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1. Introduction

By the start of the 2022/2023 heating season, Germany and many other European

countries found themselves facing a potential gas supply shortage in the wake of Rus-

sia’s invasion of Ukraine. In search of a response, authorities called on residential

and commercial sectors to save natural gas. Exploiting winter 2022/23 as a “natural

experiment”, we shed light on the magnitude of behavioural gas savings using open

data and a machine learning method. Despite being exposed to incomplete price

signals, we find significant behavioural gas savings by German households and busi-

nesses, contributing to closing the supply gap. We uncover temperature-dependent

saving dynamics and discuss the potential roles of different drivers of this change.

Finally, we highlight the pivotal role of a timely and continuous provision of openly

accessible data and analysis to inform the general public as well as policymakers.
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2. Context

The Russian invasion of Ukraine in February 2022 has created an unprecedented

supply crunch in European natural gas markets. Up until February 2022, Russia had

been Europe’s largest supplier of natural gas, expanding its position in prior years.

Doubting the reliability of Russia’s gas supplies, the question of whether enough

gas would have been supplied to the European market led to spiralling wholesale gas

prices. At the end of August 2022, prices peaked at over 300 Euro per megawatt hour

(MWh) at the benchmark hub TTF after Russia stopped delivering gas through its

Nord Stream 1 pipeline. [1] Slowly rising in the months prior to the invasion, prices had

been fluctuating around 20 Euro per MWh in recent years . [1] Following the closure

of Nord Stream 1, the security of supply was called into question with respect to the

upcoming winter of 2022/23. [2]

Within a year, (Central) Europe’s gas supply structure changed radically. While

historically, around 40% of all gas imported to Germany had been coming through

Russian pipelines, this number dropped to almost 0% by the end of 2022. [3] Much

of the Russian supply was substituted by additional pipeline imports from Norway

and liquefied natural gas (LNG) shipments from other countries. The remaining

potential shortfall gave rise to a discussion on how much gas could and would be

saved by whom.

With respect to gas consumption, there are three principal groups: gas-fired

power plants, large industrial consumers, and the residential and commercial sectors,

which comprise households and small- and medium-sized businesses. Gas-fired power

plants consume gas for electricity production, yet some also supply heat to district
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heating networks. Large industrial consumers use gas either as feedstock or source

of process heat. The residential and commercial sectors need gas predominantly to

satisfy heat demand.

These consumer groups are different in terms of the price signals they receive,

as well as the potential for and consequences of gas demand reductions or enforced

curtailment. Gas-fired power plants usually buy gas short-term to serve peak elec-

tricity demand and thus react immediately to price signals in both electricity and

gas markets. Provided there is sufficient alternative electricity supply, e.g. from

coal-fired power plants, gas demand from the power sector is rather flexible. Large

industrial consumers, unless protected by long-term gas supply contracts or com-

prehensive hedging, are similarly exposed to price changes in the spot market and

therefore have an incentive to reduce gas consumption in case of a supply crunch.

At least in the short run, the industry can reduce its gas consumption by curbing

production, substituting the energy carrier, or buying alternative upstream products.

Mostly supplied under fixed-price contracts, residential and commercial consumers

do not bear the consequences of rising prices in the spot market until a contract has

to be renewed. Even in the case of an acute gas shortage, it is not clear whether

a controlled gas curtailment of supply to residential and commercial sectors in the

distribution grids would have been possible, as it would have been challenging to

implement for various technical [4,5] and political reasons.

In the face of a looming gas shortage, the public debate initially concentrated

on industry halting production, leading to a strong economic downturn, the size of

which was debated controversially among economists. [6,7]. To avoid dire economic
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consequences of production cutbacks of industrial consumers and because of limited

means for the government to impose rationing, voluntary savings by residential and

commercial sectors eventually gained importance in closing the gas supply gap.

3. Gas savings from changes in behaviour

Since the beginning of the gas supply crunch, Germany has been the focus of dis-

cussion due to its large economy and relatively high dependence on Russian gas

imports. In September 2022, the German Federal Network Agency Bundesnetzagen-

tur announced that a 20% reduction in gas consumption (compared to the average

consumption of the preceding four years) would have been necessary to avoid an

acute gas shortage. [8]

In the following, we aim to shed light on the efforts by residential and commer-

cial sectors to save gas. The strong dependency of residential and commercial gas

demand on weather conditions implies that relatively warmer or colder weather has

a large effect on whether the target is actually achievable or not. Building on a rich

literature on the relationship between heat demand, gas demand, temperatures and

prices [9–12], we use a very flexible machine learning method to isolate those gas de-

mand drivers that are not governed by weather variations. We subsume these drivers

as the behavioural component.

The method used in this commentary to estimate savings is a causal forest, which

has two important features: (1) It is fully non-parametric and data-driven, and (2)

it allows isolating savings effects differentiated by temperature. Causal forests [13]
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extend a classic machine learning algorithm, random forests [14]. The general idea of

random forests is to partition the data set based on values of explanatory variables

and fit local models within these partitions, which are together capable of repre-

senting non-linear relationships without having to specify a functional form. Causal

forests extend this concept by using the same logic as a tool to identify local saving

effects. We provide extensive explanations, details, and robustness checks of our

model in the Supplemental Information sections SI.2-SI.4. The causal forest model

enables us to predict daily behavioural savings depending on the weather conditions

of the day. In order to control for weather conditions, we include mean, minimum

and maximum temperatures of a given day as well as several lags to control for

thermal inertia. Irradiation effects are proxied by sunshine duration, and we include

month and weekend/holiday indicators to account for behavioural variations.

Our model allows us to recover two alternative scenarios of estimated consump-

tion. The first scenario is the estimated actual consumption, including behavioural

savings. The second scenario is the estimated counterfactual consumption, which

would be expected in the absence of the savings. By design, the difference between

these two scenarios yields our estimate of behavioural savings. By focusing on es-

timated counterfactual consumption and estimated actual consumption (instead of

observed consumption), we ensure a like-for-like comparison and that our savings

are not driven by random error. This assumes implicitly that the model errors,

given by the difference between the estimated actual consumption and the observed

consumption, would have been the same in the absence of behavioural savings.

In the upper panel of Figure 1, the estimated actual consumption is depicted
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as a solid black line, while a solid red line represents the estimated counterfactual

consumption (in the absence of savings). The dashed black line gives the observed

consumption. We start measuring the savings effect as of September 2022, when the

risk of a supply shortage became pressing with the start of the heating period and

the end of Nord Stream deliveries. Nonetheless, our model allows for the possibility

of behavioural savings from the beginning of the Russian invasion of Ukraine on

24 February 2022. We discuss the implications of this assumption in detail in the

Supplemental Information section SI.4.

Gas consumption has been going up as expected with colder temperatures (Figure

1). With the beginning of the heating season in September, we see that German res-

idential and commercial sectors have consistently saved between 66 and 285 GWh of

gas per day. As revealed in the lower panel of Figure 1, estimated savings are statis-

tically significant for all days in the September to December period. December 2022

was exceptionally cold, also reflected by spiking gas demands. Around the Christmas

period, savings efforts diminished. Cumulatively, we estimate that households and

commercial sectors have saved ca. 23 TWh [95% CI: 18.7; 27.3] by changing their

behaviour from the beginning of September until the end of December 2022.

Relying on the results above, we can attribute the differences in gas consumption

between 2022 and the average of the period 2018-2021 to different effects (Figure

2). The weather effect (grey) is computed as the difference between the estimated

2018-2021 average consumption and the estimated counterfactual consumption in

2022. Behavioural savings (red) result from the difference between estimated actual

and counterfactual consumption. The sum of weather and behavioural savings does
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not add up to the total difference in consumption, represented by the solid line, due

to the unobserved error component discussed above. The 20% savings target defined

by German Federal Network Agency is reflected by the dashed line.

Total savings compared to the average of 2018-2021 varied substantially between

different weeks (Figure 2). This variation is mostly driven by the weather component.

Meanwhile, the behavioural component remains relatively stable, slightly increasing

over time. Compared to 2018-2021, we observe two cold spells: one in September (as

of calendar week 36) and one in mid-December (as of calendar week 50), in which

the weather component drove up gas consumption. Even in these colder periods,

estimated behavioural savings did not change much. In the last two weeks of the year,

savings decreased slightly compared to the previous weeks. This may be explained

either by the Christmas period or by a reduced urgency, as it became increasingly

evident by December that a gas shortage in the winter of 2022/23 would be rather

unlikely. Gas storage levels remained well above the range of previous years.

On aggregate, we find that the weather effect alone did not play a significant role

when comparing the September to December 2022 gas consumption with previous

years (right panel of Figure 2). At least for the first half of the winter, this is possibly

at odds with other analyses asserting that a comparably mild winter induced most

savings. [15] Consistent behavioural savings contrast highly variable weather-related

savings. Especially the cold spell in December offset most of the savings by weather

due to milder temperatures in the weeks before. However, the weather may have had

an indirect effect, as a colder winter would have made it even harder for households

to save gas in the same way.
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The winter months of 2022 also shed light on the savings dynamics of the residen-

tial and commercial sectors relative to temperatures. We find a negative relationship

between relative gas savings, defined as absolute gas savings divided by estimated

counterfactual consumption, and temperature (lower panel, Figure 3). The residen-

tial and commercial sectors seem to relatively easily suppress their heating demand

when temperatures are rather mild. These levels of relative savings cannot be car-

ried over to lower temperatures. If outside temperatures are around 12°C, decreasing

heating efforts by a certain amount will have a much lower effect on room tempera-

tures compared to a situation when outside temperatures range around 0°C.

Regarding the relevance of averting a gas shortage, relative savings are, however,

only of minor importance. Therefore, we highlight the substantial and consistent

absolute savings during cold temperature days (upper panel of Figure 3). Although

they fell short of the targeted 20% goal by the federal regulator, they added more to

adverting a gas shortage than the higher relative savings in autumn.

4. Conclusions and outlook

Winter 2022/23 happened to be a “natural experiment” for Europe and Germany on

how the economy would react to a gas supply crunch or even a looming shortage. It

tested the capacity and willingness of households and commercial consumers to cut

gas demand mainly used for heating. Using a data-driven causal forest model, we can

show that residential and commercial sectors have reduced their gas consumption.

In contrast, the weather had even an increasing effect.
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The reasons for these savings could be manifold, including but not limited to

increased prices, clear communication by officials, changed expectations, and political

conviction and solidarity.

As most of Germany’s residential and commercial sectors face fixed price regimes,

wholesale market price spikes usually do not affect consumers directly. Short-lived

price hikes on the wholesale market typically do not translate into higher long-term

retail tariffs. For the prolonged price increase in the wake of the Russian invasion

of Ukraine, average retail prices only reacted sluggishly [11]. Furthermore, staggered

contractual periods and the unavailability of individual-level consumption data make

it challenging to compute precise price elasticities at the retail level. Notwithstand-

ing, higher prices have certainly affected the estimated behavioural savings. Yet, the

precise impact of prices on German residential and commercial sectors remains, for

the moment, opaque.

As we observe savings despite incomplete price signals, we suggest they might

have also been driven by a response to public communication. As September came

to an end, Germany had experienced a colder start into autumn than usual, and the

German Federal Network Agency, Bundesnetzagentur, and its president urged res-

idential and commercial sectors to reduce consumption. Consequently, the agency

released the aforementioned target of a 20% demand reduction. The president re-

peated this plea several times. In addition, consumers could have saved addition-

ally in expectation of higher prices. Clear communication by the Federal Network

Agency raised public awareness of the role of storage levels and their effect on whole-

sale prices and, eventually, contract prices. Consumers are likely to have understood
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that lower consumption levels today would keep storage levels sufficiently high in

order to avoid costly additional imports. Other reasons might have played a role as

well. Some consumers could have regarded saving gas as a part of responsible civil

behaviour. Political beliefs towards the support of Ukraine (or Russia) could also

have (de-)motivated the savings behaviour of some households.

Importantly, we want to highlight the essential role of continuous and timely

data provision and analysis for public debate and policymaking. Transparency and

publicly available data are crucial for consumers and policymakers, not only to bet-

ter understand the topic but also to track whether measures and their efforts have

any effect. In autumn 2022, little publicly available evidence existed on whether

and how strong the residential and commercial sectors would help in savings gas to

avoid a potential gas shortage in the winter months. Several platforms began to

publish analyses on various aspects of the energy crunch, such as consumption data,

storage levels, prices etc. On the “Open Energy Tracker” [3], we have been tracking

behavioural gas savings of residential and commercial sectors since October 2022,

providing the public with timely insights. The results and methods in this commen-

tary are based on those published in a less elaborate form on the “Open Energy

Tracker”.

Despite the impact that data and analyses might have already had on policy

and consumer behaviour in this gas crisis, improved data quality, e.g. by means of

an accelerated smart meter roll-out, could yield further benefits. It could enhance

the quality of the analysis by uncovering drivers of consumer behaviour and thereby

increase the policy relevance of real-time analyses. It could also allow for more
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direct pricing mechanisms that prompt an immediate consumer response to wholesale

market developments.

Finally, all results in this piece can only be regarded as a snapshot in time, and a

complete picture will only emerge in a continued analysis. The estimates presented

in this commentary will be continuously updated online. [3] We believe that with a

data-driven analysis of events, the public and policymakers have an important tool

at hand to assess the success of saving efforts and their policies.
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Figure legends

Figure 1

Title: Daily actual and counterfactual gas consumption

Description: The upper panel (A) shows the modelled actual and counterfactual

daily gas consumption paths from September 2022 - December 2022. The solid line

in the lower panel (B) gives the estimated daily behavioural savings (corresponding

to the shaded area in the upper panel). The dashed lines define the 95% confidence

interval of the estimated savings.

Figure 2

Title: Gas savings disaggregated into weather and behavioural components vs 2018-

21 average

Description: Gas savings in 2022 compared to 2018-21 consumption, disaggregated

into behavioural (red) and weather component (grey).The solid black line represents

total savings and the dashed line the savings goal of 20%. The left panel (A) provides

a weekly view, while the right panel (B) shows the accumulated savings for the

calendar weeks 36-52 2022.

Figure 3

Title: Relationship between behavioural savings and mean temperature

Description: This figure shows the relationship between estimated behavioural

savings and the mean temperature. The upper panel (A), shows absolute savings

in GWh, while the lower panel (B) displays relative behavioural savings defined as

absolute savings divided by estimated counterfactual consumption.
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SI. Supplemental Information

This section provides details on the deployed methodology and presents supplemental

results. Section SI.1 discusses data sources and provides some summary statistics.

Section SI.2 gives a methodological introduction to local linear causal trees. Section

SI.3 contrasts it with alternative approaches. Section SI.4 provides supplemental

results on robustness.

SI.1. Data and descriptive statistics

SI.1.1. Gas consumption data

Instantaneous gas consumption metering for residential and commercial customers

is still rare in Germany, such that accurate day-by-day consumption profiles for

individual households or business units are unavailable [1]. In the absence of directly

metered data, the German Network Agency relies on residual load data published by

the German gas exchange Trading Hub Europe (THE). The residual load is derived

by taking the difference between gas inflows and gas outflows from the network to

downstream networks, storages, other countries, or large-scale customers [2]. These

data are by design for the whole German market area and hence our analysis cannot

take into account any spatial differentiation between consumption patterns. Very

recent data are subject to revisions, and final data for a given date are only available

after ca. 1.5 months.1 Therefore, at the time of writing, the last available month

of final data is December 2022. The publicly available dataset includes the years

2018-2022.

1THE publishes final data according to ‘M+2M-10WD’, which means that final data for the
current month ‘M’ are published two months later (‘+2M’) minus 10 working days (‘-10WD’). This
information is provided in a data Excel file available at www.tradinghub.eu/en-gb/Publications/
Transparency/Aggregated-consumption-data. Hence, for December 2022, final data have been
available since the 15th of February.
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SI.1.2. Weather data and other controls

Residential and commercial gas demand is heavily driven by heating demand in-

ducing a high dependence on outside air temperatures and other weather variables.

Germany’s National Meteorological Service (DWD) publishes dozens of weather pa-

rameters for hundreds of weather stations daily. They are available through an ap-

plication programming interface (API) that permits downloading specific data with

custom programming scripts. We implemented our download routine in Python (see

Section SI.5 below). While the model described in the next section could potentially

deal with a large number of covariates by means of regularisation methods such as

a least absolute shrinkage and selection operator (LASSO), a regularised regression

method that constrains the L1 norm of the coefficient vector helping to select only

important regressors, we restrict ourselves to a concise set that accounts for a very

large share of the gas demand variation in the control period.

For each day and every weather station, we access the average temperature, as

well as the maximum and minimum temperatures. The latter account for extreme

temperature changes during a single day. To control for thermal inertia, three lags

of average, minimum and maximum temperatures are added to the model2 Solar

irradiation might be conducive to heating demand reductions not only through its

effect on air temperatures. We proxy solar irradiation by the sunshine duration per

day in hours. As discussed in the previous subsection, the gas demand data is only

available at a national level. Hence, we need to aggregate the covariates spatially.

Other studies use population-weighting to average across spatially disaggregated re-

analysis data, a blend of historical data points and model outputs [3]. For simplicity,

we choose to take the median across weather stations. We prefer the median over

a simple average so as to not introduce biases from extreme observations, such as

measurements from Germany’s highest mountain Zugspitze. Lastly, we include fixed

effects for months and weekends as well as national holidays.

2The German building stock equipped with gas-fired heating has varying degrees of insulation.
By allowing the model to choose the relative importance of temperatures on preceding days non-
parametrically, it accounts flexibly for the average impact of insulation on gas demand.
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SI.1.3. Summary statistics

In Table SI.I, we present a few key statistics of our data set. We distinguish between

2018-2021, the business-as-usual period, and 2022, the year subject to behavioural

savings. It is evident from the top panel that average gas consumption is somewhat

lower in 2022 compared to previous years. For the weather variables in the following

panels, the statistics are quite close to each other, indicating good overlap, a key

requirement for the validity of the method discussed in the next section [4]. For

exposition, we plot the mean temperature in the September to December 2022 period

against the mean, minimum and maximum temperatures of the same period in 2018-

2021 in Figure SI.I

Table SI.I: Selected summary statistics

Variable Statistic 2018-2021 2022

avg 1088.44 966.66
Gas consumption min 165.35 162.93

max 3273.74 2668.29
std 764.83 726.95
avg 10.18 10.61

Mean temperature min -9.6 -6
max 27.2 26.2
std 7.06 7.03
avg 5.63 5.83

Minimum temperature min -13.7 -10
max 18.2 16.95
std 5.99 5.87
avg 14.8 15.43

Maximum temperature min -6 -3
max 35.5 35.6
std 8.48 8.46
avg 4.96 5.54

Sunshine duration min 0 0
max 15.23 14.65
std 4.33 4.38
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Figure SI.I: Mean temperatures
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Figure SI.II shows the relationship between gas consumption and the daily mean

temperature differentiated by calendar month (colour) and period (marker shape).

The figure demonstrates the non-linear relationship between mean temperature and

gas consumption.

SI.2. Model description

As evident from Figure SI.II, the relationship between weather variables and gas con-

sumption is non-linear. Traditional methods, such as heating degree day corrections

or parametric polynomial models, may introduce biases, especially at the boundary

of the support.

We deploy a fully data-driven, non-parametric approach that can not only deal

with non-linearities in the relationship between covariates and gas consumption but

also with heterogeneity in behavioural savings conditional on the covariates, such as

temperature or month. Non-parametric models do not require the formulation of a

functional relationship between relevant factors, the covariates, and the variable of
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Figure SI.II: Relationship between mean temperature and gas consumption by month and period

interest. Causal forests pioneered by [4], and refined with doubly-robust techniques

in [5], extend a classical machine learning method, random forests [6]. We provide

short explanations of these terms below.

SI.2.1. Random forests

Random forests predict a variable of interest conditional on a set of covariates by

averaging over the predictions of a potentially large number of decision trees. A

decision tree splits the data set into subsets, or neighbourhoods, in the covariate

domain. In our case, a simple tree could first divide the data set depending on

whether a given observation has a mean temperature above or below 10 degrees

Celsius. In the below 10 degrees subset, the next split could be based on whether an

observation is from a calendar month before March or not. A completely different

split could divide the above 10 degrees subset. Further splits may follow. The

final subsets, or neighbourhoods, are called leaves. For each leaf, the random forest

algorithm fits a local model. In the classic implementation, this local model is a

simple average of the variable of interest of all observations within this leaf. The

more refined version used below fits a local linear model instead. The algorithm
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selects splitting rules in order to minimise some prediction error metric, such as the

mean squared error. Taken together, the collection of local models can represent

complicated non-linear relationships without having to specify a functional form. As

shown [6] that the average of a large number of decision trees estimated on bootstrap

samples improves the predictive power, a forest usually consists of at least a few

hundred decision trees.

SI.2.2. Causal inference and causal forests

Causal forests use random forests to the prediction of treatment effects in a potential

outcomes framework (e.g. [7]). The fundamental problem of causal inference is that

we cannot observe what would have happened to a treated unit in the absence of the

treatment [8]. In our case, the treatment corresponds to all factors discussed above

regarding the looming supply crunch, assuming to start after 23/02/2022. In order

to identify the treatment effect, i.e. the behavioural savings, modellers have different

options ranging from structural models to randomised experiments. Observational

studies, like the one at hand, aim to emulate the randomisation of an experiment, e.g.

by controlling for all factors that affect the propensity of being treated. Provided we

can observe all such factors, the treatment assignment conditional on the covariates

becomes as good as random. Two methods (of many) for controlling for the covariates

affecting treatment selection are regression and inverse propensity score weighting

(IPW). Combining the two leads to the class of doubly robust estimators that have

the advantage of recovering the treatment effect even if only one of the two methods

is correctly specified.

Much like a random forest, a causal forest splits the data set based on rules

referring to covariate values. However, the objective sought to optimise by selecting

the splits is different. We do not have data on the true treatment effect such that

we cannot optimise a prediction error metric. Instead, the causal forest algorithm

aims to determine neighbourhoods in the covariate domain in such a way that the

estimated treatment effects are as similar as possible within a neighbourhood and as

dissimilar as possible between neighbourhoods [9]. The conditional average treatment
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effects are especially useful in a context like ours where the magnitude of behavioural

savings is expected to vary significantly by weather conditions.

SI.2.3. Model formulation and estimation

Let Yt(1) be the gas consumption in period t in the presence of behavioural savings

and Yt(0) be the gas consumption in the same period in the absence of behavioural

savings. Consequently, the observed consumption can be expressed by:

Yt = WtYt(1) + (1−Wt)Yt(0)

where Wt ∈ {0, 1} indicates the presence of behavioural savings. In our base case,

Wt = 1 for all t ≥ 24/02/2022. We are interested in the effect of behavioural savings

conditional on covariates Xt defined by:

τ(x) = E[Yt(1)− Yt(0)|Xt = x] (A.1)

Yet, Yt(1) and Yt(0) are not observable at the same time, such that the function

τ(x) is not directly identifiable.

We assume strict exogeneity conditional on the covariates Xt, i.e. there are no

unobserved confounders of Wt and Yt and after controlling for the covariates the

treatment assignment is as good as random.

{Yt(1), Yt(0)} ⊥ Wt|Xt

We further assume that residential and commercial gas consumption Yt on a day

t follows the following partially linear model:

Yt = τ(Xt)Wt + f(Xt) + εt (A.2)

The effect of behavioural savings on consumption is measured by a function τ(·),
which may depend on the covariates Xt. f(Xt) is a potentially complicated func-

tion of the covariates and εt is an independently distributed error term. Double
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robustness, as discussed above, arises from the following reformulation [5]:

Yt −m(x) = τ(x)(Wt − e(x)) + εt (A.3)

where the regression component is m(x) = E[Yt|Xt = x] = f(x) + τ(x)e(x) and

the propensity score component is e(x) = E[Wt|Xt = x]. We build the model in two

steps:

1. We estimate the nuisance functions m(x) and e(x) using local linear forests.

A nuisance function is a function that is not of direct interest for the question

at hand but needs to be estimated in order to identify the variable of interest.

Local linear forests fit a linear model to the local observations in each leaf.

They have proven superior for smooth, non-linear signals [10]. A key feature of

our predictions m̂(x) and ê(x) is the honesty property. An honest tree divides

the data into two subsamples. The first subsample is used to define the splitting

rules and the second subsample is used for the estimation within a leaf. Only

with honest trees the estimators have the desired asymptotic properties, such

as consistency and asymptotic normality required for valid inference [4], e.g.

used for the confidence intervals presented in the lower panel of Figure ??.

2. We use a causal forest to find neighbourhoods for the treatment effects. In

each neighbourhood, we estimate A.3 where we replace m(x) and e(x) by m̂(x)

and ê(x).3 The formulation has the advantage that we can still recover a good

estimate of τ(·) even if our estimates of the nuisance functions are noisy [9].

We obtain an estimated function τ̂(x) according to [4, 9]:4

τ̂(x) =

∑
{t:Xt∈N (x)}(Wt − ê(Xt))(Yt − m̂(Xt))∑

{t:Xt∈N (x)}(Wt − ê(Xt))2

where N (x) refers to the neighborhood of a particular covariate realisation x

3For notational simplicity, we gloss over the fact that the prediction for t is made on the basis
of all observations except for t. See [9] for details.

4We assume here that the local linear regression model is solved by ordinary least squares
(OLS).
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Figure SI.III: b = 1 causal decision tree

found by the causal tree.

The causal forest consists of B = 104 trees in total. For exposition, we show the

tree b = 1 in Figure SI.III

SI.3. Model fit

Before turning to the robustness checks, we further investigate the model output. The

causal forest model discussed in the previous section is trained to predict the savings

effect induced by the gas crisis. However, as shown in Figure 1 in the main text,

we can recover the expected gas consumption in either scenario from the model. We

can use these expected gas consumption paths to compare them against the actual

consumption in the pre-crisis period (2018-Feb 2022). While the aim of our model is

not to maximise the in-sample fit of consumption in the pre-crisis period and it would

still produce consistent estimates of the savings effect even if the relevant covariates

only accounted for a small share of the observed variation in gas consumption, a good
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pre-crisis model fit makes it more unlikely that we omitted a confounding factor.5 It

is, therefore, informative to compare the pre-crisis fit of our model with alternative

approaches. Note that in the pre-crisis period, actual consumption is modelled with

the (Wt = 0) scenario of our model. We can recover the scenario by computing:

µ̂t(x, 0) = m̂(x)− τ̂(x)ê(x)

In the left panel of Figure SI.IV, we plot the predictions µ̂t(x, 0) against the

observed consumption between January 2018 and 23 February 2022. We observe

that the fitted values are very close two the black line, which indicates a perfect

fit. We compute a root mean squared error (RSME) of 75.2 GWh. In comparison

to other methods, such as a simple heating degree day (HDD) correction (middle

panel), in which we regress the observed consumption on max(15− Tmean
t , 0), or the

standard load profiles (SLP) used by the network operators (left panel), we note that

the causal forest fit is tighter, especially so for the lowest temperatures.6

SI.4. Robustness

In contrast to prediction models, where evaluation metrics can be readily calculated

on a validation dataset, the quality of the model for τ(x) cannot be readily evaluated

in the same manner as the true values are not available. Following earlier approaches

[9], we conduct an auxiliary regression that helps to assess the causal forest fit and

test the null hypothesis of no saving effect heterogeneity. We further conduct placebo

5A confounding factor is a covariate that affects both the likelihood for a particular day to be
one with behavioural savings and the gas consumption. Such a factor, if omitted, induces a spurious
behavioural savings effect.

6Tmean
t refers to the mean temperature on day t. Like the residual load data, the SLP predictions

of the network operators have been retrieved from Trading Hub Europe as well (see Section SI.1).
We note that comparing these with our model outputs is not an exact like-for-like comparison as
they at least partially rely on (historical) short-term temperature forecasts rather than historical
realised temperature data. However, deviations tend to be small and forecasts are subject to
repeated validation processes [2]. The SLP predictions result from a set of sigmoid functions with
different parameters for different regions and building types and therefore are far more detailed
than any sigmoid function-based model we could have built based on publicly available data.
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Figure SI.IV: Comparison of causal forest pre-crisis (2018-Feb 2022) fit to other methods
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tests (cf. [11]) and run a few sensitivities on the treatment start date.

SI.4.1. Omnibus test for causal forest fit

An omnibus test is a test for general model goodness-of-fit evaluation [9]. We fit

a simple linear model regressing the estimated left-hand-side of A.3 on the mean

predicted savings effect τ̄ =
∑

t τt and the differential effect τt − τ̄ :

(Yt − m̂t) = α0τ̄ + α1(τt − τ̄) + νt

An α0 value close to one suggests that the mean effect is correct, while α1 close

to one suggests additionally that the heterogeneity of the effect is well captured. As

shown in Table SI.II, both coefficients are fairly close to one and we conclude that
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Table SI.II: Calibration test of causal forest with robust standard errors (HC3)

Dependent variable: (Yt − m̂t)

α

Mean forest prediction (τ̄) 1.005∗∗∗

(0.043)

Differential forest prediction (τt − τ̄) 1.094∗∗∗

(0.052)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

the causal forest fit is adequate.

SI.4.2. Placebo testing

Placebo testing is another standard technique in causal inference to test underlying

model assumptions [11]. A very basic premise of our model is that the behavioural

saving effects do not occur before the start of the energy crisis, the exact start of

which is uncertain and subject to additional sensitivities in the next section.

Therefore, we run two sets of auxiliary models. We define nsavings as the length

of the set of days for which we suppose the presence of behavioural savings T = {t :
Wt = 1}, hence nsavings =

∑
tWt. We define the set of control days as C = {t : Wt =

0}. For K times, we take a random sample Sk ⊂ C without replacement. In step (1)

of the placebo test, we assign all days t ∈ Sk a dummy treatment W ′
t = 1 and set

W ′
t = 0 ∀t ∈ C \ Sk. We estimate our model over C with Wt replaced by W ′

t . We

store the average placebo-saving effect. In step (2), we estimate the original model

over the set T ∪ C \ Sk. We save the resulting leave-n-out average savings effect.

We repeat steps (1) and (2) K times to obtain two distributions of average savings

effects.

We use the leave-n-out estimation instead of our main specification of the model

for the true savings effect to make our model comparable to the placebo draws in
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Figure SI.V: Placebo test results
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terms of statistical power. We set K = 100.

Figure SI.V shows the distributions of the Placebo runs in step (1) and the leave-

n-out runs in step (2). While all runs in the latter render significant saving effects

of around -96 GWh, the distribution of placebo runs is centred around 0 and only

4% of the estimated effects are statistically significant at the 10% level.

We are therefore confident to reject the hypothesis that the estimated savings

effects above are just noise.

SI.4.3. Crisis start sensitivities

We have chosen the day of the Russian invasion of Ukraine, 24 February 2022, as

the start of our savings period, where Wt = 1. However, there are arguments for

shifts in either direction. An earlier savings start could be supported by the fact

that wholesale gas prices started rising above long-term average levels as early as

September 2021 [3]. On the other hand, the need for gas savings for households and

commercial sectors only really became evident and a topic in the public domain in

the Summer of 2022. Therefore, we test our assumption with respect to the start

XIII



date by re-running our model with a monthly sequence of start dates beginning on

24 September 2021 and ending on 24 August 2022. For each iteration, we compute

the total cumulative predicted savings in the period from 1 September 2022 until 31

December 2022.

Figure SI.VI: Start date sensitivity
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Figure SI.VI shows that the results are very robust to variations of the savings

start date in 2022. For start dates in 2021, however, cumulative estimated savings

from September 2022 to December 2022 decline rapidly, suggesting that households

and commercial sectors did not react to the foreboding developments in wholesale

markets at the time.

SI.4.4. COVID-19

The pre-crisis period of our data set includes the COVID-19 pandemic. As households

practised social distancing, worked from home, and shops and offices remained closed,

the heating behaviour of residential and commercial sectors is likely to have changed

compared to the pre-COVID period. Suppose that extended periods of isolation at
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home have led to more gas consumption, ceteris paribus, even offsetting the reduced

demand by commercial buildings. If this were true, our model may deliver biased

results as it exaggerates counterfactual gas demand compared to what would have

been expected, as the world has gone back to normal in 2022, but for the gas crisis

due to the Russian invasion of Ukraine.

Therefore, we conduct a sensitivity test in order to determine if our results hinge

on a potential exaggeration of savings due to lockdowns. In Germany, the first

lockdown started on 22 March 2020 and ended on 4 May 2020. A second lockdown

began with lighter restrictions on 2 November 2020. By January, tighter restrictions

were imposed and the lockdown was not lifted before 9 May 2021. Let L ⊂ C be

the set of lockdown days in our pre-crisis data set. In the first step, we estimate our

model over the set T ∪ C \ L. Further, we define a broader set of pandemic days

that comprises all days between 1 March 2020 and 31 December 2021. Let this set

be denoted by P . In a second step, we compute our model estimates over the set

T ∪ C \ P .

Table SI.III: COVID-19 sensitivity

Scenario Est. cum. behavioural savings Change
Baseline 23.0 TWh

Excl. lockdown days (L) 22.7 TWh -1.58%
Excl. all pandemic days (P) 21.5 TWh -7.09%

As shown in Table SI.III, the effect of excluding the lockdown period is negligible.

The effect of excluding the full pandemic period is a bit larger at ca. 7%. However,

we do not think it is reasonable to exclude this period entirely. While it is very likely

that heating behaviours have changed during the pandemic, it is also probable that

at least a part of those changes continues to take effect today, e.g. due to flexible

working-from-home policies. We conclude that our model is not substantially biased

by the inclusion of the COVID-19 period in the control set C.

XV



SI.5. Code

We wrote a Python script for gas consumption data downloads and Deutscher Wet-

terdienst API calls. All modelling steps and charting were conducted in R. We make

all code available in this repository: gitlab.com/diw-evu/projects/gas-savings.
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