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Supplementary Material

Supplement to “Stability in repeated matching markets”
(Theoretical Economics, Vol. 18, No. 4, November 2023, 1711–1757)

Ce Liu
Department of Economics, Michigan State University

Appendix S.1: Proof of Theorem 2

The proof of Theorem 2 follows a similar construction to that in Fudenberg and Maskin
(1986) and Abreu, Dutta, and Smith (1994). Due to the notational complexity of the
proof, I first illustrate the self-enforcing matching process using a phase diagram, before
proceeding with the full proof of Theorem 2.

S.1.1 A phase diagram illustration

Consider a case when there are only two firms F = {f , f ′}. Figure S.1 is a phase diagram
illustrating the self-enforcing matching process.

In this phase diagram, λ ∈ �∗ is the random matching we want to sustain on the
path of play. The matching mf ∈ arg minm∈M◦

R
maxW ⊆Df (m), |W |≤qf uf (W ) is the minmax

matching for firm f , and mf is defined similarly.
The random matchings λf and λf ′ are “firm-specific punishments” that are played

after the minmax phase. In particular, they are random matchings that guarantee the
properties

uf (λf ) < uf (λ) and uf (λf ) < uf ′(λf ).

In other words, each firm prefers the on-path randomization λ over their own firm-
specific punishments, and each firm prefers the other firm being punished over being
punished itself.

The existence of λf and λf ′ can be shown by resorting to the non-equivalent utilities
(NEU) condition in Abreu, Dutta, and Smith (1994): Observe that for each firm, when it
is unmatch, it is indifferent toward how the other firm f ′ matches with workers, so their
utilities cannot be positive affine transformation of another. Lemma 1 and Lemma 2 in
Abreu, Dutta, and Smith (1994) then ensure the existence of λf and λf ′ that satisfy the
properties above.

S.1.2 Complete proof of Theorem 2

Fix λ0 ∈ �∗. Define u0 = u(λ0 ) and U∗ ≡ {u(λ) : λ ∈ �∗}. Observe that for firms in F ∩R,
the set M◦

R satisfies the NEU condition in Abreu, Dutta, and Smith (1994): holding f ∈
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Figure S.1. A Phase Diagram Representation.

F ∩ R unmatched, f is indifferent toward how another firm f ′ ∈ F ∩ R matches with
workers, so their utilities cannot be positive affine transformation of another. Lemma 1
and Lemma 2 in Abreu, Dutta, and Smith (1994) then ensure the existence of vectors
{uf : f ∈ F ∩R} ⊆ U∗, such that

u
f
f < u0

f and u
f
f < u

f ′
f

for all f , f ′ ∈ F ∩R and f 
= f ′. Let λf ∈ �∗ be the distribution over MR that gives rise to
the payoff vector uf for each f . In addition, for each f ∈ F ∩R, let

mf ∈ arg min
m∈M◦

R

max
W ⊆Df (m), |W |≤qf

uf (W )

be the stage-game recommendation to minmax firm f .
Consider the matching process represented by the automaton (�, γ0, f , γ), where

the followingn statementsnhold:

(i) The equality � = {θ(e, m) : e ∈ F ∩R ∪ {0}, m ∈ MR} ∪ {θ(f , t ) : f ∈ F ∩R, 0 ≤ t <

L} is the set of all states.
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(ii) The variable γ0 is the initial distribution over states, which satisfies γ0(θ(0, m)) =
λ0(m) for all m ∈ M◦

R.

(iii) The function O : � → M is the output function, where O(θ(e, m)) = m and
O(θ(f , t )) =mf .

(iv) The function κ : � × M → �(�) is the transition function. For states {θ(f , t )|0 ≤
t < L− 1}, κ is defined as

κ
(
θ(f , t ), m′)

=
{
θ
(
f ′, 0

)
if m′ 
= mf ; m′ = [

mf ′ ,
(
f ′, W

)]
for some f ′ ∈ F ∩R and W ⊆ W

θ(f , t + 1) otherwise.

For states θ(f , L− 1), the transition is defined as

κ
(
θ(f , L− 1), m′)

=
{
θ
(
f ′, 0

)
if m′ 
= mf ; m′ = [

mf ′ ,
(
f ′, W

)]
for some f ′ ∈ F ∩R and W ⊆ W

γf otherwise,

where for each f ∈ F ∩ R, pf is the distribution over states that satisfies
γf (θ(f , m)) = λf (m) for all m ∈ M .

For states θ(e, m), the transition is

κ
(
θ(e, m), m′)

=
{
θ
(
f ′, 0

)
if m′ 
= mf ; m′ = [

mf ′ ,
(
f ′, W

)]
for some f ′ ∈ F ∩R and W ⊆ W

γe otherwise,

where the distributions γe are defined as above.

Note that owing to the identifiability of the deviating firm (Lemma 2), for any θ ∈ � and
matching m′ 
= O(θ), we can uniquely identify the firm responsible for this deviation, so
the transition above is well defined.

Note that no firms in T wish to deviate, since they are always matched with their
top coalition workers; no workers want to deviate since all recommended matchings are
in M◦

R. It remains to verify that no firm f ∈ F ∩ R has incentives to deviate. Choose a
number Z > sup{m∈M ,f∈F∩R} uf (m).

For states of the form {θ(e, m)} Consider a one-shot deviation (f , W ). There are two
cases to consider.

Case 1: f 
= e. Without deviation, f has value (1 − δ)uf (m) + δuef . After deviation,

f yields less than (1 − δ)Z + δ(1 − δL )uRf + δL+1u
f
f . There is no profitable one-shot

deviation for f if

(1 − δ)uf (m) + δuef ≥ (1 − δ)Z + δ
(
1 − δL

)
uRf + δL+1u

f
f .
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As δ → 1, the LHS converges to uef while the RHS converges to u
f
f . By construction,

uef > u
f
f , so such deviations are not profitable for δ high enough.

Case 2: f = e. Without deviation, f has value (1 − δ)uf (m) + δu
f
f . After deviation,

f yields less than (1 − δ)Z + δ(1 − δL )uRf + δL+1u
f
f . There is no profitable one-shot

deviation for f if

(1 − δ)uf (m) + δu
f
f ≥ (1 − δ)Z + δ

(
1 − δL

)
uRf + δL+1u

f
f .

The inequality is equivalent to

Z − uf (m) ≤ δ
(
1 + · · · + δL−1)[uff − uRf

]
.

By construction, uff − uRf > 0. Choose L large enough so that L(u
f
f − uRf ) >Z − uf (m).

As δ → 1, the LHS remains unchanged while the RHS converges to L(u
f
f − uRf ), so such

deviations are not profitable for δ high enough.

For states of the form {θ(f , t )} Consider a one-shot deviation (f ′, W ). There are two
cases to consider.

Case 1: f ′ 
= f . Without deviation, firm f ′ has payoff (1 − δL−t )uf ′(mf ) + δL−tu
f
f ′ .

After deviation, f ′ has payoff less than (1 − δ)Z + δ(1 − δL )uRf ′ + δL+1u
f ′
f ′ . There is no

profitable one-shot deviation for f ′ if

(
1 − δL−t

)
uf ′(mf ) + δL−tu

f
f ′ ≥ (1 − δ)Z + δ

(
1 − δL

)
uRf ′ + δL+1u

f ′
f ′ .

As δ → 1, the LHS converges to u
f
f ′ for all 0 ≤ t ≤ L, while the RHS converges to u

f ′
f ′ . By

construction, uff ′ > u
f ′
f ′ . So the above inequality holds for sufficiently high δ.

Case 2: f ′ = f . Without deviation, firm f ′ has payoff (1 − δL−t )uRf ′ + δL−tu
f ′
f ′ . When

deviating from mf ′ , f ′ can obtain at most uRf . So its payoff from deviation is at most

(1 − δ)uRf ′ + δ
(
1 − δL

)
uRf ′ + δL+1u

f ′
f ′ = (

1 − δL+1)uRf ′ + δL+1u
f ′
f ′ .

Firm f ′ has no profitable deviation if (1 − δL−t )uRf ′ + δL−tu
f ′
f ′ ≥ (1 − δL+1 )uRf ′ + δL+1u

f ′
f ′

or

u
f ′
f ′ ≥ uRf ′ .

This is true by construction. So f ′ has no profitable one-shot deviation.
We have verified that there is no profitable one-shot deviation in any states of the

automaton. This completes the proof.
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