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Attack and interception in networks

Francis Bloch
Université Paris 1 and Paris School of Economics

Kalyan Chatterjee
Department of Economics, Pennsylvania State University

Bhaskar Dutta
Department of Economics, University of Warwick and Ashoka University

This paper studies a game of attack and interception in a network where a single
attacker chooses a target and a path, and each node chooses a level of protec-
tion. We show that the Nash equilibrium of the game exists and is unique. We
characterize equilibrium attack paths and attack distributions as a function of the
underlying network and target values. We show that adding a link or increasing
the value of a target may harm the attacker—a comparative statics effect that is
reminiscent of Braess’s paradox in transportation economics. Finally, we contrast
the Nash equilibrium with the equilibrium of a variant of the model: one where
all nodes cooperate in interception.

Keywords. Network interdiction, networks, attack and defense, inspection
games.

JEL classification. C72, D85, K42.

1. Introduction

Networks are often used to transport bombs, drugs, and other contraband goods. Pre-
venting or stopping the transportation of illegal and dangerous objects on networks has
long been the goal of army and police forces as well as customs agents. In this paper,
we analyze a game between an attacker who chooses a target node in the network and
nodes who try to deter the attack.

This issue is connected to the vast literature in operations research on network in-
terdiction. Models of network interdiction involve two players: the interdictor, who
changes the structure of the network (for example, placing detection devices, destroying
links, or limiting capacities on links), and the evader, who uses the network to transport
objects from a source to a sink. Typically, the game played has a Stackelberg structure:
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the interdictor moves first and the evader moves second. The objectives of the two play-
ers are diametrically opposed: the evader wants to maximize the flow of goods or min-
imize the length of the path between the source and the sink, whereas the interdictor
wants to minimize the evader’s objective.

The problem that we focus on in this paper is different in two important respects.
First, we assume that the attacker endogenously chooses its target. In models of network
interdiction, the source and sink are exogenously given. While this assumption is easily
justified in some contexts, for instance, troop movements or delivery of goods to specific
locations, it is less likely to be justified for terrorist organizations or drug smugglers.
They typically choose their target destination(s) endogenously, at least partly to make it
more difficult for their opponent(s) to prevent successful attacks. Second, we consider a
decentralized structure where each node only cares about the possible damage to itself,
whereas in models of network interdiction, a single defender controls all the nodes.

Formally, we model a (n + 1)-person game between an attacker A and n defenders
with different values. The attacker and defenders are connected in an exogenously given
network. The attacker chooses a target and an attack path from its location to the target.
Each defender can invest in an interception technology to stop the attack at quadratic
cost. The objectives of the attacker and the nodes are diametrically opposed. If the at-
tack is successful, the attacker captures the value of the target, and the target loses its
value. However, the game is not zero sum because the nodes also incur a cost of inter-
ception that does not appear in the attacker’s payoff. All players choose their strategies
simultaneously. The appropriate solution concept for this strategic situation is Nash
equilibrium.

The game we study involves complex strategic interactions between the n + 1 play-
ers. The attacker’s choice of targets and attack paths depends on the interception invest-
ments of the nodes. The attacker is less likely to attack a node with higher interception
investment and to choose instead an attack path where nodes choose lower interception
investments. Each target’s interception investment depends both on the attacker’s strat-
egy and on the interception investments of the other nodes. Given the assumption that
nodes are only affected by attacks that target them, a node’s interception investment is
increasing in the probability of being attacked, and nodes that are never attacked never
choose to protect. Interception investments of different nodes are strategic substitutes.
If other nodes intercept more, a target node’s incentive to intercept is reduced as the
node is less likely to be reached on any attack path. The pattern of externalities across
target nodes depends on the attacker’s choice of attack paths.

Our main result shows that the game always admits a unique Nash equilibrium. We
identify conditions under which this unique equilibrium is in pure strategies. Essen-
tially, a pure strategy equilibrium exists if and only if one target node has sufficiently
high value so that it is worthwhile to attack even if the node is heavily defended. Other-
wise, the unique equilibrium involves the attacker mixing over targets and attack paths.
Our analysis also casts light on the equilibrium strategies. We show that when a generic
condition of target values is satisfied, the attacker only uses one path to attack a node
in the support even if there are possibly multiple paths of attack. We characterize the
equilibrium attack tree, using the fact that if a node is preceded by several targets, it will
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always be attacked through the preceding target with lowest value. Equilibrium attack
probabilities are characterized as the unique solution to a system of nonlinear equa-
tions. The difficulty in fully characterizing equilibrium strategies stems from the diffi-
culty in identifying the set of nodes that are attacked with positive probability. Once the
support of the attack distribution is given, equilibrium attack paths and probabilities are
easily characterized.

We then go on to describe some comparative statics results. First, we describe how
the equilibrium outcomes change when there is a small increase in the value of a target
node. It turns out that the changes in equilibrium payoff to the attacker can be counter-
intuitiv: the attacker’s equilibrium payoff may be strictly lower when the value of a node
increases. Second, we construct examples showing that an analogue of Braess’s paradox
can occur in our model: the addition of a new link may actually decrease the expected
payoff to the attacker. We also show that the attacker cannot benefit from committing
not to attack certain targets on a line.

Next, we look at an alternative formulation where a single centralized agency coor-
dinates interception. We focus on the line and show that the equilibrium is unique. We
also identify conditions under which all nodes in the line will be attacked in equilibrium
and compare the equilibrium outcomes under the cooperative and non-cooperative for-
mulations. Not surprisingly, the attacker is worse off in the case of centralized defense.
We show that all nodes but the first target are better off in the case of centralized defense,
but that the first target may either be better off or worse off. Hence, the first target may
need to be subsidized to accept participation in a centralized defense scheme. We also
show that if an extra link is added from node 0 to any other node, then, in contrast to the
benchmark case, the attacker is never worse off.

Our analysis applies to many situations where an attacker chooses both the target
and route in the network, while defenders protect the nodes. A prime example is a ter-
rorist bombing attack: the terrorist chooses the route that the bomb will follow and the
place where the bomb will explode, while security agents inspect checked luggage (and
suspicious transit luggage) at every airport. The Pan Am 103 crash over Lockerbie on
December 21, 1988 illustrates this situation: the bomb was planted in luggage checked
in Gozo (Malta) on Malta Airlines, and was then transferred to Frankfurt and London,
where it was put on the Pan Am flight to New York. The bomb was designed to explode
as soon as the airplane reached an altitude of 28,000 feet, which would happen only on
the transatlantic flight. This attack clearly showed that terrorists chose the attack route
as well as the target, taking into account the degree of protection in the different air-
ports, and realizing that inspection at the initial point in Malta and at transfer airports
would be lax. It also highlighted the importance of cooperation among airport security
authorities to foil terrorist attacks.1

Another example is drug smuggling from Mexico into the United States, as studied
by Dell (2015): drug lords choose the road and the U.S. entry point of drug packages,
while local police authorities act to disrupt drug traffic. Dell’s (2015) analysis shows

1Heal and Kunreuther (2005) propose a simple model to study terrorist attacks and interdependence of
airport security protection efforts.
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that the election of new mayors from the National Action Party (Partido Acción Nacional
(PAN)), with a strong stance on crime, led drug lords to divert traffic routes away from
some municipalities. The recent wave of irregular migration into Europe can also be
analyzed using our theoretical model. Migrants choose both the destination and transit
route, while European governments try to prevent migrants from crossing borders. Mi-
gration routes into Europe have been documented, and the choice of destination and
transit routes has been extensively studied.2 Finally, our model can be used to explain
the strategies chosen by a law enforcement authority to infiltrate a terrorist or criminal
network. The nodes of the network are terrorists or criminals, who invest in protecting
themselves from being captured by the police. The attacker is an infiltrator who moves
in the network so as to arrest a terrorist or criminal. The value of a node is interpreted as
the importance of the agent in the terrorist or criminal network.3

2. Related literature

Our paper is related to two strands of the literature: the operations research literature on
network interdiction and the economics literature on attack and defense in networks.
The extensive literature on network interdiction originated with Wollmer’s 1964 charac-
terization of the arc to be removed to minimize the flow between a source and a sink in
the network. Three types of problems have been considered. In short path interdiction
(Golden (1978)), the objective of the evader is to minimize the length of the path be-
tween the source and the sink. In most reliable path interdiction (Washburn and Wood
(1995)), the interdictor places detection devices on the edges, and the objective of the
evader is to minimize the probability of detection. In network flow interdiction (Mc-
Masters and Mustin (1970), Ghare, Montgomery, and Turner (1971), and Fulkerson and
Harding (1977)), edges are capacitated and the objective of the evader is to maximize
the flow between the source and the sink. The applications range from the disruption
of enemy troop movement (McMasters and Mustin (1970) and Ghare, Montgomery, and
Turner (1971)) to drug smuggling (Wood (1993) and Washburn and Wood (1995)) and
the detection of nuclear material (Morton, Pan, and Saeger (2007)). The literature is very
clearly summarized by Collado and Papp (2012) and surveyed by Smith and Song (2020).

A major point of departure between the operations research literature and our pa-
per stems from the questions asked and methods used. The literature on network in-
terdiction focuses attention on the complexity of the integer and linear programming
problems involved in network interdiction, and studies algorithms to find exact or ap-
proximate solutions. Instead, we study attack and interception as a game, provide an
exact characterization of equilibrium, and compute the comparative statics effects of
changes in the parameters of the problem.

Economists, using formal game theoretic models, have also contributed to the lit-
erature on conflict in networks. Some of these papers focus on network design and

2See Dustmann, Fasani, Frattini, Minale, and Schönberg (2017) for an overview of the economics of
refugee migration into Europe, and references to the choice of migration routes.

3We thank an anonymous referee for suggesting this application of our model.
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emphasize trade-offs between connectivity and ease of external disruptions. The litera-
ture started with Dziubiński and Goyal (2013), who model attacks on infrastructure. The
problem is modeled as a two-person–two-stage game between a designer (D) and an
adversary (A). In the first stage, D builds a network among n links and chooses which
nodes to defend. There is a cost of both building links and defending nodes. In the
second stage, A observes the network and defense strategy of D, and attacks up to k

unprotected nodes. The objective of D is to maximize the value of the residual network
at minimum cost; the objective of A is to minimize the value of the residual network.
The paper focuses on the subgame perfect equilibria of the game. The optimum strat-
egy for D depends uon the relative costs of defense and building links. If it is relatively
cheaper to build links, then D will build denser networks and leave several nodes un-
protected. The higher is link cost relative to cost of defense, the optimum strategy is to
build a sparser network but defend relatively more nodes.

Dziubiński and Goyal (2017) also model attack and defense in infrastructure net-
works, but the network is exogenously given. The sequential structure of the game and
payoff functions remain similar. However, the arbitrariness of the network requires new
conceptual tools. The emphasis shifts on the key nodes that need to be defended to en-
sure efficient functionality. Goyal and Vigier (2014) model hacking and cybersecurity.
The defender moves first, constructs the network, and chooses an allocation of defense
resources to defend nodes. The attacker then chooses an attack strategy, and decides
how to spread through the network by using successful resources. The paper uses a
Tullock contest function to model the outcome between the defender and attacker at
any node. Successful attacks travel from node to node in the network, the “contagion”
representing the spread of computer viruses. Cerdeiro, Dziubiński, and Goyal (2017)
modificed Goyal and Vigier. They consider a (n+ 2)-player–three-stage game between a
designer (D), n vertices (V ), and an intelligent adversary (A). In the first stage, D builds
a network g on the n vertices. The network is observed by the nodes in V that simulta-
neously decide whether to invest in (costly) defense or not. This determines the set P of
protected nodes. Finally, A observes (g, P ) and chooses a mixed attack strategy. A real-
ization of this lottery is the node to infect, i in V . The infection spreads and eliminates
all the unprotected nodes reachable from i in G via a path that lies entirely in V −P . The
net payoff to a node is an increasing function of the size of its surviving component mi-
nus its protection cost if any. The gross payoff to D is the value of the residual network,
while the payoff to A is the negative of the residual network.

Finally, Bloch, Dutta, and Dziubiński (2020) study network design in a different game
of attack and defense, where the objective of the defender is to hide an object inside the
network.

While our paper considers, as in the earlier literature, a game played between an
attacker and defender(s) on a network, our model is very different from existing mod-
els. The most striking difference is that in all previous papers, the adversary can directly
attack target nodes, whereas we explicitly take into account paths of attack as an at-
tack may be intercepted before reaching the target. That is, we allow for a significantly
broader class of networks in which there may not be any link from the adversary to a spe-
cific target: the only path from the adversary to the target must include other potential
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targets. The consequences of this issue will become clearer once we have described the
model in the next section. Second, except for Cerdeiro, Dziubiński, and Goyal (2017), all
the other papers model the problem as a two-person problem, where D and A are the
two players. This conforms to our analysis in Section 6, where D chooses the level of
defense at all nodes. In our benchmark model, each node decides on its expenditure on
defense independently. Of course, there is strategic interaction between the difference
nodes. A target node that has a predecessor on the attack path benefits from the defense
outlay of the predecessor since that will reduce the probability that the adversary can
successfully avoid capture. Third, all previous papers move after observing the pattern
of defenses, whereas we assume that the adversary and defenders move simultaneously.

3. The game

We consider a game between an attacker (player 0) and n target nodes, who we also
call defenders. There is an exogenously given network G describing the communication
possibilities among the (n + 1) players. We let gij = 1 if there exists a direct communi-
cation link between players i and j, and gij = 0 otherwise. A path p between i and j is
a sequence of distinct nodes i0, i1, � � � , im such that i0 = i, im = j, and g(ik, ik+1 ) = 1 for
k = 0, � � � , m − 1. A path thus describes a sequence of moves along the network, where
none of the locations is visited twice. Without loss of generality, we suppose that the
network G is connected, so that the attacker can reach any target through some path in
the network.

For each defender i, there is a value bi that captures the strategic or symbolic im-
portance of a terrorist target or the profitability of the market for drugs or contraband
goods. If the attacker succeeds in attacking target i, she receives the positive value bi.
On the other hand, the defender i loses a value di. We normalize all values bi and di to
be smaller than 1.

The defenders invest in a technology to intercept the attack at the target. We let xi
denote the probability that defender i intercepts the attack, and assume that the tech-
nology allowing defender i to intercept with probability xi has cost c(xi ).

Throughout the paper, we make two simplifying assumptions that result in consid-
erable simplicity of exposition. We assume that for each i,

(i) bi = di

(ii) c(xi ) = x2
i /2.

While these assumptions greatly simplify the exposition, they are not necessary for
our results. We show in the Appendix that it is straightforward to extend the results
to cost functions that are strictly increasing and strictly convex. Moreover, additional
genericity assumptions on the vector d (analogous to those we have made on the vector
b) also allow us to drop the assumption that bi = di for all i.

In the baseline model, we assume that defenders choose their interception invest-
ments non-cooperatively and simultaneously. The attacker chooses a target i and an
attack path p from 0 to i. Let P denote the set of all paths originating at 0 and let i(p)
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denote the terminal node of path p. Given any path p and i ∈ p, the set of predecessors
of i in p is P(p, i) = {j ∈ p|j lies on the path between 0 and i}. Fix a vector of intercep-
tion investments x = (x1, � � � , xn ). For any node i contained in the path p, we let αi(p)
denote the probability that the attack along path p reaches node i,

αi(p) =
∏

j∈P(p,i)

(1 − xj ),

so that the probability that the attack with target i along path p is successful is given by

βi(p) = αi(p)(1 − xi ).

As we will soon establish, the attacker often uses a mixed strategy, choosing a prob-
ability distribution π over all paths p in P . The expected utility of the attacker is then
given by

U =
∑
p∈P

π(p)βi(p)bi

for targets i in the support of the attacker’s mixed strategy.
The expected payoff of defender i is given by

Vi =
∑

p∈P|i(p)=i

π(p)βi(p)(−bi ) − x2
i

2
.

Our objective is then to characterize the Nash equilibria of the game of attack and
interception, where the attacker selects a probability distribution over P to maximize
her expected utility U and each defender i chooses an interception investment xi to
maximize his expected payoff Vi.

Notice that the game incorporates two important features. First, each defender only
cares about attacks targeted at him. This assumption implies that a defender who is
not in the support of the attacker’s strategy does not invest in interception. Second,
defenders invest in interception at the target and not along communication links; the
interception occurs at the vertices of the graph G and not at the edges of the graph.
Hence, defenders do not discriminate between different paths leading to them.

4. Equilibrium analysis

We now turn to the analysis of the game. We will use the following generic assumption
on payoffs.

Assumption 1. For any two defenders i, j, bi �= bj .

We first note that a Nash equilibrium of the game of attack and interception always
exists by appealing to the Debreu–Fan–Glicksberg fixed point theorem.

Theorem 1. The game of attack and interception on a network always admits a Nash
equilibrium in mixed strategies.
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We next consider equilibria in pure strategies, where the attacker selects a unique
target in the transportation network. In an equilibrium in pure strategies, where the
attacker attacks defender i, the other defenders do not invest in an interception tech-
nology. Hence, this equilibrium exists when the value of target i is sufficiently high, so
that the attacker has no incentive to deviate and attack any other (unprotected) node.
The following proposition summarizes the conditions under which a pure strategy equi-
librium exists.

Proposition 1. The game admits an equilibrium in pure strategies if and only if there
exists a defender i such that

(i) bi(1 − bi ) ≥ bj for all j such that there is a path p, i /∈ P(p, j)

(ii) bi ≥ bj for all j such that for all paths p, i ∈ P(p, j).

Proposition 1 shows that an equilibrium in pure strategies only occurs in very asym-
metric situations, when one of the targets has a value that is much larger than the value
of any other target. In all other situations, the equilibrium involves a mixed strategy of
the attacker. We use � to denote the set of targets that are attacked with positive prob-
ability. We also fix a vector of interception investments x = (x1, � � � , xn ) satisfying the
restriction that xi = 0 if i /∈ �.

On any path p, for any two nodes i, j ∈ p ∩ �, we will say that j is an immediate
predecessor of i in p if j ∈ P(p, i) and (P(p, i) \ {j}) ∩ � ⊂ P(p, j) ∩ �. In words, j is an
immediate predecessor of i in p if j is a predecessor of i along path p and there are no
other predecessors of i in p∩�.

We start by establishing two preliminary lemmas on the equilibrium attack strate-
gies.

Lemma 1. Fix the interception investments x and consider any best response of the at-
tacker to x.

(i) If i, j ∈ � and j is an immediate predecessor of i in p, then

bi(1 − xi ) = bj .

(ii) If i, j ∈ � and there exist attack paths p and p′ such that i and j are the first targets
in paths p and p′, then

bi(1 − xi ) = bj(1 − xj ).

Lemma 1 is a direct consequence of the fact that the attacker must be indifferent
between any target in the support �. We use this lemma to derive another preliminary
result on the equilibrium strategy of the attacker.

Lemma 2. For any two paths p and p′, if i is attacked along paths p and p′, then P(p, i)∩
� = P(p′, i) ∩�.
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Lemma 2 shows that, without loss of generality, we can assume that any defender i
is attacked from a single path p in equilibrium. If the attacker uses two paths p and p′ to
reach a defender i, the two paths only differ on nodes that are not attacked and, hence,
never invest in the interception technology. Hence, the probability that the attack is
successful is identical along the two paths, βi(p) = βi(p′ ).

Lemma 2 allows us to simplify notation considerably by identifying any attack path p

chosen by the attacker with the final target along the path i(p). Instead of characterizing
the equilibrium strategy of the attacker as a probability distribution π over paths, we can
characterize it as a probability distribution q over targets in �. Moreover, since every
target is attacked through only one path, the attacker is connected to all targets in �

though a tree T ⊆ G rooted at 0. We call T the equilibrium attack tree. Notice that when
there are two targets i and j such that j is a predecessor of i in T , the interpretation is
that the attacker uses a path going through j to reach i, and with probability qj attacks
the intermediary target j and with probability qi attacks the final target i.

Using this notation, we define the expected utility of the attacker as

U(q, x1, � � � , xn ) =
n∑

i=1

βiqibi (1)

and the expected utility of defender i as

Vi(q, x1, � � � , xn ) = −αi(1 − xi )qibi − x2
i

2
. (2)

The equilibrium interception investment of defender i is then

x∗
i = αiqibi. (3)

We introduce one last piece of notation. Since there is effectively only one path to
each target, we can now define predecessors of targets without reference to paths. So
P(i) will denote the set of predecessors in T . For any target i ∈ �, we let δ(i) denote the
number of targets in � along the unique path connecting 0 to i in T . So if a node i is the
first node attacked on an attack path, then δ(i) = 0. We let �m be the set of all targets
with δ(i) =m:

�m = {
i ∈ �|δ(i) =m

}
.

The set �0 is thus the set of first targets, whereas �m, m ≥ 1, denotes a set of targets
that are reached through other targets in the attack tree.

We next prove a simple lemma, which allows us to characterize the equilibrium at-
tack tree T for any fixed support �.

Lemma 3. Suppose that i ∈ �m with m≥ 1. Let k ∈ � be the immediate predecessor of i on
the unique path from 0 to i in T . Let

J = {j ∈ � there exists a path from j to i in G that does not intersect �}.

Then bk < bj for all j ∈ J, j �= k.
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Lemma 3 shows that target i will be attacked from the target k with the lowest value
among all the targets for which there exists a path to i that does not intersect �. The
intuition underlying Lemma 3 is easy to grasp. If there are two targets j and k for which
there is a path to i that does not intersect �, because the attacker is indifferent among the
two targets, the probability of a successful attack at the target with lower value must be
higher than the probability of a successful attack at the target with higher value. But this
implies that the probability of reaching i is higher through the target with lower value
and, hence, the equilibrium attack path must reach i through this target.

For a fixed support �, using Lemma 3, we can fully characterize the equilibrium at-
tack tree. Any target that can be reached directly by the attacker must be attacked di-
rectly. Any target that can only be reached through other targets will be attacked from
the target with lowest value.

Suppose now that the support � and attack tree T are given. The equilibrium attack
probabilities qi, interception investments x∗

i , and equilibrium utility of the attacker U

can be computed as solutions to the system of nonlinear equations

x∗
i = 1 − U

bi
if i ∈ �0 (4)

qi = 1
bi

(
1 − U

bi

)
if i ∈ �0 (5)

x∗
i = 1 − bk(i)

bi
if i /∈ �0 (6)

qi = bk(i)

biU

(
1 − bk(i)

bi

)
if i /∈ �0 (7)

∑
i

qi = 1, (8)

where k(i) denotes the immediate predecessor of i along the attack path.
To understand these formulas, note that the equilibrium investment levels are ob-

tained from the equations guaranteeing that the attacker is indifferent among the targets
in the support, so that

bi(1 − xi ) = U for i ∈ �0

bi(1 − xi ) = bk(i) for i /∈ �0,

providing two different expressions, whether i is the first target along an attack path or
not. This system of linear equations characterizes the unique equilibrium investment
levels of defenders in the support as a function of U .

The optimal choice of interception investments must satisfy (3):

x∗
i = qiαibi for all i.

Recalling that U = biαi(1 − x∗
i ), we obtain

x∗
i = qi

U

1 − x∗
i
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so that

qi =
x∗
i

(
1 − x∗

i

)
U

.

Replacing x∗
i with the values in (4) and (6) gives the expressions for the equilibrium at-

tack probabilities, forming a system of nonlinear equations in U .
Because all probabilities qi are strictly decreasing functions of U , (8) has a unique

solution, establishing that the equilibrium utility of the attacker U is unique. This, in
turn, implies that once the equilibrium support � and equilibrium attack tree T are
fixed, (4)–(8) uniquely determine the equilibrium attack probabilities and interception
investments.

The preceding analysis shows that once the equilibrium support � is given, the other
elements of the equilibrium strategies (attack tree, attack probabilities, and interception
investments) are easily characterized. The difficult part of the equilibrium analysis is
the identification of the support � of targets over which the attacker randomizes. The
following lemma provides a partial characterization of the support.

Lemma 4. For any equilibrium (q, x∗ ), where � is the support of q, consider the following
cases:

(i) Suppose that i ∈ �. Then, if j ∈ �∩ P(i), bj < bi.

(ii) Suppose that i ∈ �, and that there exists a path between i and j in G that does not
intersect �. Then, if bj > bi, we must have j ∈ �.

Lemma 4 first shows that along an equilibrium attack path, the values of targets must
be increasing: any defender who is preceded by another defender with higher value can-
not be attacked in equilibrium. The second part of Lemma 4 identifies the final targets of
the equilibrium attack tree: it shows that any target j that has a higher value than a target
i and can be reached through i must be attacked when i is attacked. Using Lemma 4, we
obtain the main result of this section.

Theorem 2. Given Assumption 1, the game of attack and interception admits a unique
Nash equilibrium.

Theorem 2 shows that there is a unique equilibrium support � and, hence, a unique
equilibrium. To prove that the support is unique, suppose, by contradiction, that there
were two different equilibrium supports � and �′. We first show that as one target is
attacked under � but not under �′, the equilibrium utility of the attacker must be strictly
higher under �′ than �. (The argument is immediate if there is a target that is directly
attacked under �, but not under �′, and can be extended to targets that are not directly
attacked using a simple recursive argument based on Lemma 4.)

The fact that equilibrium utility is at least as large under � as under �′ and that the
supports are different implies that the support �′ must be strictly contained in the sup-
port �.
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We next show that for any defender who is directly attacked under �′, the equilib-
rium interception strategy must be lower under �′ than under �. (Again, the argument
is immediate if one considers a target that is directly attacked under both equilibria, and
requires a recursive argument based on Lemma 4 when the target is not directly attacked
under �.)

Next we show, using Lemma 2, that the same attack paths must be used in the two
equilibria. Together with the fact that the attacker’s equilibrium utility is strictly larger
in the equilibrium with support �′, this implies that all interception investments are
lower under �′ than under �. As interception investments are lower, by (3), equilibrium
attack probabilities must be lower under �′ than under �. This final observation leads
to a contradiction, as the sum of probabilities is equal to 1 in both equilibria and the
support �′ is strictly contained in �.

Theorem 2 is based on a proof by contradiction and does not provide a constructive
argument to characterize the equilibrium support �. Lemma 4 only provides a partial
characterization of the equilibrium support. The full identification of the equilibrium
support is the most complex part of the equilibrium analysis and we do not have any
simple algorithm that can be used to perform this task. When the underlying trans-
portation network G is a tree, because once a node is attacked, all targets with increasing
value following that node are also attacked, the identification of the support amounts to
characterizing the first targets on any path from the source. This is a simpler problem,
and efficient algorithms can be used to identify the first targets. In the Appendix, we
consider the simplest case—when the underlying network is a line—and provide a full,
analytical characterization of the equilibrium support �.

5. Comparative statics

In this section, we discuss the consequences of changes in the parameters of the model
on the equilibrium outcomes. We first analyze the effect of a small increase in the value
attached to a single node. Then we go on to construct examples showing that the ad-
dition of a link to G may actually lower the equilibrium value of the attacker, an effect
that is reminiscent of Braess’s paradox. Finally, we analyze the effect of the elimination
of targets and show that there is no commitment value for the attacker on a line.

5.1 Change in value of a target

Suppose that the value of a target increases. As long as the values of the attacker and
defender are positively correlated, this increase will both make the target more valuable
to the attacker and increase the defense outlays of the target node. Hence, the total
effect on the attacker’s probability of attacking the target and on the attacker’s utility is
ambiguous. In addition, the increase in the value of a target will have ripple effects on
the entire network, as it changes the entire vector of attack probabilities and possibly the
support of the attacker’s strategy. We consider changes that are small enough so that the
support of the attacker’s mixed strategy remains identical, and characterize situations
under which the increase in the value of a target results in an increase or a decrease in
the value of the attacker.
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Formally, let � be the support of equilibrium attacks. Given G and the vector of val-
ues b = (b1, � � � , bn ), the equilibrium attack probability vector q and the interception
investments x are determined as solutions to a system of equations given by (5), (7), (4),
and (6). Hence, except for nongeneric values (b1, � � � , bn ), for any i ∈ �, there is suffi-
ciently small γ > 0 such that an increase in bi by γ will leave the equilibrium support
unchanged at �. Throughout this subsection, we assume such a small change.

We first study the effect of an increase in the value of a node that is not a first target.

Proposition 2. Consider an increase in bi with i ∈ � \�0. Then the interception invest-
ment at node i, xi, goes up, the interception investments at all immediate successors of i,
xl for l 
 i, go down, and the interception investments at all other nodes that are not first
targets, xj for j /∈ �0, remain constant.

In addition, the following statements hold:

• If bk(i)(2bk(i)−bi )
b3
i

+∑
l,l
i

bl−2bi
b2
l

> 0, then the attacker’s utility U increases, the intercep-

tion investments at all first targets, xj for j ∈ �0, decrease, and the attack probabilities
qj decrease for all nodes j that are not equal to i or immediate successors of i.

• If, on the other hand, bk(i)(2bk(i)−bi )
b3
i

+ ∑
l,l
i

bl−2bi
b2
l

< 0, then the attacker’s utility U

decreases, the interception investments at all first targets, xj for j ∈ �0, increase, and
the attack probabilities qj increase for all nodes j that are not equal to i or immediate
successors of i.

Next we analyze the effect of an increase in the value of a first target.

Proposition 3. Consider an increase in bi with i ∈ �0. Then the interception invest-
ments at all immediate successors of i, xl for l 
 i, go down, and the interception invest-
ments at all other nodes that are not first targets, xj for j /∈ �0, remain constant.

In addition, the following statements hold:

• If
∑

l,l
i
bl−2bi

b2
l

> 1
8 , then the attacker’s utility U increases, the interception invest-

ments at all first targets different from i, xj for j �= i, j ∈ �0, decrease, and the attack
probabilities qj decrease for all nodes j that are not equal to i or immediate successors
of i.

• If
∑

l,l
i
bl−2bi

b2
l

< −1, then the attacker’s utility U decreases, the interception invest-

ments at all first targets, xj for j ∈ �0, increase, and the attack probabilities qj increase
for all nodes j that are not equal to i or immediate successors of i.

Propositions 2 and 3 provide a characterization of the comparative statics effects
of an increase in bi on all equilibrium outcomes, except for the probability of attack
of node i and of the immediate successors of i. First, the interception investments at
all nodes that are not first targets are easily characterized: interception investments at
node i increase, decrease for the immediate successors of i, and remain constant for
all other targets. Depending on the parameters, an increase in the value of a target bi
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can either increase or decrease the attacker’s utility. In the first case, the interception
investments at first nodes decrease, the sum of attack probabilities at node i and its
immediate successor go up, and all other attack probabilities decrease. In the second
case, the comparative statics effects on the interception investments at first nodes and
equilibrium probabilities are reversed.

5.2 Adding a link

We next consider the effect of the addition of a link to the network G. The addition of a
link is a discrete change that can affect the equilibrium support. This makes the deriva-
tion of general comparative statics results on the addition of a link in the network com-
plicated. In an earlier working paper (Bloch, Chatterjee, and Dutta (2021)), we derive
such results under the assumption that the equilibrium support remains unchanged af-
ter the addition of the link. In particular, we show that the attacker may be harmed by the
addition of a link in the network—a result that echoes Braess’s paradox (Braess, Nagur-
ney, and Wakolbinger (2005)) on the effect of the addition of a road on total congestion.
We illustrate this effect in our framework through two simple examples.

Our first example focuses on the addition of a link between two nodes i, j ∈ � \�0.

Example 1. Let G = {01, 12, 13} be a line with three target nodes. Choose initial values
b1 = 0.30, b2 = 0.31, and b3 = 0.62.

Using (7) to compute q2 and q3, we derive

1 − q1 = 1
U

[
b1

b2

(
1 − b1

b2

)
+ b2

b3

(
1 − b2

b3

)]
.

In addition, U = (1 − q1b1 )b1. We thus obtain q1 and U as the solutions to a nonlinear
system of two equations:

q1 = 0.0487 and U = 0.2956.

Suppose now that the link 13 is added to G. Then, following the same steps, we
obtain

q1 = 0.0494, U = 0.2955. ♦

So, the attacker is worse off after the addition of the new link between 1 and 3. In
the next example, we show that a similar phenomenon can occur when a link is added
between 0 and a node in the support.

Example 2. Let G = {01, 12} be a line with two target nodes. Choose b1 = 0.25 and b2 =
0.80. Again, using (7) and 1 − q1 = q2, we obtain

q1 = 0.0575, U = 0.2456.

Suppose now the link 02 is added to G. Then both 1 and 2 become first targets, and
using (5),

q1 = 0.1281, U = 0.2420. ♦



Theoretical Economics 18 (2023) Attack and interception in networks 1525

The fact that the addition of a new link may hurt the attacker is at first glance coun-
terintuitive since the attacker could choose not to use the new link. However, the very
existence of the new link changes the incentive structure of the problem, modifying the
incentives for the attacker and the equilibrium defenses of the targets.4 As we remarked
earlier, this result is reminiscent of Braess’s paradox in transportation economics, where
congestion may increase with the addition of a new link in the transportation network.
As in the case of congestion in transportation networks, the equilibrium behavior of all
players is affected by the change in the infrastructure network, causing the targets to
increase their defense spending and making the attacks less likely to succeed.

5.3 Eliminating a target

As a final comparative static exercise, we analyze the attacker’s incentive to reduce her
action space by committing not to attack a specific target. The elimination of targets
changes the incentives of the defenders, and results in a change in the attack proba-
bilities and possibly in the equilibrium support of the attacker. While in general, the
attacker may benefit from committing not to attack a target, we show below that the at-
tacker has no incentive to eliminate a target when the underlying network is a line and
targets are increasing in value.

Proposition 4. Suppose that G is a line and that for all i ∈ {1, � � � , n−1}, bi+1 > bi. Then
the attacker’s utility decreases if he commits not to attack a specific target.

Proposition 4 shows that there is no commitment value for the attacker on a line
where successive nodes increase in value. Note that since target values are increasing,
the equilibrium support must be a first target i0 and all successors of i0. We prove the
proposition by contradiction. Suppose the equilibrium expected payoff of the attacker
is U before commitment and U ′ after commitment, and U ′ > U . Suppose the first tar-
get after commitment is i′0. Of course, it is possible that i′0 = i0 if the attacker commits
not to attack a target j > i0. We know from (7) that equilibrium attack probabilities are
decreasing in equilibrium expected payoff of the attacker. We use this fact to show that
the probability of a successful attack at i′0 actually goes down. This shows that U ′ cannot
exceed U .

6. Cooperation in interception

In the benchmark model, each of the nodes chooses independently the interception in-
vestment. We now consider a model where nodes cooperate in their decisions. The
game then becomes a two-person game played between an attacker A and a single de-
fender D whose objective is to minimize the sum of losses of all the nodes.

A major difference between the centralized and decentralized models is that the sin-
gle defender D protects all nodes on attack paths, including nodes outside the support,

4It is of course well known that in a game, a player may be hurt by an expansion of her set of actions. This
is exactly what is happening in our game when a new link is added and the attacker’s value goes down.
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as she internalizes the positive externality of defense of a node on all the targets attacked
through that node. Furthermore, because nodes outside the support are protected, it is
possible to construct examples to show that the attacker no longer selects a unique path
to attack a given target.

The analysis of the game thus becomes more complex, and we restrict attention to
lines so as to characterize equilibrium. We first show that there is a unique equilibrium.
As a first step, we show that equilibrium interception investments are decreasing along
the line.

Lemma 5. For all i = 1, � � � , n− 1, the equilibrium defense investments yi, yi+1 satisfy yi ≥
yi+1 with equality holding if and only if node i is not attacked in equilibrium.

Suppose i and i+1 are successive nodes on the line. Then βi+1 = αi(1−yi )(1−yi+1 ).
Hence, the value of βi+1 is invariant to the relative magnitudes of yi and yi+1. However,
βi will certainly be higher the larger is yi. This is the intuition underlying the lemma.

Proposition 5. Suppose that G is a line. Then there is a unique equilibrium of the game
where nodes cooperate in interception.

Let us consider a line with an increasing sequence of target values b1 < · · · < bn. Let
(y1, � � � , yn ) be the interception investments, let � be the support of equilibrium, and
let ri be the probability of attack of a target i ∈ �. The objective of the defender is to
minimize the loss function

L =
∑
i∈�

∏
k≤i

(1 − yk )ribi +
∑
i∈N

y2
i

2
.

The best response of the defender, for all i ∈N , is given by the first-order conditions

yi =
∏
k<i

(1 − yk )
∑

j∈�,j≥i

∏
i<l≤j

(1 − yl )bjrj .

Our next results compare the equilibria of the game where nodes cooperate and
when interception investments are chosen independently. We first compare the equi-
librium supports. According to Lemma 4, all nodes in the increasing sequence following
the first target are attacked with positive probability in the decentralized model. Exam-
ple 3 shows that this is not necessarily the case when the nodes cooperate.

Example 3. Consider a line with three nodes, labeled 1, 2, and 3 with b1 = 0.5, b2 =
0.6, and b3 = 0.8. In the decentralized model, all three nodes belong to the support. In
the centralized model, only nodes 1 and 3 are attacked with positive probability. The
equilibrium interception investments are given by y1 = 0.5 and y2 = y3 = y = 0.20943.
With these interception levels, the attacker is indifferent between attacking nodes 1 and
3, and does not have an incentive to attack node 2. The description of equilibrium is
completed by computing the attack probabilities r1 = 0.33772 and r3 = 0.66228. ♦
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In Example 3, the equilibrium support is larger in the decentralized model than in
the centralized model. This may not always be the case, as shown in the next example.

Example 4. Consider a line with four nodes with b1 = 0.24, b2 = 0.241, b3 = 0.242, and
b4 = 0.50. In the decentralized model, the equilibrium is in pure strategies with b4 being
the sole target under attack. In the centralized model, both nodes 1 and 4 will be at-
tacked in equilibrium. The equilibrium is characterized by the interception investments
y1 = 0.24 and y2 = y3 = y4 = y = 0.21703, which make the attacker indifferent between
attacking nodes 1 and 4. The equilibrium attack probabilities are given by r1 = 0.06839
and r4 = 0.93161. ♦

Examples 3 and 4 show that there is no general inclusion result comparing the equi-
librium support in the decentralized and centralized models. In our next proposition,
we provide some welfare comparisons between the two situations, assuming that all
nodes are in the support of the attacker’s equilibrium strategy in both the centralized
and decentralized cases.

To avoid confusion, let βc
i = (1 − y1 ) · · · (1 − yi ) and βi = (1 − x1 ) · · · (1 − xi ). Also,

let Li = βc
i biri + y2

i /2 denote the equilibrium expected loss suffered by node i in the
centralized model, let Mi = βibiqi + x2

i /2 be the equilibrium expected loss suffered by
node i in the decentralized model, and let M = ∑n

i=1 Mi.

Proposition 6. Let G be a line on n nodes and suppose that all n nodes are attacked in
both the centralized and decentralized models. Then the following relationships are true:

(i) Mi > Li for i = 2, 3, � � � , n− 1 and Mn = Ln

(ii) M> L

(iii) A’s expected payoff is strictly higher in the benchmark model.

This result shows that nodes 2 to n − 1 always benefit from coordinated defense,
while node n’s expected loss is the same under both the centralized and decentralized
interception cases. The attacker always prefers the decentralized scenario, whereas the
defenders collectively prefer the centralized scenario.

The only player whose welfare cannot easily be compared in the two cases is the first
target, node 1. The node is more heavily defended in the centralized case and so is less
heavily attacked. But node 1 also spends more on interception and this increases its
cost. We now demonstrate that the net effect on node 1’s expected payoff can go either
way.

Example 5. Consider three nodes on a line with b1 = 0.5 and b3 = 0.8. First, assume
that b2 = 0.65. The equilibrium attack probability of the first target in the decentralized
model is given by q1 = 0.247, resulting in an expected payoff of M1 = 0.116. On the other
hand, r1 = ( 1−b2

b2
)2 = 0.29 and L1 = 0.197.

So M1 < L1. However, choose now b2 = 0.78. Then r1 = 0.0795, q1 = 0.374, and

M1 = 0.170 > 0.145 = L1.
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So node 1’s expected loss in the centralized case can be either higher or lower than in
the decentralized case. ♦

Example 5 thus shows that the first target can be asked to increase its interception
level in the centralized model to a point that decreases her payoff compared to the de-
centralized scenario. This opens up the possibility that other nodes have to subsidize
node 1 (in case L1 > M1) so as to establish coordinated interception. Of course, part
(ii) of Proposition 6 shows that the aggregate benefits of nodes 2 to n− 1 are sufficiently
large to more than compensate node 1’s loss if any.

6.1 Adding a link in the centralized model

We now show that if an additional link 0i is added to a line network g, then the attacker
can never be worse off. This illustrates another difference between the decentralized
and centralized frameworks since Example 2 demonstrated that an additional link from
0 can indeed make the attacker worse off when nodes do not coordinate defense alloca-
tions.

Given any line network g, let U∗(g) be the equilibrium payoff of the attacker. As
before, � and �′ represent the supports of the attacker’s equilibrium mixed strategy cor-
responding to networks g and g′, respectively.

Proposition 7. Let g be a line network on {0, � � � , n}, with ik,k+1 ∈ g for k= 0, � � � , n− 1.
Suppose g′ = g ∪ {0i} for some i > 1. If 1 ∈ �,5 then

U∗(g′) ≥U∗(g) with equality only if 1 ∈ �′ and {i, i+ 1, � � � , n} ∩�′ = ∅.

For any network, define

�(1) = {j ∈ �|1 is on the attack path to j}.

That is, �(1) is the set of nodes that are attacked through node 1 in equilibrium. The
key intuition in understanding the difference between the implications of adding a link
to cooperative and non-cooperative cases is that in the former, nodes also take into ac-
count the probabilities of attack of its successors. We show that

y1 = bi
∑

j∈�(1)

rj .

So when 1 ∈ �, y1 = b1, and the attacker’s utility is (1 − b1 )b1, an additional link allows
the attacker to choose attack paths that do not include node 1. This will reduce the
equilibrium defense on node 1 and improve the expected payoff for the attacker.

5This assumption simplifies the proof, but is not essential.
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Appendix A: Proofs

Proof of Theorem 1. Reinterpret the game as a game with continuous strategy
spaces, where the attacker chooses a point q in the n − 1 dimensional simplex and ev-
ery defender i chooses an investment xi ∈ �+. We will use the Debreu–Fan–Glicksberg
theorem (Debreu (1952), Fan (1952), and Glicksberg (1952)) to prove existence of an
equilibrium in pure strategies of this game.

First note that because bi ≤ 1, the strategy space of defender i can be restricted to
[0, 1], so that the strategy spaces of all players are compact, convex subsets of Euclidean
spaces. Second, an immediate inspection of (1) and (2) shows that the payoffs of the
players are continuous in the product of the strategies (q, x1, � � � , xn ). The payoff of the
attacker given by (1) is linear and, hence, quasi-concave in q. Given that the quadratic
cost function is convex, the payoff of any defender i given by (2) is a concave function of
xi and, hence, is quasi-concave. All assumptions of the Debreu–Fan–Glicksberg theorem
are thus satisfied, and the game admits an equilibrium in pure strategies, which is a
mixed strategy Nash equilibrium of the original game of attack and interception.

Proof of Proposition 1. Suppose that there exists a defender i whose value satisfies
the condition. Consider the strategy profile where the attacker chooses qi = 1 and some
path to i, defender i chooses xi = bi, and all defenders j �= i choose bj = 0. The expected
payoff to the attacker is U = bi(1 − bi ).

Suppose 0 deviates and chooses q′ such that q′
j > 0, where j �= i as well as some attack

path p to j. We know that xj = 0. We compute the expected payoff of the attacker and
show that it is lower than the payoff obtained in the pure strategy qi = 1:

If i /∈ P(p, j), then

U
(
q′, x

) = bj ≤ bi(1 − bi ).

If i ∈ P(p, j), then

U
(
q′, x

) = bj(1 − bi ) < bi(1 − bi ) since bi > bj .

Any defender j �= i is attacked with probability 0 and, hence, optimally chooses not
to invest in the interception technology. Finally defender i chooses xi to maximize

Vi = −bi(1 − xi ) − 1
2
x2
i ,

resulting in the optimal decision x∗
i = bi.

Suppose now that the game admits an equilibrium in pure strategies, where the at-
tacker chooses qi = 1. As we just argued, defender i then optimally chooses a detection
probability x∗

i = bi, resulting in an expected payoff U = bi(1 − bi ) for the attacker. More-
over, for all j �= i, x∗

j = 0. For any j such that there exists a path p such that i /∈ P(p, j), a
deviation to j gives 0 a payoff of bj . For all paths p, i ∈ P(p, j), 0 gets a payoff of bj(1−bi )
by deviating. This establishes the necessity of the conditions.
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Proof of Lemma 1. Both equalities follow from the fact that the attacker must be in-
different between attacking any two nodes in �. The first equality stems from the ob-
servation that if the attacker attacks the two targets i and j, he must receive the same
expected payoff by attacking i and j,

biβi(p) = bjβj(p),

but because j and i are successive targets along path p,

βi(p) = βj(p)(1 − xi ).

The second equality stems from the fact that if i and j are the first targets on two
paths p and p′, then αi(p) = αj(p′ ) = 1, so that indifference implies

biβi(p) = bi(1 − xi ) = bjβj

(
p′) = bj(1 − xj ).

Proof of Lemma 2. Let i be the first target that is attacked along the paths p and p′,
and has two different predecessors, j ∈ p ∩ � and k ∈ p′ ∩ �. From Lemma 1, as j and k

are both immediate predecessors of i, we must have

bj = bi(1 − xi ) = bk,

contradicting the fact that bj �= bk for two different defenders j and k.

Proof of Lemma 3. Suppose by contradiction that there is j ∈ J with bj < bk. Since
there is a path from j to i that does not intersect �, x∗

l = 0 for all targets l on this path
that are distinct from j and i. Hence, by attacking i through j, the attacker would secure
a probability of reaching i of βj , so that

αi ≥ βj . (9)

Furthermore, since k and j are both in �,

βkbk = βjbj .

So bj < bk implies that βj > βk. Furthermore, as the attacker chooses to attack i from k,
βk = αi. But using inequality (9), we have

βj > αi ≥ βj ,

a contradiction that completes the proof of the lemma.

Proof of Lemma 4. To prove the first statement, suppose by contradiction that bj ≥ bi.
Because j precedes i, βj = αj(1 − x∗

j ) ≥ αi > αi(1 − x∗
i ) = βi. Hence,

βjbj > βibj ≥ βibi,

contradicting the fact that i ∈ �.
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To prove the second statement, suppose by contradiction that j /∈ �. Then x∗
j = 0. Let

p = {i1, � � � , iK }, where (i) i1 = i, iK = j, and ikik+1 ∈ G. Suppose for all k ∈ p and k �= i,
x∗
k = 0 since k /∈ �. Then βi = βj .

However, because j /∈ � and i ∈ �, we must have

biβi ≥ bjβj ,

resulting in a contradiction.

Proof of Theorem 2. We first consider the case analyzed in Proposition 1 that de-
scribes the conditions under which there can be a pure strategy equilibrium with only i

being attacked in equilibrium.
So suppose there is i such that

(i) bi(1 − bi ) ≥ bj for all j such that i /∈ P(j)

(ii) bi ≥ bj for all j such that i ∈ P(j).

Suppose by contradiction that there is an equilibrium (q, x∗ ) such that qj > 0 for some
j �= i. Then x∗

i < bi.
Let i ∈ P(j). Then βi ≤ βj and bi > bj . So

βibi > βjbj .

This shows that a deviation to attacking i with probability 1 must be profitable.
Next suppose i /∈ P(j). Then βi > (1 −bi ) and so a deviation to attacking i with prob-

ability 1 gives

βibi > (1 − bi )bi ≥ bj > βjbj .

This establishes uniqueness of equilibrium when the conditions for a pure strategy equi-
librium are satisfied.

Next consider the case where there is no pure strategy equilibrium. The strategy
of the proof is the following. We suppose that there are two equilibria E and E′ with
supports � and �′. We first prove that � = �′. We then show that the sequence of targets
on equilibrium paths have to be equal in the two equilibria and finally establish that the
equilibrium probabilities over the targets have to be equal.

Step 1: The support of targets are equal, � = �′. Suppose by contradiction that there
exists i ∈ � such that i /∈ �′.

Claim 1. The equilibrium utility in the two equilibria must satisfy U ′ >U .

Proof. Suppose first that there exists a path to i in G that does not intersect �′. By
attacking i along the path, the attacker obtains a payoff bi. As i /∈ �′, we must have U ′ ≥
bi. In addition, as i is attacked with positive probability in equilibrium E, x∗

i > 0 and
U = αibi(1 − x∗

i ) < bi, establishing that U ′ >U .
Suppose next that all paths to i in G intersect �′. This is, in particular, true for the

equilibrium attack path p to i in E. Let j be the last point in �′ along path p. By Lemma 4,
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bj < bi. But then, as i /∈ �′, and there is a path between j and i that does not intersect �′,
by the second part of Lemma 4, i ∈ �′, a contradiction.

Claim 2. The supports must satisfy �′ ⊂ �.

Proof. Suppose by contradiction that there exists i ∈ �′, i /∈ �. Applying the same argu-
ment as in the proof of Claim 1, U >U ′, contradicting the fact that U ′ >U .

Claim 3. For any i ∈ �′
0, q′

i ≤ αiqi.

Proof. Pick a target i that is a first target along some attack path in the equilibrium E′.
As �′ ⊂ �, i ∈ �. Suppose first that i is a first target in equilibrium E as well, i ∈ �0. Then,
by Claim 1,

U ′ = bi
(
1 − x∗′

i

)
>U = bi

(
1 − x∗

i

)
,

and by (3) and the fact that αi = α′
i = 1,

x∗′
i = q′

ibi, x∗
i = qibi,

yielding the result.
Next suppose that i ∈ �m for some m ≥ 1. Let p be the path in T from 0 to i in E.

Consider the equilibrium path p′ in T ′ from 0 to i in E′.6
Consider equilibrium E. If there is no node in � along the path p′, then by deviating

and attacking i along that path, the attacker obtains a payoff bi(1 − x∗
i ) > biαi(1 − x∗

i )
as αi < 1 because there is another node attacked with positive probability before i on
path p. This shows that the path p′ must intersect �.

Let j be the last point in � along the path p′. As i ∈ �′
0, j /∈ �′. We consider two cases.

Suppose first that j is on the equilibrium attack path p. If there was a node k between
j and i in p, the attacker would have a profitable deviation by attacking i directly from
j along path p′, resulting in an expected utility biβj(1 − x∗

i ) > biαi(1 − x∗
i ), as αi < βj .

Hence, j is the immediate predecessor of i along path p. By Lemma 1 and (3),

bj = bi
(
1 − x∗

i

)
and x∗

i = αiqibi.

Note that j /∈ �′ and there exists a path to j that does not intersect �′. So

bj ≤U ′ = bi
(
1 − x∗′

i

)
, with x∗′

i = q′
ibi.

Hence, q′
i ≤ αiqi.

Next suppose that j is not on the equilibrium attack path p to i and let k be the last
target preceding i on the equilibrium path p. Because p′ is a path from j to i that does
not intersect �, by Lemma 3 and Lemma 1,

bk < bj and bk = bi
(
1 − x∗

i

)
.

6Of course, both paths p and p′ are in G.
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Hence,

bi(1 − αiqibi ) = bk < bj ≤ bi
(
1 − q′

ibi
)
.

This establishes q′
i < αiqi.

Claim 4. Suppose that m ≥ 1. Then, for any i ∈ �′
m, if j is the predecessor of i on the

equilibrium path p′ in E′, j is also the predecessor of i on the equilibrium path p in E.

Proof. Pick a target i ∈ �′
m. We first claim that i /∈ �0. Suppose to the contrary that

i ∈ �0. Then there is a path to i that does not intersect �. As �′ ⊂ �, the path does not
intersect �′ either. But then because i ∈ �′

m and m ≥ 1, bi(1 − x∗′
i ) > biα

′
i(1 − x∗′

i ), so that
the attacker has a profitable deviation, establishing a contradiction.

Hence, i ∈ � \ �0. We claim that the immediate predecessor of i on the two equilib-
rium attack paths must be identical. Suppose by contradiction that j is the immediate
predecessor of i on the equilibrium path p′ and k �= j the immediate predecessor of i on
the equilibrium path p.

For all l on p′ between j and i, as l /∈ �′, by the second part of Lemma 4, bl < bj .
Hence by the first part of Lemma 4, as bj ∈ �, bl /∈ �. Hence the subpath of p′ joining
j and i does not intersect �. Because �′ ⊂ �, the subpath of p joining k and i does not
intersect �′ either. But then, by Lemma 3, we obtain

bj < bk and bk < bj ,

a contradiction. Hence the predecessor of i on the two equilibrium attack paths p and
p′ must be identical.

Claim 5. For all i ∈ �′, q′
i ≤ qi.

Proof. By Claim 3, the statement is true whenever i ∈ �′
0. Now consider i ∈ �′

m with
m≥ 1. By Claim 4, i has a common set of predecessors i0, � � � , im−1 in the two equilibria.

By Lemma 1, for all m≥ 1,

bim−1 = bim
(
1 − α′

im
q′
im
bim

) = bim(1 − αimqimbim ),

so that

α′
im
q′
im

= αimqim .

Now recall that α′
i0

= αi0 = 1. We now prove by induction that α′
im

≥ αim for all m≥ 1. Let
m= 1. By Claim 3, q′

i0
≤ qi0 so that

α′
i1

= 1 − bi0q
′
i0

≥ 1 − bi0qi0 = αi1 .

Consider then the inductive step. Suppose that αim−1 ≤ α′
im−1

. Recall that αim =
αim−1 (1 − αim−1qim−1bim−1 ) and α′

im
= α′

im−1
(1 − α′

im−1
q′
im−1

bim ). As αim−1qim−1 = α′
im−1

q′
im−1

,
αim
α′
im

= αim−1
α′
im−1

. By the induction hypothesis,
αim−1
α′
im−1

≤ 1 and, hence, αim ≤ α′
im

.
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Finally, using the fact that α′
im
q′
im

= αimqim for all m≥ 1,

q′
i = q′

im
≤ qim = qi,

concluding the proof of the claim.

As a final argument for Step 1, note that by Claim 5,

∑
i∈�′

q′
i ≤

∑
i∈�′

qi.

Furthermore, by Claim 2, ∑
i∈�′

qi <
∑
i∈�

qi,

so that ∑
i∈�′

q′
i <

∑
i∈�

qi,

contradicting the fact that ∑
i∈�′

q′
i = 1 =

∑
i∈�

qi.

Step 2: For any target i ∈ � = �′, the sequence of preceding targets is the same in the
attack paths p and p′.

Claim 6. The sets of first targets are identical, �0 = �′
0.

Proof. Let i ∈ �0 and suppose i ∈ �′
m with m ≥ 1. If there is a path to i that does not

intersect �′, then the attacker has a profitable deviation by attacking i directly under E′.
Hence all paths to i must intersect �′. But then because � = �′, the equilibrium path p

to i must intersect �, contradicting the fact that i ∈ �0. Hence, �0 ⊆ �′
0. Reversing the

role of �0 and �′
0, the same argument shows that �′

0 ⊆ �0

Claim 7. For any i ∈ �m, m≥ 1, the preceding target is the same on path p and on path p′.

Proof. Suppose by contradiction that i has two different preceding targets j and k on
the paths p and p′. Because � = �′, the path from j to i does not intersect �′ and the
path from k to i does not intersect �. Hence, by Lemma 3, bk < bj and bj < bk, a contra-
diction.

Step 3: For any target i ∈ � = �′, the attack probabilities are the same, qi = q′
i. For a

fixed set of targets � and an attack tree T , letting U denote the attacker’s equilibrium
utility, we characterize equilibrium attack probabilities and defense investments as the
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solutions to the system of equations

bi
∏
k�i

(1 − xk ) = U

xi =
∏
k≺i

(1 − xk )qibi

∑
i

qi = 1,

where the first equations capture the attacker’s indifference over targets, the second
equations capture the nodes’ best response defense investments, and the last equation
guarantees that probabilities belong to the simplex. The attacker’s indifference condi-
tions take a different form for first targets and subsequent targets:

xi = 1 − U

bi
if i ∈ �0

xi = 1 − bk
bi

if i /∈ �0 with k(i) the immediate predecessor of i.

To compute equilibrium probabilities, we multiply each of the equations defining equi-
librium defense investments by (1 − xi ) to obtain

xi(1 − xi ) = bi
∏
k�i

(1 − xk )qi =Uqi,

and replacing xi, we obtain

qi = 1
bi

(
1 − U

bi

)
if i ∈ �0

qi = bk
biU

(
1 − bk

bi

)
if i /∈ �0 with k(i) the immediate predecessor of i.

Let F(U ) ≡ ∑
i qi(U ). Since, for every i, qi(U ) is a strictly decreasing function, F(U )

is strictly decreasing. Hence the equation F(U ) = 1 has at most one solution. This con-
cludes the proof of the theorem.

Proof of Proposition 2. Consider the equations defining the equilibrium distribu-
tion over targets and equilibrium interception investments, (4)–(8). From (6), xi goes up,
xl goes down, and xj remains constant for any other j /∈ �0. Now let F(U ) = ∑

i qi(U ).
Differentiating F with respect to bi and using (7),

∂F

∂bi
= 1

U

[
bk(i)(2bk(i) − bi )

b3
i

+
∑
l,l
i

bl − 2bi
b2
l

]
.

Since

dF

dbi
= ∂F

∂bi
+ ∂F

∂U

∂U

∂bi
= 0,
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then

∂U

∂bi
= −

∂F

∂bi
∂F

∂U

.

Hence, if ∂F
∂bi

> 0, then ∂U
∂bi

> 0. Next we use (4) to deduce that xj decreases for all j ∈ �0

and use (5) to conclude that qj decreases for all j ∈ �0 and (7) to show that qj decreases
for all j /∈ �0 which is not equal to i or an immediate successor of i. While we conclude
that the sum of probabilities qi + ∑

l
i ql must go up, we cannot deduce whether qi goes
up or not.

Similar reasoning gives the opposite result in the case where ∂F
∂bi

< 0.

Proof of Proposition 3. As in the proof of Proposition 2, a change in bi does not af-
fect the defense investments of nodes in � that are not immediate successors of i by (6).
Next, using (5) and (7), we compute

∂F

∂bi
≡ G(U ) = 2U − bi

b2
i

+ 1
U

∑
l,l
i

bl − 2bi
b2
l

.

Observe that, as opposed to the case of Proposition 2, the sign of ∂F
∂bi

depends on
the value of U . Hence, there is no necessary and sufficient condition on the target val-
ues under which the sign of ∂F

∂bi
can be established, and we look instead for sufficient

conditions.
Consider first the case where

∑
l,l
i

bl−2bi
b2
l

> 0. Then the function G(·) is a convex

function of U , with limU→0 G(U ) = +∞, G(bi ) > 0 and ∂G
∂U = 2

b2
i

− ∑
l,l
i

bl−2bi
b2
l U

2 . Hence,

G′(U ) < 0 whenever U < U∗ = bi

√∑
l,l
i

bl−2bi
b2
l

2 and G′(0) > 0 whenever U > U∗. A suffi-

cient condition for G(U ) > 0 is, thus, that G(U∗ ) > 0. We verify that G(U∗ ) > 0 if and
only if

∑
l,l
i

bl−2bi
b2
l

> 1
8 .

Next suppose that
∑

l,l
i
bl−2bi

b2
l

< 0. Then the function G(·) is an increasing function

of U with limU→0 G(U ) = −∞. In addition, as U ≤ minj∈� bj , U ≤ bi. Hence, a sufficient

condition for G(U ) < 0 is G(bi ) < 0. We verify that G(bi ) > 0 if and only if
∑

l,l
i
bl−2bi

b2
l

<

−1.
Once the sign of ∂F

∂bi
is established, we follow the same steps as in the proof of Propo-

sition 2 to compute the sign of ∂U
∂bi

and the comparative statics effects of an increase in
bi on the equilibrium investment levels of first targets different from i and equilibrium
attack probabilities for all nodes but i and its immediate successors.

Proof of Proposition 4. Consider the line graph G with n targets and where bi < bi+1

for all = 1, � � � , n− 1.
Suppose the first target in the equilibrium support is i0. Then the equilibrium sup-

port includes all successors of i0. Let the attacker commit not to attack some potential
target j. If j < i0, then the equilibrium remains unchanged, so henceforth j ≥ i0.
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Case 1: Suppose j = i0. Let (q, x, U ) and (q′, x′, U ′ ) be the equilibrium vectors and

expected payoffs of the attacker before and after the commitment, respectively. Let the

new first target in the support of the attacker’s equilibrium mixed strategy be i′0.

Suppose U ′ >U . Then, from (7), q′
i < qi for all i > i′0. Hence,

qi′0 >

i′0∑
i=i0

qi,

so

U ′ = β′
i′0
bi′0 <

(
1 −

i′0∑
i=i0

qi

)
bi′0 .

We now calculate βi′0 = ∏i′0
i=i0

(1 − xi ),

xi0 = qi0bi0 , and xi = αiqibi for i > i0.

So

βi′0 =
i′0∏

i=i0

(1 − xi )

> 1 −
i′0∑

i=i0

xi

= 1 − qi0bi0 − (1 − qi0bi0 )qi0+1bi0+1 − (1 − qi0bi0 )(1 − qi0+1bi0+1 )qi0+2bi0+2 − · · ·

> 1 −
i′0∑

i=i0

qibi

> β′
i0.

This contradicts U ′ > U and so establishes that a commitment not to attack the first

node in the equilibrium does not increase the attacker’s equilibrium payoff.

Case 2: Suppose j > i0. If the first target now switches to some k < i0, then U ′ =
(1 − x′

k )bk < bk ≤ U , where the last inequality follows from the fact that the attacker

does not deviate from the original equilibrium and attack k.

So assume initially that the first target in the equilibrium support remains i0.

Assume again that U ′ >U . Then, using (7), it follows that

q′
i < qi for all i ∈ {i0 + 1, � � � , j − 1} ∪ {j + 2, � � � , n}.
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Of course, q′
j = 0. We now show that q′

j+1 = bj−1
bj+1U ′ (1 − bj−1

bj+1
) < qj + qj+1. In fact, we prove

the stronger statement that q̂j+1 ≡ bj−1
bj+1U

(1 − bj−1
bj+1

) < qj + qj+1.7 Now

qj + qj+1 − q̂j+1

= bj−1

bjU

(
1 − bj−1

bj

)
+ bj

bj+1U

(
1 − bj

bj+1

)
− bj−1

bj+1U

(
1 − bj−1

bj+1

)

= 1

b2
j b

2
j+1U

[
bj−1(bj − bj−1 )b2

j+1 + bj(bj+1 − bj )b2
j − bj−1(bj+1 − bj−1 )b2

j

]

= 1

b2
j b

2
j+1U

[
bj−1(bj − bj−1 )b2

j+1 + b2
j (bj − bj−1 )(bj+1 − bj − bj−1 )

]

= 1

b2
j b

2
j+1U

[
(bj − bj−1 )(bj+1 − bj )(b2

j + bj−1(bj + bj+1 )
]

> 0.

Putting all this together,
∑

i>i0
q′
i <

∑
i>i0

qi and, hence, q′
i0
> qi0 . Then

x′
i0

= q′
i0
bi0 > qi0bi0 .

This contradicts U ′ >U .
Finally, if the first target is i′0 > i0, then the arguments in Case 1 supplemented with

the arguments in the previous paragraph conclude the proof of the proposition.
This concludes the proof of the proposition.

Proof of Lemma 5. Suppose the lemma is false and for some i < n, yi+1 > yi.
Suppose first that ri > 0. Then consider a change in the strategy of the centralized

defender such that y ′
i = yi+1 and y ′

i+1 = yi. Then β′
i < βi and β′

i+1 = βi+1, while cost
remains the same. Clearly, D gains from the move.

If ri = 0, then consider a change in strategies where D equalizes investment of nodes
i and i + 1, so that y ′

i = y ′
i+1 = yi+yi+1

2 . It is easy to check that D gains again from that
deviation, as β′

i+1 <βi+1.

Proof of Proposition 5. We first show that all equilibria must have the same support
on the line. Consider two equilibria with supports � and �′.

Let m be such that bm > bi for all i �=m. It is clear that m ∈ �∩�′. Moreover, no node
(m + k) ∈ � since βmbm > βmbm+k. Similarly, (m + k) /∈ �′. Hence, both supports have
the same final target m.

Now suppose that the equilibria have two different supports � �= �′. As the two equi-
libria have the same final target, there exists a target l such that all targets k ≥ l are in
both supports � and �′, and there exists a target i preceding l in � that does not belong

7Note that q̂j+1 > q′
j+1 since U <U ′.
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to �′ with no target between i and l in �′. We distinguish between two cases: (i) there
exists a target preceding l in �′ and (ii) there is no target preceding l in �′.

Case 1: There exists a target preceding l in �′. Let j be the target preceding i in �′. By
construction, j < i. Because there is no target between j and l in �′, bj = (1 − y ′

l )l−jbl.
We also note that bj ≤ ∏

j<k≤l(1 − yk )bl. Furthermore, because yk ≥ yl for all k < l, and

there exists a node i attacked between k and l,
∏

j<k≤l(1 − yk )bl < (1 − yl )l−jbl. Hence,

(
1 − y ′

l

)l−j = bj < (1 − yl )
l−j ,

so that y ′
l > yl. Finally, because i ∈ � but i /∈ �′,

bi = (1 − yl )
l−ibl ≤

(
1 − y ′

l

)l−i
bl,

so that y ′
l ≤ yl, a contradiction.

Case 2: There is no target preceding l in �′. We then compute y ′
l as the solution to the

equation

y ′
l = (

1 − y ′
l

)l−1
bl.

Similarly, letting j denote the first target attacked in �, we have

yj = (1 − yj )j−1bj = (1 − yj )j−1
∏

j<k≤l

(1 − yk ).

But as yj ≥ yk for all k > j with one strict inequality because there is at least one target
before l in �,

(1 − yj )l−1 < yj < (1 − yl )
l−1bl.

As the function g(y ) = y − (1 − y )l−1bl is increasing, we conclude that yj > y ′
l so that

(1 − yl )
l−1bl > yj > y ′

l = (
1 − y ′

l

)l−1
bl,

showing that y ′
l > yl. But as i ∈ � but i /∈ �′, y ′

l ≤ yl, a contradiction.
Finally, we show that for a fixed support �, there is a unique equilibrium attack dis-

tribution. Let i = 1 be the first target. For any two consecutive targets i − 1 and i, let
d(i) denote the length of the path between i and i − 1. The equilibrium attack proba-
bilities and interception investments can be computed as the solutions to the system of
equations

y1 = b1(1 − y1 )d(1)−1 (10)

bi(1 − yi )
d(i) = bi−1 for i ∈ �, i �= 1 (11)

yi = bi
∑
j≥i

rj
∏
k�=i

(1 − yk ) for i ∈ �, i �= 1 (12)

∑
i

ri = 1. (13)
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Notice that (10) and (11) uniquely determine the investment values yi for all i ∈ �.
Given the defense investments, (12) and (13) uniquely determine the equilibrium attack
probabilities ri for all i ∈ �, completing the proof of the proposition.

Proof of Proposition 6. (i) Since Mi = −Vi, it follows that

Mi = xi − x2
i

2
.

We recall that from the first-order condition of the defender,

yi =
∏
k<i

(1 − yk )
∑

j∈�,j≥i

∏
i<l≤j

(1 − yl )bjrj .

Using the indifference condition of the attacker over all targets on the line,

yi = αiribi + αi

∑
j∈�,j>i

βjrjbj for i < n

= αiribi for i = n,

so

Li = αiribi(1 − yi ) + y2
i

2

= yi(1 − yi ) + y2
i

2
− αi

∑
j∈�,j>i

βjrjbj

< yi − y2
i

2
for i < n

= yi − y2
i

2
for i = n.

As all nodes are attacked on the line, by the attacker’s indifference condition, xi =
yi = 1 − bi−1

bi
for i > 1. So we obtain Mi > Li for i = 2, 3, � � � , n− 1 and Mn = Ln.

(ii) Rewrite L and M as

L =
n∑

i=1

βc
i ribi +

n∑
i=1

y2
i

2

M =
n∑

i=1

βiqibi +
n∑

i=1

x2
i

2
.

From the attacker’s equilibrium condition,

βc
i bi = βc

jbj and βibi = βjbj for all i, j
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M−L = β1b1 −βc
1b1 + x2

1

2
− y2

1

2

= (1 − q1b1 )b1 + (q1b1 )2

2
− (1 − b1 )b1 − (b1 )2

2

= (q1b1 )2

2
− q1b

2
1 + (b1 )2

2

= (b1 )2

2

(
1 + q2

1 − 2q1
)

> 0 for all q1 ∈ (0, 1).

(iii) This follows immediately since βc
1b1 = (1 − b1 )b1 < (1 − q1b1 )b1 = β1b1.

Proof of Proposition 7. First, for any arbitrary network g̃, we know from the de-
fender’s first-order condition that

y1 = r1b1 +
∑

j∈�̃(1)

∏
1<l≤j

(1 − yl )bjrj .

Second, if 1 ∈ �̃, then from the attacker’s first-order condition,

b1 =
∏

1<l≤j

(1 − yl )bj for all j ∈ �̃(1).

Hence, if 1 ∈ �̃,

y1 = b1

∑
j∈�̃(1)

rj . (14)

Since 1 ∈ � and �(1) = � on the line network, (14) implies y1 = b1 and so

U∗(g) = (1 − b1 )b1. (15)

Equation (15) implies that if 1 ∈ �̃, then

U∗(g) ≥U∗(g̃) (16)

with equality holding only if �̃(1) = �̃.
To complete the proof, suppose that 1 /∈ �′ or {i, i+ 1, � � � , n} ∩�′ �= ∅.
If �′(1) = ∅, then y ′

1 = 0 and

U∗(g′) ≥ b1 > (1 − b1 )b1 =U∗(g).

So suppose 1 /∈ �′ but �′(1) �= ∅.
Let i be the node closest to 1 that is in �′(1). Then

bi
(
1 − y ′

i

)i−1 ≥ b1 since β′
i =

(
1 − y ′

i

)i
and y ′

1 = y ′
i .
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If i ∈ �(1), then from the attacker’s equilibrium condition,

bi
∏

1<l≤i

(1 − yl ) = b1.

Hence, (
1 − y ′

i

)i−1 ≥
∏

1<l≤i

(1 − yl ).

But we know from Lemma 5 that b1 = y1 > yl for all l > 1. So(
1 − y ′

i

)
> (1 − y1 ).

Hence, since bi ∈ � and bi > b1,

U∗(g′) = (
1 − y ′

i

)i
bi > (1 − y1 )b1 =U∗(g).

A slight modification of the argument will again show that y ′
i < y1 if i /∈ �(1) and, hence,

establish that U∗(g′ ) >U∗(g).
Finally, if 1 ∈ �′ but {i, i + 1, � � � , n} ∩�′ �= ∅, then �′(1) is a strict subset of �′. Hence,∑

j∈�′(1) rj < 1. Equation (14) now establishes that

U∗(g′) >U∗(g).

Appendix B: Robustness checks

We suppose that the values of the targets are different for the attacker (bi) and for the
defender (di), and that the cost of the interception technology is c(xi ) with c′(·) > 0 and
c′′(·) > 0. We check that the main results of the analysis remain true in this more general
setting. First notice that (2) will now become

Vi(q, x1, � � � , xn ) = −αi(1 − xi )qidi − ci(xi ),

so that instead of (3), the optimum level of xi now satisfies

c′
i(xi ) = αiqidi.

Of course, xi is increasing in qi.
The proofs of Lemmas 1 and 2 are unaffected: they follow from the observation that

the attacker’s expected utilities from attacking different nodes in the support of his equi-
librium strategy must be equal. In the statement of Proposition 1, statement (i) will
become

bi(1 − di ) ≥ bj for all j such that there is a path p, i /∈ P(p, j)

and the qualitative result does not change.
The unicity of equilibrium (Theorem 2) also remains true. The proof requires a small

adaptation. Lemmas 3 and 4 follow straightaway since these only depend upon A’s equi-
librium behavior and the fact that x∗

j = 0 if j is not in the support of the attacker’s equi-
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librium strategy. We now proceed to show that for a fixed support and attack path, there

is a unique equilibrium attack probability distribution q.

Fix some qi as a “numeraire” probability for some node i. Then U = (1 − xi )bi. Since

xi is increasing in qi, U is decreasing in qi.

For all j ∈ �0, j �= i,

U = (1 − xj )bj .

Then qj is decreasing in U and, hence, increasing in qi.

Also, ∀j /∈ �0,

xj =
∏
k<i

(1 − xk )qjdj

= U

bj
qjdj ,

so

qj = bjxj

djU
.

So qj is strictly increasing in qi. Hence, as before, there must be a unique vector q since

the probabilities add up to 1.

We now come to the results of Section 6 where target nodes cooperate in defense.

First notice that the proof of Lemma 5 only depends on strict convexity of the cost func-

tion. Moreover, the proof of Proposition 4 relies on Lemma 5. Hence, the proof goes

through with the weaker assumptions.

Second, consider the proof of Proposition 5. Note that xi = yi for all i > 1 continues

to hold since this comes from the attacker’s equilibrium condition. It will also follow

from the defenders’ first-order conditions that

c′(yi ) = αiridi + αi

∑
j∈�,j>i

βjrjdj for i < n

= αiridi for i = n,

so

Mi = c′(xi )(1 − xi ) + c(xi )

Li < c′(yi )(1 − yi ) + c(yi ) for i = 2, � � � , n− 1

Li = c′(yi )(1 − yi ) + c(yi ) for i = n.

Hence, (i) follows since xi = yi.
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Appendix C: Equilibrium support on a line

Proposition 8. Let G be a line and let b1, � � � , bn be the increasing sequence of targets
along the line. Let bi be the first target such that

n∑
j=i+1

(
1 − bj−1

bj

)
bj−1

bibj
≤ 1.

Then the equilibrium support is � = {bi, � � � , bn}.

Proof of Proposition 8. In a line with first target bi, the equilibrium distribution is
given by

qi = 1
bi

(
1 − U

bi

)

qj = bj−1

bjU

(
1 − bj−1

bj

)
for j > i.

Let

F(U ) ≡ qi(U ) +
∑
j>i

qj(U ) = 1
bi

(
1 − U

bi

)
+

∑
j>i

bj−1

bjU

(
1 − bj−1

bj

)
.

We compute

F(bi ) =
m∑

j=i+1

(
1 − bj−1

bj

)
bj−1

bibj

and

F(bi−1 ) = 1
bi

(
1 − bi−1

bi

)
+

∑
j>i

bj−1

bjbi−1

(
1 − bj−1

bj

)

=
m∑
j=i

(
1 − bj−1

bj

)
bj−1

bi−1bj
.

Given that bi is the first target such that
∑m

j=i+1(1 − bj−1
bj

)
bj−1
bibj

≤ 1, we have

F(bi ) ≤ 1 <F(bi−1 ).

At an equilibrium, we must have F(U ) = 1. The function F(U ) is strictly decreasing in
U and, hence, bi−1 < U ≤ bi. As bi−1 < U , for any target bj in the increasing sequence
with j < i, bj < U and, hence, bj /∈ �. As bi ≥ U , for any j ≥ i, 0 ≤ qj , and, hence, every
target j ≥ i is attacked with positive probability so that bj ∈ �, completing the proof of
the proposition.

Proposition 8 identifies the first target in a line. If bn(1 − bn ) ≥ bn−1, then there is

no value i < n such that
∑n

j=i+1(1 − bj−1
bj

)
bj−1
bibj

≤ 1. In this case, the equilibrium is a pure
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strategy equilibrium. Otherwise, if bn(1 − bn ) < bn−1, then there exists a unique target

i that is the first target such that
∑n

j=i+1(1 − bj−1
bj

)
bj−1
bibj

≤ 1, and, hence, the first target in

the equilibrium attack path. Interestingly, the condition identifying target i as a first tar-
get not only depends on the value of the target, but also on the value of all subsequent
targets in the path. The identification of the first target thus requires the recursive com-

putation of the sum
∑n

j=i+1(1 − bj−1
bj

)
bj−1
bibj

for all targets i in the increasing subsequence.

One case of interest is the case where the difference in values among two consecutive
targets along the line is equal. Suppose bi = iε with 0 < ε< 1

n . The value of the first target
is then given by the first value i such that

(1 + ε)i+Hi+1 ≥ n−Hn,

where Hj = ∑j
k=1

1
k is the jth harmonic number.
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in networks.” Journal of Economic Theory, 190, 105119. [1515]

Braess, Dietrich, Anna Nagurney, and Tina Wakolbinger (2005), “On a paradox of traffic
planning.” Transportation Science, 39, 446–450. [1524]
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