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Optimal disclosure of information to privately informed agents

Ozan Candogan
Booth School of Business, University of Chicago

Philipp Strack
Department of Economics, Yale University

We study information design with multiple privately informed agents who interact
in a game. Each agent’s utility is linear in a real-valued state. We show that there al-
ways exists an optimal mechanism that is laminar partitional and bound its “com-
plexity.” For each type profile, such a mechanism partitions the state space and
recommends the same action profile within a partition element. Furthermore,
the convex hulls of any two partition elements are such that either one contains
the other or they have an empty intersection. We highlight the value of screening:
the ratio of the optimal and the best payoff without screening can be equal to the
number of types. Along the way, we shed light on the solutions to optimization
problems over distributions subject to a mean-preserving contraction constraint
and additional side-constraints, which might be of independent interest.

Keywords. Bayesian persuasion, information design, partitional signals, private
information.

JEL classification. C7, D8.

1. Introduction

We study how a designer can use information about a real-valued state to influence the
belief and actions of a group of agents who possess private information. For example,
the agents could be competing firms that each decide on the quantity they produce. The
production costs could be each firm’s private information and the state could measure
the total demand for the product.

The designer can without loss restrict attention to direct recommendation mecha-
nisms where each agent truthfully reports his type and then privately observes an action
recommendation. We prove that there always exists an optimal such mechanism with a
particularly simple structure: For each type profile there is a partition of the state space
such that the mechanism recommends the same action profile for states that belong to
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the same partition element. Thus, there exists a (deterministic) function mapping the
state and vector of types to action recommendations. Furthermore, the partition is lam-
inar. This implies that the convex hulls of any two partition elements are either nested
or they do not overlap. As a result of the laminar structure, an optimal partition can be
completely described by the collection of (smallest) intervals containing the states that
induce each action profile recommendation. This structure is valuable for tractability,
as it reduces the designer’s optimization problem from an uncountably infinite one to
an optimization problem over the end points of the aforementioned intervals.

Finally, we provide a bound on the “depth” of optimal laminar partitions. In the
single-agent case, the laminar partition structure has depth of at most |�| + 2, where �

is the set of types of the agent. That is, the interval associated with an action recom-
mendation overlaps with at most |�| + 1 other intervals (associated with different action
recommendations). This implies that either (i) a state is perfectly revealed or (ii) it lies
in an interval in which the distribution of the posterior means admits at most a finite
number of mass points. In the multi-agent case, a similar bound on the depth of the
laminar partitions can be obtained if the number of possible actions is finite for each
agent. In contrast to the single-agent case, where the bound is independent of the num-
ber of actions, this bound depends quadratically on it. This difference is driven by the
fact that while in the single-agent case, the action recommendation reveals the partition
element in which the state lies, this is not the case when there are multiple agents.

Given that the state space is a continuum, it is not a priori clear how to obtain the
optimal mechanism in a tractable way. To address this question, we focus on the fi-
nite action case. We identify a transformation in the single-agent case that leads to a
finite-dimensional convex program (despite the states and the space of signals being
uncountably infinite). Similarly, in the multi-agent case we derive a finite-dimensional
(though not necessarily convex) program.

Furthermore, we discuss some properties of the optimal mechanism: Focusing on
the single-agent case, we prove that restricting attention to mechanisms that do not
screen the agent (and reveal the same information to all types) can be strictly subop-
timal and, in general, achieve only a 1/|�| share of the optimal value for the designer.
This is in contrast to Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017) and Guo and
Shmaya (2019) who show that in the binary action single-agent case, there is no benefit
to screening the agent.

Through an example, we illustrate that unlike in classical mechanism design, “non-
local” incentive compatibility constraints might bind in the optimal mechanism (even
if the agent’s utility is supermodular in his actions and type). Finally, under the opti-
mal mechanism, the actions of different types need not be ordered for all states. For
instance, there are states where the low and the high types take a higher action than the
intermediate types.1

As a crucial step in obtaining our results, we study optimization problems over distri-
butions, where the objective is linear in the chosen distribution, and a distribution is fea-
sible if it satisfies (i) a majorization constraint as well as (ii) some linear side-constraints.

1This can be leveraged to show that “nested” information structures that are optimal in related informa-
tion design settings with two actions are suboptimal (see, e.g., Guo and Shmaya (2019)).
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We characterize properties of optimal solutions to such problems. In particular, we show
that one can find optimal distributions that redistribute the mass in each interval where
the majorization constraint does not bind to at most n + 2 mass points, where n is the
number of side-constraints. Moreover, there exists a laminar partition of the under-
lying state space such that the signal based on this laminar partition “generates” the
optimal distribution. Our main result is proven by decoupling the information design
problem over type profiles into optimization problems under majorization and linear
side-constraints. Given the generality of such optimization formulations, we suspect
that our results may have applications beyond the information design problem studied
in the paper. We discuss some immediate applications in Section 5.

Literature review

Following the seminal work by Kamenica and Gentzkow (2011), the literature on
Bayesian persuasion studies how a designer can use information to influence the action
taken by an agent. This framework has proven useful to analyze a variety of economic
applications, such as the design of grading systems,2 medical testing,3 stress tests and
banking regulation,4 and voter mobilization and gerrymandering5 as well as various ap-
plications in social networks.6 For an excellent survey of the literature, see Kamenica
(2019) and Bergemann and Morris (2019).

Initial papers focused on either the case of a single agent who possesses no pri-
vate information or the case where the designer uses public signals (Brocas and Car-
rillo (2007), Rayo and Segal (2010), Kamenica and Gentzkow (2011), Gentzkow and Ka-
menica (2016)). Kolotilin et al. (2017) and Guo and Shmaya (2019) extend this baseline
model by considering the single-agent case where the agent possesses private informa-
tion about his preferences and chooses between two actions. Assuming that the agent’s
payoff is linear and additive in the state, Kolotilin et al. (2017) show that it is without
loss to restrict attention to “public” signals, which do not screen the agent and induce
the same signal realization regardless of the type of the agent. Guo and Shmaya (2019)
consider a general monotone utility of the designer and the agent, but maintain the as-
sumption of binary actions. They show that even though not every outcome that can
be implemented with private signals can also be implemented with public signals, it is
nevertheless true that the designer-optimal outcome can always be implemented with
public signals. We complement this line of the literature by studying the case where the
agent can potentially choose among more than two actions and find, in contrast with
the binary action case, that public signals could yield a payoff that is as low as 1 over the
number of types fraction of the optimal payoff.7

2Ostrovsky and Schwarz (2010), Boleslavsky and Cotton (2015), Onuchic and Ray (2021).
3Schweizer and Szech (2018).
4Inostroza and Pavan (2021), Goldstein and Leitner (2018), Orlov, Zryumov, and Skrzypacz (2021).
5Alonso and Câmara (2016), Kolotilin and Wolitzky (2023).
6Candogan and Drakopoulos (2017), Candogan (2019b).
7Kolotilin et al. (2017) also provide an example showing that with more than two actions, restricting

attention to public signals may result in a payoff loss (see online Appendix A of their paper). We strengthen
this insight and in Section 4.3, we establish that the maximal payoff loss due to focusing on public signals
is 1 over the number of types fraction of the optimal payoff. Moreover, we show that this bound is tight.
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Bergemann and Morris (2013) and Bergemann and Morris (2016) consider informa-
tion revelation to multiple agents and introduce the notion of Bayes correlated equi-
libria. Bayes correlated equilibria characterize the set of all outcomes that can be in-
duced in a given game by revealing a private signal to each agent. Thus, Bayesian per-
suasion problems can be solved by maximizing over the set of Bayes correlated equi-
libria. While the basic concept does not allow for private information, one can extend
it to the case with screening and private information (see Definition 2 in Bergemann
and Morris (2019)). In this case, the private information is about the state and, hence,
an agent’s payoff depends on his private information only through the state. As the de-
signer learns the state once it is realized, she will be better informed about the agents’
utilities than they are. While the formulation is present in the literature, as far as we
know the structural properties of the optimal mechanisms are not well understood in
the multiple agent case with private information. In the present paper, we contribute
to this literature in two ways: First, we allow the utility of an agent to directly depend
on his private information, thereby relaxing the assumption that the designer is better
informed than the agents—which might be economically restrictive in some settings.
Second, we consider a continuum of states and focus on quasi-linear utilities, which al-
lows us to describe optimal mechanisms more explicitly in terms of laminar partitional
signals.8

Without private information, the approaches in Bergemann and Morris (2016),
Kolotilin (2018) and Dworczak and Martini (2019), can be used to characterize the op-
timal information structure. These approaches lead to infinite-dimensional optimiza-
tion problems even if there is a single agent with finitely many actions. When there is a
single agent, an alternative approach due to Gentzkow and Kamenica (2016) is to asso-
ciate a convex function with each information structure and cast the information design
problem as an optimization problem over all convex functions that are sandwiched in
between two convex functions (associated with the full disclosure and no-disclosure in-
formation structures). This also yields an infinite-dimensional optimization problem.
In contrast, we provide a finite dimensional optimization formulation that is applicable
with multiple privately informed agents and finitely many actions. This formulation is
also convex when there is a single agent, thereby providing a tractable framework for
obtaining optimal mechanisms.

The aforementioned “sandwiching” constraint is equivalent to a majorization
constraint restricting the set of feasible posterior distributions. Arieli, Babichenko,
Smorodinsky, and Yamashita (2020) and Kleiner, Moldovanu, and Strack (2020) char-
acterize the extreme points of this set. As also observed in Candogan (2019a, 2019b),
this characterization implies that in the single-agent case without private information,
one can restrict attention to signals where each state lies in an interval such that for all
states in that interval at most two messages are sent. There are two additional critical
challenges in our setting. First, unlike earlier work, one needs to deal with additional

8Quasi-linearity assumption is commonly made in the literature. See, for instance, Ostrovsky and
Schwarz (2010), Ivanov (2015), Gentzkow and Kamenica (2016), Kolotilin et al. (2017) and Kolotilin (2018).
For a more detailed discussion of this setting and its economic applications, see Section 3.2 in Kamenica
(2019).
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constraints that stem from the screening problem. Second, since there are multiple
agents, the information revealed to one agent can influence the actions taken by others,
which intricately couples the information design problems for different agents. These
challenges require a novel approach and render the information structures identified in
the earlier literature suboptimal.

2. Model

We consider an information design setting in which a designer (she) tries to influence
the action taken by privately informed agents (he/they), indexed by i ∈ {1, � � � , |N|} =N .

States and types We call the information controlled by the designer the state ω ∈ �

and the private information of agent i his type θi ∈ �i. The state ω lies in an interval
� = [0, 1] and is distributed according to the (cumulative) distribution F : � → [0, 1],
with density f ≥ 0.9 Each agent’s type θi lies in a finite set �i and we denote by φ(θ) > 0
the probability that the type vector equals θ = (θ1, � � � , θ|N| ) ∈ � ⊆ ∏

i∈N �i. We assume
that the state ω and the types θ are independently distributed, but allow for arbitrary
correlation between the types of different agents.

Signals and mechanisms A direct mechanism μ : � × � → �(S) maps a type profile θ

and a state ω to a conditional distribution μθ(·|ω) over the set of signal realizations S.10

We denote by μθ the signal11 associated with the type vector θ, i.e.,

μθ(·|ω) = P[s ∈ ·|ω, θ].

Each signal realization s ∈ S = ∏
i∈N Si is |N| dimensional. The ith coordinate si is pri-

vately observed by agent i, but we allow for the signals observed by different agents to
be correlated. We restrict attention to signals for which Bayes rule is well defined,12 and
denote by Pμ[·|s] ∈ �(�) the posterior distribution induced over states by observing the
signal realization s in the mechanism μ, and by Eμ[·|s] the corresponding expectation.
When there are finitely many signal realizations,

Pμ[ω≤ x|s] =

∑
θ

φ(θ)
∫ x

0
μθ

(
{s}|ω

)
dF(ω)

∑
θ

φ(θ)
∫ 1

0
μθ

(
{s}|ω

)
dF(ω)

. (Bayes Rule)

9The assumption that the state lies in [0, 1] is a normalization that is without loss of generality for dis-
tributions with bounded support as we can rescale the state (without affecting the linearity of the utility
function imposed subsequently). Furthermore, while it is important that F has no mass points, all our
result go through for any continuous distribution (which might not admit a density).

10Restricting attention to direct mechanisms is without loss of generality by the revelation principle.
11We follow the convention of the Bayesian persuasion literature and call a Blackwell experiment a signal.
12Formally, this requires that Pμ[·|s] is a regular conditional probability.
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The agents’ actions and utilities After observing his type θi, each agent i reports it to the
mechanism. Given the reported type profile θ and the state realization, the mechanism
draws a signal from the corresponding distribution, and agent i observes the ith coordi-
nate si of the signal realization. Then each agent i chooses an action ai in a compact set
Ai to maximize his expected utility:

max
ai∈Ai

E
[
ui(ai, a−i, ω, θ)|si, θi

]
.

We note that the expectation in the above expression is over the state ω, the action taken
by other agents a−i, and their types θ−i. If we impose additional assumptions on the set
of action profiles A = ×i∈NAi, we will explicitly mention them; otherwise we allow it to
be finite or infinite.

Recommendation mechanisms A direct recommendation mechanism is a direct mech-
anism where the signal realization for each agent is an action recommendation, i.e.,
Si = Ai. A direct recommendation mechanism is incentive compatible if it is optimal
for each agent to report his true type θi and follow the action recommendation instead
of (mis)reporting his type as θ′

i ∈ �i and choosing an optimal action afterward. Through-
out, without loss, we focus on incentive compatible direct recommendation mecha-
nisms. Formally, denoting by σi : Ai → Ai the action policy that maps an action rec-
ommendation to an action taken by agent i, the incentive compatibility requirement
can be stated as13

∑
θ−i

φ(θ)
∫
�

∫
A−i

ui(ai, a−i, ω, θ)dμθ(a|ω)dF(ω)

≥ max
σi

∑
θ−i

φ(θ)
∫
�

∫
A−i

ui
(
σi(ai ), a−i, ω, θ

)
dμ(θ′

i ,θ−i )(a|ω)dF(ω) (1)

for all i, θi, θ′
i ∈ �i. One challenge in this environment is that each agent can deviate by

simultaneously misreporting his type and taking an action different from the one that is
recommended by the mechanism.

The designer’s utility We denote by v : A×�×� → R the designer’s utility. For a given
direct recommendation mechanism, the designer’s expected utility equals

∑
θ

φ(θ)
∫
�

∫
A
v(a, ω, θ)dμθ(a|ω)dF(ω). (2)

The designer’s information design problem is to pick a direct recommendation mecha-
nism that satisfies (1) to maximize (2).

To make this setting with infinitely many states tractable we further focus on prefer-
ences that are quasi-linear in the state.

13When θi = θ′
i , this constraint reduces to the obedience constraint, which ensures that it is optimal for

agent i to follow the action recommendation.
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Assumption 1 (Quasi-Linearity). The agents’ utilities {ui} and the designer’s utility v

are quasi-linear in the state, i.e., for i ∈N , there exist functions ui1, ui2, v1, v2 : A×�→R
continuous in a ∈A such that

ui(a, ω, θ) = ui1(a, θ)ω+ ui2(a, θ)

v(a, ω, θ) = v1(a, θ)ω+ v2(a, θ).

Assumption 1 is natural in many economic situations and is commonly made in
the literature (cf. footnote 8).14 For example Kolotilin et al. (2017) assume that there
is a single agent who has two actions {0, 1}, and that the agent’s utility for one action
is zero, and for the other action it is the sum of the type and state, which implies that
ui(ai, ω, θ) = ai × (ω+ θ).

Remark. Our results generalize to the case where the preferences of all agents and the
designer depend linearly15 on some (potentially) nonlinear transformation of the state
h(ω) as long as the distribution of h(ω) admits a density.16 What is crucial for our results
is that the agents’ belief about the state influences the preference of the designer and the
agent only through the same real-valued statistic.

2.1 A motivating example

We next provide an economic example to illustrate the model. Two firms 1 and 2 produc-
ing a good choose production quantities in A1 = A2 = {0, 1, 2}. The price of the prod-
uct depends on the total production a1 + a2 by the firms and is given by d − (a1 + a2 ),
where d = (4 + 8ω) is the demand for the good and ω ∼ U([0, 1]) is the state. The
unit production cost of each firm is its private type and equals 4 or 6 with equal prob-
ability independently of each other and the state (i.e., � = {(4, 4), (4, 6), (6, 4), (6, 6)},
φ ≡ 1

4 ). The consumer surplus (CS) and total firm profits (FP) are, respectively, given by
CS = (a1 + a2 )2/2 and

FP = (
(4 + 8ω) − (a1 + a2 )

)
(a1 + a2 ) − a1θ1 − a2θ2.

We are interested in characterizing the combinations of consumer surplus and firm
profits that can be induced by a mediator who facilitates information exchange between
the firms. To do so, we numerically derive the information structures maximizing differ-
ent weighted combinations of CS and FP.17 The results are illustrated in Figure 1.

14We also note that the continuity of the payoffs in a and the compactness of A together with Assump-
tion 1 ensure that the payoffs are bounded, i.e., |ui(a, ω, θ)|, |v(a, ω, θ)| ≤ B for some B < ∞. In what fol-
lows, this mild technical condition is used to change the order of integrals that appear in the designer’s and
agents’ problems.

15In the single-agent case, we could allow u, v to depend nonlinearly on the agent’s posterior expectation
of h(ω).

16To see this, note that for every function h : � →R, we can redefine the state to be ω̃= h(ω).
17See Appendix B in the Supplement, available in a supplementary file on the journal website, http:

//econtheory.org/supp/5173/supplement.pdf, for details on the numerical computations for this example.

http://econtheory.org/supp/5173/supplement.pdf
http://econtheory.org/supp/5173/supplement.pdf
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Figure 1. (a) CS and FP achievable under different information structures. We highlight six
points on this region that achieve (1) maximum welfare CS + FP, (2) maximum FP, (3) minimum
CS, (4) minimum welfare CS + FP, (5) minimum FP, and (6) maximum CS. (b) The legend for the
different strategy profiles. (c) Optimal information structures. Here, for any type profile θ, we
denote by ā the vector of expected production quantities for both firms.

We highlight six points that are extremal in terms of achievable CS, FP, or welfare
(CS + FP), and display the corresponding optimal information structures. As our main
result establishes, we can restrict attention to simple (laminar) signals where, for each
type profile the state space is partitioned such that in each partition element, the same
actions are taken by the agents. In this example, this means that for each cost vector
of the firms, the interval of possible demands is partitioned such that in each partition
element, the output vector of the firms is constant. In Figure 1(b) and (c), we associate
with each strategy profile a color and use them to present the information structures that
achieve these extremal points. Given the symmetry between firms, the strategy profiles
associated with type profiles (4, 6) and (6, 4) are same up to a permutation of the agents’
identities. To avoid redundancy, we only display one of them.

A few economic observations are worth highlighting: First, when firms’ costs are
lower, the expected production quantities are higher. While this monotonicity holds
when taking the expectation over demand levels, production quantities are not mono-
tone in the production cost for a fixed demand. For example when maximizing the CS in
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(6) for some of the high demand levels, the total production is higher for the production
costs (6, 6) than it is for the production cost (4, 6). Interestingly, the worst information
structure in terms of welfare (4) is when no information about the cost of their com-
petitors and the demand is revealed to the firms. Conversely, maximizing welfare, FP
or CS leads to nontrivial laminar partitions (1, 2, 6). To maximize firms’ profits (2), the
information structure induces more extreme asymmetric outcomes (e.g., (0, 2) or (2, 0),
where one firm produces 2 units and the other produces 0) relative to consumer surplus
maximizing information structures (where balanced outcomes such as (1, 1) become
more common). This leads to a larger number of distinct signal realizations in case of
profit maximization. Finally, based on the information structure, the consumer surplus
and firms’ profits vary significantly, and there is more than a factor of 2 between the
smallest and largest values of the aforementioned quantities.

3. Analysis

Our analysis proceeds in several steps. First, we show that given a direct recommenda-
tion mechanism, the designer can achieve the same payoff by using what we refer to as
a state garbling recommendation (SGR) mechanism. This reduction is a consequence of
our restriction to quasi-linear utilities and an auxiliary step in proving our main result.
Second, we show that optimal SGR mechanisms can be characterized through prob-
lems that are decoupled across type profiles (but not across agents18). Each of the de-
coupled problems involves optimization over posterior mean distributions under lin-
ear side-constraints. Third, we establish that solutions to such problems can always be
induced by constructing a laminar partition and pooling states according to that parti-
tion. Finally, this implies our main result that there exists an optimal mechanism that,
for each type profile, constructs a laminar partition of the state space and recommends
the same action profile for states that belong to the same partition element.

3.1 State garbling recommendation mechanisms

An SGR mechanism is an incentive compatible direct recommendation mechanism
that, for each type profile θ, has the following structure:

(i) The designer chooses an auxiliary signal νθ whose realization m ∈ [0, 1] equals the
induced posterior mean, i.e., Eνθ[ω|m] = m.

(ii) For each realized posterior mean, she chooses a distribution over recommended
action profiles such that no action profile is recommended with positive proba-
bility at two different posterior means.

We next argue that due to our assumption of quasi-linear utilities, the restriction to
SGR mechanisms is without loss.19 We start with an arbitrary direct recommendation

18Note that there is no similar decoupling across agents, due to the strategic interactions among them.
19Note that without the restriction in (ii), the set of mechanisms described above would equal the set of

direct recommendation mechanisms, as the designer could always chose a fully revealing signal in (i). Due
to restriction (ii), SGR mechanisms constitute a subset of the direct recommendation mechanisms.
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mechanism μ. Let ma,θ = Eμθ[ω|a] denote the mean of an outside observer’s posterior

belief about the state after observing the action profile a ∈A being recommended given

the type profile θ ∈�. Note that this posterior belief never becomes known to the agents

as they neither observe the complete type profile nor the recommended action profile.

Define Gθ : [0, 1] → [0, 1] to be the cumulative distribution of posterior means given the

type profile θ:

Gθ(x) = Pμθ[ma,θ ≤ x].

Define qθ ∈ �(A) to be the distribution over action profiles conditional on type profile

θ, i.e.,

qθ(B) =
∫ 1

0
μθ(B|ω)dF(ω)

for B ⊆ A. Let qθ(·|x) ∈ �(A) be the distribution over action profiles conditional on the

posterior mean ma,θ associated with the action profile being equal to x ∈ [0, 1]:

qθ(B|x) =

∫
B

1ma,θ=x dq
θ(a)∫

A
1ma,θ=x dq

θ(a)
.

Consider the mechanism defined by the above tuple (G, q), where νθ([0, x]) =Gθ(x)
and q = (qθ )θ is the distribution over actions conditional on the posterior mean. In this

mechanism, given the type profile θ, the designer first draws a signal realization m ac-

cording to Gθ and then recommends an action profile according to qθ(·|m). We claim

that this is a valid SGR mechanism. Note that it is possibly different from the direct

recommendation mechanism we started with.

In this mechanism—assuming agents follow action recommendations—the ex-

pected payoff of the designer given the type profile θ satisfies

∫
�

∫
A
v(a, ω, θ)dμθ(a|ω)dF(ω) =

∫
A
Eμθ

[
v(a, ω, θ)|a

]
dqθ(a)

=
∫
A
v
(
a, Eμθ[ω|a], θ

)
dqθ(a)

=
∫
A
v(a, ma,θ, θ)dqθ(a)

=
∫
�

∫
A
v(a, m, θ)dqθ(a|m)dGθ(m). (3)

The first equality leverages the boundedness of the payoffs and changes the order of

integration; the second follows from the quasi-linearity of v; the third from the definition

of ma,θ; the fourth from the definition of qθ.
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Using the same argument, it can be readily seen that for any reported and true type
profiles θ′, θ such that θ′

−i = θ−i when agents other than i follow their action recommen-
dations we have ∫

�

∫
A−i

ui
(
a′
i, a−i, ω, θ

)
dμθ′

(a|ω)dF(ω)

=
∫
�

∫
A−i

ui
(
a′
i, a−i, m, θ

)
dqθ

′
(a|m)dGθ′

(m), (4)

where the left (right) hand side is the expected payoff of agent i from observing action
recommendation ai and taking action a′

i in the initial (new) mechanism. Since for any
action recommendation the payoffs of agents coincide under the two mechanisms, it
follows that the mechanism defined by the (G, q) tuple satisfies incentive compatibility
and, hence, is a valid SGR mechanism. Together with (3), this observation implies that
the two mechanisms also yield the same payoff to the designer, and it is without loss to
restrict attention to SGR mechanisms.

The expected payoff expression in the right hand side of (4) can be used to obtain
a characterization of incentive compatibility of SGR mechanisms. Specifically, the SGR
mechanism defined by (G, q) is incentive compatible if and only if for all i ∈N , θi ∈�i,

∑
θ−i∈�−i

φ(θ)
∫
�

∫
A
ui(a, m, θ)dqθ(a|m)dGθ(m)

≥ max
σi ,θ′

i

∑
θ−i∈�−i

φ(θ)
∫
�

∫
A
ui

(
σi(ai ), a−i, m, θ

)
dq(θ′

i,θ−i )(a|m)dG(θ′
i ,θ−i )(m). (IC)

Feasible posterior mean distributions Given that the designer’s payoff and the incen-
tive compatibility constraint can be expressed in terms of the distributions over pos-
terior means G = (Gθ ) and distributions over action profiles q = (qθ ) conditional on
posterior means, it may be possible to reformulate the designer’s problem in terms of
these quantities. A natural question is thus which distributions over posterior means
the designer can induce using a signal. An important notion to address this question is
mean-preserving contraction (MPC). A distribution over states H : � → [0, 1] is an MPC
of a distribution H̃ : � → [0, 1], expressed as H̃ �H, if and only if for all ω,

∫ 1

ω
H(z)dz ≥

∫ 1

ω
H̃(z)dz (MPC)

and the inequality holds with equality for ω = 0.
To see that F � Gθ is necessary for Gθ to be the distribution of the posterior mean

induced by some signal, note that for every convex function h : [0, 1] →R we have that

∫ 1

0
h(z)dF(z) = E

[
h(ω)

] = E
[
Eμ

[
h(ω)|s

]] ≥ E
[
h
(
Eμ[ω|s]

)] =
∫ 1

0
h(z)dGθ(z).

Here, the second equality is implied by the law of iterated expectations and the inequal-
ity follows from Jensen’s inequality. Taking h(z) = max{0, z −ω} then yields that F �Gθ.
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This condition is not only necessary, but also sufficient; see, e.g., Blackwell (1950), Black-
well and Girshick (1954), Rothschild and Stiglitz (1970), and Gentzkow and Kamenica
(2016) for an application to persuasion problems.

Lemma 1. There exists a signal that induces the distribution Gθ over posterior means if
and only if F �Gθ.

This result readily implies that a vector of type-profile-dependent posterior mean
distributions (Gθ )θ∈� is feasible if and only if F �Gθ for all θ ∈�.

Optimal SGR mechanisms Combining the characterization of incentive compatibility
from (IC) and feasibility from Lemma 1, we next provide a characterization of optimal
SGR mechanisms.

Proposition 1. An SGR mechanism defined by (G, q) is incentive compatible and max-
imizes the designer’s payoff if and only if (G, q) solve

max
G,q

∑
θ∈�

φ(θ)
∫
�

∫
A
v(a, m, θ)dqθ(a|m)dGθ(m)

such that (IC) and F �Gθ ∀θ. (OPT)

One of the main challenges in this optimization problem is that even for a fixed q, the
incentive compatibility constraint induces a strong interdependence among the com-
ponents of G, which makes it impossible to optimize over them separately. This inter-
dependence is a natural economic feature of the multi-agent problem with private in-
formation, as the designer cannot pick the action recommendation she provides to one
agent and type without taking into account the fact that this might give other agents and
types incentives to deviate.

3.2 Decoupling the problem across type profiles

Despite these challenges, we are able to characterize the structure of the optimal SGR
mechanisms. Our approach involves decoupling the designer’s problem into |�| sub-
problems (one for each type profile θ) each involving optimization over only a single
MPC constraint and linear side-constraints. As the argument for doing so and the pre-
cise decomposition differ significantly in the single- and multi-agent cases, we explain
them separately.

3.2.1 The single-agent case In this section we consider the single-agent case |N| = 1
and, thus, drop the subindex indicating the agent’s identity. We define ū, v̄ : � ×� → R
to be the agent’s and designer’s indirect utility functions, i.e., their utility at a given mean
belief m if the agent takes an optimal action20

ū(m, θ) = max
a∈A

u(a, m, θ) (5)

20We note that the indirect utility ū is convex in m.
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v̄(m, θ) = max
a∈A(m,θ)

v(a, m, θ), (6)

where A(m, θ) = argmaxb∈A u(b, m, θ). In an SGR mechanism, since no action is recom-
mended at two different posterior means, the agent can infer the posterior mean from
the action recommendation. As any action recommendation policy q that satisfies (IC)
must always recommend an action that is optimal for the agent at that posterior belief,21

we can rewrite (IC) as∫
�
ū(m, θ)dGθ(m) ≥ max

θ′

∫
�
ū(m, θ)dGθ′

(m). (7)

Let (G∗, q∗ ) be an optimal solution to the problem given in Proposition 1. We de-
fine the value eθ type θ could achieve when deviating optimally from reporting his type
truthfully as

eθ = max
θ′ �=θ

∫
�
ū(m, θ)dG∗,θ′

(m). (8)

We also define dθ to be the value the agent gets when reporting his type truthfully:

dθ =
∫
�
ū(m, θ)dG∗,θ(m). (9)

We note that eθ and d−θ do not depend on G∗,θ. We can thus characterize G∗,θ by opti-
mizing over Gθ while taking (G∗,θ′

)θ′ �=θ as given. This leads to our next lemma.

Lemma 2. Consider the single-agent case, and let e and d be the constants associated
with an optimal SGR mechanism (G∗, q∗ ). Then (Hθ, (G∗,θ′

)θ′ �=θ, q∗ ) is an optimal SGR
mechanism if and only if, for any type θ ∈�, the distribution Hθ solves

max
Hθ�F

∫
�
v̄(s, θ)dHθ(s) (10)

such that
∫
�
ū(s, θ)dHθ(s) ≥ eθ (11)

∫
�
ū(s, η)dHθ(s) ≤ dη ∀η �= θ. (12)

In this formulation, we maximize the payoff the designer receives from type θ under
constraint (11). This constraint ensures that type θ does not want to deviate and report
to be another type.22 Similarly, constraint (12) ensures that no other type wants to report
his type as θ. We note that (11) and (12) encode the incentive constraints given in (7) in
which Gθ appears.

21Formally, this means that a /∈A(m, θ) ⇒ qθ(a|m) = 0.
22By considering the optimal deviation, we reduced the number of incentive constraints in (8) from

(|�| − 1) to 1.
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3.2.2 The multi-agent case We next turn to the multi-agent case. Without loss, we nor-
malize here the probability of each type profile to φ(θ) = 1

|�| to make the equations

easier to read.23 The main challenge relative to the single-agent case is that in an SGR
mechanism, the agents are in general unable to infer the posterior mean ma,θ from their
action recommendation. As a consequence, the action recommendations q are not de-
termined by the (IC) constraint and we cannot omit them from the problem.

Let (G∗, q∗ ) be a solution to (OPT) and consider the corresponding SGR mechanism.
Define ei,θi ,θ′

i ,σi
to be the payoff24 agent i of type θi gets by reporting his type as θ′

i (where
possibly θ′

i = θi) and then deviating according to action policy σi:

ei,θi ,θ′
i ,σi

=
∑

θ−i∈�−i

∫
�

∫
A
ui

(
σi(ai ), a−i, m, θi, θ−i

)
dq∗,(θ′

i,θ−i )(a|m)dG∗,(θ′
i ,θ−i )(m).

Letting I(·) denote the identity, the payoff of agent i from truthfully reporting his type
and following the action recommendation equals ei,θi ,θi ,I . Similarly, the best payoff he
can achieve after misreporting his type and possibly taking an action different from the
recommended one equals

ei,θi = max
σi ,θ′

i �=θi
ei,θi ,θ′

i ,σi
. (13)

It will be convenient to decompose the payoff ei,θi ,θ′
i ,σi

into payoff when the reported
type profile equals some θ′ ∈� and the sum of payoffs γi,θi ,θ′

i ,σi
(θ′ ) from other type pro-

files:25

ei,θi ,θ′
i ,σi

= γi,θi ,θ′
i ,σi

(
θ′) +

∫
�

∫
A
ui

(
σi(ai ), a−i, m, θi, θ

′
−i

)
dq∗,θ′

(a|m)dG∗,θ′
(m).

By definition for θ′
i �= θi, the quantities ei,θi and γi,θi ,θ′

i ,σi
(θ′ ) do not depend on the poste-

rior mean distribution G∗,θ. We next show that we can characterize G∗,θ by optimizing
the posterior mean distribution chosen for type profile θ while taking those for other
type profiles (G∗,η )η�=θ as given.

Lemma 3. Let e and γ be the constants associated with an optimal SGR mechanism
(G∗, q∗ ). Then (Hθ, (G∗,θ′

)θ′ �=θ, q∗ ) is an optimal SGR mechanism if and only if for any
type θ ∈�, the distribution Hθ solves

max
Hθ�F

∫
�

∫
A
v(a, m, θ)dq∗,θ(a|m)dHθ(m)

23This is without loss of generality, as given a problem instance with arbitrary φ(θ), one can define a new
utility |�|φ(θ)ui(a, ω, θ) for each agent i and the designer |�|φ(θ)v(a, ω, θ) that entails exactly the same
incentives in the original and the new problem instances. This amounts to a change of measure from φ(·)
to the uniform measure.

24More precisely, these quantities correspond to payoffs multiplied with the probability
∑

η−i
φ(θi, η−i )

of the event that agent i’s private type equals θi . For the subsequent discussion, this normalization does
not play a role. Thus, with some abuse of terminology, we refer to such quantities as payoffs.

25The quantity γi,θi ,θ′
i ,σi

(θ′ ) is equivalently given by the summation defining ei,θi ,θ′
i ,σi

after excluding the
summand with θ−i = θ′

−i .
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such that

γi,θi ,θi ,I(θ) +
∫
�

∫
A
ui(a, m, θ)dq∗,θ(a|m)dHθ(m)

≥ γi,θi ,θi ,σi (θ) +
∫
�

∫
A
ui

(
σi(ai ), a−i, m, θ

)
dq∗,θ(a|m)dHθ(m) ∀i, σi �= I

γi,θi ,θi ,I(θ) +
∫
�

∫
A
ui(a, m, θ)dq∗,θ(a|m)dHθ(m) ≥ ei,θi ∀i

γi,ηi ,θi ,σi(θ) +
∫
�

∫
A
ui

(
σi(ai ), a−i, m, ηi, θ−i

)
dq∗,θ(a|m)dHθ(m)

≤ ei,ηi ,ηi ,I ∀i, σi, ηi �= θi.

This lemma can be best explained through a simple thought experiment. Suppose
that we modify the initial SGR mechanism (G∗, q∗ ) by replacing distribution G∗,θ with
Hθ. The left hand side of the first (and second) constraint is the payoff of agent i in the
new mechanism after reporting his type truthfully and following the recommendation.
The right hand side of the first constraint is the payoff achieved via truthful type report
followed by a deviation to action policy σi. Similarly, the right hand side of the second
constraint is the maximal payoff agent i can achieve in the new mechanism by misre-
porting his type. Note that when he misreports his type as θ′

i �= θi, the signal is drawn
from a distribution other than Hθ. Thus, the right hand side of the second constraint
is a constant in this problem. Finally, the left hand side of the third constraint is the
payoff agent i can guarantee by misreporting his type as θi when his type is actually ηi.
The right hand side is the payoff from truthful reporting. When Hθ satisfies these con-
straints, it follows that the resulting mechanism (Hθ, (G∗,θ′

)θ′ �=θ, q∗ ) still satisfies incen-
tive compatibility and is a valid SGR mechanism. As the objective in this optimization
problem is the designer’s payoff for the type profile θ, this implies the lemma.

3.3 Laminar partitional signals

We next describe a small class of signals, laminar partitional signals. We first define
partitional signals.

Definition 1 (Partitional Signal). A signal μ is partitional if for each signal realization
s ∈ S, there exists a set Ps ⊆� such that μ({s}|ω) = 1ω∈Ps .

A partitional signal partitions the state space into sets (Ps )s and reveals to the agent
the set in which the state ω lies. Partitional signals are thus noiseless in the sense that
the mapping from the state to the signal is deterministic. A simple example of signals
that are not partitional is normal signals where the signal equals the state ω plus normal
noise and, thus, is random conditional on the state. Denote by conv(·) the convex hull.
The next definition further restricts the partition structure.

Definition 2 (Laminar Partitional Signal). A partition (Ps )s is laminar if there is a par-
tial order � on S such that Ps = convPs \ ⋃

s′|s�s′ convPs′ for any s. A partitional signal is
laminar if its associated partition is laminar.
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Figure 2. The partition of the state space � = [0, 1] on the left is not laminar while the partition
on the right is laminar, as the convex hull of all pairs of sets P1, P2, and P3 are either nested or
have an empty intersection.

This definition readily implies that convPs ∩ convPs′ ∈ {∅, convPs , convPs′ } for any
s, s′. The restrictions imposed by laminar partitional signals are illustrated in Figure 2.
Note that the elements of the laminar partition may belong to disjoint intervals (see Fig-
ure 1 for various examples of laminar partitions). We define the depth of a laminar parti-
tion as the smallest number k such that the state space can be partitioned into intervals,
each of which contains at most k elements of the laminar partition, and every partition
element is contained in one interval. Intuitively, this captures how complicated the lam-
inar partition is: If convex hulls of partition elements are disjoint (nested), the depth is
equal to 1 (the number of signal realizations |S|).

Definition 3 (Laminar Partitional Mechanism). A direct recommendation mechanism
is laminar partitional if it consists of laminar partitional signals, i.e., for each type profile
θ, there exists a laminar partition Pθ of the state space � such that the same action
profile is recommended in each partition element.

We next establish that there always exists a laminar partitional mechanism that is
optimal. To simplify notation, we denote by Pθ(ω) = {Pθ

s : ω ∈ Pθ
s } the set of states where

the same signal is realized as in state ω, for a partitional signal with partition Pθ = (Pθ
s )s .

Theorem 1. Let |A| be finite or |N| = 1. There exists an optimal laminar partitional
mechanism. Furthermore, given the partitions partition Pθ for each θ, there exists inter-
vals Iθ1 , Iθ2 , � � � such that

(i) ω /∈ ⋃
k I

θ
k implies Pθ(ω) = {ω}

(ii) ω ∈ Iθk implies Pθ(ω) ⊆ Iθk.

The proof is based on a result that characterizes the solutions to optimization prob-
lems over mean-preserving contractions under linear side-constraints, such as those in
Section 3.2. As this result might be of independent interest, we explain it in Section 3.4.

Theorem 1 simplifies the search for optimal mechanisms. First, it implies that for
each type profile θ, the designer needs to consider only partitional signals, which (de-
terministically) recommend the same action profile for all states in an element of the
partition Pθ. Theorem 1 thus implies that the designer does not need to rely on random
signals whose distribution conditional on the state could be arbitrarily complex.
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In general, the partitions that define a deterministic signal can be quite complex;
for instance, each partition element can be a disjoint union of countably many sub-
sets of states. The fact that the partition can be chosen to be laminar is thus a fur-
ther important simplification. To see why, consider the case with finitely many action
profiles. Since the optimal signal is partitional, the signal realizations correspond to
at most |A| subsets of the state space. Due to the laminar structure, each subset can
be identified with its convex hull, which is an interval. As each interval is completely
described by its endpoints, it follows that each laminar partitional signal can be iden-
tified with a point in R2|A| . Thus, the problem of finding the optimal mechanism can
be written as an optimization problem over R2|A|×|�| . This contrasts with the space of
mechanisms, which is not finite dimensional even if one restricts to finitely many signal
realizations.

The second part of the theorem implies that for each fixed type profile θ, there are
two types of partition elements: There are “pooling intervals” (Iθk ), where multiple state
realizations induce the same action profile recommendation. In their complement,
each state is mapped to a unique action profile recommendation.26 Moreover, each
pooling interval can equivalently be expressed as the union of partition elements it in-
tersects, which also constitute a laminar partition of this pooling interval. This implies
that the task of constructing laminar partitions that induce optimal posterior mean dis-
tributions also decouples over pooling intervals. We next provide bounds on the depth
of the laminar structure.

Proposition 2. Consider the setting of Theorem 1.

(i) If |N| = 1, then in each Iθk, at most |�| + 2 action profiles are realized.

(ii) If |A| is finite, then w ∈ ⋃
k I

θ
k almost surely, and in each Iθk, at most

∑
i∈N |Ai|2|�i|+

2 action profiles are realized.

Suppose we restrict attention to SGR mechanisms (G, q), where qθ(·|m) is degen-
erate and deterministically recommends an action profile for each posterior mean m

and type profile θ (which is without loss for the single-agent case). Then Proposi-
tion 2 follows immediately by counting the number of side-constraints in Lemmas 2
and 3 which, by Proposition 3 given in the next section, limit the depth of the lami-
nar structure. To cover the case of nondegenerate action profile distributions, an ad-
ditional compactness argument is necessary. We provide this argument in the Ap-
pendix.

Note that in Proposition 2 part (i), the number of action profiles that are realized in
each interval is independent of the number of actions available to the agent, whereas
this is not the case in part (ii). In fact, it is possible to construct numerical examples
where the number of available actions impact this quantity and the depth of the laminar
partitional signals (see Appendix A in the Supplement).

This dichotomy emerges since, in the single-agent case, any action recommenda-
tion perfectly reveals to the agent the partition element containing the state and the

26Signals that induce such outcomes are relevant when there is a continuum of action profiles.
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corresponding posterior mean. As explained in Section 3.2.1, this implies that one can
completely express the problem in terms of indirect utilities, which makes this equiva-
lent to a problem without action choices. In contrast, in the multi-agent case, due to the
uncertainty about other agents’ types and action recommendations, the partition ele-
ment does not become common knowledge among the agents. As a consequence, it is
not possible to express the designer’s problem in terms of indirect utilities dropping the
actions.

3.4 Maximizing under MPCs and side-constraints

This section derives an abstract mathematical result about optimization under MPC
constraints and side-constraints that implies Theorem 1 and Proposition 2. We discuss
this result separately as similar mathematical problems emerge in economic applica-
tions other than Bayesian persuasion.27

Consider the problem of maximizing the expectation of an arbitrary upper semi-
continuous function v : [0, 1] → R over all distributions G that are mean-preserving
contractions of a given distribution F : [0, 1] → [0, 1] subject to n ≥ 0 additional linear
constraints:

max
G�F

∫
�
v(s)dG(s)

subject to
∫
�
ui(s)dG(s) ≥ 0 for i ∈ {1, � � � , n}. (14)

Throughout, we assume that the functions ui : [0, 1] → R are continuous. The next re-
sult establishes conditions that need to be satisfied by any solution of problem (14).
Our results extend the insights of Candogan (2019b), Arieli et al. (2020) and Kleiner,
Moldovanu, and Strack (2020), who analyzed the problem of maximizing over mean-
preserving contractions without side-constraints. We allow for side-constraints as they
naturally appear as incentive constraints and in settings with multiple agents. While
without side-constraints, each interval is optimally contracted into a distribution with
just two points in its support, we find that, in general, the cardinality of the support
equals the number of side-constraints plus 2.

Proposition 3. There exists a solution G to problem (14) and a countable collection of
disjoint intervals I1, I2, � � � such that G equals distribution F outside the intervals, i.e.,

G(x) = F(x) for x /∈
⋃
j

Ij , (15)

27For example, Kleiner, Moldovanu, and Strack (2020) discuss how optimization problems under mean-
preserving contraction constraints naturally arise in delegation problems. We leave the exploration of other
applications of this mathematical result for future work to keep the exposition focused on the persuasion
problem.
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and each interval Ij = (aj , bj ) redistributes the mass of F among at most n+2 mass points
m1,j , m2,j , � � � , mn+2,j ∈ Ij ,

G(x) =G(aj ) +
n+2∑
r=1

pr,j1mr,j≤x for x ∈ Ij (16)

with
∑n+2

r=1 pr,j = F(bj ) − F(aj ) and the same expectation
∫
Ij
xdG(x) = ∫

Ij
xdF(x).

The existence of an optimal solution follows from standard arguments exploiting
the compactness of the feasible set of (14). To establish the remaining claims of Proposi-
tion 3, we first fix an optimal solution and consider an interval where the MPC constraint
does not bind at this solution. As both the constraints and the objective function in (14)
are linear functionals in the cumulative distribution function (CDF), we can optimize
over (any subinterval of) this interval, fixing the solution on the complement of this
interval, to obtain another optimal solution. In this auxiliary optimization problem, the
MPC constraint is relaxed by a constraint, fixing the conditional mean of the distribution
on this interval. This problem is now a maximization problem over distributions subject
to the n original constraints and an additional identical mean constraint. It was shown
in Winkler (1988) that each extreme point of the set of distributions, which are subject
to a given number k of linear constraints, is the sum of at most k + 1 mass points. For
our auxiliary optimization problem, this ensures the existence of an optimal solution
with n+ 2 mass points. A challenge is to establish that the solution to the auxiliary prob-
lem is feasible and satisfies the MPC constraint. The main idea behind this step is to
show that if it is not feasible, then one can construct an optimal solution where the MPC
constraint binds on a larger set. However, this can never be the case if we start with an
optimal solution where the set on which the MPC constraint binds is maximal (which
exists by Zorn’s lemma). Combining such an initial optimal solution with the optimal
solution for the auxiliary optimization problem, we obtain a new solution that satisfies
the conditions of the proposition over this interval. By repeating this argument for all
intervals where the MPC constraint does not bind, it follows that the claim holds for the
entire support.

Laminar structure Let ω be a random variable distributed according to F . Our next
result shows that each interval Ij in Proposition 3 admits a laminar partition such that
when the realization of ω belongs to some Ij , revealing the partition element that con-
tains it and simply revealing ω when it does not belong to any Ij induces a posterior
mean distribution, given by G. Proposition 3 together with this result yields the optimal-
ity of partitional signals as stated in Theorem 1 as well as the depth of the corresponding
laminar families presented in Proposition 2.

Proposition 4. Consider the setting of Proposition 3 and let ω be distributed according
to F . For each interval Ij , there exists a laminar partition j = (r,j )r such that for all
r ∈ {1, � � � , n+ 2},

P[ω ∈r,j ] = pr,j and E[ω|ω ∈ r,j ] =mr,j . (17)
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The proof of this claim relies on a partition lemma (stated in the Appendix), which
strengthens this result by shedding light on how the partition j can be constructed.
The proof of the latter lemma is inductive over the number of mass points. When G

given in Proposition 3 has two mass points in Ij , the partition element that corresponds
to one of these mass points is an interval and the other one is the complement of this
interval relative to Ij . Moreover, it can be obtained by solving a system of equations,
expressed in terms of the end points of this interval, that satisfy condition (17). As this
partition is laminar, this yields the result for the case where there are only two mass
points in Ij .

When G consists of k > 2 mass points in Ij , one can find a subinterval such that (i)
the expected value of ω ∼ F conditional on ω being inside this subinterval equals the
value of the largest mass point and (ii) the probability assigned to the interval equals
the probability G assigns to the largest mass point. Conditional on ω being outside this
interval, the distribution thus only admits k − 1 mass points and is a mean-preserving
contraction of the distribution F . This allows us to invoke the induction hypothesis to
generate a laminar partition such that revealing in which partition element ω lies gener-
ates the desired conditional distribution of the posterior mean. Finally, as this laminar
partition combined with the subinterval associated with the largest mass point of G in
Ij is again a laminar partition, we obtain the result for distributions consisting of k > 2
mass points.

The proof of Proposition 4 (and Lemma 11 in the Appendix) details these arguments,
and also offers an algorithm for constructing a laminar partition satisfying (17). While
the result is stated by focusing on the setting of Proposition 3, as can be seen from the
proof, the optimality of G does not play any role. Hence, the claim continues to hold for
any distribution G that satisfies only conditions (15) and (16).

4. Single-agent case: Screening versus no screening

In this section, we focus on the single-agent case |N| = 1. Throughout we also assume
that the set of actions is finite |A| = {1, � � � , |A|} and the designer’s payoff v(a, θ) de-
pends only on the action and the agent’s type. Our setting thus reduces to the problem
of persuading a privately informed agent, which is of independent interest. The case of
binary actions was analyzed in Kolotilin et al. (2017) and Guo and Shmaya (2019) (who
analyze this problem under slightly different assumptions). We first show that in the
single-agent setting described above—without restricting attention to binary actions—
the optimal (SGR) mechanism can be obtained by solving a finite-dimensional convex
program (Section 4.1). Then we exemplify the optimal mechanism and contrast it with
the optimal mechanisms derived in the literature by restricting attention further to bi-
nary action settings (Sections 4.2 and 4.3).

4.1 A convex program for the single-agent case

As a consequence of Assumption 1, there exists a partition of � into intervals (Ba,θ )a∈A
such that action a is optimal for the agent of type θ if and only if his mean belief is in the
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interval Ba,θ. By relabeling the actions for each type, we can without loss assume that
the intervals Ba,θ = [ba−1,θ, ba,θ] are ordered with respect to the actions;28 hence, for all
m ∈ Ba,θ,

ū(m, θ) = u1(a, θ)m+ u2(a, θ).

Consider an SGR mechanism with posterior mean distributions (Gθ ). Denote by pa,θ

the probability that action a is recommended to type θ and by ma,θ ∈ Ba,θ the posterior
mean induced by this recommendation. The expected payoff of type θ from reporting
his type as θ′ equals ∑

a′∈A
pa′,θ′ ū(ma′,θ′ , θ). (18)

Defining

za,θ =ma,θpa,θ

to be the product of the posterior mean ma,θ induced by the action recommendation a

and the probability pa,θ of that recommendation, the incentive compatibility constraint
(7) for type θ can be expressed as

∑
a∈A

u1(a, θ)za,θ + u2(a, θ)pa,θ

≥
∑
a′∈A

[
max
a∈A

u1(a, θ)za′,θ′ + u2(a, θ)pa′,θ′
]

∀θ′. (19)

Here, the left hand side is the payoff of this type from reporting his type truthfully and
subsequently following the recommendation of the mechanism, whereas the right hand
side is the payoff from reporting his type as θ′ and taking the best possible action (possi-
bly different than the recommendation of the mechanism) given the signal realization.
Recall that the distribution Gθ is an MPC of F for all θ (Lemma 1). Our next lemma
establishes that the MPC constraints also admit an equivalent restatement in terms of
(p, z).29

Lemma 4. We have Gθ � F if and only if
∑

a≥� za,θ ≤ ∫ 1
1−∑

a≥� pa,θ
F−1(x)dx, where the

inequality holds with equality for �= 1.

Our observations so far establish that the incentive compatibility and MPC con-
straints can both be expressed in terms of the (p, z) tuple. As a consequence of these
observations, we can reformulate the problem of obtaining optimal SGR mechanisms,

28Formally, 0 = b0,θ ≤ b1,θ ≤ · · · ≤ b|A|,θ = 1. If an action a is never optimal for a type θ, set ba−1,θ = ba,θ =
b|A|,θ = 1. This is without loss as no signal induces a posterior belief of 1 with strictly positive probability
and the action thus plays no role in the resulting optimization problem.

29This reformulation was first used in Candogan (2019b) and for completeness we include a proof in the
Appendix.
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given in Proposition 1, in terms of (p, z) as

max
p∈(�|A| )�

z∈R|A|×|�|

y∈R|A|×|�|2

∑
θ∈�

φ(θ)
∑
a∈A

pa,θv(a, θ)

such that
∑
a≥�

za,θ ≤
∫ 1

1−∑
a≥� pa,θ

F−1(x)dx ∀θ ∈�, � > 1

∑
a∈A

za,θ =
∫ 1

0
F−1(x)dx ∀θ ∈�

u1(a, θ)za′,θ′ + u2(a, θ)pa′,θ′ ≤ ya′,θ,θ′ ∀θ, θ′ ∈�, a, a′ ∈ A∑
a′∈A

ya′,θ,θ′ ≤
∑
a∈A

(
u1(a, θ)za,θ + u2(a, θ)pa,θ

) ∀θ, θ′ ∈�

pa,θba−1,θ ≤ za,θ ≤ pa,θba,θ ∀θ ∈�, a ∈ A.

(OPT2)

In this formulation, the first two constraints are the restatement of the MPC constraints
(see Lemma 4). The value ya′,θ,θ′ corresponds to the utility the agent of type θ gets from
observing the signal associated with type θ′ and taking the optimal action when the rec-
ommended action is a′. It can be easily checked that ya′,θ,θ′ = maxa∈A u1(a, θ)za′,θ′ +
u2(a, θ)pa′,θ′ at an optimal solution.30 Thus, it follows that the third and fourth con-
straints restate the incentive compatibility constraint (19), by using ya′,θ,θ′ to capture
the summands in the right hand side of the aforementioned constraint. Finally, the last
constraint captures the notion that the posterior mean za,θ/pa,θ must lie in Ba,θ for the
action a to be optimal.

It is worth pointing out that (OPT2) is a finite-dimensional convex optimization
problem. This is unlike the infinite-dimensional optimization formulation of Propo-
sition 1. Expression (OPT2) restates the designer’s problem in terms of the (p, z) tuple.
Two points about this reformulation are important to highlight. First, an alternative ap-
proach would involve optimizing directly over distributions Gθ that satisfy the (IC) con-
straints (7) and have a single mass point ma,θ ∈ Ba,θ for each a ∈A with weight pa,θ. This
could be formulated as a finite-dimensional problem as well (by searching over the lo-
cation ma,θ and weight pa,θ of each mass point). However, this approach does not yield
a convex optimization formulation, as the set of such (p, m) tuples is not convex. The
formulation in (OPT2) amounts to a change of variables that yields a convex program.

Second, given an optimal solution to (OPT2), the distributions (Gθ )θ∈� of an optimal
SGR mechanism can be obtained straightforwardly by placing a mass point with weight
pa,θ at za,θ/pa,θ for each action a with pa,θ > 0. Moreover, as discussed in Section 3.4, an
optimal mechanism that induces these distributions can be obtained by constructing
a laminar partition of the state space (by following the approach in Proposition 4 and
Lemma 11 in the Appendix). These observations imply our next proposition.

30This is because when ya′ ,θ,θ′ is strictly larger than the right hand side, it can be decreased to construct
another feasible solution with the same objective.
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Proposition 5. For every optimal solution (p, z, y ) of (OPT2), the SGR mechanism,
which recommends the action a for type θ with probability pa,θ and induces a posterior
mean of za,θ/pa,θ (when pa,θ > 0), is an optimal mechanism. Moreover, there exists a
laminar partitional mechanism implementing these distributions.

Remark. For the multi-agent case, it is possible to obtain a similar finite-dimensional
optimization problem. However, in this case, there are two difficulties. First, while in the
single-agent case, the actions associated with different posterior mean levels are known,
this is not the case for multiple agents. This issue can be circumvented by optimizing
over the order of posterior mean levels associated with different action profiles. Second,
unlike the formulation in this section, the resulting optimization problem is nonconvex.
In some instances, including the one in Section 2.1, one can get around these difficulties
by leveraging further structure of the problem. More generally, numerical methods for
nonconvex optimization can be used. See Appendix B in the Supplement for details.

4.2 An example

Section 2.1 illustrates optimal laminar partitional mechanisms in a Cournot game. We
next illustrate our results through a simpler single-agent example. This example gen-
eralizes the buyer–seller setting from Kolotilin et al. (2017), who assume single unit de-
mand, to the case where the buyer can demand more than one unit and has a decreas-
ing marginal utility in the number of units. As our example reduces to their setup for the
case of a single unit, this example allows us to highlight the effects of the buyer having
more than two actions.

In this example, the agent is a buyer who decides how many units of an indivisible
good to purchase. He is privately informed about his type, which captures his taste for
the good. The designer is a seller who controls information about the quality of the good,
captured by the state. We assume that prices are linear in consumption and set the price
of one unit of the good to 10

3 . The utility the buyer derives from the ath unit of the good
is given by

(θ+ω) max{5 − a, 0}.

His marginal utility of consumption decreases linearly in the number of goods, and in-
creases in the good’s quality ω and in his taste parameter θ. The quality of the good is
distributed uniformly in [0, 1] and the buyer’s taste parameter either takes a low θ = 0.3,
intermediate θ = 0.45, or high value θ = 0.6 with equal probability. The seller commits
to a laminar partitional mechanism to maximize the (expected) number of units sold. It
is straightforward to see that in this problem, the agent considers finitely many actions:
purchasing 0, 1, and 2 units (see Appendix C in the Supplement). Hence the designer’s
problem can be formulated and solved using the finite-dimensional convex program of
Section 4.1. We solve this program and construct the optimal laminar partitional mech-
anism, which is displayed in Figure 3.31

31In the figure, the cutoffs are reported after rounding, e.g., the cutoff for the high type is approximately
at 0.06. For the sake of exposition, in our discussion, we stick to the rounded values.
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Figure 3. The optimal SGR mechanism.

In this figure, each bar represents the state space and its differently colored regions
represent the optimal partition (for the corresponding type). For each type, the designer
reveals whether the state belongs to the region(s) marked with 0, 1, 2, and the buyer finds
it optimal to purchase the corresponding number of units. Under the optimal mecha-
nism, the expected purchase quantity increases with the type.32 While the expected
quantities are ordered, the quantities purchased by different types for a given state are
not. For instance, for states between 0.79 and 0.83, the low and the high types purchase
two units, and the medium type purchases one unit. Note that this implies that the pur-
chase regions of buyers are not “nested” in the sense of Guo and Shmaya (2019), who
establish the optimality of such a nested structure for the case of two actions |A| = 2.
Moreover, low and medium types may end up purchasing lower quantities in some high
states than they do for lower states. In fact, under the optimal mechanism, for the best
and the worst states, the low type purchases zero units. Thus, in the optimal mecha-
nism, the low and medium types of the buyer sometimes consume a smaller quantity of
the good if it is of higher quality. This (maybe counterintuitive) feature of the optimal
mechanism is a consequence of the incentive constraints: By pooling some high states
with low states, one makes it less appealing for the high type to deviate and observe the
signal meant for a lower type.

Remark. In case of binary actions and under some assumptions on the payoff struc-
ture,33

 Kolotilin et al. (2017) and Guo and Shmaya (2019) establish that the optimal
mechanism admits a “public” implementation. For each type the corresponding lam-
inar partitional signal induces one action in a subinterval of the state space and the
other action in the complement of this interval. It can be shown that these intervals are
nested, which implies that the mechanism that reveals messages associated with differ-
ent types to all agent types is still optimal. Thus, as opposed to first eliciting types and
then sharing with each type the realization of the signal associated with this type, the

32This can be seen as the high type purchases two units in the states where the medium type purchases
only one unit, which in turn leads to higher expected purchases. Similarly, when the low type purchases
zero units, the medium type purchases zero or one units, and the size of the set of states where the medium
type purchases two units is larger than that for the low type.

33Both papers normalize the payoff of the action 0 to zero. The assumption in Kolotilin et al. (2017) is
equivalent to the assumption that for θ′ ≤ θ, if E[u(1, ω, θ′ )] ≥ 0, then E[u(1, ω, θ)] ≥ 0 under any prob-
ability measure. Guo and Shmaya (2019) establish this result under assumptions that in our setting are
equivalent to ω �→ u(1,ω,θ)

v(1,ω,θ) and ω �→ u(1,ω,θ)
u(1,ω,θ′ ) are increasing for all θ′ ≤ θ.
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designer can achieve the optimal outcome by sharing a signal (which encodes the infor-
mation of the signals of all types) publicly with all agent types. In other words, screening
is not useful. By contrast, it is straightforward to establish that the mechanism illus-
trated in Figure 3 does not admit a public implementation, and any public mechanism
yields strictly lower payoffs to the designer. See Appendix C for further details.

Remark. Given the mechanism of Figure 3, one can readily check which incentive com-
patibility constraints are binding. It turns out that both the medium and the high types
are indifferent among reporting their types as low, medium, or high. Similarly, the low
type is indifferent between reporting his type as low or medium, but achieves strictly
lower payoff from reporting his type as high. Interestingly, these observations imply that
unlike in classical mechanism design settings, “nonlocal” incentive constraints might
bind in the optimal mechanism.34

4.3 The value of screening and private signals

As discussed earlier, the optimal laminar partitional mechanism reveals different sig-
nals to different types. What if we restricted attention to public signals where all types
observe the same signal? Suppose that the designer’s payoff is nonnegative. For any
mechanism (μ1, � � � , μn ) where different types observe different signals, the designer
can always construct a public mechanism (μθ, � � � , μθ ) where each type observes the
signal μθ associated with type θ in the original mechanism. Denoting by Gθ the poste-
rior mean distribution under μθ, we conclude that doing so and choosing θ optimally
guarantees her at least a payoff of

max
θ∈�

φ(θ)
∫
�
v̄(s, θ)dGθ(s).

Since the designer’s payoff is nonnegative, this is at least a 1/|�| fraction of the payoff
achieved by the original mechanism:

∑
θ∈�

φ(θ)
∫
�
v̄(s, θ)dGθ(s).

Thus, a public mechanism guarantees a 1/|�| fraction of the payoff achieved by the op-
timal mechanism to the designer. We next establish that this bound is tight.

Proposition 6. Assume that the designer’s utility v is nonnegative.

(i) In any problem, there exists a public persuasion mechanism that achieves a 1/|�|
fraction of the optimal value achievable by an optimal mechanism.

(ii) In some problems, no public persuasion mechanism yields more than a 1/|�| frac-
tion of the optimal value achievable by an optimal mechanism.

34This is despite the fact that the agent’s utility is supermodular in his actions and type.
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We prove (the second part of) this proposition by explicitly constructing an example
where the 1/|�| ratio is achieved. The idea behind the example is to give all types of
the agent identical preferences and chose the payoff of the designer such that she wants
different types of the agent to chose different actions. In a public mechanism, all agents
have to choose the same action, which leads to at most 1 out of |�| types choosing the
action preferred by the designer. The example is constructed such that in a mechanism
with private signals the designer can induce all types to chose her most preferred action.
If the payoff from inducing the correct action equals 1 and the payoff from any other
action to the designer equals 0, this achieves the 1/|�| bound. The main challenge in the
construction, which is handled through a careful choice of payoffs, is to ensure that all
types of the agent are indifferent between all signals to ensure that no type has incentives
to misreport.

Two points about the example are worth highlighting. First, it achieves the worst
case 1/|�| bound even when attention is restricted to a simple subclass of problem in-
stances. For instance, the designer has a payoff of either 0 or 1 for different actions of the
agent, and the agent has finitely many actions and type-independent utility functions.
Second, by relabeling the actions, one can easily modify the example such that the de-
signer’s utility is independent of the agent’s type and the agent’s utility depends on his
type. Proposition 6 thus holds unchanged, even if one restricts attention to problems
where the designer’s utility depends only on the agent’s action, but not on his type or
belief.

5. Discussion and conclusion

Our results can be extended in various dimensions. Persuasion problems where the de-
signer’s payoff depends on the induced posterior mean, but the admissible posterior
mean distributions need to satisfy additional side-constraints, are naturally subsumed.
Below we discuss some other economically relevant extensions and applications of our
results.

Type-dependent participation constraints

In our analysis, we can allow each type of an agent to face a participation constraint.
That is, the mechanism must provide the relevant type with at least some given expected
utility. Our analysis and results carry over to this case unchanged, as (IC) already en-
codes such an endogenous constraint, capturing the value of deviating by observing the
signal meant for another type. To adjust the result for this case, one just needs to addi-
tionally include the value of opting out of the mechanism in the incentive constraint.

Competition among multiple designers

Another application of our approach is to competition among multiple designers. Sup-
pose that each designer offers a mechanism and the agents can choose to observe the
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signal of one of them.35 Each designer receives a higher payoff if an agent chooses her
mechanism and might have different preferences over the agents’ actions. Again the
designer has to ensure that the signal she provides to each type of an agent yields a suf-
ficiently high utility such that this type does not prefer to observe either another sig-
nal of the same designer or a signal provided by a different designer. This situation
corresponds to an endogenous type-dependent participation constraint, which is de-
termined in equilibrium. As our analysis works for any participation constraint, it also
carries over to this case.

Beyond persuasion problems

An immediate extension is to allow the designer to influence the agents’ utilities by also
designing transfers. For instance, in the context of the example in Section 4.2, the seller
might not only control the information she provides to the buyer, but also might charge
different buyers different prices. Such settings are considered, e.g., in Wei and Green
(2020), Guo, Li, and Shi (2022), Yang (2022) and Yamashita and Zhu (2018). As our re-
sults apply for any utility function, it is still without loss to restrict attention to laminar
partitional signals. Consider the case of a single agent, (i) who has finitely many ac-
tions and (ii) whose preferences are quasi-linear in the transfers. The designer’s optimal
mechanism (which now determines the information structure as well as the transfers)
can be formulated following an approach similar to the one in Section 4.1. Additional
variables that capture transfers need to be added to the optimization formulation of
that section. Due to (i), these transfers can be represented by finite-dimensional vec-
tors; due to (ii), the resulting problem remains convex. Thus, similar to Section 4.1, an
optimal mechanism can be obtained tractably by solving a finite-dimensional convex
program.

Finally, while this paper focused on persuasion problems, the mathematical result
we obtain on maximization problems over mean-preserving contractions under side-
constraints can be applied in other economic settings that lead to similar mathematical
formulations. For example, as first observed in Kolotilin and Zapechelnyuk (2019), the
persuasion problem is closely related to delegation problems where the agent privately
observes the state and the designer commits to an action as a function of a message sent
by the agent. Kleiner, Moldovanu, and Strack (2020) show that this problem can be refor-
mulated as a maximization problem under majorization constraints, which is a special
case of the problem we discuss in Section 3.4. Our results thus allow one to analyze
delegation problems where there is a constraint on the actions taken by the designer.36

For example, if the agent is the manager of a subdivision of a firm and the designer is
the chief executive officer (CEO) who allocates money to that subdivision depending

35Another plausible model of competition is one where the agents can observe the signals of all design-
ers. For an analysis of this situation, see Gentzkow and Kamenica (2016).

36While mathematically closely related, the delegation problem is economically fundamentally differ-
ent from the persuasion problem. For example, the majorization constraint in the delegation problem
corresponds to an incentive compatibility constraint while it corresponds to a feasibility constraint in the
persuasion problem. The side constraints correspond to a feasibility constraint in the delegation problem
while they correspond to an incentive compatibility constraint in the persuasion problem.
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on the manager’s report, our results allow one to analyze the case where the CEO faces
a budget constraint and on average cannot allocate more than a given amount to that
subdivision.

Appendix

Proof of Lemma 4. The condition Gθ � F can equivalently be stated as

∫ x

0

(
1 −Gθ(t )

)
dt ≥

∫ x

0

(
1 − F(t )

)
dt (20)

for all x, where the inequality holds with equality for x = 1. This inequality can be ex-
pressed in the quantile space as

∫ x

0

(
Gθ

)−1
(t )dt ≥

∫ x

0
F−1(t )dt (21)

for all x ∈ [0, 1], with equality at x = 1. Note that since Gθ is a discrete distribution, this
condition holds if and only if it holds for x= ∑

a≤� pa,θ and � ∈ A. For such x, we have

∫ x

0

(
Gθ

)−1
(t ) =

∑
a≤�

pa,θma,θ =
∑
a≤�

za,θ, (22)

and (21) becomes

∑
a≤�

za,θ ≥
∫ ∑

a≤� pa,θ

0
F−1(t )dt. (23)

Since
∫ 1

0 F−1(t )dt = ∫ 1
0 (Gθ )−1(t )dt = ∑

a∈A za,θ, the claim follows from (23) after rear-
ranging terms.

Lemma 5. An optimal mechanism exists if |A| < ∞ or |N| = 1 .

Proof. We first argue that an optimal mechanism exists in the case of finitely many ac-
tions |A| < ∞. First, we note that the set of feasible mechanisms is nonempty, as the
designer can always choose to reveal no information and induce a Bayes Nash equilib-
rium of the resulting game (which exists, as there are finitely many types and actions).
The action recommendations of the associated direct mechanism simply recommend
to each agent the action she would take knowing only her type in a Bayes Nash equi-
librium. As we have argued in Section 3.1, for every incentive compatible mechanism
there exists an SGR mechanism that is incentive compatible and achieves the same pay-
off for the designer. We can thus restrict attention to SGR mechanisms. As discussed in
Section 3.1, these mechanisms are parametrized by qθ ∈ �(A) and ma,θ ∈ [0, 1].37 Thus

37Note here that qθ(a) is the probability of the action profile a given the type profile θ not conditioning
on the state.
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each SGR mechanism (q, m) can be identified with a vector in [0, 1]2|�||A| . Furthermore,
the expected utility of the designer and an agent i can be expressed, respectively, as∑

θ∈�
φ(θ)

∑
a∈A

qθ(a)ui(a, ma,θ, θ)

∑
θ−i

φ(θ)
∑
a−i

qθ
(
σi(ai ), a−i

)
ui

(
σi(ai ), a−i, ma,θ, θ

)
.

Furthermore, the MPC constraint can be rewritten in the (q, m) parametrization as

∑
a∈A

qθ(a) max{ma,θ − r, 0} ≥
∫
r
F(x)dx

for all r ∈ [0, 1] and with equality at 0. As both the objective and the constraint are con-
tinuous in (q, m), it follows that the principal maximizes a continuous function over a
compact subset of [0, 1]2|�||A| and, hence, a maximizer exists.

We next argue existence of a maximizer for the single-agent case with an arbitrary
action set. As argued in Lemma 6, the set of feasible distributions Gθ is sequentially
compact. As the product of finitely many sequentially compact spaces is also sequen-
tially compact, the set of vectors (Gθ )θ∈� is also sequentially compact. As ūi is con-
tinuous, it follows that the incentive compatible constraint (7) is continuous in G. As
G �→ ∑

θ∈�φ(θ)
∫
� v̄(s, θ)dGθ(s) is upper semicontinuous, it follows that the designer

maximizes an upper hemicontinuous linear function over a compact convex set. By
Bauer’s maximum principle, a maximizer exists.

Lemma 6. Suppose ui : [0, 1] → R is a continuous function for i ∈ {1, � � � , n}. The set of
distributions G : [0, 1] → [0, 1] that satisfy G � F and∫

�
ui(s)dG(s) ≥ 0 for i ∈ {1, � � � , n} (24)

is compact in the weak topology.

Proof. First note that as ui is continuous, it is bounded on [0, 1]. Consider a sequence
of distributions Gk, k ∈ {1, 2, � � �}, that satisfy the constraints in (24). By Helly’s selection
theorem, there exists a subsequence that converges pointwise. From now on assume
that (Gk ) is such a subsequence and denote by G∞ the right-continuous representation
of its pointwise limit. Thus, any sequence of random variables mk such that mk ∼ Gk

converges in distribution to a random variable distributed according to G∞.
As (ui ) are continuous and bounded, this implies that for all i, we have

lim
k→∞

∫
�
ui(s)dGk(s) =

∫
�
ui(s)dG∞(s).

Furthermore, for all x ∈ [0, 1],

lim
k→∞

∫ 1

x
Gk(s)ds =

∫ 1

x
G∞(s)



1254 Candogan and Strack Theoretical Economics 18 (2023)

and, hence, G∞ also satisfies G∞ � F . We have, hence, established sequential compact-
ness. As the topology of weak convergence is metrizable by the Prokhorov metric, and,
in a metrizable space, a subset is compact if and only if it is sequentially compact, the
set of distributions given in the statement of the lemma is compact with respect to the
weak topology.

Lemma 7. Let F , G : [0, 1] → [0, 1] be CDFs and let F be continuous. Suppose that G is a
mean-preserving contraction of F and for some x ∈ [0, 1],

∫ 1

x
F(s)ds =

∫ 1

x
G(s)ds.

Then F(x) = G(x). Furthermore, G is continuous at x.

Proof. Define the function L : [0, 1] → R as L(z) = ∫ 1
z F(s) − G(s)ds. As G is a mean-

preserving contraction of F , we have that L(z) ≤ 0 for all z ∈ [0, 1]. By the assump-
tion of the lemma, L(x) = 0. By definition, L is absolutely continuous and has a weak
derivative, which we denote by L′(z) = G(z) − F(z). As F is continuous, L′ has only
upward jumps and is right-continuous. For L to have a maximum at x, we need that
limz↗x L

′(z) ≥ 0 and limz↘x L
′(z) ≤ 0. This implies that

lim
z↘x

G(z) − F(z) ≤ 0 ≤ lim
z↗x

G(z) − F(z).

In turn, this implies that limz↘xG(z) ≤ limz↗xG(z). As G is a CDF, it is nondecreasing
and, thus, G is continuous at x. Consequently, L is continuously differentiable at x and
as L admits a maximum at x, we have that 0 =L′(x) = G(x) − F(x).

Lemma 8. Fix an interval [a, b] ⊆ [0, 1], c ∈ R, upper semicontinuous v : [0, 1] → [0, 1]
and continuous ũ1, � � � , ũn : [0, 1] →R, and consider the problem

max
G̃

∫
�
v(s)dG̃(s) (25)

subject to
∫
�
ũi(s)dG̃(s) ≥ 0 for i ∈ {1, � � � , n} (26)

∫ b

a
G(s)ds = c (27)

∫
[a,b]

dG̃(s) = 1. (28)

If the set of distributions that satisfy (26)–(28) is nonempty, then there exists a solution to
the above optimization problem that is supported on at most n+ 2 points.

Proof. Consider the set of distributions that assign probability 1 to the set [a, b]. The
extreme points of this set are the Dirac measures in [a, b]. Let D be the set of distribu-
tions that satisfy (26) and (27), and are supported on [a, b]. By Theorem 2.1 in Winkler
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(1988), each extreme points of the set D is the sum of at most n+ 2 mass points, as (26)
and (27) specify n + 1 constraints. Note that the set of the set of distributions satisfying
(26)–(28) is compact. As v is upper semicontinuous, the function G̃ → ∫ 1

0 v(s)dG̃(s) is
upper semicontinuous and linear. Thus, by Bauer’s maximum principle (see, for exam-
ple, Result 7.69 in Aliprantis and Border (2013)), there exists a maximizer at an extreme
point of D, which establishes the result.

Lemma 9. Suppose that H and G are distribution that assign probability 1 to [a, b]. Let
M be an absolutely continuous function such that

∫ b
x G(s)ds >M(x) for all x ∈ [a, b] and∫ b

x̂ H(y )dy < M(x̂) for some x̂ ∈ [a, b]. Then there exists λ ∈ (0, 1) such that for all x ∈
[a, b], ∫ b

x
(1 − λ)G(s) + λH(s)ds ≥M(x)

with equality for some x ∈ [a, b].

Proof. Define

Lλ(x) =
∫ b

x
(1 − λ)G(y ) + λH(y )dy −M(x)

and φ(λ) = minz∈[a,b] Lλ(z). As M is continuous, by the assumptions of the lemma we
have that

φ(0) = min
x∈[a,b]

L0(x) = min
x∈[a,b]

[∫ b

x
G(s)ds −M(x)

]
> 0

and

φ(1) = min
x∈[a,b]

L1(x) = min
x∈[a,b]

[∫ b

x
H(s)ds −M(x)

]
≤

∫ b

x̂
H(s)ds −M(x̂) < 0.

Furthermore, ∣∣∣∣∂Lλ(z)
∂λ

∣∣∣∣ =
∣∣∣∣
∫ b

x
H(s) −G(s)ds

∣∣∣∣ ≤ b− a.

Hence, λ �→ Lλ(z) is uniformly Lipschitz continuous and the envelope theorem thus
implies that φ is Lipschitz continuous. As φ(0) > 0 and φ(1) < 0, there exist some λ∗ ∈
(0, 1) such that φ(λ∗ ) = 0. This implies that for all x ∈ [a, b],∫ b

x

(
1 − λ∗)G(s) + λ∗H(s)ds ≥M(x)

with equality for some x ∈ [a, b]. This completes the proof.

Lemma 10. For a solution G to problem (14), denote the set of points where the mean-
preserving contraction constraint is binding by

BG =
{
z ∈ [0, 1]:

∫ 1

z
F(s)ds =

∫ 1

z
G(s)ds

}
. (29)

There exists a solution to (14) where the set BG is maximal in a set inclusion sense.
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Proof. As the set of feasible distributions is compact with respect to the weak topology
by Lemma 6 and the function G �→ ∫ 1

0 v(s)dG(s) is upper semicontinuous in the weak
topology, the optimization problem (14) admits a solution. Observe that for any solution
G, (29) implies that BG is a closed set.

Let G′ denote the set of all solutions to (14). Denote by G the subset of G′ such that
{BG|G ∈ G} = {BG|G ∈ G′} and BG1 �= BG2 for any G1, G2 ∈ G′ such that G1 �= G2 (the
existence of such G follows from the axiom of choice). Define a partial order � on G:
G1 �G2 if BG1 ⊇ BG2 . Consider a totally ordered subset Gc of G.

Let B = ⋃
G∈Gc

BG and denote by B̄ the closure of this set. Since B̄ is closed and
bounded, it is compact. Similarly, BG is compact for each G ∈ G. For r ∈ N+, consider a
solution Gr ∈ Gc such that

max
y∈B̄

min
x∈BGr

|x− y| < 1/r,

where the optima are achieved due to compactness, the continuity of the argument
being optimized (and the theorem of maximum). Existence of such a solution follows
from the definition of B and the fact that Gc is totally ordered. By Helly’s selection the-
orem, the sequence {Gr } has a convergent subsequence. Let G∞ denote its limit. Since
G �→ ∫ 1

0 v(s)dG(s) is upper semicontinuous in the weak topology, it follows that G∞ also
solves (14). Furthermore, by construction, BG∞ is dense in B̄. Since BG∞ is also closed,
it follows that BG∞ = B̄. This implies that G∞ � G for every G ∈ Gc . Zorn’s lemma (see,
for example, Section 1.12 in Aliprantis and Border (2013)) implies that G has a maximal
element, G�. By the definition of our partial order, this implies that BG� ⊇ BG for every
G ∈ G and the claim follows.

Proof of Proposition 3. The first part of the claim follows from Lemma 10. The
lemma also implies that there exists a solution G for which the set BG defined in (29)
is maximal in a set inclusion sense. Consider such a solution.

Fix a point x /∈ BG. We define (a, b) to be the largest interval such that the mean-
preserving contraction constraint does not bind on that interval for the solution G, i.e.,

a = max{z ≤ x : z ∈ BG} b = min{z ≥ x : z ∈ BG}.

If G assigns probability zero to the interval [a, b], there are 0 mass points in the interval
and we have thus established that there are less than n + 2 mass points in that interval.
Thus, assume for the rest of the proof that G assigns strictly positive mass to [a, b]. By
Lemma 7, G assigns no mass to a or b and, hence, G also assigns strictly positive mass to
the interior of [a, b]. Consider now an interval [â, b̂] ⊂ (a, b) such that G assigns strictly
positive mass to [â, b̂]. We define G[â, b̂] : [0, 1] → [0, 1] to be the CDF of a random vari-
able that is distributed according to G conditional on the realization being in the interval
[â, b̂],

G[â, b̂](z) = G(z) −G(â− )

G(b̂) −G(â− )
,
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where G(â− ) = lims↗â G(s). We note that G[â, b̂] is nondecreasing, is right-continuous,

and satisfies G[â, b̂](b̂) = 1. Thus, it is a well defined CDF supported on [â, b̂]. As G is
feasible, we get that

∫ b̂

â
uk(s)dG[â, b̂](s) + 1

G(b̂) −G(â− )

∫
�\[â, b̂]

uk(s)dG(s) ≥ 0 for k ∈ {1, � � � , n}. (30)

To simplify notation, we define the functions ũ1, � � � , ũn, where for all k,

ũk(z) = uk(z) + 1

G(b̂) −G(â− )

∫
�\[â, b̂]

uk(y )dG(y ). (31)

Note that using this notation, (30) can be restated as∫
�
ũk(s)dG[â, b̂](s) ≥ 0 for k ∈ {1, � � � , n}. (32)

As G satisfies the mean-preserving contraction constraint relative to F , using the fact
that a < â and b̂ < b, for z ∈ [â, b̂], we obtain

∫ b̂

z
G[â, b̂](s)ds >

1

G(b̂) −G(â− )

[∫ 1

z
F(s)ds −

∫ 1

b̂
G(s)ds − (b̂− z)G(â− )

]

= M(z). (33)

Consider now the maximization problem over distributions supported on [â, b̂] that sat-
isfy the constraints derived above (after replacing the strict inequality in (33) with a weak
inequality) and maximize the original objective:

max
H

∫
�
v(s)dH(s)

subject to
∫
�
ũi(s)dH(s) ≥ 0 for i ∈ {1, � � � , n}

∫ b̂

z
H(s)ds ≥M(z) for z ∈ [â, b̂]

∫
[â, b̂]

dH(s) = 1.

(34)

By (32) and (33), the conditional CDF G[â, b̂] is feasible in the problem above. We claim
that it is also optimal. Suppose, toward a contradiction, that there exists a CDF H that is
feasible in (34) and achieves a strictly higher value than G[â, b̂]. Consider the CDF

K(z) =
{
G(z) if z ∈ [0, 1] \ [â, b̂]

G(â− ) +H(z)
(
G(b̂) −G(â− )

)
if z ∈ [â, b̂],

which equals G outside the interval [â, b̂] and H conditional on being in [â, b̂]. Using
(31), the definition of M(z), and the feasibility of H in (34), it can be readily verified that



1258 Candogan and Strack Theoretical Economics 18 (2023)

this CDF is feasible in the original problem (14). Moreover, it achieves a higher value
than G, since H achieves a strictly higher value than G[â, b̂] in (34). However, this leads
to a contradiction to the optimality of G in (14), thereby implying that G[â, b̂] is optimal
in (34).

Next, we establish that there cannot exist an optimal solution H to the problem (34),
where for some z ∈ (â, b̂), ∫ b̂

z
H(s)ds = M(z). (35)

Suppose such an optimal solution exists. Then K would be an optimal solution to the
original problem satisfying z ∈ BK ⊃ BG, where BK is defined as in (29) (after replacing G

with K) and is the set of points where the mean-preserving contraction constraint binds.
However, this contradicts that G is a solution to the original problem that is maximal (in
terms of the set where the MPC constraints bind).

We next consider a relaxed version of the optimization problem (34) where we re-
place the second constraint of (34) with a constraint that ensures that H has the same
mean as G[â, b̂]:

max
H

∫
�
v(s)dH(s)

subject to
∫
�
ũi(s)dH(s) ≥ 0 for i ∈ {1, � � � , n}

∫ b̂

â
H(s)ds =

∫ b̂

â
G[â, b̂](s)ds

∫
[â, b̂]

dH(s) = 1.

By Lemma 8, there exists a solution J to this relaxed problem that is the sum of n + 2
mass points. Since G[â, b̂] is feasible in this problem, it readily follows that

∫
�
v(s)dJ(s) ≥

∫
�
v(s)dG[â, b̂](s). (36)

Suppose, toward a contradiction, that there exists z ∈ [â, b̂] such that

∫ b̂

z
J(s)ds <M(z). (37)

Then, by Lemma 9, there exists some λ ∈ (0, 1) such that (1 − λ)G[â, b̂] + λJ satisfies

∫ b̂

r
(1 − λ)G[â, b̂](s) + λJ(s)ds ≥M(r ) (38)

for all r ∈ [â, b̂], and the inequality holds with equality for some r ∈ [â, b̂]. This implies
that (1 − λ)G[â, b̂] + λJ is feasible for the problem (34). Furthermore, by the linearity of
the objective, (36), and the optimality of G[â, b̂] in (34), it follows that (1 −λ)G[â, b̂] +λJ is



Theoretical Economics 18 (2023) Optimal disclosure of information 1259

also optimal in (34). However, this leads to a contradiction to the fact that (34) does not
admit an optimal solution where the equality in (35) holds for some z ∈ [â, b̂] ⊂ [a, b].

Consequently, the inequality (37) cannot hold, and J must be feasible in problem
(34). Together with (36) this implies that J is an optimal solution to (34) that assigns
mass to only n+ 2 points in the interval [â, b̂]. This implies that the CDF

{
G(z) if z ∈ [0, 1] \ [â, b̂]

G(â− ) + J(z)
(
G(b̂) −G(â− )

)
if z ∈ [â, b̂]

(39)

is a solution of the original problem that assigns mass to only n+ 2 points in the interval
[â, b̂]. By setting â = a+ 1

r and b̂ = b− 1
r , we can thus find a sequence of solutions (Hr )

to (14) that each have at most n+ 2 mass points in the interval [a+ 1
r , b− 1

r ]. As the set of
feasible distributions is closed and the objective function is upper semicontinuous, this
sequence admits a limit point H∞ that itself is optimal in (14). This limit distribution
consists of at most n + 2 mass points in the interval (a, b). Furthermore, by definition
of a, b and our construction in (39), each solution Hr and, hence, H∞ satisfies the MPC
constraint with equality at {a, b}. Thus, Lemma 7 implies that H∞ is continuous at these
points, and H∞(a) = F(a) and H∞(b) = F(b).

Hence, we have established that for every solution G for which BG is maximal, either
x ∈ BG, which by Lemma 7 implies that G(x) = F(x), or x /∈ BG and then one can find a
new solution G̃ such that (i) G̃ has at most n + 2 mass points in the interval (a, b) with
a = max{z ≤ x : z ∈ BG} and b = min{z ≥ x : z ∈ BG}, (ii) G̃(a) = F(a) and G̃(b) = F(b),
which implies that the mass inside the interval [a, b] is preserved, and (iii) G̃ matches
G outside (a, b). Since every interval contains a rational number, there can be at most
countably many such intervals. Proceeding inductively, the claim follows.

To establish Proposition 4, we make use of the partition lemma, stated next.

Lemma 11 (Partition Lemma). Suppose that distributions F , G are such that
∫ 1
x G(t )dt ≥∫ 1

x F(t )dt for x ∈ I = [a, b], where the inequality holds with equality only for the end
points of I. Suppose further that G(a) = F(a) and G(x) = G(a) + ∑K

r=1 pr1x≤mr for
x ∈ I, where

∑K
r=1 pr = F(b) − F(a), (mr ) is (weakly) increasing in r, and mr ∈ I for

r ∈ [K] ≡ {1, � � � , K}.
There exists a collection of intervals {Jr }r∈[K] such that {Pk} = {Jk \ ⋃

�∈A|�>k J�} is a
laminar partition, that satisfies

(a) J1 = I and if K > 1, then F(infJ1 ) < F(infJK ) <F(supJK ) < F(supJ1 )

(b)
∫
Pk

dF(x) = pk for all k ∈ [K]

(c)
∫
Pk

xdF(x) = pkmk for all k ∈ [K].

Proof. We prove the claim by induction over K. Note that when K = 1, we have J1 =
P1 = I, which readily implies properties (a) and (b). In addition, the definition of p1, m1
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implies that

G(b)b−G(a)a−p1m1 =G(a)(b− a) +p1(b−m1 )

=
∫ b

a
G(t )dt

=
∫ b

a
F(t )dt

= F(b)b− F(a)a−
∫
I
t dF(t )

=G(b)b−G(a)a−
∫
P1

t dF(t ). (40)

Hence, property (c) also follows.
We proceed by considering two cases: K = 2 and K > 2.
Case K = 2: Let t1, t2 ∈ I be such that F(t1 ) − F(a) = F(b) − F(t2 ) = p1. Observe that

since
∫ 1
x G(t )dt ≥ ∫ 1

x F(t )dt, x ∈ I, and this inequality holds with equality only at the end

points of I, we have (i)
∫ t1
a F(x)dx >

∫ t1
a G(x)dx and (ii)

∫ b
t2
F(x)dx <

∫ b
t2
G(x)dx. Using

the first inequality and the definition of G, we obtain

p1(t1 −m1 )+ +G(a)(t1 − a) ≤
∫ t1

a
G(x)dx

<

∫ t1

a
F(x)dx

= F(t1 )t1 − F(a)a−
∫ t1

a
xdF(x)

= (
G(a) +p1

)
t1 −G(a)a−

∫ t1

a
xdF(x). (41)

Rearranging the terms, this yields

p1m1 ≥ p1t1 −p1(t1 −m1 )+ >

∫ t1

a
xdF(x). (42)

Similarly, using (ii) and the definition of G, we obtain

G(b)(b− t2 ) −p1(m1 − t2 )+ ≥
∫ b

t2

G(x)dx

>

∫ b

t2

F(x)dx

= F(b)b− F(t2 )t2 −
∫ b

t2

xdF(x)

= G(b)b− (
G(b) −p1

)
t2 −

∫ b

t2

xdF(x). (43)
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Rearranging the terms, this yields

p1m1 ≤ p1t2 +p1(m1 − t2 )+ <

∫ b

t2

xdF(x). (44)

Combining (42) and (44), and the fact that F(t1 ) −F(a) = F(b) −F(t2 ) = p1 implies that
there exist t̂1, t̂2 ∈ int(I ) satisfying F(a) < F( t̂1 ) < F( t̂2 ) < F(b) such that F( t̂1 ) − F(a) +
F(b) − F( t̂2 ) = p1 and ∫ t̂1

a
xdF(x) +

∫ b

t̂2

xdF(x) = p1m1. (45)

Note that

(b− a)G(a) + (b−m1 )p1 + (b−m2 )p2 =
∫ b

a
G(x)dx

=
∫ b

a
F(x)dx

= bF(b) − aF(a) −
∫ b

a
xdF(x)

= bG(b) − aG(a) −
∫ b

a
xdF(x).

Since p1 +p2 =G(b) −G(a), this in turn implies that
∫ b
a xdF(x) = p1m1 +p2m2. Com-

bining this observation with (45), we conclude that

∫ t̂2

t̂1

xdF(x) = p2m2. (46)

Let J2 = [t̂1, t̂2] and J1 = I, and define P1, P2 as in the statement of the lemma. Observe
that this construction immediately satisfies (a) and (b). Moreover, (c) also follows from
(45) and (46). Thus, the claim holds when K = 2.

Case K > 2: Suppose that K > 2, and that the induction hypothesis holds for any
K′ ≤ K − 1. Let p̂2 = pK , m̂2 = mK , p̂1 = ∑

k∈[K−1] pk, and m̂1 = 1
p̂1

∑
k∈[K−1] pkmk. De-

fine a distribution Ĝ such that Ĝ(x) = G(x) for x /∈ I, Ĝ(a) = F(a), and Ĝ(x) = Ĝ(a) +∑2
r=1 p̂r1x≤m̂r

. This construction ensures that p̂1 + p̂2 = F(b) − F(a) and m̂2 > m̂1.

Moreover, Ĝ is a mean-preserving contraction of G and, hence,
∫ 1
x Ĝ(t )dt ≥ ∫ 1

x G(t )dt.

Since Ĝ(x) = G(x) for x /∈ I, this in turn implies that
∫ 1
x Ĝ(t )dt ≥ ∫ 1

x F(t )dt for x ∈ I,
where the inequality holds with equality only for the end points of I. Thus, the as-
sumptions of the lemma hold for Ĝ and F , and using the induction hypothesis for
K′ = 2, we conclude that there exists intervals Ĵ1, Ĵ2 and sets P2 = Ĵ2, P1 = Ĵ1 \ Ĵ2, such
that

(â) I = Ĵ1 ⊃ Ĵ2, and F(inf Ĵ1 ) <F(inf Ĵ2 ) < F(sup Ĵ2 ) <F(sup Ĵ1 )

(b̂)
∫
Pk

dF(x) = p̂k for k ∈ {1, 2}
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(ĉ)
∫
Pk

xdF(x) = p̂km̂k for all k ∈ {1, 2}.

Note that (b̂) and (ĉ) imply that m̂2 ∈ Ĵ2.
Denote by x0, x1 the end points of Ĵ2 and let q0 = F(x0 ) > F(a), q1 = F(x1 ) < F(b).

Define a cumulative distribution function F ′(·) such that

F ′(x) =

⎧⎪⎪⎨
⎪⎪⎩
F(x)/(1 − p̂2 ) for x≤ x0

F(x0 )/(1 − p̂2 ) for x0 < x< x1(
F(x) − p̂2

)
/(1 − p̂2 ) for x1 ≤ x.

(47)

Set p′
k = pk/(1 − p̂2 ) and m′

k = mk for k ∈ [K − 1]. Let distribution G′ be such that
G′(x) = G(x)/(1 − p̂2 ) for x /∈ I and G′(x) = G′(a) + ∑

r∈[K−1] p
′
r1x≤m′

r
. Observe that

by construction, G′(a) = F ′(a),
∑

r∈[K−1] p
′
r = F ′(b) − F ′(a), and {m′

r } is increasing in r,
where m′

r ∈ I, m′
r ≤ m̂2 for r ∈ [K − 1]. The following lemma implies that G′ and F ′ also

satisfy the MPC constraints over I.

Lemma 12.
∫ 1
x G′(t )dt ≥ ∫ 1

x F ′(t )dt for x ∈ I, where the inequality holds with equality
only for the end points of I.

Proof. The definition of G′ implies that it can alternatively be expressed as

G′(x) =
{
G(x)/(1 − p̂2 ) for x < m̂2(
G(x) − p̂2

)
/(1 − p̂2 ) for x≥ m̂2.

(48)

Since
∫ 1
b G(t )dt = ∫ 1

b F(t )dt, (47) and (48) readily imply that
∫ 1
b G′(t )dt = ∫ 1

b F ′(t )dt.
Similarly, using these observations and (47), we have

(1 − p̂2 )
∫ 1

a
F ′(t )dt

=
∫ 1

a
F(t )dt −

∫ x1

x0

F(t )dt + F(x0 )(x1 − x0 ) − p̂2(1 − x1 )

=
∫ 1

a
F(t )dt − F(x1 )x1 + F(x0 )x0 + p̂2m̂2 + F(x0 )(x1 − x0 ) − p̂2(1 − x1 )

=
∫ 1

a
G(t )dt − p̂2(1 − m̂2 ). (49)

Here, the second line rewrites
∫ x1
x0

F(t )dt using integration by parts, and leverages (ĉ).

The third line uses the fact that p̂2 = F(x1 ) − F(x0 ) and
∫ 1
a G(t )dt = ∫ 1

a F(t )dt. On the
other hand, (48) readily implies that

(1 − p̂2 )
∫ 1

a
G′(t )dt =

∫ 1

a
G(t )dt − p̂2(1 − m̂2 ). (50)

Together with (49), this equation implies that
∫ 1
a G′(t )dt = ∫ 1

a F ′(t )dt. Thus, the inequal-
ity in the claim holds with equality for the end points of I.
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Recall that m̂2 ∈ Î2 and hence a < x0 ≤ m̂2 = mK ≤ x1 < b. We complete the proof by
focusing on the value x takes in the cases (i) a < x≤ x0, (ii) x0 ≤ x ≤ m̂2, (iii) m̂2 ≤ x≤ x1,
and (iv) x1 ≤ x < b.

Case (i). Using the observations
∫ 1
x G(t )dt >

∫ 1
x F(t )dt and

∫ 1
a G(t )dt = ∫ 1

a F(t )dt
together with (47) and (48) yields∫ x

a
G′(t )dt = 1

1 − p̂2

∫ x

a
G(t )dt <

1
1 − p̂2

∫ x

a
F(t )dt =

∫ x

a
F ′(t )dt. (51)

Together with
∫ 1
a G′(t )dt = ∫ 1

a F ′(t )dt, this implies that
∫ 1
x G′(t )dt >

∫ 1
x F ′(t )dt in case

(i).
Case (ii). Using (47) and (48), we obtain

(1 − p̂2 )
∫ 1

x
G′(t ) − F ′(t )dt

=
∫ 1

x
G(t )dt − (1 − m̂2 )p̂2 −

∫ 1

x1

F(t )dt −
∫ x1

x
F(x0 )dt + (1 − x1 )p̂2.

Since G is an increasing function, it can be seen that the right hand side is a con-
cave function of x. Thus, for x ∈ [x0, m̂2], this expression is minimized for x = x0 or
x = m̂2. For x = x0, Case (i) implies that the expression is nonnegative. We next ar-
gue that for x = m̂2, the expression remains nonnegative. This in turn implies that∫ 1
x G′(t ) − F ′(t )dt ≥ 0 for x ∈ [x0, m̂2], as claimed.

Setting x = m̂2, recalling that
∫ 1
b G(t )dt = ∫ 1

b F(t )dt, and observing that G(t ) =
G(b) = F(b) for t ∈ [m̂2, b], the right hand side of the previous equation reduces
to

R := (b− m̂2 )F(b) − (1 − m̂2 )p̂2 −
∫ b

x1

F(t )dt − (x1 − m̂2 )F(x0 ) + (1 − x1 )p̂2

= (b− m̂2 )F(b) −
∫ b

x1

F(t )dt − (x1 − m̂2 )F(x0 ) − (x1 − m̂2 )p̂2

= (b− x1 )F(b) −
∫ b

x1

F(t )dt + (x1 − m̂2 )
(
F(b) − F(x0 ) − p̂2

)
. (52)

Since F(b) ≥ F(x1 ) = p̂2 + F(x0 ), we conclude that

R ≥ (b− x1 )F(b) −
∫ b

x1

F(t )dt ≥ 0, (53)

where the last inequality applies since F is weakly increasing. Thus, we conclude that∫ 1
m̂2

G′(t ) − F ′(t )dt ≥ 0, and the claim follows.
Case (iii). First observe that (47) and (48) imply that

(1 − p̂2 )
∫ 1

x
G′(t ) − F ′(t )dt

=
∫ 1

x
G(t )dt − (1 − x)p̂2 −

∫ 1

x1

F(t )dt −
∫ x1

x
F(x0 )dt + (1 − x1 )p̂2.
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Similar to Case (ii), the right hand side is a concave function of x. Thus, for x ∈ [m̂2, x1],
this expression is minimized for x = m̂2 or x = x1. When x = m̂2, Case (ii) implies
that

∫ 1
x G′(t ) − F ′(t )dt ≥ 0. Similarly, when x = x1, Case (iv) implies that

∫ 1
x G′(t ) −

F ′(t )dt ≥ 0. Thus, it follows that
∫ 1
x G′(t ) − F ′(t )dt ≥ 0 for all x ∈ [m̂2, x1].

Case (iv). In this case, (47) and (48) readily imply that

(1 − p̂2 )
∫ 1

x
G′(t ) − F ′(t )dt =

∫ 1

x
G(t ) − F(t )dt > 0,

where the inequality follows from our assumptions on F and G.

Summarizing, we have established that the distributions G′ and F ′ satisfy the con-
ditions of the lemma. By the induction hypothesis, we have that there exist intervals
{J′

k}k∈[K−1] and sets P ′
k = J′

k \ ⋃
�∈[K−1]|�>k J

′
� for all k ∈ A′ such that

(a′) J′
1 = I, and F(infJ′

1 ) <F(infJ′
K−1 ) <F(supJ′

K−1 ) <F(supJ′
1 )

(b′)
∫
P ′
k
dF ′(x) = p′

k for all k ∈ [K − 1]

(c′)
∫
P ′
k
xdF ′(x) = p′

km
′
k for all k ∈ [K − 1].

Let Jk = J′
k \ Ĵ2 for k ∈ [K − 1] such that Ĵ2 � J′

k, and Jk = J′
k for the remain-

ing k ∈ [K − 1]. Define JK = Ĵ2 = [x0, x1]. For k ∈ [K], let Pk = Jk \ ⋃
�∈[K]|�>k J�.

Note that the definition of the collection {Pk}k∈[K] implies that it constitutes a lami-
nar partition of I. Observe that the construction of {Jk}k∈[K], (â), and (a′) imply that
these intervals also satisfy condition (a) of the lemma. Note that by construction we
have

Pk ⊆ P ′
k ⊆ Pk ∪ JK and Pk ∩ JK = ∅ for k ∈ [K − 1]. (54)

Since
∫
JK

dF ′(t ) = 0 by (47), this observation implies that
∫
P ′
k
dF ′(t ) = ∫

Pk
dF ′(t ) for

k ∈ [K − 1].
Using (47), (b′), and (54), this observation implies that∫

Pk

dF(t ) =
∫
Pk

dF ′(t )(1 − p̂2 ) =
∫
P ′
k

dF ′(t )(1 − p̂2 ) = p′
k(1 − p̂2 ) = pk

for k ∈ [K − 1]. Similarly, by (b̂) we have
∫
PK

dF(t ) = ∫
P̂2

dF(t ) = p̂2 = pK .
Finally, observe that by (ĉ) we have

∫
PK

t dF(t ) = ∫
P̂2

t dF(t ) = p̂2m̂2 = pKmK . Simi-
larly, (47) and (54) imply that for k ∈ [K − 1], we have∫

Pk

t dF(t ) = (1 − p̂2 )
∫
Pk

t dF ′(t ) = (1 − p̂2 )
∫
P ′
k

t dF ′(t ) = (1 − p̂2 )p′
km

′
k = pkmk.

These observations imply that the constructed {Jk}k∈[K] and {Pk}k∈[K] satisfy the
induction hypotheses (a)–(c) for K. Thus, the claim follows by induction.

Proof of Proposition 4. By definition, the interval Ij in the statement of Proposi-
tion 4 satisfies the conditions of Lemma 11 (after setting a = aj , b = bj). The lemma
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defines auxiliary intervals {Jr } and explicitly constructs a laminar partition that satis-
fies conditions (a)–(c). Here, conditions (b) and (c) readily imply that the constructed
laminar partition satisfies the claim in Proposition 4, concluding the proof.

Proof of Theorem 1. The existence of an optimal mechanism follows from standard
compactness arguments and is proven in Lemma 5 in this Appendix. Consider now an
arbitrary optimal SGR mechanism. Fix a type profile θ. By combining Lemmas 2 and
3 we can replace Gθ by another solution to the respective optimization problem under
MPC and linear side-constraints and obtain a new SGR mechansim. By Propositions 3
and 4 there always exists a solution to this optimization problem under MPC and lin-
ear side-constraints that can be implemented by a laminar partitional signal. Iterating
this process over type profiles, we get that there exists an optimal SGR mechanism in
which each distribution Gθ can be implemented by a laminar partitional signal. Thus,
we constructed an optimal laminar partitional mechanism.

Proof of Proposition 2. Part (i) of the proposition follows from Proposition 4 by
counting the number of linear side-constraints in the optimization problem stated in
Lemma 2. Similarly, by counting the side-constraints in the optimization problem stated
in Lemma 3, it follows that for every optimal SGR mechanism (G∗, q∗ ) and every type
profile θ, there exists a laminar partitional signal that generates G∗,θ. This proves the
result if the action profile distribution q∗,θ(·|m) is degenerate and deterministically rec-
ommends an action profile for each posterior mean m and type profile θ. We refer to
SGR mechanisms associated with such action profile distributions as nonrandomized
SGR mechanisms (since for a given type profile and posterior mean, their recommen-
dation is deterministic). In the multi-agent case, in contrast to the single-agent case,
nonrandomized SGR mechanisms need not be optimal and the designer may need to
use nondegenerate distributions of recommended action profiles.

To show the result when optimal SGR mechanisms require nondegenerate action
profile distributions, we consider the parametrization of SGR mechanisms in terms of
the mean ma,θ and the unconditional probability of each action profile qθ(a) (see Sec-
tion 3.1). In this parametrization, the set of nonrandomized SGR mechanisms is dense
in the space of all SGR mechanisms (as for each randomized mechanism, an arbitrarily
small perturbation of all the means induces a nonrandomized mechanism). The de-
signer’s payoff as well as the incentive compatible constraints are continuous in this
parametrization (see the proof of Lemma 5) and, hence, there exists a sequence of non-
randomized SGR mechanisms such that the payoff of the designer converges to the
value of the optimal (randomized) SGR mechanism along the sequence. By the argu-
ment of Lemma 3.2, for each of these nonrandomized SGR mechanisms, there exists a
laminar partitional mechanism with weakly larger payoff and partition depth of at most∑

i∈N |Ai|2|�i| + 2. Since there are finitely many partial orders defining laminar parti-
tions, there exists one that appears infinitely often along the sequence. Since for a given
partial order the laminar partition is defined in terms of the end points of the convex
hulls of the partition elements that belong to [0, 1]|A| , there is a subsequence associated
with this partial order that converges to a laminar partition consistent with the same
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partial order, which still has depth bounded by
∑

i∈N |Ai|2|�i| + 2. Moreover, the de-
signer’s payoff is continuous in the end points of the aforementioned intervals (since
the distribution of the state is continuous). Thus, this limit point defines a new laminar
partitional mechanism that achieves the optimal objective and has at most the depth
stated in the claim.

Proof of Proposition 6. The first claim is immediate and follows as explained in the
text. Here, we focus on the following example and use it to prove the second part of the
claim.

Example 1. There is a single agent, all types are equally likely, i.e., φ(θ) ≡ 1/|�| for all
θ ∈ � = {1, � � � , n}, and the state is uniformly distributed in [0, 1]. For k ∈ {−2n, � � � , 2n}
we define intervals BL,k = [bL,k−1, bL,k] and BR,k = [bR,k−1, bR,k]. Here, for any integer
k we let

bL,k = 1
4

+ 1
8

sgn(k)

√ |k|
2n

bR,k = 3
4

+ 1
8

sgn(k)

√ |k|
2n

.

All types of the agent share the same indirect utility function ū, such that ū(m, θ) = (m−
1
2 )2 for all m ∈ {bL,k, bR,k}, and are linearly interpolated in each BL,k and BR,k (in our
construction, the payoffs outside these intervals will be immaterial). The indirect utility
of the designer is

v̄(m, θ) =
{

1 if m ∈ BL,2θ ∪BL,−2θ ∪BR,2n+2−2θ ∪BR,−2n−2+2θ

0 otherwise.
(55)

The agent’s indirect utility functions can be generated by taking the set of actions to be
{aL,k, aR,k} for k ∈ {−2n − 1, � � � , +2n+ 1} and the utilities as a function of the action to
be

u(a·,k, ω, θ) = c2
·,k−1 + ω− b·,k−1

b·,k − b·,k−1

(
c2
·,k − c2

·,k−1

)
,

where c·,k = b·,k − 1
2 . Similarly, we let v(a, ω, θ) = 1 for actions aL,2θ, aL,−2θ, aR,2n+2−2θ,

and aR,−2n−2+2θ, and zero otherwise. ♦

We begin by establishing that in the setting of Example 1 no public mechanism
achieves more than 1/|�|. Note that by our construction in (55), for any poste-
rior mean m, the indirect utility of the designer equals 1 for at most a single type,
i.e.,

∑
θ∈� v̄(m, θ) ≤ 1. As φ(θ) = 1/|�|, this immediately implies that for any type-

independent distribution of the posterior mean G, the designer can achieve a payoff
of at most 1/|�|.

Next consider the following private mechanism: The distribution Gθ for type θ ∈ �

consists of four equally likely mass points at bL,2θ, bL,−2θ, bR,2n+2−2θ, and bR,−2n−2+2θ. It
is straightforward to see that the signal based on the partition (k )4

k=1 with 1 = (bL,2θ−
1/8, bL,2θ + 1/8), 2 = [0, 1/2] \1, 3 = [bR,2n+2−2θ − 1/8, bR,2n+2−2θ + 1/8], and 4 =
(1/2, 1]\3 induces the desired posterior mean distribution. At each of these beliefs the
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agent’s indirect utility is given by ū(m, θ) = (m− 1
2 )2. Thus, the benefit the agent of type

θ′ derives from observing the signal meant for type θ (relative to observing no signal)
equals the variance of Gθ.

Note that the variance conditional on the posterior being less than 1/2 equals
1
2 (bL,2θ− 1

4 )2 + 1
2 (bL,−2θ− 1

4 )2 = θ
64·n and the variance conditional on the posterior being

greater than 1
2 equals 1

2 (bR,2n+2−2θ− 3
4 )2 + 1

2 (bR,−2n−2+2θ− 3
4 )2 = n+1−θ

64·n . By the law of the

total variance, the variance of Gθ thus equals 1
2

θ
64·n + 1

2
n+1−θ

64·n + 1
2

1
4

2 + 1
2

1
4

2 = 9n+1
128·n . Since,

this quantity does not depend on θ, we conclude that each type derives equal utility
from any signal and the mechanism is incentive compatible. Each mean in the support
Gθ persuades the agent to take an action that yields a payoff of 1 to the designer. Hence,
this mechanism with private signals yields a payoff of 1.
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