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Abstract 
 
Shrimp farming and exporting is the main income source for the southern coastal districts of 
the Mekong delta. Monitoring these shrimp ponds is helpful in identifying losses incurred due 
to natural calamities like floods, sources of water pollution by chemicals used in shrimp 
farming, and changes in the area of cultivation with an increase in demand for shrimp 
production. Satellite imagery, which is consistent with good spatial resolution and helpful in 
providing frequent information with temporal imagery, is a better solution for monitoring 
these shrimp ponds remotely for larger spatial extent. The shrimp ponds of Cai Doi Vam 
township, Ca Mau Province, Viet Nam were mapped using DMC-3 (TripleSat) and Jilin-1 
high-resolution satellite imagery for the years of 2019 and 2022. The 3m spatial resolution 
shrimp pond extent product showed an overall accuracy of 87.5% with a producer’s 
accuracy of 90.91% (errors of omission = 11.09%), and a user’s accuracy of 90.91% (errors 
of commission = 11.09%) for the shrimp pond class. It was noted that 66 ha of shrimp ponds 
in 2019 were observed to be dry in 2022, and 39 ha of other ponds had been converted  
into shrimp ponds in 2022.  The continuous monitoring of shrimp ponds helps achieve 
sustainable aquaculture and acts as crucial input for the decision-makers for any 
interventions. 
 
Keywords: Jilin-1, Mekong delta, shrimp farming, sustainable aquaculture, TripleSat 
 
JEL Classification: Q22, R12, Q01 
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1. INTRODUCTION 

Over the past three decades, aquaculture in Asia has produced more than 90% of  
the world’s output and played significant roles in food security, poverty alleviation, 
employment, and overall economic development in many Asian countries. Aquaculture 
has been a long-standing custom in Asia, although it has only recently emerged, some 
four or five decades ago, as a major food production industry (Suzuki 2021). Shrimp 
farming in Viet Nam has been growing discernibly since the government passed a 
resolution in 2000 allowing the conversion of less productive rice land in coastal areas 
to aquaculture ponds (Dhar 2021). In terms of shrimp exports, Viet Nam was placed 
third in the world in 2019 with 13.6% of the market share, behind only India (15.7%) 
and Ecuador (14%) (Anderson, Valderrama, and Jory 2019). The shrimp production 
plan by the Ministry of Agriculture and Rural Development in Viet Nam predicted that 
the shrimp farming area would be 750,000 ha in 2022 and export turnover would be 
over USD4 billion, up 2.56% compared to 2021. Aquaculture, including shrimp ponds, 
is a large contributor to global food security and rural livelihoods and can also help 
preserve sustainable coastal environments (Abisha et al. 2022; Didar-Ul Islam and 
Bhuiyan 2016; Lam et al. 2022; Parven et al. 2022; Shava and Gunhidzirai 2017). 

In Viet Nam, the Mekong delta, with 12% of Viet Nam’s total area, has 67% of water 
bodies, including fresh and brackish water bodies other than rivers (Loc et al. 2021). 
But now, in Ca Mau Province, coastal aquaculture faces a rapid shift with increasing 
production and intensive shrimp culture, resulting in poor water quality and frequent 
occurrence of disease outbreaks (Suzuki and Hoang Nam 2018).  

Various studies in the Mekong delta focus on sustainable aquaculture development 
and the combined farming system of agriculture and aquaculture (Tenório et al. 2015; 
Wilder and Phuong 2002). Many sustainable issues concern water quality due to 
chemical usage in shrimp cultivation (Braun et al. 2019; Lee, Suzuki, and Vu 2019; 
Sebesvari et al. 2012; Suzuki and Nam 2022; Tan, Tran, and Loc 2020). Certain 
studies are related to climate change impacts on agriculture and the aquaculture sector 
(Leigh et al. 2020). Despite these many studies based on statistics and farmer 
interviews, very few EO-based monitoring systems have been developed for shrimp 
ponds (Gentry et al. 2017), and most studies carried out have been related to changes 
in mangrove areas (Bèland et al. 2006; Gusmawati et al. 2016). Monitoring aquaculture 
products has shifted to relying heavily on remote sensing technology due to its 
advantages in estimating area under cultivation and real-time monitoring of ponds (Cui 
et al. 2019; Hou et al. 2022; MacAulay et al. 2022; Ottinger, Clauss, and Kuenzer 2017; 
Seto and Fragkias 2007). Flood detection, along with wetlands and water bodies’ 
identification play a major role in contributing to aquaculture mapping (M. Gumma et al. 
2009; M. K. Gumma et al. 2019). Many studies have generated and used water-based 
indices (Feyisa et al. 2014; M. K. Gumma et al. 2019; Li et al. 2022) to identify water 
bodies with a variety of satellite imagery ranging from moderate (MODIS) to high 
(Sentinel) spatial resolution. Previously many aquaculture mapping studies were based 
on open-source satellite imagery, such as Landsat, and analyses based on Sentinel 
imagery with more spectral bands but with a lower spatial resolution were also carried 
out (Diniz et al. 2021; Kurekin et al. 2022; Sun et al. 2020; Virdis 2014), in addition  
to time series analysis (Ottinger et al. 2021). Recently, many water bodies and 
aquaculture mapping studies, particularly on a global scale, have been conducted 
using a cloud platform, especially Google Earth Engine (B. Chen et al. 2017; Farda 
2017; Giri et al. 2022; Hardy, Oakes, and Ettritch 2020; Kolli et al. 2022; Wang et al. 
2020). Since the study area is very highly dominated by water bodies that include 
ponds and major and minor streams, approaches such as segmentation (Peralta and 
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Tamondong 2015) and deep learning-based methodologies alone cannot classify the 
variations created by newly developing minor ponds (Islam et al. 2008; Lacaux et al. 
2007; Prasad et al. 2019). In order to differentiate water bodies, very high spatial 
resolution data are needed. This study utilized very high-resolution data (~3 m) and 
adopted machine learning algorithms as well as vectorization for classifying variations 
in water bodies to identify shrimp ponds.  

Many Asian nations have not yet fully adopted good aquaculture governance. The 
rapid growth in the aquaculture sector has given rise to some of the most difficult 
sustainability problems, including inefficient resource use, detrimental environmental 
effects, frequent disease outbreaks, and food safety threats, which in turn limit the 
sector’s potential to grow sustainably in the future. Monitoring shrimp ponds using EO 
data could be useful in grasping a firm understanding of the current situation of the 
aquaculture sector to meet the increased demand for aquatic food and sustain 
aquaculture’s much-needed expansion.  

The primary objectives of this research are thus the development of a system for the 
regional-level mapping of coastal pond aquaculture for the Cai Doi Vam Township,  
Phu Tan District, Ca Mau Province, based on high spatial resolution single-date 
satellite imagery and ground truth data, as well as assessment of the accuracy and 
analysis of aquaculture areas. 

2. DATA 

2.1 Study Area 

This study focused on the Cai Doi Vam Township, Phu Tan District, a rural district of 
Ca Mau Province in the southern coastal zone of the Mekong delta region of Viet Nam 
(Figure 1), which lies at 8o52’N and 104o49’E.  

Phu Tan District has a total area of 46,433 ha, with all the areas being affected by the 
saline intrusion, which also applies to the Cai Doi Vam Subdistrict (ADB 2013). This 
area is highly dominated by shrimp and other ponds.  

2.2 Satellite Data 

The detection of even minute linear structural elements in small-scale pond 
aquaculture structures with a size of less than 1 hectare is only achievable with high-
resolution imagery. The analysis was based on optical data gathered from a high-
resolution geometric (DMC-3) sensor imaging with a spatial resolution of 3.2 m from 
TripleSat on 4 March 2019. Jilin satellite images for 2022 were collected on a different 
single date and had a comparable spatial resolution (2.88 m of MS).  

Pan-sharpening with image data fusion and image enhancements were applied based 
on linear stretches, and mosaicking was carried out on georeferenced data sets. The 
three bands were NIR, red, and green color chosen for a composite FCC, as shown  
in Figure 1. The bands and their spatial characteristics of satellite imagery and the 
utilization of different satellite imagery in the study are as shown in Table 1. Single-date 
TripleSat and Jilin imagery and temporal Sentinel-2 imagery are used for the study. 
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Figure 1: Cai Doi Vam Subdistrict of Phu Tan District,  
Ca Mau Province Viet Nam Study Area 

 

Table 1: Satellite Data with their Characteristics and Specific Utilization 

Satellite Bands – Spatial Resolution Bands Utilization 

DMC-
3/TripleSat 

Pan: 0.8 m,  
Multispectral: 3.2m 

Pan, Blue, Green, 
Red, NIR 

2019 Shrimp Ponds Map 

Jilin-1KF01A Pan: 0.75 m,  
Multispectral: 3m 

Pan, Blue, Green, 
Red, NIR 

2022 Shrimp Ponds Map 

Sentinel-2 B2, B3, B8: 10 m,  
B11, B12: 20 m 

B1–B8, B8a, B9–B12 Water Bodies Mask (through 
different water indices) 

2.3 Ground Survey Data 

We also utilized GIS data on the location of shrimp ponds, which were collected from 
about 600 farmers in Phu Tan District during a household survey. Out of these,  
45 sample shrimp pond points are observed within the study area of Cai Doi Vam.  

3. METHODS AND APPROACHES 

3.1 Wetlands and Land Use Mapping 

The land use and land cover with the shrimp class were mapped using DMC-3 data  
for 2019 while the same was mapped using Jilin data for 2022 with the help of 
unsupervised classification (Teluguntla et al. 2017; Thenkabail et al. 2007). An 
accuracy assessment was performed with validation data. Spatial analysis was used  
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to create spatial products with a greater resolution of 3 m that recorded changes 
effectively (Figure 2). 

Figure 2: The Methodology Used to Map Shrimp Ponds  
Using High Spatial Resolution Data 

 

Primarily unsupervised classification was done targeting the LULC of the study area 
and potential shrimp ponds that can be identified. Satellite imagery was classified using 
ISO CLASS cluster K-means unsupervised classification with a convergence value of 
0.99 and 20 iterations, yielding 20 classes followed by successive generalization. 
These classes were identified using visual interpretation from Google Earth imagery. 
There is an opportunity to observe temporal changes in the study region using Google 
Earth imagery. We further used Sentinel-2-based various water indices to create a 
water bodies mask. NDWI, MDWI, AWEInsh, AWEIsh, and WRI indices were computed 
to identify ponds and other wetlands. This is to overcome the limitation due to single-
date cloud cover imagery. We set a conservative threshold beyond which we would 
exclude aquaculture development. This led to the exclusion of various classes, such as 
built-up areas and other LULC, and in rare instances, this may have also included 
shrimp ponds. If any gaps arise in any class, this class can be reclassified, and an 
initial classification map will be prepared, which will be used in secondary supervised 
classification.  



ADBI Working Paper 1366 P. K. Bellam et al. 

 

5 

 

3.2 Separation of Streams Using LULC Vectorization 

Wetlands and water bodies classes for the 2019 and 2022 cropping years were 
separated. Vectorization was applied to the water bodies to identify stream networks. 
Naturally developed stream networks and created aquaculture ponds can be 
distinguished from one another by the compact geometries of the streams. A water 
bodies masked raster was used for supervised classification with training points. 

3.3 Supervised Classification of Ponds to Separate  
Shrimp Ponds 

This study employed the supervised classification approach by using maximum 
likelihood classification. The training samples for other ponds and water bodies were 
selected from Google Earth images and field survey data. The total number of training 
samples selected was 45 for shrimp ponds and 25 for other ponds. A minimum of  
70 pixels was ensured for each sample to guarantee accuracy. 

3.4 Accuracy Assessment 

A total of 56 stratified, randomly distributed validation samples were used to determine 
the accuracy of Cai Doi Vam’s final shrimp ponds map and overall accuracies (Russell 
G Congalton and Green 2019). The columns of an error matrix contain the ground 
survey data points, and the rows represent the results of the classified crop maps 
(Russell G. Congalton 1991). A frequently used measure is Kappa (Cohen 1960), 
representing the agreement among users and reference ground survey data. 

4. RESULTS AND DISCUSSION 

4.1 Spatial Distribution of LULC 

Sentinel-2-based water indices, which are helpful in overcoming mixed classification or 
missed water pixels in single imagery, are used in developing binary water masks to 
separate pond water from the land around it. But in Sentinel-2-based water indices, 
shrimp ponds do not have clear boundaries due to its spatial resolution. Indices like 
MNDWI and AWEI, in particular, utilize the SWIR band, which is even coarser than 
other visible bands, in their calculation (Figure 3).  

After initial unsupervised classification for the LULC of the study area, it is observed 
that shrimp ponds are well connected or situated near a stream network. Ponds are 
very closely situated in built-up areas and bunds are mostly covered by vegetation. 
Other ponds are structures with mangroves situated inside the ponds or abandoned 
ponds. Preliminary LULC maps of both years are shown in Figure 4. There is a clear 
reduction in water bodies and other LULC compared to vegetation. This is due to  
the growth of mangroves and flora in ponds, as well as the fact that barren land and  
dry soil are now covered by vegetation. This decrease in water bodies suggests a 
decrease in the areas used for aquaculture; however, a comprehensive change 
detection analysis will be available after distinguishing these water bodies. 
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Figure 3: Sentinel-2 Water Indices a. NDWI, b. MNDWI, c. WRI, d. AWEInsh,  
e. AWEIsh Based Water Bodies Masks 

 

Figure 4: LULC Map of Cai Doi Vam for 2019 and 2022 with Enlarged View 
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But due to common characteristics of water bodies and similar pixel values we 
obtained mixed classes of shrimp ponds, other ponds, and stream networks. To 
eliminate these water bodies, classes were separated after unsupervised classification 
using vectorization utilizing the unique structure of stream networks.  

4.2 Streams Vectorization 

The water bodies class (raster) obtained from the initial classification was converted 
into a vector format. With the help of vectorization of water bodies, streams were 
identified using their structure as shown in Figure 5. These stream network 
identifications are helpful in separating ponds and also in monitoring shrimp pond 
waste disposal methods and the quality of wastewater. 

Figure 5: Stream Network Map with an Enlarged View over Satellite Imagery 

 

4.3 Spatial Distribution of Shrimp Ponds/Fishponds  

The shrimp pond maps were prepared using 3 m resolution for the years 2019 and 
2022 (Figures 6 and 7). Shrimp ponds, other ponds, streams, and other LULC were 
delineated. Targeted classes like shrimp ponds, other ponds, and streams were 
classified with better accuracy than the other classes because of the spectral resolution 
of the imagery, which is a tradeoff when classifying very high-resolution imagery. Built-
up and other LULC were provided as a single class in the Final Maps. Other LULC 
classes include barren land along with embankments of ponds for the case of 2019, 
while in 2022 these are covered by vegetation. The stream network consists only of 
major water supply channels, and it does not include those micro-channels contributing 
to individual ponds. Changes in shrimp pond structures were clearly seen within the 
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enlarged area itself, i.e., the conversion of larger ponds into a number of smaller ponds 
(within the enlarged view we can see two long ponds converted into eight smaller 
ponds) as well as the increased total number of shrimp ponds. 

The Cai Doi Canal is home to the majority of shrimp ponds. A more thorough 
investigation of each class’s change can be seen in the final maps of shrimp ponds 
(Figure 6 and Figure 7). 

Between 2019 and 2022, an area of 26 ha of shrimp ponds (15%), 337 ha of other 
ponds (33%), and 42 ha of streams diminished or dried out. This change, on the other 
hand, was concealed by vegetation, as 650 ha of land cover increased in vegetation 
class, which is nearly equivalent to the area lost under water bodies. It has been 
observed that the vegetation-covered area increased by about 115% in 2022 compared 
to 2019, whereas other land uses, like shrimp ponds, other ponds, and other LULC, 
showed declines (Table 2). 

Figure 6: a. Shrimp Pond Map of 2019 Based on DMC-3, b. Enlarged View of 
Classified Ponds, c. Enlarged View of Satellite Imagery 
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Figure 7: a. Shrimp Pond Map of 2022 Based on Jilin, b. Enlarged View of 
Classified Ponds, c. Enlarged View of Satellite Imagery  

 

Table 2: LULC Change Statistics from 2019 to 2022 

LULC 2022 (ha) 2019 (ha) Change (ha) % Change 

01_Shrimp_Ponds 148.11 174.71 –26.60 –15.20 

02_Other_Ponds 682.51 1,020.01 –337.50 –33.08 

03_Streams 67.48 109.56 –42.08 –38.40 

04_Vegetation 1,210.77 560.67 650.10 115.95 

05_Other_LULC 55.09 299.08 –243.99 –81.58 

4.4 Accuracy Assessment 

The accuracy assessment of the shrimp pond classification for 2019 was 87% accurate 
overall. Targeted shrimp ponds had 90% accuracy. Dried clay soil and bunds around 
ponds were classified as built-up areas. An error matrix (Table 1) was generated for 
Cai Doi Vam providing producers, users, and overall accuracies.  
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Table 3 shows the accuracy assessment of 2022 shrimp pond classification with the 
same 56 sample points used for accuracy assessment. An overall accuracy of 89% 
was obtained because the cloud cover was mostly in other LULC and the vegetation 
area was mixed with cloud cover. But the targeted shrimp ponds have more than 90% 
accuracy as do those misclassified were as other ponds. 

Table 3: Overall Accuracy with Producers’ and Users’ Accuracy  
and Kappa Coefficient for 2019 and 2022 

LULC Class 
Reference 

Totals 
Classified 

Totals 
Number 
Correct 

Producers’ 
Accuracy 

(%) 

Users’ 
Accuracy 

(%) 
Kappa 

Coefficient 

a. 2019 
      

01. Shrimp Ponds 11 11 10 90.91 90.91 0.8255 

02. Ponds (Other) 22 26 22 100.00 84.62 
 

03. Streams 7 6 6 85.71 100.00 
 

04. Vegetation 14 11 11 78.57 100.00 
 

05. Other LULC 2 0 0 
   

 Totals 56 56 49 
   

Overall Classification Accuracy 87.50 
 

b. 2022 
      

01. Shrimp Pond 10 9 9 90.00 100.00 0.8531 

02. Ponds (Other) 21 20 18 85.71 90.00 
 

03. Streams 6 5 5 83.33 100.00 
 

04. Vegetation 16 19 16 100.00 84.21 
 

05. Other LULC  2 1 1 50.00 100.00 
 

 Totals 56 56 50 
   

Overall Classification Accuracy 89.29 
 

4.5 Change Detection in Shrimp Ponds 

TripleSat and Jilin data helped in identifying shrimp ponds with up to 90% accuracy, but 
in order to achieve this high level of accuracy, the cloud cover has to be low. Change 
detection was carried out for these shrimp ponds for the two different years, and it was 
identified that 639 ha of shrimp ponds were left dry in 2022 for the entire Phu Tan 
District, of which 66 ha were in Cai Doi Vam Subdistrict itself (Figure 8). Further, 39 ha 
of other ponds in 2019 were converted into shrimp ponds in 2022. 

Aquaculture has tremendous potential to assist with global food security, making the 
prediction of pond production volumes a crucial research goal for the coming years. 
Quantitative data on aquaculture production at both the national and subnational levels 
are accessible but typically with a lack of precision. In this study, we compiled annual 
statistics for two years on aquaculture productivity, focusing mostly on shrimp ponds. 
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Figure 8: Change of Shrimp Ponds from 2019 to 2022  

 

4.6 Discussion on Monitoring Shrimp Ponds Using  
RS Technology 

It is challenging to identify individual ponds from the mixed pixels in the 30 m or 10 m 
spatial resolution satellite images, and this is why this study focuses on the extraction 
of aquaculture ponds from high spatial resolution imagery for mapping (Duan et al. 
2021; Ottinger, Clauss, and Kuenzer 2018; Prasad et al. 2019). It is challenging to use 
conventional classification techniques or a single spectral index to effectively classify 
the aquaculture ponds because these ponds are also a sort of water body split by 
embankments into a large network of smaller ponds (Alexandridis et al. 2008; Xia, Guo, 
and Chen 2020). By combining spectral data, spatial features, and structural features, 
we were able to build a system that would let the smaller aquaculture ponds be taken 
out on a regional scale. Water bodies are typically extracted via spectral index 
construction, and there are a variety of such indices. The best known are NDWI, 
MNDWI, WRI, and AWEI (including AWEIsh and AWEInsh) (Veettil, Quang, and Trang 
2019). Shrimp ponds mapped using single-date imagery for the two different time 
periods of 2019 and 2022 provide us with valuable information on the changes in 
shrimp cultivation. We observed an overall decrease in the area under shrimp ponds 
over these two years. The use of remote sensing technology to monitor changes in the 
size and number of ponds and frequent mapping using EO data enable us to have 
reliable data to predict the production volume in one area ahead of time. This kind of 
information is valuable for buyers and processors as they can adjust their exporting 
volume or arrange other procurement channels to cover the loss when a decrease  
in production is predicted. This information is also helpful in policymaking towards 
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sustainable production for future years (Y. Chen et al. 2021). For example, the 
government or international organizations can monitor whether the coastal areas have 
been developed for aquaculture use illegally, and if so, to what extent.  

We also note that change detection studies with this imagery have limitations:  
DMC-3/TripleSat has low cloud coverage; however, it also has a slightly lower spatial 
resolution than Jilin. Further, Jilin-1’s overall accuracy was 2% higher than that of 
DMC-3/TripleSat because of comparatively greater spatial resolution. This high 
resolution enabled us to extract even smaller shrimp ponds very clearly, compared to 
what we can do with the Sentinel imagery. 

5. CONCLUSION 

As Jilin and DMC-3 satellite data are optical data vulnerable to cloud cover, this 
hampers the availability of data on cloudy days, especially during rainy seasons.  
This also results in more mixed classes. Time series imagery can help in enhancing 
classification accuracy (in classifying vegetation and water bodies). The categorization 
may benefit from necessary field-based observations (particularly features to 
distinguish between shrimp ponds and other ponds). There is a high possibility of 
mixed classes while differentiating water bodies because the area is dominated by 
water. Some water bodies have vegetation and water waves, causing a change in 
reflectance values leading to misclassification. TripleSat and Jilin were not helpful in 
built-up and settlement classification due to the absence of the SWIR band. 
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