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Abstract

O’donoghue and Zweimüller (2004, J. of Econ. Growth), a seminal work, showed that
broadening leading breadth in patent protection can stimulate innovation. However, the
empirical literature has consistently found skeptical results on the positive effect. To fill the
gap, we build another framework where the quality improvement size is derived as an in-
terior solution. In our model, broadening leading breadth can negatively affect innovation
because each innovator is incentivized to free-ride the other innovators’ quality improve-
ments. As a further analysis, we quantitatively investigate the growth effect of intervention
in patent licensing negotiation using two different profit division rules derived from a coop-
erative game. We find that intervention in patent licensing negotiation increases the growth
rate and stabilizes the economy.
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1 Introduction

Research and development (R&D) is a cumulative process. Innovation builds on previous
innovations, similar to economists extending previous studies when writing their papers. The
cumulativeness creates an exciting but complex problem in the presence of the leading breadth, a
scope of patent protection against competition from higher-quality products.1 For a technology
to be patentable, it must have a sufficient novelty compared to past technologies. However,
the required novelty may be insufficient to avoid infringing existing patents. Generally, the
minimum improvement size for patentability does not equal the size of improvement needed
to avoid infringements of existing patents.2

Traditionally, strengthening patent protection had been recognized as an effective policy to
promote technological progress because such policy reforms increase the rewards of innovation.
Under a broader leading breadth, past innovators can claim patent infringement against new
innovators. Therefore, like other dimensions of patent protection (e.g., the length of patent
term, the lagging breadth, and the enforcement), the leading breadth enables patent holders
to appropriate the returns from inventions. The traditional idea that more rewards induce
more innovation is called the Schumpeterian effect. Many existing studies show that patent
protection has been consistently strengthened worldwide (e.g., Ginarte and Park, 1997; Park,
2008; Papageorgiadis et al., 2014).

However, the empirical studies do not support the straightforward idea that strong patent
protection enhances innovation. Lerner (2002), an inclusive survey paper, lists many empirical
studies and states that “these papers generally cast doubt on claims that enhancing patent policy
changes spurs innovative behavior.” Boldrin and Levine (2009) also collect numerous empirical
studies and summarize the findings as “they find weak or no empirical evidence that strength-
ening patent regimes increases innovation.” This counterintuitive result is a longstanding
question in the literature called the patent puzzle.

The leading breadth is no exception to the patent puzzle, although the literature on endoge-
nous growth theory has paid little attention to it. O’donoghue and Zweimüller (2004) (from
here on, O&Z) is a pioneer work incorporating leading breadth into a canonical quality-ladder
model, like pension in the overlapping generations model. Specifically, a new innovator must
pay the license fees to the past innovators but can eventually obtain the license fees from the
future innovators after the subsequent generational innovations occur. This feature yields the
so-called backloading effect, negatively affecting on the present discounted value of R&D by delay-
ing the timing of the future rewards. O&Z shows that the growth effect of broadening leading
breadth is always positive when the discount rate is sufficiently low such that the backloading

1This definition is from O’Donoghue et al. (1998). The concept of patent breadth includes both the lagging and
leading breadths. While lagging breadth is a scope that protects an invention from imitation, leading breadth is a
scope that protects an invention from future innovation.

2For the details, see Scotchmer (2004). She introduces a history of Maser and Laser to explain this point.
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effect is smaller than the Schumpeterian effect. However, there is no significant evidence of
the positive effect in empirical studies that focus on a specific policy reform that broadened the
leading breadth in the U.S. and Japan (e.g., Hall and Ziedonis, 2001; Sakakibara and Branstetter,
2001).3

The Schumpeterian effect in the O&Z model arises from (i) the exogenous size of the quality
improvement and (ii) the Bertrand competition where multiple firms on the quality ladder
can form a price cartel. First, for simplicity, they consider a special case in which the quality
improvement size is always the same as the minimum requirement for patenting (i.e., the
legal lower bound of the quality improvement for the grant), which is exogenously given as a
policy parameter. In other words, due to the corner solution, their model neglects the effect
of broadening leading breadth on the quality improvement size. Second, in their model, a
new innovator colludes with the licensors (i.e., the licensors do not produce their goods) to
maximize the profit of their cartel in the Bertrand competition. Because a broader leading
breadth increases the quality gap between the new innovator and the nearest rival outside the
cartel, the new innovator can set a higher markup. This results in the broadening of leading
breadth yielding a strong Schumpeterian effect in their model.

Our paper aims to explore the negative aspect of broadening leading breadth. We build
a modified O&Z-type model in which each R&D firm chooses the quality improvement size
as an interior solution. We find that the growth effect of broadening leading breadth can be
negative by shrinking the quality improvement size. Our result is opposite to O&Z because the
growth effect is still negative even when the discount rate is close to zero. It is well-known that
high-income countries tend to have a lower discount rate (e.g., Wang et al., 2016; Falk et al.,
2018). We contribute to the literature by solving the patent puzzle in developed countries, such
as the U.S. and Japan.

The fundamental mechanism of the negative growth effect is the free-ride on the past innova-
tors’ quality improvement. In the O&Z-type models, some successive firms in a quality ladder
form the cartel to enhance their monopolistic power. Our model assumes that the R&D success
probability decreases in the quality improvement size as a realistic assumption. Then, when
the past innovators in the cartel had sufficiently widened the quality gap between the nearest
rival firm, R&D firms will shrink the quality improvement size to join the cartel quickly.

Our model predicts that the broadening leading breadth reduces each patent’s contribution
to economic growth. This seems consistent with the aggregate data in the U.S. because the

3Hall and Ziedonis (2001) focus on the doctrine of equivalents by the Court of Appeals for the Federal Circuit
(CAFC) established in 1982 in the U.S. The doctrine of equivalents is a judicial treatment that even a new invention
that does not coincide with the claims of past patents could be considered infringing on them if the new invention is
intrinsically equivalent to them. As the doctrine of equivalents has expanded the scope of the leading breadth to the
outside of the claims, an invention has the propensity to infringe on similar past patents. Sakakibara and Branstetter
(2001) focus on the Japanese patent reform in 1988. This policy reform enabled patent applicants to include multiple
claims in the same patent application. As claims define the technological scope of the patent, subsequent inventions
are likely to infringe on past patents of similar inventions.
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Figure 1: (a) Number of patent applications and grants in the United States and (b) TFP growth
rate in the United States.

Source: The patent data is from the U.S. patent statistics chart (1963-2020) from the U.S. patent and
trademark office. The TFP data is from the Federal Reserve Bank of San Francisco.

total factor productivity (TFP) growth rate in the U.S. has not increased over time, whereas the
number of patent applications and grants has dramatically increased since the 1980s, as shown
in Figure 1. Hall and Ziedonis (2001) focus on the U.S. policy reforms in the 1980s and find
no significant evidence of accelerating the pace of innovation in the semiconductor industry
where innovation is very cumulative. They attribute the change in patenting strategy of firms
to the patent explosion since the 1980s. In high-tech industries where technologies are closely
related to each other, firms must be licensed with many patents separately held by independent
owners to commercialize their own technology. In private negotiations of patent licensing,
the relative bargaining power of each patent holder matters (e.g., Sakakibara, 2010). Hall and
Ziedonis (2001) emphasizes that firms have an incentive to “harvest” more patents from their
R&D to improve their negotiating position. Their view suggests that the patent policy reforms
have lowered the average quality of patents because firms began to apply for patents on trivial
technologies.

1.1 Related literature

The recent literature on Schumpeterian growth theory has emphasized the role of patent licens-
ing on economic growth (e.g., Chu, 2009; Chu et al., 2012; Chu and Pan, 2013; Niwa, 2016, 2018;
Yang, 2018; Suzuki, 2020; Kishimoto and Suzuki, 2021; Klein, 2022).

Our paper closely relates to Klein (2022) that quantitatively finds that the broadening leading
breadth reduces the growth rate. Although this result overlaps with ours, the specification is
quite different because we define the leading breadth as the extent of intra-industry patent
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infringement as O&Z. In contrast to O&Z, Klein (2022) defines the leading breadth as the extent
of inter-industry patent infringement.4 Although we do not consider such inter-industry patent
infringement, we allow a case in which a new innovator infringes the latest and older patents in
the industry. Therefore, our model can complement Klein (2022) by showing that the negative
growth effect of the broadening leading breadth can emerge in a different specification.

Furthermore, our paper relates to Chu (2009) that quantitatively evaluates how much reduc-
ing the backloading effect (e.g., lowering the license fees) increases the R&D in the O&Z-type
model. The author finds that reducing the backloading effect significantly increases the R&D.
However, it remains unclear how much such policies are possible because the license fees are
determined in private negotiations between the relevant firms and are not directly controllable
variables for outsiders. In reality, competition authorities or standard-setting organizations can
intervene in the negotiations to lower the license fees (Section 5 details this point). We quantita-
tively analyze how such interventions affect the growth rate by calibrating the model to the U.S.
economy. We find that, while the growth effect of the intervention is quantitatively small, it can
stabilize the macroeconomy by eliminating the multiplicity of equilibria. Thus, we contribute
to the literature by considering more specific policies and showing the macroeconomic effects.

1.2 Roadmap

The structure of our paper is as follows. Section 2 builds a modified O&Z-type model in which
each R&D firm chooses the size of quality improvement as an interior solution. Section 3 solves
the long-run equilibrium and shows that the R&D firms may choose a small improvement size
to enjoy a free-ride on the quality improvements by the other innovators. Section 4 analytically
shows that the broadening leading breadth may decrease the growth rate and discusses the
socially optimal innovation size. Section 5 calibrates the U.S. economy and quantitatively shows
that the broadening leading breadth decreases the growth rate. We also find that intervention
in patent licensing negotiation has a growth-enhancing effect. Section 6 concludes.

2 A baseline model

We consider a canonical model in the literature of leading breadth (e.g., O’donoghue and
Zweimüller, 2004; Chu, 2009). Following these studies, we incorporate the leading breadth of
patent and profit division between several innovators into the quality-ladder model of Grossman
and Helpman (1991, Ch.4).

4Klein (2022) assumes that an innovation infringes the patents of the leading firms in a fraction of ϕ ∈ (0, 1) of a
unit mass of industries. The author quantitatively finds that an increasing ϕ (i.e., the broadening leading breadth)
is growth-reducing.

5



2.1 Households

We consider the following closed economy in continuous time. The economy consists of a
continuum of identical infinitely living households of measure L > 0. There is no population
growth. A representative household has the following intertemporal utility function:

Ut =
∫ ∞

0
exp(−ρt) ln ctdt, (1)

where ρ is the subjective discount rate and ct is a consumption index of final goods at time t.

The economy has a unit-continuum of industries indexed by h ∈ [0, 1], and the household
consumes final goods across all industries. In each industry, there are some countable firms
that produce final goods that are differentiated in terms of quality. Let N (h) be the set of the
firms producing goods in industry h. Firm k ∈ N (h) produces a final good whose quality is
qk(h).

The instantaneous period utility is given by

ln ct =
∫ 1

0
ln

(
∑

k∈N (h)
qk(h)xkt(h)

)
dh, (2)

where xkt(h) is the consumption of firm k’s good in industry h at time t. According to the
additive specification in the abovementioned period utility, all goods in each industry are
perfect substitutes for households.

Let et be the household’s expenditure in time t. Then, it is given by

et =
∫ 1

0

(
∑

k∈N (h)
pkt(h)xkt(h)

)
dh,

where pkt(h) is the price of firm k’s good in industry h at time t. Every household supplies
a unit of labor inelastically and earns a wage in each period. The budget constraint for each
period is given by

ȧt = rtat + wt − et,

where at is the value of assets (equities), rt is the interest rate, and wt is the wage rate.

We solve the utility maximization problem in two steps: static problem and dynamic prob-
lem. First, given instantaneous expenditure level et, the household maximizes the period
utility function ln ct. Under the logarithmic utility function, the household spends the budget
equally across h ∈ [0, 1]. Moreover, for each industry, the household chooses the good with
the lowest quality-adjusted price. Assume that firm k̃(h) produces such a good in industry h.
Then, the individual demand in industry h at time t is xk̃t(h) = et/pk̃t(h) and xkt(h) = 0 for
k ∈ N (h)\{k̃(h)}.
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Second, we solve the dynamic maximization problem. Every household decides the expen-
diture in each period to maximize the intertemporal utility function, Ut, subject to the intertem-
poral budget constraint. Their indirect period utility function is given by ln ct = ln et − ln Pt,
where Pt is the aggregate price index associated with the consumption index ct, which is defined
as

ln Pt ≡
∫ 1

0
ln
(

pk̃t(h)
qk̃(h)

)
dh.

Each household spends to maximize the intertemporal utility. From the intertemporal utility
maximization, the household’s optimal time path for spending is ėt/et = rt − ρ. The aggregate
expenditure is Et ≡ etL. As L is constant, Ėt/Et = rt − ρ also holds. We normalize the aggregate
price index at each time so that Pt = 1. Then, et = ct holds for all time. Therefore, the familiar
Euler equation ċt/ct = rt − ρ also holds.

The total demand for the good that has the quality k̃ in industry h is Xk̃t(h) ≡ xk̃t(h)L =

Et/pk̃t(h). Hereafter, the notations omit t and h in cases where there is no risk of misunder-
standing.

2.2 Industries

Consider an industry in which there are many generations of innovators.5 More recent innova-
tors can produce higher quality goods than older innovators. Let “firm 0” be the latest innovator
at the time. Similarly, let “firm i” be the (i + 1)-th latest innovator. To distinguish between past
innovators and future innovators from the perspective of firm 0, let firm −i be the i-th innovator
after firm 0 has emerged in the industry. For simplicity, firm i or firm −i is sometimes denoted
by “i” or “−i.” Panel (a) of Figure 2 illustrates the industry at a certain time.

We assume that each firm has the same linear production technology. They can produce one
unit of their own good by devoting one unit of labor. However, their goods are differentiated
in terms of quality. The quality of firm i’s good is λi-times higher than that of firm i + 1’s good
(i.e., qi = λiqi+1), where λi > 1 is the quality improvement size between firm i and firm i + 1.
As discussed later, the size λi is endogenously determined by solving the firm i’s maximization
problem.

Patent breadth

Each firm has a patent for its own good. We assume that the lagging breadth is perfect in the
sense that firm i can claim patent infringement against any other firm that produces a good with
quality in (qi+1, qi] (i.e., the range of the quality improved by firm i). For the leading breadth,
we assume that firm i can claim patent infringement against any other firm that produces a

5More formally, we suppose that the cardinality |N (h)| is sufficiently large for all h ∈ [0, 1].
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Figure 2: (a) Quality ladder and (b) Patent license

Notes: Firm 0 is the latest innovator in the industry. Although firm 0 has the patent for the highest quality
good in the industry, because of the leading breadth, firm 0 infringes the patents of firm 1, firm 2, ..., and
firm η. Therefore, to produce its own good, firm 0 must be licensed by all of them through the patent
license negotiation (Panel (b)). λi is the firm i’s quality improvement size (Panel (a)).

good with quality in (qi, qi−η ]. This means that firm i’s patent is certainly protected from the
subsequent η innovations that occurred by firm i − 1, firm i − 2, ..., and firm i − η. We interpret
the positive integer η as the degree of the leading breadth.

Our specification of the leading breadth is mathematically tractable because the optimal
size of quality improvement (λi) can be analytically solved as an interior solution. Conversely,
other specifications make it extremely difficult. For example, O&Z assumes that firm i’s patent is
protected from subsequent innovations because no other firm can produce goods with quality in
(qi, Kqi], where K > 1 is the parameter of the leading breadth. Unfortunately, their specification
makes it almost impossible to analytically find the optimal size of quality improvement for
each innovator as an interior solution (see the Online Appendix for the details). To avoid the
complication, O&Z considers a corner solution in which all innovators make only the minimum
quality improvements required to obtain a patent (i.e., λi = P for all i), where P > 1 is given
exogenously as a policy parameter. By setting K = Pα where α ∈ N, they eventually use α as
the degree of the leading breadth instead of K, as η in our model.

By solving for the optimal λi as an interior solution, we can analyze the growth effect of
the broadening leading breadth, including changes in the innovation size. O&Z neglects this
channel because the innovation size is always constant in their model. As shown later, this
channel is the main driver of the negative growth effect in our model. The Online Appendix
demonstrates that our main result can continue to hold even when the scope of the leading
breadth of firm i is given by (qi, Kqi] and no minimum quality improvement is required to
obtain a patent.
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Bertrand competition

As illustrated in Panel (b) of Figure 2, due to the patent infringements, firm 0 cannot produce
the good without being licensed by firm 1, firm 2, ..., and firm η. For notational ease, we define
L0 ≡ {1, 2, . . . , η} as the set of the licensors of firm 0. If all firms in L0 license their own patents
to firm 0, we call their consortium “pool” and denote the set by P0 ≡ {0} ∪ L0.

All firms in the industry engage in Bertrand competition. Recall that their goods are perfect
substitutes for all households. Therefore, firm 0 takes the limit-pricing strategy that charges a
price low enough to exclude the nearest rival. Following O&Z, we assume that the competition
authority allows a price cartel by P0. Namely, all firms in L0 do not produce their goods to
consolidate the market power of firm 0. Then, the nearest competitor for firm 0 is firm η + 1. By
the accumulation of the quality improvements, q0 =

(
∏

η
i=0 λi

)
· qη+1 holds (∏ is the symbol of

the product). Recall that the lagging breadth prevents firm η + 1 from producing a good with
higher quality than qη+1. By the standard argument of the limit-pricing strategy, to exclude
firm η + 1, firm 0 sets the following price:

p0 =

(
q0

qη+1

)
w

=

(
η

∏
i=0

λi

)
w. (3)

This is the result of the Bertrand competition.6

We assume that the competition authority prohibits the pool from including another firm
(e.g., firm η + 1) in P0 because it does not entail any patent license to firm 0 and aims to increase
the markup. In other words, we assume that the competition authority does not allow the
markup strictly higher than ∏

η
i=0 λi.

Let Π̃0 be the profit of firm 0. By X0 = E/p0 and (3), the profit becomes

Π̃0 = p0X0 − wX0

=

(
1 − 1

∏
η
i=0 λi

)
E. (4)

2.3 Profit division in the pool

After the production, firm 0 shares Π̃0 with the firms in L0 as the payments of the license fees.
Let πi ≥ 0 be the net profit of firm i ∈ P0. We define s = (s0, s1, ..., sη) as the profit-sharing

6To understand why this result holds, let p0 and pη+1 be the price of firm 0’s good and the price of firm η + 1’s
good, respectively. Each household purchases a good with the lowest quality-adjusted price in the industry, as
all goods are perfect substitutes. Therefore, they purchase the firm 0’s good when q0/p0 ≤ qη+1/pη+1. As the
production technology is linear, the lowest price that firm η + 1 can charge is the unit cost: pη+1 = w. Then, firm 0
can exclude firm η + 1 by charging (3).
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vector where si ≡ πi/Π̃0 for all i ∈ P0. We assume that ∑
η
i=0 πi = Π̃0 holds. Then, ∑

η
i=0 si = 1

also holds. Let S be the set of the feasible profit-sharing vectors. More formally,

S ≡
{

s ∈ [0, 1]1+η

∣∣∣∣ η

∑
i=0

si = 1
}

.

One inevitable problem when we discuss the profit division is how we consider the deter-
mination process of the profit-sharing vector. O&Z and other papers in the literature on the
Schumpeterian growth theory have not formally considered how firms negotiate, and basically,
they treat the license fees as exogenous for simplicity.7

We also treat the profit-sharing vector as exogenous in the baseline model for simplicity.
However, in Appendix B, we formally consider how the firms in the pool share Π̃0 by employing
a game-theoretic framework. In the literature on game theory, several studies formulate license
negotiations as cooperative games (e.g., Tauman and Watanabe, 2007; Watanabe and Muto,
2008; Kishimoto and Watanabe, 2017) and solve the license fees by applying the solution of the
game. Appendix B will connect two literature streams that have been independently developed.

2.4 R&D

The potential firms can enter freely into the R&D.8 The R&D function depends on the size of
the quality improvement and the number of employing researchers. We assume that if an R&D
firm chooses λ > 1 as the improvement size and employs zt researchers in the time interval dt,
the successful invention of the next-generation good happens with the probability (θzt/λβ)dt,
where β > 1 represents the difficulty of a large-size innovation. Note that two or more firms
never simultaneously succeed in their R&D because the probability of such an event is zero in
the continuous-time models.9 The R&D cost is (wtzt)dt, financed by issuing stocks.

Consider an industry where the leading firm on the ladder is firm 1. Then, if an R&D firm
succeeds in inventing a superior good, it emerges in the industry as firm 0. Recall that λi is the
quality improvement size of firm i. To avoid the complexity, we assume that the R&D firms
take the sequence of the future quality improvements, {λ−i}∞

i=1, as given.10

We define Vi(λ0) as the present discounted value of firm 0 when the subsequent innova-

7Kishimoto and Suzuki (2021) is an exception. They consider cooperative games that determine the license fee
to describe how license fees are endogenously determined in the negotiation. A new innovator is the licensor and
can earn the licensing revenue. In contrast, the present paper considers a different situation where a new innovator
is the licensee and pays the license fees to other firms.

8All firms in the pool do not conduct R&D due to the Arrow’s replacement effect. Their firm value is strictly
positive. Therefore, their incentive to innovate is strictly weaker than the potential innovators with zero value.

9When we pick up two real numbers from a subinterval in R at random, the probability that their value is the
same is zero.

10Without this assumption, we must consider a strategic interaction between the current innovators and the future
innovators because λ0 may affect the expected survival time of firm 0 via the changes of {λ−i}∞

i=1. The analytical
derivation of the optimal improvement size (λ0) will be impossible.
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tions have occurred i times after firm 0 entered the industry. The firm value is a function of
λ0 because the profit in (4) depends on it. Vi(λ0) changes to Vi+1(λ0) when the (i + 1)-th
subsequent innovation occurs after firm 0 entered the industry. It happens with the probability
of θz/(λ−i−1)

β.

The optimization problem for each R&D firm is represented as

max
z≥0,λ0>1

θz

λ
β
0

V0(λ0)− wz, (5)

where V0(λ0) is the present discounted value of firm 0 when it succeeds in R&D. The objec-
tive function shows that, for λ0, a trade-off exists between the value of R&D and the success
probability. A larger λ0 increases the firm value but decreases the success probability.

The linearity of R&D technology implies that the demand for researchers is unbounded
above (i.e., z → ∞) whenever (θ/λ

β
0 )V0(λ0) > w holds. However, it cannot happen in the labor

market equilibrium. Therefore, the free-entry condition for R&D is given by

θ

λ
β
0

V0(λ0) ≤ w. (6)

If strict inequality holds in (6), then z = 0 holds because the R&D is not profitable. A positive
and finite demand for researchers (i.e., z ∈ (0, ∞)) arises only if equality holds in (6). We
focus on the latter case. Then, (6) works as the zero-profit condition for R&D. Although z is
indeterminate in the optimization, it will be determined by the clearing condition of the labor
market.

3 Long-run equilibria

In the decentralized equilibrium, all individuals solve their maximization problem, and all
markets are clear at each period. We focus on a situation in which equality in the free-entry
condition holds. We consider the following symmetric stationary situation:

A) the profit division s = (s0, s1, ..., sη) is constant over time;

B) any successful potential firm chooses the same size of the quality improvement (i.e.,
λi = λ∗ for all i);

C) all variables are symmetric across industries.

11



3.1 Labor market equilibrium

The fixed labor supply, L > 0, is devoted to production and R&D. Then, by the symmetry of
industries, the labor market equilibrium condition at each time is

E
λ1+ηw

+ z = L. (7)

3.2 Net profit stream

Let us consider the profit stream of firm 0. Suppose the subsequent innovations have occurred
i times after firm 0 entered the industry. Then, firm −i is the latest firm in the industry, and
the set of the firms in the pool is P−i = {−i,−i + 1, ..., 0, 1, ..., η − i}. By the argument of the
limit-pricing strategy, firm −i charges the price as follows:

p−i =

(
η−i

∏
ℓ=1

λℓ

)
· λ0 ·

(
−1

∏
k=−i

λk

)
w.

Then, the profit of firm −i is

Π̃−i =

(
1 − 1

∏
η−i
ℓ=1 λℓ · λ0 · ∏−1

k=−i λk

)
E.

By the stationary of s, the stream of the net profit of firm 0 is {πi}
η
i=0 where

πi = siΠ̃−i. (8)

Note that πi = 0 for all i > η because firm 0 is no longer a licensor of the latest firm at that time
when the subsequent innovations have occurred η + 1 times after firm 0 entered the industry.

3.3 No-arbitrage condition

Consider a household with a stock of firm 0 whose value is Vi(λ0). In time interval dt, the
household obtains the dividend πidt. Vi(λ0) changes to Vi+1(λ0) with the probability of
(θz/(λ−i−1)

β)dt. We assume that there is a perfectly risk-free asset market, and the inter-
est rate on the safe assets is r. Let V̇i(λ0)dt be the capital gain (or loss) of the stock. Then,
standard arguments imply that the firm 0’s value satisfies the following no-arbitrage condition:

rVi(λ0) = πi + V̇i(λ0)−
θz

(λ−i−1)β
(Vi(λ0)− Vi+1(λ0)), (9)

for i = 0, ..., η. Note that Vi(λ0) = 0 for all i > η.

12



3.4 The balanced growth path

In the balanced growth path (BGP), the variables {At, wt, Et, Vi,t} grow at the same constant
speed for all i = 0, ..., η. Let the growth rate be g. Then, by the Euler equation, g = r − ρ holds
in the BGP. By using V̇i/Vi = g, the no-arbitrage condition (9) is rewritten as

ρVi(λ0) = πi −
θz

(λ−i−1)β
(Vi(λ0)− Vi+1(λ0)), (10)

for all t and i = 0, ..., η. By recursively solving the no-arbitrage conditions in (10), we can derive
V0(λ0) as follows:

V0(λ0) =

(
1

ρ + θz/(λ−1)β

)[
π0 +

η

∑
i=1

(
πi ·

−1

∏
k=−i

ψk

)]
, (11)

where ψk is a discount factor defined as

ψk ≡
θz/λ

β
k

ρ + θz/λ
β
k−1

.

By the equality in (6), the optimal z is indeterminate in (5). Then, the problem in (5) can be
simply rewritten as follows:

max
λ0>1

V0(λ0)

λ
β
0

. (12)

By solving (12) and using the symmetry (λi = λ∗ for all i), we obtain the following Lemma.

Lemma 1. In the symmetric equilibrium, the optimal quality improvement size is given by

λ∗ =

(
1 +

1
β

)1/(1+η)

(13)

for any s ∈ S .

Proof. See Appendix A.1.

Lemma 1 shows that the broadening patent breadth (η ↑) shrinks the optimal size of the
quality improvement. Intuitively, the R&D firms have an incentive of free-ride on the quality
improvements by the other innovators because the firm value depends on them, not only on λ0.
To confirm this, let us derive the Bertrand equilibrium price. By (3) and (13), in the symmetric
equilibrium, the price becomes

p = λ∗1+η
w

=

(
1 +

1
β

)
w.

13



This shows that the markup does not depend on η.

By (4) and (13), the profit of the pool is

Π̃i =

(
1

1 + β

)
E ≡ Π̃ for all i. (14)

Using (8), (13), and (14), we can rewrite (11) as follows:

V0

E
=

(
1

1 + β

)(
Ψ(z)

ρ + θz/λ∗β

)
, (15)

where function Ψ(z) is defined as

Ψ(z) ≡ s0 +
η

∑
i=1

si

 θz/λ∗β

ρ + θz/λ∗β︸ ︷︷ ︸
≡ψ∗(z)<1


i

. (16)

Using (16), we characterize each profit-sharing vector in S as follows:

Definition 1. Consider any two different profit-sharing vectors s′, s′′ ∈ S . Holding ψ∗(z) constant,
if the change from s′ to s′′ increases (decreases) Ψ(z), then s′′ is more frontloaded (backloaded) than s′

under ψ∗(z).

Intuitively, in a more frontloaded vector (e.g., s0 is higher), firm 0 can receive the reward of
the innovation in early timing. In contrast, in a more backloaded vector, firm 0 must wait for the
arrival of the subsequent innovations for a long time to receive the reward of the innovation.
The most frontloaded vector is sF ≡ (1, 0, ..., 0) because it maximizes Ψ(z) for any given ψ∗(z).
Similarly, the most backloaded vector is sB ≡ (0, 0, ..., 1) because it minimizes Ψ(z) for any given
ψ∗(z).

When the profit-sharing vector is sufficiently frontloaded, the graph of (15) is a downward-
sloping curve as shown “FV” in Panel (a) of Figure 3. However, when the profit-sharing vector
is sufficiently backloaded, the FV curve becomes an inverted-U shape as shown in Panel (b) of
Figure 3.11

By using (6), (7), and (13), we obtain

V0

E
=

λ∗β

θ(1 + 1/β)(L − z)
. (17)

The graph of (17) is shown as the upward-sloping “LME” curve in Figure 3. Each intersection
of two curves is a long-run equilibrium in the model. In this general equilibrium model, only
the ratio of V0 and E is determined.

11Appendix 1 in O&Z also discusses a similar point.
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Figure 3: The long-run equilibria.

Notes: An intersection of the LME and FV curves is a long-run equilibrium. Panel (a) is a case of unique
equilibrium, and Panel (b) is a case of multiple equilibria. When the profit-sharing vector is sufficiently
backloaded, the economy may have multiple equilibria as Panel (b).

The long-run equilibrium is unique if the FV curve is higher than the LME curve at z = 0.
By (15) and (17), we obtain a sufficient condition for the uniqueness of the long-run equilibrium
as follows:

s0 >
βρ

θL

(
1 +

1
β

)β/(1+η)

.

In other words, the long-run equilibrium is unique when the profit-sharing vector is sufficiently
frontloaded. Then, the phase diagram in Panel (a) of Figure 3 is almost the same as the one
in Grossman and Helpman (1991, Ch.4). The economy must lie on the LME curve. As the FV
curve is derived by the no-arbitrage and BGP conditions, V0 and E grow at g on the FV curve.
V̇0/V0 < g = Ė/E holds below the FV curve and V̇0/V0 > g = Ė/E holds above the FV curve.
If the economy is not on the FV curve, V0/E changes over time. Therefore, point E in Panel
(a) of Figure 3 is the unstable equilibrium. The unique equilibrium path is that the economy
immediately jumps to point E at t = 0 and remains there forever.12 Therefore, the economy has
no transitional dynamics when the profit-sharing vector is sufficiently frontloaded.

The economy may have multiple equilibria when the profit-sharing vector is sufficiently
backloaded. In this case, the expectation determines which equilibrium is realized. To un-
derstand the role of the expectation in the leading breadth model, consider a backloading
profit-sharing vector. Then, to earn large net profits, firm 0 must wait for the arrival of the
many subsequent innovations. Suppose the individuals have optimistic expectations such that
they predict the speed of the technological advances is fast (i.e., z is high). The optimistic

12As shown in Grossman and Helpman (1991, Ch.4), other paths do not satisfy the transversality condition or
rational expectations.
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expectations increase the present value of innovation, V0, because the waiting intervals of firm
0 become shorter. As a result, z rises; therefore, the initial optimistic expectations are self-
fulfilled. In contrast, when individuals have pessimistic expectations about z, the present value
of innovation is small, as the discounted sum of future profits is small. Then, the incentive to
innovate weakens, and z truly falls. The initial pessimistic expectations are self-fulfilled in this
case as well.

Under the multiple equilibria, the equilibrium path is not unique because all variables are
jumpable in the model. Any equilibrium path can be selected depending on the expectation. To
avoid the complexity, we focus on only the equilibrium paths that the economy initially jumps
to either one of EL and EH and remains at the same point forever. O&Z conducts an equilibrium
selection such that it neglects EL. However, because the expectation is an essential macroe-
conomic feature generated by blocking patents, we do not neglect the pessimistic equilibrium
paths. This enables us to investigate the effect on macroeconomic stability in Section 5.

4 Analytical discussion

First, this section investigates how the broadening leading breadth (η ↑) affects the growth rate.
Second, we derive the socially optimal innovation size and resource allocation. Finally, we
investigate the welfare effect of the broadening leading breadth.

4.1 Growth effect of the broadening leading breadth

In the BGP, the consumption index ct also grows at g. The standard argument implies that, by
(2), the growth rate is calculated as

g =
ċ
c
=

θz∗

λ∗β︸︷︷︸
R&D

success rate

× ln λ∗︸︷︷︸
Quality

improvement
size

. (18)

We can decompose the growth effect of the broadening leading breadth into the following three
effects. First, the broadening leading breadth shrinks λ∗ by (13). This decreases the growth rate
via ln λ∗ in (18). Second, the shrinking of λ∗ raises the R&D success rate because the difficulty
of quality improvement is lowered. This increases the growth rate via λ∗ in the denominator of
(18). Third, the broadening leading breadth changes z∗ which is determined by (15) and (17).
However, this channel is very complex because it is unclear how the FV curve moves.

Before the analyses, we impose the following assumption on the parameters:

16



Assumption 1. The discount rate is sufficiently small such that

(
θL
β

)(
β

1 + β

)β/2

> ρ. (19)

This parameter condition ensures that the growth rate in the decentralized economy is always
positive.13 Intuitively, if the discount rate is very large, the R&D investment is not profitable
because the present value V0 is very low. To build an innovation-driven growth model, we
assume that the discount rate is sufficiently small.

We begin to analytically investigate the growth effect by establishing some Lemmas. First,
we consider a special case in which the profit-sharing vector is the most frontloaded (s = sF). Of
course, this profit-sharing vector is unrealistic because the licensors would not be incentivized
to license their patents without license fees. However, this extreme case helps us investigate the
growth effect in more general cases.

Lemma 2. Suppose that the profit-sharing vector is the most frontloaded (s = sF). Then,

(i) the growth effect of the broadening leading breadth is not always positive. It is either one of the
following two effects depending on the discount rate;

• a non-monotonic growth effect (i.e., g and η are represented as an inverted U-shaped curve as
shown in Figure 4) when the discount rate is moderate;

• a negative growth effect for all η ≥ 1 when the discount rate is sufficiently small.

(ii) the growth rate converges to zero as η → ∞ regardless of the discount rate.

Proof. See Appendix A.2.

To investigate the growth effect in more general cases, we establish the following Lemma.

Lemma 3. Let g : S → R be the function that assigns s ∈ S to the growth rate in the BGP. Then,
g(sF) > g(s) holds for any s ̸= sF and η ≥ 1 because the most frontloaded profit-sharing vector (sF)
maximizes z∗.

Proof. By (16), the maximum value of Ψ(z) is 1, as ψ∗ < 1. Note that Ψ(z) = 1 holds only when
s = sF and Ψ(z) < 1 holds when s ̸= sF. Therefore, by (15), the most frontloaded profit-sharing
vector pushes the graph of the FV curve in Figure 3 up to the highest position. Then, s = sF

maximizes z∗ for all η ≥ 1, as the LME curve does not depend on s ∈ S . By Lemma 1, λ∗ is
independent of s ∈ S . As a result, we obtain the statement.

13Strictly speaking, this condition ensures that the growth rate is positive in the case of s = sF. As proved in
Lemma 3, any other s ∈ S yields a lower growth rate compared to sF. Therefore, if the growth rate is non-positive
when s = sF, then any s ∈ S cannot yield a positive growth rate. Assumption 1 avoids such an uninteresting
situation.
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Figure 4: The growth rate (g) and the leading breadth (η)

Notes: Lemma 2 shows that g is not monotonically increasing in η and converges to zero as η → ∞
when s = sF. Lemma 3 shows that g is maximized when s = sF. Therefore, for any s ∈ S , g is not
monotonically increasing in η and converges to zero as η → ∞.

Then, Lemmas 2 and 3 derive the following statement.

Proposition 1. Consider a profit-sharing vector s ∈ S . Then, by Lemma 2, the growth effect of the
broadening leading breadth is not globally positive. The broadening leading breadth has either (i) a
non-monotonic growth effect or (ii) a negative growth effect. Also, the growth rate converges to zero as
η → ∞.

Proof. By Lemma 2, when s = sF, the relationship between g and η is either a non-monotonic
(an inverted U-shaped curve) or a negative (a downward-sloping curve). Moreover, the growth
rate converges to zero as η → ∞ when s = sF. Recall that Lemma 3 shows that s ̸= sF yields a
lower growth rate than sF. Then, the relationship between g and η cannot be globally positive
(an upward-sloping curve) when s ̸= sF. Otherwise, it contradicts Lemma 3. As a result, the
statement in Proposition 1 holds.

Proposition 1 shows that the broadening leading breadth does not always increase the
growth rate. Although the relationship between g and η is generally ambiguous, we can show
that, in a special case of ρ → 0, we can establish the following statement.

Proposition 2. For any s ∈ S and η ≥ 1, the growth effect is always negative when ρ → 0.

Proof. Assume that ρ → 0. By (15) and (17), we can analytically solve the long-run equilibrium
as z∗ = L/(1 + β). As this is constant, the broadening leading breadth affects the growth effect
only via λ∗. Note that (ln λ∗)/λ∗β is increasing in λ∗ ∈ (1, λ̄] where λ̄ ≡ (1 + 1/β)1/2 is the
maximum size of the quality improvement derived by (13). Therefore, we obtain the result as
the broadening leading breadth decreases λ∗.
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This result is opposite to O&Z because they show that the growth effect is positive when
the discount rate is sufficiently small. In their model, the quality improvement size is constant,
and the broadening leading breadth can unlimitedly increase the profit of the pool. This is the
driver of the growth-enhancing effect in their model. Recall that the backloading effect, which
is a negative growth effect, is weaker as ρ is smaller. Then, when the discount rate is sufficiently
small, the former positive effect dominates the backloading effect.

In contrast, our model with endogenous quality improvement does not have the growth-
enhancing effect via increased profit. Instead, we show that the free-ride behavior of the R&D
firms (i.e., the shrinking of the quality improvement size) yields a new negative growth effect.
This negative growth effect does not depend on the discount rate. Although there is a positive
growth effect via the R&D success probability, the negative growth effect dominates it.

The Online Appendix demonstrates that this negative growth effect can be replicated in
another specification of the leading breadth in which the scope does not depend on η. We
formulate an overlapping generations (OLG) game between the R&D firms and show that their
free-ride behavior can be rationalized as a Nash equilibrium in a special case.

4.2 Socially optimal innovation size and labor allocation

In this subsection, we investigate (i) whether the quality improvement size in the decentralized
economy (13) is large or small from the perspective of welfare and (ii) whether the resource
allocation in the decentralized equilibrium is socially optimal or not.

To address this problem, we first derive the first-best allocation in the economy. We evaluate
the welfare of an economy that is in a steady state at t = 0 and stays there forever. By the utility
function (2) and the labor market equilibrium condition (7), the representative household’s
period utility is rewritten as follows:

ln ct = g · t + ln(L − z)− ln L.

Note that (L − z) equals the aggregate output, as the production technology is one-to-one.
Then, (L − z)/L is per capita consumption in the equilibrium. By using this and integrating
the lifetime utility function (1) with respect to time, we obtain the representative household’s
welfare as follows:

U =
1
ρ

1
ρ

θz ln λ

λβ︸ ︷︷ ︸
Growth

+ ln(L − z)− ln L︸ ︷︷ ︸
Consumption

 . (20)

A social planner maximizes (20) with respect to λ and z. Let (λ#, z#) be the solution. We assume
that the interior solution exists (i.e., λ# > 1, z# > 0).14 Then, by differentiating (20) with respect

14We consider an innovation-driven growth economy. Therefore, we avoid a trivial case in which a no-growth
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to λ and z, we obtain the welfare-maximizing pair of the quality improvement size and the
number of researchers as follows:

λ# = exp
(

1
β

)
,

z# = L −
(

ρβ

θ

)
exp(1). (21)

Then, the following result holds.

Proposition 3. In the decentralized economy,

(i) λ∗ < λ# holds: the quality improvement size is smaller than the socially optimal size;

(ii) z∗ is either larger or smaller than the socially optimal level z#.

Proof. See Appendix A.3.

The first statement comes from the free-ride behavior of potential firms. From the perspec-
tive of welfare maximization, each potential firm should invest in R&D that will significantly
improve quality. However, they are not incentivized to do that because the success probability
of such a large R&D investment is very low. Under the leading breadth, each potential firm can
join the pool in the industry even if the quality improvement size is small.

The second statement comes from the standard externalities in the model. First, each
potential firm does not consider the positive externality of innovation on the households.
Second, each potential firm does not care about the capital loss of the existing firms (i.e., a profit
destruction effect). However, in addition to these normal externalities, the innovation size in
the decentralized economy also yields the gap between z∗ and z#. As λ∗ < λ#, the R&D success
probability is relatively high in the decentralized economy. It naturally works to increase z∗.

4.3 Welfare effect of the broadening leading breadth

How does the broadening leading breadth affect welfare? By (20), we can decompose the
welfare effect into two channels: (i) via growth and (ii) via consumption. The analysis of the
welfare effect is more complex than one of the growth effect because a higher growth rate does
not mean that the welfare is also high.

Although we will quantitatively show that the welfare effect can be negative under plausible
parameters in the next section, we can analytically show the negative welfare effect in the special
cases as follows:

economy is socially optimal by assuming that z# > 0. The parameter assumption for z# > 0 is stricter than one in
Assumption 1 because exp(2) > (1 + 1/β)β holds for all β > 0. Therefore, the assumption for z# > 0 derives the
parameter condition in Assumption 1.
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Proposition 4. For any s ∈ S and η ≥ 1, the welfare effect of the broadening leading breadth is negative
when ρ → 0. In the case of s = sF, the welfare effect is not globally positive. In particular, there exists η̃

such that the welfare effect is negative in η ≥ η̃ + 1.

Proof. Proposition 2 shows that, for any s ∈ S and η ≥ 1, the growth effect is always negative,
but z∗ is independent of η. Therefore, by (20), the welfare effect is always negative. In the case
of s = sF, we showed the existence of η̃ such that the growth effect is negative in η ≥ η̃ + 1. As
z∗ is increasing in η in the case of s = sF, the welfare effect is negative in η ≥ η̃ + 1.

5 Further analyses: a quantitative illustration

5.1 Two theoretically grounded profit-sharing vectors

This section quantitatively investigates the growth effect of the broadening leading breadth
by calibrating the U.S. economy. So far, we have treated a profit-sharing vector as exogenous.
Although this simplification is commonly used in the O&Z-type models, in the quantitative
analysis, we need to specify the profit-sharing vector. Because we cannot directly observe the
profit-sharing vector in reality, it is difficult to find the plausible profit-sharing vector.

As a benchmark, we use the most backloaded vector and the equal-sharing vector defined
as follows:

sB ≡ (0, 0, ..., 1) .

sE ≡
(

1
1 + η

,
1

1 + η
, ...,

1
1 + η

)
.

We can provide the theoretical basis for adopting these two profit-sharing vectors by coop-
erative game theory. In Appendix B, we formulate a game of pool formation and profit division
between the firms in an industry and derive sB and sE as two different solution concepts.

First, Appendix B shows that sB is uniquely given by applying the core to the game. In
cooperative game theory, the core is widely used as a standard solution concept. The core is
defined based on the incentives for negotiating firms to gain more profits. We regard a profit
allocation in the core representing license fees determined through negotiation of the firms in
the industry without any intervention from the outside.

Although sB is highly unfair to firm 0, it seems a natural result that the patent licensing
negotiation yields an exploitative licensing fee when the bargaining power of the licensee is
very weak. Sakakibara (2010) empirically shows that the relative bargaining powers between
firms significantly affect the license fees determined in their private negotiation. Patent holders
have the right to refuse the request for the license because the patents are the private property of
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each of them. Thus, the relative bargaining power of the patent holder tends to be high, and the
license fees that the new innovator pays to the past innovators would be expensive. For example,
the Federal Trade Commission in the United States has recently insisted that Qualcomm has
illegally charged an excessive license fee in the market for smartphone chips.

However, in reality, standard-setting organizations (SSOs) intervene in the license negotia-
tion to prevent the patent holders from refusing the license and charging an unfairly high license
fee. SSOs often request firms holding standard-essential industry patents to license under the
fair, reasonable, and non-discriminatory (FRAND) conditions. We use sB as the benchmark result
of the private negotiation without any intervention.

Second, Appendix B shows that we have sE by applying the Shapley value to the game. The
Shapley value is a normative solution concept introduced by Shapley (1953). In the literature,
Layne-Farrar et al. (2007) and Dewatripont and Legros (2013) use the Shapley value as a
benchmark for FRAND conditions in SSOs. We interpret the equal sharing vector sE as the
result of a negotiation with the intervention that aims to correct unfair license fees.

Specifying two profit-sharing vectors enables us to investigate the growth effect of the
intervention in the license negotiation.

5.2 The long-run equilibria with and without intervention

Intervention case (sB)

Suppose that the license negotiation is not intervened. Then, the oldest firm in the pool obtains
the entire profit as the license fee. This means firm 0 can obtain the license fee after the
subsequent innovations occur η times. Then, (16) becomes

Ψ(z) =
(

θz/λ∗β

ρ + θz/λ∗β

)η

.

By using this and (15), the FV curve becomes as follows:

V∗
0

E
=

(
1

1 + β

) (
θz/λ∗β

)η(
ρ + θz/λ∗β

)1+η
. (22)

Therefore, the FV curve is an inverted-U shape as shown in Panel (b) Figure 3. As a result,
multiple equilibria can emerge under no intervention.

22



No-intervention case (sE)

Next, we assume that the license negotiation is intervened. Then, each firm in the pool equally
obtains the same payoff following the Shapley value. In this case, (16) becomes

Ψ(z) =

(
1

1 + η

)[
1 +

η

∑
i=1

(
θz/λ∗β

ρ + θz/λ∗β

)i]

=

(
1

1 + η

)[
1 −

(
θz/λ∗β

ρ + θz/λ∗β

)1+η
]

.

By using this and (15), the FV curve becomes as follows:

V∗
0

E
=

1
ρ

(
1

1 + η

)(
1

1 + β

)[
1 −

(
θz/λ∗β

ρ + θz/λ∗β

)1+η
]

. (23)

This is decreasing in z. Therefore, the FV curve is downward-sloping as shown in Panel (a)
Figure 3. As a result, the long-run equilibrium is unique under intervention. The discussion
yields the following statement:

Proposition 5. Consider the intervention (sB → sE) described in Definition 5 in Appendix B. The
intervention in the licensing negotiation stabilizes the economy.

5.3 A quantitative analyses

We quantitatively investigate whether patent protection against future innovation enhances
economic growth. As the benchmark scenario, we consider a situation in which the license
negotiation is intervened, and therefore, firm 0 shares its profit with other firms according to
the Shapley value.

We must set the structural five parameters (η, ρ, L, θ, β). For η, we use the fragmentation
index used by Ziedonis (2004) and Entezarkheir (2017). This measure is defined as

Fi = 1 −
J

∑
j=1

(
citeij

citei

)2

, i ̸= j

where citeij is the number of citations made by firm i in its patent documents to the patents of
firm j and citei is the count of all the citations made by firm i to other firms’ patents. Fi = 0

holds if every citation is to the patents of one firm. Let us assume that firm i equally cites
the other firms’ patents (i.e., citeij = c holds for all j). Then, Jc = citei holds. Entezarkheir
(2017) reports that the mean of the index is 0.7. Then, we obtain J ≃ 3.33. This means that,
on average, a patent cites three different firms’ patents. The number of citations measures how
many other patents are technologically close to the patent. Therefore, we adopt η = 3. For the
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Baseline
η = 3 η = 4 η = 5 η = 6 η = 7 η = 8

λ∗ 1.057 1.046 1.038 1.032 1.028 1.025
With intervention g 2.00% 1.66% 1.41% 1.23% 1.08% 0.96%

(sE) ι 0.359 0.372 0.380 0.385 0.387 0.388
z 0.0632 0.0627 0.0621 0.0615 0.0610 0.0604

gH 1.93% 1.58% 1.33% 1.14% 0.99% 0.86%
ιH 0.346 0.354 0.357 0.357 0.354 0.349

No intervention zH 0.0609 0.0597 0.0584 0.0570 0.0557 0.0542
(sB) gL 0.025% 0.034% 0.042% 0.049% 0.055% 0.061%

ιL 0.005 0.008 0.011 0.015 0.020 0.025
zL 0.0008 0.0013 0.0018 0.0024 0.0031 0.0038
g 0.98% 0.81% 0.69% 0.59% 0.52% 0.46%

Table 1: The growth effect of broadening leading breadth (η ↑).

Notes: As shown in Lemma 1, λ∗ does not depend on s ∈ S . The long-run equilibrium is unique when s = sE

but two equilibria emerge when s = sB. The subscript H means the optimistic equilibrium, while L means the
pessimistic equilibrium. ιm ≡ θzm/λβ is the R&D success probability in each equilibrium (m = H, L). g is the
average growth rate defined as g ≡ (gH + gL)/2.

discount rate, we use a conventional value ρ = 0.01. We set L = 0.334, as the U.S. population
is around 0.344 billion. According to Norrbin (1993) and Basu (1996), the empirically plausible
range of markup of price over marginal cost is in [1.05, 1.4]. From (3), the markup in the model
is (λ∗)1+η = 1 + 1/β. We set β = 4 so that the markup becomes a moderate value in the range
(1 + 1/β = 1.25). Finally, we set θ = 7.1 so that g ≃ 0.02, which is the average growth rate of
the U.S. economy.

Table 1 is the result. The broadening leading breadth decreases the growth rate when the
negotiation is intervened (s = sE). The negative growth effect comes from a reduction in λ∗

and z∗. By (18), if we hold z∗ constant, there is an inverted-U relationship between the growth
rate and λ∗, and the growth rate is maximized at λ∗ = exp(1/β). In our numerical example,
exp(1/β) ≃ 1.284 is larger than λ∗ reported in Table 1. This means that the reduction of λ∗

works to decrease the growth rate in the numerical example. In addition, by (18), the reduction
in z∗ also decreases the growth rate. As η is larger, the share 1/(1 + η) in sE decreases while
the lifetime of firm 0 increases. Because the future revenues are discounted, the broadening
leading breadth also decreases the present value of R&D in the intervention case. As a result,
the FV curve (23) shifts downward, and the innovation rate z decreases. Hence, the broadening
leading breadth discourages the incentive for R&D.

When the negotiation is not intervened (s = sB), the growth effect differs between the
two equilibria. The broadening leading breadth decreases the growth rate in the optimistic
equilibrium (gH) but increases the growth rate in the pessimistic equilibrium (gL). The average
growth rate, defined as (gH + gL)/2, decreases in η. Therefore, it seems reasonable to consider
that, even with no intervention, the broadening leading breadth would have a negative growth
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effect. The intuition of the negative growth effect is the same as in the intervention case. When
s = sB, as η is larger, firm 0 must wait a long time (i.e., η times of future innovations) to obtain the
license fee Π̃. This decreases the present value of R&D and shifts the FV curve (22) downward.
As a result, the broadening leading breadth decreases the innovation rate zH. In other words,
the broadening leading breadth enhances the backloading effect in both cases.

6 Conclusion

This paper investigated how broadening leading breadth affects economic growth in a Schum-
peterian growth model with endogenous quality improvement. In our model, the optimal size
of the quality improvement is determined as an interior solution, unlike the previous stud-
ies. We found that the growth effect of broadening leading breadth is not always positive. In
particular, an extremely broadening leading breadth is harmful to growth.

The fundamental mechanism of the negative growth effect is the free-ride behaviors of
innovators. In previous studies, the increase in the number of firms in the price cartel increases
the markup because the quality improvement is always constant. The Schumpeterian effect
was the main driver of the positive growth effect. However, this channel vanishes in our model
because the R&D firms shrink their sizes of quality improvement. In other words, the R&D
firms can receive stronger positive externalities from many future innovators. Therefore, when
λ is endogenous, and the potential firms would like to free-ride, the broadening leading breadth
may decrease λ because of the strong positive externalities.

We also found that intervention in patent licensing negotiation stimulates innovation. With-
out any intervention, the patent license fee tends to be high because the negotiation power of
the licensor is strong. We formulated a cooperative game played by all firms on a quality ladder
and showed that the outcome of the profit division, derived as the core of the game, becomes
a unique unfair distribution. Following the literature, we considered intervention in the nego-
tiation such that the firms are forced to distribute the profit based on the Shapley value. Our
numerical example also showed that the intervention stabilizes the economy by eliminating the
pessimistic equilibrium.
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Appendix A. Technical details of the baseline model

A.1 Proof of Lemma 1

Substituting (8) and (11) into (12), the maximization problem can be rewritten as follows:

max
λ0>1

1

λ
β
0

[
s0

(
1 − 1

λ0 · ∏
η
ℓ=1 λℓ

)
E +

η

∑
i=1

[
si

(
1 − 1

∏
η−i
ℓ=1 λℓ · λ0 · ∏−1

k=−i E(λk)

)
E ·

−1

∏
k=−i

E(ψk)

]]
.

The first-order condition is

− β

λ
β+1
0

[
s0

(
1 − 1

λ0 · ∏
η
ℓ=1 λℓ

)
+

η
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i=1
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si
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∏
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+
1

λ
β
0
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λ2
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η
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+
η

∑
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[
si

(
1

∏
η−i
ℓ=1 λℓ · λ2

0 · ∏−1
k=−i E(λk)

)
·
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∏
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E(ψk)

]]
= 0

⇔ β

[
s0

(
1 − 1
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η
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)
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[
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1
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·

−1

∏
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E(ψk)

]
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Using the symmetry (λi = λ0, ∀i), we obtain

β

[
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(
1 − 1

λ
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0
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η

∑
i=1

[
si

(
1 − 1
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0
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)
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1
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0

]
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1
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siψ
∗(z)i = 0

⇔
[
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1
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](
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η

∑
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siψ
∗(z)i

)
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+

= 0,

where ψ∗(z) is defined in (16). By solving β − (1 + β)/λ
η+1
0 = 0, we obtain the result. □

A.2 Proof of Lemma 2

Suppose the profit-sharing vector is the most frontloaded (s = sF). Then, by (15) and (17), we
obtain the interior solution of z as follows:

z∗ =
(

1
1 + β

) [
L −

(
ρβ

θ

)
λ∗β

]
. (24)

26



Note that z∗ > 0 holds by Assumption 1. Then, the growth rate is calculated as follows:

g =

(
1

1 + β

)(
θL
λ∗β

− ρβ

)
ln λ∗

=
ln(1 + 1/β)

1 + β

[
θL
(

β

1 + β

)β/(1+η)

− ρβ

]
︸ ︷︷ ︸

positive and
increasing in η

(
1

1 + η

)
︸ ︷︷ ︸
decreasing

in η

.

Note that the square bracket in the above equation is increasing in η, as β/(1 + β) < 1.
Additionally, the growth rate converges to zero as η → ∞, as the square bracket converges to a
finite value. Thus, we obtain the second statement in Lemma 2.

By differentiating g with respect to η, we obtain

dg
dη

>
=
<

0

⇔ ρ
>
=
<

θL
(

β

1 + β

)β/(1+η)

︸ ︷︷ ︸
increasing in η

[
1
β
− 1

1 + η
ln
(

1 +
1
β

)]
︸ ︷︷ ︸

positive and increasing in η

≡ Ω(η). (25)

Note that the square bracket in the RHS of (25) is positive. This can be easily shown by using
the fact that (1+ 1/β)β is increasing in β > 0 and is strictly lower than exp(1) ≃ 2.71828. Then,
Ω(η) is strictly increasing in η and limη→∞ Ω(η) = θL/β. By this fact and Assumption 1, the
following two cases arise depending on the value of the discount rate. The first case is that ρ

is sufficiently small such that ρ < Ω(η) ⇔ dg/dη < 0 holds for all η ≥ 1. In this case, the
broadening leading breadth always decreases the growth rate.

The second case is that ρ is a moderate value. Suppose that Ω(η̃) < ρ < Ω(η̃ + 1) where
η̃ ≥ 2 is a threshold of η. Then, by (25), we obtain dg/dη > 0 for η = 1, 2, ..., η̃. This means that
the broadening leading breadth in η ∈ {1, 2, ..., η̃ − 1} increases the growth rate. However, as
ρ < Ω(η) ⇔ dg/dη < 0 holds for all η ≥ η̃ + 1, the broadening leading breadth in η ≥ η̃ + 1

decreases the growth rate. Note that the growth effect is ambiguous when η̃ → η̃ + 1. As a
result, we obtain the first statement in Lemma 2. □

A.3 Proof of Proposition 3

The first statement immediately holds by comparing (13) with (21).

Let us consider the second statement. In the decentralized economy, z∗ or z∗L can be zero
depending on the parameters. To understand this, consider the vertical intercepts of the two
curves in Figure 3. By (15) and (17), the two curves intersect on the vertical line (i.e., z∗ = 0 or
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z∗L = 0 holds) if the following parameter condition holds:

s0

ρ(1 + β)
=

λ∗

θ(1 + 1/β)L
.

Note that the parameter condition does not contradict Assumption 1. As a result, z∗ < z# can
hold, as z# > 0.

Next, we consider whether z∗ > z# can hold or not. Lemma 3 shows that sF maximizes z∗.
Moreover, the value of (24) is maximized when η → ∞. Therefore, the highest value of z∗ that
is achievable in the decentralized economy is given by

z∗max ≡
(

1
1 + β

)(
L − ρβ

θ

)
.

Assumption 1 ensures that z∗max > z#. As a result, we obtain the second statement.

Appendix B. The game of pool formation and profit division

This Appendix formulates a game of pool formation and profit division. Then, we derive the
core and the Shapley value.

B.1 Basic setup

Consider an industry in which firm 0 is the latest firm as Figure 2. Let N ≡ {0, 1, ..., ω} be the
set of the firms in the industry. This means that, in the industry, the oldest innovator is firm ω,
and innovations have occurred ω times. We assume that the number of firms in the industry is
sufficiently large:

Assumption 2. |N | = 1 + ω > 2η.15

Each event in the game occurs in the following order:

(i) Pool formation. The firms in N can form several coalitions. If all the firms in a coali-
tion enter into certain contracts and the coalition satisfies certain conditions, we call the
coalition pool, which will be formally defined later.

(ii) Competition. All pools engage in the Bertrand competition. Due to the property of the
Bertrand competition on the quality ladder, only one pool earns a positive profit.

(iii) Profit division. The pool that won the Bertrand competition shares the profit with the
firms in the pool.

15|N | is the cardinality of N (i.e., the number of firms).
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A coalition, denoted by T, is a non-empty subset of N . Every firm can form a coalition
consisting only of itself. Note that some coalitions may be unable to produce goods due to
a lack of patent licenses or violation of the prohibition by the competition authority. Such a
coalition becomes inactive and cannot participate in the Bertrand competition. Conversely, there
may be an active coalition that can produce goods. To clarify this concept, we formally define
the pool as follows.

Definition 2. Consider a coalition of firms in which the youngest firm is firm i, and let Pi be the coalition
(i.e., Pi ⊆ N and minPi = i). Then, Pi is pool if it satisfies (i) and (ii) and every firm in Pi agrees on
(iii) to (vi):

(i) Pi includes all the licensors of firm i: Li ⊂ Pi.

– Li ≡ {i + 1, i + 2, ..., min{i + η, ω}} is the set of firms that have patents infringed by firm i.

(ii) Regulation by the competition authority: Pi ∩ (N\Li) = {i}.

– The competition authority prohibits Pi from including any firm, not in Li because such a firm
does not license the patent to firm i and it just aims to expand the cartel size.

– Pi = {i} ∪ Li holds by (i) and (ii).

(iii) Exclusive patent license.

– Every firm in Li grants the patent licenses to firm i to enable it to produce the good.

– Every firm in Pi refuses the patent license to any firm in N\Pi.

(iv) Price cartel.

– Every firm in Pi\{i} does not produce its own good to increase the market power of firm i as
much as possible.

(v) Profit division.

– If Pi earns a positive profit, firm i shares it with Li in accordance with the profit-sharing vector
already determined when Pi formed.

– No firm transfers the profit to the firms in N\Pi.

(vi) Relationship Length.

– All firms in Pi continue the relationship until a new innovator enters the industry.

For each i ∈ N , we call Pi the profitable pool if Pi obtains a positive profit in the Bertrand
competition regardless of what pools are formed by the firms in N\Pi. Then, by this definition,
we can show the following statement:

Lemma 4. Pi is the profitable pool if and only if i ∈ {0, 1, ..., η}.
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Proof. Consider a pool Pi where i ∈ {η + 1, η + 2, ..., ω}. Then, Pi loses to a superior pool Pℓ

where ℓ ∈ {0, 1, ..., i − η − 1} in the Bertrand competition. Therefore, Pi is not the profitable
pool by definition. Next, consider a pool Pi where i ∈ {0, 1, ..., η}. Note that the firms in
{0, 1, ..., η}\Pi cannot form the pool by Definition 2 (i). This means that Pi can produce the
good with the highest quality in the industry. Therefore, Pi always earns a positive profit in
the Bertrand competition.

Following the baseline model, we consider a symmetric situation where all firms in the
industry have equally chosen λ∗ given by (13). Then, by conditions (i) to (iv) in Definition 2, any
profitable pool always earns the profit Π̃ defined in (14) because any profitable pool has η + 1

firms and the competition authority does not allow the markup strictly higher than (λ∗)1+η .
All firms regard Π̃ as a constant because they take E, an aggregate variable determined in the
BGP, as given. On the other hand, as shown in the proof of Lemma 4, the non-profitable pools
gain nothing when the superior pools form. Thus, following von Neumann and Morgenstern
(1944), we define the profit of the non-profitable pool as zero from a pessimistic viewpoint.

The function v : 2N → R, called the characteristic function in cooperative game theory,
assigns a profit that each coalition T ⊆ N definitely gains in the Bertrand competition. Note
that the coalitions, not the pools, gain no profit because of a lack of patent licenses or violation
of the prohibition by the competition authority. Then, the characteristic function is given as16

v(T) = Π̃ if T = Pi for i ∈ {0, 1, . . . , η}, and

v(T) = 0 otherwise.

Let i ∈ {0, 1, . . . , η}, and assume that the profitable pool Pi forms. Then, Pi earns the profit
Π̃, and each firm j ∈ N \ Pi gains nothing. Thus, by condition (v) in Definition 2, a vector
π ≡

(
πj
)

j∈N of the net profit of the firms in the industry is defined as

∑
j∈Pi

πj = Π̃, and

πj = 0 for all j /∈ Pi.

B.2 The core of the game

We define the concept of blocking in the game as follows:

Definition 3. A coalition T ⊆ N blocks π∗ through π = (πj)j∈N if the following properties hold.

• Feasibility: ∑j∈T πj ≤ v(T).

• Improvement: πj > π∗
j holds for all j ∈ T.

16By convention, we define v(∅) = 0.
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Using Definition 3, we define the core of the game as follows:

Definition 4. The core is the set of π that is not blocked by any coalition.

By Definition 3, any net profit vector π∗ such that π∗
j < 0 for some firm j ∈ N is blocked by

{j} because v({j}) = πj = 0 holds. Thus, without loss of generality, we assume that the core is
a subset of the set of net profit vectors π such that πj ≥ 0 for each j ∈ N . With this setup, we
can show the following statement:

Proposition 6. Let i ∈ {0, 1, . . . , η}, and assume that Pi forms. Then, the net profit vector that belongs
to the core of the game is uniquely given by πC = (πC

j )j∈N such that

πC
η = Π̃ and πC

j = 0 for all j ∈ N\{η}.

Proof. Let Pi be the profitable pool where i ∈ {0, 1, ..., η}. Consider a net profit vector π such
that πη < Π̃ holds. Then, Pi\{η} has some firms that obtain a positive net profit. We define
π ≡ ∑

η−1
k=i πk and π ≡ ∑

i+η
k=η+1 πk. Suppose that π > 0. Then, Pη can block π through π′ such

that

π′
j = 0 for all j ∈ {0, 1, ..., η − 1},

π′
j = πj +

π

1 + η
for all j ∈ {η, η + 1, η + 2, ..., 2η}, and

π′
j = πj for all j ∈ {2η, 2η + 1, ..., ω}.

Next, suppose that π > 0. Then, P0 can block π through π′′ such that

π′′
j = πj +

π

1 + η
for all j ∈ {0, 1, ..., η}, and

π′′
j = 0 for all j ∈ {η + 1, η + 2, ..., ω}.

As a result, a net profit vector π such that πη < Π̃ holds cannot belong to the core.

Finally, consider the net profit vector πC given in the statement. Suppose that a coalition
T can block πC through π. If v(T) = 0, then by the definition of πC and the feasibility in
Definition 3, ∑j∈T πj ≤ v(T) = 0 ≤ ∑j∈T πC

j ; thus, π does not satisfy the improvement in
Definition 3. Therefore, T that can block πC must be the profitable pool (i.e., v(T) = Π̃ > 0).
This means that, by Lemma 4, T contains firm η. Then, by the improvement in Definition 3,
∑j∈T πj > ∑j∈T πC

j = Π̃ = v(T), which contradicts the feasibility in Definition 3. Thus, no
coalition can block πC.

Proposition 6 shows that firm η obtains all the profit, and the rest does not obtain a positive
net profit in the core of the game. Intuitively, firm η is the pivotal firm in N because any pool
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without firm η is not profitable. Therefore, the other firms in the profitable pool do not have
any negotiation power.17

By Lemma 4 and Proposition 6, it is unclear whether P0 is chosen as the profitable pool in
{P0,P1, ...,Pη}. Because they equally yield πη = Π̃, the pivot (i.e., firm η) is indifferent between
them. To deal with the problem, we assume that λi = λi+1 + ε for all i ∈ N , where ε > 0 is
infinitesimal. Although it does not change any result in the baseline model because ε > 0 is a
negligibly small number, P0 earns the largest profit in {P0,P1, ...,Pη}. Note that firm η will no
longer be pivotal when the next innovation occurs. Because this is the last opportunity for firm
η to obtain a positive net profit, firm η will choose P0.

B.3 The Shapley value

Following the literature, we also consider the next intervention as an approximation of the
license under FRAND conditions:

Definition 5. The intervention in the licensing negotiation is that

(i) All firms in L0 are prohibited from refusing firm 0’s offer of the patent licenses;

– The property implies that P0 = {0} ∪ L0 is the profitable pool in the industry.

(ii) The license fees should be fair in the sense that all firms in P0 must share the profit Π̃ following
the Shapley value.

Definition 6. Let P0 be the profitable pool. The Shapley value πS
j for each j ∈ P0 is given as follows:

πS
j ≡ ∑

T⊆P0\{j}

t!(η − t)!
(1 + η)!

(v({j} ∪ T)− v(T)),

where t is the cardinality of a coalition T (i.e., t = |T|).

For each j ∈ P0 and for each T ⊆ (P0\{j}), v({j} ∪ T) − v(T) is called the marginal
contribution of firm j to coalition T. In the formation process for P0, when a coalition T

already forms and a firm j joins that coalition, the firm demands and is promised to gain its
marginal contribution to T. Suppose the order in which each firm joins is determined with
equal probability. Then, the Shapley value for each firm j ∈ P0 is the average of j’s marginal
contribution to the formation of P0. In this sense, the Shapley value is a fair profit allocation
among P0.

17Even if firm i( ̸= η) in the profitable pool suggests leaving the pool to decrease the profit of the profitable pool,
firm η can form another pool that does not contain firm i but yields the same profit Π̃ in the Bertrand competition.
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Proposition 7. Suppose that P0 forms. The net profit vector applied to the Shapley value of the game is
uniquely given as πS = (πS

j )j∈N such that

πS
j =

Π̃
1 + η

for all j ∈ P0 and πS
j = 0 for all j /∈ P0.

Proof. Note that because P0 forms under the intervention, each firm j /∈ P0 gains nothing; that
is, under the profit allocation based on the Shapley value, πS

j = 0 for each j /∈ P0. Furthermore,
as mentioned above, v(T) = 0 holds for each T ⊊ P0 due to the patent infringements. Thus,
when and only when firm j ∈ P0 joins P0\{j}, the marginal contribution of firm j is positive
(i.e., T = P0\{j} if and only if v({j} ∪ T)− v(T) = v(P0) = Π̃ > 0). Therefore, we obtain the
result.
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