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Persistence in a dynamic moral hazard game

J. Aislinn Bohren
Department of Economics, University of Pennsylvania

This paper explores how the persistence of past choices creates incentives in a
continuous time stochastic game involving a large player (e.g., a firm) and a se-
quence of small players (e.g., customers). The large player faces moral hazard and
her actions are distorted by a Brownian motion. Persistence refers to how actions
impact a payoff-relevant state variable (e.g., product quality depends on past in-
vestment). I characterize actions and payoffs in Markov perfect equilibria (MPE)
for a fixed discount rate, show that the perfect public equilibrium (PPE) payoff
set is the convex hull of the MPE payoff set, and derive sufficient conditions for
a MPE to be the unique PPE. Persistence can serve as an effective channel for in-
tertemporal incentives in a setting where traditional channels fail. Applications to
persistent product quality and policy targeting demonstrate the impact of persis-
tence on equilibrium behavior.

Keywords. Continuous time games, stochastic games, moral hazard.

JEL classification. C73, L1.

1. Introduction

This paper studies how the persistence of past choices can be used to create incentives
in a continuous time stochastic game in which a large player interacts with a sequence
of small players. Persistence refers to the impact that actions have on a payoff-relevant
state variable, such as a worker’s rating, a firm’s product quality, or a government’s key
economic variables. It can capture exogenous features of the environment, such as how
past investment influences current quality or how past policy choices map into the cur-
rent level of an economic variable. It can also capture endogenous design choices, such
as how a rating system aggregates past reviews and rewards a worker based on her rat-
ing. The large player faces moral hazard and her past actions are not perfectly observed
by consumers: they are distorted by a Brownian motion. Incentives can depend on the
noisy signal of action choices as well as on how persistence influences future payoffs
through the impact that actions have on the state. The goal of this paper is to determine
whether and how persistence strengthens incentives to overcome moral hazard.

J. Aislinn Bohren: abohren@sas.upenn.edu
Earlier versions of this paper were circulated under the titles “Stochastic games in continuous time: Persis-
tent actions in long-run relationships” and “Using persistence to generate incentives in a dynamic moral
hazard problem.” I thank Simon Board, Matt Elliott, Jeff Ely, Ben Golub, Alex Imas, Bart Lipman, David
Miller, George Mailath, Markus Mobius, Paul Niehaus, Andrew Postlewaite, Yuliy Sannikov, Andy Skrzypacz,
Joel Sobel, Jeroen Swinkels, Joel Watson, Alex Wolitzky, and especially S. Nageeb Ali for useful comments.
I also thank numerous seminar participants for helpful feedback.

© 2024 The Author. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at https://econtheory.org. https://doi.org/10.3982/TE2680

https://econtheory.org/
mailto:abohren@sas.upenn.edu
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://econtheory.org
https://doi.org/10.3982/TE2680


450 J. Aislinn Bohren Theoretical Economics 19 (2024)

The framework captures many economic settings in which past choices shape key
features of current and future interactions. For example, a worker’s rating on a platform
depends on the quality of service she has provided to previous customers. She may be
rewarded for earning a good rating and punished for poor performance. This provides
an incentive for her to earn and maintain a good rating. Similarly, a firm’s ability to make
a high quality product is a function not only of its effort today, but also its past invest-
ments in developing technology and training its workforce. Quality today is linked to a
firm’s future quality, in that customers experience similar quality across time due to the
persistence of investment. When customers are willing to pay a higher price or buy a
larger quantity of a high quality good, persistence provides an incentive for the firm to
invest in developing a high quality product. Finally, a government’s success in reach-
ing the target level for an economic variable depends on both past and current policy
choices. When past policy choices impact the future value of an economic variable, the
government may be willing to undertake more costly actions today, since the benefit of
such actions continue to accrue in future periods.

I study perfect public equilibria (PPE) in this framework; that is, equilibria in which
strategies depend only on public information. I establish that the PPE payoff set is equal
to the convex hull of the Markov perfect equilibrium (MPE) payoff set. In a MPE, equilib-
rium actions and payoffs depend only on the payoff-relevant components of the game—
in this case, the observable state. Any paths of information that lead to the same current
state prescribe the same continuation play. In contrast, a PPE can depend on past in-
formation in an arbitrary way. The intuition for this result stems from the type of in-
centives that are possible in games with small players and Brownian information. In
a stochastic game, dynamic incentives can either be informational—signals are used
to coordinate future equilibrium play—or structural—actions impact the structure of
future interactions through their impact on the state, including both the state’s direct
impact on future feasible payoffs and its indirect impact through its effect on future
equilibrium play. There are two main forms of informational incentives: burning value,
where incentives are created by the threat of switching to an inefficient action profile,
and transferring continuation payoffs tangent to the set of equilibrium payoffs. It is not
possible to provide incentives with transfers when facing small players, and Brownian
information is too noisy to create effective incentives via value-burning (Sannikov and
Skrzypacz (2010)). Therefore, any nontrivial incentives in games with small players and
Brownian information must be structural. This is precisely the channel for incentives in
a MPE, as informational channels are precluded by definition.1

In establishing this result, I characterize equilibrium payoffs and actions in MPE for
a fixed discount rate. This characterization yields sharp insights. It shows that whether
persistence allows the large player to overcome moral hazard depends on the marginal

1In earlier related work, Faingold and Sannikov (2011) establish a similar result when small players have
incomplete information about the large player’s type and the state is the belief that the large player is com-
mitted to choosing a certain action. Stochastic games with multiple large players, Brownian information,
and a failure of identifiability will likely have a similar equilibrium characterization to this paper, as such
games face similar issues with informational incentives (Abreu, Milgrom, and Pearce (1991), Sannikov and
Skrzypacz (2007)).
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impact of its action on the state and how sensitive the continuation payoff is to changes
in the state. In contrast to a folk theorem, it determines what type of equilibria one ex-
pects to emerge and what pattern of behavior generates a given payoff. It shows how
the dynamics of behavior depend on observable outcomes (e.g., a restaurant rating or
an economic variable) and how incentives and payoffs depend on key parameters of the
model (e.g., the depreciation rate of investment). The characterization of the continua-
tion payoff captures both the direct and equilibrium channels for structural incentives.
For example, when consumers have observed a given level of quality in the recent past,
their willingness to pay for a product depends on both the persistence of this quality—
the direct channel—as well as their belief about how quality influences the firm’s cur-
rent investment choice—the equilibrium channel. The interaction of these two chan-
nels can significantly strengthen or dampen incentives, depending on the structure of
the game.

The second main result determines when a MPE emerges as the unique PPE. This
result relies on determining when there is a unique MPE in the class of Markov equilib-
ria. When there is a unique MPE, the result described above establishes that this will
also be the unique PPE. Uniqueness depends on incentives as the state approaches the
boundary of the state space. If boundary incentives are unique, e.g., it is possible to
sustain a unique equilibrium action profile and payoff at the boundary, then from the
MPE characterization, incentives must also be unique on the interior of the state space.
I present sufficient conditions for uniqueness in two cases: (i) an unbounded state space
and (ii) a bounded state space. In case (i), these conditions rule out complementari-
ties between the direct and the equilibrium channels for incentives near the boundary,
such as multiple optimal action profiles due to coordination motives. In case (ii), these
conditions ensure that incentives collapse as the state approaches the boundary, which
rules out the possibility of sustaining multiple equilibrium action profiles at the bound-
ary.

Several applications illustrate how persistence can be used to create effective incen-
tives. The first application modifies the canonical product choice setting to allow a firm’s
effort to have a persistent effect on the quality of its product. I show that persistence
provides effective incentives for the firm to invest in building a high quality product.
These incentives are present in the long run, in that the firm continues to choose a pos-
itive level of investment as the time period grows large. I also consider a variation of
the product choice game in which the marginal return to quality is non-monotonic and
show that this can lead to firms specializing in low or high quality. In the second ap-
plication, constituents elect a board to implement a policy that targets an economic
variable. The level of the variable depends on current and past decisions by the board.
For example, the Federal Reserve targets an interest rate or a board of directors sets a
growth target for a company. I show that the board’s incentive to undertake costly in-
tervention is strongest when the economic variable is an intermediate distance from its
target; when it is far from its target, the benefit of intervention is significantly delayed,
while when it is close to its target, the benefit of further intervention is small. In the final
application, a government and a group of innovators invest in intellectual capital, and
there is a strategic complementarity between their investments. This complementarity
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gives rise to multiple Markov equilibria, including one in which neither party invests
and several that sustain a positive level of investment. The equilibrium characterization
in each application can be used to address important design questions. For example,
a comparative static on how a firm’s payoff varies with the persistence of its effort pro-
vides insight into the optimal durability for a production technology, while a compara-
tive static on how a worker’s effort varies with the persistence of its rating is useful for
designing rating systems.

1.1 Literature

Recent results on repeated games between a long-run/large and short-run/small play-
ers show that the intersection of noise in monitoring and instantaneous adjustment of
actions creates a genuine challenge in providing intertemporal incentives (Fudenberg
and Levine (2007, 2009), Faingold and Sannikov (2011)).2 In the analogue of this paper
with no persistence, the large player cannot earn an equilibrium payoff above the best
static Nash payoff.3 In contrast, the equilibrium characterization in this paper demon-
strates that persistence can lead to effective intertemporal incentives and enable the
large player to overcome moral hazard.

The literature on reputation with behavioral types is another important and well
understood mechanism to overcome moral hazard in similar settings (Fudenberg and
Levine (1989, 1992), Faingold and Sannikov (2011), Faingold (2020)). If consumers be-
lieve that there is a chance that the firm is committed to choosing high effort, then the
firm will be able to charge a higher price for its product. Incomplete information about
the firm’s type creates a form of persistence, as consumers’ beliefs depend on past ef-
fort choices. However, fixing a strategic firm’s patience, such reputation effects vanish
in the ex ante probability of behavioral types, and so the effectiveness of persistence via
incomplete information requires a nontrivial fraction of behavioral types.4

The connection with the reputational literature motivates several key insights. First,
when the firm is known to be strategic, this paper shows that other forms of persistence
can overcome moral hazard.5 Second, in contrast to the temporary incentives in reputa-
tion models (Cripps, Mailath, and Samuelson (2004), Faingold and Sannikov (2011)), the
incentives in a stochastic game persist in the long run.6 Finally, at a theoretical level, this

2Abreu, Milgrom, and Pearce (1991) first examined incentives in repeated games with imperfect mon-
itoring and frequent actions. They established that shortening the period between actions has a crucial
impact on the ability to structure effective incentives.

3Sannikov and Skrzypacz (2007) show that this is also the case in games between multiple long-run play-
ers in which deviations between individual players are indistinguishable.

4Kreps, Milgrom, Roberts, and Wilson (1982), Kreps and Wilson (1982), and Milgrom and Roberts (1982)
first demonstrated that reputation, in the form of incomplete information about a player’s type, has a dra-
matic effect on equilibrium behavior. Mailath and Samuelson (2001) show that reputational incentives can
also come from a firm’s desire to separate itself from an incompetent type.

5Along these lines, Dilmé (2019) shows that adjustment costs can help a firm overcome moral hazard by
endogenously creating persistence.

6Long-run reputation effects are also possible in models with behavioral types when consumers cannot
observe all past signals (Ekmekci (2011)) or the type of the firm is replaced over time.
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paper explores the general properties of a stochastic game that has powerful intertem-
poral incentives. The reputational game can be viewed as a specific type of stochastic
game. For instance, if instead of influencing the uncertainty about whether it is a behav-
ioral type, a strategic firm makes a costly initial investment in a new production tech-
nology that benefits customers today and in the future, we observe similar intertemporal
incentives in the resulting stochastic game.

This final point merits a closer comparison with Faingold and Sannikov (2011), who
characterize the unique MPE in the stochastic game that corresponds to a continuous
time reputation model. In their paper, payoffs and the evolution of the state take a
specific form due to Bayesian updating. My characterization builds on the techniques
in their paper to understand more generally what properties of stochastic games are
needed for uniqueness of MPE and nondegenerate intertemporal incentives. I analyze
a general class of stochastic games that places few restrictions on the process governing
the evolution of the state and the structure of payoffs. The key technical advancement,
relative to their paper, is for the case of an unbounded state space and payoff for the
large player, as it requires significantly different techniques to complete the analysis.

Beyond reputation models with behavioral types, a rich literature analyzes dynamic
games with a state variable in which effort is directly linked to future payoffs via the state.
Ericson and Pakes (1995) were the first to analyze hidden investment and stochastic cap-
ital accumulation (the state) in a model that is similar in spirit to the quality example
presented in Section 2. They study firm and industry dynamics, and establish equilib-
rium existence. Doraszelski and Satterthwaite (2010) modify Ericson and Pakes (1995) to
guarantee the existence of a pure strategy MPE, which is computationally tractable. Nei-
ther paper establishes uniqueness, but instead focus on the dynamics associated with a
particular MPE. More broadly, MPE is the workhorse solution concept across industrial
organization and political economy. A comprehensive review of this literature is beyond
the scope of this paper.

This paper also relates to a literature on stochastic games with an unobservable state.
In these games, incentives stem from the large player’s ability to manipulate the public
belief about the state through her effort choice. Cisternas (2018) characterizes necessary
conditions for the existence of Markov equilibria in a continuous time stochastic game
with an unobservable state and sufficient conditions in two more restrictive classes of
games. Hidden states significantly complicate the model, and it is not possible to estab-
lish uniqueness results or a full equilibrium characterization. Board and Meyer-ter-Vehn
(2013) study a setting in which a firm’s hidden quality depends on past effort and con-
sumers learn about this quality from noisy signals. My paper differs in focus in that there
is no adverse selection, there is strategic interaction between the large and small players,
and it allows for a richer class of stage game payoffs.

Several folk theorems exist for discrete time stochastic games with observable states,
beginning with a perfect monitoring setting in Dutta (1995) and extending to imper-
fect monitoring environments in Fudenberg and Yamamoto (2011) and Hörner, Takuo,
Satoru, and Vieille (2011). My setting differs in that there is a single large player and
information follows a diffusion process. It is already known that these two changes sig-
nificantly alter incentives in standard repeated games (compare the folk theorem in Fu-
denberg, Levine, and Maskin (1994) to the equilibrium degeneracy in Fudenberg and
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Levine (2007, 2009) and Faingold and Sannikov (2011)). The intuition is similar for the
discrete time stochastic game folk theorems compared to the MPE uniqueness result in
this paper.7

The organization of the paper proceeds as follows. Section 2 presents a product
choice example to motivate the model. Section 3 sets up the model and characterizes the
structure of PPE. Section 4 presents the three main results: existence of a Markov equi-
librium, characterization of the PPE payoff set, and uniqueness of a Markov equilibrium
in the class of all PPE. Section 5 presents structural results on the shape of equilibrium
payoffs. Section 6 explores several applications. All proofs are provided in the Appendix.

2. Example 1: Product choice with persistent quality

Consider a variation of the canonical product choice setting in which a monopolist firm
provides a product to consumers and the firm’s effort has a persistent effect on the qual-
ity of the product. At each time t, the firm chooses an unobservable effort level at ∈ [0, a],
where a > 0. The quality of the firm’s product at time t depends on both current and
past effort, q(at ,Xt ) = (1 − λ)at + λXt , where past effort influences quality through the
observable stock quality

Xt =
∫ t

0
e−θ(t−s)(as ds+ dZs ),

θ > 0 determines the decay rate of past effort, (Zt )t≥0 is a standard Brownian motion,
and λ ∈ [0, 1] captures the relative importance of past effort in determining current qual-
ity.8 Effort increases quality both today and in the future.

There is a continuum of identical consumers of unit mass. Consumers value quality:
when they believe that the firm will choose effort level ãt at time t, they are willing to pay
q(ãt ,Xt ) for one unit of the product. Each consumer purchases the product for a price
equal to her willingness to pay when it is positive and otherwise does not purchase.
Therefore, the firm earns a flow revenue of bt = q(ãt ,Xt ) when q(ãt ,Xt )> 0 and bt = 0
otherwise. This exact form of revenue is chosen for simplicity; the important feature is
that the flow revenue is increasing in quality and independent of the true current effort
choice. Effort has flow cost a2

t /2 and the firm discounts at rate r > 0. Therefore, the firm’s
average discounted payoff equals

r

∫ ∞

0
e−rt

(
bt − a2

t /2
)
dt.

In the unique PPE with no persistence, λ = 0, the firm exerts zero effort, quality is
equal to zero, and the firm earns zero profit (this is a direct application of Theorem 3

7The paper also relates to an older literature on stochastic games and the existence of Markov equilibria
in discrete time, including Shapley (1953), Dutta and Sundaram (1992), Nowak and Raghavan (1992), Duffie,
John Geanakoplos, and McLennan (1994).

8In a slight abuse of notation, the Lebesgue integral and the stochastic integral are placed under the
same integral sign.
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from Faingold and Sannikov (2011)). Intertemporal incentives break down, despite the
fact that the firm would earn higher profits if it could commit to higher effort.9

In this paper, I show that persistent quality incentivizes the firm to choose a positive
level of effort and earn positive profits. Theorems 1 to 3 establish that there is a unique
PPE, which is Markov in the stock quality Xt . The effort level and profit in this unique
equilibrium are characterized as a function of the impact of past effort on current qual-
ity λ, the depreciation rate of quality θ, and the discount rate r. For any λ > 0, the firm
chooses a positive level of effort and earns positive profits at positive and some (pos-
sibly all) negative levels of stock quality. Further, the firm has a long-run incentive to
choose high effort. This contrasts with models in which the incentive to produce high
quality is derived from consumers’ uncertainty over the firm’s payoffs and long-run ef-
fort converges to zero (Cripps, Mailath, and Samuelson (2004), Faingold and Sannikov
(2011)).

Persistence increases the firm’s payoffs through two complementary structural
channels. First, the firm’s effort increases the stock quality, which increases future rev-
enue through its impact on future prices. This is the direct effect of persistence, as
discussed in the Introduction. Second, persistence creates a link with future payoffs,
which allows the firm to credibly choose a positive level of effort today, thereby increas-
ing the current price, and hence, revenue. This second channel arises from the strategic
interaction between the firm and consumers: it is the equilibrium effect discussed in
the Introduction. When quality is high, the continuation value is approximately linear
and it is possible to quantify the share of profit arising from each of these channels. The
present value of the direct effect minus the cost of effort is approximately λ2/2(r + θ)2,
which is higher when past effort plays a larger role in determining current quality (higher
λ), quality depreciates at a lower rate (lower θ), or the firm is more patient (lower r). The
present value of the equilibrium effect is approximately (1 − λ)λ/(r + θ), which is also
higher when quality depreciates at a lower rate or the firm is more patient. In contrast
to the direct effect, the equilibrium effect is largest for intermediate values of λ. This is
because the incentive to exert effort is increasing in λ while the impact of effort on the
current price is increasing in 1 − λ.

This example will be used throughout the paper to demonstrate the results. The
product choice framework lends itself to other variations, several of which are discussed
in Section 6.1.

3. Model

3.1 Model setup

States and actions A large player and a continuum I ≡ [0, 1] of identical small play-
ers, indexed by i, play a continuous time stochastic game with imperfect monitoring.
At each instant of time t ∈ [0, ∞), a publicly observable state variable Xt in nonempty
closed interval X ⊂ R determines the action set and feasible flow payoffs. If X is

9In contrast to Abreu, Milgrom, and Pearce (1991) and Sannikov and Skrzypacz (2007), this breakdown
of incentives takes place despite there being no failure of identifiability.
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bounded, denote the upper and lower boundary states by X ≡ supX and X ≡ infX , re-
spectively, and assume X0 ∈ (X ,X ). Large and small players simultaneously choose
actions at fromA and bit from B(Xt ), respectively, whereA is a nonempty compact sub-
set of a Euclidean space and B(X ) is a nonempty compact subset of a closed Euclidean
space B with continuous correspondence X �→ B(X ). Denote the set of feasible pairs
of small player actions and states as E ≡ {(b,X ) ∈ B × X |b ∈ B(X )}. Assume that the
boundary of the feasible set of actions for small players grows at most linearly with the
state; that is, there exists aKb, cb > 0 such that for all (b,X ) ∈E, |b| ≤Kb|X| + cb.10 Indi-
vidual actions are privately observed. Players observe the aggregate distribution of small
players’ actions, bt ∈ �B(Xt ), and do not observe the large player’s action.

Given initial stateX0, the state evolves stochastically according to

dXt = μ(at , bt ,Xt )dt + σ(bt ,Xt )dZt , (1)

where (Zt )t≥0 is a one-dimensional Brownian motion, and the drift and volatility are
determined by Lipschitz continuous functions μ :A×E→ R and σ : E→ R, which are
linearly extended toA× {(b,X ) ∈ �B×X | suppb⊂ B(X )} and {(b,X ) ∈ �B×X | suppb⊂
B(X )}, respectively.11 The drift depends on the large player’s action, the aggregate ac-
tion of the small players, and the state. Volatility is independent of the large player’s
action to maintain the assumption that it is not perfectly observed. If the state space
is bounded, then to prevent the state from escaping its boundary and maintain im-
perfect monitoring at the boundary, the volatility must be zero at the upper and lower
bounds, σ(b,X ) = 0 for all b ∈ B(X ) and σ(b,X ) = 0 for all b ∈ B(X ), and the drift must
be weakly negative at the upper bound, weakly positive at the lower bound, and in-
dependent of (a, b) at both bounds, μ(a, b,X ) = m ≤ 0 for all (a, b) ∈ A × B(X ) and
μ(a, b,X ) =m≥ 0 for all (a, b) ∈A×B(X ). To ensure that the future path of the state is
stochastic, except at boundary states, assume that its volatility is positive at all interior
states.

Assumption 1 (Positive Volatility). When X = R, infE σ(b,X )> 0. When X is compact,
there exists a C > 0 such that σ(b,X ) ≥ C(X −X )(X −X ) for all (b,X ) ∈ E.

This assumption rules out interior absorbing states, where state X is absorbing if
the drift and volatility are equal to zero, μ(a, b,X ) = 0 and σ(b,X ) = 0 for all (a, b) ∈
A×�B(X ).

The path of the state provides a public signal of the large player’s action. There are no
additional public signals. This is without loss of generality, as additional public signals
have no effect on the equilibrium characterization (see the discussion in Section 3.3).
Let (Ft )t≥0 represent the filtration generated by the public information (Xt )t≥0. Small
players observe no information about the large player’s action beyond what is contained
in (Ft )t≥0.

10I use | · | to denote the Euclidean norm for vectors..
11Functions μ and σ are extended to distributions as

∫
B(X )μ(a, b,X )db(b) and

∫
B(X ) σ(b,X )2 db(b).
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Payoffs The payoff of the large player depends on her action, the distribution of small
players’ actions, and the state. She seeks to maximize the expected value of her dis-
counted payoff

r

∫ ∞

0
e−rtg(at , bt ,Xt )dt,

where r > 0 is the discount rate and g : A × E → R is a Lipschitz continuous function
representing the flow payoff, which is linearly extended toA× {(b,X ) ∈ �B×X | suppb⊂
B(X )}. Small players have identical preferences. The payoff of player i ∈ I depends on
her action, the distribution of small players’ actions, the large player’s action, and the
state,

r

∫ ∞

0
e−rth

(
at , bit , bt ,Xt

)
,

where h : A× {(b, b′,X ) ∈ B2 × X |b, b′ ∈ B(X )} → R is a continuous function, which is
linearly extended to A× {(b, b,X ) ∈ B × �B × X |b ∈ B(X ), suppb ⊂ B(X )}. As is stan-
dard, assume that small players do not learn any information about the long-run player’s
action from observing their flow payoffs beyond that conveyed in the public informa-
tion. The dependence of payoffs on the state creates a form of action persistence, since
the state depends on prior actions.

To ensure that the expected discounted payoff of the large player is well behaved
requires a restriction on either the flow payoff of the large player or the growth rate of
the state. Assumption 2 states that either the flow payoff is bounded or the drift of the
state grows at a linear rate less than the discount rate.

Assumption 2 (Bounded Payoff or Growth of Drift). At least one of the following condi-
tions holds: (i) the flow payoff g is bounded; (ii) the drift μ has linear growth at a rate less
than r: there exists a Kμ ∈ [0, r ) and cμ > 0 such that for all (a, b,X ) ∈A× E, if X ≥ 0,
then μ(a, b,X ) ≤KμX + cμ, and ifX ≤ 0, then μ(a, b,X ) ≥KμX − cμ.

No lower bound is necessary on the slope of the drift whenX > 0, since a negatively
sloped drift pulls the state toward zero; similarly, no upper bound is necessary when
X < 0. This assumption is trivially satisfied when the state space is bounded.

Strategies and equilibrium A public pure strategy for the large player is a stochastic pro-
cess (at )t≥0 with at ∈ A that is progressively measurable with respect to (Ft )t≥0. Like-
wise, a public pure strategy for small player i ∈ I is a stochastic process (bit )t≥0 with
bit ∈ B(Xt ) that is progressively measurable with respect to (Ft )t≥0. Given that small
players have identical preferences, it is without loss of generality to work with aggregate
strategy (b̄t )t≥0. The large player’s expected discounted payoff at time t under strategy
S = (at , bt )t≥0 is given by

Vt(S) ≡Et
[
r

∫ ∞

0
e−rsg(as , bs ,Xs )ds

]
. (2)
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I restrict attention to pure strategy perfect public equilibria (PPE). In any PPE, small play-
ers’ strategies must be myopically optimal because their individual behavior is not ob-
served and does not influence the course of equilibrium play. The following definition
modifies the definition in Sannikov (2007) to allow for small players. In a slight abuse
of notation, I directly incorporate the myopic incentive constraint for small players into
this definition.

Definition 1 (PPE). A public strategy profile S = (at , bt )t≥0 is a perfect public equilib-
rium if, after all public histories, the strategy of the large player maximizes her expected
payoff, Vt(S) ≥ Vt(S′ ) a.s. for all public strategies S′ = (a′

t , b
′
t )t≥0 with (b

′
t )t≥0 = (bt )t≥0 al-

most everywhere, and the strategy of each small player maximizes his expected payoff,

b ∈ arg max
b′∈B(Xt )

h
(
at , b′, bt ,Xt

) ∀b ∈ supp b̄t .

Timing At each instant t, players observe the current stateXt and choose actions. Then
nature stochastically determines payoffs and the next state, given the current state and
the chosen action profile.

3.2 PPE structure

This section extends the recursive characterization of PPE for continuous time repeated
gamed (Sannikov (2007), Faingold and Sannikov (2011)) to continuous time stochastic
games.12 Given strategy profile S = (at , bt )t≥0, define the large player’s continuation
value as the expected value of the future discounted payoff at time t,

Wt(S) ≡Et
[
r

∫ ∞

t
e−r(s−t )g(as , bs ,Xs )ds

]
. (3)

The expected average discounted payoff at time t can be represented as

Vt(S) = r
∫ t

0
e−rsg(as , bs ,Xs )ds+ e−rtWt(S). (4)

Lemma 1 characterizes the evolution of the large player’s continuation value and the
incentive constraint in PPE. It is the analogue of Theorem 2 in Faingold and Sannikov
(2011) without uncertainty over types, allowing for an unbounded state space and flow
payoff. Two challenges in extending the PPE characterization to allow for an unbounded
flow payoff are showing that E|Vt(S)| <∞ for all t ≥ 0 and showing that (Wt(S))t≥0 has
linear growth with respect to the state. Establishing these properties requires Assump-
tion 2(ii) to ensure that the state grows at a slow enough rate relative to the discount
rate.13

12Sannikov (2007)’s characterization is for games with two long-run players, while Faingold and Sannikov
(2011) focus on public sequential equilibria in games with a single long-run player and incomplete infor-
mation. Both characterizations build on the recursive methods developed in Abreu, Pearce, and Stacchetti
(1990) for discrete time games of imperfect monitoring.

13Given Assumption 2(ii), the linear growth of (Wt )t≥0 is a transversality condition. This result is similar
in spirit to Lemma 1 in Strulovici and Szydlowski (2015), which shows that the value function of an optimal
control problem is finite and satisfies a linear growth condition with respect to the state.
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Lemma 1 (PPE Characterization). Assume Assumptions 1 and 2. A public strategy profile
S = (at , bt )t≥0 is a PPE with continuation values (Wt )t≥0 if and only if, for some (Ft )-
measurable process (βt )t≥0 in L,14 the following statements hold:

(i) The continuation value (Wt )t≥0 satisfies

dWt = r
(
Wt − g(at , bt ,Xt )

)
dt + rβt

(
dXt −μ(at , bt ,Xt )dt

)
(5)

and there exists a K,M ≥ 0 such that |Wt| ≤M +K|Xt| for all t ≥ 0, with K = 0 if g
is bounded.

(ii) The strategy profile S satisfies sequential rationality, (at , bt )t≥0 ∈ S∗(Xt , rβt ) for al-
most all t ≥ 0, where

S∗(X , z) ≡
{

(a, b) :
a ∈ arg maxa′∈A g

(
a′, b,X

) + z
r μ

(
a′, b,X

)
b ∈ arg maxb′∈B(X ) h

(
a, b′, b,X

)∀b ∈ supp b̄

}
(6)

for (X , z) ∈ X ×R.

The first part of the lemma establishes that the continuation value is a stochas-
tic process that is measurable with respect to public information, (Ft )t≥0. Its drift,
W − g(a, b,X ), is the difference between the current continuation value and the flow
payoff, which captures the expected change in the continuation value. Its volatility rβt
determines the sensitivity of the continuation value to information; future payoffs are
more sensitive when the volatility is larger. The second part of the lemma shows that
the incentive constraint for the large player depends on the trade-off between her ac-
tion’s impact on her flow payoff today and her action’s expected impact on her future
payoff via the drift of the state, weighted by the incentive weight βt . It is analogous to
the one-shot deviation principle in discrete time. The continuation value and incentive
constraint are linear with respect to (βt )t≥0. This key property of continuous time games
with Brownian information is due to the martingale representation theorem and lends
significant tractability to the model.

Multiple PPE of the form characterized in Lemma 1 may arise for several reasons.
First, at a state X and incentive weight β that are on the equilibrium path, there may
be multiple sequentially rational action profiles (a, b) ∈ S∗(X , rβ). In this case, it is clear
that there will be multiple PPE.15 Second, even if each state and incentive weight pre-
scribe a unique sequentially rational action profile, there may be multiple equilibrium
paths of incentive weights (βt )t≥0 that satisfy Lemma 1 and, hence, multiple PPE. This
paper focuses on the latter class of games, in which there is a unique sequentially ra-
tional action profile at each X and β, but potentially multiple equilibrium paths of in-
centive weights. The paper also focuses on a class of games in which the oscillation

14The notation L denotes the space of progressively measurable processes (β)t≥0 that are square-

integrable, E[
∫ T

0 β
2
t dt]<∞ for all T <∞.

15For example, suppose there are two action profiles in S∗(X , rβ) for someX and β, denoted by (a1, b1 )

and (a2, b2 ). Then when Xt =X and βt = β, there is a PPE with (at , bt ) = (a1, b1 ) and a PPE with (at , bt ) =
(a2, b2 ), where the change in the continuation value dWt is determined by (5) evaluated at the respective
action profile.
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of the payoff, drift, and volatility functions is limited. Lipschitz continuity guarantees
this when the state space is compact, and, analogously, a monotonicity assumption for
large and small states guarantees this when X = R. The following assumption formalizes
these conditions.

Assumption 3 (Sequentially Rational Action Profile). For all (X , z) ∈ X ×R, S∗ is non-
empty, is single-valued, and returns b̄= δb for some b ∈ B(X ), where δb is the Dirac mea-
sure on action b. When X is compact, S∗ is Lipschitz continuous on every bounded subset
of X ×R. When X = R, S∗ is Lipschitz continuous on X ×R and there exists a δ > 0 such
that for all |X| > δ and z ∈ R, the rate of change of g(S∗(X , z),X ) + zμ(S∗(X , z),X )/r
with respect to X is monotone in X and σ(S∗(X , z),X ) is monotone in X and constant
in z.16

As we illustrate in Section 6, the assumption is straightforward to verify from the
primitives of the model.17

Importantly, Assumption 3 does not preclude the existence of multiple PPE. As illus-
trated in Section 6.3, there can be multiple equilibria when it is satisfied.18 In order to
establish that there is a unique PPE, it is also necessary to show that there is a unique
path of incentive weights (βt )t≥0 that satisfies the conditions in Lemma 1. When multi-
ple paths of incentive weights satisfy Lemma 1, each path corresponds to a different PPE
with a different strength incentive scheme. For example, there may be a “low” incentive
path of βt = 0 for all t along which players do not invest and a “high” incentive path of
βt > 0 for all t along which players choose a positive level of investment.

One implication of Assumption 3 is that the stage game at any state must have a
unique static Nash equilibrium, as the static Nash equilibrium profile corresponds to
S∗(X , 0). This rules out coordination games and some games with strategic comple-
mentarities. It allows for a broad class of games, including games in which actions are
strategic substitutes, games with strategic complementarities that have a unique fixed
point, and games with one-sided complementarities between actions. Another implica-
tion is that the distribution of the small players’ equilibrium actions has a trivial support:
all small players play the same action at a given time t.

Under Assumption 3, let (a(X , z), b(X , z)) ≡ S∗(X , z) denote the unique sequen-
tially rational action profile at state X and incentive weight z/r. Let g∗(X , z) ≡
g(S∗(X , z),X ), μ∗(X , z) ≡ μ(S∗(X , z),X ), and σ∗(X , z) ≡ σ(b(X , z),X ) denote the
flow payoff, drift, and volatility of the state, respectively, evaluated at this unique se-
quentially rational action profile. The Lipschitz continuity of S∗ implies that the same
Lipschitz properties extend to g∗, μ∗, and σ∗.

16In the case of X = R and g bounded, the weaker assumption g∗(S∗(X , z),X ) + zμ∗(S∗(X , z),X )/r
monotone inX for largeX suffices.

17When S∗ is not single-valued, it may not be lower hemicontinuous. Different techniques are necessary
to characterize Markov equilibrium payoffs. Similar to Faingold and Sannikov (2011), differential inclusions
can be used to characterize the “greatest” and “least” Markov equilibrium payoffs as a function of the state
and to show that the PPE payoff set is bounded by these payoffs.

18Similarly, many discrete time games that satisfy an analogous assumption have multiple nontrivial
equilibria. This analogous assumption is more complex since the incentive weights are functions rather
than scalars.
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Example 1 (Product Choice, cont.). To demonstrate Assumptions 1 to 3, return to the
example introduced in Section 2. The boundary of the feasible action set for small play-
ers is linear in X , B(X ) = [0, a+X]. The volatility of the state is constant, σ(b,X ) = 1
(Assumption 1). The drift is μ(a, b,X ) = a − θX , which is negative when X is high
and positive when X is low (Assumption 2(ii)). The large player’s payoff is g(a, b,X ) =
b− a2/2. Given (X , z), sequential rationality for the firm requires

a ∈ arg max
a∈[0,a]

b− 1
2
a2 + z

r
(a− θX ),

which yields a(X , z) = z/r for z ∈ [0, ra], a(X , z) = 0 for z < 0, and a(X , z) = a for z > ra.
In equilibrium, consumers’ beliefs about the effort choice of the firm are correct. There-
fore, consumers are willing to pay b(X , z) = max{0, q(a(X , z),X )}. This sequentially
rational action profile is unique and Lipschitz continuous in (X , z) (Assumption 3).
Given a(X , z) and b(X , z), the flow payoff is g∗(X , z) = b(X , z) − a(X , z)2/2, the drift
of the state is μ∗(X , z) = a(X , z) − θX , and the volatility of the state is σ∗(X , z) = 1,
which is trivially monotone inX and constant in z for large |X|. Further, d

dX (g∗(X , z) +
zμ∗(X , z)/r ) is λ−zθ/r for largeX and −zθ/r for smallX , which is constant and, hence,
monotone. ♦

3.3 Discussion of model

Equilibrium actions In many applications—including rational expectations equilib-
rium models and learning models, where the state is a belief—the transition of the state
and/or the large player’s flow payoff depend on the large player’s chosen action and her
equilibrium action (i.e., the action other players expect). The framework in this paper
indirectly allows for such dependences, since the best response of the small player de-
pends on the expected action of the large player, which is correct in equilibrium. One
could also model such dependences directly by adding the equilibrium action, denoted
ã, as an argument to the drift and the volatility, i.e., μ′(a, ã, b,X ) and σ ′(ã, b,X ).19 The
analysis is unchanged, provided μ′ and σ ′ satisfy Assumptions 1 to 3.20 For example,
suppose the drift is μ(a, b,X ) = θ1b + θ2a and the small player’s payoff is ab − b2/2.
When the small player believes that the large player will choose ã, her best response is
b= ã. This is isomorphic to a model in which the drift directly depends on the equilib-
rium action, μ′(a, ã, b,X ) = θ1ã+ θ2a.

The framework presented here does rule out some classes of stochastic games. In
particular, consider Bayesian learning games with a binary outcome space, and let the
stateX ∈ [0, 1] denote the belief that the outcome is high. Assumption 1 rules out games
in which there exists an action profile that shuts down learning at interior beliefs, i.e.,
there exists an (ã, b) ∈A×B such that σ ′(ã, b,X ) = 0 at someX ∈ (0, 1). This contrasts
with Faingold and Sannikov (2011), in which it is feasible for the normal player to shut

19Imperfect monitoring is maintained when the volatility depends on the equilibrium action, in contrast
to the chosen action. This is because the expected action does not reveal the chosen action.

20This highlights the distinction from a single-agent decision problem, as the present framework is a
fixed-point problem.
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down learning by perfectly mimicking the behavioral type. Therefore, their setup does
not satisfy Assumption 1 and their model requires an alternative approach to establish
that the volatility of the state is bounded away from zero in equilibrium.

Incentives in continuous time stochastic games As discussed in the Introduction, in a
stochastic game, incentives can either be informational—past signals are used to co-
ordinate future equilibrium play—or structural—past actions impact the structure of
future interactions through their impact on the state. This latter channel includes both
the state’s direct impact on future feasible payoffs and its indirect impact through its ef-
fect on future equilibrium play. The process (βt )t≥0 characterized in Lemma 1 captures
all of these channels for intertemporal incentives.

The linear structure of the continuation value with respect to (βt )t≥0 (as character-
ized in (5)) plays a key role in determining incentives. In a repeated game with small
players, this linearity precludes effective intertemporal incentives (Faingold and San-
nikov (2011)). This is because when the continuation value is at its maximum, a lin-
ear transfer with a nontrivial incentive weight βt > 0 results in the continuation value
exceeding its maximum unless the transfer is tangential to the boundary of the equi-
librium payoff set.21 But tangential transfers are not possible, since small players are
myopic. Therefore, it must be that βt = 0 and the large player acts myopically, yielding
a static Nash payoff. However, in a stochastic game, βt can depend on the state. There-
fore, it may be possible to have a linear transfer with nontrivial incentive weight βt > 0
at states that do not yield the maximum continuation value, while settingβt = 0 at states
that do to ensure that the continuation value does not exceed its boundary. The remain-
der of the paper explores whether and when it is possible to create effective incentives
in this manner.22

Additional public signals The path of the state both serves as a public signal of the large
player’s action and directly impacts payoffs. The results and analysis are unchanged if
there are additional payoff-irrelevant Brownian public signals. Markov equilibria ignore
such signals, so the characterization of Markov equilibria remains the same. Further, it
is not possible to effectively use such signals to coordinate additional equilibria, due to
reasoning similar to Faingold and Sannikov (2011). An older working paper version of
the current paper allows for an arbitrary finite number of public signals (Bohren (2016)).

4. Equilibrium analysis

This section presents the main results of the paper. I establish the existence of Markov
equilibria, characterize the correspondence of PPE payoffs of the large player, and derive
conditions under which there is a unique PPE, which is Markov.

21This intuition is formalized in Sannikov and Skrzypacz (2010), who show that the only effective ways
to use Brownian information are linearly (i.e., the continuation value depends linearly on (βt )t≥0) and to
transfer value tangentially along the boundary of the equilibrium payoff set.

22Nonlinear incentive structures, such as value-burning, are ineffective in both repeated and stochastic
games with Brownian information, because the expected loss from false punishment exceeds the expected
gain from cooperating (Fudenberg and Levine (2007, 2009), Sannikov and Skrzypacz (2007, 2010)).
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4.1 Existence of Markov equilibria

In a Markov equilibrium, the continuation value and actions depend solely on the cur-
rent value of the state; they are independent of the past path of the state. Since the path
of the state provides a signal of the large player’s action, using it to punish or reward the
large player could give rise to PPE in which different paths of the state specify different
continuation payoffs and equilibrium actions, even when these paths map to the same
current state. In a Markov equilibrium, this is not allowed.

Theorem 1 establishes existence of a Markov equilibrium and characterizes equilib-
rium behavior and payoffs in Markov equilibria. The continuation value is characterized
as the solution(s)U : X →R to an ordinary differential equation that maps each state to
a payoff. If there are multiple solutions, then each solution characterizes a Markov equi-
librium (see Section 6.3 for an illustration of a setting with multiple Markov equilibria).
Given a solution U , the corresponding Markov equilibrium action profile is the sequen-
tially rational action profile at state X and incentive weight U ′(X )/r. The large player
has nondegenerate incentives at any state with U ′(X ) = 0.

Theorem 1. Assume Assumptions 1 to 3. Given initial state X0, if U is a solution to the
optimality equation

rU(X ) = rg∗(X ,U ′(X )
) +U ′(X )μ∗(X ,U ′(X )

) + 1
2
U ′′(X )σ∗(X ,U ′(X )

)2
(7)

on X (on (X ,X ) if X is compact) and U has linear growth (is bounded if g is bounded),
then U characterizes a Markov equilibrium with the following payoffs and actions:

(i) Equilibrium payoff U(X0 ).

(ii) Continuation values (Wt )t≥0 = (U(Xt ))t≥0.

(iii) Equilibrium actions (at , bt )t≥0 = (S∗(Xt ,U ′(Xt )))t≥0, where S∗(X ,U ′(X )) is the
unique solution to (6) at stateX and incentive weight U ′(X )/r.

The optimality equation has at least one twice continuously differentiable solution that
lies in the range of feasible payoffs for the large player and has linear growth (is bounded
if g is bounded). Thus, there exists at least one Markov equilibrium.

From the optimality equation, the continuation value U(X ) is equal to the sum of
the equilibrium flow payoff g∗(X ,U ′(X )) and the expected change in the continuation
value. This expected change has two components: (i) the interaction between the slope
of the continuation value and the drift of the state,U ′(X )μ∗(X ,U ′(X ))/r, and (ii) the in-
teraction between the concavity of the continuation value and the volatility of the state,
U ′′(X )σ∗(X ,U ′(X ))2/2r.

In relation to the discussion in Section 3.3, a nontrivial incentive weight is possi-
ble at some states without the continuation value escaping the payoff set. Theorem 1
shows that the volatility of the continuation value in a Markov equilibrium is equal to its
slope, rβt =U ′(Xt ). At any interior stateX∗ that yields the maximum continuation value
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across all states,U ′(X∗ ) = 0. Therefore, whenXt =X∗, the volatility of the continuation
value is zero, rβt = 0, which ensures that the continuation value does not escape the
payoff set. In these periods, the large player acts myopically and earns the static Nash
payoff in stateX∗. At other states, the continuation value can be sensitive to changes in
the state, U ′(X ) = 0, generating nontrivial incentives.

Outline of proof In a Markov equilibrium, continuation values take the form of Wt =
U(Xt ) for some function U . Assuming that U is twice continuously differentiable, by
Ito’s formula the continuation value must follow the law of motion,

dU(Xt ) =U ′(Xt )μ
(
a∗
t , b

∗
t ,Xt

)
dt + 1

2
U ′′(Xt )σ

(
b

∗
t ,Xt

)2
dt +U ′(Xt )σ

(
b

∗
t ,Xt

)
dZt .

By Lemma 1, the continuation value must also follow the law of motion in (5). Matching
the drifts of these two laws of motion yields the optimality equation, while matching
the volatilities yields the equilibrium volatility of the continuation value, rβt = U ′(Xt ).
Showing that the optimality equation has at least one twice continuously differentiable
solution that lies in the range of feasible payoffs for the large player establishes existence.

Faingold and Sannikov (2011) follow similar steps to derive a Markov equilibrium in
a game of incomplete information. Relative to their derivation, the innovative part of
my proof lies in establishing existence of a solution to the optimality equation when the
state space is unbounded, particularly when g is also unbounded. I show by construc-
tion that there exist lower and upper solutions to the optimality equation, α : X →R and
α : X → R, that have linear growth. This is only possible when the maximum drift of the
state has linear growth at rate less than r (Assumption 2). The lower and upper solutions
characterize bounds on the solution to the optimality equation, α(X ) ≤ U(X ) ≤ α(X )
for all X . Next I show that the bound on the optimality equation grows linearly with
respect to U ′(X ) and, therefore, the optimality equation does not grow too quickly
(technically speaking, it satisfies a growth condition on any compact subset of the state
space). These conditions establish that the optimality equation has a twice continuously
differentiable solution with linear growth. When g is bounded, the lower and upper so-
lutions are constant, which establishes existence of a bounded solution.

The final step is to show that the continuation value and actions characterized above
constitute a Markov equilibrium. Given a solution U(X ) and an action profile uniquely
specified at state Xt by (a∗

t , b
∗
t ) = S∗(Xt ,U ′(Xt )) (where uniqueness follows from As-

sumption 3), the state variable evolves uniquely according to (1), the continuation value
(U(Xt ))t≥0 satisfies the law of motion (5), and the action profile satisfies the conditions
for sequential rationality (6). Therefore, (a∗

t , b
∗
t ,U(Xt )) constitute a PPE.

For a given solutionU(X ), the state evolves uniquely and actions are uniquely spec-
ified as a function of the state. Therefore, each solution to the optimality equation char-
acterizes a unique Markov equilibrium. If there are multiple solutions, then there will be
multiple Markov equilibria.

Example 1 (Product Choice, cont.). Given a(X , z) and b(X , z) characterized in Sec-
tion 3.2, any solution to

rU(X ) = rb(X ,U ′(X )
) − r

2
a
(
X ,U ′(X )

)2 +U ′(X )
(
a
(
X ,U ′(X )

) − θX) + 1
2
U ′′(X ) (8)
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with linear growth asX → ∞ and bounded asX → −∞ characterizes a Markov equilib-
rium with equilibrium actions a(X ,U ′(X )) and b(X ,U ′(X )). ♦

4.2 The PPE payoff set

Let ξ : X ⇒ R denote the correspondence that maps each state onto the corresponding
set of PPE payoffs for the large player, and let ϒ : X ⇒ R denote the analogous corre-
spondence for the Markov equilibrium payoffs characterized by the optimality equation
in Theorem 1. Theorem 2 shows that in any PPE, the large player cannot achieve a payoff
above the highest or below the lowest Markov equilibrium payoff in ϒ.

Theorem 2. Assume Assumptions 1 to 3. Then for any stateX ∈X (stateX ∈ (X ,X ) if X
is compact), the set of PPE payoffs of the large player at stateX is equal to the convex hull
of the set of Markov equilibrium payoffs at stateX , ξ(X ) = co(ϒ(X )).

The impossibility of the large player achieving a PPE payoff above the highest
Markov payoff in ϒ yields insight into the type of incentives generated by persistence.
As discussed in the Introduction and Section 3.3, incentives can be either informational
or structural. When a Markov equilibrium yields the highest equilibrium payoff, it pre-
cludes the existence of equilibria that achieve higher payoffs using informational incen-
tives. Therefore, any nontrivial incentives arising from persistence are structural.

Outline of proof The key argument in the proof shows that any PPE with an initial pay-
off above the highest Markov equilibrium payoff inϒwill eventually yield a continuation
value that lies outside the set of feasible payoffs for the large player, which is a contra-
diction. Suppose that a PPE with continuation values (Wt )t≥0 yields a payoff higher than
the maximum Markov equilibrium payoff in ϒ at state X0. Let Dt ≡Wt −U(Xt ) be the
difference between the continuation values in these two equilibria at time t. I show that
whenever D0 > 0, Dt will grow arbitrarily large with positive probability, independent
of Xt . By Lemma 1, |Wt(S)| is bounded with respect to Xt . Thus, Dt can only grow
arbitrarily large whenXt grows arbitrarily large, so it cannot be thatD0 > 0.

This escape argument is similar to other papers in the literature, in particular
Faingold and Sannikov (2011). Their proof relies on the compactness of the state space
to show that the volatility of Dt is bounded away from zero and relies on the bounded-
ness of the flow payoff to reach a contradiction when Dt grows arbitrarily large. There-
fore, their proofs do not trivially extend to an unbounded state space or an unbounded
flow payoff. The innovative parts of this proof are to establish that the volatility of Dt is
bounded away from zero on an unbounded state space and to show that whenDt grows
arbitrarily large, it can jump outside of the feasible payoff set (a contradiction) provided
the state does not grow too quickly.

Equilibrium degeneracy without persistent actions If the state evolves independently
of the large player’s action, then there is no link between the current action and the
continuation value. It is not possible to generate effective intertemporal incentives and
the large player acts myopically. In the unique PPE, both players play the static Nash
equilibrium action profile S∗(X , 0) at all statesX .
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Corollary 1. Assume Assumptions 1 to 3 and suppose μ is independent of a for all X .
Then in the unique PPE, (at , bt ) = S∗(Xt , 0) for all t ≥ 0 and the continuation value is
characterized by the unique solution to the optimality equation (7).

This is the stochastic game analogue of the equilibrium degeneracy result in re-
peated games with a long-run player and short-run/small players (Fudenberg and
Levine (2007, 2009), Faingold and Sannikov (2011)).

4.3 Equilibrium uniqueness

This section establishes sufficient conditions for there to be a unique PPE, which is
Markov. The main step is to determine when the optimality equation has a unique feasi-
ble solution. When this is the case, Theorem 2 establishes that PPE payoffs are uniquely
specified as the payoffs in this unique Markov equilibrium. The behavior of the optimal-
ity equation as the state approaches its boundary plays a key role in establishing when
it has a unique solution. Any two feasible solutions that satisfy the same boundary con-
ditions cannot differ on the interior of the state space: they must be equivalent (see
Lemma 7 in Appendix A.4). Therefore, establishing that all feasible solutions satisfy the
same boundary conditions is necessary and sufficient to establish a unique solution. I
outline a set of sufficient conditions to guarantee this when X =R; the case of a compact
state space requires no additional conditions. The application in Section 6.3 illustrates
how multiple Markov equilibria can arise when this condition fails.

4.3.1 Unbounded state space (X = R) Assumption 4 (below) outlines a set of sufficient
conditions for a unique Markov equilibrium when X = R. The first condition requires
the large player’s equilibrium flow payoff and the equilibrium drift to be additively sep-
arable in the stateX and incentive weight z asX approaches ∞ and −∞. This rules out
complementarities between the direct and equilibrium channels for incentives near the
boundary, which prevents multiple equilibrium incentive weights—and hence, equilib-
rium action profiles—at a given state. It is used to establish that the slope of the contin-
uation value converges to the same limit in all Markov equilibria. The second condition
relates to the volatility: it is a technical condition that helps establish that two distinct
solutions to the optimality equation cannot have the same limit slope. The third condi-
tion applies to a growth model where the drift of the state approaches infinity asX → ∞
(or approaches negative infinity asX → −∞); it ensures that the volatility does not also
grow arbitrarily large. It is also used to pin down a unique boundary continuation value.

Assumption 4.

(i) Additive Separability Near Boundary. There exists a δ > 0 and continuously differ-
entiable functions g1, μ1 : X → R and g2, μ2 : R → R with μ1 monotone such that
for |X| > δ, g∗(X , z) = g1(X ) + g2(z) and μ∗(X , z) = μ1(X ) +μ2(z).

(ii) Volatility. The function σ∗(X , z)2 is Lipschitz continuous.
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(iii) Growth Case. When limX→∞μ1(X ) = ∞, then there exists an ε, δ > 0 such that for
X > δ and z ∈ R, |μ1(X )|/σ∗(X , z)2 > ε, and similarly when limX→−∞μ1(X ) =
−∞.23

Given Assumption 4(i), select g1(X ) and g2(z) such that g2(z) contains any constant
term in g∗(X , z) to uniquely pin down each function, and similarly for μ1(X ) and μ2(z).
When g is bounded, it is possible to establish uniqueness without additive separability;
Assumption 5 in Supplemental Appendix D.3 (available at http://econtheory.org/supp/
2680/supplement.pdf) presents an alternative condition.

Theorem 3 establishes uniqueness and characterizes the limit of the continuation
value and its slope as the state grows large.

Theorem 3. Suppose X = R and assume Assumptions 1 to 4. For each initial state X0 ∈
X , there exists a unique PPE that is Markov and characterized by the unique solutionU of
(7) on X with linear growth (bounded when g is bounded). The slope of the continuation
value converges to a constant,

lim
X→x

U ′(X ) = zx where zx ≡ lim
X→x

rg1(X )/
(
rX −μ1(X )

)
, (9)

and the continuation value converges to

lim
X→x

U(X ) − y(X ) = g2(zx ) + zxμ2(zx )/r (10)

for x ∈ {−∞, ∞}, where y(X ) ≡ −φ(X )
∫

(rg1(X )/φ(X )μ1(X ))dX and φ(X ) ≡
exp(

∫
(r/μ1(X ))dX ) when limX→x μ1(x) = 0, and y(X ) ≡ g1(X ) when limX→x μ1(X ) =

0. When g is bounded, this implies the continuation value converges to the limit static
Nash equilibrium payoff and the slope of the continuation value converges to zero: for
x ∈ {−∞, ∞},

lim
X→x

(
U(X ) − g∗(X , 0)

) = 0 and lim
X→x

U ′(X ) = 0. (11)

Theorem 3 establishes that the slope of the continuation value converges to a
unique limit slope, which is equal to the ratio of the growth rate of the flow payoff
to the growth rate of the drift with respect to the state. Given this slope, the bound-
ary condition (10) highlights the impact of structural incentives on the continuation
payoff. Repeated play of the static Nash equilibrium profile yields a payoff UNE that
satisfies limX→x U

NE(X ) − y(X ) = g2(0) + zxμ2(0)/r. Therefore, from (10), the con-
tinuation value approaches the sum of this repeated static Nash payoff and a con-
stant g2(zx ) − g2(0) + zx(μ2(zx ) − μ2(0))/r. This constant determines the extent to
which structural incentives persist at the boundary of the state space. The first term,
g2(zx ) − g2(0), captures the equilibrium effect of persistence. It is the portion of the
equilibrium flow payoff that arises from future strategic interaction; it captures the ef-
fect of the large player’s action on the small players’ actions, net of the cost of a. The

23Part (ii) is unnecessary when g is bounded. Note that part (iii) holds trivially when σ(b,X ) is bounded.

http://econtheory.org/supp/2680/supplement.pdf
http://econtheory.org/supp/2680/supplement.pdf
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second term, zx(μ2(zx ) − μ2(0))/r, captures the direct effect of persistence on future
feasible payoffs, measured by how the continuation value changes with respect to the
state and how the state changes with respect to the large player’s equilibrium action rel-
ative to the static Nash action. If this constant is positive, then as the state becomes
large, structural incentives provide the large player with a payoff that is strictly higher
than the payoff from playing the static Nash profile at each state.

When the asymptotic slope zx is nonzero, it is possible to sustain nontrivial intertem-
poral incentives as the state grows large. This is an important and novel insight of this
paper. If it is possible to sustain nontrivial incentives at the boundary of the state space,
then incentives are permanent in the sense that they do not dissipate with time, regard-
less of the asymptotic behavior of the state with respect to time. In the case of a bounded
flow payoff, zx = 0. Therefore, incentives collapse at the boundary and the continuation
value converges to the limit of the static Nash payoff. However, this does not preclude
the existence of long-run incentives: even when incentives collapse at the boundary, the
state does not necessarily converge to a boundary state as t → ∞. Therefore, it can be
possible to sustain nontrivial incentives in the long run.

The continuation of Example 1 below illustrates how to verify Assumption 4 and de-
rive the boundary conditions in Theorem 3 when the flow payoff is unbounded, while
Section 6.1 illustrates how to do so for a bounded flow payoff. Section 6.3 shows that
there can be multiple MPE in an application in which Assumption 4 (specifically, addi-
tive separability) fails.

Outline of proof I first show that all solutions to the optimality equation have the same
boundary conditions. Faingold and Sannikov (2011) also characterize boundary con-
ditions as a step towards establishing that the optimality equation in their paper has a
unique solution. Relative to their result, the innovative part of my proof is in establishing
boundary conditions for an unbounded flow payoff and state space, as I next describe.
Let ψ(X , z) ≡ g∗(X , z) + zμ∗(X , z)/r be the sum of the large player’s flow payoff and re-
turn on effort at the sequentially rational action profile (a(X , z), b(X , z)), and let U(X )
be a solution to the optimality equation. Suppose thatU ′(X ) does not converge asX →
∞. Then for any slope z such that the continuation value has slope z infinitely often at
largeX ,U(X ) will alternate between being convex and concave at slope z. From the op-
timality equation, ψ(X , z) will lie above U(X ) when it is concave at slope z and will lie
below U(X ) when it is convex at slope z. Therefore, the oscillation of ψ′(X ,U ′(X )) is at
least as large as the oscillation of U ′(X ). This violates the monotonicity of ψ′, so it must
be thatU ′(X ) has a limit z∞ ∈R. SinceU(X ) has linear growth (by Theorem 1), this limit
must be finite. Moreover, it is equal to limX→∞U(X )/X . Given additive separability, as
well as the Lipschitz continuity and monotonicity of μ1 and g1, the limits of ψ(X , z)/X
and ψ′(X , z) exist and are equal asX → ∞. Denote these limits by ψ∞(z). We use these
properties and the optimality equation to show that limX→∞σ∗(X ,U ′(X ))2U ′′(X )/X =
0 and, therefore, limX→∞U(X )/X − ψ(X ,U ′(X ))/X = 0. This establishes that the
limit slope z∞ is a fixed point of ψ∞(z). The additively separable assumption on g∗
and μ∗ is sufficient to ensure that ψ∞(z) has a unique fixed point, which is equal to
z∞ = limX→∞ rg1(X )/(rX −μ1(X )). This guarantees that all solutions to the optimality
equation have the same limit slope.
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Using the characterization of the limit slope, it can be shown that any solution
U(X ) to the optimality equation satisfies limX→∞U(X ) − U ′(X )μ1(X )/r − g1(X ) =
g2(z∞ ) + z∞μ2(z∞ )/r. Consider the linear first-order differential equation (FODE)
y(X ) − y ′(X )μ1(X )/r − g1(X ) = 0. Establishing that any solution U(X ) satisfies
limX→∞U(X ) − y(X ) = g2(z∞ ) + z∞μ2(z∞ )/r for any linear growth solution y to this
FODE yields the boundary condition for U(X ) (i.e., (10)). Therefore, all solutions to the
optimality equation approach the same value and slope as the state grows large or small.

Finally, I show that any two such solutions U and V cannot differ on the interior of
the state space. Similar to Faingold and Sannikov (2011), if there exists an X such that
U(X )−V (X )> 0, the structure of the optimality equation prevents these solutions from
satisfying the same boundary conditions for at least one boundary.

Example 1 (Product Choice, cont.). This example satisfies Assumption 4. From the
characterization in Section 3.2, the sequentially rational effort a(X , z) is independent
of X and the consumers’ willingness to pay b(X , z) is additively separable in (X , z).
Therefore, the flow payoff g∗(X , z) = b(X , z) − a(X , z)2/2 and the drift μ∗(X , z) =
a(X , z) − θX are additively separable in (X , z). From these expressions, g1(X ) = λX

for X > 0 and g1(X ) = 0 for X < 0, while μ1(X ) = −θX for all X , which is monotone.
Finally, σ∗(X , z)2 = 1 trivially satisfies Lipschitz continuity, and the growth condition is
not relevant since limX→∞μ1(X ) = −∞ and similarly forX → −∞.

From Theorem 3, the limit slopes are z∞ = rλ/(r + θ) and z−∞ = 0. Therefore, equi-
librium effort approaches a(X , z∞ ) = λ/(r + θ) as X grows large, which is strictly posi-
tive. As discussed in Section 2, this contrasts with settings in which effort does not have
a persistent effect on quality and long-run effort converges to zero (Cripps, Mailath, and
Samuelson (2004), Faingold and Sannikov (2011)). From (10), for large X the continua-
tion value approximates

U(X ) ≈ rλ

r + θX + (1 − λ)λ
r + θ + λ2

2(r + θ)2 ,

where the first term is the payoff from repeated play of the static Nash equilibrium pro-
file, and the second and third terms capture the impact of structural incentives on the
equilibrium payoff: the equilibrium effect of persistence stemming from future strate-
gic interaction between the firm and consumers, and the direct effect of persistence
on future payoffs via the stock quality, respectively.24 In contrast, as X approaches
−∞, equilibrium effort approaches zero and the continuation value converges to zero,
limX→−∞U(X ) = 0. Therefore, at large negative values of the state, incentives col-
lapse. ♦

24Given the expression for a(X , z) above, g2(z) = (1 − λ)a(X , z) − a(X , z)2/2 and μ2(z) = a(X , z), the
constant on the right hand side of (10) is (1 − λ)λ/(r + θ) + λ2/2(r + θ)2. The payoff from repeated play
of the static Nash equilibrium profile, y(X ) = rλX/(r + θ), is calculated from the expression for y(X ) in
Theorem 3, using the expressions for g1(X ) and μ1(X ) above and φ(X ) = exp(− ∫

(r/θX )dX ) =X−r/θ.
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4.3.2 Bounded state space (X compact) When X is compact, uniqueness follows from
Assumptions 1 to 3. No additional conditions are needed as in Theorem 3, as Lipschitz
continuity together with the conditions on the drift and volatility that prevent the state
from escaping its boundary (i.e., positive drift and zero volatility at X, and analogously
forX) establish that the large player plays a unique action at the boundary and pin down
a unique boundary continuation value. Theorem 4 establishes uniqueness when the
state space is compact, and characterizes the limit of the continuation value and the
large player’s incentive constraint.25

Theorem 4. Suppose X is compact and assume Assumptions 1 to 3. For each initial
state X0 ∈ X , there exists a unique PPE that is Markov and characterized by the unique
bounded solution U of (7) on (X ,X ). When the boundary states are absorbing, the con-
tinuation value converges to the static Nash equilibrium payoff and intertemporal incen-
tives collapse at the boundary,

lim
X→x

(
U(X ) − g∗(X , 0)

) = 0 and lim
X→x

μ∗(X ,U ′(X )
)
U ′(X ) = 0 (12)

for x ∈ {X ,X}. When the boundary states are not absorbing,

lim
X→X

U(X ) = g∗(X , 0) +mu′/r and lim
X→X

U(X ) = g∗(X , 0) +mu′/r (13)

given unique finite limit slopes u′ ≡ limX→X U
′(X ) and u′ ≡ limX→X U

′(X ).

The continuation value at a boundary state depends on whether the boundary state
is absorbing or reflecting. When the boundary is absorbing, the state remains at the
boundary once it is reached and, therefore, the continuation value converges to the
static Nash payoff. When the boundary is reflecting, the limit of the continuation
value also depends on its (unique) limit slope and the boundary drift, which captures
how quickly the state moves away from the boundary and how the continuation value
changes as the state changes. In either case, the impact of the long-run player’s action
on the drift of the state converges to zero at the boundary. Therefore, incentives col-
lapse and the equilibrium action profile converges to the static Nash action profile. This
rules out the possibility of sustaining multiple equilibrium action profiles at the bound-
ary, a key step in establishing uniqueness. An important difference from Theorem 3 is
that incentives collapse even if the slope of the continuation value does not converge
to zero. This stems from the requirement that the boundary drift is independent of the

25Theorems 1, 2, and 4 also hold for an alternative version of Assumption 3 when the static Nash pay-
off g∗(X , 0) is increasing in X . Specifically, assume that the restriction of S∗ to X × [0, ∞) is nonempty,
is single-valued, and returns b̄ = δb for some b ∈ B(X ), where δb is the Dirac measure on action b, S∗ is
Lipschitz continuous on every bounded subset of X × [0, ∞) when X is compact and on X × [0, ∞) when
X = R, and when X = R, there exists a δ > 0 such that for all |X| > δ and z ∈ [0, ∞), the rate of change of
g(S∗(X , z),X ) + zμ(S∗(X , z),X )/r with respect toX is monotone inX and σ(S∗(X , z),X ) is monotone in
X and constant in z. Change the definition of S∗ to set S∗(X , z) = S∗(X , 0) for z < 0. By Proposition 2, the
solution U(X ) is increasing, and the values for z < 0 are irrelevant. An analogous restriction to (−∞, 0] is
possible when g∗(X , 0) is decreasing in X .
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long-run player’s action—in order to maintain imperfect monitoring when the volatility
is zero—combined with continuity as the drift approaches its boundary. As in Theo-
rem 3, when incentives collapse at the boundary, this does not preclude the existence
of long-run incentives, as the state does not necessarily converge to a boundary state as
t → ∞. Section 6.2 provides an illustration of Theorem 4.

5. Properties of equilibrium payoffs

The optimality equation yields rich insights into how the correspondence of PPE payoffs
is tied to the underlying structure of the game. Propositions 1 and 2 show that the shape
of the static Nash equilibrium payoff g∗(X , 0) is a key determinant of the shape of the
Markov equilibrium continuation value. Note that g∗(X , 0) is straightforward to derive
from the primitives of the game.

Proposition 1 relates the number and type of extrema for U(X ) to the shape of
g∗(X , 0). Given a solution U(X ) to the optimality equation, define an interval mini-
mum of U on a closed proper interval I ⊂ X as [Xa,Xb] ⊂ int I such that U ′(X ) = 0
for all X ∈ [Xa,Xb], and there exists an ε > 0 such that U(Xa ) < U(X ) for all X ∈
(Xa − ε,Xa ) ∪ (Xb,Xb + ε), with an analogous definition for interval maximum.26

Proposition 1. Assume Assumptions 1 to 3. Let I ⊂ X denote a closed proper interval
of states and let U(X ) denote a linear growth or bounded (when g bounded) solution to
(7).

(i) If g∗(X , 0) is constant on I, then U(X ) has at most one interval extremum on I.

(ii) If g∗(X , 0) is strictly monotone on I, then U(X ) has at most two interval extrema
on I and is not constant on I. If g∗(X , 0) is strictly increasing (decreasing) on I,
and U(X ) has an interval minimum [X1a,X1b] and maximum [X2a,X2b], then
X1b <X2a (X2b <X1a).

(iii) If g∗(X , 0) has n interval extrema on I, then U(X ) has at most n+ 2 interval ex-
trema on I.

The intuition for Proposition 1 stems from the behavior of the continuation value at
interior extrema. Given solutionU(X ), if there is an extremum at stateX , thenU ′(X ) =
0 and the optimality equation simplifies to U(X ) = g∗(X , 0) + U ′′(X )σ∗(X , 0)2/2r. If
the extremum is a minimum,U ′′(X ) ≥ 0, and, therefore,U(X ) ≥ g∗(X , 0). Similarly, at a
maximum, U ′′(X ) ≤ 0, and, therefore, U(X ) ≤ g∗(X , 0). Hence, the oscillation of U(X )
is bounded by the oscillation of g∗(X , 0).

When the continuation value converges to the static Nash payoff at boundary states,
then it is possible to characterize additional results on the shape of payoffs across the
entire state space. Proposition 2 relates the monotonicity or single-peakedness ofU(X )
to the monotonicity or single-peakedness of g∗(X , 0).

26Note that since U is twice continuously differentiable, if U ′(X ) = 0 for all X in some open interval
(Xa,Xb ), then U ′(Xa ) = U ′(Xb ) = 0 and, therefore, U ′(X ) = 0 on closed interval [Xa,Xb]. In the case of
Xa =Xb, this definition corresponds to a strict extremum point.
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Proposition 2. Assume Assumptions 1 to 3 and g bounded. When X = R, assume As-
sumption 4, and when X is compact, assume the boundary states {X ,X} are absorbing.
Let U(X ) denote the unique bounded solution to (7).

(i) The term g∗(X , 0) is constant on X if and only if U(X ) is constant on X .

(ii) If g∗(X , 0) is monotonically increasing (decreasing) on X , then U(X ) is monoton-
ically increasing (decreasing) on X .

(iii) If g∗(X , 0) is single-peaked with a unique interval maximum (minimum) and
g∗(X , 0) = g∗(X , 0) (or, in the case of X , unbounded, limX→∞ g∗(X , 0) =
limX→−∞ g∗(X , 0)), thenU(X ) is single-peaked with a unique interval maximum
(minimum).

(iv) If g∗(X , 0) hasN interval extrema on X , thenU(X ) has at mostN interval extrema
on X .

Applying Propositions 1 and 2 to specific applications will yield structural empirical
predictions about how equilibrium behavior and payoffs change with the state. This is
illustrated in Section 6.1 when the static Nash payoff is monotonic and in Section 6.2
when the static Nash payoff is single-peaked.

Proposition 3 establishes a bound on the PPE payoff across all states when the
continuation value converges to the static Nash payoff at the boundary states. Let
W ≡ supX∈X U(X ) and W ≡ infX∈X U(X ) be the least upper bound and greatest lower
bound of the large player’s PPE payoff across all states, and let XH and XL denote the
sets of states that yield these payoffs (where, in a slight abuse of notation, I say ∞ ∈ XH
if limX→∞U(X ) = W and similarly for −∞ and the case of XL). The following result
shows that the smallest static Nash payoff in XH bounds the PPE payoff from above and,
similarly, the largest static Nash payoff in XL bounds the PPE payoff from below.27

Proposition 3. Assume Assumptions 1 to 3 and g bounded. When X = R, assume As-
sumption 4, and when X is compact, assume the boundary states {X ,X} are absorbing.
Then the PPE payoff is bounded above (below) by the least (greatest) static Nash payoff at
the states that yield the highest (lowest) PPE payoff,

sup
X∈XL

g∗(X , 0) ≤W ≤W ≤ inf
X∈XH

g∗(X , 0),

where, in a slight abuse of notation, if X ∈ {−∞, ∞}, then g∗(X , 0) corresponds to
limx→X g

∗(x, 0).

These bounds follow directly from the optimality equation. To see this, consider
the case in which there is an interior state XH such that W = U(XH ). Then U ′(XH ) =

27In general, it may be difficult to characterize XH from the primitives of the game, as XH does not
necessarily correspond to the set of states that maximizes the static Nash payoff. A weaker bound that can
be easily characterized is the highest static Nash payoff across all states, W ≤ supX g

∗(X , 0), and similarly,
W ≥ infX∈X g∗(X , 0).
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0 and U ′′(XH ) ≤ 0, which from (7) implies U(XH ) ≤ g∗(XH , 0). This yields the upper
bound. If the continuation value is sufficiently flat around XH (i.e., U ′′(XH ) = 0), then
W = g∗(XH , 0). Otherwise, the continuation value or the state changes too quickly to
maintain g∗(XH , 0) andW < g∗(XH , 0).

This bound illustrates an important feature of the structural incentives generated
by persistence. When selecting an action, the large player actively manages her trade-
off between short-run and long-run gains. At state(s) that maximize her long-run payoff,
she rests on her laurels and focuses on short-run gains. In essence, incentives collapse at
the top and she acts myopically. Therefore, she cannot earn a payoff higher than her best
myopic payoff at this state (i.e., the static Nash payoff). This intuition for “shirking at the
top” is similar in spirit to the reputation dynamics in Mailath and Samuelson (2001).

6. Applications

This section develops several applications to illustrate the breadth of the model. Sec-
tion 6.1 presents two variations on the product choice setting introduced in Section 2,
Section 6.2 presents an application in which a government selects a policy to target
a persistent economic variable, and Section 6.3 presents an application in which the
strategic complementarity between the investments of a government and a group of
innovators leads to multiple MPE.

6.1 Variations of persistent quality

Consumer budget constraint This application modifies Example 1 to illustrate a setting
with a bounded flow payoff. In Example 1, consumers’ willingness to pay increases lin-
early with quality q(a,X ). Now suppose that the marginal value of quality is decreasing.
In particular, each consumer has a budget constraint and is willing to pay up to B for the
product, B = [0, B]. The best response is the same as in Section 2, except now bi = B if
q(ã,X ) ≥ B. Payoffs and the drift of the stock quality are as defined in Section 2.

This modified version continues to satisfy Assumption 4. The boundary conditions
at −∞ are as before, but the boundary conditions at ∞ differ. Now g1(X ) = 0 for suf-
ficiently large X and so z∞ = 0. Therefore, equilibrium effort approaches zero and the
continuation value converges to the limit of the static Nash payoff, B, as X approaches
∞. Given g is bounded, Proposition 2 can be used to characterize the shape of the con-
tinuation value. The static Nash payoff is g∗(X , 0) = max{0, λX}, which is monotonically
increasing when λ > 0. Therefore, the continuation value is monotonically increasing
on X .

Figure 1(a) plots equilibrium effort, as derived from the equilibrium characteriza-
tion in Theorem 1. The firm has the strongest incentive to invest at intermediate quality
stock levels, as revenue rapidly increases with quality. This reputation building phase
is characterized by high effort and rising quality. When the firm has high stock qual-
ity, the consumers’ budget constraints prevent the firm from continuing to benefit from
building its quality. The firm rides its good reputation by enjoying high payoffs today at
the expense of allowing the quality to drift down. Very negative shocks lead to periods
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Figure 1. Parameters: λ= 0.8, B= 20, θ= 0.2.

of reputation recovery where consumers stop purchasing for a time. The firm chooses
low effort and allows the negative shock to dissipate before beginning to rebuild. Qual-
ity is stable when effort exactly offsets decay or, mathematically, when the drift is zero
(a = θX). As the firm becomes more patient, this switch from reputation building to
reputation riding occurs at a higher level of quality.

Figure 1(b) illustrates the equilibrium continuation value for several discount rates.
It is convex at low levels of the stock quality and concave at high levels. When the stock
quality is high, consumers are purchasing near their maximum level. The firm is risk
averse in quality, in that negative quality shocks reduce revenue more than positive qual-
ity shocks increase revenue. On the other hand, when the stock quality is low, the firm
faces the potential for substantial gains if quality rises, but the risk of loss from a negative
quality shock is small. The continuation payoff has an interesting non-monotonicity
with respect to the discount rate. As the firm becomes more patient, it places greater
weight on the future, which gives it a stronger incentive to choose high effort and build
its quality. On the other hand, as it becomes more patient, it values transitory positive
quality shocks less. When stock quality is low, the first effect dominates and low discount
rates yield higher payoffs; this relationship flips at high levels of quality.

Quality specialization This application adapts Example 1 to a setting with quality in-
divisibilities, which are modeled as intervals of quality in which the return to quality
is flat. For example, the marginal value of an upgrade to a new software version may
be larger for some versions and smaller for others, while the cost of developing an up-
grade is constant. This illustrates how the characterization in Theorem 1 can be used
to study equilibrium dynamics in an environment that differs from the standard setting
with constant or decreasing returns to quality, as typically studied in the reputation and
dynamic games literature.

To model this, we use a simple parameterization of quality that captures the idea
that the marginal return to quality is non-monotonic in the state, while maintaining
the property that the overall return to quality is increasing. Each consumer’s expected
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value for the product is q(ã,X ) + sinq(ã,X ), where q(ã,X ) = (1 −λ)ã+λX as before.28

The expected value of quality is increasing in X , so higher stock quality is always more
valuable, but the marginal value of an increase varies between being relatively high and
relatively low. As in the previous application, the consumer faces a budget constraint,
B= [0, B]. The remainder of the model is as defined in Section 2.

Using Theorem 1 to characterize the Markov equilibrium in this setting shows that
these quality indivisibilities lead to novel dynamics related to the firm’s incentive to in-
vest. A key feature is that a firm may specialize in providing intermediate or low qual-
ity, rather than always striving to provide high quality. This stems from the firm’s non-
monotonic incentive to exert effort, which leads to multiple regions of the state space in
which the firm cycles between building and dissipating quality. When the stock quality
is such that the marginal return is high, the firm invests in building its quality. Once the
firm reaches a region where the marginal return is flat, it slacks off and chooses lower
effort. With positive probability, quality drifts back down to a level at which the firm
has an incentive to invest again. But also with positive probability, quality continues to
rise and the firm reaches a new level of quality with a high marginal return. The firm
then begins investing to maintain this new, higher level of quality. This leads the firm to
specialize in different levels of quality. A low quality firm may be better off remaining a
low quality firm, rather than trying and failing to move up the market. But if a firm has a
positive shock and reaches a high quality level, it will then have the incentive to invest in
maintaining this higher quality. This variation has the same properties as the consumer
budget constraint variation for large and small X . Therefore, Assumption 4 is satisfied
and Theorem 3 guarantees that this MPE is unique.

6.2 Targeting an Economic Variable

This application illustrates a setting in which the state space is compact and the equilib-
rium payoff is single-peaked. Suppose constituents elect a board to implement a policy
to target an economic variable. Elected officials and governing bodies often play a role in
formulating and implementing such policies. For example, the Federal Reserve targets
an interest rate, a board of directors sets growth and return targets for its company, and
the housing authority targets home ownership rates. Achieving such targets requires
costly effort on behalf of officials, and often the level of the variable will depend on both
current and past policy efforts. Moral hazard issues arise when the officials’ preferences
are not aligned with the population they serve.

To model this, consider a setting in which the state is an economic variable that
takes on values in X = [0, 2]. Constituents want to target X = 1, but in the absence of
intervention, the state drifts toward its natural level d ∈ [0, 2]. The board can under-
take costly intervention a ∈ [−1, 1] to alter the state. The state has drift μ(a, b,X ) =
X(2 −X )(a+θ(d−X )), where θ > 0 captures the persistence of past interventions, and

28One could also use a parameterization of quality with kinks, where the marginal return to quality is
zero on some intervals of stock quality and positive on others, provided the parameterization is Lipschitz
continuous. Such a parameterization would yield qualitatively similar equilibrium dynamics.
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volatility σ(b,X ) = X(2 −X ); it is most volatile at intermediate levels. A negative in-
tervention decreases X , while a positive intervention increases X . Constituents choose
an action each period that represents their campaign contributions or support for the
board. When constituents believe the board chooses intervention ã and the economic
variable is equal toX , they are willing to contribute λã2 + 1 − (1 −X )2, where λ > 0 cap-
tures the weight placed on an intervention. This contribution is a reduced form repre-
sentation of the constituents’ preferences: they pledge higher support when X is closer
to their preferred target and when the board undertakes a stronger intervention. The
board has no direct preference over the economic variable. Its flow payoff is increasing
in the support it receives from constituents and decreasing in the cost of intervention,
g(a, b,X ) = b− ca2.

The state space is compact and the boundary states are absorbing, so uniqueness
of a MPE follows from Theorem 4. Using Theorem 1 to characterize the Markov equi-
librium and Proposition 2(iii) to characterize the shape of the continuation value es-
tablishes that the board will intervene to increase the economic variable at low states
and intervene to decrease the variable at high states, and that the continuation value is
single-peaked with a maximum and is not constant on any interval of states. The point
at which the board switches from a positive to a negative intervention depends on the
constituents’ target and the natural drift d. If the drift lies above the target, d > 1, then
when the state is low, it will naturally move toward the target. This benefits the board. At
very low levels, the board chooses a positive intervention to increase the rate at which
the state moves toward the target. It switches to a negative intervention when the state
is slightly below the target in order to prevent the state from overshooting its target. The
opposite holds when d < 1. The board has the strongest incentive to intervene when the
economic variable is an intermediate distance from its target, in which case the state
is sensitive to an intervention and the benefit from intervening is high. When the eco-
nomic variable is far from its target, an intervention has a small impact on the state and
the board has a low incentive to intervene. When the economic variable is close to its
target, the continuation value is flat so the benefit from an intervention is low and the
board again has a low incentive to intervene. Figure 2 plots the equilibrium intervention
and continuation value as a function of the state for two levels of d. See Supplemental
Appendix E.1 for derivations not contained in the text.

6.3 Complementary investment and multiple equilibria

This example illustrates how multiple Markov equilibria can arise in a setting with an
unbounded flow payoff. In this example, g∗(X , z) and μ∗(X , z) are not additively sepa-
rable, which violates Assumption 4(i). Complementarities between the direct and equi-
librium channels for incentives create coordination motives that give rise to multiple
equilibrium incentive weights, each associated with a different optimal action profile.

Suppose a government and a sequence of small innovators can invest to generate
intellectual capital. The stateX represents the current level of intellectual capital in the
economy. The government chooses an investment level a ∈ [0, a], where a > 0 is the
maximum feasible investment for the government. Each innovator chooses investment
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Figure 2. Parameters: λ= 0.5, θ= 0.4, c = 1, r = 0.1.

bi ∈ [−γ|X|, γ|X|], where γ > 0 and the bound on feasible investment is proportional
to available intellectual capital. Both government and innovator investment contribute
to the growth of intellectual capital, with returns θ1 > 0 and θ2 > 0, respectively. Intel-
lectual capital depreciates at rate θ3 > 0. Therefore, the expected change in intellectual
capital is μ(a, b,X ) = θ1b + θ2a − θ3X . Assume the volatility of intellectual capital is
constant, σ(b,X ) = 1, and γ < (r + θ3 )/θ1 to satisfy Assumption 2.29

For an innovator, government investment is a strategic complement with her own
investment and the current level of intellectual capital. For example, when an innovator
invests in a new project, her return depends on both the stock of intellectual capital in
the economy and the investment from the government to make this intellectual capital
accessible. This is captured by payoff h(a, b, b,X ) = abX − cb2/2, where the first term
captures the property that intellectual capital is only valuable to an innovator if both
the innovator and the government invest, and the second term captures the cost of in-
vestment for some c > 0. The government receives a return of α > 0 on each innovator’s
investment. Therefore, even though it does not directly value intellectual capital, it val-
ues it indirectly through its impact on future investment. For example, α is the tax rate
on investment; the government is willing to invest today if this increases future tax re-
turns. This is captured by payoff g(a, b,X ) = αb−a2/2, where the second term captures
the cost of investment. For technical reasons, assume a≤ γc.30

From Lemma 1, the sequentially rational investment level for the government is

a(X , z) =

⎧⎪⎪⎨⎪⎪⎩
θ2z/r if z/r ∈ [0, a/θ2]

a if z/r > a/θ2

0 if z < 0.

29Note that innovator investment can be unboundedly negative. While unrealistic, this specification
yields a closed-form solution for the continuation value, which makes it straightforward to illustrate the
existence of multiple equilibria. In the more realistic case that the lower bound on innovator investment is
zero, the equilibrium characterization is qualitatively similar.

30This guarantees that an interior solution is always feasible for the innovator.
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Investment is increasing in the impact that it has on the growth of intellectual capital
θ2 and the incentive weight z/r. When an innovator believes that the government will
choose investment level ã and the current stock of intellectual capital is X , the innova-
tor’s best response is to select investment ãX/c. The innovator’s investment is increasing
in the investment of the government and the current stock of intellectual capital, reflect-
ing the complementarity of these two inputs. If z/r ∈ [0, a/θ2], then the government
chooses an interior level of investment, yielding

g∗(X , z) =
(
αθ2z

cr

)
X − θ2

2z
2

2r2 (14)

and

μ∗(X , z) =
(
θ1θ2z

cr

)
X + θ2

2z

r
− θ3X . (15)

Neither expression is additively separable in (X , z), so Assumption 4 does not hold.
We first use Theorem 1 to show that there is an equilibrium in which neither the

government nor the innovators invest, a(X ) = b(X ) = 0 for all X , and the government’s
equilibrium payoff isU(X ) = 0. Due to the strategic complementarity, if the government
does not invest, then neither will the innovators, yielding a payoff of zero for all players.

We next use Theorem 1 to show that there can also be nontrivial equilibria that sus-
tain positive investment. When γ ≈ (r + θ3 )/θ1, a = γc, and cθ3 > αθ2, there exists an
equilibrium that has nonzero equilibrium investment levels, a(X ) = (cr−αθ2 + cθ3 )/θ1

and b(X ) = a(X )X/c, and continuation value

U(X ) = r
(
cr − αθ2 + cθ3

θ1θ2

)
X + (cr − αθ2 + cθ3 )2

2θ2
1

.

The slope captures the government’s net present value of the current stock of intellec-
tual capital, while the constant term captures the equilibrium effect stemming from the
value of future strategic interaction between the government and the innovators. This
latter effect is positive, given cθ3 > αθ2. As the government becomes arbitrarily patient,
r → 0, the net present value of the current stock of intellectual capital approaches zero
and U(X ) → (cθ3 − αθ2 )2/2θ2

1. Intuitively, the government cares more about the long-
run return from the strategic interaction rather than the short-run return from the cur-
rent stock of intellectual capital. This long-run return has a natural interpretation: it
is the equilibrium flow payoff for the patient government when the stock of intellectual
capital is at its long-run average, which depends on equilibrium investment and the rate
of depreciation. Additionally, when α> (cr− θ1a+ cθ3 )/θ2, there is an equilibrium with
investment levels a(X ) = a and b(X ) = aX/c. See Supplemental Appendix E.2 for both
derivations.

This example illustrates that both trivial and nontrivial Markov equilibria can exist
when there are complementarities between the players’ actions. Even when unique-
ness does not hold, Theorem 1 can be used to characterize these Markov equilibria and
Theorem 2 can be used to characterize the PPE payoff set.
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7. Conclusion

This paper shows that persistence provides an important channel for intertemporal in-

centives and develops a tractable method to characterize Markov equilibrium behavior

and payoffs. The tools developed in this paper will yield insights into equilibrium be-

havior in a broad range of settings, from industrial organization to political economy

to macroeconomics. Once functional forms are specified for payoffs and the evolution

of the state, it is straightforward to use Theorem 1 to construct Markov equilibria. This

in turn can be used to derive empirically testable comparative statics and predictions

about the dynamics of equilibrium behavior based on observable features of the envi-

ronment. Future research can use this framework to address design questions in spe-

cific applications, such as determining the optimal structure of persistence in a rating

mechanism.

Furthermore, the equilibrium characterization can be used for structural estimation.

Markov equilibria have an intuitive appeal in empirical work due to their simplicity and

dependence on payoff-relevant variables to structure incentives. Players do not need

to condition on past behavior in a complex way, as actions and payoffs are fully deter-

mined by the current value of the state. Establishing that a Markov equilibrium exists

and is unique provides a strong justification for focusing on this equilibrium concept,

while the equilibrium characterization yields expressions for payoffs and actions that

can calibrated and estimated.

Appendix A: Proofs

A.1 Proof of Lemma 1

I first show that (Vt(S))t≥0 is a martingale and (Wt(S))t≥0 is bounded with respect to

(Xt )t≥0.

Claim 1. Under Assumption 2, for any public strategy profile S = (at , bt )t≥0, initial state

X0, and path of the state variable (Xt )t≥0 that evolves according to (1) given S, Vt(S) is a

martingale and there exists aKW > 0 such that |Wt(S)| ≤KW (1 + |Xt|) for all t ≥ 0.

Suppose g is unbounded. By Assumption 2, there exists a k ∈ [0, r ) and c > 0

such that for all (a, b,X ) ∈ A × E, if X ≥ 0, then μ(a, b,X ) ≤ kX + c, and if X ≤ 0,

then μ(a, b,X ) ≥ kX − c. Lipschitz continuous functions have linear growth. There-

fore, by Lipschitz continuity of g and σ , the compactness of A, and the assumption

that |b| ≤ Kb|X| + cb for all (b,X ) ∈ E, there exists a Kg,Kσ , c > 0 such that for all

(a, b,X ) ∈A×E, |g(a, b,X )| ≤Kg( ck + |X|) and |σ(b,X )| ≤Kσ (1 + |X|).

I first derive a bound on Eτ|g(at , bt ,Xt )|, the expected flow payoff at time t condi-

tional on available information at time τ ≤ t. This bound will be independent of the
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strategy profile. Define f : X →R as

f (X ) ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Kg

(
c

k
−X

)
ifX ≤ −1

−1
8
KgX

4 + 3
4
KgX

2 + 3
8
Kg +Kg c

k
ifX ∈ (−1, 1)

Kg

(
c

k
+X

)
ifX ≥ 1.

Note that f ∈ C2, f ≥ 0, |f ′| ≤Kg, and

f ′′(X ) =
⎧⎨⎩0 if |X| ≥ 1

3
2
Kg

(
1 −X2) if |X|< 1.

Ito’s lemma holds for any C2 function. Given a strategy profile S = (at , bt )t≥0, initial state
Xτ <∞, and path of the state variable (Xt )t≥τ that evolves according to (1),

f (Xt ) = f (Xτ ) +
∫ t

τ

(
f ′(Xs )μ(as , bs ,Xs ) + 1

2
f ′′(Xs )σ(bs ,Xs )2

)
ds

+
∫ t

τ
f ′(Xs )σ(bs ,Xs )dZs

≤ f (Xτ ) +
∫ t

τ

(
Kg

(
k|Xs| + c

) + 3KgK2
σ

)
ds+KgKσ

∫ t

τ

(
1 + |Xs|

)
dZs

≤ f (Xτ ) + k
∫ t

τ
f (Xs )ds+ 3KgK2

σ (t − τ) +KgKσ
∫ t

τ

(
1 + |Xs|

)
dZs

for all t ≥ τ, where the first inequality follows from f ′(X )μ(a, b,X ) ≤ Kg(k|X| + c),
1
2f

′′(X )σ(b,X )2 ≤ 3KgK2
σ , and f ′(X )σ(b,X )z ≤ KgKσ (1 + |X|)z for all z ∈ R and for

all (a, b,X ) ∈A×E, and the second inequality follows from the definition of f . The ad-
dition of the absolute value sign in f ′(X )μ(a, b,X ) ≤Kg(k|X| + c) follows from the sign
of f ′, and the bound on 1

2f
′′(X )σ(b,X )2 follows from f ′′(X )σ(b,X )2 = 0 if |X| ≥ 1 and

f ′′(X )σ(b,X )2 = 3
2
Kg

(
1 −X2)σ(b,X )2 ≤ 3

2
Kg

(
1 −X2)K2

σ

(
1 + |X|)2 ≤ 6KgK2

σ

if |X| < 1. Taking expectations and noting that (1 + |Xs|) is square-integrable on [τ, t],
so the expectation of the stochastic integral is zero,

Eτ
[
f (Xt )

] ≤ f (Xτ ) + 3KgK2
σ (t − τ) + k

∫ t

τ
Eτ

[
f (Xs )

]
ds

≤ (
f (Xτ ) + 3KgK2

σ (t − τ)
)
ek(t−τ),

where the last line follows from Gronwall’s inequality. Note that |g(a, b,X )| ≤ f (X ) for
all (a, b,X ) ∈A×E. Therefore,

e−r(t−τ)Eτ
∣∣g(at , bt ,Xt )

∣∣ ≤ e−r(t−τ)Eτ
[
f (Xt )

] ≤ (
f (Xτ ) + 3KgK2

σ (t − τ)
)
e−(r−k)(t−τ).
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I next show that ifXt <∞, thenWt(S)<∞,

∣∣Wt(S)
∣∣ =

∣∣∣∣Et[r ∫ ∞

t
e−r(s−t )g(as , bs ,Xs )ds

]∣∣∣∣
≤ r

∫ ∞

t
e−r(s−t )Et

∣∣g(as , bs ,Xs )
∣∣ds

≤ r

∫ ∞

t

(
f (Xt ) + 3KgK2

σ (s− t ))e−(r−k)(s−t ) ds

=
(

r

r − k
)
f (Xt ) + 3rKgK2

σ

(r − k)2 ,

which is finite for anyXt <∞ and k< r. Also, given that f has linear growth, there exists
a KW > 0 such that |Wt(S)| ≤ KW (1 + |Xt|). By similar reasoning, E|Vt(S)| <∞ for any
X0 <∞ since

E
∣∣Vt(S)

∣∣ =E
∣∣∣∣Et[r ∫ ∞

0
e−rsg(as , bs ,Xs )ds

]∣∣∣∣ ≤E
[
r

∫ ∞

0
e−rs

∣∣g(as , bs ,Xs )
∣∣ds]

is finite for anyX0 <∞ and k< r.
Finally,

Et
[
Vt+k(S)

] = Et

[
r

∫ t+k

0
e−rsg(as , bs ,Xs )ds+ e−r(t+k)Wt+k(S)

]
= r

∫ t

0
e−rsg(as , bs ,Xs )ds

+Et
[
r

∫ t+k

t
e−rsg(as , bs ,Xs )ds

+ e−r(t+k)Et+k
[
r

∫ ∞

t+k
e−r(s−(t+k))g(as , bs ,Xs )ds

]]
= r

∫ t

0
e−rsg(as , bs ,Xs )ds+ e−rtWt(S) = Vt(S).

Taken together, this implies Vt(S) is a martingale and establishes Claim 1 for the case of
g unbounded. If g is bounded, then trivially, Wt(S) <∞ and E|Vt(S)| <∞ for all t ≥ 0
andX0 ∈ X , and only the final step is needed to establish the claim.

I next derive the evolution of the continuation value. This part of the proof follows
from almost identical reasoning to the proof of Proposition 2 in Faingold and Sannikov
(2011). The derivative of Vt(S) with respect to t is:

dVt(S) = re−rtg(at , bt ,Xt )dt − re−rtWt(S)dt + e−rt dWt(S).

By the martingale representation theorem (Karatzas and Shreve (1991)), there exists a
progressively measurable process (βt )t≥0 such that Vt can be represented as dVt(S) =
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re−rtβtσ(bt ,Xt )dZt . Combining these two expressions for dVt(S) yields the law of mo-
tion for the continuation value,

dWt(S) = r
(
Wt(S) − g(at , bt ,Xt )

)
dt + rβtσ(bt ,Xt )dZt

= r
(
Wt(S) − g(at , bt ,Xt )

)
dt + rβt

(
dXt −μ(at , bt ,Xt )dt

)
,

where βt captures the sensitivity of the continuation value to the state variable. As
shown above, any continuation value has linear growth with respect to Xt and is
bounded when g is bounded.

Finally, I establish sequential rationality. This part of the proof follows from almost
identical reasoning to the proof of Proposition 3 in Faingold and Sannikov (2011). Con-
sider strategy profile (at , bt )t≥0 played from period τ onward and alternative strategy
(ãt , bt )t≥0 played up to time τ. Recall that all values ofXt are possible under both strate-
gies, but that each strategy induces a different measure over sample paths (Xt )t≥0. At
time τ, the state variable is equal to Xτ . Action aτ will induce dXτ = μ(aτ , bτ ,Xτ )dt +
σ(bτ ,Xτ )dZτ , whereas action ãτ will induce dXτ = μ(ãτ , bτ ,Xτ )dt+σ(bτ ,Xτ )dZτ . Let
Ṽτ be the expected average payoff conditional on information at time τ when the large
player follows ã up to τ and a afterward, and let Wτ be the continuation value when the
large player follows strategy (at )t≥0 starting at time τ:

Ṽτ = r
∫ τ

0
e−rsg(ãs , bs ,Xs )ds+ e−rτWτ .

Consider changing τ so that the large player plays strategy (ãt , bt ) for another instant:
dṼτ is the change in average expected payoffs when the large player switches to (at )t≥0

at τ+ dτ instead of τ. When the large player switches strategies at time τ,

dṼτ = re−rτ
(
g(ãτ , bτ ,Xτ ) −Wτ

)
dτ+ e−rτ dWτ

= re−rτ
(
g(ãτ , bτ ,Xτ ) − g(aτ , bτ ,Xτ )

)
dτ+ re−rτβτ

(
dXτ −μ(aτ , bτ ,Xτ )dτ

)
= re−rτ

(
g(ãτ , bτ ,Xτ ) − g(aτ , bτ ,Xτ ) +βτμ(ãτ , bτ ,Xτ ) −βτμ(aτ , bτ ,Xτ )

)
dτ

+ re−rτβτσ(bτ ,Xτ )dZτ .

There are two components to this strategy change: how it affects the immediate flow
payoff and how it affects the future stateXt , which impacts the continuation value. The
profile (ãt , bt )t≥0 yields the large player a payoff of

W̃0 = E0[Ṽ∞] =E0

[
Ṽ0 +

∫ ∞

0
dṼt

]
=W0 +E0

[
r

∫ ∞

0
e−rt

(
g(ãt , bt ,Xt ) +βtμ(ãt , bt ,Xt ) − g(at , bt ,Xt )

−βtμ(at , bt ,Xt )
)
dt

]
.

If

g(at , bt ,Xt ) +βtμ(at , bt ,Xt ) ≥ g(ãt , bt ,Xt ) +βtμ(ãt , bt ,Xt )
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holds for all t ≥ 0, thenW0 ≥ W̃0 and deviating to S = (ãt , bt ) is not a profitable deviation.
A strategy (at )t≥0 is sequentially rational for the large player if, given (βt )t≥0, for all t,

at ∈ arg max
a∈A

g(a, bt ,Xt ) +βtμ(a, bt ,Xt ).

A.2 Proof of Theorem 1

In a Markov equilibrium, the continuation value and equilibrium actions are character-
ized as a function of the state variable asWt =U(Xt ), a∗

t = a(Xt ), and b
∗
t = b(Xt ). By Ito’s

formula, if a Markov equilibrium with a twice continuously differentiable continuation
value exists, the continuation value will evolve according to

dU(Xt ) =U ′(Xt )dXt + 1
2
U ′′(Xt )σ

(
b

∗
t ,Xt

)2
dt

=U ′(Xt )μ
(
a∗
t , b

∗
t ,Xt

)
dt + 1

2
U ′′(Xt )σ

(
b

∗
t ,Xt

)2
dt

+U ′(Xt )σ
(
b

∗
t ,Xt

)
dZt . (16)

Similar to the derivation of a Markov equilibrium in Faingold and Sannikov (2011),
matching the drift of (16) with the drift of the continuation value characterized in (5)
yields the optimality equation

U ′′(X ) = 2r
(
U(X ) − g(a(X ), b(X ),X

))
σ

(
b(X ),X

)2 − 2μ
(
a(X ), b(X ),X

)
U ′(X )

σ
(
b(X ),X

)2 , (17)

which is a second-order nonhomogenous differential equation, and matching the
volatilities characterizes the process governing incentives, rβt = U ′(Xt ). Substituting
this expression into the condition for sequential rationality characterized in (6) yields
the Markovian action profile (a(X ), b(X )) = S∗(X ,U ′(X )) (by Assumption 3, S∗ is
single-valued.) Plugging this into (17) yields (7).

I first establish that (7) has at least one solution U ∈ C2 that takes on values in the
interval of feasible payoffs for the large player. In the case of an unbounded state space,
Theorem 5.6 from De Coster and Habets (2006) gives sufficient conditions for the exis-
tence of a solution to a second-order differential equation defined on R

3. I construct
upper and lower solutions to (17) at action profile S∗(X ,U ′(X )) to show that these con-
ditions are satisfied. This leads to the following lemma, which is the innovative part of
this proof and is proven in Supplemental Appendix B.

Lemma 2. If X =R, then (7) has at least one solutionU ∈ C2 on X that lies in the range of
feasible payoffs for the large player.

In the case of a bounded state space, I use an extension of a standard existence re-
sult from De Coster and Habets (2006), which was developed in Faingold and Sannikov
(2011). The extension is necessary because (7) is undefined at the boundary of the state
space, {X ,X}. This leads to the following lemma, which is proven in Supplemental Ap-
pendix B.
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Lemma 3. If X is compact, then (7) has at least one solutionU ∈ C2 on (X ,X ) that lies in
the range of feasible payoffs for the large player.

Finally, I construct a Markov equilibrium that yields payoff U(X0 ), where U is a
solution to (7). The function X �→ S∗(X ,U ′(X )) is Lipschitz continuous, as are X �→
μ∗(X ,U ′(X )) and X �→ σ∗(X ,U ′(X )). Therefore, the state variable starts at X0 and
evolves according to the unique strong solution (Xt )t≥0 to the stochastic differential
equation

dXt = μ∗(Xt ,U ′(Xt )
)
dt + σ∗(Xt ,U ′(Xt )

)
dZt .

Moreover,

dU(Xt ) = U ′(Xt )μ∗(Xt ,U ′(Xt )
)
dt + 1

2
U ′′(Xt )σ∗(Xt ,U ′(Xt )

)2
dt

+U ′(Xt )σ∗(Xt ,U ′(Xt )
)
dZt

= r
(
U(Xt ) − g∗(Xt ,U ′(Xt )

))
dt +U ′(Xt )σ∗(Xt ,U ′(Xt )

)
dZt

and, therefore, the process of continuation values Wt =U(Xt ) satisfies (5) with process
of incentive weights βt = U ′(Xt )/r. Finally, the strategy profile (a∗

t , b
∗
t )t≥0 satisfies (6)

given (βt )t≥0 with βt = U ′(Xt )/r. Therefore, (a∗
t , b

∗
t )t≥0 is a PPE yielding equilibrium

payoff U(X0 ).

A.3 Proof of Theorem 2

Let U be the linear growth (when g is unbounded) or bounded (when g is bounded)
solution to (7) that yields the highest MPE payoff at X0. Suppose there exists an initial
state X0 ∈ X and a PPE strategy profile S = (at , bt )t≥0 that yields an equilibrium payoff
W0 >U(X0 ). In such a PPE, the state (Xt )t≥0 evolves according to (1) given S = (at , bt )t≥0

and, by Lemma 1, the continuation value evolves according to

dWt(S) = r(Wt(S) − g(at , bt ,Xt )
)
dt + rβt

(
dXt −μ(at , bt ,Xt )dt

)
(18)

for some process (βt )t≥0. By Assumption 3, a unique action profile satisfies (6) at each
(X , rβ). Therefore, by Lemma 1, equilibrium actions satisfy (at , bt ) = S∗(Xt , rβt ). By
Ito’s formula, the process (U(Xt ))t≥0 evolves according to

dU(Xt ) =U ′(Xt )μ∗(Xt , rβt )dt + 1
2
U ′′(Xt )σ∗(Xt , rβt )2 dt

+U ′(Xt )σ∗(Xt , rβt )dZt . (19)

Define a process Dt ≡ Wt(S) − U(Xt ) with initial condition D0 = W0(S) − U(X0 ) > 0.
Then Dt evolves according to dDt = dWt(S) − dU(Xt ). Plugging in Eqs. (18) and (19),
the process has volatility f (Xt , βt ), where f (X , β) ≡ (rβ − U ′(X ))σ∗(X , rβ), and has
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drift rDt + d(Xt , βt ), where

d(X , β) ≡ r
(
U(X ) − g∗(X , rβ)

) −U ′(X )μ∗(X , rβ) −U ′′(X )σ∗(X , rβ)2/2

= r
(
g∗(X ,U ′(X )

) − g∗(X , rβ)
) +U ′(X )

(
μ∗(X ,U ′(X )

) −μ∗(X , rβ)
)

+U ′′(X )
(
σ∗(X ,U ′(X )

)2 − σ∗(X , rβ)2)/2,

and the second line follows from substituting the right hand side of (7) for U(X ).

Lemma 4. If f (X , β) = 0 and σ(X , rβ)> 0, then d(X , β) = 0.

Proof. Suppose f (X , β) = 0 for some (X , β) and σ(X , rβ)> 0. Then rβ=U ′(X ). The
action profile associated with S∗(X ,U ′(X )) corresponds to the actions played in the
Markov equilibrium with continuation value U(X ) at state X . Therefore, d(X , β) = 0.

Lemma 5. For every ε > 0, there exists a η > 0 such that either d(X , β) > −ε or
|f (X , β)| >η.

Proof. Suppose the state space is unbounded, X =R. Note that in this case, σ∗(X , rβ)
is bounded away from 0 by Assumption 1, so, by Lemma 4, if f (X , β) = 0, then d(X , β) =
0. First show that there exists an M > 0 such that this is true for (X , β) ∈�a ≡ {X × R :
|β| >M }. Since U ′ is bounded by Lemma 9 in the case of g unbounded or Lemma 26 in
Supplemental Appendix D.2 in the case of g bounded (note that neither lemma requires
Assumption 4), and since σ∗(X , rβ) is bounded away from 0, there exists an M > 0 and
η1 > 0 such that |f (X , β)| >η1 for all |β| >M andX ∈ X , regardless of d. Next show that
there exists an δ > 0 such that this is true for (X , β) ∈ �b ≡ {X × R : |β| ≤M , |X| > δ}.
Consider the set �b ⊂ �b with d(X , β) ≤ −ε. It must be that β is bounded away
from U ′(X )/r on �b. Suppose not. Then either (i) there exists some (X , β) ∈ �b with
β=U ′(X )/r, which implies f (X , β) = 0 and, therefore, d(X , β) = 0—a contradiction—
or (ii) asX becomes large, the boundary of the set�b approaches β=U ′(X )/r. The lat-
ter implies that for any δ1 > 0, there exists an (X , β) ∈�b with rβ−U ′(X )< δ1. Choose
δ1 so that |g∗(X ,U ′(X )) − g∗(X , rβ)| < ε/4r, |U ′(X )||μ∗(X ,U ′(X )) − μ∗(X , rβ)| < ε/4,
and |U ′′(X )||σ∗(X ,U ′(X ))2 − σ∗(X , rβ)2| = 0, which is possible given that g∗ and μ∗
are Lipschitz, U ′ is bounded, and σ∗ is independent of z for large X . Then |d(X , β)| <
ε/4 + ε/4 + ε/4 = 3ε/4, which is a contradiction. Therefore, there exists a η2 such that
|f (X , β)| > η2 on �b. Then on the set �b, if d(X , β) ≤ −ε, then |f (X , β)| > η2. Fi-
nally show this is true for (X , β) ∈�c ≡ {X × R : |β| ≤M and |X| ≤ δ}. Consider the set
�c ⊂�c where d(X , β) ≤ −ε. The function d is continuous and �c is compact, so �c is
compact. The function |f | is continuous and, therefore, achieves a minimum η3 on �c .
If η3 = 0, then d = 0 by Lemma 4—a contradiction. Therefore, η3 > 0 and |f (X , β)| >η3

for all (X , β) ∈ �c . Take η ≡ min{η1, η2, η3}. Then when d(X , β) ≤ −ε, |f (X , β)| > η.
The proof for a bounded state space is analogous (see Supplemental Appendix C).

Lemma 6. GivenX0, any PPE payoffW0 is such thatW0 ≤U(X0 ).
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Proof. Choose ε = rD0/4 and suppose Dt ≥ D0/2. Then, by Lemma 5, there exists a
η> 0 such that whenever the drift ofDt is less than rDt−ε > rD0/2−rD0/4 = rD0/4> 0,
|f (Xt , βt )| > η. Thus, as long as Dt ≥ D0/2 > 0, it has either positive drift or positive
volatility. This implies it grows arbitrarily large with positive probability, irrespective of
Xt . This is a contradiction, since in the case that g is unbounded, by Lemma 1,Dt is the
difference of two processes that are bounded with respect toXt , and in the case that g is
bounded, Dt is the difference of two bounded processes. Thus, it cannot be that D0 > 0
and it must be the case thatW0 ≤U(X0 ).

Letting U be the linear growth (when g is unbounded) or bounded (when g is
bounded) solution to (7) that yields the lowest MPE payoff at X0, by analogous reason-
ing it is not possible to have D0 =W0(S) −U(X0 )< 0, implying W0 ≥U(X0 ). The proof
of Theorem 2 immediately follows from Lemma 6, the analogue forW0 ≥U(X0 ), and the
fact that at any stateX ∈ X , it is possible for the large player to achieve any payoff in the
convex hull of the set of Markov equilibrium payoffs at stateX by randomization at time
zero.

Proof of Corollary 1 The existence of a Markov equilibrium follows from Theorem 1.
When μ is independent of a, the sequential rationality condition (6) in a Markov equi-
librium collapses to maximizing the static flow payoff, and the large player plays the
unique static Nash action profile S∗(X , 0) in each state. Therefore, any solution to (7)
must satisfy

U(Xt ) =Et
[
r

∫ ∞

t
e−rsg∗(Xs , 0)dt

]
, (20)

where the measure over the state is independent of the solution U since equilibrium
actions are independent of U . Given that the right hand side of (20) is independent of
U , (7) must have a unique solution and there is a unique Markov equilibrium. By The-
orem 2, this is also the unique PPE. The solution to (7) evaluated at state Xt analytically
characterizes (20).

A.4 Proof of Theorems 3 and 4

I prove Theorems 3 and 4 simultaneously. The proof proceeds in three steps:

Step 1. Any solution to the optimality equation has the same boundary conditions.
Step 2. If all solutions have the same boundary conditions, then there is a unique linear

growth (bounded) solution.
Step 3. When there is a unique solution, then there is a unique PPE.

Let ψ(X , z) ≡ g∗(X , z) + zμ∗(X , z)/r be the value of the large player’s incentive con-
straint at the sequentially rational action profile for incentive weight z/r. All intermedi-
ate theorems and lemmas maintain Assumptions 1 to 3 and, as stated, Assumption 4. As
a reminder, | · | denotes the Euclidean norm for vectors. I first present an intermediate
result that will be used in Steps 1 and 2.
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Lemma 7. Suppose U and V are both linear growth (bounded) solutions to (7), with
U(X )< V (X ) for some interior stateX ∈ X . Then V −U does not have an interior maxi-
mum and is monotone for large |X|.

Proof. First suppose X is compact. It follows from identical reasoning to Lemma C.7 in
Faingold and Sannikov (2011) that ifU and V are two linear growth (bounded) solutions
of (7) such that U(X0 ) ≤ V (X0 ) and U ′(X0 ) ≤ V ′(X0 ), with at least one strict inequality,
thenU(X )< V (X ) andU ′(X )< V ′(X ) for allX ∈ (X0,X ).31 Similarly ifU(X0 ) ≤ V (X0 )
andU ′(X0 ) ≥ V ′(X0 ), with at least one strict inequality, thenU(X )< V (X ) andU ′(X )>
V ′(X ) for allX ∈ (X ,X0 ).

Suppose U and V are both bounded solutions to (7), with U(X ) < V (X ) for some
X ∈ (X ,X ). Suppose V − U has an interior maximum at some X∗ ∈ (X ,X ). Then by
continuity, this implies that U ′(X∗ ) = V ′(X∗ ). If U(X∗ ) < V (X∗ ), then by the above
statement,U ′(X )< V ′(X ) for allX >X∗ and, therefore, V (X )−U(X ) is strictly increas-
ing for X > X∗. This contradicts that X∗ is an interior maximum. If U(X∗ ) > V (X∗ ),
then by the above statement, U(X ) > V (X ) and U ′(X ) > V ′(X ) for all X > X∗, and
U(X ) > V (X ) and U ′(X ) < V ′(X ) for all X <X∗. Therefore, X∗ is a global maximum.
This contradicts U(X ) < V (X ) for some X ∈ (X ,X ). Therefore, V − U does not have
an interior maximum. Given this, V −U has at most one interior minimum. Therefore,
there exists a δ > 0 such that V −U is monotone for |X −X| < δ and |X −X| < δ. The
proof for the case of X = R is analogous, replacing X and X with ∞ and −∞, respec-
tively.

Step 1: Boundary conditions Lemmas 8 to 19 as well as Lemmas 26 and 27 in Supple-
mental Appendix D.2 establish the following boundary conditions for the case of X =R.
When g is unbounded, any solutionU of (7) with linear growth satisfies limX→pU(X ) −
yL(X ) = g2(zp ) + zpμ2(zp )/r, limX→pU

′(X ) = zp, and limX→p σ(X ,U ′(X ))2U ′′(X ) = 0
for p ∈ {−∞, ∞}, where zp ≡ rgp/(r − μp ) given μp ≡ limX→p μ

∗(X , z)/X and gp ≡
limX→p g

∗(X , z)/X , which exist and are finite, and yL(x) ≡ −f (x)
∫
rg1(x)/f (x)μ1(x)dx

with integrating factor f (x) ≡ exp(
∫
r/μ1(x)dx) when limx→p μ1(x) = 0 and yL(x) ≡

g1(x) when limx→p μ1(x) = 0. When g is bounded, this simplifies to limX→pU(X ) = gp,
where gp ≡ limX→p g

∗(X , 0), and limX→pU
′(X ) = 0. Supplemental Appendix D.1 es-

tablishes analogous boundary conditions for the case of X compact, and Supplemental
Appendix D.3 establishes the same boundary conditions for the case of X = R and g
bounded under an alternative to Assumption 4.

Define ψ(X , z) ≡ψ(X , z)/X and U(X ) ≡U(X )/X . Let ψ′ and ψ′ denote the partial
derivatives of ψ and ψ with respect to X . Let δ0 > 0 denote the lower bound above
which the large |X| properties of Assumptions 3 and 4 hold. Several lemmas use the
property that g∗(X , z), μ∗(X , z), and σ∗(X , z) are bounded in z, which follows from the
compactness of A and B(X ). The Lipschitz continuity of g1, μ1, g2, and μ2 is also used,
which follows from the Lipschitz continuity of g∗(X , z) and μ∗(X , z). The following
series of lemmas are stated for an unbounded flow payoff g; to apply them to a bounded

31Analogous to the definition of φ1 in their result, set X1 ≡ inf{X ∈ [X0,X ) : U ′(X ) ≥ V ′(X )} and apply
the same reasoning.
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flow payoff, simply substitute “bounded solution to (7)” for “linear growth solution to
(7)” throughout.

Lemma 8. Suppose X = R. Given p ∈ {−∞, ∞}, μp ≡ limX→p μ
∗(X , z)/X and gp ≡

limX→p g
∗(X , z)/X exist and are finite. Moreover, limX→pψ(X , z) = limX→pψ

′(X , z) =
ψp(z) for all z ∈R, where ψp(z) ≡ gp + zμp/r.

Proof. Let p = ∞ and fix z ∈ R. Given Assumption 4(i), ψ′(X , z) = g′
1(X ) + zμ′

1(X )/r
forX > δ0. By the Lipschitz continuity of g1 and μ1, g′

1 and μ′
1 are bounded, and, there-

fore, ψ′(·, z) is bounded for any z ∈ R. By Assumption 3, ψ′(·, z) and g′
1 are monotone

for large X (the latter follows from the assumption holding at z = 0). Therefore, by the
monotone convergence theorem, ψ∞(z) ≡ limX→∞ψ′(X , z) and g∞ ≡ limX→∞ g′

1(X )
exist and are finite. Given thatψ′ and g′

1 have well defined limits andψ′(X , z) = g′
1(X ) +

zμ′
1(X )/r for large X , μ∞ ≡ limX→∞μ′

1(X ) exists and is finite. Moreover, ψ∞(z) =
g∞+zμ∞/r. When g1 andμ1 are unbounded, then by l’Hopital’s rule, limX→∞ψ(X , z) =
ψ∞(z), limX→∞ g1(X )/X = g∞, and limX→∞μ1(X )/X = μ∞. In the case where g1 or
μ1 is bounded, this immediately follows from g∞ = 0 or μ∞ = 0. Given that g2(z) and
μ2(z) are independent of X , limX→∞ g2(z)/X = 0 and limX→∞μ2(z)/X = 0. This im-
plies limX→∞ g∗(X , z)/X = g∞ and limX→∞μ∗(X , z)/X = μ∞. Note that μ∞ < r by As-
sumption 2. The proof for p= −∞ is analogous.

Lemma 9. Suppose X = R and U is a solution of (7) with linear growth. Then for p ∈
{−∞, ∞}, there exists a finite U ′

p ∈R such that limX→pU(X ) = limX→pU
′(X ) =U ′

p.

Proof. Let p = ∞ and let U be a solution of (7) with linear growth. Suppose
lim infX→∞U ′(X ) = lim supX→∞U ′(X ). Then for all δ > 0, by the continuity of U ′, there
exists a z and an increasing sequence (Xn )n∈N of alternating consecutive X such that
X1 > δ, U ′(Xn ) = z, and U ′′(Xn ) ≤ 0 for n odd, and U ′(Xn ) = z and U ′′(Xn ) ≥ 0 for n
even, with one inequality for U ′′ strict. From (7), this implies U(Xn ) ≤ ψ(Xn, z) for n
odd and ψ(Xn, z) ≤U(Xn ) for n even. Thus, the oscillation of ψ′(X , z) is at least as large
as the oscillation of U ′. But by Assumption 3, ψ′(X , z) is monotone for X > δ0. There-
fore, it must be that lim infX→∞U ′(X ) = lim supX→∞U ′(X ). Let U ′∞ denote this limit.
Given U has linear growth, |U ′∞| <∞ and, by l’Hopital’s rule, limX→∞U(X ) = U ′∞. In
the case of g bounded,U bounded impliesU ′∞ = 0 and limX→∞U(X ) = 0. The proof for
p= −∞ is analogous.

Lemma 10. Suppose X = R and U is a solution of (7) with linear growth. Then
limX→pψ(X ,U ′(X )) =ψp(U ′

p ) for p ∈ {−∞, ∞}, where U ′
p ≡ limX→pU

′(X ).

Proof. Let p ∈ {−∞, ∞} and letU be a solution of (7) with linear growth. Given μ∗ and
g∗ are Lipschitz continuous and additively separable in (X , z) for |X| > δ0, there exists a
M1,M2,M3, c > 0 and δ > δ0 such that for |X| > δ,∣∣ψ(X , z1 ) −ψ(X , z2 )

∣∣ ≤M1|z1 − z2| +M2|z1||z1 − z2| +M3|z1 − z2|
(|X| + |z2|

)
.
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From Lemma 9, U ′
p ≡ limX→pU

′(X ) exists and is finite. Therefore,

lim
X→p

∣∣ψ(
X ,U ′(X )

) −ψ(
X ,U ′

p

)∣∣
= lim
X→p

∣∣ψ(
X ,U ′(X )

) −ψ(
X ,U ′

p

)∣∣/|X|

≤ lim
X→p

(
M1

∣∣U ′(X ) −U ′
p

∣∣ +M2
∣∣U ′(X )

∣∣∣∣U ′(X ) −U ′
p

∣∣
+M3

∣∣U ′(X ) −U ′
p

∣∣(|X| + ∣∣U ′
p

∣∣))/|X| = 0.

From Lemma 8, limX→pψ(X ,U ′
p ) = ψp(U ′

p ). Therefore, limX→pψ(X ,U ′(X )) =
ψp(U ′

p ).

Lemma 11. Suppose X = R and f : R → R has linear growth. Then any solution U of (7)
with linear growth satisfies lim infX→p |f (X )|U ′′(X ) ≤ 0 ≤ lim supX→p |f (X )|U ′′(X ) for
p ∈ {−∞, ∞}.

Proof. Let p = ∞ and let U be a solution of (7) with linear growth. Suppose f has
linear growth and lim infX→∞ |f (X )|U ′′(X ) > 0. There exists an δ1,M > 0 such that
when X > δ1, |f (X )| ≤MX . Given lim infX→∞ |f (X )|U ′′(X )> 0, there exists a δ2, ε > 0
such that when X > δ2, |f (X )|U ′′(X ) > ε. Take δ = max{δ1, δ2}. Then for X > δ,
U ′′(X )> ε/|f (X )| ≥ ε/MX . The antiderivative of ε/MX is (ε/M ) lnX , which converges
to ∞ as X → ∞. Therefore, U ′ must grow unboundedly large as X → ∞, which violates
the linear growth of U . Therefore, lim infX→∞ |f (X )|U ′′(X ) ≤ 0. The proof is analogous
for lim supX→∞ |f (X )|U ′′(X ) ≥ 0 as well as the case of p= −∞.

Lemma 12. Suppose X = R. Any solution U of (7) with linear growth satisfies U ′
p =

ψp(U ′
p ) and limX→pU

′′(X )σ∗(X ,U ′(X ))2/X = 0 for p ∈ {−∞, ∞}.

Proof. Let p= ∞ and letU be a solution of (7) with linear growth. From the optimality
equation,

lim
X→∞

∣∣U ′′(X )
∣∣σ∗(X ,U ′(X )

)2

X
= lim
X→∞

2r
∣∣U(X ) − g∗(X ,U ′(X )

) −U ′(X )μ∗(X ,U ′(X )
)
/r

∣∣
X

= lim
X→∞

2r
∣∣U(X ) −ψ(

X ,U ′(X )
)∣∣ = 2r

∣∣U ′∞ −ψ∞
(
U ′∞

)∣∣,
where the second equality follows from Lemmas 9 and 10. Let c ≡ |U ′∞ − ψ∞(U ′∞ )|
and suppose c > 0. Then for any ε > 0, there exists a δ1 > δ0 such that for X > δ1,
|U ′′(X )|σ∗(X ,U ′(X ))2/X > c − ε. This implies |U ′′(X )| > (c − ε)X/σ∗(X ,U ′(X ))2.
Given that σ∗ is Lipschitz continuous and bounded in z, there exists an M and a
δ2 > δ1 such that for X > δ2, σ∗(X ,U ′(X )) ≤ MX . Therefore, for X > δ2, |U ′′(X )| >
(c− ε)X/M2X2 = (c− ε)/M2X . The antiderivative of (c− ε)/M2X is ((c− ε)/M2 ) lnX ,
which converges to ∞ as X → ∞. Therefore, U ′ must grow unboundedly large as
X → ∞, which violates the linear growth of U . Therefore, c = 0, which implies U ′∞ =
ψ∞(U ′∞ ) and limX→∞U ′′(X )σ∗(X ,U ′(X ))2/X = 0. The proof is analogous for the case
of p= −∞.
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Lemma 13. Suppose X = R and that U is a solution of (7) with linear growth. Then for
p ∈ {−∞, ∞}, U ′

p = rgp/(r −μp ).

Proof. Let p ∈ {−∞, ∞} and let U be a solution of (7) with linear growth. From
Lemma 12, U ′

p = ψp(U ′
p ), so U ′

p is a fixed point of ψp. From Lemma 8, ψp(z) = gp +
zμp/r. The unique fixed point is zp = rgp/(r −μp ). Therefore, U ′

p = rgp/(r −μp ).

Lemma 14. Suppose X = R, and supposeU and V are solutions of (7) with linear growth
and limX→p μ1(X ) = p for p ∈ {−∞, ∞}. Then U = V .

Proof. LetU and V be solutions to (7) with linear growth and suppose limX→p μ1(X ) =
p for p ∈ {−∞, ∞}. Suppose U = V . Without loss of generality suppose U(Xk )< V (Xk )
for someXk ∈ (−∞, ∞). DefineD≡ V −U , withD′ = V ′ −U ′ andD′′ = V ′′ −U ′′. Given
the continuity of D, D(Xk )> 0 implies that there exists an ε1 > 0 such that D(Xk )> ε1.
By Lemma 7, there exists a δ1 > δ0 such thatD is monotone for |X| > δ1 andD does not
have an interior maximum. Choose δ1 large enough such that either (a) D(X )> ε1 and
D′(X ) ≥ 0 for X > δ1 or (b) D(X ) > ε1 and D′(X ) ≤ 0 for X < −δ1. By Assumption 3,
σ∗(X , z) is independent of z for X > δ0. In a slight abuse of notation, write σ∗(X ) to
simplify notation throughout the proof. From (7) and Assumption 4(i), for |X| > δ1,

1
2
σ∗(X )2D′′(X ) = rD(X ) −D′(X )μ1(X ) − r(g2

(
V ′(X )

) − g2
(
U ′(X )

))
− (
V ′(X )μ2

(
V ′(X )

) −U ′(X )μ2
(
U ′(X )

))
. (21)

First consider case (a) where D(X ) > ε1 and D′(X ) ≥ 0 for X > δ1. From the Lipschitz
continuity of g2 and μ2 and Lemma 13, for any ε2 > 0, there exists a δ2 > δ1 such that
for X > δ2, |rg2(V ′(X )) − rg2(U ′(X )) + V ′(X )μ2(V ′(X )) − U ′(X )μ2(U ′(X ))| < ε2. By
Assumption 4(i), μ1 is monotone forX > δ1. Together with limX→∞μ1(X ) = ∞, this im-
plies that either μ1 is bounded forX > δ1 or limX→∞μ1(X ) = −∞. If μ1(X ) is bounded
for X > δ1, then limX→∞D′(X )μ1(X ) = 0, and if limX→∞μ1(X ) = −∞, then μ1(X )< 0
for large X , and, therefore, D′(X )μ1(X ) ≤ 0 for large X . Therefore, for any ε3 > 0, there
exists a δ3 > δ1 such that for X > δ3, D′(X )μ1(X )< ε3. Choosing ε2 = ε3 = rε1/4, there
exists a δ4 such that forX > δ4,

1
2
σ∗(X )2D′′(X )> rε1 − rε1/4 − rε1/4 = rε1/2> 0. (22)

By Assumption 4(ii), σ∗(X )2 is Lipschitz continuous and, therefore, has linear growth,
and D has linear growth since U and V have linear growth. By similar reasoning to
Lemma 11, it must be that lim infX→p σ

∗(X )2D′′(X ) ≤ 0. This is a contradiction.32

Therefore, it cannot be that U = V . The reasoning for case (b) is analogous.

Lemma 15. Suppose X = R and that U is a solution of (7) with linear growth. For
p ∈ {−∞, ∞}, if limX→p σ

∗(X , z) = ∞, suppose |μ1(X )|/σ∗(X , z)2 is bounded away from
zero near p. Then limX→p σ

∗(X ,U ′(X ))2U ′′(X ) = 0.

32When g is bounded, a contradiction is reached from σ∗(X ) Lipschitz by similar reasoning to Lemma 27
in Supplemental Appendix D.2.
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Proof. Let p = ∞ and let U be a solution of (7) with linear growth. By Assumption 3,
σ∗(X , z) is independent of z for X > δ0. In a slight abuse of notation, write σ∗(X ) to
simplify notation throughout the proof. In the case where limX→∞σ∗(X ) = ∞, sup-
pose |μ1(X )|/σ∗(X )2 is bounded away from zero for sufficiently large X . Suppose
lim infX→∞σ∗(X )2U ′′(X ) = lim supX→∞σ∗(X )2U ′′(X ). Then for all δ > δ0, by the con-
tinuity of U ′′, there exists a z = 0 and an increasing sequence (Xn )n∈N such that X1 > δ,
σ∗(Xn )2U ′′(Xn ) = z, and 2σ∗(Xn )σ∗′(Xn )U ′′(Xn ) + σ∗(Xn )2U ′′′(Xn )< 0 for n odd, and
2σ∗(Xn )σ∗′(Xn )U ′′(Xn ) + σ∗(Xn )2U ′′′(Xn ) > 0 for n even. From differentiating (7), for
X > δ0,

σ∗(X )σ∗′(X )U ′′(X ) + 1
2
σ∗(X )2U ′′′(X )

= r(U ′(X ) −ψ′(X ,U ′(X )
)

−U ′′(X )
[
μ1(X ) + rg′

2
(
U ′(X )

) +μ2
(
U ′(X )

) +U ′(X )μ′
2
(
U ′(X )

)])
, (23)

whereψ′(X ,U ′(X )) = rg′
1(X )+U ′(X )μ′

1(X ). The right hand side of (23) is strictly nega-
tive atXn for n odd and strictly positive atXn for n even. Using σ∗(Xn )2U ′′(Xn ) = z and
rearranging terms, this implies

r(U ′(Xn ) −ψ′(Xn,U ′(Xn )
)
/z

− (
rg′

2

(
U ′(Xn )

) +μ2
(
U ′(Xn )

) +U ′(Xn )μ′
2

(
U ′(Xn )

))
/σ∗(Xn )2

<μ1(Xn )/σ∗(Xn )2 (24)

for n odd and the inequality reversed for n even when z > 0, with the opposite when
z < 0. By Lemma 13,U ′(X )−ψ′(X ,U ′(X )) → 0 andU ′(X ) converges. By Assumption 1,
σ∗(X )2 is bounded away from zero, and by Assumption 3, σ∗(X )2 is monotone. There-
fore, 1/σ∗(X )2 converges to a finite limit. Together this implies that the left hand side
of (24) converges to some finite K, with K = 0 when σ∗(X )2 → ∞. Therefore, for any
ε > 0, there exists a δ1 > δ0 such that forX > δ1,K− ε < μ1(Xn )/σ∗(Xn )2 for n odd and
K + ε > μ1(Xn )/σ∗(Xn )2 for n even. Note that μ1 is monotone for |X| > δ0 by Assump-
tion 4(i) and, therefore, μ1(X )/σ∗(X )2 either converges to a finite limit or approaches
infinity. In the case where σ∗(X ) is bounded as X → ∞, this leads to a contradiction
provided μ1(X ) does not converge to rg′

2(U ′∞ ) + μ2(U ′∞ ) + U ′∞μ′
2(U ′∞ ). In particular,

this is a contradiction when |μ1(X )| → ∞. In the case where limX→∞σ∗(X ) = ∞,K = 0.
This leads to a contradiction given |μ1(X )|/σ∗(X )2 is bounded away from zero. There-
fore, it must be that lim infX→∞σ∗(X )2U ′′(X ) = lim supX→∞σ∗(X )2U ′′(X ). By Assump-
tion 4(ii), σ∗(X )2 is Lipschitz continuous and, therefore, has linear growth. Given that
limX→∞σ∗(X )2U ′′(X ) exists, by Lemma 11, it must be that limX→∞σ∗(X )2U ′′(X ) =
0.33 The proof for p= −∞ is analogous.

Lemma 16. Suppose limx→p μ1(x) = 0 forp ∈ {−∞, ∞} and y is a solution to the ordinary
differential equation (ODE)

y ′(x) − (
r/μ1(x)

)
y(x) = 0 (25)

on R with linear growth. Then limx→p y(x) = 0 for p ∈ {−∞, ∞}.

33When g is bounded, this follows from σ∗(X ) Lipschitz by Lemma 27 in Supplemental Appendix B.2.
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Proof. The general solution to (25) is y(x) = c exp(
∫
r/μ1(x)dx), where c ∈ R is a con-

stant. Trivially, there always exists a bounded (and, therefore, linear growth) solution
because y(x) = 0 is a solution. Consider p= ∞. By Assumption 2, μ1 has linear growth
with rate slower than r. Given that limx→∞μ1(x) = 0 and μ1 is monotone for large
x by Assumption 4(i), there exists a δ > 0 such that for x > δ, either (i) there exists a
k ∈ (0, r ) such that μ1(x) ∈ (0, kx] or (ii) there exists a k > 0 such that μ1(x) ∈ [−kx, 0).
First suppose there exists a k ∈ (0, r ) and δ > 0 such that for x > δ, μ1(x) ∈ (0, kx].
Then 1/μ1(x) ≥ 1/kx. But exp(

∫
r/kxdx) = exp((r/k) lnx) = xr/k is not in O(x) since

r/k > 1. Therefore, exp(
∫
r/μ1(x)dx) is not inO(x). Therefore, any solution that has lin-

ear growth must have c = 0. The unique solution with linear growth is y(x) = 0, which
trivially satisfies limx→∞ y(x) = 0. Next suppose there exists a k, δ > 0 such that for x > δ,
μ1(x) ∈ [−kx, 0). Then 1/μ1(x) ≤ −1/kx. But exp(

∫ −r/kxdx) = exp(−r lnx/k) = x−r/k
and limx→∞ x−r/k → 0. Therefore, limx→∞ exp(

∫
r/μ1(x)dx) = 0. Therefore, for all c,

limx→∞ y(x) = 0 and any solution satisfies this property. The case for p= −∞ is analo-
gous.

Lemma 17. Suppose X = R, and that U and V are solutions of (7) with linear growth.
Then limX→p V (X ) −U(X ) = 0 for p ∈ {−∞, ∞}.

Proof. Let U and V be solutions of (7) with linear growth. Lemma 14 established that
when limX→p μ1(X ) = p for p ∈ {−∞, ∞}, then U = V , which trivially implies the re-
sult. Therefore, consider the case where either limX→∞μ1(X ) = ∞ or limX→−∞μ1(X ) =
−∞. First suppose limX→∞μ1(X ) = ∞. By Assumption 4(iii), |μ1(X )|/σ∗(X , z)2 is
bounded away from zero near ∞. Define D = V − U . Then D′ = V ′ − U ′, D has lin-
ear growth since U and V have linear growth, and limX→∞D′(X ) = 0 by Lemma 13.
By Lemma 15, limX→∞σ∗(X ,U ′(X ))2D′′(X ) = 0. Combined with (7) and the Lipschitz
continuity of g2 and μ2, this implies limX→∞D(X ) − μ1(X )D′(X )/r = 0. In the case
where limx→∞μ1(X ) = 0, then limX→∞D(X ) = 0 follows from limX→∞μ1(X )D′(X )/r =
0. In the case where limx→∞μ1(X ) = 0, there exists a solution y to (25) with lin-
ear growth such that limX→∞D(X ) − y(X ) = 0. By Lemma 16, limX→∞ y(X ) = 0
for any solution y with linear growth. Therefore, limX→∞D(X ) = 0, which implies
limX→∞ V (X ) − U(X ) = 0. The proof establishing limX→−∞ V (X ) − U(X ) = 0 when
limX→−∞μ1(X ) = −∞ is analogous.

When limX→p μ1(X ) = p for both p ∈ {−∞, ∞}, this yields the result. When this
only holds for p = ∞, then limX→∞D(X ) = 0 implies that only case (b) is relevant in
Lemma 14 sinceD(X ) cannot be bounded above ε1 for largeX , and similarly, only case
(a) is relevant when limX→p μ1(X ) = p only holds for p = −∞. Therefore, by identical
reasoning to the proof of Lemma 14, U = V . This trivially establishes the result.

Lemma 18. Suppose limx→p μ1(x) = 0 for p ∈ {−∞, ∞} and y is a solution to the ODE

y(x) − g1(x) −μ1(x)y ′(x)/r = 0 (26)
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on R with linear growth. Then for p ∈ {−∞, ∞}, limx→p y(x) − yL(x) = 0, where

yL(x) ≡ −φ(x)
∫ (

1
φ(x)

)
rg1(x)
μ1(x)

dx (27)

and φ(x) ≡ exp(
∫
r/μ1(x)dx).

Proof. The general solution to (26) is y(x) = −φ(x)
∫

(rg1(x)/φ(x)μ1(x))dx − cφ(x),
where φ is as defined above and c ∈ R is a constant. Consider p = ∞. By Lemma 16,
limx→∞ cφ(x) = 0 for any solution with linear growth. Therefore, limx→∞ y(x) − yL(x) =
0 for any solution y.

Lemma 19. Suppose X = R and that U is a solution of (7) with linear growth, and for
p ∈ {−∞, ∞}, if limX→p σ

∗(X , z) = ∞, suppose |μ1(X )|/σ∗(X , z)2 is bounded away from
zero near p. Then for p ∈ {−∞, ∞}, when g is unbounded, limX→pU(X ) − yL(X ) =
g2(zp ) + zpμ2(zp )/r, where yL is defined by (27) when limx→p μ1(x) = 0 and yL(x) ≡
g1(x) when limx→p μ1(x) = 0, while when g is bounded, limX→pU(X ) = gp, where
g∞ ≡ limX→∞ g∗(X , 0).

Proof. Let p ∈ {−∞, ∞} and let U be a solution of (7) with linear growth. Then from
Assumption 4, Lemmas 13 and 15, and the Lipschitz continuity of g2 and μ2,

lim
X→p

U(X ) − g1(X ) −U ′(X )μ1(X )/r = g2(zp ) + zpμ2(zp )/r.

Therefore, when limx→p μ1(x) = 0, there exists a solution y to (26) with linear growth
such that limX→pU(X ) − y(X ) = g2(zp ) + zpμ2(zp )/r. By Lemma 18, limX→p y(X ) −
yL(X ) = 0. Therefore, limX→pU(X ) − yL(X ) = g2(zp ) + zpμ2(zp )/r, which establishes
the boundary condition for U . When limx→p μ1(x) = 0, by Lemma 13, limX→pU

′(X ) ×
μ1(X )/r = 0. It immediately follows that limX→pU(X ) − g1(X ) = g2(zp ) + zpμ2(zp )/r.

The boundary conditions for g bounded use two lemmas from Supplemental Ap-
pendix D. Consider p = ∞. In the case where g is bounded, g∞ ≡ limX→∞ g∗(X , 0)
exists and is finite given that g∗ is monotone for large |X|. Moreover, by Lemma 26,
U∞ ≡ limX→∞U(X ) exists and is finite, and limX→∞U ′(X ) = 0 (the latter also follows
from Lemma 13). Then from (7),

lim
X→∞

σ∗(X ,U ′(X )
)2
U ′′(X ) = lim

X→∞
2r

(
U(X ) − g∗(X ,U ′(X )

)) − 2μ∗(X ,U ′(X )
)
U ′(X )

⇒ 0 = 2r(U∞ − g∞ ) − lim
X→∞

2μ∗(X ,U ′(X )
)
U ′(X ), (28)

where the left hand side of the second line follows from Lemma 15, and limX→∞ g∗(X ,
U ′(X )) = g∞ follows from Lipschitz continuity and limX→∞U ′(X ) = 0. Therefore,
limX→∞μ∗(X ,U ′(X ))U ′(X ) = r(U∞ − g∞ ). By Lemma 27, this implies U∞ = g∞. The
case of p= −∞ is analogous.
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Step 2: Uniqueness of solution to optimality equation Suppose U and V are both linear
growth (bounded) solutions to (7) and U = V , where without loss of generality, U(X )<
V (X ) for some interior X . Lemma 7 establishes that V − U does not have an interior
maximum. But limX→p V (X ) −U(X ) = 0 for p ∈ {X ,X} in the case of compact X and
p ∈ {−∞, ∞} in the case of X = R (by Lemmas 17, 25 and 29). Therefore, it cannot be
thatU(X )< V (X ) for some interiorX , as by continuity this would require the existence
of an interior maximum in order to satisfy the boundary conditions. Therefore,U and V
cannot differ, and there exists a unique linear growth (bounded) solution to (7).

Step 3: Uniqueness of PPE By Step 2, there is a unique linear growth (bounded) solution
to (7). It remains to show that there are no other PPE. When there is a unique solution to
(7), Theorem 2 implies that in any PPE with continuation values (Wt )t≥0,Wt =U(Xt ) for
all t. Therefore, the volatilities of the two continuation values are equal; otherwise, they
both cannot be equal to U(Xt ). Given equal volatilities, actions are uniquely specified
by S∗(X ,U ′(X )/r ). Therefore, there exists a unique PPE.

A.5 Proofs for Section 5

Proof of Proposition 1. Let U be a bounded or linear growth solution to (7) and let
I ≡ [I1, I2] ⊂ X denote a closed proper interval of states. At a state X corresponding
to an interior extremum on I, U ′(X ) = 0. From (7), if X is an interior minimum on I,
g∗(X , 0) ≤U(X ), and if X is an interior maximum on I, U(X ) ≤ g∗(X , 0). Let n denote
the number of (strict interior) interval extrema of U on I and let Xi denote the interval
of states corresponding to the ith such extremum for i= 1, � � � , n, where I1 <X1 <X2 <

· · ·<Xn < I2 andXi <Xj corresponds to supXi < infXj . By the continuity of U , if n > 1
andXi is a minimum for some i < n, thenXi+1 must be a maximum and vice versa.

Item (i). Suppose g∗(·, 0) is constant on I and n≥ 2, so there are at least two interval
extrema. If X1 is a minimum, then X2 must be a maximum with U(x1 ) < U(x2 ) for
x1 ∈ X1 and x2 ∈ X2. Therefore, g∗(x1, 0) ≤ U(x1 ) < U(x2 ) ≤ g∗(x2, 0) for any x1 ∈ X1

and x2 ∈ X2. This is a contradiction because g∗(·, 0) is constant on I. The same logic
holds forX1 a maximum. Therefore, n≤ 1.

Item (ii). Suppose g∗(·, 0) is strictly increasing on I. First show that a maximum
cannot be followed by a minimum. Suppose n ≥ 2, Xi is a maximum, and Xi+1 is a
minimum for some i < n. Then for xi ∈Xi and xi+1 ∈Xi+1, U(xi+1 )<U(xi ), and, there-
fore, g∗(xi+1, 0) ≤ U(xi+1 ) < U(xi ) ≤ g∗(xi, 0). This is a contradiction because g∗(·, 0)
is strictly increasing on I. Therefore, it is not possible to have a maximum followed by
a minimum. Therefore, there can be at most two interval extrema, n ≤ 2. Further, if
n= 2, X1 is a minimum and X2 is a maximum. The proof for the case of g∗(·, 0) strictly
decreasing is analogous, whereX1 is a maximum andX2 is a minimum when n= 2.

Suppose g∗(·, 0) is strictly increasing on I and thatU is constant on I. ThenU ′(X ) =
0 and U ′′(X ) = 0 for all X ∈ I. From (7), U(X ) = g∗(X , 0) for all X ∈ I. Therefore,
g∗(X , 0) is constant on I, a contradiction. This establishes that U is not constant on I.

Item (iii). If Xi is a maximum (minimum) for some i < n, then Xi+1 is a minimum
(maximum) with U(xi+1 ) < U(xi ) (U(xi ) < U(xi+1 )) for xi ∈ Xi and xi+1 ∈ Xi+1. This
then follows directly from U(X ) ≥ g∗(X , 0) at any interval minimum, U(X ) ≤ g∗(X , 0)
at any interval maximum, and the Lipschitz continuity of g∗.
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Proof of Proposition 2. Let U be the unique bounded solution to (7). At a state X
corresponding to an interior extremum on X , U ′(X ) = 0. From (7), if X is an interior
minimum, g∗(X , 0) ≤ U(X ), and if X is an interior maximum, U(X ) ≤ g∗(X , 0). Let n
denote the number of (strict interior) interval extrema of U on X and let ng denote the
number of (strict interior) interval extrema of g∗(X , 0) on X . First consider X compact.

Item (i). Suppose g∗(·, 0) is constant on X . Then ng = 0 and there exists a c ∈ R such
that g∗(X , 0) = c for all X ∈ X . By part (iv) (see below for proof), ng = 0 implies n = 0.
By the boundary conditions from Theorem 4, U(X ) = c and U(X ) = c, which implies
U(X ) =U(X ). Combined with n= 0, this implies that U is constant on X . To establish
the other direction, suppose g∗(·, 0) is not constant on X . Then there exists a proper
interval I1 ⊂ X such that g∗(·, 0) is strictly monotone on I1. Take a closed proper subset
I2 ⊂ I1. By Proposition 1(ii), U is not constant on I2. Therefore, U is not constant on X .

Item (ii). Suppose g∗(·, 0) is monotonically increasing on X and U is not monoton-
ically increasing. Then ng = 0 and U ′(X )< 0 for some X ∈ X . By Proposition 2(iv) (see
below for proof), ng = 0 implies n= 0. Therefore, it must be that U is monotonically de-
creasing on X , i.e.,U ′(X ) ≤ 0 for allX ∈ X . GivenU ′(X )< 0 for someX ∈ X , this implies
that U(X )<U(X ). By the boundary conditions from Theorem 4, U(X ) = g∗(X , 0) and
U(X ) = g∗(X , 0), and by the monotonicity of g∗(·, 0), g∗(X , 0) ≤ g∗(X , 0). This implies
U(X ) ≤U(X ), a contradiction. Therefore, U is monotonically increasing. The proof for
U monotonically decreasing is analogous.

Item (iii). Suppose g∗(X , 0) = g∗(X , 0) and suppose g∗(·, 0) is single-peaked with
a unique interval extremum, a maximum. Let Xg

1 denote the interval of states corre-
sponding to this extremum. By Proposition 2(iv), ng = 1 implies n≤ 1. Given that there
is a unique interval extremum and it is a maximum, g∗(·, 0) is monotonically increasing
on I1 = [X , infXg

1 ] and strictly so on some proper interval I ′1 ⊂ I1. Therefore, by Propo-
sition 1(ii), U is not constant on I1. Similarly, g∗(·, 0) is monotonically decreasing on
I2 = [supXg

1 ,X] and strictly so on some proper interval I ′2 ⊂ I2, so U is not constant on
I2. From the boundary conditions, U(X ) = g∗(X , 0) and U(X ) = g∗(X , 0). Therefore,
U(X ) = U(X ). Since U is not constant and U(X ) = U(X ), by continuity U must have
at least one interval extremum, n≥ 1. Given that it was already established that n≤ 1, it
must be that n= 1.

Suppose the unique interval extremum for U is a minimum. Let X1 denote the in-
terval of states corresponding to this extremum. Then g∗(x1, 0) ≤U(x1 ) for all x1 ∈X1.
Given thatX1 is a minimum and it is the unique interval extremum, U is monotonically
decreasing on [X, infX1] and strictly so on some some proper interval I ⊂ [X , infX1].
This implies that for all x1 ∈ X1, U(x1 ) < U(X ) = g∗(X , 0). Therefore, for all x1 ∈ X1,
g∗(x1, 0) ≤ U(x1 ) < g∗(X , 0). Further, since Xg

1 is the unique interval extremum of
g∗(·, 0) and a maximum, for all xg1 ∈Xg

1 , g∗(X , 0) = g∗(X , 0)< g∗(x
g
1, 0). But then g∗(·, 0)

must have two interval extrema, since g∗(x1, 0) < g∗(X , 0) = g∗(X , 0) for x1 ∈ X1 and
g∗ is continuous. This is a contradiction. Therefore, U is single-peaked with a unique
interval maximum. The proof for U single-peaked with a minimum is analogous.

Item (iv). This follows directly from U(X ) ≥ g∗(X , 0) at an interior minimum of U ,
U(X ) ≤ g∗(X , 0) at an interior maximum of U , U(X ) = g∗(X , 0), U(X ) = g∗(X , 0), and
the Lipschitz continuity of g∗.
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For the case of X = R, replace g∗(X , 0) and U(X ) with limX→∞ g∗(X , 0) and
limX→∞U(X ), and analogously forX . These limits exist by the proof of Theorem 4.

Proof of Proposition 3. LetU be the unique bounded solution to (7). ThenU is con-
tinuous and bounded on a closed set. Therefore, either U attains a global maximum on
X , in which case W = U(XH ) for some XH ∈ X , or in the case where X is unbounded,
it is also possible that W = lim supX→XH

U(X ) for either XH = −∞ or XH = ∞. Sup-
pose U attains a global maximum at an interior state XH ∈ intX . Then U ′(XH ) = 0 and
U ′′(XH ) ≤ 0. From (7), this implies

U ′′(XH ) = 2r
(
W − g∗(XH , 0)

)
σ∗(XH , 0)2 ≤ 0,

and, therefore, W ≤ g∗(XH , 0). If X is bounded and U attains a global maximum at
boundary state XH =X or XH =X , then by Theorem 4, W = g∗(XH , 0). Similarly, if X
is unbounded and limX→XH U(X ) = W for either XH = −∞ or XH = ∞, then by The-
orem 4, W = g∗(XH , 0). Therefore, W ≤ infXH∈XH g∗(XH , 0). The proof for W is analo-
gous.
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