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Supplementary Material

Supplement to “Persistence in a dynamic moral hazard game”
(Theoretical Economics, Vol. 19, No. 1, January 2024, 449–498)

J. Aislinn Bohren
Department of Economics, University of Pennsylvania

Appendix B: Additional material for Theorem 1

This section proves Lemmas 2 and 3. Define the second-order differential equation

U ′′ = f (X ,U ,U ′), (29)

where f : X ×R
2 → R is defined as

f
(
X ,U ,U ′) ≡ 2r

σ∗(X ,U ′)2

(
U −ψ(

X ,U ′)) (30)

and ψ(X , z) ≡ g∗(X , z) + z
r μ

∗(X , z) is the value of the large player’s incentive constraint
at the sequentially rational action profile for incentive weight z/r. Note that f is con-
tinuous on int(X ). Equation (29) is equivalent to the optimality equation (7). Lemmas 2
and 3 establish that (29) has a solution for the case of an unbounded and bounded state
space, respectively.

The proof of Lemma 2 relies on Theorem 5.6 from De Coster and Habets (2006),
which is reproduced below.S1

Theorem 5 (De Coster and Habets (2006)). Let α, α ∈ C2 be functions such that α ≤ α,
D = {(t, u, v) ∈ R

3|α(t ) ≤ u ≤ α(t )} and let f : D→ R be a continuous function. Assume
that α and α are such that for all t ∈ R,

f
(
t, α(t ), α′(t )

) ≤ α′′(t ) and α′′(t ) ≤ f (t, α(t ), α′(t )
)
.

Assume that for any bounded interval I, there exists a positive continuous function HI :
R

+ →R that satisfies the Nagumo condition,S2

∫ ∞

0

s ds

HI(s)
= ∞, (31)

and for all (t, u, v) ∈ I ×R
2 with α(t ) ≤ u≤ α(t ), |f (t, u, v)| ≤HI(|v|). Then the equation

u′′ = f (t, u, u′ ) has at least one solution u ∈ C2 such that for all t ∈R, α(t ) ≤ u(t ) ≤ α(t ).

J. Aislinn Bohren: abohren@sas.upenn.edu
S1This result is based on Schmitt (1969).
S2The Nagumo condition is a growth condition on the second-order differential equation f . It plays an

important role in demonstrating the existence of a solution to the boundary value problem.
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Proof of Lemma 2. Suppose X = R. Then (30) is continuous on R
3. Define α : R → R

as

α(X ) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
α1X − ca ifX ≤ −1
1
8
α1X

4 − 3
4
α1X

2 − 3
8
α1 − ca ifX ∈ (−1, 1)

−α1X − ca ifX ≥ 1

(32)

and define α : R→R as

α(X ) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−α1X + cb ifX ≤ −1

−1
8
α1X

4 + 3
4
α1X

2 + 3
8
α1 + cb ifX ∈ (−1, 1)

α1X + cb ifX ≥ 1

(33)

for some α1, α1, ca, cb ≥ 0. Note that α, α ∈ C2 and α(X ) ≤ α(X ) for all X ∈ R. Functions

α(·) and α(·) are lower and upper solutions to (29) if there exist α1, α1, ca, cb ≥ 0 such

that for allX ∈R,

2r

σ
(
X , α′(X )

)2

(
α(X ) −ψ(

X , α′(X )
)) ≤ α′′(X ) (34)

and

α′′(X ) ≤ 2r

σ
(
X , α′(X )

)2

(
α(X ) −ψ(

X , α′(X )
))

. (35)

By Assumption 2, ∃k ∈ [0, r ) and c ≥ 0 such that μ∗(X , z) ≤ kX + c for all X ≥ 0 and

μ∗(X , z) ≥ kX − c for allX ≤ 0.

Step 1a. Show that there exist α1, α1, ca, cb ≥ 0 such that α(·) and α(·) are lower and

upper solutions to (29) when g is unbounded.

First derive a bound on ψ(X , z). By Lipschitz continuity and the fact that g∗(X , z)

and μ∗(X , z) are bounded in z, ∃kg, km ≥ 0 such that |g∗(X , z) − g∗(0, z)| ≤ kg|X| and

|μ∗(X , z) − μ∗(0, z)| ≤ km|X| for all (X , z). Therefore, ∃g
1

, g
2

, g1, g2 ≥ 0, μ
1

, μ2 ∈ [0, r ),

μ
2

, μ1 > 0, and γ, γ,m,m ∈R such that

{
g

1
X + γ

−g
2
X + γ ≤ g∗(X , z) ≤

{
−g1X + γ ifX < 0

g2X + γ ifX ≥ 0{
μ

1
X +m

−μ
2
X +m ≤ μ∗(X , z) ≤

{
−μ1X +m ifX < 0

μ2X +m ifX ≥ 0
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and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
g

1
− μ1

r
z

)
X + γ+ m

r
z(

−g
2
+ μ2

r
z

)
X + γ+ m

r
z(

g
1
+ μ

1

r
z

)
X + γ+ m

r
z

−
(
g

2
+ μ

2

r
z

)
X + γ+ m

r
z

≤ψ(X , z) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
−g1 + μ

1

r
z

)
X + γ+ m

r
z ifX < 0, z ≤ 0(

g2 − μ
2

r
z

)
X + γ+ m

r
z ifX ≥ 0, z ≤ 0

−
(
g1 + μ1

r
z

)
X + γ+ m

r
z ifX < 0, z ≥ 0(

g2 + μ2

r
z

)
X + γ+ m

r
z ifX ≥ 0, z ≥ 0.

This provides a bound on ψ(X , z).
Next find conditions on (α1, α1, ca, cb ) such that α(·) and α(·) are lower and upper

solutions to (29) whenX ≤ −1. From Eqs. (32) and (33), α′′(X ) = α′′(X ) = 0, α′(X ) = α1,
and α′(X ) = −α1 when X ≤ −1. Substituting this into Eqs. (34) and (35), this cor-
responds to finding α1, α1, ca, cb ≥ 0 such that ψ(X , α1 ) ≥ α1X − ca and ψ(X , −α1 ) ≤
−α1X + cb. From the bound on ψ(X , z),

ψ(X , α1 ) ≥
(
g

1
+ μ

1

r
α1

)
X + γ+ m

r
α1

ψ(X , −α1 ) ≤ −
(
g1 + μ

1

r
α1

)
X + γ− m

r
α1.

Therefore, when X ≤ −1, this holds when α1 ≥ rg
1
/(r − μ

1
), ca ≥ ca1 ≡ −γ − mα1/r,

α1 ≥ rg1/(r −μ
1

), and cb ≥ cb1 ≡ γ−mα1/r.
Next find conditions on (α1, α1, ca, cb ) such that α(·) and α(·) are lower and upper

solutions to (29) whenX ≥ 1. From Eqs. (32) and (33), α′′(X ) = α′′(X ) = 0, α′(X ) = −α1,
and α′(X ) = α1 when X ≥ 1. Substituting this into Eqs. (34) and (35), this corresponds
to finding α1, α1, ca, cb ≥ 0 such that ψ(X , −α1 ) ≥ −α1X − ca and ψ(X , α1 ) ≤ α1X + cb.
From the bound on ψ(X , z),

ψ(X , −α1 ) ≥ −
(
g

2
+ μ2

r
α1

)
X + γ− m

r
α1

ψ(X , α1 ) ≤
(
g2 + μ2

r
α1

)
X + γ+ m

r
α1.

Therefore, when X ≥ 1, this holds when α1 ≥ rg
2
/(r − μ2 ), ca ≥ ca2 ≡ −γ +mα1/r, α1 ≥

rg2/(r −μ2 ), and cb ≥ cb2 ≡ γ+mα1/r.
Next find conditions on (α1, α1, ca, cb ) such that α(·) and α(·) are lower and upper

solutions to (29) when X ∈ (−1, 1). From (32), α′′(X ) = −3
2α1(1 − X2 ) ≥ −3

2α1 and
α(X ) ≤ −3

8α1 − ca, and from (33), α′′(X ) = 3
2α1(1 − X2 ) ≤ 3

2α1 and α(X ) ≥ 3
8α1 + cb

when X ∈ (−1, 1). Substituting this into Eqs. (34) and (35), this corresponds to finding
α1, α1, ca, cb ≥ 0 such that

ca ≥ 3
4

(∣∣σ∗(X , α′(X )
)∣∣2

r
− 1

2

)
α1 −ψ(

X , α′(X )
)

(36)
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cb ≥ 3
4

(∣∣σ∗(X , α′(X )
)∣∣2

r
− 1

2

)
α1 +ψ(

X , α′(X )
)
. (37)

Let σ ≡ supX∈[0,1],z∈Rσ∗(X , z), which exists since σ∗(X , z) is Lipschitz continuous
in X and bounded in z (the latter follows from B(X ) bounded on [0, 1], which im-
plies b∗(X , z) is bounded on [0, 1] × R, and σ(b,X ) Lipschitz continuous). First con-
sider X ∈ (−1, 0], which means that α′(X ) = 1

2α1X(3 − X2 ) ∈ (−α1, 0] and α′(X ) =
−1

2α1X(3 −X2 ) ∈ [0, α1 ). From the bound on ψ(X , z),

ψ
(
X , α′(X )

) ≥
(
g

1
+ μ

1

r
α′

)
X + γ+ m

r
α′ ≥ −g

1
+ γ− μ

1

r
α1 + α1

r
min{m, 0}

ψ
(
X , α′(X )

) ≤
(

−g1 + μ
1

r
α′

)
X + γ+ m

r
α′ ≤ g1 + γ+ μ

1

r
α1 − α1

r
min{m, 0}.

Therefore, whenX ∈ (−1, 0], Eqs. (36) and (37) hold when

ca ≥ ca3 ≡ 3
4

(
σ2

r
− 1

2

)
α1 + g

1
− γ+ μ

1

r
α1 − α1

r
min{m, 0}

cb ≥ cb3 ≡ 3
4

(
σ2

r
− 1

2

)
α1 + g1 + γ+ μ

1

r
α1 − α1

r
min{m, 0}.

Next considerX ∈ [0, 1), which means that α′(X ) = 1
2α1X(3 −X2 ) ∈ [0, α1 ) and α′(X ) =

−1
2α1X(3 −X2 ) ∈ (−α1, 0]. From the bound on ψ(X , z),

ψ
(
X , α′(X )

) ≥
(

−g
2
+ μ2

r
α′

)
X + γ+ m

r
α′ ≥ −g

2
+ γ− μ2

r
α1 − α1

r
max{m, 0}

ψ
(
X , α′(X )

) ≤
(
g2 + μ2

r
α′

)
X + γ+ m

r
α′ ≤ g2 + γ+ μ2

r
α1 + α1

r
max{m, 0}.

Therefore, whenX ∈ [0, 1), Eqs. (36) and (37) hold when

ca ≥ ca4 ≡ 3
4

(
σ2

r
− 1

2

)
α1 + g

2
− γ+ μ2

r
α1 + α1

r
max{m, 0}

cb ≥ cb4 ≡ 3
4

(
σ2

r
− 1

2

)
α1 + g2 + γ+ μ2

r
α1 + α1

r
max{m, 0}.

Combining these conditions and choosing

α1 ≡ max
{ rg

1

r −μ
1

,
rg

2

r −μ2

}

α1 ≡ max
{
rg1

r −μ
1

,
rg2

r −μ2

}

yields α1 ≥ 0 and α1 ≥ 0 that satisfy all of the slope conditions. Choosing ca ≡
max{0, ca1, ca2, ca3, ca4} and cb ≡ max{0, cb1, cb2, cb3, cb4} yields ca ≥ 0 and cb ≥ 0 that sat-
isfy all of the intercept conditions. Given α1, α1, ca, and cb, the functions α(·) and α(·)
defined in Eqs. (32) and (33) are lower and upper solutions to (29).
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Step 1b. Show that there exist α1, α1, ca, cb ≥ 0 such that α(·) and α(·) are lower and
upper solutions to (29) when g is bounded. Define g≡ sup(a,b,X )∈A×E g(a, b,X ) and g≡
inf(a,b,X )∈A×E g(a, b,X ), which exist since g is bounded. Let α1 = 0 and ca = −g. Then
ψ(X , α′(X )) = g∗(X , 0), so α(X )−ψ(X , α′(X )) = g−g∗(X , 0) ≤ 0 for allX and α(X ) = g
is a lower solution. Similarly, let α1 = 0 and cb = g. Then ψ(X , α′(X )) = g∗(X , 0), so
α(X ) −ψ(X , α′(X )) = g−g∗(X , 0) ≥ 0 for allX and α(X ) = g is an upper solution. Note
that this step places no restrictions on the growth rate of μ in relation to r.

Step 2. Show that the Nagumo condition (31) is satisfied. Given a bounded interval
I ⊂ X , there exists aKI > 0 such that

∣∣f (X ,U ,U ′)∣∣ =
∣∣∣∣ 2r

σ∗(X ,U ′)2

(
U − g∗(X ,U ′) − U ′

r
μ∗(X ,U ′))∣∣∣∣ ≤KI

(
1 + ∣∣U ′∣∣)

for all (X ,U ,U ′ ) ∈ {I ×R
2 s.t. α(X ) ≤U ≤ α(X )}. This follows directly from the fact that

X ∈ I, α(X ) and α(X ) are bounded on I, α(X ) ≤ U ≤ α(X ), g∗ and μ∗ are bounded on
(X ,U ′ ) ∈ I ×R, and σ(b,X ) is bounded away from zero on I. DefineHI(z) =KI(1 + z).
Therefore,

∫ ∞
0 z/HI(z)dz = ∞.

Conclude that (29) has at least one C2 solution U such that for all X ∈ R, α(X ) ≤
U(X ) ≤ α(X ). In the case where g is unbounded, the α(X ) and α(X ) constructed in
Step 1a have linear growth, so U has linear growth. In the case where g is bounded, the
α(X ) and α(X ) constructed in Step 1a are bounded, so U is bounded.

The proof of Lemma 3 relies on a result from Faingold and Sannikov (2011), which is
reproduced below in a slightly altered form to apply to the current setting.

Lemma 20 (Faingold and Sannikov (2011)). LetD= {(t, u, v) ∈ (t, t ) ×R
2} and f :D→R

be continuous. Let α1, α1 ∈ R be constants such that α1 ≤ α1 and f (t, α1, 0) ≤ 0 ≤
f (t, α1, 0) for all t ∈ R. Assume that for any closed interval I ⊂ (t, t ), there exists a KI > 0
such that |f (t, u, v)| ≤ KI(1 + |v|)) for all (t, u, v) ∈ I × [α1, α1] × R. Then the differ-
ential equation U ′′ = f (t,U(t ),U ′(t )) has at least one C2 solution U on (t, t ) such that
α1 ≤U(t ) ≤ α1.

Proof of Lemma 3. Suppose X is compact. Then (30) is continuous on the set D =
{(X ,U ,U ′ ) ∈ (X ,X ) × R

2}. When X is compact, the feasible payoff set for the large
player is bounded, since g is Lipschitz continuous. Define g ≡ inf(a,b,X )∈A×E g(a, b,X )
and g ≡ sup(a,b,X )∈A×E g(a, b,X ) as the lower and upper bounds on the flow payoff for
the large player, respectively. For any closed interval I ⊂ (X ,X ), there exists a KI > 0
such that ∣∣∣∣ 2r

σ∗(X ,U ′)2

(
U − g∗(X ,U ′) − U ′

r
μ∗(X ,U ′))∣∣∣∣ ≤KI

(
1 + ∣∣U ′∣∣)

for all (X ,U ,U ′ ) ∈ I× [g, g]×R. This follows directly from the fact thatX ∈ I,U ∈ [g, g],
g∗ and μ∗ are bounded on X × R, and σ(b,X ) is bounded away from zero on I. Also
note that

f (X , g, 0) = 2r

σ∗(X , 0)2

(
g− g∗(X , 0)

) ≤ 0 ≤ f (X , g, 0) = 2r

σ∗(X , 0)2

(
g− g∗(X , 0)

)
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for allX ∈ (X ,X ). By Lemma 20, (29) has at least one C2 bounded solution U on (X ,X )
with g≤U(X ) ≤ g. This establishes that there exists a bounded solution to the optimal-
ity equation (7).

Appendix C: Additional material for Theorem 2

This section establishes Lemma 5 for the case of X = [X ,X]. Let U be a bounded so-
lution to (7). Since U is not defined at X ∈ {X ,X}, take the definitions of d(X , β)
and f (X , β) from Appendix A.3 for X ∈ (X ,X ) and define these functions at the
boundary as follows: d(X , β) = d(X , β) = 0 and f (X , β) = f (X , β) = 0. Note that
σ(X , rβ) is bounded away from 0 on any compact proper subset I ⊂ [X ,X] by As-
sumption 1, so by Lemma 4, if f (X , β) = 0 for some X ∈ I, then d(X , β) = 0. The
following argument establishes that for every ε > 0, there exists a η > 0 such that ei-
ther d(X , β) > −ε or |f (X , β)| > η. Fix any ε > 0. First show that there exists a δ > 0
such that |d(X , β)| < ε for (X , β) ∈ 
a ≡ {X × R : |X /∈ [X + δ,X − δ]}, which estab-
lishes the claim. Given μ(a, b,X ) = m for all (a, b) ∈ A × B(X ), from (6), S∗(X , z) =
S∗(X , 0) for all z ∈ R. Therefore, g∗(X , z) = g∗(X , 0). Moreover, μ∗(X , z) = m and
σ∗(X , z) = 0 for all z ∈ R by assumption. Given Lipschitz constant Kg > 0 for g∗,
|g∗(X , z) − g∗(X , 0)| = |g∗(X , z) − g∗(X , z)| ≤ Kg|X −X| for all z ∈ R. Choosing δ1 =
ε/8rKg, if |X − X| < δ1, then |g∗(X , z) − g∗(X , 0)| < ε/8r for all z ∈ R. This implies
r|g∗(X ,U ′(X )) − g∗(X , rβ)| < ε/4 for all |X −X| < δ1 and β ∈ R. When m �= 0, U ′(X )
is bounded by Lemma 23. Let M > 0 denote this bound. Analogously, there exists a
δ2 > 0 such that |μ∗(X ,U ′(X )) − μ∗(X , rβ)| < ε/4M for all |X − X| < δ2 and β ∈ R.
Therefore, |μ∗(X ,U ′(X )) − μ∗(X , rβ)||U ′(X )| < ε/4 for all |X − X| < δ2 and β ∈ R.
When m = 0, then (X − X )U ′(X ) → 0 by Lemma 23. Note that Lipschitz continuity
and μ∗(X , z) = 0 imply |μ∗(X , z)| ≤ Kμ(X −X ) for all z ∈ R. Therefore, there exists a
δ3 > 0 such that (X −X )U ′(X )< ε/8Kμ for all |X −X| < δ3. Then |μ∗(X , z)||U ′(X )| ≤
Kμ(X −X )|U ′(X )| < ε/8 for all |X −X| < δ3 and z ∈ R. This implies |μ∗(X ,U ′(X )) −
μ∗(X , rβ)||U ′(X )| < ε/4 for all |X −X| < δ3 and β ∈ R. Finally, by Assumption 1, there
exists a K1,σ > 0 such that σ∗(X , z) ≥ K1,σ (X − X ) for all z ∈ R and X < (X − X )/2.
Therefore, by Lemma 24,K2

1,σ (X−X )2|U ′′(X )| ≤ σ∗(X ,U ′(X ))2|U ′′(X )| → 0 asX →X .

By Lipschitz continuity and σ∗(X , z) = 0, there exists a K2,σ > 0 such that σ∗(X , z) ≤
K2,σ (X − X ) for all z ∈ R. Taken together, this implies that there exists a δ4 > 0 such
that σ∗(X , rβ)2|U ′′(X )| ≤ K2

2,σ (X − X )2|U ′′(X )| < ε/4 for |X − X| < δ4. Therefore,

|σ∗(X ,U ′(X ))2 −σ∗(X , rβ)2||U ′′(X )|/2< ε/4 for |X −X| < δ4. Taken together, this im-
plies that |d(X , β)| < 3ε/4 for |X − X| < δH , where δH ≡ min{δ1, δ2, δ4} when m �= 0
and δH ≡ min{δ1, δ3, δ4} when m = 0. Analogously, there exists a δL > 0 such that
|d(X , β)| < 3ε/4 for |X − X| < δL. Taking δ ≡ min{δL, δH } establishes d(X , β) > −ε
for all (X , β) ∈ 
a. Next show that there exists an M > 0 such that this is true for
(X , β) ∈ 
b ≡ {X × R : |β| > M ,X ∈ [X + δ,X − δ]}. On any compact proper subset
of [X ,X], U ′ is bounded and σ(b,X ) is bounded away from 0. Therefore, there exists
an M > 0 and η1 > 0 such that |f (X , β)| >η1 for all |β| >M and X ∈ [X + δ,X − δ]. Fi-
nally show this is true for (X , β) ∈
c ≡ {X ×R : |β| ≤M ,X ∈ [X + δ,X − δ]}. Consider
the set �c ⊂ 
c where d(X , β) ≤ −ε. The function d is continuous and 
c is compact,
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so �c is compact. The function |f | is continuous and, therefore, achieves a minimum
η3 on �c . If η3 = 0, then d = 0 by Lemma 4 (since σ(b,X ) is bounded away from 0 on
[X+δ,X−δ]), a contradiction. Therefore, η3 > 0. Take η≡ min{η1, η2, η3}. Then when
d(X , β) ≤ −ε, |f (X , β)| >η.

Appendix D: Additional material for Theorems 3 and 4

This section contains additional material used to establish the boundary conditions in
the proofs of Theorems 3 and 4.

D.1 Boundary conditions for compact X

When X is compact, Lemmas 21 to 25 establish the following boundary conditions un-
der Assumptions 1 to 3. WhenX is an absorbing state (m= 0), any bounded solution U
of (7) on (X ,X ) satisfies limX→pU(X ) = g∗(p, 0), limX→p μ

∗(X ,U ′(X ))U ′(X ) = 0, and
limX→p σ

∗(X ,U ′(X ))2U ′′(X ) = 0 forp ∈ {X ,X}. WhenX is not an absorbing state (m �=
0), any bounded solution U of (7) on (X ,X ) satisfies limX→X U(X ) = g∗(X , 0) +mu′/r,
limX→X μ

∗(X ,U ′(X ))U ′(X ) = mu′, and limX→X σ
∗(X ,U ′(X ))2U ′′(X ) = 0 given finite

u′ ≡ limX→X U
′(X ), with analogous conditions forX →X .

Lemma 21. Suppose X is compact. Any bounded solutionU of (7) on (X ,X ) has bounded
variation and lim infX→pU

′(X ) = lim supX→pU
′(X ) for p ∈ {X ,X}.

Proof. Suppose U is a bounded solution of (7) with unbounded variation near p=X .
Then there exists an increasing sequence (Xn )n∈N of alternating consecutive local max-
ima and minima of U , with U ′(Xn ) = 0 and U ′′(Xn ) ≤ 0 for the maxima, and U ′(Xn ) = 0
and U ′′(Xn ) ≥ 0 for the minima. Given (6), a static Nash equilibrium is played at any
X such that U ′(X ) = 0, yielding flow payoff g∗(X , 0). From (7), this implies g∗(Xn, 0) ≥
U(Xn ) in the case of a maximum and g∗(Xn, 0) ≤ U(Xn ) in the case of a minimum.
Thus, the total variation of g∗(X , 0) on [X1,X ) is at least as large as the total variation
of U and, therefore, g∗(X , 0) has unbounded variation near X . This is a contradiction
since g∗(·, 0) is Lipschitz continuous by Assumption 3.

Next show lim infX→X U
′(X ) = lim supX→X U

′(X ). Suppose not. Then by the conti-
nuity of U ′, there exists a z and an increasing sequence (Xn )n∈N of alternating consecu-
tive X with U ′(Xn ) = z and U ′′(Xn ) ≤ 0 for n odd, and U ′(Xn ) = z and U ′′(Xn ) ≥ 0 for n
even, with one inequality forU ′′ strict. From (7), this impliesU(Xn ) ≤ψ(Xn, z) for n odd
and ψ(Xn, z) ≤U(Xn ) for n even, with one inequality strict. Thus, the total variation of
ψ(X , z) on [X1,X ) is at least as large as the total variation of U and, therefore, ψ(X , z)
has unbounded variation near X . This is a contradiction since g∗(·, z) and μ∗(·, z) are
Lipschitz continuous by Assumption 3, and, therefore, for any fixed z, ψ(·, z) is Lips-
chitz continuous. Therefore, it must be that lim infX→X U

′(X ) = lim supX→X U
′(X ). Let

u′ ≡ limX→X U
′(X ) denote this (possibly infinite) limit. The case of p = X is analo-

gous.
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Lemma 22. Suppose X is compact and f : X → R is Lipschitz continuous with f (X ) =
f (X ) = 0. Then for p ∈ {X ,X}, any bounded solution U of (7) on (X ,X ) satisfies

lim inf
X→p

∣∣f (X )
∣∣U ′(X ) ≤ 0 ≤ lim sup

X→p

∣∣f (X )
∣∣U ′(X )

lim inf
X→p

f (X )2U ′′(X ) ≤ 0 ≤ lim sup
X→p

f (X )2U ′′(X ).

Proof. Consider p =X and suppose lim infX→X |f (X )|U ′(X ) > 0. Then there exists a
δ > 0 and ε > 0 such that for all X ∈ (X − δ,X ), |f (X )|U ′(X ) > ε. By Lipschitz con-
tinuity, there exists an M > 0 such that |f (X )| ≤ M(X − X ) for X ∈ X . Together this
implies U ′(X )> ε/|f (X )| ≥ ε/(M(X −X )) for all X ∈ (X − δ,X ). The antiderivative of
ε/(M(X −X )) is −(ε/M ) ln(X −X ), which converges to ∞ asX →X . This contradicts
the boundedness ofU . Therefore, it must be that lim infX→X |f (X )|U ′(X ) ≤ 0. The proof
is analogous to show lim supX→X |f (X )|U ′(X ) ≥ 0 and for the case of p=X .

Suppose lim infX→X f (X )2U ′′(X ) > 0. There exists a δ2 > 0 and ε2 > 0 such that
for all X ∈ (X − δ2,X ), f (X )2U ′′(X ) > ε2. Then for all X ∈ (X − δ2,X ), U ′′(X ) >
ε2/f (X )2 > ε2/M

2(X − X )2. The second-order antiderivative of ε2/M
2(X − X )2 is

−(ε2/M
2 ) ln(X − X ), which converges to ∞ as X → X . This contradicts the bound-

edness of U . Therefore, lim infX→X f (X )2U ′′(X ) ≤ 0. The proof is analogous to show
lim supX→X f (X )2U ′′(X ) ≥ 0 and for the case of p=X .

Lemma 23. Suppose X is compact. Any bounded solution U of (7) on (X ,X ) sat-
isfies limX→X μ

∗(X ,U ′(X ))U ′(X ) = 0 when X is an absorbing state (m = 0) and
limX→X μ

∗(X ,U ′(X ))U ′(X ) =mu′ for some finite u′ ≡ limX→X U
′(X ) when X is not an

absorbing state (m �= 0), with analogous limits asX →X .

Proof. Consider p = X . By Lemma 21, lim infX→X U
′(X ) = lim supX→X U

′(X ). Let
u′ ≡ limX→X U

′(X ). First show that when m �= 0, |u′| < ∞. Suppose not. Note that
limX→X μ

∗(X ,U ′(X )) =m follows from the Lipschitz continuity of μ∗ and μ∗(X , z) =m
for all z. Then if |u′| = ∞ and m �= 0, limX→X |μ∗(X ,U ′(X ))U ′(X )| = ∞. From (7), this
implies∣∣σ∗(X ,U ′(X )

)2
U ′′(X )

∣∣ = ∣∣2r(U(X ) − g∗(X ,U ′(X )
)) − 2μ∗(X ,U ′(X )

)
U ′(X )

∣∣ → ∞
sinceU and g∗ are bounded. But given that σ∗ is Lipschitz continuous with σ∗(X , z) = 0
for all z, this contradicts Lemma 22. Therefore, it must be that |u′| < ∞ when m �= 0.
Taken together, this implies limX→X μ

∗(X ,U ′(X ))U ′(X ) =mu′ whenm �= 0.
Next show that whenm= 0, limX→X μ

∗(X ,U ′(X ))U ′(X ) = 0. Let f (X ) ≡X−X and
first show limX→X f (X )U ′(X ) = 0. Suppose lim supX→X f (X )U ′(X )> 0. By Lemma 22,
lim infX→X f (X )U ′(X ) ≤ 0 since f (X ) is Lipschitz continuous and f (X ) = 0. Then there
exist constants K > k > 0 such that f (X )U ′(X ) crosses k and K infinitely many times
in a neighborhood of X. Additionally, there exist ε > 0 and L > 0 such that for X with
X −X < ε and f (X )U ′(X ) ∈ (k,K),

∣∣U ′′(X )
∣∣ =

∣∣∣∣2r
(
U(X ) − g∗(X ,U ′(X )

)) − 2μ∗(X ,U ′(X )
)
U ′(X )

σ∗(X ,U ′(X )
)2

∣∣∣∣ ≤ L

f (X )2 .
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where the equality follows from (7) and the inequality follows from the triangle inequal-
ity,U and g∗ bounded,μ∗(X ,U ′(X )) ≤Kμf (X ) for someKμ > 0 by Lipschitz continuity,
and σ∗(X ,U ′(X )) ≥ Kσf (X ) for some Kσ > 0 when X < (X −X )/2 by Assumption 1.
Given f is Lipschitz continuous, there exists an L2 > 0 such that |f ′(X )| < L2. This im-
plies that forX such that |X −X| < ε and |f (X )|U ′(X ) ∈ (k,K),

∣∣(f (X )U ′(X )
)′∣∣ ≤ ∣∣f ′(X )U ′(X )

∣∣ + ∣∣f (X )U ′′(X )
∣∣ =

(∣∣f ′(X )
∣∣ +

∣∣f (X )2U ′′(X )
∣∣∣∣f (X )U ′(X )
∣∣

)∣∣U ′(X )
∣∣

≤ (L2 +L/k)
∣∣U ′(X )

∣∣,
and, therefore, |U ′(X )| ≥ |(f (X )U ′(X ))′|/(L2 + L/k). Therefore, the total variation
of U is at least (K − k)/(L2 + L/k) > 0 on any interval where |f (X )|U ′(X ) crosses
k and stays in (k,K) until crossing K. This happens infinitely often in a neighbor-
hood of X , which implies that U has unbounded variation in this neighborhood.
This is a contradiction by Lemma 21. Thus, lim supX→X |f (X )|U ′(X ) = 0. By simi-
lar logic, lim infX→X |f (X )|U ′(X ) = 0 and, therefore, limX→X |f (X )|U ′(X ) = 0.S3 Given
|μ∗(X ,U ′(X ))| ≤ K1f (X ), this implies |μ∗(X ,U ′(X ))U ′(X )| ≤ K1|f (X )U ′(X )| → 0 as
X →X . The case of p=X is analogous.

Lemma 24. Suppose X is compact. Any bounded solution U of (7) on (X ,X ) satis-
fies limX→p σ

∗(X ,U ′(X ))2U ′′(X ) = 0 for p ∈ {X ,X}. When X is an absorbing state
(m = 0), limX→X U(X ) = g∗(X , 0), and when X is not an absorbing state (m �= 0),
limX→X U(X ) = g∗(X , 0) +mu′ given finite u′ ≡ limX→X U

′(X ), with analogous limits
asX →X.

Proof. Consider p = X . Given that U is continuous, is bounded, and has bounded
variation, UX ≡ limX→X U(X ) exists. Given μ(a, b,X ) = m for all (a, b) ∈ A × B(X ),
from (6), S∗(X , z) = S∗(X , 0) for all z ∈R. Therefore, g∗(X , z) = g∗(X , 0) for all z ∈R. By
the Lipschitz continuity of g∗, this implies limX→X g

∗(X ,U ′(X )) = g∗(X , 0).
First suppose X is an absorbing state (m = 0). By Lemma 23, limX→X μ

∗(X ,
U ′(X ))U ′(X ) = 0. Plugging these limits into (7),

lim
X→X

σ∗(X ,U ′(X )
)2
U ′′(X ) = lim

X→X
2r

(
U(X ) − g∗(X ,U ′(X )

)) − 2μ∗(X ,U ′(X )
)
U ′(X ))

= 2r
(
UX − g∗(X , 0)

)
.

Suppose UX > g
∗(X , 0). By X compact, σ(b,X ) = 0 for all b ∈ B(X ) and, therefore,

σ∗(X , z) = 0 for all z ∈ R. Therefore, by the Lipschitz continuity of σ∗, there exists an

S3This result holds under a more general condition than σ∗(X , z) ≥ C(X −X )(X −X ) for all (X , z) ∈
X ×R. Specifically, for any positive Lipschitz continuous function f (X ) with f (X ) = 0 and a K1,K2, δ > 0
such that |μ∗(X , z)| ≤ K1f (X ) and σ∗(X , z) ≥ K2f (X ) for X such that |X − X| < δ and z ∈ R, then
limX→X f (X )U ′(X ) = 0 for all z ∈ R. This condition relates the growth rate of σ∗ to that of μ∗. When
σ∗(X , z) ≥ C(X −X )(X −X ), the Lipschitz continuity of μ∗ implies that f (X ) =X −X satisfies this con-
dition.
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M > 0 such that for allX ∈ X , σ∗(X ,U ′(X ))2 ≤M(X −X )2. This implies

lim inf
X→X

σ∗(X ,U ′(X )
)2∣∣U ′′(X )

∣∣ = 2r
(
UX −g∗(X , 0)

) ≤ lim inf
X→X

M(X−X )2
∣∣U ′′(X )

∣∣ = 0,

where the last equality follows from Lemma 22. This is a contradiction. A similar con-
tradiction holds for UX < g

∗(X , 0). Therefore, UX = g∗(X , 0). Then limX→X σ
∗(X ,

U ′(X ))2U ′′(X ) = 0 follows immediately from (7).
Next suppose X is not an absorbing state (m �= 0). By similar reasoning,

limX→X σ
∗(X ,U ′(X ))2U ′′(X ) = 2r(UX − g∗(X , 0) − mu′/r ), which yields UX = g∗(X ,

0) + mu′/r and again, limX→X σ
∗(X ,U ′(X ))2U ′′(X ) = 0. The case of p = X is analo-

gous.

Lemma 25. Suppose U and V are bounded solutions of (7) on (X ,X ). Then
limX→p V (X ) −U(X ) = 0 for p ∈ {X ,X}.

Proof. Consider p =X . Let U and V be bounded solutions of (7). When X is an ab-
sorbing state (m = 0), limX→X V (X ) − U(X ) = 0 follows immediately from Lemma 24
as limX→X U(X ) = limX→X V (X ) = g∗(X , 0). Therefore, consider the case where X is
not an absorbing state (m �= 0) and without loss of generality suppose limX→X V (X ) >
limX→X U(X ). From Lemma 24, limX→X V (X ) − U(X ) = m(v′ − u′ )/r. Therefore,
given m < 0, this implies v′ < u′. By continuity, there exists an X∗ ∈ (X ,X ) such that
V (X∗ ) > U(X∗ ) and V ′(X∗ ) < U ′(X∗ ). From the proof of Lemma 7, this implies that
V (X )>U(X ) and V ′(X )<U ′(X ) for all X ∈ (X ,X∗ ). This implies V (X ) −U(X ) is de-
creasing inX forX ∈ (X ,X∗ ) and, therefore, limX→X V (X )−U(X )> V (X∗ )−U(X∗ )>
0. Therefore,m(v′ −u′ )/r > 0. Givenm> 0, this implies v′ > u′, which is a contradiction.
Therefore, limX→X V (X ) = limX→X U(X ). The case of p=X is analogous

D.2 Additional results for boundary conditions when X =R

The following additional results are used to establish the boundary conditions outlined
in Appendix A.4 when X = R and g is bounded.

Lemma 26. Suppose X = R and g is bounded. If U is a bounded solution of (7), then
there exists a δ > 0 such that for |X| > δ, U is monotone, and for p ∈ {−∞, ∞}, Up ≡
limX→pU(X ) exists and limX→pU

′(X ) = 0.

Proof. Suppose U is a bounded solution of (7) and it is not monotone near p = ∞.
Then for all δ > 0, there exists an increasing sequence (Xn )n∈N of alternating consecutive
local maxima and local minima of U , where X1 > δ. Thus U ′(Xn ) = 0 and U ′′(Xn ) ≤ 0
for the maxima, andU ′(Xn ) = 0 andU ′′(Xn ) ≥ 0 for the minima. Given (6), a static Nash
equilibrium is played at anyX such that U ′(X ) = 0, yielding flow payoff g∗(X , 0). From
(7), this implies g∗(Xn, 0) ≥U(Xn ) in the case of a maximum and g∗(Xn, 0) ≤U(Xn ) in
the case of a minimum. Thus, the oscillation of g∗(X , 0) on [δ, ∞) is at least as large as
the oscillation ofU and, therefore, g∗(X , 0) is not monotone for largeX . But by Assump-
tion 3,ψ′(X , z) is monotone forX > δ0 and, therefore,ψ(X , z) is also monotone for suf-
ficiently largeX . Therefore,ψ(X , 0) = g∗(X , 0) is also monotone for sufficiently largeX .
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This is a contradiction. Thus, there exists a δ such that for X > δ, U is monotone. The
existence of limX→∞U(X ) follows from U bounded and monotone for largeX .

Next suppose lim infX→∞U ′(X ) �= lim supX→∞U ′(X ). Then for all δ > 0, by the
continuity of U ′, there exists a z and an increasing sequence (Xn )n∈N of alternating
consecutive X such that X1 > δ, U ′(Xn ) = z, and U ′′(Xn ) ≤ 0 for n odd, U ′(Xn ) = z

and U ′′(Xn ) ≥ 0 for n even, with one inequality for U ′′ strict. From (7), this implies
U(Xn ) ≤ψ(Xn, z) for n odd and ψ(Xn, z) ≤U(Xn ) for n even, with one inequality strict.
Thus, the oscillation ofψ(X , z) is at least as large as the oscillation ofU . But by Assump-
tion 3, ψ′(X , z) is monotone for X > δ0 and, therefore, ψ(X , z) is also monotone for
sufficiently large X . Therefore, it must be that lim infX→∞U ′(X ) = lim supX→∞U ′(X ).
Let U ′∞ denote this limit. Given U is bounded, it must be that U ′∞ = 0. The case of
p= −∞ is analogous.

Lemma 27. Suppose X = R, g is bounded, and f : R → R has linear growth or slower.
Then any bounded solution U of (7) satisfies

lim inf
X→p

∣∣f (X )
∣∣U ′(X ) ≤ 0 ≤ lim sup

X→p

∣∣f (X )
∣∣U ′(X )

lim inf
X→p

f (X )2U ′′(X ) ≤ 0 ≤ lim sup
X→p

f (X )2U ′′(X )

for p ∈ {−∞, ∞}.

Proof. Consider p= ∞ and suppose lim infX→∞ |f (X )|U ′(X )> 0. Then there exists a
δ1 > 0 and ε1 > 0 such that when X > δ1, |f (X )|U ′(X )> ε1. By linear growth, there ex-
ists a δ2 > 0 andM > 0 such that whenX > δ2, |f (X )| ≤MX . Take δ≡ max{δ1, δ2}. Then
when X > δ, U ′(X )> ε1/|f (X )| ≥ ε1/MX . The antiderivative of ε1/MX is (ε1/M ) lnX ,
which converges to ∞ as X → ∞. This contradicts the boundedness of U . There-
fore it must be that lim infX→∞ |f (X )|U ′(X ) ≤ 0. The proof is analogous to show
lim supX→∞ |f (X )|U ′(X ) ≥ 0.

By Lemma 26, U is monotone for large X . Without loss of generality, let U be
monotonically increasing. This implies U ′(X ) ≥ 0 for sufficiently large X . Suppose
lim infX→∞ f (X )2U ′′(X ) > 0. Then there exists a δ1 > 0 and ε > 0 such that when
X > δ1, f (X )2U ′′(X ) > ε. By linear growth, there exists a δ2 > 0 and M > 0 such
that when X > δ2, f (X )2 ≤ MX2. Take δ ≡ max{δ1, δ2}. Then when X > δ, U ′′(X ) >
ε/f (X )2 ≥ (ε/M )X−2 > 0 and U ′(X ) is strictly monotonically increasing. By Lemma 26,
U ′(X ) → 0. In order to have U ′(X ) → 0 and U ′(X ) strictly monotonically increasing, it
must be that U ′(X ) < 0 for X > δ. This is a contradiction, as U ′(X ) ≥ 0 for sufficiently
largeX . Therefore, lim infX→∞ f (X )2U ′′(X ) ≤ 0. Suppose lim supX→∞ f (X )2U ′′(X )< 0.
By similar reasoning, there exists a δ > 0, ε > 0 and M > 0 such that when X > δ,
U ′′(X ) < −ε/f (X )2 ≤ (−ε/M )X−2 < 0 and U ′(X ) is strictly monotonically decreas-
ing. Therefore,

∫ ∞
X U ′′(t )dt <

∫ ∞
X (−ε/M )t−2 dt, which implies U ′(X ) > ε/MX since

U ′(X ) → 0. The antiderivative of ε/MX is (ε/M ) lnX , which converges to ∞ asX → ∞.
This contradicts the boundedness of U . Therefore, lim supX→∞ f (X )2U ′′(X ) ≥ 0. The
proof is analogous for the case of p= −∞.
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D.3 Alternative boundary conditions for X =R and bounded g

When X = R and g is bounded, Assumption 5 outlines an alternative sufficient condition
for uniqueness.

Assumption 5. Given X = R, there exists a δ0 > 0 such that for |X| > δ0, |μ∗(X , z)|/
σ∗(X , z) ≤K for someK > 0.

Theorem 6 establishes uniqueness when Assumption 5 holds.

Theorem 6. Suppose X =R and g bounded. Assume Assumptions 1 to 3 and 5. For each
initial state X0 ∈ X , there exists a unique PPE, which is Markov and characterized by the
unique bounded solution U of (7) on X . The continuation value converges to the static
Nash equilibrium payoff and intertemporal incentives collapse as the state grows large:
limX→x(U(X ) − g∗(X , 0)) = 0 and limX→x μ

∗(X ,U ′(X ))U ′(X ) = 0 for x ∈ {−∞, ∞}.

Together with Lemmas 26 and 27, Lemmas 28 and 29 below establish the fol-
lowing boundary conditions for the case of X = R and g bounded under Assump-
tions 1 to 3 and 5: any bounded solution U of (7) satisfies limX→pU(X ) = gp,
limX→p μ

∗(X ,U ′(X ))U ′(X ) = 0, and limX→p σ
∗(X ,U ′(X ))2U ′′(X ) = 0 forp ∈ {−∞, ∞},

where gp ≡ limX→p g
∗(X , 0). Note that gp exists, given that g is bounded and g∗(·, 0) is

monotone for large |X|. The proof of Theorem 6 follows immediately from these bound-
ary conditions and Steps 2 and 3 from Appendix A.4.

Lemma 28. Suppose X =R and that g is bounded. Any bounded solutionU of (7) satisfies
limX→p μ

∗(X ,U ′(X ))U ′(X ) = 0 for p ∈ {−∞, ∞}.

Proof. Consider p = ∞. Let f (X ) be a positive Lipschitz continuous function such
that there exists a K1,K2, δ1 > 0 such that |μ∗(X , z)| ≤K1f (X ) and σ∗(X , z) ≥K2f (X )
for X > δ1 and z ∈ R. Such a function exists for μ∗ given that it is Lipschitz contin-
uous and bounded in z, and by Assumption 5, such a function exists that also satis-
fies the property for σ∗. I first show limX→∞ f (X )U ′(X ) = 0 for all z ∈ R. Suppose
lim supX→∞ |f (X )|U ′(X ) > 0. By Lemma 27, lim infX→∞ |f (X )|U ′(X ) ≤ 0 since f (X ) is
Lipschitz continuous and, therefore, has linear growth. Then there exist constants K >
k> 0 such that |f (X )|U ′(X ) crosses k andK infinitely many times asX approaches ∞.
Additionally, there exist δ > 0 and L> 0 such that forX > δ with |f (X )|U ′(X ) ∈ (k,K),

∣∣U ′′(X )
∣∣ =

∣∣∣∣2r
(
U(X ) − g∗(X ,U ′(X )

)) − 2μ∗(X ,U ′(X )
)
U ′(X )

σ∗(X ,U ′(X )
)2

∣∣∣∣ ≤ L

f (X )2 ,

where the equality follows from (7) and the inequality follows from the triangle inequal-
ity, U and g∗ bounded, μ∗ bounded by f , and Assumption 5. Given f is Lipschitz
continuous, there exists an L2 > 0 such that |f ′(X )| < L2. Then for X > δ such that
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|f (X )|U ′(X ) ∈ (k,K),

∣∣(f (X )U ′(X )
)′∣∣ ≤ ∣∣f ′(X )U ′(X )

∣∣ + ∣∣f (X )U ′′(X )
∣∣ =

(∣∣f ′(X )
∣∣ +

∣∣f (X )2U ′′(X )
∣∣∣∣f (X )U ′(X )
∣∣

)∣∣U ′(X )
∣∣

≤ (L2 +L/k)
∣∣U ′(X )

∣∣
and, therefore, |U ′(X )| ≥ |(f (X )U ′(X ))′|/(L2 +L/k). Therefore, the total variation ofU
is at least (K−k)/(L2 +L/k)> 0 on any interval where |f (X )|U ′(X ) crosses k and stays
in (k,K) until crossingK. This happens infinitely often in a neighborhood of ∞, which,
given that U is monotone for large X by Lemma 26, implies that U does not converge
as X → ∞. This is a contradiction by Lemma 26. Thus, lim supX→∞ |f (X )|U ′(X ) = 0.
By similar logic, lim infX→∞ |f (X )|U ′(X ) = 0 and, therefore, limX→∞ |f (X )|U ′(X ) = 0.
Given |μ∗(X ,U ′(X ))| ≤K1f (X ), this implies |μ∗(X ,U ′(X ))U ′(X )| ≤K1|f (X )U ′(X )| →
0 asX → ∞. The case of p= −∞ is analogous.

Lemma 29. Suppose X = R and that g is bounded. Let U be a bounded solution of (7).
Then for p ∈ {−∞, ∞}, limX→pU(X ) = gp and limX→p σ

∗(X ,U ′(X ))2U ′′(X ) = 0.

Proof. Consider p = ∞ and suppose limX→∞U(X ) = U∞ > g∞. By Lemma 28,
μ∗(X ,U ′(X ))U ′(X ) → 0 as X → ∞. Moreover, g∗ Lipschitz continuous, U ′(X ) → 0 by
Lemma 28, and g∗(X , 0) → g∞ imply g∗(X ,U ′(X )) → g∞ as X → ∞. Plugging these
limits into (7),

lim
X→∞

σ∗(X ,U ′(X )
)2
U ′′(X ) = lim

X→∞
2r

(
U(X ) − g∗(X ,U ′(X )

)) − 2μ∗(X ,U ′(X )
)
U ′(X )

= 2r(U∞ − g∞ )> 0. (38)

By the Lipschitz continuity of σ∗ andU ′(X ) → 0 from Lemma 28, there exists a δ,M > 0
such that forX > δ, σ∗(X ,U ′(X )) ≤MX . This implies

lim
X→∞

σ∗(X ,U ′(X )
)2
U ′′(X ) ≤ lim inf

X→∞
M2X2U ′′(X ) ≤ 0,

where the last equality follows from Lemma 27. This is a contradiction, since by (38),
limX→∞σ∗(X ,U ′(X ))2U ′′(X ) > 0. A similar contradiction holds for U∞ < g∞. There-
fore, U∞ = g∞ and limX→∞σ∗(X ,U ′(X ))2U ′′(X ) = 0 follows immediately. The case of
p= −∞ is analogous.

Appendix E: Additional material for Section 6

E.1 Section 6.2

This model satisfies the assumptions in Section 3. Volatility is positive, except at the
boundary states (Assumption 1). The state space is bounded. Therefore, the board’s flow
payoff is also bounded (Assumption 2(i)). From Lemma 1, given current state X and
incentive weight rβ, the board chooses intervention a(X , rβ) = max{−1, min{βX(2 −
X )/2c, 1}}. The board will choose an intervention that increases the state when the
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equilibrium incentive weight is positive, and otherwise chooses an intervention that de-
creases the state. The sequentially rational action profile (a(X , rβ), b(X , rβ)) is single-
valued and Lipschitz continuous (Assumption 3), where b(X , rβ) = λa(X , rβ)2 +1−(1−
X )2.

From Theorem 1, any solution U to the optimality equation with equilibrium ac-
tions a(X ,U ′(X )) = max{−1, min{U ′(X )X(2 − X )/2cr, 1}} and b(X ,U ′(X )) = λa(X ,
U ′(X ))2 + 1 − (1 −X )2 characterizes a Markov equilibrium, where

U(X ) = r(b(a(X ),X
) − ca(X )2)

+X(2 −X )
((
a(X ) + θ(d−X )

)
U ′(X ) +U ′′(X )/2

)
. (39)

E.2 Section 6.3

It is straightforward to compute the sequentially rational action profile for any (z,X ).
Given incentive weight z, the government chooses an investment level to solve

max
a∈[0,a]

−1
2
a2 + θ2z

r
a.

This results in sequentially rational investment level

a(X , z) =

⎧⎪⎪⎨
⎪⎪⎩
θ2z/r if z/r ∈ [0, a/θ2]

a if z/r > a/θ2

0 if z < 0

for the government. When an innovator believes that the government will choose in-
vestment level ã and the current stock of intellectual capital is X , the innovator’s best
response is to select investment ãX/c if ã/c ≤ γ and otherwise to choose the maximum
possible investment, γX . To reduce the number of cases, assume that an interior so-
lution is always feasible for the innovator, a ≤ γc. This results in sequentially rational
investment level

b(X , z) =

⎧⎪⎪⎨
⎪⎪⎩
θ2zX/cr if z/r ∈ [0, a/θ2]

aX/c if z/r > a/θ2

0 if z < 0

for each innovator. Note that a(X , z) and b(X , z) are unique for each (X , z) and are
Lipschitz continuous (Assumption 3).

I first search for equilibria in which the government’s optimal investment is an in-
terior solution. Conjecture that there exists an equilibrium in which the continuation
value is linear in the current level of intellectual capital. This means that U ′(X ) is con-
stant with respect to X and U ′′(X ) = 0. Taking the derivative of the optimality equation
(7), such an equilibrium must satisfy

rU ′(X ) = r dg
∗

dX
+U ′(X )

dμ∗

dX
. (40)
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Rearranging terms and plugging in the derivatives of (14) and (15), any solution to

z = αθ2z

cr − θ1θ2z/r + cθ3
(41)

with z/r ∈ [0, a/θ2] is a candidate equilibrium slope. It is straightforward to verify that
z∗ = 0 is a solution. In an equilibrium with slope z∗ = 0, neither the government nor the
innovators invest, a(X ) = b(X ) = 0 for all X , and the government’s equilibrium payoff
is U(X ) = 0. Due to the strategic complementarity, if the government does not invest,
then neither will the innovators, yielding a payoff of zero for all players. If α= 0 or θ2 = 0,
z∗ = 0 is also the unique solution and, therefore, the unique equilibrium. Intuitively,
if the government does not receive a return on the innovators’ investment or its own
investment does not contribute to building intellectual capital, then it has no incentive
to undertake costly investment.

There are also nontrivial equilibria that sustain positive investment. The unique
nonzero solution to (41) is

z∗

r
= cr − αθ2 + cθ3

θ1θ2
. (42)

In order for this to be a valid solution, it must satisfy z∗/r ∈ [0, a/θ2]. Recall that by
assumption, a ≤ γc and γ < (r + θ3 )/θ1. Allowing a and γ to be as large as possible,
subject to these constraints, yields a/θ2 ≈ (cr+ cθ3 )/θ1θ2 as the upper bound for z∗/r. It
is clear from (42) that z∗/r < (cr+cθ3 )/θ1θ2 for all α> 0 and θ2 > 0. For the lower bound,
z∗/r > 0 for all r when cθ3 > αθ2. Therefore, there exists an equilibrium that sustains
positive investment and has slope (42) when γ ≈ (r+θ3 )/θ1, a= γc, and cθ3 >αθ2. This
equilibrium has nonzero equilibrium investment levels,

a(X ) = cr − αθ2 + cθ3

θ1

b(X ) =
(
cr − αθ2 + cθ3

cθ1

)
X

and continuation valueS4

U(X ) = r
(
cr − αθ2 + cθ3

θ1θ2

)
X + (cr − αθ2 + cθ3 )2

2θ2
1

.

S4Given process dXt = θ(M −Xt )dt + σ dZt , the ergodic distribution of X has mean M . From μ(a, b,
X ) = θ1b(X ) + θ2a(X ) − θ3X , consider such a process with θ= −θ1b(X )/X + θ3 = αθ2/c− r and

M = θ2a(X )
θ

= cθ2(cr − αθ2 + cθ3 )
θ1(αθ2 − cr )

= c2θ2θ3

θ1(αθ2 − cr )
− θ2c

θ1
.

This implies that the equilibrium ergodic distribution of intellectual capital has mean c2θ2θ3/θ1(αθ2 −cr )−
cθ2/θ1. As r → 0,M → c2θ3/αθ1 − cθ2/θ1 = ca(X )/α. The expected flow payoff is

E
[
g
(
a(X ), b(X ),X

)] =E[
αb(X ) − a(X )2/2

] = αa(X )E[X]/c − a(X )2/2.

As r → 0, E[g(a(X ), b(X ),X )] → (cθ3 − αθ2 )2/2θ2
1, which is equal to limr→0U(X ) derived above.
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To complete the characterization of Markov equilibria, it remains to determine
whether there are equilibria with slopes z < 0 or z/r > a/θ2. If there is an equilibrium
with slope z < 0, then from sequential rationality, a(X , z) = b(X , z) = 0, which leads to
U(X ) = 0. But then U ′(X ) = 0, which contradicts z < 0. Therefore, there are no Markov
equilibria with slope z < 0. There may be a Markov equilibrium with slope z/r > a/θ2. In
such an equilibrium, from sequential rationality, a(X , z) = a and b(X , z) = aX/c. Com-
puting g∗(X , z) and μ∗(X , z) for this case, and plugging the derivatives into (40), the
equilibrium slope must satisfy

z∗

r
= αa

cr − θ1a+ cθ3
(43)

and z∗/r > a/θ2. These conditions are simultaneously satisfied when α > (cr − θ1a +
cθ3 )/θ2: therefore, there is an equilibrium with slope (43) and equilibrium investment
levels a(X ) = a and b(X ) = aX/c.
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