
Inukai, Keigo; Shimodaira, Yuta; Shiozawa, Kohei

Working Paper

Revisiting CES utility functions for distributional
preferences: Do people face the equality-efficiency
trade-off?

ISER Discussion Paper, No. 1195

Provided in Cooperation with:
The Institute of Social and Economic Research (ISER), Osaka University

Suggested Citation: Inukai, Keigo; Shimodaira, Yuta; Shiozawa, Kohei (2022) : Revisiting CES utility
functions for distributional preferences: Do people face the equality-efficiency trade-off?, ISER
Discussion Paper, No. 1195, Osaka University, Institute of Social and Economic Research (ISER),
Osaka

This Version is available at:
https://hdl.handle.net/10419/296840

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/296840
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


  ISSN (Print) 0473-453X 
Discussion Paper No. 1195                         ISSN (Online) 2435-0982 

The Institute of Social and Economic Research 
Osaka University 

6-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan 
 

 
 
 
 
 

 

 
 
 
 
 
 

October 2022

 
REVISITING CES UTILITY FUNCTIONS  

FOR DISTRIBUTIONAL PREFERENCES:  
DO PEOPLE FACE  

THE EQUALITY–EFFICIENCY TRADE-OFF? 
 
 

Keigo Inukai 
Yuta Shimodaira 
Kohei Shiozawa 

 



Revisiting CES utility functions for

distributional preferences: Do people face the

equality–efficiency trade-off?

Keigo Inukai, Yuta Shimodaira, and Kohei Shiozawa∗

October 18, 2022

Abstract

The constant elasticity of substitution (CES) function is widely

used to model distributional preferences in modified dictator games.

However, it has been pointed out that its parameter interpretations

are inconsistent and problematic in applications. We constructed a

model to address this issue by combining two formulations of the

CES function. We demonstrated that the proposed model provides

consistent interpretations of parameters. Our results clarified that

the conventional interpretations of the standard CES function pa-

rameters for describing distributional preferences are inappropriate.

Notably, “the equality–efficiency trade-off,” a conventional interpre-

tation of the substitution parameter, is unrelated to observed indi-

vidual behaviors.
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1 Introduction

Modeling individual preferences is a central issue in understanding individ-

uals’ other-regarding behavior observed in experiments. One of the most

employed modeling strategies is an outcome-based model that focuses on

an individual’s concerns about the distribution of payoffs among that indi-

vidual and others (Fehr and Schmidt, 2006, Section 3.1; Cooper and Kagel,

2016, Section II). Among those strategies, the constant elasticity of substi-

tution (CES) utility function of Arrow et al. (1961) has been shown to be

a flexible and useful specification in modeling behaviors in modified dic-

tator game experiments (Andreoni and Miller, 2002; Fisman, Kariv and

Markovits, 2007).1

The attractiveness of the model based on CES utility is due to the the-

oretical flexibility that encompasses typical forms of other-regarding pref-

erences such as Rawlsian inequality aversion, altruistic, and selfish pref-

erences, each of which corresponds to extreme cases of the CES utility

function. More importantly, the CES utility function encompasses these

typical forms in a continuous manner using two parameters α—distribution

parameter—and ρ—substitution parameter. The parameter α controls the

relative importance of the own and others’ payoffs. The parameter ρ con-

trols the elasticity of substitution between these payoffs. Modeling that

uses the CES utility function enables us to study the heterogeneous na-

ture of individual preferences for “equality” and “efficiency.” Indeed, there

have been many papers documenting the heterogeneity of preferences and

their association with other variables (Andreoni and Miller, 2002; Fisman,

Kariv and Markovits, 2007; Fisman, Jakiela and Kariv, 2014, 2015; Fisman

et al., 2015, 2022; Li, Dow and Kariv, 2017; Li et al., 2022).2 The standard

1Cox, Friedman and Gjerstad (2007) employed a modified version of the CES utility
function to model behaviors observed in several experiments. In this paper, we focus
on the direct use of the standard CES utility function, specifically in modified dictator
game experiments.

2Concern for the efficiency of distribution is also an essential element of the other-
regarding preferences that have been studied in the literature (Charness and Rabin,
2002; Engelmann and Strobel, 2004, 2006; Fehr, Naef and Schmidt, 2006; Fehr and
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formulation of the CES utility function is also used to study distributional

preferences in different choice environments or contexts (Andreoni, 2007;

Becker, Häger and Heufer, 2015; Brown, Meer and Williams, 2019; Erkut,

2022; Heufer, van Bruggen and Yang, 2020; Hong, Ding and Yao, 2015;

Jakiela, 2013; Korenok, Millner and Razzolini, 2013; Müller, 2019; Porter

and Adams, 2016; Robson, 2021).

Despite its appeal, the standard CES utility function is also known to

have a theoretical difficulty. That is, in the limit of parameters correspond-

ing to the Rawlsian maximin-type form (i.e., Leontief function form), the

distribution parameter becomes ineffective in identifying differences in the

utility level or behavior, and thus loses its natural interpretation. In the

context of other-regarding preferences, this is a serious problem, because

the distribution parameter is supposed to correspond to one of the central

concerns, equality of the distribution behaviors. Although Thöni (2015)

has articulated it as an essential problem in this context, this issue has

not received much attention. On the other hand, in the field of macroe-

conomics, this theoretical problem is recognized from the very beginning

(Arrow et al., 1961, p.231). It has been studied as a problem of how to

normalize the CES production function (Klump, McAdam and Willman,

2012; Embrey, 2019). Several variants of the CES function have been pro-

posed, which can be regarded as variations of the normalization constant

of the input and output variables (Klump, McAdam and Willman, 2012,

Section 2; Embrey, 2019, Section 4).3

Similar to theoretical studies, there has been a scarcity of studies on

the parameter interpretation of the CES function in analyzing experimental

data on distributional preferences. For example, Becker, Häger and Heufer

(2015) briefly described potential problems of the standard CES function

and attempted to analyze the data more appropriately by combining es-

Schmidt, 2006, Section 4.2; Cooper and Kagel, 2016, Section II.C).
3In this paper, we do not discuss in general which normalization is more desirable

to use in the analysis of experimental data. Instead, we address the parameter inter-
pretation by combining CES specifications, which have been shown to provide partial
solutions in prior studies.
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timation methods. However, Becker, Häger and Heufer (2015) does not

clarify the problems with the conventional method as we do in the present

paper.

Gauriot, Heger and Slonim (2020) is another such example, discussing

the potentially inappropriate interpretation of the distribution parameter

in conventional group-level analysis using the CES utility function or equiv-

alent functional systems. Specifically, the authors proposed a novel utility

function to generalize the CES function. However, its theoretical prop-

erties are less clear than the well-studied CES functions.4 The authors

also mainly discussed group-level rather than individual-level analyses. Fi-

nally, in Breitmoser (2013), the focus is on various stochastic modeling

approaches using the standard CES utility function as opposed to the re-

lationship between parameter values and observed behavior or preferences.

Hence, despite its broad applications, the problem in interpreting parame-

ter values of the CES utility function has not been resolved adequately in

the context of distributional preferences.

This paper aims to address the interpretation of parameter values of

the CES utility function in individual-level analysis. We adopt a strat-

egy using two formulations from the theoretical studies of CES functions,

the standard formulation of Arrow et al. (1961) and a variant of Senhadji

(1997), combining them in a way that compensates for each other’s dis-

advantages. We formulated a statistical model using a combined class of

utility functions.

We reanalyzed the well-known data of Fisman, Kariv and Markovits

(2007). The reanalysis showed that the problem of interpreting the distri-

bution parameter is critical in this context, and that the proposed model

4The authors proposed to generalize the curvature parameter so that different values
can be specified for the individual’s and others’ payoffs. However, as easily seen from
some numerical simulations, it does not seem very promising in terms of solving the
problem of interpretation of the distribution parameter. For example, in their formu-
lation, it is possible to move the two curvature parameters, keeping α = 1/2 fixed, to
represent behaviors ranging from always spending equally to always allocating the most
to oneself (or others). We believe this makes whatever α is expected to represent more
ambiguous.
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provides a more consistent interpretation than the standard CES model.

Furthermore, the consistent interpretation of the distribution parameter re-

vealed that the conventional interpretation of the substitution parameter—

“the equality–efficiency trade-off”—may be misleading. In other words,

“the equality–efficiency trade-off” interpretation of the substitution pa-

rameter is a mathematical artifact that stems from a shortcoming of the

standard CES function in that it cannot characterize a specific range of be-

haviors. Hence, it is not primarily rooted in the behavior of the subjects.

We also conducted a parameter recovery analysis using simulations to

examine the behavior of the model (Wilson and Collins, 2019). The re-

sults revealed that while both two parameter estimations were reasonably

recovered over a broad range of possible parameter values, the estimated

distribution parameter was more reliable than the estimated substitution

parameter. The instability of the substitution parameter estimation de-

pends mainly on the value of the distribution parameter rather than the

value of the substitution parameter. Based on these facts, we present spe-

cific points that should be considered by researchers using this method.

The remainder of the paper is organized as follows. Section 2 pro-

vides details of the shortcoming of the standard CES utility function and

describes our model, which characterizes a broader range of behaviors. Sec-

tion 3 presents the results of a reanalysis of the well-known data of Fisman,

Kariv and Markovits (2007) and Section 4 presents the parameter recovery

simulation. Section 5 concludes.

2 Theory

In this paper, we propose a modified CES utility model to analyze distribu-

tional preferences based on the experimental methodology of Fisman, Kariv

and Markovits (2007, henceforth FKM). In their methodology, each subject

participates in a modified dictator game5 and is asked to allocate mone-

5The modified dictator game was developed by Andreoni and Miller (2002) to test
whether the redistribution decisions were consistent with the utility maximization model.
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tary payoffs between themselves and another anonymous subject. Each

allocation decision is made by choosing a pair of monetary payoffs (x1, x2)

from the budget line p1x1 + p2x2 = 1, where x1 and x2 correspond to the

payoffs to the self (the subject) and the other (an anonymous subject),

respectively. The ratio p2/p1 represents the price of giving. Each subject

makes 50 allocation decisions defined by 50 different prices of giving.

The experimental data are analyzed by using the utility maximization

model, which is a classical economic model of consumer behavior.6 In the

utility maximization model, it is assumed that there is a utility function

U(x1, x2) and that the payoff allocation (x1, x2) is generated from the fol-

lowing optimization problem:

max
x1,x2

U(x1, x2)

s.t. p1x1 + p2x2 ≦ 1

x1, x2 ≧ 0.

(1)

As seen in the above formulation, a crucial methodological decision for

properly modeling the redistribution behavior is the specification of the

parametric class of the utility function, which is explained in the following

subsection.

2.1 Utility function specification

In this subsection, we first describe the two conventional formulations and

their shortcomings. Then, using these two conventional specifications, we

propose a new class of parametric utility functions.

In FKM, the standard CES function originally derived by Arrow et al.

(1961) was used as a class of utility functions. The standard CES utility

6In the literature, a conventional data analysis procedure consists of two consecutive
parts. The first part is the revealed preference analysis (Afriat, 1967, 1972; Cham-
bers and Echenique, 2016), and the second is the econometric analysis described in the
present paper. However, in principle, these two procedures can be used independently.
Therefore, for simplicity, this paper focuses only on the econometric analysis.
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function is defined as follows:

U(x1, x2) = (αx−ρ
1 + (1− α)x−ρ

2 )−
1
ρ (2)

where α ∈ [0, 1] is the distribution parameter and ρ ∈ [−1,∞) \ {0} is

the substitution parameter. The distribution parameter α controls the rel-

ative importance of the payoffs. The substitution parameter ρ controls

the curvature of its indifference curves and characterizes the elasticity of

substitution σ ∈ (0,∞) as

σ =
1

ρ+ 1
. (3)

The standard CES utility function has three typical forms in the limit of

the substitution parameter. Specifically, the utility function (2) tends to

a symmetric Leontief utility function U(x1, x2) = min{x1, x2} as σ → 0

(ρ → ∞), a Cobb–Douglas utility function U(x1, x2) = xα
1x

1−α
2 as σ → 1

(ρ → 0), and a linear utility function U(x1, x2) = αx1+(1−α)x2 as σ → ∞
(ρ → −1). Figure 1 visualizes three limits.

It is known that special care must be taken when using CES-type func-

tions for modeling (Arrow et al., 1961, p.231). As seen in the first case,

about the limit of the function, which is visualized in the left panel of

Figure 1, the distribution parameter becomes less effective at describing

individual behaviors as σ approaches 0. In other words, as σ approaches

0, the ability of α to represent the relative importance of the payoffs de-

creases. This is an essential problem when studying altruistic preferences

(Thöni, 2015). Indeed, the ineffectiveness of the distribution parameter

means that the behavioral tendency to give some of one’s money to oth-

ers may not be represented by the parameter, even if it is present in the

observed allocation decisions.

Fortunately, there is another formulation of the CES function that over-

comes this well-known shortcoming. In Senhadji (1997), a reformulated

CES function was defined as follows:

U(x1, x2) = (α1+ρx−ρ
1 + (1− α)1+ρx−ρ

2 )−
1
ρ (4)

7



where α ∈ [0, 1], ρ ∈ [−1,∞) \ {0}. Figure 2 visualizes three limits of this

formulation. The reformulated CES utility function (4) tends to a Leontief

utility function U(x1, x2) = min{x1/α, x2/(1 − α)} as σ → 0 (ρ → ∞)

where σ is defined as (3). Moreover, for σ → 1 (ρ → 0), the limit is

U(x1, x2) = α−α(1−α)−(1−α) xα
1x

1−α
2 , which is a monotonic transformation

of the standard CES function (2) case. Hence, in this formulation, we can

circumvent the well-known deficit of the standard CES function. However,

on the contrary, this function approaches the symmetric linear utility func-

tion U(x1, x2) = x1 + x2 as σ → ∞ (ρ → −1), as visualized in the right

panel of Figure 2. Therefore, unfortunately, the distribution parameter

becomes ineffective in describing individual behaviors as σ approaches ∞,

which would also be an essential problem when studying altruistic prefer-

ences for the same reason discussed above.

Therefore, in this study, the class of utility functions was formulated by

the following combined definition of the above CES functions:

U(x1, x2) =


(α1+ρx−ρ

1 + (1− α)1+ρx−ρ
2 )−

1
ρ if ρ > 0 ( ⇐⇒ σ < 1)

α log(x1) + (1− α) log(x2) if ρ = 0 ( ⇐⇒ σ = 1)

(αx−ρ
1 + (1− α)x−ρ

2 )−
1
ρ if ρ < 0 ( ⇐⇒ σ > 1)

(5)

where α ∈ [0, 1], ρ ∈ [−1,∞), and σ = 1/(ρ + 1). The validity of this

formulation is clear. As mentioned above, each of the two conventional

formulations has its advantages and disadvantages in the exact opposite

limit of the parameter. Therefore, if we combine the two properly, we can

utilize the advantages of the two formulations while avoiding the disad-

vantages. Moreover, the combined formulation (5) has a well-defined and

well-known demand function, including the case σ → 1. Indeed, in both

of the conventional formulations (2) and (4), the corresponding demand

functions are exactly the same as those derived from the Cobb–Douglas

utility function.7 A visualization of indifference curves corresponding to

7In Thöni (2015), another reformulation was proposed as a remedy for the short-
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Figure 1: The standard CES function of Arrow et al. (1961)

Notes: Indifference curves of standard CES utility functions with α = 0.75. Each
panel depicts an approximation of a limiting case: σ = 0.1, σ = 1 + 10−3, and σ = 10
are depicted in the left, middle, and right panels, respectively. Dashed lines depict
equations x1 = x2 and x1/α = x2/(1− α). Note that the Leontief case (the left panel)
approximates the symmetric Leontief function while we set the distribution parameter
asymmetric.
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Figure 2: The CES function of Senhadji (1997)

Notes: Indifference curves of the reformulated CES utility functions of Senhadji (1997)
with α = 0.75. Each panel depicts an approximation of a limiting case: σ = 0.1,
σ = 1−10−3, and σ = 10 are depicted in the left, middle, and right panels, respectively.
Dashed lines depict equations x1 = x2 and x1/α = x2/(1 − α). Note that the linear
case (the right panel) approximates the symmetric linear function while we set the
distribution parameter asymmetric.
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this extended formulation would be a figure made from the above two fig-

ures in the following order: left of Figure 2, middle of Figure 2, middle of

Figure 1, and right of Figure 1.

In the analysis, the share form of the demand function, which is derived

from the utility maximization model (1) with the utility function specified

by (5), is used as in FKM:

s = p1x1 =


( α
1−α)

( α
1−α)+

(
p2
p1

)1−σ if σ ≦ 1

( α
1−α)

σ

( α
1−α)

σ
+
(

p2
p1

)1−σ otherwise

(6)

where α ∈ [0, 1] and σ ∈ (0,∞). Note that the amount of wealth is

normalized to one.

One can easily see that the distribution parameter α is always effective

in describing individual behaviors regardless of the elasticity of substitu-

tion σ, including its limits as σ tends to 0, 1, or ∞. Moreover, in this

formulation, the behavioral interpretation for the distribution parameter

α is clear for all three limiting cases. First, in the Leontief function case,

i.e., σ → 0, the distribution parameter characterizes the ratio of payoffs as

x1/x2 = α/(1− α). Second, in the Cobb–Douglas function case (σ = 1), it

characterizes the ratio of expenditure shares, i.e., p1x1/p2x2 = α/(1 − α).

Finally, in the linear function case, i.e., σ → ∞, it characterizes the degen-

erated allocation for self as p1x1 = 1 if p1/p2 ≦ α/(1 − α) and p1x1 = 0

otherwise.8

This gives us a good theoretical reason to interpret the distribution

parameter as a measure of preference for equality. Indeed, if we focus

comings of (2) and (4). However, the proposed formulation has another property that
when σ → 1, the demand function approaches that of the Cobb–Douglas utility function
with the distribution parameter α2/

(
α2 + (1 − α)2

)
, where α ∈ [0, 1]. Note that this

distribution parameter is equal to α only if α = 0, 0.5, 1. Therefore, to maintain the
classical interpretation of the limiting case in the center, i.e., when σ → 1, we adopt the
combined formulation (5).

8In the linear case, if p1/p2 = α/(1 − α), then any choice satisfying the budget
constraint is optimal.
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on α = 1/2, we see that, in every case identified above, the behavior

generally treats some quantity as equal depending on the price—in the

case of Leontief, it is the amount of payoffs; in the case of Cobb–Douglas,

the amount of spending; and in the linear case, the opportunity to occupy

payoffs. These seem to belong to a special case of “proportional equality,”

the traditional framework since Aristotle for discussing equality in relation

to distributive justice (Gosepath, 2021, Section 2.2). More precisely, if we

set α = 1/2, then
x1

x2

=

(
p2
p1

)σ

, (7)

hence, it satisfies the form of “proportional equality.” From this point of

view, the elasticity of substitution σ controls how strongly the decision

maker considers the relative price information as a valid signal to make the

distribution equal. As we will see in Section 3, this consistent interpretation

of the distribution parameter reveals problems with “the equality–efficiency

trade-off” interpretation of the substitution parameter ρ.

Finally, the limitations of this formulation should also be noted. As can

easily be seen from the definition of the utility function (5), in the selfish

case: α = 1, the (elasticity of) substitution parameter, ρ (or σ), becomes

irrelevant.9 In other words, the model does not satisfy identifiability in the

sense that more than one parameter pair corresponds to the same behavior

corresponding to the selfish case. This theoretical shortcoming is not a

problem posed only by our extension, but is a drawback associated with

the use of CES-type functions in general. In the following, we also report

the practical implications of these shortcomings to clarify the limitations.

2.2 Statistical model specification

In this study, to estimate the two parameters of the extended CES utility

function, a Bayesian statistical model was formulated. The model involves

9Although the exact opposite case (α = 0) raises similar issues, here, we only discuss
α = 1, which typically appears in the context of altruistic preferences.
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novelties to Bayesian modeling but are otherwise straightforward exten-

sions of standard methods such as Andreoni and Miller (2002) and FKM.

Specifically, an error term distribution of the share form demand and prior

distributions for the parameters were specified as described below.

2.2.1 Residual error term distribution

A truncated normal distribution was used for the residual error term.

Hence, it is assumed that an observation of the expenditure share is dis-

tributed on the unit interval in proportion to the normal distribution with

location s and scale σs. This formulation leads to a natural interpretation

that the expenditure share in the allocation decision is likely to be around

the theoretical share s.10

2.2.2 Prior distributions for parameters α, σ and σs

For the distribution parameter α, the uniform distribution on the unit

interval is used as a non-informative prior distribution.

For the elasticity of substitution σ, the prior distribution was specified

on log(σ) rather than on σ. Figure 3 visualizes the reason for this deci-

sion: the symmetric treatment of the three limiting cases. As we see in

the previous subsection, in the original scale (i.e., σ), the Leontief utility

function is placed at zero and the linear utility function at infinity, treating

both asymmetrically. On the other hand, this reparameterization allows

us to treat them symmetrically by placing the Leontief utility function at

negative infinity and the linear utility function at positive infinity, with the

10In the literature, a censored normal distribution, i.e., the two-limit Tobit model, has
been used for the distribution of the error term. However, the two-limit Tobit model can
lead to unnatural interpretations when the scale σs is moderately large. For example,
when s = 0.8 and σs = 0.1, the expenditure share is more likely to be in the right corner
(s = 1) instead of a point closer to the theoretical share s = 0.8. For this reason, we
specified the error term with the truncated normal distribution instead of the censored
distribution. Note that the former is also a standard specification in related literature
(Andreoni, Gillen and Harbaugh, 2013; Ahn et al., 2014; Echenique, Imai and Saito,
2020, Online Appendix).
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Cobb–Douglas utility function at the center. This symmetry is visible if

we see the parameters in the (σ, ρ+ 1)-plane as in Figure 3.

The prior distribution for log(σ) was set to the Student’s t-distribution

with degrees of freedom ν = 4. The reason for this choice lies in Figure 4.

The Student’s t-distribution prior on log(σ) (left panel) can treat each

of the three limits of the CES utility function more uniformly than can

the uniform prior (right panel). In other words, the uniform distribution

is not non-informative here because the uniform distribution on log(σ)

unintentionally emphasizes the Leontief and linear functions, as seen in the

right panel. The Cauchy distribution (the Student’s t-distribution with

degree of freedom ν = 1) and the normal distribution (the Student’s t-

distribution with degree of freedom ν = ∞) can be candidates for the prior

distribution. However, the degree of freedom ν = 4 is adopted here to make

the statistical model weakly informative and as parsimonious as possible

(Gelman, Simpson and Betancourt, 2017).

Finally, for the scale parameter σs of the residual error term, the ex-

ponential distribution with rate parameter λ = 0.5 was adopted as a prior

distribution. The rationale for this choice is as follows. First, note that

because demand is modeled in the share form (6), which can be expressed

within a unit interval, an error term with a scale of σs > 1.5 is sufficient

to mimic the uniformly random choice model proposed in Bronars (1987).

Furthermore, the 0.95-quantile and 0.99-quantile of the exponential distri-

bution with the rate parameter λ = 0.5 are about 1.5 and 2.3, respectively.

Therefore, this prior distribution assigns a positive probability value even

to models that can be considered as almost completely random choice be-

havior, and eventually, it does not seem to be very restrictive. This choice

allows us to keep the model as parsimonious as possible (Gelman, Simpson

and Betancourt, 2017).

2.3 Rescaling log(σ) to τ

Although the model was formulated by three parameters α, log(σ), and

σs, a different scale was used to analyze the data. In particular, log(σ)

was treated by converting to the value of F4: the cumulative distribution

13
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Figure 4: Prior distributions on log(σ)

Notes: Indifference curves of the extended CES functions with α = 0.5 and 30 different
values of log(σ) (solid lines) and the Cobb–Douglas utility function (dotted lines). Left:
30 different values of log(σ) are the r-quantile points of the Student’s t-distribution with
degree of freedom ν = 4 where r takes a value corresponding to one of the points that
divide interval [0.005, 0.995] into 29 equal length intervals. Right: 30 different values of
log(σ) are the k/29-quantile points (k = 0, 1, . . . , 29) of the uniform distribution on the
closed interval between the 0.005-quantile and the 0.995-quantile points of the Student’s
t-distribution with ν = 4. Note that if we use the uniform distribution on a broader
interval, it gives more emphasis to the Leontief and linear functions.
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function of the Student’s t-distribution with ν = 4.11 Let τ be the rescaled

substitution parameter defined as follows:

τ = F4

(
log(σ)

)
=

1

2
+

log(σ)
(
log(σ)2 + 6

)
2
(
log(σ)2 + 4

) 3
2

(8)

where log(σ) ∈ (−∞,∞). Note that τ is defined by using a one-to-one

correspondence from ρ: the Leontief limit ρ → ∞ corresponds to τ → 0,

the Cobb–Douglas limit ρ → 0 corresponds to τ = 1/2, and the linear limit

ρ → −1 corresponds to τ → 1. Eventually, data analysis was conducted

based on the parameters α, τ , and σs.

This rescaling has two methodological advantages. First, because τ is

in the unit interval, it is normalized to be on the same scale as α. Using

the same scale helps us compare the variability of α and τ in the analysis.

Second, this rescaling enables a well-balanced treatment of the three limits

of the CES utility function. Indeed, as can be seen in Figure 4, if parameter

log(σ) is weighted by the Student’s t-distribution with ν = 4, then the

three limits of the CES utility function are more balanced than the original

scale that corresponds to a uniform weight on log(σ). That is to say, the

cumulative distribution function F4 can map the three limits of the CES

utility function on the unit interval in a balanced way.12

3 Reanalysis of Fisman, Kariv andMarkovits

(2007)

We reanalyzed FKM’s replication data (Fisman, Kariv and Markovits,

2019).13 For comparison, we also estimated the standard CES version of

11See, for example, Shaw (2006).
12Note that the prior distribution set to log(σ) can also be interpreted as a uniform

prior distribution on the parameter τ . In other words, τ is a scale to normalize and,
at the same time, balance the three limiting cases of the CES utility function. Note
that our Bayesian method can be modified to a maximum likelihood method or a least
squares method by using some optimization methods (Gelman et al., 2013, Section 4.5).
However, such modifications are not essential for the purposes of this paper.

13We used only the data of the two-person budget set experiment in FKM.
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our model, that is, a model specified by the standard CES utility function

(2) and the statistical assumptions described in Subsection 2.2.

Parameter estimation is conducted by simulating the posterior distribu-

tion of parameters by Markov chain Monte Carlo (MCMC) methods. The

analysis is implemented in R (R Core Team, 2016) using MCMC methods

in Stan (Carpenter et al., 2017; Stan Development Team, 2022).

3.1 Meaningfulness of the distribution parameter

First, Figure 5 shows that our extended CES model is more appropriate

than the standard CES model for estimating the distribution parameter

α. When compared with the observed choices depicted in the top panel

of each column, the posterior distribution of α and its estimate for our

extended CES model (the vertical dashed line depicted in the panel labeled

“Extended”) seem to be more relevant than the standard CES version

(labeled “Standard”). More specifically, the posterior distribution of the

standard CES version of our model spreads if the observed choices are

concentrated on the diagonal line, and shrinks around α = 1 if the observed

choice is not on the diagonal line. This is caused directly by the vanishing

of the distribution parameter in the standard CES utility function if ρ ≈ ∞
(or τ ≈ 0). By contrast, the extended CES model helps us interpret the

distribution parameter α consistently over individuals.

3.2 “Equality–efficiency trade-off”

Here, we point out that interpreting the CES parameter ρ as “the equality–

efficiency trade-off” is inappropriate. In the literature, the parameter ρ is

often taken to represent “the equality–efficiency trade-off” that individual

subjects face when distributing payoffs. This interpretation stems from

the fact that in the standard CES model, the case ρ → ∞ (or τ → 0) cor-

responds to the symmetric Leontief function. According to the standard

CES model, as ρ positively diverges, choices are concentrated around the

diagonal line x2 = x1, regardless of relative prices (see Figure 1). Thus,

the equality of payoff allocations increases, while at the same time, the effi-
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Figure 5: Meaningfulness of the extended CES model

Notes: Each column corresponds to an individual subject, whose ID is presented on the
top panels. The posterior mean estimates α̂ and τ̂ using our extended model are also
presented on the top panels. Top: The observed choices of an individual subject (red
circle), the estimated choices based on our model (blue square), and the residuals defined
by the differences between the two (black arrow). Bottom: The posterior samples of
(α, τ) based on our model (labeled “Extended”) and the standard CES version of the
model (labeled “Standard”), i.e., a model specified with the utility function (2) and the
statistical assumptions described in Subsection 2.2. The dashed lines indicate posterior
mean estimates, which are also presented at the top-right of each panel.
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ciency of payoff allocations decreases. However, Figure 5 shows that these

subjects did not face such a “trade-off.” While the τ estimates do not dif-

fer much between these subjects in both the standard and extended CES

models, the observed behavioral tendencies for minimizing the differences

(maximizing equality) vary considerably between subjects—obviously, ID-

16 allocates equality-oriented, while ID-76 behaves quite selfishly, if not

perfectly, although they both give up efficiency. It is still reasonable to

interpret a large ρ (or a small τ) as low-efficiency orientation as conven-

tionally assumed. However, it is not appropriate to interpret a large ρ as

a high-equality orientation because the value of ρ solely does not discrimi-

nate between equality-oriented ID-16 and selfish ID-76. The mathematical

shortcoming of the standard CES function—for ρ → ∞ (or τ → 0), the

effect of α vanishes, and the representation of the various behavioral pat-

terns degenerates to the equality orientation—has led to the mistaken un-

derstanding of ρ as the “equality–efficiency trade-off.” Note that although

our extension of the CES function resolves α’s degeneracy, it is still not

plausible to interpret a large ρ as a high-equality orientation.

Let us now consider the interpretation of the two parameters of the

extended CES model. In the extended CES model, τ represents intensity

of maximizing efficiency by appropriately controlling the strength of the

behavioral reaction to price changes regardless of the value of α, excluding

the extreme case α = 1. As noted in section 2.1, focusing on α = 1/2, the

three extreme cases of Leontief, Cobb–Douglas, and linear are special cases

of “proportional equality,” so the distribution parameter α seems appropri-

ate as a measure of preference for equality. From this fact, we can also say

that τ is a parameter that organizes the various forms of equality-focused

behavior in terms of their different responses to price changes (or differ-

ences in the intensity of maximizing efficiency). Therefore, the extended

CES model maps the distributional behavior of subjects—including egal-

itarian, non-egalitarian, and these intermediate—using two separate axes

of “equality” and “efficiency.”14

14 It is reasonable to assume that this trade-off exists in distributional behavior if one

18



Finally, although the CES parameters are a map that organizes various

distributional behaviors, this is not a complete list of possible behavioral

patterns. Which of these various behaviors is socially more desirable is

not self-evident. Indeed, the desirability issue seems to have a substantial

relationship with one of the main issues in political philosophy (Gosepath,

2021, Section 3). Thus, in general, one should be cautious about judging

small (or large) values of CES parameters as desirable or just a priori.

3.3 Comparison with the standard CES specification

Figure 6 shows estimation differences between our model and the standard

CES version across all subjects. As intended in the utility function spec-

ification, the estimation differences for the distribution parameter α are

prevalent for the case τ̂ < 0.5. Moreover, in most of these cases, the es-

timated α of our model is considerably smaller than that of the standard

CES model. The reason for this result can be inferred from Figure 5. If a

subject behaves so that the flexible CES estimate is around α = 0.5 (as in

the left panel of Figure 5), then the posterior mean of the standard CES

model must be higher than 0.5 because such behavior is compatible with a

broad range of α > 0.5 for the standard CES model. On the other hand,

if a subject behaves so that the flexible CES estimate has α > 0.5 (as in

the middle and right panels of Figure 5), then the posterior mean of the

standard CES model must be higher than that value because such behavior

is only compatible with some narrow range around α ≈ 1 for the standard

CES model. Thus, by using the standard CES specification, each of these

intentionally designs a set of choices such that subjects face an “equality–efficiency trade-
off,” Engelmann and Strobel (2004, 2006) are examples of such experiments. However,
whether this trade-off represents a typical real-world constraint is context-dependent
and debatable. For example, it has long been argued that equality does not necessarily
sacrifice (to a large extent) efficiency (Okun, 2015, Section 3 and 4; Herzog, 2021, Sec-
tion 4.2). Andersen and Maibom (2020) have noted that “empirical knowledge on the
precise form and slope of the trade-off is scant.” They have also argued for the trade-off
between equality (expressed using the Gini coefficient) and efficiency (described as av-
erage income per capita) using cross-country data. However, even in this existent case,
it has been shown that many countries would not face this trade-off.
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subjects would be considered more selfish than their behavioral tendencies

would indicate.

For the case τ̂ > 0.5, the estimation differences on α are much less

prevalent. This also reflects our intention because the utility function in

our model is defined by the standard CES function when τ > 0.5. However,

note that even for τ̂ > 0.5, we see differences in the estimates, which are

concentrated around α = 1. More precisely, for some cases such that τ̂ >

0.5 and α̂ ≈ 1, the estimated τ are smaller in our model than in the standard

CES model. Figure 7 shows the reason behind this result. As can be seen

in the right panel, in the standard CES model, the posterior distribution of

τ is not consistent with the range τ < 0.5 because most of the parameters

(α, τ) in that range correspond to a symmetric Leontief function (i.e., a

tendency to maximize equality) that is far from the observed behavior

presented in the left panel (i.e., a tendency to minimize equality). On

the other hand, in our model, the posterior distribution of τ is consistent

with the range τ < 0.5 because the parameter α represents intensity of

minimizing inequality regardless of the value τ . Therefore, the posterior

distribution of τ becomes broader, and its posterior mean becomes smaller

in our model than in the standard CES model.

3.4 Inferential uncertainty

First, note that the wide posterior distribution of τ , shown in Figure 7,

is not a drawback of our model compared with the standard CES model.

Rather, our model adequately represents the uncertainty because the ob-

served behavior is consistent with a wide range of τ . In the standard CES

model, on the other hand, the observed behavior is mainly consistent with

τ > 0.5, but this is primarily due to the ineffectiveness of α in the τ < 0.5

area, rather than an observation of some clear tendency to respond to price

changes.

However, it is also true that this variability is a problem that needs to

be addressed as long as we use the CES utility function framework in the

context of altruistic preferences. Indeed, as can be seen from definition (5),

for any value of τ , α = 1 corresponds to a pure selfish preference that only
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considers x1 (the payoff to self) and ignores x2 (the payoff to the other).

Hence, when α = 1, the value of τ can be anything, and thus, it is not

identifiable. Moreover, in the context of distributional preferences, some

selfish preference-type subject may correspond to α ≈ 1 in the CES utility

function framework. Therefore, in such cases, an estimate of τ tends to be

noisy because many values of τ are consistent with the observed behavior

that indicates α ≈ 1. Figure 8 visualizes this point. As shown in the figure

on the left, there are a non-negligible number of subjects who show α̂ ≈ 1

in this experiment; and in the figure on the right, the uncertainty in the

posterior distribution of τ is large for those subjects.

Finally, Figure 8 suggests two more patterns of inferential uncertainty

of the model. First, the uncertainty of α is smaller than that of τ . This

can be seen from the fact that the vertical bars of each marker tend to

be relatively shorter than the horizontal bars.15 Second, the uncertainty is

larger when the estimated scale of residual error σ̂s is large. This can be

seen from the fact that the bars of each marker tend to be relatively longer

for the red triangles than for the blue circles.

In the next subsection, we present simulation results to confirm these

general patterns of our model’s inferential uncertainty in a more systematic

way, and to provide practical guidelines for using this methodology in the

context of distributional preferences.

4 Parameter recovery simulation

To see general patterns of our model’s inferential uncertainty, we conducted

a parameter recovery simulation, which is a simple yet important practice

for any model-based behavior analysis (Wilson and Collins, 2019).

We conducted a simulation study by generating synthetic data sets

fixing parameters α, τ , and σs. In particular, α and τ are fixed so that

15Note that the scales of the axes are different in the right panel. In particular, if the
length of the vertical and horizontal bars on a marker is the same, it means that the
former is actually smaller than the latter.
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the overall simulation covers a valid range such that α ≧ 0.5 and τ ∈
[0, 1].16 Moreover, σs was fixed at σs = 0.01, 0.05, 0.1, and 0.15 to cover a

typical range obtained by our estimation in the FKM data. For any fixed

parameters α, τ , and σs, we generated 200 data sets, each consisting of 50

choices. Hence, in total, we generated 6× 11× 4× 200 = 52, 800 data sets

in the entire simulation. In the following, we focus on the cases σs = 0.01

and σs = 0.1. Results for other cases are presented in the Appendix.

Each choice is generated by first computing the share demand from

equation (6) and then generating a noisy share demand from the truncated

normal distribution described in 2.2.1 in subsection 2.2.17 Note that for

comparison purposes, we used an identical price system with 50 specific

budget constraints throughout the entire simulation.

4.1 Parameter identification (Case σs = 0.01)

First, by focusing on the case of σs = 0.01, we observe the impact of the

parameter identification problem. Figure 9 shows simulation results for

this case.

The first thing to note is that for most of the true parameters, we

can recover their values by our inference procedure. In particular, we are

able to recover the distribution parameter α at a level that can be used

in practice. This is good news because the distribution parameter is a

more fundamental parameter in the context of distributional preferences.

Moreover, the rescaled substitution parameter τ can also be recovered in

large part of the entire combinations of true parameter values. However,

note that the estimation of τ is relatively more variable than that of α in

each combination.

16More precisely, α was set at α = 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99, and τ was set at
τ = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99. Note that we ignore α < 0.5
because it is symmetric to the case α > 0.5.

17Parameter σ is computed from fixed τ by using the quantile function of the Student’s
t-distribution with ν = 4 and the exponential function. See the definition of τ in (8) in
subsection 2.3.
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Figure 9: Estimation results of the simulation with σs = 0.01

Notes: For each true parameter (τ, α), the true parameter value (black closed marker),
200 corresponding simulation results (colored open markers), and mean of the 200 sim-
ulations (blue open marker) are depicted. Note that true parameter values and corre-
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On the other hand, as expected from definition (5), the parameter iden-

tification problem for τ is severe when α = 0.99. This is a common feature

for any CES specification and hence, inevitable. Even when α = 0.9, iden-

tifying τ is difficult for cases such that τ ≧ 0.7. It should also be noted

that this latter difficulty stems from not only the specification of the CES,

but also the finite nature of the experimental method. Specifically, because

the budget system consists of a finite number of price systems, there is a

limited amount of information to identify subtle differences in τ .

4.2 Inferential uncertainty (Case σs = 0.1)

Finally, we focus on a more realistic case, σs = 0.1, to examine the char-

acteristics of the inferential uncertainty of our estimation procedure. Fig-

ure 10 shows the result. The first thing to note is that, as expected in

the previous section, the inferential uncertainty is larger when the scale of

residual error σs is large. As in the previous case, α can be recovered more

precisely than τ . Indeed, if we note that the horizontal and vertical axes

in this figure are drawn on the same scale, we see that the α estimate is

less likely to overlap with its neighbor 0.1 away when compared with τ .

We also see that while the estimates for τ are not so precise, they do not

overlap significantly with parameters that are 0.2 apart, which suggests

that they hold reasonable information. However, it should be noted that

the bias and variability of the estimates become more severe for α = 0.9

and 0.99.

Hence, to observe this uncertainty more quantitatively, Figure 11 sum-

marizes the same results in terms of inferential error. For both parameters,

the magnitude of estimation error largely depends on the value of α rather

than that of τ . In general, the estimation error is relatively smaller for α

than for τ , but even for α, distinguishing subtle differences seems difficult

when α ≈ 1. However, estimation for α is reasonably reliable to distinguish

large differences. Moreover, estimation for τ is also reliable when we focus

on the cases where the value of α is not extreme such as α ≦ 0.8. Note that

in the FKM data, a non-negligible number of subjects were in that reliable

range, and the variation of τ in those subjects was not trivial (see Fig-
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ure 8). Hence, even though these parameter estimates are not perfect, we

may be able to extract valid and meaningful information about behavioral

differences and the implications of these differences.

4.3 Discussion of the Results

Overall, these results suggest that special care should be taken when us-

ing this experimental procedure in practice, especially when analyzing the

value of τ . Especially when α ≈ 1, it is inevitable that we consider these

limitations in the analysis if we aim to obtain consistent results among dif-

ferent subjects. In the context of distributional preferences, such difficult

cases are not merely logical possibilities because most experiments must

involve some proportion of selfish preference-type subjects. For example,

in such cases, τ can be dropped in the subsequent analysis if α is above

a certain threshold, e.g., α > 0.8 in the current settings. It is also de-

sirable to conduct a sensitivity analysis of the threshold value. However,

this threshold will depend on the purpose of the analysis, the set of the

price systems, and the setting of the statistical model, so that no generic

threshold is likely to exist. Therefore, it would be desirable to conduct

simulations and set the threshold in advance for each individual study.

5 Conclusion

Prior work has developed an experimental procedure that allows for collect-

ing rich individual-level data to elicit distributional preferences (Andreoni

and Miller, 2002; Fisman, Kariv and Markovits, 2007). While this pro-

cedure has been adopted in several application studies, it has also been

pointed out that the estimated distribution parameter is not meaningful

over a range of possible parameter values (Thöni, 2015). This study ex-

tended the basic estimation method and demonstrated its properties to

provide some guidelines for its use in the context of distributional prefer-

ences.

We extended the class of CES utility functions by using a combination
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of known CES specifications to make interpretation of the distribution pa-

rameter, α, align better with individual behavior. Based on the extended

CES utility specification, we developed a parameter estimation method

using the Bayesian statistical modeling approach that also gives a more

balanced scale for the substitution parameter, τ , than the original scale, ρ.

Our reanalysis of data from previous studies demonstrates that the

extended estimation method gives a straightforward interpretation of the

distribution parameter rather than the conventional method. This is due to

our extended CES specification that separately controls the distributional

share and the substitution reaction of individual behavior. Moreover, this

makes clear that the substitution parameter does not necessarily represent

“the equality–efficiency trade-off” because this interpretation is primarily

based on the limitation of the standard CES specification, and not on the

restriction of individual behavior. Note that our conclusion is not that

individuals never face such trade-offs. Instead, our results suggest that

to examine whether people face the trade-off, we should address it more

elaborately in the research design. Note that the existence of “the equality–

efficiency trade-off” is context-dependent and debatable (see footnote 14).

In our parameter recovery simulation study, we also found that the dis-

tribution parameter is more reliable to use in further analyses than the

substitution parameter. The estimates for the substitution parameter may

hold reasonable information if we use them with special care. More pre-

cisely, τ may have valid information when the distribution parameter α

is not close to 1. Hence, for example, one possible option is to drop τ if

α is above some threshold value, and conduct sensitivity analysis on the

threshold value. Because the threshold depends on the study design, it is

desirable to perform simulation analysis in advance. Note that, in the con-

text of distributional preferences, such difficult cases should not be mere

logical possibilities because most experiments should involve some selfish

preference-type subjects. In the Fisman, Kariv and Markovits (2007) data,

there was a non-trivial variation of τ (see Figure 8). Hence, even though

these parameter estimates are imperfect, we may be able to extract valid

and meaningful information about behavioral differences and their impli-
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cations. Finally, we reemphasize here that this type of simulation study is

a simple and important practice for any model-based behavioral analysis

(Wilson and Collins, 2019).

While this study extends the basic estimation method and provides a

more appropriate interpretation with some guidelines for its use, further

cautions are worth noting. First, as noted in section 3, we should take care

in interpreting the distribution parameter beyond the “equality” interpre-

tation. The equality-focused behavior represented by setting α = 1/2 is

a subset of the broad notion of “proportional equality,” which can con-

tain egalitarian and non-egalitarian ideas of justice (Gosepath, 2021, p.

8). Therefore, in particular, we should be cautious in making a priori

judgments that small (or large) values of the distribution parameter are

desirable or just. Note that this experiment focuses on a local distribu-

tional decision between a few people in an abstract setting. Hence, we

should be aware that concepts discussed in political philosophy, which fo-

cuses on more global and institutional problems in more specific contexts,

may not directly apply to this experimental setting. Future work should

examine appropriate meanings and contexts of “equality” and “efficiency”

represented by the CES parameters rather than assuming these a priori.

Second, our model cannot be a remedy for potential “experimenter demand

effects” (Zizzo, 2010). Hence, we should pay attention to when and how

to use this experimental procedure, even when we use our extended data

analysis method. Finally, because our focus in this study is on CES util-

ity functions and their parameters, it is obvious that some other variables

remained unchanged in the method and can be improved. In particular,

future work will consider other aspects of the model, such as the residual er-

ror term or the class of utility function in the first place, to make the model

more general and flexible, better representing subjects’ behavior. Future

work should also examine the set of price systems of the experiment to

make informative, cost-efficient, and purpose-oriented inferences.
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Appendix

We present the simulation results for the cases σs = 0.05 (Figure A1)

and σs = 0.15 (Figure A2). The general patterns are similar to the cases

σs = 0.01 and σs = 0.1. In particular, the estimation error is relatively

smaller for α than for τ . Limitations of the estimation are more severe

when noise is large, such as σs = 0.15. That is, even for α, distinguishing

subtle differences seems difficult when α ≈ 1. Therefore, as discussed in the

main text, to extract valid and meaningful information about behavioral

differences and their implications, they should be used with special care.
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Figure A1: Estimation error of the simulation with σs = 0.05

Notes: For each true parameter (τ, α), the true parameter value (black closed marker),
200 corresponding simulation results (colored open markers), and mean of the 200 sim-
ulations (blue open marker) are depicted. Note that true parameter values and corre-
sponding means calculated by 200 simulations are connected by black lines.
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Figure A2: Estimation error of the simulation with σs = 0.15

Notes: For each true parameter (τ, α), the true parameter value (black closed marker),
200 corresponding simulation results (colored open markers), and mean of the 200 sim-
ulations (blue open marker) are depicted. Note that true parameter values and corre-
sponding means calculated by 200 simulations are connected by black lines.
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