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BIAS IN TAX PROGRESSIVITY ESTIMATES

Johannes König
Tax progressivity is central in public and political debates when questions of vertical equity
are raised. Applied, structural research demands a simple way to capture it. A power func-
tion approximation delivers one parameter that captures the residual income elasticity— a
summary measure of progressivity. This approximation is accurate, tractable, and interpret-
able, and hence immensely popular. The most common procedure to estimate this parameter,
a log ordinary least squares specification, produces biased and inconsistent estimates. A
nonlinear estimator solves this issue and, using different data sets, I find differences in esti-
mates between 6 and 14 percent.
Keywords: income taxation, progressivity, nonlinear estimation

JEL Codes: H20, C51, H31
I. INTRODUCTION

T he progressivity of the tax system is a central object of public and political de-
bate when questions of vertical equity are raised. Further, it is a central char-

acteristic of the economic environment, which determines the agents’ incentives,
behavior, and economic outcomes.
In life-cycle models of individual behavior, accounting for progressive taxation

is essential. Over their life cycle, individuals experience unanticipated changes in
the remuneration of their work, which individuals would want to insure against but
cannot because insurance markets are incomplete. The government can offer addi-
tional insurance to risk-averse individuals by making the tax system progressive
(insurance effect), but progressive taxation additionally induces a disincentive ef-
fect on, for example, labor supply or saving (Eaton and Rosen, 1980; Varian, 1980),
which induces a trade-off. Several papers, among them Blundell, Pistaferri, and
Saporta-Eksten (2016), Heathcote, Storesletten, and Violante (2014, 2017), and Kaplan
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(2012), take these two effects into account when they model individuals’ life cycles.
These papers introduce progressivity of the tax system by choosing a power func-
tion (Feldstein, 1969; Persson, 1983; Benabou, 2000, 2002) to approximate the re-
lationship between gross and net income. The exponent of this power function gives
the degree of progressivity of the tax system (elasticity of residual income due to
Musgrave and Thin, 1948). Economists estimating structural models find this func-
tion attractive because of three features: (1) fit to the empirical relationship, (2) trac-
tability in (structural) economic models, and (3) interpretability because it directly
states progressivity.
The power function approximation has the following form:

ynetit ≈ xy12t
it , (1)

where ynetit is the net income of individual i at time t, and yit is gross income. The
exponent 1 2 t gives the progressivity of the tax schedule. If 1 2 t is smaller than
one, the tax schedule is progressive; if 1 2 t is larger than one, the system is regres-
sive. Finally, if t is equal to zero, the tax function is linear and the parameter x gives
the net-of-tax rate.1

This paper is concerned with the estimation of 1 2 t. The most popular way to
estimate 1 2 t is to take the logarithm on both sides of Equation (1) and run ordi-
nary least squares (Log OLS). However, the log transformation introduces a depen-
dence between regressor and error term that generally leads to inconsistent estimates
of the parameters of the power function when estimating by Log OLS— a result first
shown in the context of gravity models by Silva and Tenreyro (2006). I use the Pois-
son pseudomaximum likelihood (PPML) estimator to estimate t, which is nonlinear
and uses data in levels.
To illustrate the empirical importance of the bias, I use three different data sets

from two papers. Following Heathcote, Storesletten, and Violante (2017), I use the
Panel Study of Income Dynamics (PSID) data and data released by the Congressional
Budget Office (CBO) and, based on Kaas et al. (2021), I use the German Socio-
Economic Panel (SOEP). The PSID is a survey data set and offers the ability to con-
struct taxes and transfers on the household level using the National Bureau of Eco-
nomic Research’s (NBER) tax calculator TAXSIM (Feenberg and Coutts, 1993).
Using the PSID, the estimate of 1 2 t based on Log OLS is 0.819, while based on
PPML it is 0.871, a 6 percent difference. The PSID, however, is not representative
at the top of the income distribution, taxes are imputed through TAXSIM, and it only
1 The power function approximation does not necessarily provide the best fit to the data. Guner, Kay-
gusuz, and Ventura (2014) and Kurnaz and Yip (2022) fit several parametric forms, among them the
power function approximation. Both find that although it offers a good fit, it is not the best performer.
For example, Guner, Kaygusuz, and Ventura (2014) show that the more complex approximation by
Gouveia and Strauss (1994) provides a better fit to average andmarginal income tax rates in the United
States. Nevertheless, because of the attractive feature of interpretability, researchers often choose the
power function approximation and will continue to do so.
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provides a subset of in-kind transfers. The CBO data, which are based on tax re-
turns, address these concerns. Here, the difference is larger: the Log OLS estimate
is 0.790 and the PPML estimate is 0.904, a 14 percent difference. To broaden the
perspective beyond the United States and to examine a tax system that is more pro-
gressive and redistributive than in the United States, I turn to Germany and the
SOEP. Based on Log OLS, the estimate of 1 2 t for the total population is 0.654,
while the PPML estimate is 0.739, a 13 percent difference. However, the use of
the power function approximation and Log OLS extends far beyond these three ex-
amples. Table 1 lists several prominent, but by no means all, papers in the area of
taxation using the power function approximation.
While the differences in estimates of 1 2 t are important in and of themselves,

they become even more important when they are used for subsequent calculations,
for example, when they are used to calculate tax rates or fed into a structural model. I
use Heathcote, Storesletten, and Violante (2017) to illustrate this because the paper
not only estimates 1 2 t but also contains an optimal progressivity exercise. The
authors provide a closed-form expression for social welfare, which crucially de-
pends on the estimate of t. Thus, the paper provides a suitable environment to il-
lustrate how downstream results depend on the estimation of tax progressivity.
The authors characterize the progressivity of the optimal income tax according to
Table 1

Selected Literature Using the Power Function Approximation

Citation
Estimates
1 2 t

Uses Log
OLS

Relies on
Estimate
of 1 2 t

Li and Sarte (2004) Yes No Yes
Kaplan (2012) Yes Yes Yes
Guner, Kaygusuz, and Ventura (2014) Yes Yes Yes
Heathcote, Storesletten, and Violante (2014) Yes Yes Yes
Blundell, Pistaferri, and Saporta-Eksten (2016) Yes Yes Yes
Heathcote, Storesletten, and Violante (2017) Yes Yes Yes
García-Miralles, Guner, and Ramos (2019) Yes Yes Yes
Holter, Krueger, and Stepanchuk (2019) Yes Yes Yes
Heathcote, Storesletten, and Violante (2020) Yes Yes Yes
Heathcote and Tsujiyama (2021) No Yes Yes
Kaas et al. (2021) Yes Yes Yes
Wu (2021) Yes Yes Yes
Kurnaz and Yip (2022) Yes No Yes
Note: A paper “relies on estimate of 1 2 t” if the authors use their estimate of 1 2 t or some estimate
of 1 2 t to make further calculations, for example, to calculate tax burdens or in an optimal progres-
sivity exercise.
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a utilitarian objective. They find that progressivity is too high in the status quo and
that switching to the optimum would bring about a welfare gain. Using the PPML
estimate of 1 2 t, this welfare gain is about 67 percent smaller.
The rest of the paper is organized as follows. In Section II, I formally introduce

the power function approximation and outline the estimation framework. Section III
introduces the three data sets for estimation. Section IV presents the estimation results,
and Section V illustrates the importance of the findings. Section VI concludes.
II. THE POWER FUNCTION APPROXIMATION

I compare two techniques to estimate 1 2 t: Log OLS and PPML. To see why
the two techniques will deliver different estimates of progressivity and different
empirical fits, consider the stochastic version of Equation (1):2

ynetit 5 xy12t
it hit

hit 5 1 1 eit,
(2)

where eit is an error term, which I will define later. The above formulation shows
that a multiplicative error formulation can be translated into an additive error for-
mulation and vice versa.
The assumption necessary for the identification of Equation (2) is that the con-

ditional mean of ynetit equals xy12t
it . This appears to be a reasonable and natural as-

sumption in this setting, because it expresses in precise, statistical terms what
Equation (1) states.3 Papers that use the power function as an approximation of
ynetit appear to be in tacit agreement with this assumption about the conditional mean
of ynetit .4 Restating this in terms of a requirement on the error term, it should hold that
E½hitjyit� 5 1.
Under this assumption, it is possible to identify the parameters of Equation (2)

using a nonlinear estimator. However, the consistent estimation of the parameters
of Equation (2) is possible by Log OLS only when eit has one specific form. When
eit 5 nit, with n statistically independent of log y, Log OLS identifies the parameters of
the power function.

log ynetit 5 log x 1 (1 2 t) log yit 1 log(1 1 eit)

5 log x 1 (1 2 t) log yit 1 log(1 1 nit):
(3)
2 This exposition follows Silva and Tenreyro (2006).
3 In fact, this is precisely the statement that Silva and Tenreyro (2006) make about economic models,
when they point out that: “All that can be expected is that they hold on average” (p. 643). This notion
is precisely captured by the requirement that the conditional mean of ynetit equals xy12t

it .
4 Assumptions about the error are seldom stated in the literature.
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But this implies that in levels

ynetit 5 xy12t
it 1 xy12t

it nit: (4)

This composite error term implies a specific type of heteroskedasticity, where the
conditional variance of ynetit is proportional to (xy12t

it )2. Whether the heteroskedasti-
city of the error term satisfies this specific functional form is ultimately an empirical
question because the joint distribution of net and gross incomes depends on the tax
and transfer schedule, deductions, tax credits, and individual behavior. However,
the variance of net incomes should generally rise with gross income. At the lower
end of the distribution, the variation in tax burdens— for example, due to child tax
credits or similar provisions— is fairly limited. In the upper part of the distribution,
it is expected that there is wide dispersion in net incomes depending on the ability
to use deductions or tax credits. But there is no reason to believe that it should be
proportional to (xy12t

it )2. In Section IV, tests of the null hypothesis that the error
term has this specific form of heteroskedasticity reject it at conventional levels of
statistical significance. But in some cases, the use of Log OLS may be innocuous.
I show that when I exclude the upper half of the gross income distribution from the
PSID data, the Log OLS and PPML estimates converge.
To see why Log OLS generally does not consistently estimate the parameters of

Equation (2), consider the case of an additive error in levels, such that eit 5
nit=(xy12t

it ). Then after log transformation

log ynetit 5 log x 1 (1 2 t) log yit 1 log

�
1 1

nit

xy12t
it

�
:

Clearly, the log transformation introduces a dependence between the error term

and the regressor, and one cannot obtain a consistent estimate of (1 2 t) using Log
OLS.
The parameters of Equation (2) can be consistently estimated with a nonlinear

pseudo maximum likelihood estimator. It solves

o
J

j51

( ynetj 2 x̂y12t̂
j )yj 5 0, (5)

where j is an index that spans all observations. This estimator happens to be numer-
ically equal to the PPML. Note that, although Poisson regression is usually used to
model count data, this is not assumed here and not necessary for the consistent es-
timation of the parameters. All that is required for consistent estimation is the cor-
rect specification of the conditional mean. Thus, ynet does not have to be count data
and does not need to follow a Poisson distribution (Gourieroux, Monfort, and Trog-
non, 1984; Wooldridge, 2010, Ch. 18).5
5 However, the standard errors produced by common Poisson regression packages will not be correct
because they are computed under the assumption that the conditional variance equals the conditional
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In practice, the estimates can be computed by running a Poisson regression of ynetit

on ln yit in statistical software like Stata or R.6 Silva and Tenreyro (2006) propose
this estimator for these types of data and test it in Monte-Carlo experiments with
different types of heteroskedasticity. They show that it performs well in many different
heteroskedasticity settings, including the one where Log OLS is consistent. Other
nonlinear estimators — like nonlinear least squares, for example — are consistent
but vary in performance depending on the type of heteroskedasticity prevalent in the
data.7
III. DATA

In my empirical exercises, I employ three data sets: (1) the data based on the PSID
in Heathcote, Storesletten, and Violante (2017), (2) my construction of the CBO data
set on net and gross incomes following Heathcote, Storesletten, and Violante (2017),
and (3) data from the SOEP constructed using the replication files of Kaas et al.
(2021). Heathcote, Storesletten, and Violante (2017) use the tax calculator TAXSIM
(Feenberg and Coutts, 1993) provided byNBER to calculate net incomes. The CBO
data set is based on the Statistics of Income and therefore is based on a nationally
representative sample of income tax returns and contains incomes and tax liabilities.
The SOEP data set (Goebel et al., 2019; Schröder et al., 2020) contains gross and
net incomes based on a tax calculator maintained at the German Institute for Eco-
nomic Research (Grabka, 2020). For more details on the data, see Appendix A (Ap-
pendixes A–F are available online).
IV. RESULTS

A. PSID Data

Table 2 presents the LogOLS and PPML estimates of 1 2 t, bootstrapped standard
errors, as well as fit statistics. The estimate of 1 2 t using LogOLS is smaller (0.819),
implying a more progressive tax system, than the one obtained by PPML (0.871).
Goodness of fit (GOF) is assessed by computing errors from observed data and

model predictions, that is, eit 5 ynetit 2 ŷnetit , where ŷnetit is the respective prediction of
net income.8 I then compute the root mean squared error (RMSE) and the mean ab-
solute error (MAE). The RMSE indicates that the model estimated using PPML im-
proves on the fit of Log OLS by about 31 percent. TheMAE derived from PPML is
also smaller, but the improvement is more modest at roughly 9 percent.
6 In Stata the command is “poisson” and in R it is “glm(.,family 5 “poisson”).”
7 Not all papers use Log OLS to estimate 1 2 t. For example, Kurnaz and Yip (2022) use nonlinear
least squares.

8 In the case of Log OLS, I adjust for Jensen’s inequality in the prediction. See Rainey (2017).

mean. Wooldridge (2010, Ch. 18) shows how to compute appropriate standard errors. In Stata these
can be produced with the option “robust” and in R using the library “sandwich.”
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To put these differences in perspective, I calculate the average income-weighted
marginal tax rate (AMTR; Barro and Sahasakul, 1983), as Heathcote, Storesletten,
and Violante (2017) do. They find an AMTR of about 34 percent and report that
Barro and Redlick (2011) find a slightly higher AMTR of about 37 percent. Calcu-
lating the AMTR using the PPML estimates, I match the AMTR in Barro and Red-
lick (2011) exactly. I find a slightly higher AMTR because, although the estimate of
1 2 t is larger, the estimate of x is lower compared with Heathcote, Storesletten,
and Violante (2017).
I show the absolute errors FeitF produced by either procedure along the distribu-

tion of gross income in Figure 1. The dark gray diamonds indicate errors produced
by Log OLS; the light gray circles indicate errors for PPML. For large values of
gross income Log OLS produces much larger errors than PPML, while for small
values of gross income the difference is small. With lower estimated progressivity
PPML appears to improve the fit for larger net incomes. This is intuitive because
past the final tax bracket, the tax system becomes basically linear for high-income
earners.
A boxplot of net incomes over gross income deciles in Figure 2 helps to under-

stand the pattern of heteroskedasticity in net incomes. The figure shows that the
variance of net incomes grows over the deciles, with the largest amount of variation
in the 10th decile.
In Appendix B, I show several robustness exercises. I successively restrict the sam-

ple, dropping more and more high gross income observations from the data set.
When 50 percent of the sample has been dropped, the two estimates converge. Thus,
even though the results become similar for lower levels of income, generally, Log
OLS still tends to estimate smaller values of 1 2 t. Further, restricting to the popula-
tion with only positive taxes also leads to a convergence in estimates.9 In this setting,
9 García-M
for positiv
Table 2

Progressivity Estimates and GOF in Heathcote,
Storesletten, and Violante (2017) Data Set

Log OLS PPML

1 2 t 0.819 0.871
(0.00493) (0.00852)

RMSE 17,878 12,332
MAE 4,457 4,061

Obs. 12,875 12,875
iralles, Guner, and Ramos (2019)
e taxes. Thus, it is interesting to
use the power function to model
compare estimates on this restri
Note: This is my own calculation based on the Heathcote, Storesletten, and
Violante (2017) replication data set. Bootstrapped standard errors in parenthe-
ses are based on 500 replicates. Pooled observations are from 2000 to 2006.
the tax system, but only
cted sample.
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Log OLS gives an estimate of 1 2 t that is larger and statistically significantly dis-
tinct from the PPML estimate. While the RMSE of Log OLS is somewhat smaller
than the RMSE of PPML, the MAE of PPML is still smaller than the one of Log
OLS. This is likely due to the fact that LogOLS now strongly reacts to the large errors
at the top of the gross income distribution. Thus, although the two estimates converge
Figure 1. Absolute errors along the distribution of gross income. This is my own calculation based
on the Heathcote, Storesletten, and Violante (2017) replication data set. I plot the absolute errors,
that is, the absolute difference between observed and predicted net income from Log OLS and
PPML. Panel A shows the errors for the full data, while panel B shows the errors in the range up
to $2 million of gross income.
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as the sample is restricted to larger gross incomes, the fundamental issue, that is, the
bias due to the pattern of heteroskedasticity, cannot be fully alleviated in this manner.
Further, by restricting the range in this way, the interpretation of 1 2 t becomes less
clear. Finally, year-by-year estimates confirm the patterns of Table 2: Log OLS pro-
duces consistently smaller estimates of 1 2 t comparedwith PPML. Further, PPML
delivers a better fit in terms of both the RMSE and the MAE in all years.
1. A Park-Type Regression Test of the Log Transformation

I have shown that PPML produces significantly different progressivity estimates
compared with Log OLS and that the fit of PPML is consistently better than the fit
of Log OLS. To assess whether the log transformation is appropriate and whether
Log OLS will consistently estimate 1 2 t, I perform a Park-type regression test
(Park, 1966). If and only if the conditional variance of ynetit is proportional to
(xy12t

it )2, Log OLS will be consistent. I run the auxiliary regression:

log ynetit 2 ŷnetitð Þ2 5 a 1 b log ŷnetit 1 uit, (6)
Figure 2. Boxplot of net incomes over deciles of gross income using Heathcote, Storesletten, and
Violante (2017) data set. This is my own calculation based on the Heathcote, Storesletten, and
Violante (2017) replication data set. Figures are in nominal dollars.
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where ŷnetit is the predicted value of ynetit . If and only if b is equal to 2, the condition for
Log OLS consistently estimating 1 2 t is met. I use PPML to predict ŷnetit and then
estimate Equation (6) by OLS. Using an F-test, I evaluate the null hypothesis of
b 5 2. Table 3 shows the estimated b is equal to 0.738 and the F-test rejects the null
hypothesis at conventional levels of significance.
2. Nonparametric Estimation of Progressivity

The progressivity parameter can also be estimated directly and nonparametrically.
Using marginal tax rates, one can compute the residual income elasticity — the
equivalent of 1 2 t — for each observation in the PSID data set (Musgrave and
Thin, 1948; Jakobsson, 1976). As the name suggests, the residual income elasticity
measures the percentage change in net income for a given percentage change in
gross income. The formula for the residual income elasticity for each observation is
as follows:

rieit 5 (1 2 mtrit)
yit
ynetit

, (7)

where rieit is the residual income elasticity and mtrit is the marginal tax rate.
The replication data set by Heathcote, Storesletten, and Violante (2017) does not

contain marginal tax rates. Thus, I replicate the data set using PSID data and TAXSIM.
Appendix C gives the details on my replication of the Heathcote, Storesletten, and
Violante (2017) data set. TAXSIM computes marginal tax rates with the method of
finite differences with very slight variation in the taxable amounts, usually 1 cent.10

TAXSIM reports the marginal federal andmarginal state tax rates. I add both, which
gives the total marginal tax rate corresponding to mtrit. The replication data set has
10 See https://taxsim.
Table 3

Park-Type Regression Test

b 0.738
(0.02668)

F-test: b 5 2 2,237.94
p value 0.00

Obs. 12,875
nber.org for a more in-depth documentation.
Note: This is my own calculation based on the Heathcote,
Storesletten, and Violante (2017) replication data set. Ro-
bust standard errors are in parentheses. Pooled observa-
tions are from 2000 to 2006.

https://taxsim.nber.org
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12,886 observations for which rieit could be calculated and which could be matched
with an observation in the Heathcote, Storesletten, and Violante (2017) data set.
The mean of rieit for the whole sample is 0.897. I plot the mean of rieit for

100 quantile groups of gross income and the overall mean in Figure 3. The 10th quan-
tile group has mean gross income of about $20,000, while the mean in 100th quantile
is about $712,000.
The figure shows that there is a lot of heterogeneity in the residual income elas-

ticity along the distribution of gross income, but some features emerge. First, the
mean of rieit is around 0.85 in the bottom of the distribution and slowly rises up
to more than 0.9 in the middle of the distribution. Past the 50th quantile group, rieit
falls to a mean very close to 0.9. Second, although there is a lot of variability over-
all, rieit exhibits a lot of variation for the lower quantile groups. In the middle and
upper end of the distribution of gross incomes variation becomes more systematic.
While it is certainly true that the tax system is more progressive at the bottom of the
distribution, both in the middle, at the top, and overall, progressivity is far smaller
than the Log OLS estimates suggest. Yet, even at the bottom of the income distri-
bution, rieit is not often close to the Log OLS estimate of 1 2 t. Overall, the pro-
gressivity estimate from PPML is closer to the mean of rieit.
Figure 3. Residual income elasticity along the distribution of gross income. This is my own calcu-
lation based on the PSID and TAXSIM. I plot the mean of rieit for 100 quantiles of gross income. The
horizontal line gives the mean, which is equal to 0.897.
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B. CBO Data

While the PSID is a benchmark data set, it has several limitations: (1) It is not rep-
resentative at the very top of the income distribution. (2) It only provides infor-
mation on a subset of in-kind transfers. (3) Taxes are calculated through TAXSIM.
TheCBO data address all of these concerns. The CBO data are based on a nationally
representative sample from the Statistics of Income data and thus come from admin-
istrative tax records. Hence, the data are representative at the top, cover in-kind trans-
fers more completely, and taxes are directly taken from the Internal Revenue Service.
The data are published in the form of year-specific tables, which report the means of
gross and net incomes for several percentile groups ordered by gross income. These
are the bottom four quintiles, and the percentile groups 81–90, 91–95, 96–99, and the
top 1 percent. I use data from 2000 to 2006. I use the “income before transfers and
taxes” measure of pregovernment incomes provided by the CBO. Table 4 presents
the estimates of the progressivity parameter for a Log OLS specification and a
PPML specification. I do not report standard errors because they cannot help in the
interpretation of the results with this data set.11

The LogOLS estimate I obtain for 1 2 t is fairly close to the one reported inHeath-
cote, Storesletten, and Violante (2017), namely 0.790, so that the estimate t is 0.210.
The progressivity estimate using PPML is a bit higher than the analogue in the PSID
at 0.904. The difference in estimates is roughly 14 percent. By more accurately cap-
turing top earners in the data set and by including more in-kind transfers, variation
in net incomes along gross incomes changes compared with the PSID data set. This
additional variation at both the top and the bottom leads to a stronger divergence in
Log OLS and PPML estimates. This is most likely due to the fact that the conditional
variance now further diverges from the case, which would make Log OLS consistent.
The CBO data cover both the top and the bottom of the distribution more accu-

rately. Thus, ex ante, it is not clear whether we should expect a more or a less pro-
gressive estimate. Better coverage of top earners should lead to less progressivity,
but the inclusion of more in-kind transfers should lead to more progressivity. To
11 This is because
grouped.
Table 4

Progressivity Estimates Using CBO Data Set

Log OLS PPML

1 2 t 0.790 0.904

Obs. 56 56
the data are means within cer
tain sections of the income d
Note: This is my own calculation based on CBO (2020). Data
are from 2000 to 2006.
istribution making the data
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shedmore light on which of these forces is the more important one, I compare some
distributional statistics in the PSID and the CBO data. I calculate the average gross
income of the top quintile of households in the PSID sample and in the CBO data
and find a value of about $164,000 for the PSID and about $250,000 for the CBO
data, a 52 percent difference.12 When I calculate these figures for the middle quin-
tile they are about $50,000 for the PSID and $67,000 for the CBO, thus showing a
difference of 34 percent. Hence, I conclude that the more accurate representation of
top earners is the quantitatively more important force and, thus, Log OLS gives a
counterintuitive result.
C. SOEP Data

The previous two data sets come from the United States, a country with high
gross but also high net income inequality (Piketty and Saez, 2003; Piketty, Saez,
and Zucman, 2017). It is reasonable to wonder about the extent to which the
Log OLS bias will play a role in other institutional settings. Therefore, I conduct
further analysis of the bias usingGerman data.Germany is a countrywith both smaller
gross and net income inequality and a larger extent of redistribution compared with
the United States (Bartels and Waldenström, 2022). It stands to reason that with a
larger degree of redistribution the shape of the conditional variance of net incomes
is meaningfully different from the US case, which will influence the extent of the
bias. I choose to replicate Kaas et al. (2021), who model the power function as age-
dependent but also report a LogOLS estimate of 1 2 t for their entire sample, which
is 0.654. Their estimate supports the notion that the German tax system is far more
progressive than the US tax system.
In Table 5, I provide my estimates of 1 2 t and the goodness of fit measures

based on the data set derived from the replication files of Kaas et al. (2021). I match
the estimate of 1 2 t reported by Kaas et al. (2021) exactly when I apply Log OLS.
By applying PPML, the estimate of 1 2 t rises by about 13 percent to 0.739. Also
like the PSID, both the RMSE (about 22 percent less) and the MAE (about 18 per-
cent less) are lower for PPML. Further, I report the value of the Park-type regres-
sion test computed from the data and find that the null hypothesis of the type of
heteroskedasticity required for Log OLS to be consistent is rejected at conventional
levels of statistical significance. Thus, although the SOEP data are very similar to
the PSID data in terms of the data quality, income concepts, and the sample restric-
tions, I find that the divergence between Log OLS and PPML estimates is larger. It
is reasonable to attribute this larger divergence to the more redistributive character
of the German tax and transfer system as it is likely to further alter the conditional
variance of net incomes.
12 I calculate these figures by computing the average gross income for the top 20 percent in each year
and then averaging that estimate over the years. I can only compare averages because the CBO only
reports averages.
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Figure 4 shows the boxplots of the distribution of net income in the SOEP for the
deciles of gross income. The qualitative pattern of heteroskedasticity is similar to
Figure 2: the variance of net incomes rises along the deciles, with the largest var-
iance in the 10th decile, although there is also larger variation in the bottom of the
distribution.
V. RELEVANCE OF THE BIAS

A. Net Income Prediction and Tax Schedule

While the power function approximation and especially the estimate of 1 2 t have
diverse applications, the basic use is still as a function to generate net incomes from
gross incomes. Thus, as the most straightforward way to show the relevance of the
differences between Log OLS and PPML estimates, I compute net incomes as well
as average and marginal tax rates.
For net incomes, I choose the set of estimates from the PSID and predict using a

small synthetic data set of gross incomes shown in Table D4. The synthetic distri-
bution contains pregovernment incomes from $5,000 to $3 million.13 Figure 5 shows
the functions tracing predicted net incomes for the full distribution (Panel A) and
gross incomes up to $300,000 (Panel B).
Panel A of Figure 5 shows large differences in net incomes around $500,000 of

gross income using the PPML estimates. From there, due to differences in the ex-
ponents, the differences in net incomes get larger and larger. The figure also mirrors
13 The lowe
sletten, a
Table 5

Progressivity Estimates and GOF in
Kaas et al. (2021) Data Set

Log OLS PPML

1 2 t 0.654 0.739
(0.00380) (0.00216)

RMSE 8,732 6,851
MAE 5,485 4,515

Park-test value 41,311.67
p value 0.00

Obs. 112,467 112,467
r end roughly coincides with the sa
nd Violante (2017).
mple restriction on low incom
Note: This is my own calculation based on the Kaas et al. (2021) replication
data set. Bootstrapped standard errors in parentheses are based on 500 repli-
cates. Pooled observations are from 1995 to 2014. Park-test value refers to the
F-statistic based on the auxiliary regression in Equation (6).
es in Heathcote, Store-



Bias in Tax Progressivity Estimates 281
the findings from Figure 1: while the fit at the bottom appears virtually the same for
both functions, the fit at the top is very different.
To check whether the fit actually is different at the bottom of the distribution, I

present Panel B of the figure. Here one can see that the Log OLS prediction actually
starts out more progressive than the PPML prediction. This holds up until slightly
above $100,000 of income, when the PPML prediction crosses the Log OLS pre-
diction line. But as is evident from Figure 1 and from Panel B, the differences in pre-
dictions are small and do not outweigh the increasingly worse fit that Log OLS
shows at the top end of the distribution.
To check differences in the implied tax schedules, I compute average and mar-

ginal tax rates along the distribution of gross income. Average tax rates are given
by T (yit)=yit 5 1 2 xy2t

it , while marginal tax rates are given by ∂T (yit)=∂yit 5
1 2 x(1 2 t)y2t

it . I show both, once computed with Log OLS and once with PPML
estimates, in Figure 6.
Figure 6 shows the average and marginal tax rates computed with Log OLS and

PPML. Both the average and the marginal tax rates are lower at the bottom and
higher at the top of the distribution when using Log OLS estimates. For example, at
$300,000, Log OLS gives an average tax rate of 41.6 percent and a marginal tax rate
of 52.1 percent, while PPML gives rates of 37.6 and 45.6 percent, respectively.
Figure 4. Boxplot of net incomes over deciles of gross income using the Kaas et al. (2021) data set.
This is my own calculation based on the Kaas et al. (2021) replication data set. Figures are in 2006
euros.
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Summing up, this exercise shows that although the estimates from Log OLS and
PPML deliver fairly similar results for net income and tax rates at the bottom of the
distribution, once higher incomes are considered, predictions diverge considerably.
Thus, for accurate net income predictions, the point in the distribution we focus on
matters.
Figure 5. Predicted net incomes: (A) full distribution and (B) gross incomes up to $300,000. This is
my own calculation based on the synthetic data set in Table D4. The dotted line is the 45-degree
line.
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B. Frisch Elasticity Estimates

While net income and tax rate prediction are the most straightforward uses of the
power function approximation, other uses, especially for the estimate of 1 2 t, ex-
ist. The progressivity parameter plays a major role in life-cycle models of labor
supply. In these models, it influences how shocks— from the wage process or other
sources— transfer to income, consumption, and ultimately lifetime utility. Further,
tax progressivity influences the labor supply reaction of individuals by attenuating
the incentive to respond to shocks. Accordingly, the estimated labor supply reac-
tion differs when one accounts for the progressivity parameter and thereby tax pro-
gressivity. Thus, we can expect a more sizable impact of the divergence in estimates
between Log OLS and PPML when the two sets of estimates are used for the calcu-
lation of labor supply elasticities.
Consider the Frisch elasticity of labor supply, that is, the elasticity determining

the reaction to a transitory wage shock. Estimates of the Frisch elasticity can be ob-
tained from the estimation of an intertemporal labor supply equation. An example
of such an equation is

D ln ht ≈
1

g 1 t
const 1 1 2 tð ÞD ln wt 2 ςDYt 1 Dut 1 ht½ �, (8)
Figure 6. Predicted (A) average and (B) marginal tax rates. This is my own calculation based on the
synthetic data set in Table D4.
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where D is the first difference operator, h are hours worked, 1=g is the Frisch elas-
ticity, const contains time-specific constants, w is the wage, Yt are variables deter-
mining taste for work, u are shocks to the taste for work, and h is the approximation
error of the marginal utility of wealth. Finally, 1 2 t is the exponent of the power
function approximation of the tax system.14

The reaction in D ln ht to a change in D lnwt is (1 2 t)=(g 1 t). In the case with-
out progressive taxation, when t equals zero, the reaction would be 1=g, that is, the or-
dinaryFrisch elasticity. However, the econometrician estimates the tax-adjusted Frisch
elasticity when estimating Equation (8). Calculating the unadjusted Frisch elasticity
requires an estimate of t. In Table 6 I give an illustration of what the unadjusted Frisch
elasticity would look like, for different tax-adjusted Frisch elasticity estimates and
two different estimates of t. The range of estimates of the tax-adjusted Frisch elas-
ticities loosely follows the range of estimates presented in Keane (2011). The two
estimates of t correspond to the one estimated by Log OLS (0.181) and the one es-
timated by PPML (0.129)
The table shows that at low tax-adjusted Frisch elasticities, the differences in un-

adjusted elasticities are quite small, but they grow quickly. Heathcote, Storesletten,
and Violante (2017) use an unadjusted Frisch elasticity of 0.5 in their optimal pro-
gressivity exercise, so that the implied tax-adjusted Frisch elasticities differ by about
9 percent.
Thus, depending on how the estimate of 1 2 t is used in conjunction with other

parameters, we can expect large differences in relevant economic preference param-
eters like the Frisch elasticity of labor supply. If these are used in further calcula-
tions, errors will propagate and potentially lead to incorrect quantitative or qualita-
tive conclusions.
14 The equa
approxim
Table 6

Unadjusted Frisch Elasticities

t

Log OLS: 0.181 PPML: 0.129

Tax-adj. Frisch Unadj. Frisch Unadj. Frisch

0.5 0.686 0.620
0.4 0.536 0.488
0.3 0.392 0.360
0.2 0.255 0.237
tion can be derived from the fi
ating the intertemporal Euler e
rst-order conditions of the mo
quation with a first-order Tayl
Note: This is my own calculation.
del in Appendix E and then
or expansion.
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C. Optimal Progressivity Exercises

One of the most important uses of the estimate of 1 2 t is in optimal progressiv-
ity exercises. Here, a social planner weighs the beneficial insurance effect of pro-
gressivity against the adverse incentive effects on, for example, labor supply and
human capital investment. In such optimal progressivity exercises, many relevant
quantities in the model, especially social welfare, directly depend on the estimate of
1 2 t. Thus, the relevance of the Log OLS bias is fully revealed when I conduct the
optimal progressivity exercise in Heathcote, Storesletten, and Violante (2017) once
with the Log OLS estimate of t and once with the PPML estimate and compare the
implications for the change in social welfare.
Heathcote, Storesletten, and Violante (2017) build a model of life-cycle labor sup-

ply and human capital accumulation and provide a closed-form expression for social
welfare, which crucially depends on the level of t.15

Heathcote, Storesletten, and Violante (2017) find that progressivity is too high
compared with the utilitarian optimum. The welfare-maximizing progressivity pa-
rameter in their model is t* 5 0:084, while it is 0.181 in the status quo. The average
welfare gain from switching to t* is equivalent to 0.63 percent of lifetime consump-
tion. When I change the structural parameters to my estimates from Appendix F,
t* 5 0:071, thus making the optimal tax system even less progressive. When I cal-
culate the welfare gain with the PPML estimate of t, setting t 5 0:129 in the status
quo, the welfare gain is only 0.21 percent of lifetime consumption. Thus, the wel-
fare gain is about 67 percent smaller compared with the result shown in Heathcote,
Storesletten, and Violante (2017). The change is so large because social welfare is a
nonlinear function of t.
Even though the qualitative conclusion in Heathcote, Storesletten, and Violante

(2017) that progressivity should be lowered is not overturned, I do find that the pro-
gressivity in the status quo is much closer to the optimum than the original finding
suggests. Optimal progressivity exercises and their conclusions are highly sensitive
to the magnitude of the progressivity parameter.

VI. CONCLUSION

In this paper, I apply the PPML estimator of Silva and Tenreyro (2006) to esti-
mate the power function progressivity parameter of the income tax systems in the
15 The authors also provide detailed computer programs, making it easy to reproduce their results. I
adapt the MATLAB script “MainCode_HSV_QJE.m” from the replication files of Heathcote, Store-
sletten, and Violante (2017) for the calculations.
The results in the optimal progressivity exercise also depend on a method of moments estimation of

several structural parameters from the PSID and the Consumer Expenditure Survey (CEX). They estimate
variances for the heterogeneity in leisure preference and for insurable and uninsurable wage shocks, as
well as the elasticity of substitution between skill types from these moments. These estimates, however,
dependon the estimate of t.AppendixF shows these parameters using t 5 0:129, as estimated byPPML.
I use these adjusted estimates of the structural parameters when assessing welfare gains from optimal
progressivity.
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United States and Germany. I compare the results with the commonly applied Log
OLS procedure. The Log OLS procedure is generally biased except in a very spe-
cific case of heteroskedasticity, which can be empirically tested. Thus, whether Log
OLS is biased and whether the bias matters are empirical questions.
My findings are: (1) Log OLS estimates of the progressivity parameter 1 2 t are

lower than the estimates obtained by PPML, but the extent depends on the data set.
The change found in the PSID data (6 percent) is smaller than the change found in
the CBO data (14 percent) and the SOEP data (13 percent). (2) The Park-type re-
gression test rejects the null hypothesis that the specific case of heteroskedasticity,
which would make Log OLS consistent, is satisfied. (3) The Log OLS predictions
of net income produce larger RMSEs and larger MAEs when using PSID and
SOEP data. (4) The evidence from the SOEP suggests that when the tax system
is more progressive, the extent of the bias is larger.
Section V shows that the differences between Log OLS and PPML estimates are

economically meaningful. For instance, the welfare gains shown in the optimal pro-
gressivity exercise of Heathcote, Storesletten, and Violante (2017) are 67 percent
smaller using the PPML estimates.
Researchers who want to apply the power function approximation should estimate

it using PPML, as there is no downside. PPML consistently estimates the progres-
sivity parameter, even in the heteroskedasticity scenario where Log OLS is consis-
tent. Further, as Silva and Tenreyro (2006) and I point out, running a Poisson regres-
sion of net income on the log of gross income delivers the PPML estimates, making
it as easy as running Log OLS. Finally, researchers can test whether the use of Log
OLS is innocuous with the Park-type regression test.
ACKNOWLEDGMENTS

I want to express my gratitude to Leo Kaas and Georgi Kocharkov for providing
mewith both the codes and data files fromKaas et al. (2021) to exactly replicate their
findings. For helpful comments and discussions, I thank Thomas Aronsson, Richard
Blundell, Patrick Burauel, GiacomoCorneo, Giulio Fella,Michael Graber, Katharina
Jenderny, Robin Jessen, Loukas Karabarbounis, Musab Kurnaz, Gauthier Lanot,
Maximilian Longmuir, Maria Metzing, Sebastian Schmitz, Carsten Schröder, Mi-
chael Stepner, and Alexandros Theloudis as well as participants at the Annual Con-
gress of the International Institute of Public Finance 2019, the Annual Congress of
the National Tax Association 2019, and the Annual Congress of the European Eco-
nomic Association 2020.
DISCLOSURES

The author has no relevant or material financial interests that relate to the research
described in this paper.



Bias in Tax Progressivity Estimates 287
REFERENCES

Barro, Robert J., and Charles J. Redlick. 2011. “Macroeconomic Effects from Government
Purchases and Taxes.” Quarterly Journal of Economics 126 (1), 51–102.

Barro, Robert J., and Chaipat Sahasakul. 1983. “Measuring the Average Marginal Tax Rate
from the Individual Income Tax.” Journal of Business 56 (4), 419–452.

Bartels, Charlotte, and Daniel Waldenström. 2022. “Inequality and Top Incomes.” In
Zimmermann, Klaus F. (ed.), Handbook of Labor, Human Resources and Population
Economics, 1–28. Springer, Cham.

Benabou, Roland. 2000. “Unequal Societies: Income Distribution and the Social Contract.”
American Economic Review 90 (1), 96–129.

Benabou, Roland. 2002. “Tax and Education Policy in a Heterogeneous-Agent Economy:
What Levels of Redistribution Maximize Growth and Efficiency?” Econometrica 70 (2),
481–517.

Blundell, Richard, Luigi Pistaferri, and Itay Saporta-Eksten. 2016. “Consumption Inequality
and Family Labor Supply.” American Economic Review 106 (2), 387–435.

CBO (Congressional Budget Office). 2020. “The Distribution of Household Income, 2017.”
Tech. rep. CBO, Washington, DC.

Eaton, Jonathan, and Harvey S. Rosen. 1980. “Labor Supply, Uncertainty, and Efficient Tax-
ation.” Journal of Public Economics 14 (3), 365–374.

Feenberg, Daniel, and Elisabeth Coutts. 1993. “An Introduction to the TAXSIM Model.”
Journal of Policy Analysis and Management 12 (1), 189–194.

Feldstein, Martin S. 1969. “The Effects of Taxation on Risk Taking.” Journal of Political
Economy 77 (5), 755–764.

García-Miralles, Esteban, Nezih Guner, and Roberto Ramos. 2019. “The Spanish Personal
Income Tax: Facts and Parametric Estimates.” SERIEs 10 (3), 439–477.

Goebel, Jan, Markus M. Grabka, Stefan Liebig, Martin Kroh, David Richter, Carsten Schröder,
and Jürgen Schupp. 2019. “The German Socio-Economic Panel (SOEP).” Jahrbücher für
Nationalökonomie und Statistik 239 (2), 345–360.

Gourieroux, Christian, Alain Monfort, and Alain Trognon. 1984. “Pseudo Maximum Like-
lihood Methods: Applications to Poisson Models.” Econometrica 52 (3), 701–720.

Gouveia, Miguel, and Robert P. Strauss. 1994. “Effective Federal Individual Income
Tax Functions: An Exploratory Empirical Analysis.” National Tax Journal 47 (2),
317–339.

Grabka, Markus M. 2020. “SOEP-Core v35 — Codebook for the $PEQUIV File 1984–
2018: CNEF Variables with Extended Income Information for the SOEP.” Tech. rep., SOEP
Survey Papers. Berlin.

Guner, Nezih, Remzi Kaygusuz, and Gustavo Ventura. 2014. “Income Taxation of U.S.
Households: Facts and Parametric Estimates.” Review of Economic Dynamics 17 (4),
559–581.

Heathcote, Jonathan, Kjetil Storesletten, andGiovanni L. Violante. 2014. “Consumption and
Labor Supply with Partial Insurance: An Analytical Framework.” American Economic
Review 104 (7), 2075–2126.



288 König
Heathcote, Jonathan, Kjetil Storesletten, and Giovanni L. Violante. 2017. “Optimal Tax Pro-
gressivity: An Analytical Framework.” Quarterly Journal of Economics 132 (4), 1693–
1754.

Heathcote, Jonathan, Kjetil Storesletten, and Giovanni LViolante. 2020. “How Should Tax
Progressivity Respond to Rising Income Inequality?” Journal of the European Economic
Association 18 (6), 2715–2754.

Heathcote, Jonathan, and Hitoshi Tsujiyama. 2021. “Optimal Income Taxation: Mirrlees Meets
Ramsey.” Journal of Political Economy 129 (11), 3141–3184.

Holter, Hans A., Dirk Krueger, and Serhiy Stepanchuk. 2019. “How Do Tax Progressivity
and Household Heterogeneity Affect Laffer Curves?”Quantitative Economics 10 (4), 1317–
1356.

Jakobsson, Ulf. 1976. “On the Measurement of the Degree of Progression.” Journal of Public
Economics 5 (1), 161–168.

Kaas, Leo, Georgi Kocharkov, Edgar Preugschat, and Nawid Siassi. 2021. “Low Home-
ownership in Germany — A Quantitative Exploration.” Journal of the European Eco-
nomic Association 19 (1), 128–164.

Kaplan, Greg. 2012. “Inequality and the Life Cycle.” Quantitative Economics 3 (3), 471–
525.

Keane, Michael P. 2011. “Labor Supply and Taxes: A Survey.” Journal of Economic Liter-
ature 49 (4), 961–1075.

Kurnaz, Musab, and Terry A. Yip. 2022. “The Canadian Income Taxation: Statistical Anal-
ysis and Parametric Estimates.” Canadian Journal of Economics 55 (1), 272–311.

Li, Wenli, and Pierre-Daniel Sarte. 2004. “Progressive Taxation and Long-Run Growth.”
American Economic Review 94 (5), 1705–1716.

Musgrave, Richard A., and Tun Thin. 1948. “Income Tax Progression, 1929–48.” Journal of
Political Economy 56 (6), 498–514.

Park, Rolla E. 1966. “Estimation with Heteroscedastic Error Terms.” Econometrica 34 (4),
888.

Persson, Mats. 1983. “The Distribution of Abilities and the Progressive Income Tax.” Jour-
nal of Public Economics 22 (1), 73–88.

Piketty, Thomas, and Emmanuel Saez. 2003. “Income Inequality in the United States, 1913–
1998.” Quarterly Journal of Economics 118 (1), 1–41.

Piketty, Thomas, Emmanuel Saez, and Gabriel Zucman. 2017. “Distributional National Ac-
counts: Methods and Estimates for the United States.” Quarterly Journal of Economics
133 (2), 553–609.

Rainey, Carlisle. 2017. “Transformation-Induced Bias: Unbiased Coefficients Do Not Imply
Unbiased Quantities of Interest.” Political Analysis 25 (3), 402–409.

Schröder, Carsten, Johannes König, Alexandra Fedorets, Jan Goebel, Markus M. Grabka,
Holger Lüthen, Maria Metzing, Felicitas Schikora, and Stefan Liebig. 2020. “The Eco-
nomic Research Potentials of the German Socio-Economic Panel Study.” German Eco-
nomic Review 21 (3), 335–371.

Silva, J. M. C. Santos, and Silvana Tenreyro. 2006. “The Log of Gravity.” Review of Eco-
nomics and Statistics 88 (4), 641–658.



Bias in Tax Progressivity Estimates 289
Varian, Hal R. 1980. “Redistributive Taxation as Social Insurance.” Journal of Public Eco-
nomics 14 (1), 49–68.

Wooldridge, Jeffrey M. 2010. Econometric Analysis of Cross Section and Panel Data. MIT
Press, Cambridge, MA.

Wu, Chunzan. 2021. “More Unequal Income but Less Progressive Taxation.” Journal of
Monetary Economics 117, 949–968.




