � , l + 1, kf }. Fi-

nally, we can derive Rπ,l+1 from R̂π by letting a voter i with preference relation
�i= aπ2 , � � � , aπl+1, aπkf , lex(A \ {aπ2 , � � � , aπl+1, aπkf }) change his preference relation to �′

i=
aπkf

, aπl+1, � � � , aπ2 , lex(A \ {aπ2 , � � � , aπl+1, aπkf }). We can assume that such a voter exists

since pairwiseness allows us to add voters with inverse preferences without affecting
the choice set. This step ensures that gRπ,l+1 (aπi , aπj ) = 0 for all i, j ∈ {2, � � � , l+ 1, kf } and

it therefore transforms R̂π into Rπ,l+1.
Now, since {aπ2 , � � � , aπl+1, aπkf } ⊆ f (Rπ ) = f (R̂π ), WLOC implies that f (Rπ ) =

f (Rπ,l+1 ) if {aπ2 , � � � , aπl+1, aπkf } ⊆ f (Rπ,l+1 ). Hence, our next goal is to prove this

set inclusion and we assume for contradiction that there is an alternative aπj with

j ∈ {2, � � � , l + 1, kf } such that aπj /∈ f (Rπ,l+1 ). First, suppose that aπj ∈ {aπ2 , � � � , aπl+1},
which means that TC(Rπ ) \ {aπj } ⊆ f (Rπ ) because of Lemma 8. In this case, we

derive a contradiction by considering the permutation π′ with aπ
′

1 = aπj , aπ
′

j = aπ1 ,
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and aπ
′

i = aπi for all other i ∈ {1, � � � , kf }. In more detail, we can use the same con-
struction as for π to transform Rπ′

into Rπ′,l+1 = Rπ,l+1. In particular, the analy-
sis of the previous paragraph shows that {aπ

′
1 , � � � , aπ

′
l+1, aπ

′
kf

} ⊆ f (Rπ′
) = f (R̂π′

) and

we derive Rπ′,l+1 = Rπ,l+1 from the profile R̂π′
by a manipulation that only involves

the alternatives {aπ
′

2 , � � � , aπ
′

l+1, aπ
′

kf
}. Hence, the assumption that TC(Rπ ) \ {aπj } =

TC(Rπ′
) \ {aπ

′
1 } ⊆ f (Rπ,l+1 ) implies that f (R̂π′

) = f (Rπ′,l+1 ) because of WLOC. How-
ever, this contradicts that aπ

′
1 = aπj /∈ f (Rπ,l+1 ), which proves that {aπ2 , � � � , aπl+1} ⊆

f (Rπ,l+1 ).
As a second case, suppose that aπkf

/∈ f (Rπ,l+1 ). In this case, we derive a con-

tradiction to the induction hypothesis by deriving Rπ,l+1 from Rπ,l. Thus, note that
these two preference profiles only differ in majority margins involving aπl+1: we have
gRπ,l (aπl+1, aπkf ) = 2 but gRπ,l+1 (aπl+1, aπkf ) = 0, and for all i ∈ {1, � � � , l}, gRπ,l (aπi , aπl+1 ) =
2 but gRπ,l+1 (aπi , aπl+1 ) = 0. Also, observe that the induction hypothesis implies that

f (Rπ ) = f (Rπ,l ), which means that {aπ1 , � � � , aπl+1, aπkf } ⊆ f (Rπ,l ). Hence, we can trans-

form Rπ,l into Rπ,l+1 as follows: first, we reinforce aπl+1 one after another against all
alternatives aπi with i ∈ {1, � � � , l}. For each swap, Lemma 9 implies that the choice set
does either not change at all, or all alternatives in TC(Rπ ) \ {aπi } are chosen (where
aπi denotes the weakened alternative). In particular, this shows that aπl+1 and aπkf

stay

chosen during this process. Finally, we reinforce aπkf
against aπl+1 to derive Rπ,l+1.

Then WMON implies that aπkf ∈ f (Rπ,l+1 ), contradicting our assumption. Hence, it fol-

lows that {aπ2 , � � � , aπl+1, aπkf } ⊆ f (Rπ,l+1 ), which proves the induction step. As a conse-

quence, we infer that f (Rπ ) = f (Rπ,j∗−1 ) = f (Rπ′,j∗−1 ) = f (Rπ′
) for all permutations

π, π ′ ∈�
j∗
π∗ .

Step 3: Deriving the contradiction
As a last step, we derive a contradiction by showing that aπ

∗
j∗ ∈ f (Rπ∗

). This claim

is in conflict with the definitions of j∗ and Rπ∗
, which require that aπ

∗
j∗ /∈ f (Rπ∗

). For

proving this claim, we consider first the profile R̄, which differs in the following major-
ity margins from Rπ∗

: gR̄(aπ
∗

i , aπ
∗

j ) = 0 for all i, j ∈ {1, � � � , j∗ − 1} and gR̄(aπ
∗

i , aπ
∗

j ) = 0
for all i ∈ {1, � � � , j∗ − 1}, j ∈ {j∗ + 1, � � � , kf }. A similar analysis as in Step 2 shows
that f (Rπ∗

) = f (R̄). In more detail, we can use an induction on the profiles R̄π,l for
all l ∈ {1, � � � , j∗ − 1} and π ∈ �

j∗
π∗ , which are defined by the following majority mar-

gins: gR̄π,l (aπi , aπj ) = 0 for all i, j ∈ {1, � � � , l}, gR̄π,l (aπi , aπj ) = 0 for all i ∈ {1, � � � , l}, j ∈
{j∗ + 1, � � � , kf }, and gR̄π,l (x, y ) = gRπ (x, y ) for all remaining majority margins. More
intuitively, the profiles R̄π,l differ from the profiles Rπ,l only in the fact that all alter-
natives {aπ1 , � � � , aπl } are in a majority tie with all alternatives in {aπj∗+1, � � � , aπkf } instead

of just aπkf
. Since the last step shows that TC(Rπ ) \ {aπj∗ } ⊆ f (Rπ ) for all permuta-

tions π ∈ �
j∗
π∗ , an almost identical induction as in Step 2 shows that f (Rπ ) = f (R̄π,l )

for all permutations π ∈ �
j∗
π∗ and l ∈ {1, � � � , j∗ − 1}. This means in particular that

f (Rπ∗
) = f (R̄π∗,j∗−1 ) = f (R̄).

Departing from this observation, we now consider profile R̂ which is derived from
R̄ by reinforcing all alternatives in X2 = {aπ

∗
j∗+1, � � � , aπ

∗
kf

} against all alternatives in X1 =
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{aπ
∗

1 , � � � , aπ
∗

j∗−1}. This means for the majority margins that gR̂(x, y ) = 2 for all x ∈ X2,

y ∈ X1. As a consequence of this observation, aπ
∗

j∗ is now the only alternative that

dominates aπ
∗

j∗+1, and thus COS requires that aπ
∗

j∗ ∈ f (R̂). Next, note that a repeated

application of Lemma 9 shows that X2 ⊆ f (R̂) because we can transform R̄ into R̂

by reinforcing the alternatives X2 against each alternative x ∈ X1 individually. For
each of these steps, Lemma 9 shows that either the choice set does not change or
all alternatives in TC(Rπ∗

) \ {x} are chosen. In particular, this means that X2 ⊆ f (R̂)
and that TC(R̂) � f (R̂). Hence, there is an alternative aπ

∗
j ∈ X1 such that aπ

∗
j /∈

f (R̂).
As the next step, consider the profile R̂j derived from R̄ by reinforcing the alterna-

tives in X2 only against aπ
∗

j . We show that aπ
∗

j /∈ f (R̂j ) and assume for the sake of con-

tradiction that this is not the case. Hence, Lemma 9 implies that f (R̂j ) = f (R̄). More-
over, we can now transform R̂j into R̂ by reinforcing the alternatives in X2 once against
each alternative x ∈ X1 \ {aπ

∗
j }. For every step, Lemma 9 shows that aπ

∗
j needs to stay

chosen, and thus we have a contradiction to the assumption that aπ
∗

j /∈ f (R̂). Hence,

it must hold that aπ
∗

j /∈ f (R̂j ), which implies that TC(R̂j ) \ {aπ
∗

j } ⊆ f (R̂j ) because of
Lemma 8.

Finally, we derive a contradiction to this observation. Consider for this a per-

mutation π ∈ �
j∗
π∗ such that aπ1 = aπ

∗
j . We show that aπ

∗
j ∈ f (R̂j ) by transform-

ing Rπ into R̂j and observe for this X1 ∪ X2 ⊆ f (Rπ ) because of Step 2. As a first
step, we reinforce all alternatives in X2 \ {aπkf } against aπ1 twice, and the alterna-

tives in X1 \ {aπ1 } once against aπ1 . During all these steps, COS requires that aπ1 re-
mains chosen because it is the only alternative that dominates aπ2 . In turn, Lemma 9
implies therefore that the choice set cannot change, that is, this process results in
a profile R̃π with f (R̃π ) = f (Rπ ). Moreover, note that gR̃π (aπ1 , x) = gR̂j (aπ1 , x) for
all x ∈ A \ {aπ1 }. For the next step, consider a voter i with the preference rela-
tion �i= aπ2 , � � � , aπj∗−1, aπj∗+1, � � � , aπkf , lex(X ), where X contains all missing alterna-

tives. We can assume that such a voter exists as pairwiseness allows us to add pairs
of voters with inverse preferences without affecting the choice set. Next, we let
voter i deviate to the preference relation aπj∗+1, � � � , aπkf , aπj∗−1, � � � , aπ2 , lex(X ), which

transforms the profile R̃π into R̂j . In particular, we know that all alternatives in
{aπ2 , � � � , aπj∗−1, aπj∗+1, � � � , aπkf } are chosen both in f (R̃π ) (because f (Rπ ) = f (R̃π )) and

in f (R̂j ) (because TC(Rπ∗
) \ {aπ

∗
j } = TC(Rπ ) \ {aπ1 } ⊆ f (R̂j )). Thus, WLOC implies that

f (R̃π ) = f (R̂j ), which conflicts with aπ
∗

j = aπ1 /∈ f (R̂j ). This contradiction proves the
lemma.

A.5 Proofs of the main results

Finally, we are ready to prove our main results. First, we discuss the proof of Theorem 1:
a pairwise, nonimposing, neutral, and homogeneous SCC is strategyproof if and only if
it is a robust dominant set rule. To be able to use the results of the previous section, we
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show that every SCC which satisfies these requirements is strongly Condorcet consis-
tent.

Lemma 12. Every pairwise SCC that satisfies strategyproofness, nonimposition, homo-
geneity, and neutrality is strongly Condorcet consistent.

Proof. Consider a pairwise SCC f that satisfies nonimposition, homogeneity, neutral-
ity, and strategyproofness. We need to show two claims: if there is a Condorcet winner,
it is chosen uniquely by f , and if an alternative is the unique winner of f , it is the Con-
dorcet winner. We prove these claims separately.

Claim 1: If x is the Condorcet winner in R, then f (R) = {x}.
Consider an arbitrary profile R with Condorcet winner x. The claim follows by show-

ing that f (R) = {x}, and thus let R′ denote a profile such that f (R′ ) = {x}. Such a pro-
file exists because f is nonimposing. Next, we repeatedly use WSMON to push down
the best alternative of every voter until we arrive at a profile R1 such that every voter
top-ranks x. Since R1 is constructed by repeated application of WSMON, it follows that
f (R1 ) = f (R′ ) = {x}. As the next step, we let all voters order the alternatives in A \ {x}
lexicographically. This leads to the profile R2 and IUA implies that the choice set does
not change, so f (R2 ) = {x}. Moreover, all voters have the same preference relation in R2.
Thus, it follows from homogeneity that f (R3 ) = {x}, where R3 consists of a single voter
who has the same preference relation as the voters in R2. Next, let c = miny∈A\{x} gR(x, y )
denote the smallest majority margin of x in R and note that c ≥ 1 because x is the Con-
dorcet winner in R. We use again homogeneity to construct a profile R4 that consists of
c copies of R3, which means that f (R4 ) = {x}. Furthermore, observe that the parity of
the number of voters used in R4 is equal to the parity of the number of voters used in
R. The reason for this is that c is odd if and only if R is defined by an odd number of
voters.

As the last step, we need to set the majority margins to their values in R. For this, we
repeat the following procedure on each pair of alternatives y, z with gR4 (y, z) < gR(y, z)
until we arrive at a profile R5 with gR5 = gR. First, we add two voters i and j to the
preference profile such that voter i prefers x the least and ranks z directly over y, and
voter j’s preference relation is inverse to voter i’s. Observe that we can assign such a
preference relation to voter i because gR4 (x, z′ ) = c ≤ gR(x, z′ ) for all z′ ∈ A \ {x} im-
plies that x �= z. Since the preference relations of these two voters are inverse, the ma-
jority margins do not change and pairwiseness requires thus that x is still the unique
winner. Next, we let voter i swap y and z, which increases the majority margin be-
tween y and z by 2. Moreover, the choice set cannot change during this step because
x is voter i’s least preferred alternative. Hence, if another set would be chosen, this
step is a manipulation for voter i, which contradicts strategyproofness. Therefore, we
can repeat this process for every pair of alternatives until we derive a profile R5 with
gR5 = gR and our arguments show that f (R5 ) = {x}. This proves that f (R) = {x} because
of pairwiseness, which shows that f chooses the Condorcet winner uniquely whenever
it exists.
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Claim 2: If f (R) = {x}, then x is the Condorcet winner in R.
Next, we focus on the opposite direction and show that if an alternative is chosen

as unique winner by f , then it is the Condorcet winner. Assume for contradiction that
this is not the case, which means that there is a preference profile R and an alterna-
tive x such f (R) = {x} even though x is not the Condorcet winner in R. Then there is
an alternative y ∈ A \ {x} such that gR(y, x) ≥ 0. We continue with a case distinction
with respect to whether gR(y, x) = 0 or gR(y, x) > 0. First, assume that gR(y, x) > 0. In
this case, we can repeatedly reinforce y against all other alternatives z ∈ A \ {x}. This
process eventually results in a profile R′ in which y is the Condorcet winner. Since
Claim 1 proves that f elects the Condorcet winner whenever it exists, we derive that
f (R′ ) = {y}. On the other side, it follows from IUA that these steps do not change the
choice set because we only swap unchosen alternatives, so f (R′ ) = {x}. These two ob-
servations contradict each other, and thus the assumption that gR(y, x) > 0 was incor-
rect.

Next, assume that gR(y, x) = 0. In this case, we partition the voters N accord-
ing to their preferences between x and y: we denote with Nx�y = {i ∈ N : x �i y}
the set of voters who prefer x to y, and with Ny�x = {i ∈ N : y �i x} the set of vot-
ers who prefer y to x. We let all voters in Nx�y change their preferences such that
y is directly below x, and all voters in Ny�x change their preferences such that y it
is directly above x. For these steps, IUA implies that x remains the unique winner
as we only reorder unchosen alternatives. Hence, it follows for the resulting profile
R′ that f (R′ ) = {x}. However, it holds that gR′(x, z) = gR′(y, z) for all z ∈ A \ {x, y}
and gR′(x, y ) = 0. Neutrality and pairwiseness thus require that either {x, y} ⊆ f (R′ )
or {x, y} ∩ f (R′ ) �= ∅ because renaming x and y does not change the majority mar-
gins. This is in conflict with the previous claim, and hence the assumption that
f (R) = {x} and gR(x, y ) = 0 was incorrect. We have derived a contradiction in both
cases, which proves that f (R) = {x} can only be true if x is the Condorcet winner in
R.

Since we established that every SCC that satisfies the requirements of Theorem 1 is
strongly Condorcet consistent, this result follows now easily from Lemma 11.

Theorem 1. Let f be a pairwise SCC that satisfies nonimposition, homogeneity, and neu-
trality. Then f is strategyproof if and only if it is a robust dominant set rule.

Proof. Let f denote a pairwise SCC that satisfies homogeneity, neutrality, and nonim-
position. The direction from left to right follows from Lemma 11 and Lemma 12: if f
is additionally strategyproof, Lemma 12 shows that f is strongly Condorcet consistent
and, in turn, Lemma 11 implies that f is a robust dominant set rule.

Next, we discuss the direction from right to left and assume thus that f is a ro-
bust dominant set rule. Furthermore, suppose for contradiction that f is not strate-
gyproof. Hence, there are two preference profiles R and R′ and a voter i such that
�j = �′

j for all j ∈ N \ {i} and f (R′ ) �F
i f (R). First, assume that f (R′ ) \ f (R) �= ∅ and

observe that f (R) �R f (R′ ) \ f (R) since f (R) is a dominant set. Deviating from R to
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R′ is only a manipulation for voter i if f (R′ ) \ f (R) �i f (R). However, this means that
f (R) �R′ f (R′ ) \ f (R) as voter i can only weaken the alternatives in f (R′ ) \ f (R) against
those in f (R). Since f is a dominant set rule and f (R′ ) \ f (R) �= ∅, this implies that
f (R) ⊆ f (R′ ). Hence, f (R) �R′ A \ f (R′ ) because f (R′ ) is a dominant set, which proves
that f (R) is also a dominant set in �R′ . As a consequence, robustness requires that
f (R′ ) ⊆ f (R), which contradicts the assumption that f (R′ ) \ f (R) �= ∅. Hence, no ma-
nipulation is possible in this case.

As a second case, suppose that f (R′ ) � f (R). First, note that f (R′ ) �R′ A \ f (R′ )
because f (R′ ) is a dominant set. Moreover, since deviating from R to R′ is a manip-
ulation for voter i, it holds that f (R′ ) �i f (R) \ f (R′ ). As a consequence of these two
observations, it follows that f (R′ ) �R f (R) \ f (R′ ) because voter i can only weaken the
alternatives in f (R′ ) against those in f (R) \ f (R′ ). Finally, since f (R′ ) ⊆ f (R), it fol-
lows that f (R′ ) �R A \ f (R), and thus f (R′ ) is a dominant set in �R. Hence, robust-
ness from R′ to R implies that f (R) ⊆ f (R′ ), which contradicts our assumption that
f (R′ ) � f (R). Thus, f is also in this case not manipulable, which shows that it is strate-
gyproof.

Next, we focus on Theorem 2 and prove this result using Lemma 11. As a first step, we
show that pairwiseness, strategyproofness, homogeneity, and set nonimposition imply
strong Condorcet consistency.

Lemma 13. Every pairwise SCC that satisfies set nonimposition, homogeneity, and strat-
egyproofness is strongly Condorcet consistent.

Proof. Let f denote an SCC as specified by the lemma. First, note the proof of Claim 1
in Lemma 12 does not require neutrality and it thus shows that f is Condorcet consis-
tent. Hence, we focus on the converse direction and show that f (R) = {x} can only be
true if x is the Condorcet winner in R. For this, suppose for contradiction that there is
a profile R and an alternative x such that f (R) = {x}, but x is not the Condorcet win-
ner in R. This means that there is another alternative y ∈ A \ {x} such that gR(y, x) ≥ 0.
If gR(y, x) > 0, we can use the same construction as in the proof of Lemma 12 to de-
rive that f violates Condorcet consistency since this construction works again without
neutrality. Hence, suppose that gR(x, y ) = 0. In this case, we first weaken y in the prefer-
ence relation of every voter i ∈ N with y �i x such that it is directly over x and reinforce
y in the preference relation of every voter i ∈ N with x �i y such that it is placed di-
rectly below x. We infer from IUA that x is still the unique winner. Next, we iterate over
the voters i ∈ N and use WSMON to repeatedly push down voter i’s best alternative un-
til he top-ranks x or y. It follows for the resulting profile R1 that f (R1 ) = {x} because
of WSMON and that all voters report x and y as their best two alternatives. Thereafter,
we let the voters reorder the alternatives in A \ {x, y} lexicographically. IUA implies that
this step does not affect the choice set, and thus it holds for the new profile R2 that
f (R2 ) = f (R1 ) = {x}.

Next, we show that f (R2 ) = {x} is in conflict with set nonimposition. For this,
consider a preference profile R3 with f (R3 ) = {x, y}; such a profile exists since f is
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set nonimposing. Our goal is to transform R3 into R2 while showing that both x

and y must be chosen. As a first step, we repeatedly add voters with inverse pref-
erences and use WSMON to weaken the alternatives z ∈ A \ {x, y} until we derive a
profile R4 with {x, y} �R4 A \ {x, y}. It follows from pairwiseness and WSMON that
f (R4 ) = f (R3 ) = {x, y}. This implies that x ∼R4 y because otherwise there is a Con-
dorcet winner, which must be chosen uniquely. Even more, note that, as long as
x ∼R y and {x, y} �R A \ {x, y}, it holds that either {x, y} ⊆ f (R) or f (R) ⊆ {x, y}. Oth-
erwise, there is a profile R′ and alternatives z1, z2 such that z1 ∈ f (R′ ) \ {x, y} and
z2 ∈ {x, y} \ f (R′ ). Hence, if a voter reinforces z3 ∈ {x, y} \ {z2} against z2, z3 is the
Condorcet winner and it must thus be chosen uniquely. However, this is in con-
flict with strategyproofness because WLOC (if z3 ∈ f (R′ )) or IUA (if z3 /∈ f (R′ )) is vio-
lated.

We use the last observation to repeatedly reinforce the alternatives {x, y} against
the alternatives A \ {x, y} in R4 until all voters report x and y as their best two al-
ternatives. For each swap, WMON implies that either z1 ∈ {x, y} remains chosen and
z2 ∈ A \ {x, y} remains unchosen, or z1 becomes unchosen and z2 chosen. How-
ever, the latter is impossible because of our previous observation, and thus we de-
rive from WMON and WLOC that the choice set is not allowed to change. Hence,
it holds for the resulting profile R5 that f (R5 ) = {x, y} and that all voters report
x and y as their best two alternatives. Thereafter, we derive the profile R6 from
R5 by arranging the alternatives in A \ {x, y} in lexicographic order, which does
not affect the choice set because of IUA. Finally, note that in R6, half of the vot-
ers report �1= x, y, lex(A \ {x, y}) and the other half report �2= y, x, lex(A \ {x, y}).
Using homogeneity, it follows therefore that f (R7 ) = f (R6 ), where R7 consists of
two voters who report �1 and �2, respectively. Finally, the profile R2 consists of
multiple copies of R7, and hence it again follows from homogeneity that f (R2 ) =
f (R7 ) = {x, y}. However, this contradicts the previous observation that f (R2 ) =
{x}, and hence f can only choose a single winner if it is the Condorcet winner.

Finally, we prove Theorem 2 based on Lemmas 1, 11, and 13.

Theorem 2. The top cycle is the only pairwise SCC that satisfies strategyproofness, set
nonimposition, and homogeneity.

Proof. We have already shown in Lemma 1 that the top cycle satisfies set nonimposi-
tion. Moreover, by definition, TC is majoritarian and, therefore, also pairwise and ho-
mogeneous. Finally, the top cycle is a robust dominant set rule and hence strategyproof
by Theorem 1. For the other direction, consider an arbitrary pairwise SCC f that satisfies
strategyproofness, set nonimposition, and homogeneity. Since all criteria of Lemma 13
are satisfied, it follows that f is strongly Condorcet consistent. Next, we use Lemma 11
to derive that f is a robust dominant set rule. As the last step, Lemma 1 shows that f is
the top cycle since this is the only robust dominant set rule that satisfies set nonimposi-
tion.
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