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Abstract

This paper evaluates the extent with which Energy Performance Certificates

(EPCs) reflect observed energy used for heating. We use high-frequency smart

thermostat panel data in combination with building characteristics and hourly

weather information. We exploit variations in boiler operation in the neighbor-

hood of a steady state indoor temperature to elicit the predictive power of an

EPC rating on energy use for heating. We find that the implied energy saving

of upgrading from the lowest to highest EPC category is more than 3.5 times

greater than that identified through ex-post analysis; boiler time operation is

52% greater among the lowest EPC-rated properties relative to the highest,

while the EPC rating itself suggest a 183% difference in energy requirements.

The findings cast doubt on the efficacy of public energy efficiency retrofit tar-

gets aligned to specific EPC standards.

Keywords: Building energy performance certificates; Smart thermostat; Ex-

ante energy use; Ex-post evaluations; Energy efficiency; Climate change.
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1 Introduction

This paper evaluates the extent with which building Energy Performance Certificates

(EPCs) reflect observed energy used for heating. Improving the energy performance

of buildings is commonly cited as an important component of a cost-effective de-

carbonization strategy (e.g. UNEP, 2021). According to the United Nations Envi-

ronment Program (UNEP) (UNEP, 2021), investment in building energy efficiency

is rising and reached about US$184 billion in 2020. This expenditure is primarily

comprised of investment within the European Union.

There is a clear economic rationale for public support. While comfort and cost

are private benefits internal to the decision to invest, external public benefits exist

in the form of reduced carbon emissions. The privately optimal degree of investment

may be misaligned with the social optimum and public support to internalize this

externality is justified in many cases.

Policy targets are often defined relative to benchmarks provided by Building En-

ergy Performance Certificates (EPCs). Should EPCs be unreflective of actual energy

performance, then policy targets will be inefficient. The Government of Ireland’s

2021 Climate Action Plan (CAP, 2021), for instance, states an objective to upgrade

500,000 existing homes to a Building Energy Rating (BER; the Irish EPC standard)

of ‘B2’ by 2030. Energy efficiency retrofit grants are in place to internalize this ex-

ternality and encourage adoption among households. Similar EPC benchmarks are

issued in the European Union, USA, and other countries.1

1For details of the European Union (EU) Energy Performance of Buildings Di-
rective see https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/energy-
performance-buildings-directive. For energy efficiency certifications in the USA see
https://www.energystar.gov/about.
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With national-level policy formulated relative to the achievement of certain EPC

benchmarks, so too are dwelling-level incentives. In Ireland, many supports are avail-

able to upgrade a dwelling to at least a ‘B2’ level on the ‘BER’ scale, the Irish EPC

scale terms Building Energy Rating (SEAI, 2023a). In the UK, landlords of residential

privately rented properties are legally required to have their proprieties a minimum

of E-rated as part of building decarbonization (Sayce and Hossain, 2020). This im-

plicitly incentivizes households to target a certain EPC rating when investing in the

energy performance of their dwelling. The optimality of EPC-related investment

incentives is determined by the accuracy of an EPC in capturing dwelling-specific

energy performance. Should a discrepancy exist, then household investment will be

misaligned with that which is cost-effective. With individual incentives and policy

objectives centered around energy consumption as measured by EPCs, a policy ques-

tion emerges: how well do ex-ante measures of building energy performance, such as

those used by EPCs, capture energy and emissions savings?

Recent ex-post evaluations of energy efficiency investment cast doubt on the extent

with which EPCs capture energy performance (e.g., Levinson, 2016; Fowlie et al.,

2018; Davis et al., 2020; Coyne and Denny, 2021), with much of the literature focusing

on the impact that behavior may have on any discrepancy. There are many ways in

which behavior may drive this difference. For instance, the projected energy savings

will be void if households in more energy-efficient homes respond to the lowered cost

of energy by using more, which is known as a rebound effect (Gillingham et al., 2020;

Aydin et al., 2017; Sorrell et al., 2009). There are further behavioral drivers. It may

be the case that households with high income and large families, who are expected to

have a greater energy demand, may self-select to dwellings with high energy efficiency.
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Households with strong preferences for warm temperatures, or people who stay and

work from home, may sort into more energy-efficient homes. These potential selection

issues may lead to a spurious lack of observed differences in energy savings between

more and less energy-efficient homes and result in understating the actual benefits of

home energy efficiency programs and undermining their policy relevance.

In an attempt to address these identification problems, previous studies have ex-

ploited the introduction of new building energy codes (Jacobsen and Kotchen, 2013;

Levinson, 2016; Kotchen, 2017; Novan et al., 2022); some have used eligibility to a

home upgrade program as an instrumental variable (Fowlie et al., 2018; Davis et al.,

2020; Hancevic and Sandoval, 2022); while others use the exogenous variation asso-

ciated with external temperature response to account for unobserved heterogeneity

(Chong, 2012; Liang et al., 2018). Still, evidence on the actual returns to energy effi-

ciency investments remains inconclusive. This is mainly due to occupants’ behavior.

Davis et al. (2020) find no detectable impacts of home upgrades on electricity use or

thermal comfort from a field trial in Mexico, suggesting that most households open

their windows on hot days.

While the influence of behavior is the focus of much work, this is not the only

factor that may drive a difference between estimated and observed rates of energy

performance. Many of the calculations that comprise an EPC are based on standard

values, rather than dwelling-specific values. Such standardization may arise during

evaluation, where the inspector has incomplete information or an assumed value is

used (DEAP, 2022). For instance, the degree of home energy efficiency and energy

demand may vary with factors such as materials or degree of dwelling occupancy,

factors that are unrecorded in standardized EPCs. This may introduce noise or bias
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into the estimated energy performance. A study by Christensen et al. (2021) exam-

ine the factors that drive a performance gap between expected and realized energy

savings, focusing on dwelling characteristics. They find a bias in model projections

and workmanship as primary determining factors, contributing up to 41% and 43%

of the gap, respectively. Rebound effects are estimated to contribute only 6%.

Our study isolates the contribution of building fabric from occupants’ behavior

to evaluate the difference between assumed and observed energy consumption for

Irish homes. Existing empirical studies to some extent concentrate on the USA (e.g.

Christensen et al., 2021; Zivin and Novan, 2016). Evidence across different locations

is limited although residential energy demand is climate sensitive. This paper at-

tempts to fill in this gap by analyzing the impacts of building energy performance

ratings on energy use for heating among existing Irish residential buildings, where the

weather is relatively mild during winter and does not experience extremely cold tem-

peratures like many other countries at similar latitude. Closely related to our study is

Coyne and Denny (2021), who consider deviations in energy performance inclusive of

behavioral effects. Coyne and Denny (2021) find a small difference in actual energy

use, in contrast to ex-ante predicted energy use. While Coyne and Denny (2021)

use bi-monthly metered energy data that necessarily includes unobserved behavioral

impacts, the present analysis exploits high-frequency data. This allows us to focus

on time periods where the effect of building fabric on energy use can be uniquely

identified, isolating building fabric effects.

In providing this contribution, we adopt a novel methodological approach to isolate

measurements of energy performance from unobserved occupant behaviors. As such,

we focus on discrepancies associated with building fabric. We exploit variations in

6



boiler operation while the indoor temperature is around a certain threshold of the

thermostat set point during the main winter heating months. We consider the extent

with which boiler operation varies across EPC ratings to maintain indoor temperature

at thermostat set point levels. We use this as a proxy measure of the variations

in energy use across building energy ratings attributable to building fabric alone,

isolating this effect from occupant behavior.

The availability of high-frequency panel data (approximately every three minutes)

from a smart thermostat company in combination with data on building characteris-

tics and local weather allows us to clearly identify for how long a home heating unit

was in operation. We model the relationship between the duration a boiler operates

and the building energy performance ratings, conditioning on hourly outdoor tem-

perature, relative humidity, wind speed, levels of thermostat set point, and several

building characteristics.

We find a considerable deviation between ex-post estimates and projected energy

requirements along the EPCs. For our sample, improving the EPC from E–G to

B-rated decreases boiler operation by 52%, which is considerably less than the 183%

difference in energy requirement predicted by the EPC ratings associated with the

same properties. This is in line with the findings by Zivin and Novan (2016) and

Meles et al. (2022). Zivin and Novan (2016) isolate the effects of energy efficiency

upgrades and behavioral treatments and find energy savings from efficiency upgrades

substantially smaller than ex-ante projections. Meles et al. (2022) evaluate variations

in heat loss across EPC ratings during early morning hours when a heating system

is turned off and occupants’ behavioral effect is expected to be minimal. The study

finds the performance gradient along the EPC ratings less than predicted ex-ante.
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Our results also show that energy use for heating is outweighed by other factors

than variations in EPCs. Thermostat set point temperature has a greater impact

on boiler run time. Reducing the thermostat set point could reduce energy use for

heating by a greater magnitude than improving a dwelling’s energy performance rat-

ings. From a policy perspective, a short-term change in occupant behavior relative

to temperature preferences may be more effective in reducing energy use and CO2

emissions, compared to costly energy-efficiency building upgrades.

The remainder of the paper is structured as follows. Section 2 describes the data

and provides descriptive statistics. Section 3 outlines the empirical strategy. Section

4 presents and discusses the results and Section 5 concludes.

2 Data

The data used for this analysis are from a ‘Hub Controller’, an automatic energy

manager device with a smart thermostat functionality, which we refer to as a ‘smart

thermostat’. This is installed in the main living area of the dwelling by Hub Controls

Ltd.2 The smart thermostat data covers a 2-year sample period from the 1st October

2019 to the 30th September 2021 for more than 10,000 dwellings with gas or oil boiler

and built before 2006. This is a panel dataset that provides high-frequency observa-

tions on the following variables: household thermostat set point, indoor temperature,

relative humidity, heating unit operating status, and heating mode status (on, off,

‘boost’). These data are observed, on average, at 3-minute intervals. For our analy-

sis, we construct relevant variables at an hourly level from the raw smart thermostat

data.

2See https://thehubcontroller.com/ for more information.
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These data are merged with other relevant data sources. Data on building energy

performance and associated building characteristics are obtained from the Building

Energy Rating (BER) database, which is available from the Sustainable Energy Au-

thority of Ireland (SEAI) in an anonymized form.3 The BER is the name for the Irish

Energy Performance Certificate.

The BER assessment is based on the Dwelling Energy Assessment Procedure

(DEAP), the official procedure for calculating and rating the energy performance

of dwellings (DEAP, 2022). The procedure calculates the energy required for space

heating, water heating, ventilation, and lighting, less savings from energy generation

technologies. It generates a dwelling’s annual delivered and primary energy consump-

tion and associated CO2 emissions using standard assumptions regarding occupancy,

levels and duration of space heating and cooling, hot water demand and electricity

usage for ventilation, pumps and lighting. For example, DEAP calculates the energy

demand for space heating assuming the heating system operates 8 hours per day

(07:00–09:00 and 17:00–23:00) during heating seasons running from October to May

inclusive (8 months a year) to maintain the indoor temperature of the living room

area to 21oC and the rest of the dwelling to 18oC.

Among others, the BER database contains a dwelling’s BER in kWh/m2/year and

in letter grade that ranges from A1-rating (lowest primary energy usage) to G-rating

(largest primary energy use). See Figure A.1 in the appendix for an example of a BER

certificate that also displays all the BER scales and corresponding primary energy use

in kWh/m2/year. In addition to the energy required for space and water heating, the

BER constitutes electricity use for ventilation and lighting, and takes into account

3The Building Energy Rating (BER) data is publicly available at
https://ndber.seai.ie/BERResearchTool/ber/search.aspx
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multiple other factors such as dwelling dimension, dwelling fabric, heating controls,

fuel type, and renewable energy technologies (DEAP, 2022); thus it is an aggregate

indicator of building energy efficiency.4 The BER database contains information on

location (at a county level), dwelling type and size, year of construction, number of

storeys, the main fuel for space heating, space heating boiler efficiency, year of BER

assessment, and purpose of assessment.

We subsequently match these data with hourly weather variables sourced from

Ireland’s National Meteorological Service, Met Éireann.5. These variables include

outdoor temperature, relative humidity, and wind speed. Weather variables are taken

from the local station at Dublin Airport. Upon merging, our final dataset comprises

798 residential buildings in Dublin and adjacent counties.

We are interested in estimating the variations in energy use across dwellings with

different energy performance ratings, using boiler operation as a proxy for energy

demand. Our outcome of interest is the duration a boiler operates (in minutes)

in a given hour h at dwelling i, conditional on the measured indoor temperature

being within a certain threshold, ϵ, of the thermostat set point temperature and

the heating mode is turned on throughout the hour. We consider a threshold of

ϵ=0.50oC for the main regression specification and check the sensitivity of the results

by considering smaller and larger values: ϵ=0.35, 0.40, 0.45,...,0.60oC. By focusing

on boiler operation when indoor temperature is close to the thermostat set point, we

are capturing the length of boiler operation per hour to maintain temperature levels,

akin to operation in a steady state. This approach excludes time periods when the

4Note that BER does not include electricity used for running home appliances like cookers, fridges,
and washing machines.

5https://www.met.ie
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boiler becomes operational and is raising temperatures to the set point level, i.e., a

non-steady state.

We focus on sample dwellings with a gas or oil boiler as their main space heating

fuel, excluding a small number of properties with heat pumps. We exclude irrelevant

thermostat set point temperatures such as those less than the outdoor temperature

and the base temperature for heating degree days (HDD) in Ireland (i.e., 15.5oC). We

also restricted our data for analysis to the main winter heating months (December,

January, and February) in Ireland to further ensure that we exclude indoor tempera-

ture readings around the set point threshold, particularly when a boiler is operating

for water heating, not space heating. We can not distinguish whether a boiler is

operating for space or water heating, though both are incorporated with the BER

assessment. After dropping irrelevant observations for our analysis, we have 49,149

hourly observations of ‘steady-state’ operation across 320 dwellings. Since the share

of each of the 15-point BER scale in the final sample is relatively small, we regroup

them in the following BER categories: B, C, D, and E–G.6

Table 1 presents descriptive statistics of the 320 dwellings in the final sample

across the BER scales. All the dwellings are located in the greater Dublin area, with

an average ex-ante primary energy usage of about 242 kWh/m2/year. Most of the

dwellings are either semi-detached (47%) or terrace houses (43%), with most having

two storeys (79%). A typical dwelling has a total floor area of 99 m2 and is about 45

years since its construction. Gas boilers account for 89% of the main space heating,

with an average efficiency of 82%. The average number of years since their BER

6Of the 320 sample dwellings, 4 are B2-rated, 28 are B3-rated, 30 are C1-rated, 51 are C2-rated,
57 are C3-rated, 46 are D1-rated, 46 are D2-rated, 21 are E1-rated, 11 are E2-rated, 16 are F-rated,
and 10 are G-rated.
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assessment is 6 years.

Table 1: Descriptive statistics of sample dwellings across BER scales
Variables BER scales:

All B C D E–G
BER (kWh/m2/year) 242.13 136.35 192.68 262.14 386.40
Dwelling type (%):
Detached house 6.88 6.25 7.25 4.35 10.34
Semi-detached house 47.19 53.13 51.45 42.39 41.38
End of terrace house 16.56 6.25 11.59 25.00 20.69
Mid-terrace house 26.56 34.38 27.54 25.00 22.41
Ground-floor apartment 1.88 0.00 0.72 2.17 5.17
Mid-floor apartment 0.31 0.00 0.72 0.00 0.00
Top-floor apartment 0.63 0.00 0.72 1.09 0.00

Number of storeys (%):
One storey 6.88 0.00 3.62 9.78 13.79
Two storeys 79.38 71.88 79.71 79.35 82.76
Three storeys 13.75 28.13 16.67 10.87 3.45

Building age in 2022 (in years) 44.86 41.31 37.49 47.46 60.22
Total floor area of a dwelling (m2) 99.08 114.08 102.31 97.04 86.34
Area of a living room (m2) 18.53 19.94 18.23 18.47 18.56
Main space heating fuel (%):
Gas boiler 89.06 87.50 89.86 88.04 89.66
Oil boiler 10.94 12.50 10.14 11.96 10.34

Efficiency of main space boiler (%) 82.41 90.70 85.17 79.39 76.04
Years since BER assessment (in 2022) 6.07 3.34 5.86 6.60 7.24
Number of dwellings 320 32 138 92 58

Table 2 reports summary statistics of the hourly smart thermostat readings and

weather variables for the dwellings across the BER scales. The reported values are

only for hours that satisfy the condition: indoor temperature is within 0.50oC of

the thermostat set point temperature and the heating mode is turned on through-

out the hour. In the regression estimates, we check the sensitivity of the results to

different temperature thresholds (0.35oC–0.60oC) of the thermostat set point tem-

perature. The duration a boiler was operating while the indoor temperature was
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within 0.50oC of the mean thermostat set point temperature of 20oC (which varies

from 15.5oC–30oC) ranges from zero to 60 minutes, with an average duration of ap-

proximately 17 minutes. During this period, the hourly outdoor temperature was

between -5.6oC and +14.1oC, with an average of 5.5oC. The mean duration a boiler

was operating increases along the BER scales, with a difference of 6 minutes between

the best (B-rated) and worst (E–G rated) energy efficiency rated dwellings.

The hourly local weather variables (outdoor temperature, relative humidity and

wind speed) are from the weather station at Dublin airport. The small differences

in the reported hourly weather variables across the BER scales in Table 2 are due

to variations in the hours at which the restriction of the temperature being within

0.50oC of the set point is satisfied. To control for this in regression modeling, we

introduce dummies for hour of day, day of year, and year.

Table 2: Average values of the hourly smart thermostat readings and weather vari-
ables of the sample dwellings across BER scales

Variables BER scales:
All B C D E–G

Duration a boiler was operating (in minutes) 16.66 14.42 16.11 17.78 20.31
Thermostat set point temperature (0C) 19.78 18.84 19.93 20.04 20.40
Average indoor temperature (0C) 19.82 18.87 19.97 20.06 20.40
Average indoor relative humidity (%) 46.44 46.48 46.04 46.08 48.78
Average outdoor temperature (0C) 5.50 5.40 5.44 5.54 5.76
Average outdoor relative humidity (%) 85.12 85.12 85.23 85.03 84.94
Average wind speed (knot) 10.30 10.14 10.32 10.41 10.22
Observations 49,149 10,070 20,800 12,965 5,314
Number of dwellings 320 32 138 92 58
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3 Empirical strategy

In order to examine the effects of building energy performance certificates on heating

demand, we specify and estimate the following panel data model.

Yihdmt = βBERi+γk
∑
k

Tempk,hdmt+δj
∑
j

Setpointj,ihdmt+θ′X+λh,d,t+Uihdmt (1)

Where the outcome variable Yidmt is the duration a boiler was in operation (in min-

utes) while the indoor temperature is within a certain threshold, ϵ, of the thermostat

set point temperature and the heating mode was turned on throughout hour h at

dwelling i on day d, month m, and year t. Boiler time is a proxy measure of energy

use, indicating for how long the boiler was turned on and fired to keep the indoor

temperature within ϵoC of the set point. We would expect the duration a boiler

operates to be shorter for dwellings with better building energy ratings.

BERi is our measure of building energy efficiency of dwelling i, which is specified

in grade letters from B to E–G. While B-rated dwellings are the most energy efficient

(with a primary energy demand of 75 kWh/m2/year – 150 kWh/m2/year), E–G rated

dwellings are the least energy efficient dwellings (with a primary energy demand of

above 300 kWh/m2/year). The coefficient of interest, β, is interpreted as the impact

of BER scales on boiler operation (a proxy for energy use), with B-rated dwellings as

a reference category.

Tempk,hdmt is outdoor temperature, which is a main determinant of space heating

demand. To capture the non-linear effects of outdoor temperature, like in Deschênes

and Greenstone (2011) and Ge and Ho (2019), we construct seven temperature bins
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with 2oC intervals for the average hourly outdoor temperature that ranges from -

5.6oC to +14.1oC over sample period.7 Tempk,hdmt equals one if the hourly outdoor

temperature is in the kth of the seven temperature bins. The coefficient γk is the

impact of outdoor temperature in the kth bin on the duration a boiler was operating,

with 10oC or above as a baseline temperature bin.

We also control the thermostat set point Setpointj,ihdmt at dwelling i as the dura-

tion a boiler turns on and runs to keep the indoor temperature within ϵoC depends

on the level of the set point temperatures. For instance, at the average hourly out-

side temperature of 5.5oC, a boiler need to operate for a longer duration to keep the

indoor temperature within 0.50oC of a set point of 20oC compared to 18oC. Similar

to the hourly outdoor temperature, we construct seven thermostat set point temper-

ature bins with 1oC intervals for the hourly thermostat set point temperatures that

range from 15.5oC to 30oC across the sample dwellings over the sample period. The

coefficient δj captures the effects of a thermostat set point temperature in the jth bin

on the duration a boiler was operating, with 17oC or less as a baseline thermostat set

point temperature bin.

In addition, we control for a vector of other variables, X, that potentially affect

space heating demand. This includes the time-invariant building characteristics such

as dwelling area, dwelling type, building age, number of storeys, the main fuel for

space heating (gas or oil boiler) and its efficiency, and average hourly outdoor relative

humidity (%) and wind speed (knot).

λh,d,t represents different possible time-fixed effects. This includes dummies for

hours of the day, days of the year, and year-of-sample to control for common hourly

7Since the shares in the first and last categories are small, we regroup them into temperature
bins of ≤ 0oC and ≥ 10oC, respectively.
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or daily routines and other common factors such as changes in fuel prices. Uihdmt is a

stochastic error term. In all specifications, we cluster standard errors at the dwelling

level to account for serial correlations within a dwelling.

4 Results and Discussion

Table 3 presents the main results from the specification in Equation 1, with robust

standard errors clustered at the dwelling level. Column 1 shows the impact of building

energy ratings (BER) on the duration a boiler operates (in minutes) to maintain the

thermostat set point temperatures within 0.50oC in a given hour, after controlling for

the outdoor temperature, levels of the temperature set point and time fixed effects.

In Column 2, we add a vector of other controls for dwelling and main space heating

system characteristics.

Our results show that the duration a boiler operates significantly varies across

the BER scales, and hourly set point temperatures and outdoor temperatures. The

results remain similar when we include controls on characteristics of the dwelling and

heating systems, albeit the magnitude of the estimated coefficients increases. Since

the specification in Column 2 explains the variations relatively better and captures the

potential effects of various dwelling and heating system characteristics, we consider

it as our main specification in interpreting the estimated results.

The estimated coefficients on the BER scales are statistically significant and in-

crease along the BER scales relative to the B-rated reference category. The coefficient

on the C-rated dwelling implies that on average a boiler in a C-rated dwelling is op-

erational for approximately 3 minutes longer than that in a B-rated property in order
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to maintain the thermostat set point temperature in a given hour. Keeping all other

things constant, a boiler in an E–G rated dwelling, on average, operates about 8 min-

utes more compared to a boiler in a B-rated dwelling. The results indicate the more

energy efficient the dwelling, as measured by BER rating, the less time the boiler

operates. The pattern of the gradient in energy performance along the BER scales

matches a priori expectations.

Even though our primary interest is in estimating the impacts of BER scales on a

boiler operation, it is worth commenting on the estimated coefficients of the set point

and outdoor temperatures. A change in hourly thermostat set point temperature is

positively related to boiler operation. The higher the thermostat set point tempera-

ture, the longer a boiler operates to maintain the indoor temperature within 0.50oC

of the set point for an entire hour. Relative to the reference set point temperature of

17oC or less, the estimated additional average duration a boiler operates ranges from

about 2 minutes (for set point temperature of 17–18oC) to 21 minutes (for set point

temperature of 22oC or above). On the other hand, a change in outdoor tempera-

ture is inversely related to a boiler operation. The magnitude of the effects varies

from about 3 minutes (for an outdoor temperature of 8–10oC ) to 13 minutes (for an

outdoor temperature of 0oC or below), compared to the base hourly outdoor temper-

ature of 10oC or above. The estimated effects on the duration a boiler operates show

that the variations in boiler operation across dwellings are to a greater extent driven

by thermostat set point values and outdoor temperatures than the BER rating of a

property.

The estimated coefficients on the set point temperatures are useful in providing

estimates on how adjusting the thermostat set point affects energy savings, which is
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Table 3: Impacts of building energy performance ratings on heating demand
Variables (1) (2)

Dependent variable: Duration a boiler operates
(in minutes at hour h)

BER scales (Reference: B):
C 2.64* 3.38**

(1.35) (1.46)
D 3.51** 4.49**

(1.47) (1.77)
E–G 5.81*** 7.53***

(1.56) (2.27)
Set point temperature at hour h (Reference: ≤ 170C):
(170C, 180C] 2.26*** 2.28***

(0.50) (0.49)
(180C, 190C] 5.96*** 6.00***

(0.93) (0.93)
(190C, 200C] 10.07*** 10.13***

(0.89) (0.90)
(200C, 210C] 13.40*** 13.50***

(0.99) (1.00)
(210C, 220C] 15.93*** 16.06***

(0.97) (0.98)
> 220C 20.62*** 20.73***

(1.26) (1.29)
Outdoor temperature at hour h (Reference: ≥ 100C):
≤ 00C 12.14*** 12.98***

(1.01) (1.05)
(00C, 20C) 10.60*** 11.13***

(0.74) (0.76)
[20C, 40C) 8.69*** 9.13***

(0.57) (0.58)
[40C, 60C) 6.54*** 6.77***

(0.42) (0.43)
[60C, 80C) 4.04*** 4.37***

(0.34) (0.34)
[80C, 100C) 2.33*** 2.46***

(0.28) (0.27)
Hour of a day dummies Yes Yes
Day of a year dummies Yes Yes
Year dummies Yes Yes
Other controls No Yes
R2 (within) 0.206 0.210
Observations 49,149 49,149
Sample dwellings 320 320
Note: The dependent variable is the duration a boiler was operating for heating (in minutes) to maintain the indoor
temperature within 0.50oC of the set point temperature in a given hour. The set point temperature bins are based on
the hourly level thermostat set point temperatures that range from 15.5oC to 30oC for the sample dwellings. Similarly,
the outdoor temperature bins are based on the hourly outdoor temperatures that vary from -5.6oC to +14.1oC during
the period of analysis. The other controls included are hourly outdoor relative humidity, wind speed, dwelling area,
efficiency of main space heating unit, dummies for fuels of main space heating (gas or oil boiler), dwelling type,
number of storeys, and building age band. Robust standard errors clustered at the dwelling level are in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
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a issue of acute policy relevance during the current high energy price crisis. From

a policy perspective, adjusting the thermostat set point temperature is easy, and

relatively instant in terms of effect compared to energy efficiency retrofits. Simi-

larly, the estimated coefficients on the outdoor temperature are relevant to utilities

and policymakers in providing rough estimates of energy demand during cold winter

weather.

We check the robustness of our results by both narrowing and widening ϵ, the

steady-state threshold around the thermostat set point. Table A.1 in the appendix

presents the estimated coefficients with values of ϵ that range from 0.35oC – 0.60oC.

Widening the window towards 0.60oC or narrowing it to 0.35oC does not much change

the estimated impacts on boiler operation for heating across the BER scales; only

a slight change in the magnitude of the coefficients. The small variations with a

narrower or wider temperature window are likely due to the change in the number of

hourly observations that satisfy the restrictions. The overall pattern remains similar

as in the baseline results with 0.500C window.

For a meaningful economic interpretation and policy insights, we need to express

the duration a boiler operates into energy demand and CO2 emissions. For this, we

convert the estimated effects on the duration a boiler operates in Table 3 into energy

use (kWh) and CO2 emissions (kg) using a typical boiler power capacity in Ireland

and the CO2 emissions factor for the main fuels for heating. The power capacity

of a domestic boiler in Ireland generally ranges between 18 kW, 24 kW, or 30 kW,

depending on the number of bedrooms.8 We provide energy and emissions calculations

based on these three typical boiler sizes. The emissions factor of natural gas is 0.203

8For example, see https://www.gasworks.ie/
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kg/kWh and 0.272 kg/kWh for kerosene heating oil (DEAP, 2022). The estimated

coefficients in Table 3 are the relative difference in effects on the duration a boiler

operates (minutes) of the variable of interest, compared to the reference category.

The energy use in kWh is obtained by multiplying the relative effects on the duration

a boiler operates (in hours) with a boiler power capacity, while the CO2 emissions is

the energy use in kWh multiplied by a fuel emission factor. These calculations are

reported in Table 4. These estimates indicate that compared to B-rated dwellings,

the hourly energy use for heating is approximately 1.01 – 1.69 kWh higher in C-rated

dwellings and 1.35 – 2.25 kWh more in D-rated dwellings, depending on the power

capacity of the boiler. At the bottom end of the energy performance rating, the

average hourly energy use for heating in E–G rated dwellings is 2.26 – 3.77 kWh

higher. If the estimated impacts on boiler operation for heating are measured in

CO2 emissions (kg), the calculated hourly emissions are, on average, 0.21 – 0.35 kg

more in C-rated dwellings, 0.28 – 0.47 kg in D-rated, and 0.47 – 0.79 kg in E–G

rated dwellings, all relative to B-rated reference category. It is worth reiterating that

these estimates relate to boiler operation during ‘steady-state’ operation and excludes

periods when properties are being heated from a ‘cold’ state to reach thermostat set

point values.

The magnitude of the estimates of the impact of BER is much larger than com-

parable findings by Coyne and Denny (2021) and Meles et al. (2022). The paper

by Meles et al. (2022) is based on the same underlying dataset as used here but is

based on a larger set of dwellings and also investigates a different metric; variations

in heat loss during the early morning hours when the heating unit is confirmed as

being turned off. The Meles et al. (2022) study finds a difference in heat loss between
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BER scales but the magnitude is less than that expected ex-ante and no evidence of a

distinct gradient in performance along the BER scales. Coyne and Denny (2021), in

an analysis that incorporates behavioral response, document little difference in actual

energy use across Irish residential building energy performance certificates. Unlike

our hourly-level smart thermostat analysis, the methodology of Coyne and Denny

(2021) does not control for unobserved occupant behavior and uses bi-monthly en-

ergy consumption data. Similar differences in research conclusions based on low and

high-frequency data also arise in the analysis of electricity savings in California (No-

van et al., 2022; Levinson, 2016). This highlights the importance of high-frequency,

household-level data in evaluating energy efficiency investments.

The results covering the influence of the thermostat set point on energy consump-

tion are also of interest. Compared to the impacts of BER scales on energy use and

CO2 emissions, the effects of thermostat set point temperatures and outdoor temper-

atures are substantially greater in magnitude. For example, the hourly energy used

at a set point temperature of 22oC or above is as much as 10.37 kWh higher than the

reference set point of 17oC or below. The corresponding hourly CO2 emissions are

2.18 kg higher. The impact on energy use and emissions from a reduction in the set

point temperature by 2oC where the set point is 20oC and above is not practically

different than that associated with a BER rating improvement from E–G to B. This

result is not evidence that energy efficiency upgrades do not work, rather it is evidence

that the energy efficiency label, i.e., the DEAP standard, is not a strong indicator of

actual energy use.

Finally, we attempt to relate the relative differences of the ex-post estimates (re-

gression results) along the BER scales with the relative differences in ex-ante primary
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Table 4: Calculated average hourly energy use and CO2 emissions for different power
capacity boilers

Variables (1) (2) (3) (4) (5) (6)
Energy use in kWh for a boiler: CO2 emissions in kg for a boiler:

18 kW 24 kW 30 kW 18 kW 24 kW 30 kW
BER scales (Reference:B):
C 1.01 1.35 1.69 0.21 0.28 0.35
D 1.35 1.80 2.25 0.28 0.38 0.47
E–G 2.26 3.01 3.77 0.47 0.63 0.79

Set point temperature at
hour h (Reference: ≤ 170C):
(170C, 180C] 0.68 0.91 1.14 0.14 0.19 0.24
(180C, 190C] 1.80 2.40 3.00 0.38 0.50 0.63
(190C, 200C] 3.04 4.05 5.07 0.64 0.85 1.06
(200C, 210C] 4.05 5.40 6.75 0.85 1.13 1.42
(210C, 220C] 4.82 6.42 8.03 1.01 1.35 1.69
> 220C 6.22 8.29 10.37 1.31 1.74 2.18

Outdoor temperature at
hour h (Reference: ≥ 100C):
≤ 00C 3.89 5.19 6.49 0.82 1.09 1.36
(00C, 20C) 3.34 4.45 5.57 0.70 0.93 1.17
[20C, 40C) 2.74 3.65 4.57 0.58 0.77 0.96
[40C, 60C) 2.03 2.71 3.39 0.43 0.57 0.71
[60C, 80C) 1.31 1.75 2.19 0.28 0.37 0.46
[80C, 100C) 0.74 0.98 1.23 0.15 0.21 0.26

Sample dwellings 320 320 320 320 320 320
Note: Table 4 shows the calculated hourly average energy use in kWh and CO2 emissions of the estimated
coefficients in Table 3 for boilers with 18 kW, 24 kW and 30 kW power capacity, ranges of typical domestic
boilers in Ireland. The emissions factor of the fuel for main gas is 0.203 kg/kWh and 0.272 for heating
oil. In our data, the average emissions factor in each of the four BER scales is 0.21 kg/kWh.
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energy use (BER in kWh/m2/year), using B-rated dwellings as a reference. Direct

comparison of the ex-ante and ex-post estimates is problematic for a couple of rea-

sons. First, our empirical analysis is based on the variations in a boiler operation

around the steady state indoor temperature (set point temperature) for the three

main winter heating months (December–February) while the ex-ante estimates of pri-

mary energy demand are based on 8 months (October–May), with 8 hours a day of

heating periods (DEAP, 2022). Thus, our paper does not capture a boiler operation

or energy use for heating for the entire period, even within the three main winter

heating months. Second, our ex-ante measure of building energy efficiency, the BER

certificate, is broader in scope than the energy use for heating that we are primarily

interested in analyzing. Beyond energy use for heating, BER includes energy use for

ventilation and lighting and accounts for other aspects of a building such as dwelling

dimensions, building fabric, type of fuel, and renewable energy technologies. It is,

therefore, an aggregate indicator of dwelling energy performance.

Considering those limitations, we provide insights into the ex-post and ex-ante

estimates by looking at the relative differences in ex-ante and ex-post energy perfor-

mance across the BER scales. Table 5 shows the relative differences in the average

values of the BER in kWh/m2/year (ex-ante estimates) and regression results (ex-

post estimates) across BER scales relative to B-rated dwellings. Compared to B-rated

dwellings, the average BER in kWh/m2/year (ex-ante primary energy demand) is 41%

higher for C-rated dwellings, 92% for D-rated dwellings and 183% for E-rated or be-

low dwellings. Based on the 14.42 minutes average duration of a boiler operation

to maintain the indoor temperature around the thermostat set point in an hour in

B-rated dwellings (see Table 2), the estimated average boiler operation for a typical
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C-rated dwelling is 23% more, 31% more for D-rated dwelling and 52% more for E-

rated or below dwellings. This indicates variations in boiler operation along the BER

scales are substantially proportionately less than projected primary energy demand

(kWh/m2/year) along the BER scales. While the results presented earlier in Table 3

and again in Table 5 show a clear gradient of performance across BER scales, that

gradient is substantially less than that implied from the official BER ratings, as mea-

sured in kWh/m2/year. Consequently, directly linking policy targets to BER ratings

is likely to lead to performance outcome substantially less than anticipated.

Table 5: Average ex-ante and ex-post estimates across BER scales
Ex-ante estimates: Ex-post estimates:

BER scales Average BER Relative change Average boiler operation Relative change
(in kWh/m2/year) (in minutes at hour h)

B 136.35 Reference 14.42 Reference
C 192.68 +41% 17.80 +23%
D 262.14 +92% 18.91 +31%
E 386.40 +183% 21.95 +52%
Sample dwellings 320 320
Note: The average BER in kWh/m2/year is based on the BER database for our sample dwellings. The average boiler
operation in minutes is constructed using the mean duration a boiler operates for B-rated dwelling in our data (see
Table 2 ) and relative differences of the estimated coefficients in Column 2 of Table 3.

5 Conclusions

Improving building energy efficiency is advocated as one of the most cost-effective

approaches to address climate change, with building Energy Performance Certificates

(EPC) serving as a benchmark of performance in many markets. For example, the

Government of Ireland’s 2021 Climate Action Plan has targeted to upgrade half a

million homes to B2 rating by 2030, with e8 billion retrofit scheme. In this paper, we

ask the extent to which residential building energy performance certificates, an ex-

ante measure of home energy efficiency, predict observed energy and emissions savings.
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To answer this, we use high-frequency smart thermostat panel data in combination

with building characteristics and local weather information and exploit variations in

boiler operation for heating in the neighborhood of thermostat set point temperatures

during the main winter heating months. We find a distinct gradient of building energy

performance along the Irish EPC metric, the Building Energy Rating (BER), but with

a gradient substantially less than implied by ex-ante energy use associated with BER

scales.

In the context of policy ambition to reduce both fossil energy use and emissions,

the three most important factors explaining length of boiler operation are weather,

thermostat set point temperature, and BER scale. Unlike weather, both BER scale

and temperature set points are within homeowners’ influence but represent a complex

choice. Adjusting internal temperature set point values is simple to implement, has

an immediate impact, and saves money via lower fuel expenditures but potentially

also reduces home comfort and well-being. Achieving the B2 standard by 2030 is the

government policy target but improving a property’s BER scale is expensive (Collins

and Curtis, 2017; Moran et al., 2020), with a move from an E–G to a B rating

potentially costing e30–50,000/property. In addition to the financial costs, retrofits

are relatively slow to procure plus entail considerable disruption to occupants. The

policy question is whether the B2 policy target is the most cost-effective approach to

reducing fossil energy use and emissions.

This paper provides evidence to suggest that EPCs may misguide energy efficiency

investments. There are many conceivable extensions to this work. The dwellings in

the analysis are not a representative sample of the national housing stock so while

they provide a suitable sample to estimate whether, and to what extent, a gap exists,
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the results cannot be easily extrapolated to represent all dwellings. Nonetheless,

the sample size for the analysis is relatively large and substantially greater than

several existing studies examining energy efficiency within the Irish housing stock

(e.g., Beagon et al., 2018; Rau et al., 2020).

Our findings are unambiguously illustrative of two things. First, energy use in

residential buildings declines with improvement in energy efficiency, as measured by

the BER standard. However, the relative differences of our estimated results along

the BER scales are substantially lower than that of the relative differences in the

projected primary energy demand (BER in kWh/m2/year). Second, the difference in

energy use attributable to the BER scales is modest and not substantially different

in magnitude than minor behavioral interventions. These results do not imply that

upgrading a dwelling’s energy efficiency would not result in a significant change in

energy use and emissions; rather it is evidence that BER certificates are broader

in scope than energy use for heating. The findings underscore that BERs are poor

predictors of actual energy use and consequently cast doubt on the efficacy of public

energy efficiency retrofit targets that are aligned to B2 BER standard.
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Appendix

Figure A.1: Example of BER certificate
Source: https://www.seai.ie/publications/BER-dwellingowner-Leaftlet.pdf
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Table A.1: Sensitivity of the main results to different thresholds within a thermostat
set point temperature
Variables (1) (2) (3) (4) (5) (6)

Dep. var: Duration a boiler operates (minutes) at hour h
Temperature thresholds within a set point:

0.350C 0.400C 0.450C 0.500C 0.550C 0.600C
BER scales (Reference: B):
C 3.47*** 3.12** 3.21** 3.38** 3.38** 3.81**

(1.34) (1.36) (1.38) (1.46) (1.49) (1.53)
D 4.20** 4.32*** 4.59*** 4.49** 4.31** 4.82***

(1.64) (1.66) (1.71) (1.77) (1.82) (1.85)
E–G 6.92*** 7.45*** 7.54*** 7.53*** 7.00*** 7.37***

(2.09) (2.14) (2.20) (2.27) (2.32) (2.33)
Set point temperature at hour h
(Reference: ≤ 170C):
(170C, 180C] 2.11*** 2.15*** 2.20*** 2.28*** 2.38*** 2.46***

(0.44) (0.47) (0.46) (0.49) (0.50) (0.51)
(180C, 190C] 5.35*** 5.58*** 5.79*** 6.00*** 6.24*** 6.39***

(0.89) (0.92) (0.92) (0.93) (0.95) (0.96)
(190C, 200C] 9.17*** 9.56*** 9.83*** 10.13*** 10.47*** 10.77***

(0.82) (0.85) (0.86) (0.90) (0.93) (0.96)
(200C, 210C] 12.21*** 12.81*** 13.10*** 13.50*** 14.02*** 14.40***

(0.90) (0.93) (0.94) (1.00) (1.04) (1.08)
(210C, 220C] 14.56*** 15.25*** 15.67*** 16.06*** 16.69*** 17.10***

(0.91) (0.93) (0.95) (0.98) (1.01) (1.04)
> 220C 18.93*** 19.69*** 20.20*** 20.73*** 21.40*** 21.80***

(1.19) (1.21) (1.24) (1.29) (1.28) (1.31)
Outdoor temperature at hour h
(Reference: ≥ 100C):
≤ 00C 12.14*** 12.75*** 12.77*** 12.98*** 13.11*** 13.25***

(1.00) (1.02) (1.02) (1.05) (1.06) (1.06)
(00C, 20C) 10.43*** 10.95*** 11.03*** 11.13*** 11.20*** 11.23***

(0.76) (0.78) (0.78) (0.76) (0.77) (0.78)
[20C, 40C) 8.64*** 9.03*** 9.06*** 9.13*** 9.29*** 9.33***

(0.56) (0.58) (0.57) (0.58) (0.58) (0.58)
[40C, 60C) 6.39*** 6.66*** 6.66*** 6.77*** 6.83*** 6.85***

(0.42) (0.43) (0.42) (0.43) (0.42) (0.42)
[60C, 80C) 3.98*** 4.34*** 4.33*** 4.37*** 4.42*** 4.33***

(0.33) (0.35) (0.34) (0.34) (0.33) (0.32)
[80C, 100C) 2.17*** 2.45*** 2.41*** 2.46*** 2.48*** 2.46***

(0.27) (0.28) (0.27) (0.27) (0.25) (0.25)
Hour of a day dummies Yes Yes Yes Yes Yes Yes
Day of a year dummies Yes Yes Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes Yes Yes
Other controls Yes Yes Yes Yes Yes Yes
R2 (within) 0.213 0.214 0.212 0.210 0.209 0.209
Observations 39,739 43,948 46,700 49,149 51,856 53,798
Sample dwellings 299 311 317 320 325 332
Table A.1 shows the sensitivity of the main results in Column 3 of Table 3 to different thresholds within temperature
set point (from 0.35oC to 0.60oC). The dependent variable is the duration a boiler operates for heating (in minutes)
to maintain the indoor temperature within 0.50oC of the thermostat set point temperature in a given hour. The set
point temperature bins are based on the hourly thermostat set point temperature that ranges from 15.5oC – 30oC
for the sample dwellings. Similarly, the outdoor temperature bins are based on the hourly outdoor temperature that
varies from -5.6oC to +14.1oC during the period of analysis. The other controls included are hourly outdoor relative
humidity, wind speed, dwelling area, efficiency of main space heating unit, dummies for fuels of main space heating
(gas or oil boiler), dwelling type, number of storeys, and building age band. Robust standard errors clustered at the
dwelling level are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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