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Foster  Care:  A Dynamic Matching Approach
 

 

Abstract: This paper studies the two-sided dynamic matching problem that occurs in the US foster
care system. In this market, foster parents and foster children can form reversible matches, which may
separate, continue in their reversible state, or transition to permanency via adoption. I first present an
empirical analysis that yields four new facts.  Thereafter, I develop a two-sided search and matching
model used to rationalize the empirical facts and carry out predictions regarding match quality.
Interestingly, I find that match separation plays a crucial role in adoption by influencing the incentives
of foster parents to adopt.  Due to the presence of a financial penalty on adoption, parents accept the
penalty in exchange for eliminating the likelihood that the child separates from the match in the future.
Moreover, I show that the adoption penalty not only exacerbates the intrinsic disadvantage (being less
preferred by foster parents) faced by children with a disability, but it also creates incentives for high-
quality matches to not transit to adoption.
Keywords: Search, Matching, Foster Care, Adoption
JEL Classification: C78, D83
 

Resumen: El documento estudia el problema de emparejamiento dinámico dentro del sistema de
acogida de Estados Unidos. En este mercado, padres y niños de acogida forman emparejamientos
reversibles, que pueden separarse, continuar en su estado reversible, o transitar a la permanencia
mediante la adopción. Primero, presento un análisis empírico que establece cuatro nuevos hechos
estilizados. A continuación, desarrollo un modelo de búsqueda y emparejamiento bilateral utilizado para
racionalizar los hechos empíricos y realizar predicciones sobre la calidad del emparejamiento.
Interesantemente, encuentro que la separación del emparejamiento desempeña un papel crucial en la
adopción al influir los incentivos de los padres de acogida a adoptar. Debido a la presencia de una
penalización económica a la adopción, los padres aceptan la penalización a cambio de eliminar la
probabilidad de que el niño abandone el emparejamiento en el futuro.  Además, muestro que la
penalización de la adopción no solo agrava la desventaja intrínseca (ser menos preferidos por los padres
de acogida) a la que se enfrentan los niños con discapacidad, sino que también crea incentivos para que
los emparejamientos de alta calidad no transiten hacia la adopción.
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1 Introduction

Each year more than a half-million children spend at least one day in the US foster

care system, a federal program that costs taxpayers almost US$30 billion dollars

annually. The foster care system provides out-of-home care for children removed

from their homes due to abuse, maltreatment, neglect, or other reasons.1 While in

foster care, children are placed in foster family homes or institutional care, and can

be moved from one foster home to another, or from a foster home to institutional

care.2 The stay in foster care is meant to be temporary until children can reunite

with their birth families, but when reunification is not possible, children might

be relinquished for adoption.3 Each year, close to 18% of children in foster care

are at risk of experiencing long-term care if they are not adopted. In fact, more

than 20, 000 children leave foster care each year without an adoptive family, and

out of those children, less than 3% will earn a college degree, and almost 20% will

become homeless.4

This paper studies both, theoretically and empirically, the two-sided dynamic

matching problem that occurs in the US foster care system. First, I present an

empirical analysis that yields four new facts related to match transitions of chil-

dren in foster care and their exit through adoption. Second, I develop a two-sided

search and matching model where (a) children are heterogeneous in their dis-

ability status, (b) children search for parents while matched to another parent,

(c) parents receive a smaller payoff when adopting than fostering (capturing a

financial penalty on adoption), and (d) matches differ in their quality. I use the

model to disentangle the driving forces behind the empirical facts and derived

other equilibrium properties regarding match quality. The main finding is that
1A child can enter foster care for several reasons such as sexual or physical abuse, parents’ drug

or alcohol addictions, parents’ incarceration, parents’ inability to provide care, parents’ death,
inadequate housing, abandonment, child’s behavioral problem, or child’s addiction.

2Foster homes are private homes licensed to provide 24-hour care for children in a family-
based environment. Institutional care are licensed facilities that provide 24-hour care for several
children at once (groups from seven to twenty), and it includes group homes, shelter care, and
other institutions.

3By federal law, if a child has been in foster care for at least 15 of the last 22 months, the process to
terminate her parental rights must be started immediately. Further, a judge can decide to terminate
parental rights at any moment in time if it is in the best interest of the child.

4Source: National Foster Youth Institute.
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the penalty on adoption exacerbates the disadvantage faced by children with a

disability (being less preferred by parents), and it also creates incentives for high-

quality matches to not transit from a reversible fostering to adoption. This is

mainly driven by the fact that foster parents have fewer incentives to adopt chil-

dren who are less likely to separate the match in the future.

Two main concerns in foster care are match separation and adoption. In the

former, research has shown that separations have adverse effects on children, and

it has become a priority to limit the match disruptions experienced by children.5

In the latter, evidence suggests that adoption is a better alternative than long-term

foster care, thus policymakers had made significant efforts to increase the adop-

tion rates of children through major federal policies.6 However, my findings sug-

gest that limiting match separation might be counterproductive for the adoption

goal: parents have incentives to foster a child indefinitely (without adopting) due

to the presence of a financial penalty. First, the monthly payments received by

parents (from the state child welfare agency) are lower as an adoptive parent than

as a foster parent and often fall to zero. Second, parents are responsible for the

medical and educational expenditures of adopted children. Thus, parents face

the following trade-off when deciding to adopt: accept the adoption penalty in

exchange for eliminating the likelihood that the child disrupts the match in the

future. Hence, match separations play a crucial role in adoption by influencing

the incentives of foster parents to adopt.7

Therefore, it is crucial to understand why certain children are more likely to

have their matches separated and why certain children are less likely to be adopted.

Besides, the presence of the adoption penalty might have a different effect on cer-
5Match disruptions experienced by children is part of the national outcome standards used by

federal agencies to monitor the state’s performance.
6The Adoption and Safe Families Act of 1997 (ASFA), created the Adoption Incentive Program,

which establishes performance bonuses to states that increase the adoption of children. The per-
formance bonuses consisted of US$4,000 dollars per child plus an additional US$2,000 if the child
has special needs (including disability). Later on, the Increasing Adoptions Act of 2008 increased
the extra bonus to US$4,000 if the child has special needs.

7The empirical literature supports this intuition. Argys and Duncan (2012) show that when
the difference between the foster and adoption monthly payments decreases, a child’s probability
of adoption increases. Bishop and MacDonald (2022) analyze a policy change in the state of Min-
nesota that eliminated the financial penalty on adoption for children aged six and older, finding
that the probability of adoption increased after the implementation.
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tain children, and it might influence the type of matches that transit to adoption

(in terms of match quality). I distinguish children by whether they have a disabil-

ity and study how this affects match disruption and adoption. I focus on disability

for two reasons. First, most of the efforts made to increase adoption target children

with a disability. Second, the adoption penalty might be higher for children with

a disability as parents are responsible for higher medical expenditures. Neverthe-

less, the model can be used to study the effect of other observable characteristics

of the child, such as gender, race, and ethnicity.

Using a rich panel dataset, describing the universe of children relinquished for

adoption in the US foster care system over the period 2010 to 2016, I document the

following empirical facts: (1) the presence of a disability decreases the probability

that a child transits to permanency via adoption, (2) the presence of a disability

increases the probability that a foster placement separates, (3) the presence of

a disability decreases the probability that a child transits from institutional care

to a foster home (becomes foster matched), and (4) the presence of a disability

increases the probability that a child transits from a foster home to institutional

care (becomes unmatched).

To analyze how different forces interact in the agents’ decisions of forming a

foster match, disrupting a foster match, and transiting to permanency via adop-

tion, I develop a dynamic matching model with search frictions (it takes time to

find a match) and non-transferable utility (transfers are exogenously given). Chil-

dren and parents can form two types of matches: foster (reversible) and adoption

(irreversible). The setting assumes that children are heterogeneous (with and

without a disability), agents must be foster matched before forming an adoption

match, parents receive a smaller per-period payoff when adoption matched than

when foster matched, and matches differ in their quality. Children and parents

prefer matches of higher quality, and parents prefer children without a disability

to children with a disability. The timing is as follows. Every period, when a child

(unmatched or foster matched) and parent meet (unmatched only), agents draw

a match quality. Before deciding whether to form a foster match, they observe only

a noisy signal about this quality. A foster match forms if and only if both accept. If
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a new foster match forms, any old foster match dissolves. The uncertainty about

the quality resolves once foster match forms, and it remains constant throughout

the match. After observing the match quality, agents decide whether to destroy

the foster match (and become unmatched), transit to adoption, or remain foster

matched.

The theoretical model allows me to disentangle the driving forces behind the

aforementioned empirical facts. More concretely, I establish sufficient conditions

on primitives for these facts to emerge in equilibrium. One of the key features cap-

tured by the model is that a foster separation can be the result of the uncertainty

resolving, or it can be the result of a child forming a new foster match. Thus, fos-

ter match separations allow agents to avoid ‘bad matches’, and more importantly,

it enables children to search for ‘better matches’ while in a foster environment.

Moreover, I show that the increase in the probability of foster match separation

due to a disability (Fact 2) depends on two driving forces working in opposite

directions. On the one hand, children with a disability are more likely (relative

to children without a disability) to have a foster match destroyed after the uncer-

tainty is resolved, which itself makes them more likely to separate. On the other

hand, I find that children with a disability are less likely (relative to children with-

out a disability) to form a new foster match, which itself makes them less likely

to separate. Hence, Fact 2 suggests that the former driving force prevails in equi-

librium. It is important to highlight that the dataset used for the analysis does not

allow me to identify the reason for the separation so this gap is filled entirely by

the theoretical model.

Another important insight of the model is that the decrease in the probabil-

ity of being adopted due to a disability (Fact 1) arises for two reasons. First, I

show that children with a disability are less likely to form a foster match because

foster parents require higher signals to be willing to form a foster match with

them. Second, parents foster matched to these children (relative to parents foster

matched to children without a disability) have a greater incentive to remain in the

reversible foster match and not transit to adoption. The reason is that the adop-

tion penalty for children with a disability is higher, and the likelihood that they
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break the match in the future is lower. Thus, the intrinsic disadvantage (being

less preferred by foster parents) faced by children with a disability exacerbates in

the presence of the adoption penalty due to the fact that children with a disability

are less likely to find a ‘better’ match in the future. Hence, the theoretical model

highlights the key role of match separation on adoption.

Furthermore, the model allows me to obtain additional predictions regarding

match quality which is unobservable to the econometrician. As a model predic-

tion, I find that high-quality matches are less likely to separate, and both types of

separations are aligned. That is, high-quality matches are less likely to separate

after the uncertainty is resolved, and they are also less likely to separate due to

the search for a ‘better’ match. Additionally, I find that parents in high-quality

matches might have fewer incentives to adopt. The result is driven by the fact that

children in foster matches of high-quality have fewer incentives to separate the

foster match in the future. Hence, the adoption penalty not only exacerbates the

intrinsic disadvantage faced by children with a disability, but also creates incen-

tives for high-quality matches to not transit to adoption.

Related Literature. Most of the literature on dynamic matching with hetero-

geneous agents analyzes environments where matches do not reverse endoge-

nously. Under this assumption, the literature has addressed issues regarding sta-

bility (Doval, 2021; Altinok, 2021), matching algorithms and its implications on

welfare (Ünver, 2010; Anderson et al., 2015; Akbarpour et al., 2020; Baccara et al.,

2020; Leshno, 2021), and positive assortative matching (Burdett and Coles, 1997;

Eeckhout, 1999; Shimer and Smith, 2000; Chade, 2001, 2006; Smith, 2006). In these

papers, agents face the trade-off of whether to form a match today or wait for a bet-

ter partner. Now, if agents are allowed to form a match today and reverse it when a

better partner arrives, an additional feature arises. In the presence of reversibility,

agents must take into account that today’s partner and the potential better part-

ner of tomorrow might leave the match in the future. There is a small literature

analyzing dynamic matching environments with reversibility of matches, but the

focus is on stability and cooperative solution concepts (Damiano and Lam, 2005;

Kurino, 2009; Kadam and Kotowski, 2018; Liu, 2021). This paper is more related
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to the literature on positive assortative matching by analyzing two-sided markets

with search frictions, heterogeneous agents, and irreversible matches. My contri-

bution adds to the literature on sorting along two dimensions. First, I allow for ir-

reversible and reversible matches. Second, instead of addressing positive sorting,

I estimate stylized facts present on the market and establish sufficient conditions

for these patterns to arise in equilibrium.

In addition, I contribute to the narrow set of papers analyzing foster care as

a matching market. Slaugh et al. (2015) studies the Pennsylvania Adoption Ex-

change program, a computational tool created to facilitate the adoption of chil-

dren in foster care and make several recommendations to improve the success

of adoptions. Olberg et al. (2021) constructs a dynamic search and matching

model to compare two different search processes use by the child welfare agen-

cies to identify potential adoption matches between parents and children. Lastly,

Robinson-Cortés (2019) presents an empirical framework to study how children

are assigned to foster homes using a confidential dataset, and uses the estimates

to study different policy interventions. This paper departs from the previous lit-

erature mainly by considering both types of matches in one model, adoption (ir-

reversible) and foster (reversible), allowing me to analyze a greater set of match

transitions experienced by children.

Lastly, there is a vast literature analyzing the effect of children’s characteristics

on, placement disruption and adoption (Courtney and Wong, 1996; Barth, 1997;

Wulczyn et al., 2003; James, 2004; Snowden et al., 2008). Here, I contribute by doc-

umenting four new stylized facts and building a model that formally rationalizes

the patterns observed in the data.

Organization of the Paper. The rest of the paper is organized as follows. Section

2 presents the empirical analysis and the facts that motivate the theoretical model.

Section 3 describes the theoretical environment, and introduces the equilibrium

definition. Section 4 presents the equilibrium analysis and the conditions under

which the equilibrium is consistent with the stylized facts, as well as the model

predictions regarding match-quality. Lastly, Section 5 concludes. All proofs are

in the Appendix.
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2 Empirical Analysis

I motivate the key features of the two-sided dynamic matching model described in

the next section with an empirical analysis.8 Using data describing the universe of

children in the US foster care system over the period 2010 to 2016, I document four

new facts about the match process between foster children and foster parents.9

2.1 Data and Descriptive Statistics

I use the 6-month Foster Care Files from AFCARS,10 an unbalanced panel of all

children in the US foster care system between the federal fiscal years of 2010 and

2016. The data track a child upon entry into foster care until she exits, which could

be due to reunification with birth-family, adoption, emancipation, guardianship,

transfer to another agency, runaway, or death. If a child exits foster care, both

the exit manner and date of exit are indicated. Additionally, the data include a

rich set of variables describing the child,11 such as gender, race and ethnicity, dis-

ability, whether the child is federally funded by Title IV-E,12 date of birth, date of

most recent entry into foster care, and date of termination of parental rights (if

applicable).13

In the data, the disability variable, which is the focus of my empirical analysis,

indicates whether a child has been clinically diagnosed with a disability, clinically

diagnosed without a disability, or not yet diagnosed. For example, a disability in-

cludes conditions such as blindness, glaucoma, arthritis, multiple sclerosis, down

syndrome, personality disorder, attention deficit, and anxiety disorder, among

others. Unfortunately, data do not allow us to identify a specific disability, nor
8The empirical analysis does not seek to establish causality, but to obtain robust correlations

controlling for a rich set of covariates.
9For a more detail background of the foster care system in the US see Appendix A.

10AFCARS is a federally mandated data collection system. All fifty US states and the District of
Columbia are required to collect data on all children in foster care and all children adopted from
foster care.

11Following Buckles (2013) and Brehm (2017), for all demographics I use the most recent record
of each child since it updates all information.

12Title IV-E is a federal program through which states receive reimbursement of payments made
on behalf of eligible children.

13To protect the confidentiality of the child, the date of birth is set to the 15th of the month and
all dates are recoded to maintain consistent spans of time.
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quantify either the number of disabilities or the severity. For the analysis, I say a

child has a disability if she has been clinically diagnosed with at least one dis-

ability, and a child has no disability otherwise. In the majority of the cases, once a

child enters the foster care system, a mandatory medical evaluation is performed;

thus I assume that disabilities are pre-existing conditions.14

For each period (semester in the data) that a child remains in foster care, the

data provide information about the last placement of the child during that pe-

riod, including the start date of the placement. These placements are classified as:

pre-adoptive home, non-relative foster home, relative foster home, group home,

institution, supervised independent living, and runaway. Using these variables, I

define a child as being foster matched in a given period if the child is placed in a

pre-adoptive home, a non-relative foster home, or a relative foster home.15 I de-

fine a child as being unmatched in a given period if the child is placed in a group

home or institution.

To maintain a consistent estimation sample, I restrict the sample to children

younger than age 16 whose parental rights have been terminated. The former

restriction excludes older children who often exit through legal emancipation, and

the latter is to ensure that children are eligible for adoption. I also restrict the

sample to children who are either foster matched or unmatched. This leaves a full

sample of 451, 967 children (sample A). Additionally, I create two subsamples.

The first subsample (sample B) keeps only those child-period observations where

the child is foster matched at the beginning of the period and still in foster care at

the end of the period. The second subsample (sample C) keeps only those child-

period observations where the child is unmatched at the beginning of the period

and still in foster care at the end of the period. Table 1 presents summary statistics

for the full sample and the two subsamples, and Table A1 presents these summary

statistics conditioned on, the variable of interest, child’s disability.
14This is a strong assumption since disabilities could vary with the amount of time spent in a

group home, or with the care provided by a foster parent. Ideally, we should consider disabili-
ties as a potentially time-variant characteristic; however, data do not allow me to observe how a
disability might evolve over time.

15It is important to mention that foster parents are not identifiable; when a child is placed in a
foster home only family structure, foster parents’ race and foster parents’ year of birth are reported.
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Table 1: Descriptive Statistics, All Samples

Sample A Sample B Sample C
obs = 1, 165, 818 obs = 659, 253 obs = 65, 970

Mean sd Mean sd Mean sd
Adopted 0.28 0.45 - - - -
Foster matched 0.93 0.25 1.00 0.00 0.00 0.00
Becomes foster matched - - - - 0.24 0.42
Becomes unmatched - - 0.02 0.14 - -
Foster match separates - - 0.19 0.39 - -
Age in years 6.80 4.43 6.81 4.36 12.17 2.80
Disabled 0.41 0.49 0.43 0.50 0.68 0.47
Male 0.53 0.50 0.52 0.50 0.63 0.48
White 0.43 0.50 0.42 0.49 0.44 0.50
Black 0.24 0.43 0.26 0.44 0.27 0.44
Hispanic 0.22 0.41 0.22 0.42 0.20 0.40
Title IV-E eligible 0.48 0.50 0.51 0.50 0.47 0.50
Months in foster care 34.87 24.38 34.86 24.86 53.10 36.72
Months since PRT? 17.09 22.62 16.23 22.15 41.99 36.86
ending in adoption 12.46 11.85 - - - -

Months in current placement 16.06 15.72 17.31 16.32 10.85 13.99
foster matched 16.44 15.78 - - - -

Notes: Data are from Adoption and Foster Care Analysis and Reporting System (AFCARS). Means
and standard deviations are calculated for child-period observations. Sample A is the full sample
containing all children younger than age 16 whose parental rights have been terminated and who
are either foster matched or unmatched. Sample B and Sample C are subsamples of A. Sample
B (sample C) keeps only those child-period observations such that the child is foster matched
(unmatched) at the beginning of the period and still in foster care at the end of the period.
? PRT stands for Parental Rights Terminated.

In Table 1 (sample A), children are, on average, almost 7 years old and have

had their parental rights terminated for 17 months. Out of all children, 41 percent

have been diagnosed with a disability. In a given period, 93 percent of children are

foster matched, with the average duration of that match being 16 months. I say a

child is adopted if she exits the system through adoption. On average, 28 percent

of children are adopted in each period. I say a child becomes unmatched if con-

ditional on being foster matched at the beginning of a period she is unmatched

9



Table 2: Stylized Facts from Foster Care - Effect of Disability

Adoption Foster match Becomes Becomes
Separation Foster matched Unmatched

I II III IV

Disability γ -0.059*** 0.023*** -0.045*** 0.011***
(0.005) (0.002) (0.006) (0.001)

Mean of dependent 0.279 0.185 0.236 0.021
variable
Number of child-period 1,165,818 659,253 65,970 659,253
observations

Notes: Data are from Adoption and Foster Care Analysis and Reporting System (AFCARS). All
specifications control for child’s demographics, states indicators and period indicators. The first
and second columns consider sample A, third and fifth columns use sample B, and the fourth col-
umn uses sample C. Standard errors are cluster at the state-period level and shown in parentheses.
***P < 0.01; **P < 0.05; *P < 0.10.

at the end of the same period. Conditional on starting the period foster matched

(sample B), the probability that a child becomes unmatched is 2 percent. Now,

I say a child becomes foster matched if conditional on being unmatched at the

beginning of a period she is foster matched at the end of the same period. The

probability that a child becomes foster matched is 24 percent (sample C). It is im-

portant to highlight that the rates at which children experience match transitions

are affected by the rates at which foster matches are separated. I say a child’s fos-

ter match separates if conditional on being foster matched at the beginning of a

period the child is no longer foster matched to the same parent at the end of the

period.16 Table 1 (sample B) shows that foster matches separate with probabil-

ity 19 percent. In practice, a separation can arise for different reasons such as the

social worker decides to move the child to institutional care, the parent requests

the removal of the child, or the social worker finds a more suitable foster parent

for the child and decides to move the child. Unfortunately, the dataset does not

contain this information.
16Even though, foster parents are not identifiable, a variable recording the number of placements

allows me to identify whether the child is being fostered by the same parent.
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2.2 Empirical Specifications and Stylized Facts

I estimate the impact of disability on four outcomes: (1) the probability that a

child is adopted, (2) the probability that a foster match separates, (3) the prob-

ability that a child becomes foster matched, and (4) the probability that a child

becomes unmatched. For each outcome, I estimate the following linear probabil-

ity model:

yijt = α + γ disabilityi + βXi + θZit + ξj + λt + εijt (1)

where yijt is an indicator for the outcome of child i in state j at period t. disabilityi
is an indicator equal to one if child i has a disability and zero otherwise. Xi is

a vector of time-invariant characteristics of child i such as gender, race, ethnicity,

and whether the child is federally funded through Title IV-E.Zit is a vector of time-

varying characteristics of child i including age in months, number of months in

foster care, and number of months since parental rights have been terminated. I

include a vector of period fixed-effects λt to control for time-trends, and a vector

of state fixed-effects ξj to control for unobserved state characteristics.

2.2.1 Fact 1: Disability Decreases the Probability of Being Adopted

The adoption rates of children with and without a disability are 0.22 and 0.32, re-

spectively (see Table A1). To evaluate the significance of this effect conditional on

other demographics, I use sample A to estimate Equation 1 where the dependent

variable yijt is equal to one if child i in state j is adopted in period t and zero if she

either remains in foster care or exits through any other manner. Table 2 column I

shows that children with a disability are 6 percent less likely to be adopted than

children without a disability.

As many states require parents to foster a child before an adoption can take

place, the fact that children with a disability are less likely to be adopted might be

driven by the fact that these children are less likely to be fostered in the first place.

To analyze this, I estimate a version of Equation 1where the dependent variable yijt
is redefined to take the value of one if child i in state j is foster matched in period

t and zero otherwise. As in adoption, the coefficient on disability is negative (see
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Table A2). While this is suggestive, the theoretical model will allow me to show

that children with a disability are less likely to be adopted not only because they

are less likely to be foster matched, but they are also less likely to transit from a

foster match to adoption.

2.2.2 Fact 2: Disability Increases the Probability of Foster Match Separation

From the data, foster matches constituted by children with and without a disabil-

ity separate at rates 0.19 and 0.18, respectively (see Table A1). Using sample B,

I estimate Equation 1 where the dependent variable yijt is equal to one if child i

in state j has her foster match separated in period t and zero otherwise. Here,

the vector Zit includes the number of months that the child has been in her cur-

rent foster match and what type of foster match it is (i.e., whether a pre-adoptive

home, non-relative foster home or relative foster home).

Table 2 column II shows that children with a disability are 2 percent more

likely to have their foster match separated than children without a disability. Even

though, the dataset does not allow to identify the reason of the separation, the

theoretical model will separately identify two types of separations: (1) the child

transits from foster matched to unmatched i.e. from foster home to institutional

care, and (2) the child transits from a foster match to another foster match i.e. from

foster home to foster home. Furthermore, I will show that these two forces work

on opposition directions: children with a disability are more likely to experience

the first type of separation, and less likely to experience the second type.

2.2.3 Fact 3: Disability Decreases the Probability of Becoming Foster Matched

The rates of foster match formation (conditional on starting the period unmatched)

of children with and without a disability are 0.22 and 0.28, respectively (see Ta-

ble A1). To study the effect of disability on the probability of becoming foster

matched, I use sample C to estimate Equation 1 where the dependent variable yijt
equal one indicates that child i in state j becomes foster matched in period t and

zero otherwise. In this specification, the vector Zit additionally includes the num-

ber of months that the child has been in her current unmatched state and where
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she is currently living (i.e., whether a group home or institution).

Table 2 column III shows that disability decreases the probability of becoming

foster matched by 5 percent. That is, children with a disability are less likely to

become foster matched than children without a disability. The theoretical model

will show that this probability is driven by the fact that disability decreases the

probability that a child finds a parent willing to foster her, and if they do, disability

increases the probability that the foster match is later on destroyed.

2.2.4 Fact 4: Disability Increases the Probability of Becoming Unmatched

From the data, the rates of unmatched formation (conditional on starting the pe-

riod foster matched) of children with and without a disability are 0.03 and 0.01,

respectively (see Table A1). Here, I use sample B to estimate Equation 1 where the

dependent variable yijt equal one indicates child i in state j becomes unmatched in

period t and zero otherwise. As in the previous estimation, Zit includes the num-

ber of months that the child has been in her current foster match and the type of

foster match.

As we can see from Table 2 column IV, disability increases the probability of

becoming unmatched. In the model, the probability of becoming unmatched will

depend on the rate at which foster matches separate and the probability that a

child finds a parent willing to foster her. Thus, behind this stylized fact, there are

driving forces working on opposite directions, as in the case of separations.

2.2.5 Other Demographics

Table A3 exhibits the complete results of all regressions. The effect of one more

year of age is the same, qualitatively, to the effect of a disability. Similarly, being

a male has a similar pattern to disability, except that it decreases the probability

of disruption. Now, an interesting result is that the probability of being adopted

is decreasing in the length of time that a child remains in foster care since her

parental rights have been terminated. This is very similar to the documented evi-

dence in unemployment spells and job finding rates. On the one hand, the child’s

behavior might become ‘more difficult’ the longer she stays in foster care, search-
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ing for an adoptive family. On the other hand, parents might interpret a long wait

as a signal that those children might be ‘difficult’. As future research, it would be

interesting to build a model incorporating these features and analyze these two

effects.

3 Model

In this section, I develop a search and matching model to analyze how different

incentives interact in agents’ decisions over match formation and separation. With

the data available is not possible to make any statement regarding what type of

matches, in terms of match quality, are more likely to form a foster match, separate,

or transit to adoption. Thus, the theoretical model will be used not only to have a

better understanding of the empirical facts estimated in Section 2 but also it will

allow us to establish how the match transition of children is affected by match-

quality which is not observable to the econometrician.

3.1 Environment

Time is discrete with an infinite-horizon. One side of the market is populated by

children who differ in an observable attribute x ∈ X = {x1, x2}where x1 denotes

a child with a disability, x2 indicates a child without a disability, and x1 < x2.

Each period, a strictly positive mass of children ρ enters the market and each child

draws an attribute from a full support probability distribution l(x). The other side

of the market is constituted by homogeneous parents. The mass of parents out of

the market is strictly positive, and parents make entry and exit decisions each

period.

Children and parents who are in the market can be unmatched or matched.

Let upt ≥ 0 denote the endogenous distribution of unmatched parents in the mar-

ket, and uct(x) denote the endogenous distribution of unmatched children in the

market. Matches are one-to-one, formed between children and parents, and het-

erogeneous in quality denoted as q ∈ Q = {q1, q2} where q1 < q2.17 Further, I
17Match quality captures other factors affecting the match independent of the child’s attribute,
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define two types of matches: foster matches (reversible) and adoption matches

(irreversible). Agents who form a foster match (hereafter f-match) remain in the

market, while agents who form an adoption match (hereafter a-match) leave the

market. Letm(x, q) denote the endogenous distribution over f-matches. Thus, the

aggregate state of the market is summarized by φ = (up, uc,m).

All agents are risk-neutral and discount future at rate β ∈ (0, 1). Payoffs for

unmatched children are normalized to zero. For children who are f-matched or a-

matched, payoffs are given by the real-valued function bc(x, q, z) where z ∈ {f, a},

where z = f indicates an f-match, z = a indicates an a-match, and a > f . I assume

that children’ payoff function satisfies the following:

Assumption 1 (Children’ payoffs). (a) bc(x, q, a) > bc(x, q, f) ≥ 0 for all (x, q);

(b) bc(x, q, z) is decreasing in x;

(c) bc(x, q, z) is increasing in q;

(d) bc(x, q2, f) > bc(x, q1, a);

(e) bc(x, q, z) is supermodular in (x, z);

(f) bc(x, q, z) is submodular in (x, q); and

(g) bc(x1, q2, f)− bc(x1, q1, a) > bc(x2, q2, f)− bc(x2, q1, a).

Assumption 1(a) captures that children are better-off with a foster parent than

in institutional care, and better-off when adopted than fostered. 1(b) reflects that

children with a disability benefit more from the family environment and emo-

tional stability provided by foster and adoption. The intuition that children are

better-off in high-quality matches is addressed in 1(c). Assumption 1(d) states

that children prefer to be f-matched when the quality is high than a-matched when

the quality is low. 1(e) imposes that the gain of being adopted is greater for chil-

dren without a disability, and 1(f) captures that the gain of being in high-quality

matches is greater for children with a disability. Lastly, assumption 1(g) implies

such as the emotional bond between the child and parent, and the relationship between the parent
and the child’s birth family.
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that the gain of being in an f-match of high-quality versus being in an a-match of

low-quality is greater for children with a disability.

Payoffs for parents out of the market are normalized to zero. Parents incur

on a per-period cost k > 0 to hold a license and stay in the market. Parents who

are f-matched or a-matched receive payoffs according to the real-valued function

bp(x, q, z). I assume that parents’ payoff function satisfies the following:

Assumption 2 (Parents’ payoffs). (a) bp(x, q, f) > bp(x, q, a) for all (x, q);

(b) bp(x, q, z) is increasing in x;

(c) bp(x, q, z) is increasing in q;

(d) bp(x, q, z) is log-supermodular in (x, z); and

(e) bp(x, q, z) is log-submodular in (q, z).

Assumption 2(a) reflects the presence of the adoption penalty. 2(b) captures

the intuition that parents prefer children without a disability to children with a

disability. 2(c) reflects that parents in high-quality matches benefit more from

fostering/adopting than parents in low-quality matches. Now, the term 1− bp(x,q,a)
bp(x,q,f)

represents the adoption penalty. Assumption 2(d) states that the adoption penalty

is higher for children with a disability. Lastly, assumption 2(e) imposes that the

adoption penalty is increasing in the match quality.

Figure 1: Timeline

Destruction and
a-matching

Entry and
exit

Search and
f-matching

Payoff
realization

Figure 1 exhibits the timeline within a period. Each period is divided into four

stages:

1. Search and f-matching stage. Children search when unmatched or f-matched,
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and parents search only when unmatched. Meetings are stochastic and can be

described in terms of the market tightness θ ∈ R+ (i.e. parents-to-children ratio):

θ =
up∑

x u
c(x) +

∑
qm(x, q)

. (2)

A child meets a parent with probability πc(θ) which is a strictly increasing and

strictly concave function such that πc(0) = 0. Similarly, a parent meets a child

with probability πp(θ) which is a strictly decreasing and convex function such that

πp(θ) = πc(θ)
θ

and πp(0) = 1. Next, when a child and parent meet, a match quality

q is drawn from the full support probability distribution h(q). A match quality

is constant through the duration of the f-match, and learned through experience.

Before forming an f-match, agents observe a noisy signal s ∈ S = {s1, s2} generat-

ing a full support conditional probability distribution g(q|s) such that if s′ > s then

G(q|s′) ≤ G(q|s). After observing the noisy signal, agents announce simultane-

ously ‘foster’ or ‘reject’. An f-match is formed if and only if both agents announce

foster. If a new f-match is formed, any old f-match dissolves.

2. Payoff realization stage. Agents in newly formed f-matches perfectly observe

the quality q. Once a match quality is complete information, payoffs received dur-

ing the remaining duration of the f-match are known.

3. Destruction and a-matching stage. A child x is adopted by a relative with ex-

ogenous probability δx ∈ (0, 1) where δx2 ≥ δx1 .18 The f-match separates, if a child

is adopted exogenously. Now, If the f-match remains, then child and parent an-

nounce simultaneously ‘adoption’, ‘destroy’, or ‘remain’. An f-match destroys if at

least one agent announces destroy, and an a-match takes place if and only if both

agents announce adoption. If an f-match destroys, the parent remains unmatched

that period and the child searches. Agents who form an a-match receive adoption

payoffs to perpetuity, and I assume q remains the same when transitioning from

f-matched to a-matched. Children adopted by a relative receive bc(x, q2, a) to per-

petuity.
18In some cases, relatives reach out when they learn about the situation and request to adopt

the child. Child welfare agencies have strong preferences for relatives.
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4. Entry and exit stage. A mass of new children enters the market and parents

make entry/exit decisions. Parents and children who enter the market remain un-

matched that period. Agents who formed an a-match during the previous stage

leave the market, and only unmatched parents can decide to exit the market.

I restrict attention to stationary pure symmetric Markov strategies. Strategies

depend on the aggregate state of the market φ, and to simplify notation I sup-

press it. I refer to a parent f-matched to child x with match quality q as parent

(x,q). For each parent, a strategy consists of the tuple (in, out, f p, dp, ap) where

in ∈ {no, yes} is the entry strategy, out ∈ {no, yes} is the exit strategy, fp(x, s) :

X × S → {reject, foster} is the decision to form an f-match with child x after ob-

serving signal s, dp : X×Q→ {0, 1} is the decision to destroy the f-match such that

dp(x, q) = 1 when parent (x, q) announces destroy, and ap : X ×Q→ {0, 1} is the

decision to form an a-match such that ap(x, q) = 1 when parent (x, q) announces

adoption. Now, refer to child x f-matched with quality q as child (x,q), and refer

to an unmatched child x as child (x,q0). To make reference to a child’s match

status, I define an auxiliary set Q̄ = Q ∪ {q0}. For each child x, a strategy consists

of the triple (f c, dc, ac) where f c : X × Q̄× S → {reject, foster} is the decision to

form a new f-match after child (x, q̄) observes signal s, and dc : X × Q → {0, 1}

and ac : X ×Q→ {0, 1} are the destruction and adoption decisions, respectively.

Lastly, let d(x, q) = dc(x, q) + (1− dc(x, q))dp(x, q) and a(x, q) = ac(x, q)ap(x, q)

denote the joint destruction and adoption decisions of an f-match (x, q), and define

the f-matching correspondence as follows:

Definition 1. A foster-matching correspondence is a mapM : X×Q̄ 7→ S such that

s ∈ M(x, q̄) if and only if (i) child (x, q̄) is willing to form an f-match after observing

signal s, and (ii) unmatched parent is willing to form an f-match after meeting child x

and observing signal s.
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3.2 Value Functions

3.2.1 Value Functions for Children

Let C(x, q̄) denote the value function for child (x, q̄) at the end of a period, and

define Ĉ(x, q̄) as the search value for child (x, q̄) at the beginning of the search

and f-matching stage. The search value function is specified by Equation 3. At

the beginning of the search and f-matching stage, child (x, q̄) meets a parent with

endogenous probability πc(θ). If no meeting takes place, status-quo is preserved

and she receives the continuation value C(x, q̄). If a meeting takes place, a noisy

signal s is realized where f(s) is the probability distribution over signals derived

from h(q) and g(q|s). If at least one agent announces reject after observing s, then

the status-quo is preserved. If both agents announce foster after observing s, then

the child receives the conditional expected value Es[C(x, q)] =
∑

q C(x, q)g(q|s).

Ĉ(x, q̄) =
(

1− πc(θ)
∑
M(x,q̄)

f(s)
)
C(x, q̄) + πc(θ)

∑
M(x,q̄)

Es[C(x, q)]f(s) (3)

Thus, child (x, q̄) announces foster after observing s if and only if the condi-

tional expected value of forming a new f-match is greater than the continuation

value of the status-quo i.e. Es[C(x, q)] ≥ C(x, q̄). For child x who is unmatched at

the end of a period, the value function is:

C(x, q0) = βδx
bc(x, q2, a)

1− β
+ β(1− δx)Ĉ(x, q0) (4)

Now, consider a child x f-matched with quality q at the end of a period. Child

(x, q)’s value function is specified by Equation 5. In the current period, she re-

ceives the f-match payoff bc(x, q, f). At the beginning of the next period, she is

adopted by a relative with probability δx. If the f-match remains, child and parent

decide between transit to an a-match, destroy the f-match, or remain f-matched.

In each case, child (x, q)’s possible continuation values are bc(x,q,a)
1−β , Ĉ(x, q0), and
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Ĉ(x, q) respectively.

C(x, q) = bc(x, q, f) + βδx
bc(x, q2, a)

1− β
+ β(1− δx)

[
dp(x, q)Ĉ(x, q0)

+ ap(x, q) max
{bc(x, q, a)

1− β
, Ĉ(x, q0) , Ĉ(x, q)

}
+
(

1− dp(x, q)− ap(x, q)
)

max
{
Ĉ(x, q0) , Ĉ(x, q)

}]
(5)

Thus, child (x, q) chooses adoption if and only if the value of being adopted

is greater than the value of continue searching while unmatched and the value of

continue searching while f-matched when the quality is q. Hence, a child faces the

following trade-off: receive a higher adoption payoff but forgo the opportunity of

finding a ‘better’ match. Similarly, child (x, q) chooses destroy if and only if the

value of searching while unmatched is greater than the value of being adopted and

the value of continue searching while f-matched. Hence, when a child decides to

destroy a f-match, she is destroying a ‘bad’ match.

3.2.2 Value Functions for Parents

At the end of a period, let Pu denote the value function for an unmatched par-

ent and P(x, q) denote the value function for parent (x, q). For an unmatched

parent, the value function is presented in Equation 6. In the current period, the

unmatched parent incurs in the per-period cost k of holding a license. Next, the

parent decides between stay or exit the market. If she exits her payoff is zero, and if

she stays she meets a child with probability πp(θ). When no meeting takes place,

the parent remains unmatched. When a meeting takes place, a child is drawn

from the endogenous probability distribution m̂(x, q̄) derived from uc and m (for

detail see Appendix C.1). After meeting child (x, q̄), agents observe some signal.

If at least one agent announces reject, then the parent remains unmatched. If both

announce foster, then the parent receives Es[P(x, q)].

Pu = max

{
0,
−k + βπp(θ)

∑
M(x,q̄)

∑
x,q̄ Es[P(x, q)]m̂(x, q̄)f(s)

1− β
(

1− πp(θ)
∑
M(x,q̄)

∑
x,q̄ m̂(x, q̄)f(s)

) }
(6)
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Thus, an unmatched parent forms an f-match with child (x, q̄) after observing

signal s if and only if the conditional expected value of forming the f-match is

greater than the unmatched value.
For parent (x, q), the value function is Equation 7. In this period, she receives

the f-match payoff bp(x, q, f). Next period, she becomes unmatched with exoge-
nous probability δx. If the f-match remains, child and parent decide between tran-
sit to adoption, destroy the f-matched or remain f-matched. When transiting to
adoption, the parent receives bp(x,q,a)

1−β . When the f-match destroys, the parent re-
ceives the unmatched value Pu. Lastly, when the f-match remains, her contin-
uation value depends on the outcome of the search and f-matching stage: with
probability πc(θ)

∑
M(x,q) f(s) she becomes unmatched due to the child forming a

new f-match, and with probability
(
1− πc(θ)

∑
M(x,q) f(s)

)
the f-match remains.

P(x, q) = bp(x, q, f) + βδxPu + β(1− δx)
[
dc(x, q)Pu

+ ac(x, q)max
{bp(x, q, a)

1− β
, Pu ,

(
1− πc(θ)

∑
M(x,q)

f(s)
)
P(x, q) + πc(θ)

∑
M(x,q)

f(s)Pu
}

+
(
1−dc(x, q)−ac(x, q)

)
max

{
Pu ,

(
1−πc(θ)

∑
M(x,q)

f(s)
)
P(x, q)+πc(θ)

∑
M(x,q)

f(s)Pu
}]

(7)

When parent (x, q) is deciding to adopt she faces the following trade-off: elim-

inate the likelihood that the f-match is destroyed but forgo part of the per-period

payoff.

3.3 Aggregate State of the Market

The distribution of unmatched parents in the market depends on the entry and

exit strategies of parents. Thus, the stationary mass of unmatched parents up sat-

isfies the following inequality:

πp
(

up∑
x u

c(x) +
∑

qm(x, q)

)
≤ k

β
∑
M(x,q̄)

∑
Es[P(x, q)]m̂(x, q̄)f(s)

(8)
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with equality if up is strictly positive. For distributions uc(x) andm(x, q) to be time

invariant, the mass destruction and mass creation must exactly balance (for detail

see Appendix C.2).

3.4 Definition of Equilibrium

I use the following equilibrium definition:

Definition 2. A foster care equilibrium consists of tuple (M, dc, dp, ac, ap, in, C,Pu,P , φ)

such that the following properties are satisfied:

(1) Value Functions.

(a) Given (M, dc, dp, ac, ap, φ), value functions C(x, q0) and C(x, q) are specified

by Equations 4 and 5, respectively.

(b) Given (M, dc, dp, ac, ap, in, φ), value functions Pu and P(x, q) are specified

by Equations 6 and 7, respectively.

(2) Strategies.

(a) Given (dc, dp, ac, ap, C,Pu,P , φ), s ∈ M(x, q̄) if and only if Es[P(x, q)] ≥

Pu and Es[C(x, q)] ≥ C(x, q̄).

(b) Given (M, dp, ap, C, φ), ac(x, q) = 1 if and only if Equation C.4 holds, and

dc(x, q) = 1 if and only if Equation C.5 holds.

(c) Given (M, dc, ac,Pu,P , φ), in = yes if and only if C.6 holds, ap(x, q) = 1 if

and only if Equation C.7 holds, and dp(x, q) is one if and only if Equation C.8

holds.

(3) Aggregate state of the market.

(a) Given (M, dc, dp, ac, ap, in,Pu,P , uc,m), up satisfies Equation 8.

(b) Given (M, dc, dp, ac, ap), for each x, {m(x, qi)}Ni=1 and uc(x) solve the system

of equations given by Equations C.2 and C.3.
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4 Theoretical Analysis

I first derive equilibrium properties and identify the driving forces behind the

empirical results estimated in Section 2. Afterwards, I use these properties to en-

sure that the empirical facts arise in equilibrium and carry out model predictions

regarding match quality.

4.1 Equilibrium Analysis

The analysis focuses on foster care equilibria with a positive mass of parents in the

market i.e up > 0 which implies that Pu = 0 (from Equations 6 and 8). Moreover,

I assume that for each child, there is at least one signal such that parents receive a

positive expected foster payoff.

Assumption 3. For each x, there exists ŝ such that Eŝ[bp(x, q, f)] ≥ 0.

Proposition 1 exhibits how the destruction of f-matches varies with disabil-

ity and match quality. In item (i), I show that f-matches involving children with

a disability destroy more than f-matches involving children without a disability.

Formally, fixing q, if the f-match (x2, q) is destroyed then the f-match (x1, q) is also

destroyed. Recall that, an f-match can be destroyed by either the child or the par-

ent, d(x, q) = dc(x, q) + (1 − dc(x, q)) dp(x, q). By assumption 1(a), it follows that

children never destroy an f-match. Thus, in equilibrium, the destruction is driven

by parents, which is consistent with the anecdotal evidence suggesting that when

a child moves from foster home to institutional care is generally due to the request

of the foster parent. Now, by assumption 2(b), it follows that if dp(x2, q) = 1 then

dp(x1, q) = 1 for all q. In item (ii), I establish that if the f-match (x, q1) is destroyed,

then f-matches (x, q2) is also destroyed. In words, if a parent f-matched to child x

when the quality is q2 is not willing to continue providing care, then a parent f-

matched to child xwhen the quality is q1 is also not willing to continue providing

care. This follows from assumption 2(c).

Proposition 1 (Destruction). Assume children’ payoffs satisfy Assumption 1(a), and

parents’ payoffs satisfy Assumptions 2(a)-(c). Then, in any foster care equilibrium:
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(i) f-match destruction is greater for children with a disability,

d(x1, q) ≥ d(x2, q) for all q.

(ii) f-match destruction is greater for low quality matches,

d(x, q1) ≥ d(x, q2) for all x.

Proof. See Appendix D.1.

To establish the empirical facts, I will ensure that parents’ strategies satisfy the

following:

(1) if a parent is willing to form an f-match with child x1 after observing signal

s, then she is also willing to form an f-match with child x2 after observing s.

(2) if a parent is willing to adopt child x1 when the quality is q, then she is also

willing to adopt child x2 when the quality is q.

Since (1) might contradict (2), I impose Assumption 4 which allows me to char-

acterize parents’ f-match formation strategies using the per-period payoffs. This

assumption ensures that, if the conditional expected payoff received by a parent

f-matched to child (x, q) is negative, then the conditional expected value of being

f-matched to child (x, q) is also negative.

Assumption 4. For each (s, x), if Es[bp(x, q, f)] < 0 then the following condition on

primitives holds:

Es
[
bp(x, q, f) + β (1− δx)

∑
q

max

{
bp(x, q, a)

1− β
, 0 , bp(x, q, f)

1− β (1− δx)

}
g(q|s)

]
< 0

Proposition 2 exhibits how the formation of f-matches involving unmatched

children varies with disability and match quality. Recall that f-matches must

be mutually agreed upon, that is, s ∈ M(x, q0) if and only if s ∈ F p(x) and

s ∈ F c(x, q0). By Assumption 1(a), it follows that children always announce fos-

ter after observing signal s. Intuitively, as the law requires, children are placed
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in foster family homes whenever possible. Thus, the formation of an f-match de-

pends on the parent’s decision. In item (i), I show that conditional on observing

signal s, if a parent is willing to foster a child with a disability, then he must also

be willing to foster a child without a disability i.e. if s ∈ F p(x1) then s ∈ F p(x2).

This follows from Assumption 2(b). In words, children with a disability are less

likely to find a parent willing to foster them. In item (i), I state that if a parent

announces foster after meeting child x and observing signal s1, then he also an-

nounces foster after observing signal s2. The result follows from Assumption 2(c).

Since G(q|s1) first-order stochastically dominates G(q|s2), it follows that the con-

ditional expected value received by a parent when fostering a child is increasing

in the signal.

Proposition 2 (F-match formation involving unmatched children). Assume chil-

dren’ payoffs satisfy Assumption 1(a), and parents’ payoffs satisfy Assumptions 2(b)-(c),

3 and 4. Then, in any foster care equilibrium:

(i) f-match formation is lower for unmatched children with a disability,

M(x1, q0) ⊆M(x2, q0).

Moreover,M(x, q0) is non-empty for all x.

(ii) f-match formation is greater for high signals,

s1 ∈M(x, q0) implies s2 ∈M(x, q0) for all x.

Proof. See Appendix D.2.

Proposition 3 exhibits how f-match formation involving f-matched children

varies with disability and match quality. Item (i) states that children without a

disability are more likely to form a new f-match than children with a disability.

The result is driven by the parents’ decision: children without a disability are more

demanded by foster parents. Item (ii) shows that low-quality matches are more

likey to form new f-matches than high-quality matches. The result is driven by

the children’ decision. By Assumption 1(d), children value more quality than the

adoption status, thus they have no incentives to separate high-quality matches.
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Proposition 3 (F-match formation involving f-matched children). Assume chil-

dren’ payoffs satisfy Assumptions 1(a),(c)-(d), and parents’ payoffs satisfy Assumptions

2(a)-(c), 3 and 4. Then, in any foster care equilibrium:

(i) f-match formation is lower for children with a disability,

∑
M(x2,q)

f(s) ≥
∑
M(x1,q)

f(s) for all q.

(ii) f-match formation is greater when the old match is low quality,

∑
M(x,q1) f(s) ≥

∑
M(x,q2) f(s) = 0 for all x.

Proof. See Appendix D.3.

Due to Proposition 3(i), children with a disability are more willing to an-

nounce adoption after observing a low-quality match because their search oppor-

tunities are smaller. However, the intuition suggests that social workers might be

pickier when searching for an adoptive parent for a child with a disability since

these children benefit more from higher quality matches. Thus, to ensure that this

intuition arises in equilibrium, I impose stronger conditions presented in Assump-

tion 5(a)-(c). These conditions will help to ensure that if a child with a disability is

willing to give up the opportunity of continue searching for a high-quality match,

then children without a disability will also be willing to give up this opportunity.

Assumption 5. Assume children’ payoffs satisfy the following:

(a) δx1
δx2

> bc(x2,q2,a)−bc(x2,q1,a)
bc(x1,q2,a)−bc(x1,q1,a)

(b) {bc(x1,q2,f)−bc(x1,q1,a)}(1−β(1−δx1 ))−{bc(x1,q2,a)−bc(x1,q2,f)}β(1−δx1 )

1−β(1−δx1 )
>

bc(x2, q2, f)− bc(x2, q1, a)

(c) {bc(x1,q2,f)−bc(x1,q1,a)}βδx1−{b
c(x1,q2,a)−bc(x1,q2,f)}(1−β)

g(q2|s1)
>

bc(x2, q2, f)(1− β) +bc(x2, q2, a)β −bc(x2, q1, a)

Proposition 4 exhibits how adoption outcomes vary with disability and match

quality. Item (i) states that children with a disability transit to adoption less than
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children without a disability. Both parents’ and children’s decisions drive the re-

sult. Item (ii) shows that if the probability that the child leaves the f-match is

sufficiently low, then high-quality matches do not transit to adoption due to the

parents’ decision. Thus, high-quality matches transit to adoption less than low-

quality matches.

Proposition 4 (Adoption). Assume children’ payoffs satisfy Assumptions 1(a)-(g)

and 5(a)-(c), and parents’ payoffs satisfy Assumptions 2(a)-(e), 3 and 4. Then, in any

foster care equilibrium:

(i) a-match formation is lower for children with a disability,

a(x2, q) ≥ a(x1, q) for all q.

(ii) a-match formation is greater for low quality matches,

a(x, q1) ≥ a(x, q2) for all x.

Proof. See Appendix D.4.

4.2 Empirical Facts and Model Predictions

Now, I establish sufficient conditions on primitives such that the empirical results

estimated in Section 2 emerge in equilibrium, and analyze the role of match qual-

ity in the empirical facts. From now on, I assume all the assumptions specified

previously hold.

4.2.1 Probability of Being Adopted

Consider child (x, q̄) at the beginning of a period, and let A(x, q̄) denote the prob-

ability that she becomes a-matched next period specified as:

A(x, q0) = δx + (1− δx) πc(θ)
∑
M(x,q0)

f(s)
∑
q′

g(q′|s)
[
δx +

(
1− δx

)
a(x, q′)

]
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and

A(x, q) = δx

+ (1− δx)
{
a(x, q) + d(x, q) πc(θ)

∑
M(x,q0)

f(s)
∑
q′

g(q′|s)
[
δx +

(
1− δx

)
a(x, q′)

]
+
(

1− a(x, q)− d(x, q)
)
πc(θ)

∑
M(x,q)

f(s)
∑
q′

g(q′|s)
[
δx +

(
1− δx

)
a(x, q′)

]}

In the first case, the probability that a child (x, q0) is adopted endogenously

depends on the child forming an f-match during the search and f-matching stage,

and both agents announcing adoption after observing some quality q. In the sec-

ond case, the probability that child (x, q) is adopted endogenously can be decom-

posed in three events: (a) f-match (x, q) transits to adoption, (b) f-match (x, q)

destroys and the unmatched child transits to an a-match with another parent, and

(c) the f-match (x, q) remains but the child finds a new f-match and transits to an

a-match with another parent.

Corollary 1. In any foster care equilibrium, the probability of being adopted is:

(i) lower for children with a disability whenever δx2−δx1
1−δx1

> π holds.

(ii) greater for lowqualitymatches whenever bp(x, q1, a) > 0 and bp(x,q2,a)
bp(x,q2,f)

≤ 1−β
1−β(1−δx)

hold.

Proof. See Appendix E.1.

Corollary 1(i) exhibits sufficient conditions for Fact 1 to arise in equilibrium. I

say that children with a disability are less likely to be adopted ifA(x2, q̄) ≥ A(x1, q̄)

holds for all q̄. Loosely speaking, children with a disability are less likely to form

an f-matched, and if they do, they are less likely to transit to adoption.

Corollary 1(ii) presents the impact of match quality on the probability of being

adopted. I say that the probability of being adopted is decreasing in match qual-

ity if A(x, q1) ≥ A(x, q2) holds for all x. In the presence of the adoption penalty,

when the exhibited conditions are satisfied, high-quality matches are less likely

to transit to an a-match than low-quality matches. Intuitively, if the separation of
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high-quality matches is low enough, then parents have no incentives to choose

adoption.

4.2.2 Probability of Foster Match Separation

Consider child (x, q) at the beginning of a period, and letD(x, q) denote the prob-

ability that the f-match separates within a period:

D(x, q) = (1− δx)(1− a(x, q))

[
d(x, q) +

(
1− d(x, q)

)
πc(θ)

∑
M(x,q)

f(s)

]

The probability that an f-match (x, q) separates is decomposed in two events.

First, f-match (x, q) destroys during the destruction and a-matching stage. Second,

f-match (x, q) remains but, during the search and f-matching stage, child x forms

a new f-match with some parent after observing signal s.

Corollary 2. In any foster care equilibrium, the probability of foster match separation is:

(i) greater for children with a disability whenever δx2−δx1
1−δx1

≥ f(s1) holds.

(ii) greater for low quality matches whenever a(x, q1) = 0 and a(x, q2) = 0 hold.

Proof. See Appendix E.2.

Corollary 2(i) exhibits sufficient conditions for Fact 2 to arise in equilibrium. I

say that children with a disability are more likely to have a foster match separation

ifD(x2, q) ≥ D(x1, q) holds for all q. This depends on two forces working on oppo-

site directions, and the empirical result sheds light on which of the driving forces

prevails in equilibrium. On the one hand, Proposition 1(i) shows that children

with a disability are more likely to have an f-matched destroyed, which by itself

makes them more likely to separate On the other hand, Proposition 3(i) shows

that children with a disability are less likely to form a new f-match, which by it-

self makes them less likely to separate. Hence, foster separation involving children

with a disability are mainly driven by the uncertainty on the quality of the match,

while foster separations affecting children without a disability are driven mostly

by the search to improve the match quality.
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Corollary 2(ii) presents sufficient conditions such that the probability of foster

match separation is decreasing in match quality, D(x, q1) ≥ D(x, q2) for all x. In

this case, the driving forces behind separation are aligned. Specifically, as long as

agents’ payoffs are increasing in quality (along with other conditions), the prob-

ability of separation is decreasing in match quality.

4.2.3 Probability of Becoming Foster Matched

Consider child (x, q0) at the beginning of a period, then the probability that child

x becomes f-matched next period is denoted as M(x):

M(x) = (1− δx)
[
πc(θ)

∑
M(x,q0)

f(s)
∑
q

g(q|s) (1− δx)
(
1− d(x, q)

)]

Corollary 3 describes the sufficient conditions for Fact 3 to arise in equilibrium.

I say that children with a disability are less likely to become foster matched if

M(x2) ≥ M(x1) holds. In this case, children with a disability are less likely to

form an f-match, and if they form an f-match, children with a disability are more

likely to have it destroyed.

Corollary 3. In any foster care equilibrium, the probability of becoming foster matched is

lower for children with a disability.

Proof. See Appendix E.3.

4.2.4 Probability of Becoming Unmatched

Consider child (x, q) at the beginning of a period, and let U(x, q) denote the prob-
ability that she becomes unmatched:

U(x, q) = (1− δx)
(
1− a(x, q)

){
d(x, q)

[
1− πc(θ)

∑
M(x,q0)

f(s)
∑
q′

g(q′|s)
(
1− d(x, q′)

)]
︸ ︷︷ ︸

1−M(x)

+
(
1− d(x, q)

)
πc(θ)

∑
M(x,q)

f(s)
∑
q′

g(q′|s)d(x, q′)
}
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Here, child (x, q) becomes unmatched if f-match (x, q) is destroyed and she

remains unmatched after the search and f-matching stage, or if the f-match (x, q)

dissolves and the new f-match is later on destroyed.

Corollary 4. In any foster care equilibrium, the probability of becoming unmatched is:

(i) greater for childrenwith a disabilitywhenever δx2−δx1
1−δx1

≥ f(s1) and 1−δx1
2−δx1−δx2

> π

hold.

(ii) greater for low quality matches, whenever a(x, q1) = 0 and a(x, q2) = 0 hold.

Proof. See Appendix E.4.

Corollary 4(i) exhibits sufficient conditions for Fact 4 to arise in equilibrium. I

say that disability increases the probability of becoming unmatched if U(x1, q) ≥

U(x2, q) for all q. There are potentially two driving forces working on opposite

directions in this case. On the one hand, by Proposition 1(i) and Corollary 3,

children with a disability are more likely to destroy an f-match and more likely

to remain unmatched, which makes them more likely to become unmatched. On

the other hand, by Propositions 1(i) and 3(i), children with a disability are less

likely to form a new f-match but are more likely to destroy the new f-match later

on, thus is not clear who is more likely to become unmatched.

Corollary 4(ii) shows that the probability of becoming unmatched is decreas-

ing in match quality, U(x, q1) ≥ U(x, q2) for all x. In this case, the driving forces

behind becoming unmatched are aligned.

5 Concluding Remarks

This paper provides an extensive analysis of the match transitions of children re-

linquished for adoption in the US foster care system. I first present an empirical

analysis that yields four new facts. Thereafter, I develop a two-sided search and

matching model used to rationalize the empirical facts and carry out predictions

regarding match quality.
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Using the theoretical model, I show that foster separation involving children

with a disability is mainly driven by the uncertainty of the quality of the match,

while foster separation involving children without a disability is driven to im-

prove match quality. Also, I find that high-quality matches are less likely to be

separated. Surprisingly, I find that foster match separation plays a crucial role

in adoption by influencing the incentives of foster parents to adopt. Due to the

presence of the financial penalty on adoption, parents face the following trade-off

when deciding to adopt: accept the penalty in exchange for eliminating the like-

lihood that the child breaks the foster match in the future. For adoption, I show

that the adoption penalty not only exacerbates the intrinsic disadvantage faced

by children with a disability but also creates incentives for high-quality matches

to not transit to adoption. Moreover, I show that foster parents in high-quality

matches might have fewer incentives to adopt.
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A Appendix: Foster Care in the US

A.1 Overview

Foster care is authorized by title IV-E of the Social Security Act, and all states

are eligible to participate in the program and receive federal funding. Accord-

ing to Rosinsky and Connelly (2016), the national spending on child welfare in

2014 was approximately $29.1, out of which $12.8 billion was federally funded,

and the remaining was financed directly by states.19 Furthermore, 47% of the na-

tional spending was destined to out of home placement expenditure (including

payments to foster parents and their training), and 17% was intended to finance

adoption and guardianship programs (including monthly payments to adoptive

parents and adoption fees).

Researchers and child welfare agencies have focused their attention on three

significant issues: children’ placements while in foster care, children’ exit from

foster care through adoption, and placement separation.

A.1.1 Foster Homes and Institutional Care

Foster parents provide the highest source of out-of-home care.20 At the end of the

federal fiscal year of 2014, the number of children in foster care was 415,129, out

of which 79% were placed with foster parents, and 14% were placed in institu-

tional care (U.S. Department of Health and Human Services, 2014). Federal and

state child welfare agencies have a strong preference for foster homes over insti-

tutional care 21, and research supports this preference. First, evidence shows that

institutional care is between six to ten times more expensive than foster family

homes (Barth, 2002). Second, research shows that children placed in institutional
19Federal fund sources include Title IV-E and Title IV-B of the Social Security Act, Medicaid,

Social Services Block Grant, Temporary Assistance for Needy Families, and other federal grants
and awards.

20Foster homes are divided in relative and non-relative. In a relative foster home, the foster
parent is a relative or someone with a prior connection to the child who joins the program to care
for a particular child. In a non-relative foster-home, the foster parent joins the program without
prior connection to any child and later on is matched to a child to care for.

21The Adoption Assistance and Child Welfare Act of 1980 (AACWA) requires children to be
placed in the most family-like placement when possible
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care have lower academic outcomes, lower levels of education, higher risk to en-

gage in delinquent behavior, and a higher risk of criminal convictions when adults

(Berrick et al., 1993; Mech et al., 1994; Ryan et al., 2008; Dregan and Gulliford,

2012).

A.1.2 Adoption and Long-term Care

At the end of the federal fiscal year of 2014, 18% of children in foster care had

their parental rights terminated, out of which 41% were adopted (U.S. Depart-

ment of Health and Human Services, 2014). Research suggests that adoption is

a better alternative to long-term care for two main reasons. First, maintaining a

child in long-term care is more expensive than adoption (Barth, 1993; Barth et al.,

2006; Hansen, 2008). Second, adoption generates better outcomes for children.

Triseliotis (2002) and Hansen (2008) show that children who are adopted exhibit

better social and educational outcomes. Since adoption from foster care is a ma-

jor concern for policy markets, laws have been enacted to increase adoption. In

particular, AACWA created the Adoption Assistance Program, which mandates

states to make adoption assistance payments to parents who adopt children with

special needs, including disability.22

A.1.3 Placement Separation

Research shows that an increase in the number of placements can delay academic

skills formation, increase problematic behavior among children, and increase the

risk of delinquency among male children (Zima et al., 2000; Newton et al., 2000;

Ryan and Testa, 2005). At the end of the federal fiscal year of 2014, children ex-

hibited in average 2.7 placements for a single foster care episode.23 This is above

the ideal number set by the Children’s Bureau that defines adequate placement

stability as limiting the number of placements for a child to no more than two for
22AACWA states that ‘a child with special needs is a child who: can not be returned to her birth-

family home, has a special condition such that the child can not be placed for adoption without
providing assistance, and has not been able to be placed for adoption without assistance’.

23A child can enter foster care multiple times, each time a child enters foster care is a different
foster care episode.

38



a single foster care episode. This paper focuses on the role that placement sepa-

ration plays on adoption, which has not been addressed in the literature.

A.2 Matching Process

Foster care is conducted and administered at the state level by Child Protective

Services (CPS). When an allegation concerning a child’s well-being is received,

CPS assigns a social worker to the case and initiates an investigation. If sufficient

evidence supporting an accusation is found, the case is presented to a juvenile or

family court, where a judge decides whether the child is removed from her birth-

family home and placed in foster care. If the social worker believes that the child

is in serious or imminent danger; she is allowed to execute an emergency removal

without the court’s approval. Yet, the decision must be later on approved by the

judge.

In most states, decisions concerning children’ placements are made by social

workers. On behalf of a child, the social worker (a) searches and contacts foster

parents, (b) arranges a meeting between the foster parent and child in order to

obtain information of whether the foster parent is a good fit for the child, and (c)

decides where to place the child. A placement in a foster home must be mutu-

ally agreed upon between the foster parent and social worker. The social worker

can switch a child from one foster home to another or from a foster home to insti-

tutional care. Similarly, foster parents can request the child’s removal from their

home. Adoptions must be mutually agreed upon between the foster parent and

social worker. Once the child is adopted, she exits foster care. It is essential to

mention that an increasing number of states require parents to foster a child be-

fore adopting. For example, some states mandate that the child must reside in the

foster home for at least six months before foster parents can adopt.

Foster parents must hold a license to provide care for children. The licensing

process includes a home study and training requirements. The home study en-

sures that the foster parent’s house is clean, in good condition, and free from dan-

ger. The initial training (15 to 30 hours of mandatory classes) addresses topics

such as agency policies and procedures, roles and responsibilities of foster par-
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ents, and behavior management. Also, most states require ongoing post-training

to maintain the license.

Foster parents receive financial transfers when a child is placed on their care,

which differ on whether the parent is fostering or adopting. While in foster, the

parent receives financial payments for the duration of the placement. If the child

is adopted, the parent gets monthly financial payments until the child reaches at

least 18 years old. Each state has its own payment scheme, but as a rule-of-thumb,

foster parents who provide care for a child with higher needs receive higher pay-

ments and adoption payments are lower than foster payments. For more detail on

payment schemes, see DeVooght and Blazey (2013).
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B Appendix: Tables

Table A1: Descriptive Statistics by Disability, All Samples

Sample A Sample B Sample C
obs = 1, 165, 818 obs = 659, 253 obs = 65, 970

Disability Yes No Yes No Yes No
Adopted 0.22 0.32 - - - -

(0.41) (0.47)
Foster matched 0.89 0.96 1.00 1.00 0.00 0.00

(0.31) (0.19) (0.00) (0.00) (0.00) (0.00)
Becomes foster matched - - - - 0.22 0.28

(0.41) (0.45)
Becomes unmatched - - 0.03 0.01 - -

(0.18) (0.11)
Foster match separates - - 0.19 0.18 - -

(0.40) (0.38)
Age in years 7.96 6.01 7.79 6.07 12.34 11.81

(4.45) (4.23) (4.35) (4.22) (2.56) (3.22)
Male 0.57 0.50 0.60 0.50 0.65 0.58

(0.50) (0.50) (0.50) (0.50) (0.48) (0.49)
White 0.43 0.44 0.41 0.42 0.45 0.42

(0.49) (0.50) (0.49) (0.50) (0.50) (0.49)
Black 0.25 0.23 0.27 0.24 0.26 0.29

(0.43) (0.42) (0.44) (0.43) (0.44) (0.45)
Hispanic 0.22 0.22 0.22 0.23 0.19 0.21

(0.41) (0.41) (0.41) (0.42) (0.39) (0.41)
Title IV-E eligible 0.49 0.47 0.53 0.50 0.45 0.50

(0.50) (0.50) (0.50) (0.50) (0.50) (0.50)
Months in foster care 41.20 30.53 40.91 30.23 55.94 46.99

(28.66) (19.80) (28.62) (20.37) (37.34) (34.54)
Months since PRT? 21.71 13.91 20.09 13.29 44.14 37.34

(26.53) (18.83) (25.27) (18.92) (37.02) (36.09)
Months in current 16.67 15.64 18.18 16.64 11.03 10.47
placement (17.32) (14.51) (18.16) (14.72) (14.67) (12.38)

Notes: Data are from Adoption and Foster Care Analysis and Reporting System (AFCARS). Means
and standard deviations are calculated for child-period observations. Sample A is the full sample
containing all children younger than age 16 whose parental rights have been terminated and who
are either foster matched or unmatched. Sample B and Sample C are subsamples of A. Sample
B (sample C) keeps only those child-period observations such that the child is foster matched
(unmatched) at the beginning of the period and still in foster care at the end of the period.
? PRT stands for Parental Rights Terminated.
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Table A2: Stylized Facts from Foster Care - Effect of Disability

Foster
matched

Disability γ -0.043***
(0.002)

Mean of dependent 0.934
variable
Number of child-period 1,165,818
observations

Notes: Data are from Adoption and Foster Care Analysis and Reporting System (AFCARS). All
specifications control for child’s demographics, states indicators and period indicators. The first
and second columns consider sample A, third and fifth columns use sample B, and the fourth col-
umn uses sample C. Standard errors are cluster at the state-period level and shown in parentheses.
***P < 0.01; **P < 0.05; *P < 0.10.

42



Table A3: Regression Output

Adoption Foster match Becomes Becomes
Separation Foster matched Unmatched

I II III IV

Age in years -0.002*** 0.001*** -0.002*** 0.000***
(0.000) (0.000) (0.000) (0.000)

Disability -0.059*** 0.023*** -0.045*** 0.011***
(0.005) (0.002) (0.006) (0.001)

Male -0.011*** -0.003*** -0.030*** 0.003***
(0.001) (0.001) (0.004) (0.000)

White 0.022** -0.006** -0.002 0.001
(0.002) (0.002) (0.007) (0.001)

Black -0.025*** 0.005 -0.009 0.000
(0.003) (0.003) (0.007) (0.001)

Hispanic 0.007*** -0.004 -0.007 -0.001
(0.003) (0.002) (0.009) (0.001)

Receiving Title IV-E -0.079*** -0.002 0.013*** -0.000
(0.005) (0.002) (0.004) (0.001)

Months in foster care 0.002*** -0.000*** -0.000*** -0.000***
(0.000) (0.000) (0.000) (0.000)

Months since PRT* -0.001*** 0.000*** -0.001*** -0.000***
(0.000) (0.000) (0.000) (0.000)

Months in the -0.002*** -0.001*** -0.001***
current placement (0.000) (0.000) (0.000)

Mean of dependent 0.279 0.185 0.236 0.021
variable

Number of child-period 1,165,818 659,253 65,970 659,253
observations

R-square 0.073 0.113 0.053 0.046
observations

Notes: Data are from Adoption and Foster Care Analysis and Reporting System (AFCARS). All
specifications control for child’s demographics, states indicators and period indicators. The first
and second columns consider sample A, third and fifth columns use sample B, and the fourth col-
umn uses sample C. Standard errors are cluster at the state-period level and shown in parentheses.
***P < 0.01; **P < 0.05; *P < 0.10.
*PRT stands for Parental Rights Terminated.
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C Appendix: Omitted Equations

C.1 Endogenous Distribution of Children

A parent can meet a child who is unmatched or f-matched with quality q. Thus,

an unmatched parent meets a child (x, q̄) according to the probability distribution

m̂(x, q̄) where:

m̂(x, q̄) =


uc(x)∑

x u
c(x)+

∑
qm(x,q)

if q̄ = q0

m(x,q)∑
x u

c(x)+
∑
qm(x,q)

if q̄ = q

(C.1)

Therefore, a parent meets an unmatched childxwith total probability πp(θ)m̂(x, q0).

Similarly, a parent meets a child (x, q) with total probability πp(θ)m̂(x, q).

C.2 Aggregate State of the Market

For each (x, q), m(x, q) satisfies the following equality:

m(x, q)

{
πc(θ)

∑
M(x,q)

f(s) +
(
1− πc(θt)

∑
M(x,q)

f(s)
)[
δx +

(
1− δx

)
d(x, q)a(x, q)

]}
︸ ︷︷ ︸

mass destruction

=

uc(x)πc(θ)
∑
M(x,q0)

f(s)g(q|s)
(
1− δx

)(
1− d(x, q)

)(
1− a(x, q)

)
+
∑
q′

m(x, q′)πc(θ)
∑
M(x,q′)

f(s)g(q|s)
(
1− δx

)(
1− d(x, q)

)(
1− a(x, q)

)
︸ ︷︷ ︸

mass creation

(C.2)

For each x, uc(x) satisfies the following equality:

uc(x)

{
πc(θ)

∑
M(x,q0)

f(s)
∑
q

[
δx +

(
1− δx

)(
1− d(x, q)

)
g(q|s)

]
+
(
1− πc(θ)

∑
M(x,q0)

f(s)
)
δx

}
=

∑
q

m(x, q)
(
1− δx

){
πc(θ)

∑
M(x,q)

f(s)
∑
q′

g(q′|s)d(x, q′) +
(
1− πc(θ)

∑
M(x,q)

f(s)
)
d(x, q)

}
+ ρl(x) (C.3)
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C.3 Children’ Decision Conditions

Child (x, q) chooses ac(x, q) = 1 if and only if:

bc(x, q, a)

1− β
> max

(1− πc(θ)
∑
M(x,q0)

f(s)
)
C(x, q0) + πc(θ)

∑
M(x,q0)

Es[C(x, q)]f(s) ,

(
1− πc(θ)

∑
M(x,q)

f(s)
)
C(x, q) + πc(θ)

∑
M(x,q)

Es[C(x, q)]f(s)

 (C.4)

Child (x, q) chooses dc(x, q) = 1 if and only if:

(
1− πc(θ)

∑
M(x,q0)

f(s)
)
C(x, q0) + πc(θ)

∑
M(x,q0)

Es[C(x, q)]f(s) > max

{
bc(x, q, a)

1− β
,

(
1− πc(θ)

∑
M(x,q)

f(s)
)
C(x, q) + πc(θ)

∑
M(x,q)

Es[C(x, q)]f(s)

 (C.5)

C.4 Parents’ Decision Conditions

A parent chooses in = 1 if and only if:

− k + βπp(θ)
∑
M(x,q̄)

∑
x,q̄

Es[P(x, q)]m̂(x, q̄)f(s) > 0 (C.6)

Parent (x, q) chooses ap(x, q) = 1 if and only if:

bp(x, q, a)

1− β
> max

(1− πc(θ) ∑
M(x,q)

f(s)
)
· bp(x, q, f)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

) , Pu


(C.7)

Parent (x, q) chooses dp(x, q) = 1 if and only if:

Pu > max

(1− πc(θ) ∑
M(x,q)

f(s)
)
· bp(x, q, f)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

) , b
p(x, q, a)

1− β


(C.8)
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D Appendix: Proofs of Equilibrium Analysis

D.1 Proof of Proposition 1

I start by describing the destruction strategies of children and parents. Lemma 1

states that, in any foster care equilibrium, child (x, q) does not destroy if bc(x, q, f)

is non-negative.

Lemma 1 (Destruction Strategies of Children). In any foster care equilibrium, dc(x, q) =

0 if bc(x, q, f) ≥ 0 for all (x, q).

Proof. Fixing (x, q), assume that bc(x, q, f) is non-negative. By contradiction, sup-
pose dc(x, q) = 1 then, by the equilibrium definition, it follows that Ĉ(x, q0) >

Ĉ(x, q), that is:

(
1− πc(θ)

∑
M(x,q0)

f(s)
)
C(x, q0) + πc(θ)

∑
M(x,q0)

Es[C(x, q)]f(s) >

(
1− πc(θ)

∑
M(x,q)

f(s)
)
C(x, q) + πc(θ)

∑
M(x,q)

Es[C(x, q)]f(s) (D.1)

By assumption Ĉ(x, q0) > Ĉ(x, q), then the value function for child (x, q) is:

C(x, q) = bc(x, q, f) + βδx
bc(x, q2, a)

1− β

+ β(1− δx)
[(

1− πc(θ)
∑
M(x,q0)

f(s)
)
C(x, q0) + πc(θ)

∑
M(x,q0)

Es[C(x, q)]f(s)
]

Since bc(x, q, f) is non-negative, it follows that:

C(x, q) = bc(x, q, f) + βδx
bc(x, q2, a)

1− β

+ β(1− δx)
[(

1− πc(θ)
∑
M(x,q0)

f(s)
)
C(x, q0) + πc(θ)

∑
M(x,q0)

Es[C(x, q)]f(s)
]

≥ βδx
bc(x, q2, a)

1− β

+ β(1− δx)
[(

1− πc(θ)
∑
M(x,q0)

f(s)
)
C(x, q0) + πc(θ)

∑
M(x,q0)

Es[C(x, q)]f(s)
]

= C(x, q0)
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In equilibrium, s ∈M(x, q̄) if and only ifEs[C(x, q)] ≥ C(x, q̄) andEs[P(x, q)] ≥ Pu.

Thus, if C(x, q) ≥ C(x, q0) thenM(x, q) ⊆ M(x, q0). Now, I show that C(x, q) ≥

C(x, q0) contradicts Ĉ(x, q0) > Ĉ(x, q). For this, I analyze two cases:

Case 1: Suppose C(x, q) = C(x, q0), then M(x, q) = M(x, q0). Thus, Ĉ(x, q) =

Ĉ(x, q0) which implies that dc(x, q) = 0. A contradiction.

Case 2: Suppose C(x, q) > C(x, q0), thenM(x, q) ⊂M(x, q0). Here, I define the set

M̂(x, q) = {s ∈ S|s ∈M(x, q0) \M(x, q)}. Thus, the following holds:

Ĉ(x, q) =
(

1− πc(θ)
∑
M(x,q)

f(s)
)
C(x, q) + πc(θ)

∑
M(x,q)

Es[C(x, q)]f(s)

=
(

1− πc(θ)
)
C(x, q) + πc(θ)

∑
s/∈M(x,q)

f(s)C(x, q) + πc(θ)
∑
M(x,q)

Es[C(x, q)]f(s)

=
(

1− πc(θ)
)
C(x, q) + πc(θ)

∑
s/∈M(x,q0)

f(s)C(x, q) + πc(θ)
∑

s∈M̂(x,q)

f(s)C(x, q)

+ πc(θ)
∑
M(x,q)

Es[C(x, q)]f(s)

>
(

1− πc(θ)
)
C(x, q0) + πc(θ)

∑
s/∈M(x,q0)

f(s)C(x, q0) + πc(θ)
∑

s∈M̂(x,q)

f(s)C(x, q)

+ πc(θ)
∑
M(x,q)

Es[C(x, q)]f(s)

By definition, if s ∈ M̂(x, q) then C(x, q) > Es[C(x, q)] > C(x, q0). Thus, the follow-

ing holds:

Ĉ(x, q) >
(

1− πc(θ)
)
C(x, q0) + πc(θ)

∑
s/∈M(x,q0)

f(s)C(x, q0) + πc(θ)
∑

s∈M̂(x,q)

f(s)C(x, q)

+ πc(θ)
∑
M(x,q)

Es[C(x, q)]f(s)

>
(

1− πc(θ)
∑
M(x,q0)

f(s)
)
C(x, q0) + πc(θ)

∑
M(x,q0)

Es[C(x, q)]f(s) = Ĉ(x, q0)

which contradicts equation D.1. Hence, if bc(x, q, f) ≥ 0 then dc(x, q) = 0.

Lemma 2 shows that parents destroy an f-match of quality q with child x if and

only if bp(x, q, f) is negative.
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Lemma 2 (Destruction Strategies of Parents). Assume parents’ payoffs satisfy As-

sumption 2(a). In any foster care equilibrium, dp(x, q) = 1 if and only if bp(x, q, f) < 0

for all (x, q).

Proof. (⇒) Fix (x, q). Assume dp(x, q) = 1, then the following inequality must
hold:

0 > max

(1− πc(θ) ∑
M(x,q)

f(s)
)
· bp(x, q, f)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

) , b
p(x, q, a)

1− β


By contradiction, suppose bp(x, q, f) is non-negative. Since 1−πc(θ)

∑
M(x,q) f(s) ≥

0 and 1 − β(1 − δx)
(
1 − πc(θ)

∑
M(x,q) f(s)

)
≥ 0, there is a contradiction. Hence,

dp(x, q) = 1 only if bp(x, q, f) is negative.

(⇐) Fixing (x, q), assume that bp(x, q, f) is negative. By contradiction, suppose
dp(x, q) = 0. There are two possible cases:

Case 1: Suppose ap(x, q) = 1, then bp(x,q,a)
1−β > 0 must hold. Since bp(x, q, f) is nega-

tive then, by assumption 2(a), bp(x, q, a) is also negative. Hence, there is a contra-
diction.

Case 2: Suppose ap(x, q) = 0 and dp(x, q) = 0, then the following inequality must
hold:

(
1− πc(θ)

∑
M(x,q)

f(s)
)
· bp(x, q, f)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

) ≥ max

{
0 , b

p(x, q, a)

1− β

}

Since bp(x, q, f) is negative then, by assumption 2(a), bp(x, q, a) is also negative.

Thus, it must be that dp(x, q) = 1.

Now, I prove Proposition 1 using Lemmas 1 and 2. By Lemma 1 and Assump-

tion 1(a), it follows that dc(x, q) = 0 for all (x, q). This implies that the total proba-

bility of destruction of an f-match depends on the destruction strategies of parents.

(i) Fix some quality q. Suppose a parent f-matched to child x2 when the quality

is q chooses dp(x2, q) = 1. Then, by Lemma 2, bp(x2, q, f) is negative. By

Assumption 2(b), bp(x1, q, f) is also negative. Thus, by Lemma 2, dp(x1, q) =

1. Hence, d(x1, q) ≥ d(x2, q).
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(ii) Fix some child x. Suppose a parent f-matched to child x when the quality

is q chooses dp(x, q) = 1. Then, by Lemma 2, bp(x, q, f) is negative. Now,

consider q′ such that q > q′. By Assumption 2(c), bp(x, q′, f) is also negative.

Thus, by Lemma 2, dp(x, q′) = 1. Hence, d(x, q′) ≥ d(x, q) whenever q > q′.

D.2 Proof of Proposition 2

I start by describing the f-match formation strategies of unmatched children and

parents. Lemma 3 shows that child (x, q0) announces foster after observing signal

s if Es[bc(x, q, f)] is non-negative.

Lemma 3 (F-match Formation Strategies of Unmatched Children). In any foster

care equilibrium, s ∈ F c(x, q0) if Es[bc(x, q, f)] ≥ 0 for all (x, s).

Proof. Fix x. In any foster care equilibrium, s ∈ F c(x, q0) if and only if Es[C(x, q)] ≥

C(x, q0). I show that, for all s ∈ S, if Es[bc(x, q, f)] ≥ 0 then Es[C(x, q)] ≥ C(x, q0).

Note that, since the destruction of f-matches is unilateral, the conditional expected

value Es[C(x, q)] is bounded bellow by
∑

q b
c(x, q, f)g(q|s) + βδx

bc(x,q2,a)
1−β + β(1 −

δx)Ĉ(x, q0). Assuming that Es[bc(x, q, f)] is non-negative, the following inequality

holds:

Es[C(x, q)] ≥
∑
q

bc(x, q, f)g(q|s) + βδx
bc(x, q2, a)

1− β
+ β(1− δx)Ĉ(x, q0)

≥ βδx
bc(x, q2, a)

1− β
+ β(1− δx)Ĉ(x, q0) = C(x, q0)

Hence, if Es[bc(x, q, f)] ≥ 0 then Es[C(x, q)] ≥ C(x, q0).

Lemma 4 establishes that parents announces foster after observing signal s if

and only if the conditional expected payoff of being f-matched is non-negative.

Lemma 4 (F-match Formation Strategies of Parents). Assume parents’ payoffs sat-

isfy Assumption 4. In any foster care equilibrium, s ∈ F p(x) if and only ifEs[bp(x, q, f)] ≥

0 for all (x, s).
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Proof. (⇒) Fix x. In any foster care equilibrium, s ∈ F p(x) if and only ifEs[P(x, q)] ≥
0. I show that if Es[bp(x, q, f)] ≥ 0 then Es[P(x, q)] ≥ 0. Fixing s, consider the con-
ditional expected value:

Es[P(x, q)] =
∑
q

bp(x, q, f)g(q|s)

+ β(1− δx)
∑
q

[
ac(x, q)max

{
bp(x, q, a)

1− β
, 0 ,

(
1− πc(θ)

∑
M(x,q) f(s)

)
bp(x, q, f)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

)}

+
(
1− dp(x, q)− ap(x, q)

)
max

{
0 ,

(
1− πc(θ)

∑
M(x,q) f(s)

)
bp(x, q, f)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

)}]g(q|s)
Since f-match destruction is unilateral, the conditional expected value Es[P(x, q)]

is bounded bellow byEs[bp(x, q, f)].Thus, ifEs[bp(x, q, f)] ≥ 0 thenEs[P(x, q)] ≥ 0 .

(⇐) Fix (x, s). I show that, if Es[bp(x, q, f)] is negative then Es[P(x, q)] is also neg-
ative. Note that, Es[P(x, q)] is bounded above by the following expression:

∑
q

P(x, q)g(q|s) =
∑
q

bp(x, q, f)g(q|s)

+ β(1− δx)
∑
q

[
max

{
bp(x, q, a)

1− β
, 0 , bp(x, q, f)

1− β (1− δx)

}]
g(q|s)

Since
∑

q b
p(x, q)g(q|s) is negative, by Assumption 4,

∑
q P(x, q)g(q|s) is also neg-

ative.

Now, I prove Proposition 2 using Lemmas 3 and 4. By definition, f-matches

must be mutually agreed upon s ∈ M(x, q0) if and only if s ∈ F c(x, q0) and s ∈

F p(x). By Assumption 1(a), it follows that Es[bc(x, q, f)] ≥ 0 for all s ∈ S. Hence,

by Lemma 3, F c(x, q0) = S.

(i) Fix signal s, I show that if s ∈ F p(x1) then s ∈ F p(x2). Suppose s ∈ F p(x1)

then, by Lemma 4, it follows that Es[bp(x1, q, f)] must be non-negative. Since

bp(x2, q, f) ≥ bp(x1, q, f) for all q, by Assumption 2(b), then Es[bp(x2, q, f)]

is also non-negative. Thus, by Lemma 4, s ∈ F p(x2). By Assumption 3, it

follows thatF p(x1) andF p(x2) are non-empty. Hence,M(x, q0) is non-empty
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for all x, andM(x1, q0) ⊆M(x2, q0).

(ii) Fix child x. Consider s and s′ such that s′ > s. I show that, if s ∈ F p(x) then

s′ ∈ F p(x). Suppose s ∈ F p(x) then, by Lemma 4, it follows thatEs[bp(x, q, f)]

is non-negative. Given that G(q|s′) ≤ G(q|s) and bp(x, q, f) is increasing in q

(Assumption 2(c)), it follows thatEs′ [bp(x, q, f)] is also non-negative. Hence,

by Lemma 4, s′ ∈ F p(x). Hence, if s ∈M(x, q0) then s′ ∈M(x, q0).

D.3 Proof of Proposition 3

First I establish that, as a best-response, children with and without a disability

choose the same f-match formation strategy, and both are more willing to separate

from an f-match of low-quality q1 than a high-quality match q2.

Lemma 5 (F-match formation strategies of f-matched children). Assume children’

payoffs satisfy Assumptions 1(a),(c)-(d). Then, for all x, F c(x, q1) = S and F c(x, q2) =

{∅} whenever d(x, q1) ≥ d(x, q2) holds.

Proof. For each x, it follows that F c(x, q2)∩ F c(x, q1) = S or F c(x, q2)∩ F c(x, q1) =

{∅}. The reason is the following. For each signal, s ∈ F c(x, q2) if and only if

Es[C(x, q)] = C(x, q1)g(q1|s) + C(x, q2)g(q2|s) ≥ C(x, q2). Then, it must be that

C(x, q1) ≥ C(x, q2) independent of the distributions. Now, if C(x, q1) > C(x, q2)

then s /∈ F c(x, q1), and if C(x, q1) = C(x, q2) then s ∈ F c(x, q1). Hence, there are

three possible cases:

(1) F c(x, q2) = F c(x, q1) = {s1, s2}.

(2) F c(x, q2) = {s1, s2} and F c(x, q1) = {∅}.

(3) F c(x, q2) = {∅} and F c(x, q1) = {s1, s2}.

I show that C(x, q2) > C(x, q1) holds, thus only the third case is feasible. Since

d(x, q1) ≥ d(x, q2), the following cases might arise:

Case a: Suppose a(x, q1) = 1, then C(x, q1) = bc(x, q1, f) + βδx
bc(x,q2,a)

1−β + β(1 −

δx)
bc(x,q1,a)

1−β
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(a1) If a(x, q2) = 1, then C(x, q2) − C(x, q1) = bc(x, q2, f) − bc(x, q1, f) + β(1 −

δx)
[
bc(x,q2,a)

1−β − bc(x,q1,a)
1−β

]
(a2) If a(x, q2) = 0 and d(x, q2) = 0, then C(x, q2) − C(x, q1) = bc(x, q2, f) −

bc(x, q1, f) + β(1− δx)
[
Ĉ(x, q2)− bc(x,q1,a)

1−β

]
Case b: Suppose d(x, q1) = 1, then C(x, q1) = bc(x, q1, f) + βδx

bc(x,q2,a)
1−β + β(1 −

δx)Ĉ(x, q0)

(b1) If d(x, q2) = 1, then C(x, q2)− C(x, q1) = bc(x, q2, f)− bc(x, q1, f)

(b2) If a(x, q2) = 1, then C(x, q2) − C(x, q1) = bc(x, q2, f) − bc(x, q1, f) + β(1 −

δx)
[
bc(x,q2,a)

1−β − Ĉ(x, q0)
]

(b3) If a(x, q2) = 0 and d(x, q2) = 0, then C(x, q2) − C(x, q1) = bc(x, q2, f) −

bc(x, q1, f) + β(1− δx)
[
Ĉ(x, q2)− Ĉ(x, q0)

]
Case c: Suppose a(x, q1) = 0 and d(x, q1) = 0, then C(x, q1) = bc(x, q1, f)+βδx

bc(x,q2,a)
1−β +

β(1− δx)Ĉ(x, q1)

(c1) If a(x, q2) = 1, then C(x, q2) − C(x, q1) = bc(x, q2, f) − bc(x, q1, f) + β(1 −

δx)
[
bc(x,q2,a)

1−β − Ĉ(x, q1)
]

(c2) If a(x, q2) = 0 and d(x, q2) = 0, then C(x, q2) − C(x, q1) = bc(x, q2, f) −

bc(x, q1, f) + β(1− δx)
[
Ĉ(x, q2)− Ĉ(x, q1)

]
Assume 1(a) and 1(c), then C(x, q2)−C(x, q1) > 0 for cases (a1) and (b1). For case

(b3), if d(x, q2) = 0 then Ĉ(x, q2) ≥ Ĉ(x, q0). Thus, by Assumptions 1(a) and 1(c),

it follows that C(x, q2) − C(x, q1) > 0 in case (b3). By assumption 1(d), it follows

that bc(x,q2,a)
1−β ≥ Ĉ(x, q̄) for all q. Hence, by assumptions 1(a),(c)(d) it follows that

C(x, q2) − C(x, q1) > 0 for all the other cases. Therefore, F c(x1, q2) = F c(x2, q2) =

{∅} and F c(x1, q1) = F c(x2, q1) = {s1, s2}.

Now, I establish Proposition 3. By Assumptions 1(a), 2(a), and 2(c), Proposi-

tion 1(ii) holds. Thus, for children, Lemma 5 holds. For parents, by Assumptions

2(b), 3, and 4, Proposition 2(i) holds, that is, F p(x) is non-empty for all x, and
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F p(x1) ⊆ F p(x2). Moreover, by adding Assumption 2(c), Proposition 2(ii) holds.

That is, for all x, if s1 ∈ F p(x) then s2 ∈ F p(x).

Since s ∈M(x, q) if and only if s ∈ F c(x, q) and s ∈ F p(x), the following holds:

(a) M(x, q1) is non-empty for all x.

(b) M(x, q2) = {∅} for all x.

(c) M(x1, q1) ⊆M(x2, q1).

(d) s1 ∈M(x, q1) implies s2 ∈M(x, q1) for all x.

Finally, sinceM(x, q2) = {∅}, then
∑
M(x,q2) f(s) = 0. Hence,

∑
M(x,q1) f(s) ≥∑

M(x,q2) f(s). Now, sinceM(x1, q1) ⊆M(x2, q1) then
∑
M(x2,q)

f(s) ≥
∑
M(x1,q)

f(s)

for all q.

D.4 Proof of Proposition 4

I start by describing the adoption strategies of children and parents. Lemma 6

presents some properties of the adoption strategies of parents.

Lemma 6 (Adoption Strategies of Parents). Assume parents’ payoffs satisfy As-

sumptions 2(a)-(b) ,(d)-(e). Then, the adoption strategies of parents exhibit the following

properties.

(i) for each (x, q), if bp(x, q, a) > 0 and bp(x,q,a)
bp(x,q,f)

> 1−β
1−β(1−δx)

then ap(x, q) = 1.

(ii) for all q, if
∑
M(x2,q)

f(s) ≥
∑
M(x1,q)

f(s) then the best-response of parents satisfies

the following: if ap(x1, q) = 1 then ap(x2, q) = 1.

(iii) for all x, if
∑
M(x,q′) f(s) ≥

∑
M(x1,q)

f(s) and bp(x, q′, a) > 0 whenever q′ <

q then the best-response of parents satisfies the following: if ap(x, q) = 1 then

ap(x, q′) = 1.

Proof. Assume 2(a). A parent f-matched to child x when the quality is q an-

nounces adoption if and only if the following inequalities hold:

bp(x, q, a)

1− β
> 0 (D.2)
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bp(x, q, a)

1− β
>
(
1− πc(θ)

∑
M(x,q)

f(s)
)
· bp(x, q, f)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

) (D.3)

(i) Fix (x, q). Assume bp(x, q, a) is positive then ap(x, q) = 1 if and only if in-

equality D.3 holds. The right-hand side of this inequality is decreasing in

πc(θ)
∑
M(x,q) f(s). Thus, for ap(x, q) to take value one independent of the

endogenous objects πc(θ) andM(x, q), the following inequality must hold:

bp(x, q, a)

b(x, q)
>

1− β
1− β(1− δx)

Or, equivalently δx > bp(x,q,f)−bp(x,q,a)
bp(x,q,a)

1−β
β

.

(ii) Consider a parent f-matched to child x1 when the quality is q. Assume

ap(x1, q) = 1, then inequalities D.2 and D.3 hold. By Assumption 2(b), it

follows that bp(x2, q, a) > 0. Hence, ap(x1, q) = 1 implies ap(x2, q) = 1 if the

following inequalities holds:

bp(x2, q, a)

bp(x2, q, f)
>
bp(x1, q, a)

bp(x1, q, f)

and

(1− β)
(
1− πc(θ)

∑
M(x1,q)

f(s)
)

1− β(1− δx1)
(
1− πc(θ)

∑
M(x1,q)

f(s)
) ≥ (1− β)

(
1− πc(θ)

∑
M(x2,q)

f(s)
)

1− β(1− δx2)
(
1− πc(θ)

∑
M(x2,q)

f(s)
)

By Assumption 2(d), the first inequality holds. Moreover, since δx2 ≥ δx1

and
∑
M(x2,q)

f(s) ≥
∑
M(x1,q)

f(s), the second inequality holds.

(iii) Consider a parent f-matched to a child x when the quality is q. Assume

ap(x, q) = 1, then inequalities D.2 and D.3 hold. Also, consider a parent f-

matched to child xwhen the quality is q′ such that q′ < q. Since bp(x, q′, f) ≥

0, then ap(x, q) = 1 implies ap(x, q′) = 1 if the following inequalities holds:

bp(x, q′, a)

bp(x, q′, f)
>
bp(x, q, a)

bp(x, q, f)
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(1− β)
(
1− πc(θ)

∑
M(x,q) f(s)

)
1− β(1− δx)

(
1− πc(θ)

∑
M(x,q) f(s)

) ≥
(1− β)

(
1− πc(θ)

∑
M(x,q′) f(s)

)
1− β(1− δx)

(
1− πc(θ)

∑
M(x,q′) f(s)

)
By Assumption 2(e), the first inequality always holds. The second inequal-

ity holds since
∑
M(x,q′) f(s) ≥

∑
M(x,q) f(s) by assumption.

The next lemma presents some properties of the adoption strategies of chil-

dren.

Lemma 7 (Adoption Strategies of Children). Assume children’ payoffs satisfy As-

sumptions 1(a)-(g), and 5(a)-(c). Moreover, suppose the following

(a) d(x, q2) = 0 for all x,

(b) M(x, q1) is non-empty for all x,

(c) M(x, q2) is empty for all x,

(d) M(x1, q1) ⊆M(x2, q1),

(e) s1 ∈M(x, q1) implies s2 ∈M(x, q1) for all x, and

(f) ap(x2, q) ≥ ap(x1, q) for all q.

Then, the adoption strategies of children are ac(x2, q) ≥ ac(x1, q) for all q. Moreover,

1 = ac(x, q2) ≥ ac(x, q1) for all x.

Proof. Fix child (x, q). Since dc(x, q) = 0 by Assumption 1(a) and Lemma 1, she
announce adoption if and only if:

bc(x, q, a)

1− β
>(

bc(x, q, f) + βδx
bc(x,q2,a)

1−β

)(
1− πc(θ)

∑
M(x,q) f(s)

)
+ πc(θ)

∑
M(x,q) Es[C(x, q)]f(s)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

)
(D.4)
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SinceM(x, q2) = {∅}, inequality D.4 is equal to:

bc(x, q2, a)

1− β
>
bc(x, q2, f) + βδx

bc(x,q2,a)
1−β

1− β (1− δx)

By Assumption 1(a), this inequality holds. Hence, ac(x, q2) = 1 for all x.

For all x, assume that M(x, q1) is non-empty , M(x1, q1) ⊆ M(x2, q1), and s1 ∈
M(x, q1) implies s2 ∈M(x, q1). Thus, there are three outcomes:

Case 1: SupposeM(x1, q1) = {s1, s2} andM(x2, q1) = {s1, s2}. Fixing (x, q1), in-
equality D.4 is equal to:

bc(x, q1, a)

{(
1−πc(θ)

)(
1−β

)
+βδx

(
1−πc(θ)

)
+πc(θ)

(
g(q2|s1)f(s1)+g(q2|s2)f(s2)

)}
>(

bc(x, q1, f) + βδx
bc(x, q2, a)

1− β

)
·(

1− πc(θ)
)(
1− β

)
+ C(x, q2) π

c(θ)
(
g(q2|s1)f(s1) + g(q2|s2

)
f(s2)

)(
1− β

)
(D.5)

Since d(x, q2) = 0 and given the strategies of parents, the value function C(x, q2)

can take two values:

C(x, q2) = bc(x, q2, f) + β b
c(x,q2,a)

1−β or C(x, q2) =
bc(x,q2,f)+βδx

bc(x,q2,a)
1−β

1−β(1−δx)
.

Now, since ap(x2, q) ≥ ap(x1, q) for all q, I analyze the following sub-cases:

(1a) Suppose ap(x1, q2) = 1 and ap(x2, q2) = 1. The child announces adoption if
and only if the following inequality holds:

{
bc(x, q1, a)− bc(x, q1, f)

}(
1− πc(θ)

)(
1− β

)
>{

bc(x, q2, a)− bc(x, q1, a)
}
βδx
(
1− πc(θ)

)
+{

bc(x, q2, f)(1−β)+bc(x, q2, a)β−bc(x, q1, a)
}(
g(q2|s1)f(s1)+g(q2|s2)f(s2)

)
πc(θ)

(D.6)

where:

bc(x, q1, a)− bc(x, q1, f) > 0 by Assumption 1(a)

bc(x, q2, a)− bc(x, q1, a) > 0 by Assumption 1(c)

bc(x, q2, f)(1− β) + bc(x, q2, a)β − bc(x, q1, a) > 0 by Assumptions 1(c)-(d)
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Now, I show that if Equation D.6 holds for child x1 then it also holds for child
x2. By Assumption 1(e), the following inequality holds:

{
bc(x2, q1, a)− bc(x2, q1, f)

}(
1− πc(θ)

)(
1− β

)
≥{

bc(x1, q1, a)− bc(x1, q1, f)
}(

1− πc(θ)
)(
1− β

)
(D.7)

By Assumptions 1(f) and 5(a), the following inequality holds:

{
bc(x1, q2, a)− bc(x1, q1, a)

}
βδx1

(
1− πc(θ)

)
≥{

bc(x2, q2, a)− bc(x2, q1, a)
}
βδx2

(
1− πc(θ)

)
(D.8)

By Assumptions 1(f)-(g), the following inequality holds:

{
bc(x1, q2, f)(1− β) + bc(x1, q2, a)β − bc(x1, q1, a)

}
·(

g(q2|s1)f(s1) + g(q2|s2)f(s2)
)
πc(θ) ≥{

bc(x2, q2, f)(1− β) + bc(x2, q2, a)β − bc(x2, q1, a)
}
·(

g(q2|s1)f(s1) + g(q2|s2)f(s2)
)
πc(θ) (D.9)

Hence, if ac(x1, q1) = 1 then ac(x2, q1) = 1.

(1b) Suppose ap(x1, q2) = 0 and ap(x2, q2) = 0. The child announces adoption if
and only if the following inequality holds:

{
bc(x, q1, a)− bc(x, q1, f)

}(
1− πc(θ)

)(
1− β

)
>{

bc(x, q2, a)− bc(x, q1, a)
}
βδx
(
1− πc(θ)

)
+{bc(x, q2, f)(1− β)

1− β(1− δx)
+
bc(x, q2, a)β δx

1− β(1− δx)
− bc(x, q1, a)

}
·(

g(q2|s1)f(s1) + g(q2|s2)f(s2)
)
πc(θ) (D.10)

Now, I show that if Equation D.10 holds for child x1 then it also holds for
child x2. Since Equations D.7 and D.8 hold, then I check whether the follow-
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ing inequality is satisfied:

[
bc(x1, q2, f)(1− β) + bc(x1, q2, a)β − bc(x1, q1, a)

− {bc(x1, q2, f)− bc(x1, q1, f)}β(1− δx1)
](
1− β + βδx2

)
≥[

bc(x2, q2, f)(1− β) + bc(x2, q2, a)β − bc(x2, q1, a)

− {bc(x2, q2, f)− bc(x2, q1, f)}β(1− δx2)
](
1− β + βδx1

)
(D.11)

After some algebra, this inequality holds given Assumptions 1(f)-(g) and

5(a). Hence, if ac(x1, q1) = 1 then ac(x2, q1) = 1.

(1c) Suppose ap(x1, q2) = 0 and ap(x2, q2) = 1. I show that if Equation D.10 holds
for child x1 then Equation D.6 holds for child x2. Since Equations D.7 and
D.8 hold, I check whether the following inequality is satisfied:

bc(x1, q2, f)(1− β) + bc(x1, q2, a)β − bc(x1, q1, a)

− β(1− δx1)
[
bc(x1, q2, a)− bc(x1, q1, a)

]
≥

bc(x2, q2, f)(1− β) + bc(x2, q2, a)β − bc(x2, q1, a)

− β(1− δx1)
[
bc(x2, q2, f)(1− β) + bc(x2, q2, a)β − bc(x2, q1, a)

]
(D.12)

After some algebra, this inequality holds given assumptions 1(b),(f)-(g)

and 5(b). Hence, if ac(x1, q1) = 1 then ac(x2, q1) = 1.

Case 2: SupposeM(x1, q1) = {s2} andM(x2, q1) = {s2}. Fixing (x, q1), inequality
D.4 is equal to:

bc(x, q1, a)
{(

1− πc(θ)f(s2)
)(
1− β

)
+ βδx

(
1− πc(θ)f(s2)

)
+ πc(θ)g(q2|s2)f(s2)

}
>(

bc(x, q1, f)+βδx
bc(x, q2, a)

1− β

)(
1−πc(θ)f(s2)

)(
1−β

)
+C(x, q2) π

c(θ)g(q2|s2)f(s2)
(
1−β

)
(D.13)

As in the previous case, I analyze the following sub-cases:

(2a) Suppose ap(x1, q2) = 1 and ap(x2, q2) = 1. The child announces adoption if

58



and only if the following inequality holds:

{
bc(x, q1, a)− bc(x, q1, f)

}(
1− πc(θ)f(s2)

)(
1− β

)
>{

bc(x, q2, a)− bc(x, q1, a)
}
βδx
(
1− πc(θ)f(s2)

)
+{

bc(x, q2, f)(1− β) + bc(x, q2, a)β − bc(x, q1, a)
}
g(q2|s2)f(s2)π

c(θ) (D.14)

By Equations D.7, D.8 and D.9, it follows that if Equation D.14 holds for child

x1 then it also holds for child x2. Hence, if ac(x1, q1) = 1 then ac(x2, q1) = 1.

(2b) Suppose ap(x1, q2) = 0 and ap(x2, q2) = 0. The child announces adoption if
and only if the following inequality holds:

{
bc(x, q1, a)− bc(x, q1, f)

}(
1− πc(θ)f(s2)

)(
1− β

)
>{

bc(x, q2, a)− bc(x, q1, a)
}
βδx
(
1− πc(θ)f(s2)

)
+{bc(x, q2, f)(1− β)

1− β(1− δx)
+
bc(x, q2, a)β δx

1− β(1− δx)
− bc(x, q1, a)

}
g(q2|s2)f(s2)

)
πc(θ) (D.15)

By Equations D.7, D.8 and D.11, it follows that if Equation D.15 holds for

child x1 then it also holds for child x2. Hence, if ac(x1, q1) = 1 then ac(x2, q1) =

1.

(2c) Suppose ap(x1, q2) = 0 and ap(x2, q2) = 1. By Equations D.7, D.8 and D.12, it

follows that if Equation D.15 holds for child x1 then equation D.14 holds for

child x2. Hence, if ac(x1, q1) = 1 then ac(x2, q1) = 1.

Case 3: SupposeM(x1, q1) = {s2} andM(x2, q1) = {s1, s2}.

(3a) Suppose ap(x1, q2) = 1 and ap(x2, q2) = 1. I show that if Equation D.14 holds
for child x1 then Equation D.6 holds for child x2. After some algebra, since
Equations D.7, D.8 and D.9 hold, it suffices to check whether the following
inequality holds:

{
bca(x1, q2, a)− bc(x1, q1, a)

}
βδx1 ≥

{
bc(x1, q2, a)− bc(x1, q1, f)

}(
1− β

)
+{

bc(x2, q2, f)(1− β) + bc(x2, q2, a)β − bc(x2, q1, a)
}
g(q2|s1) (D.16)
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This inequality is satisfied by Assumption 5(c). Hence, if ac(x1, q1) = 1 then

ac(x2, q1) = 1.

(3b) Suppose ap(x1, q2) = 0 and ap(x2, q2) = 0. I show that if Equation D.15 holds
for child x1 then Equation D.10 holds for child x2. After some algebra, since
Equations D.7, D.8 and D.9 hold, it suffices to check whether the following
inequality holds:

{
bc(x1, q2, a)− bc(x1, q1, a)

}
βδx1 ≥

{
bc(x1, q2, a)− bc(x1, q1, f)

}(
1− β

)
+{bc(x2, q2, f)(1− β)

1− β(1− δx2)
+
bc(x2, q2, a)βδx2
1− β(1− δx2)

− bc(x2, q1, a)
}
g(q2|s1) (D.17)

This inequality is satisfied by Assumption 5(c). Hence, if ac(x1, q1) = 1 then

ac(x2, q1) = 1.

(3c) Suppose ap(x1, q2) = 0 and ap(x2, q2) = 1. Since Equations D.7, D.8, D.12 and

D.16 hold, it follows that if Equation D.15 holds for child x1 then Equation

D.6 holds for child x2. Hence, if ac(x1, q1) = 1 then ac(x2, q1) = 1.

Now, I establish Proposition 4.

(i) Fix q. By definition, a(x, q) = 1 if and only if ac(x, q) = 1 and ap(x, q) = 1.

Since ac(x2, q) ≥ ac(x1, q) and ap(x2, q) ≥ ap(x1, q), then a(x2, q) ≥ a(x1, q).

(ii) Fix x. Suppose bp(x, q1, a) > 0, then bp(x, q2, a) > 0. Since bp(x,q2,a)
bp(x,q2,f)

≤ 1−β
1−β(1−δx)

and M(x, q2) is empty, then ap(x, q2) = 0. Thus, ap(x, q1) ≥ ap(x, q2) = 0.

Since ac(x, q2) ≥ ac(x, q1), it follows that a(x, q1) ≥ a(x, q2) = 0.
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E Appendix: Proofs of Empirical Facts and Model Pre-

dictions

E.1 Proof of Corollary 1

(i) I show thatA(x2, q0) ≥ A(x1, q0), andA(x2, q) ≥ A(x1, q) for all q. For the first
inequality, the result follows from Propositions 2(i) and 4(i), M(x1, q0) ⊆
M(x2, q0) and a(x2, q) ≥ a(x1, q) for all q. Now, defined the following set
M̂(x2, q0) = {s ∈ S|s ∈M(x2, q0) \M(x1, q0)}, then the following holds:

A(x2, q0) = δx2 + (1− δx2)
{
πc(θ)

∑
M(x2,q0)

f(s)
∑
q′

g(q′|s)
[
δx2 +

(
1− δx2

)
a(x2, q

′)
]}

= δx2 + (1− δx2)
{
πc(θ)

∑
M(x1,q0)

f(s)
∑
q′

g(q′|s)
[
δx2 +

(
1− δx2

)
a(x2, q

′)
]

+ πc(θ)
∑

M̂(x2,q0)

f(s)
∑
q′

g(q′|s)
[
δx2 +

(
1− δx2

)
a(x2, q

′)
]

︸ ︷︷ ︸
≥0

}

≥ δx2 + (1− δx2)
{
πc(θ)

∑
M(x1,q0)

f(s)
∑
q′

g(q′|s)
[
δx2 +

(
1− δx2

)
a(x2, q

′)
]

︸ ︷︷ ︸
≥δx1+(1−δx1 ) a(x1,q′)

}

≥ δx1 + (1− δx1)
{
πc(θ)

∑
M(x1,q0)

f(s)
∑
q′

g(q′|s)
[
δx1 +

(
1− δx1

)
a(x1, q

′)
]}

︸ ︷︷ ︸
=A(x1,q0)

Now, for the second inequality, fix quality q. By Propositions 1(i) and 4(i),

there are three cases to analyze:

Case 1: Suppose a(x1, q) = 1, then a(x2, q) = 1. Thus, A(x2, q) = A(x1, q).

Case 2: Suppose d(x1, q) = 1, then:

(2a) If a(x2, q) = 1, then A(x2, q) = 1 and A(x1, q) = A(x1, q0) ≤ 1.

(2b) If d(x2, q) = 1, then A(x2, q) = A(x2, q0) and A(x1, q) = A(x1, q0).
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(2c) If a(x2, q) = d(x2, q) = 0, then:

A(x2, q)−A(x1, q) =

δx2 + (1− δx2) πc(θ)
∑
M(x2,q)

f(s)
∑
q′

g(q′|s)
[
δx2 +

(
1− δx2

)
a(x2, q

′)
]

− πc(θ)
∑

M(x1,q0)

f(s)
∑
q′

g(q′|s)
[
δx1 +

(
1− δx1

)
a(x1, q

′)
]

Note that, it suffices to show that δx2 > δx1 +(1−δx1) πc(θ) holds. Since
δx2−δx1
(1−δx1 )

> π, then A(x2, q) ≥ A(x1, q).

Case 3: Suppose a(x1, q) = 0 and d(x1, q) = 0.

(3a) If a(x2, q) = 1, then A(x2, q) = 1 and A(x1, q) ≤ 1.

(3b) If a(x2, q) = d(x2, q) = 0, then:

A(x2, q)− A(x1, q) =

δx2 + (1− δx2) πc(θ)
∑
M(x2,q)

f(s)
∑
q′

g(q′|s)
[
δx2 +

(
1− δx2

)
a(x2, q

′)
]

−
{
δx1 + (1− δx1) πc(θ)

∑
M(x1,q)

f(s)
∑
q′

g(q′|s)
[
δx1 +

(
1− δx1

)
a(x1, q

′)
]}

By Proposition 3(i) and 4(i), the following inequality holds:

∑
M(x2,q)

f(s)
∑
q

g(q|s) a(x2, q) ≥
∑
M(x1,q)

f(s)
∑
q

g(q|s) a(x1, q)

Hence, A(x2, q) ≥ A(x1, q).

(ii) For each child x, I show that A(x, q1) ≥ A(x, q2). By Propositions 3(ii) and

4(ii), it follows that A(x, q2) = δx. For quality q1, by Proposition 1(ii), there

are three cases to analyze:

Case 1: Suppose a(x, q1) = 1, then A(x, q1) = 1. Thus, A(x, q1) ≥ A(x, q2).

Case 2: Suppose d(x, q1) = 1, then A(x, q1) = δx + (1 − δx) A(x, q0). Thus,

A(x, q1) ≥ A(x, q2).
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Case 3: Suppose a(x, q1) = d(x, q1) = 0, then:

A(x, q1) = δx + (1− δx) πc(θ)
∑
M(x,q1)

f(s)
∑
q′

g(q′|s)
[
δx1 +

(
1− δx1

)
a(x1, q

′)
]

Thus, A(x, q1) ≥ A(x, q2).

E.2 Proof of Corollary 2

(i) I show that D(x1, q) ≥ D(x2, q) for all q. Fixing quality q, by Propositions

1(i) and 4(i), there are three cases to analyze:

Case 1: Suppose a(x1, q) = a(x2, q) = 1, then D(x1, q) = D(x2, q)

Case 2: Suppose d(x1, q) = 1, then:

D(x1, q)−D(x2, q) =

(1− δx1)− (1− δx2)(1− a(x2, q))
[
d(x2, q) +

(
1− d(x2, q)

)
πc(θ)

∑
M(x2,q)

f(s)
]

It follows that D(x1, q) ≥ D(x2, q) ≥ 0 holds from δx2 ≥ δx1 and:

1 ≥ (1− a(x2, q))
[
d(x2, q) +

(
1− d(x2, q)

)
πc(θ)

∑
M(x2,q)

f(s)
]
≥ 0

Case 3: Suppose d(x1, q) = a(x1, q) = 0, then:

D(x1, q)−D(x2, q) = (1− δx1)πc(θ)
∑
M(x1,q)

f(s)

− (1− δx2)(1− a(x2, q))
[
d(x2, q) +

(
1− d(x2, q)

)
πc(θ)

∑
M(x2,q)

f(s)
]

(3a) If a(x2, q) = 1, then:

D(x1, q)−D(x2, q) = (1− δx1)πc(θ)
∑
M(x1,q)

f(s) ≥ 0 (E.1)
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(3b) Suppose a(x2, q) = d(x2, q) = 0 then:

D(x1, q)−D(x2, q) = (1−δx1)πc(θ)
∑
M(x1,q)

f(s)−(1−δx2)πc(θ)
∑
M(x2,q)

f(s)

For match quality q2, from Proposition 3 we know thatM(x, q2) = {∅}

for all x. Hence, D(x1, q2) ≥ D(x2, q2).

For match quality q1, since 1 ≥
∑
M(x2,q1) f(s), it suffices to check that

the following inequality holds:

(1− δx1)πc(θ)
∑

M(x1,q1)

f(s)− (1− δx2)πc(θ) ≥ 0

Proposition 3 shows thatM(x1, q1) = {s1, s2} orM(x1, q1) = {s2}. In

the first case, D(x1, q1) − D(x2, q1) = (1 − δx1) − (1 − δx2) ≥ 0. In the

second case, D(x1, q1)−D(x2, q1) = (1− δx1)πc(θ)f(s2)− (1− δx2)πc(θ)

which is positive if and only if f(s2) ≥ (1−δx2 )

(1−δx1 )
.

(ii) Fixing child x, suppose that a(x, q1) = a(x, q2) = 0. From Propositions 1(ii)

and 3(ii), d(x, q1) ≥ d(x, q2) and
∑
M(x,q1) f(s) ≥

∑
M(x,q2) f(s) = 0 respec-

tively. Hence, the following inequality holds:

D(x, q1) = (1− δx)
[
d(x, q1) +

(
1− d(x, q1)

)
πc(θ)

∑
M(x,q1)

f(s)
]

≥ (1− δx)
[
d(x, q2) +

(
1− d(x, q2)

)
πc(θ)

∑
M(x,q1)

f(s)
]

≥ (1− δx)
[
d(x, q2) +

(
1− d(x, q2)

)
πc(θ)

∑
M(x,q2)

f(s)
]

= D(x, q2)

E.3 Proof of Corollary 3

The result follows from Propositions 1(i) and 2(i): d(x1, q) ≥ d(x2, q) for all q, and

M(x1, q0) ⊆ M(x2, q0). Let M̂(x2, q0) = {s ∈ S|s ∈M(x2, q0) \M(x1, q0)}, then
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the following inequality holds:

M(x2) = πc(θ)
∑

M(x2,q0)

f(s)
∑
q

g(q|s)
(
1− d(x2, q)

)
≥ πc(θ)

∑
M(x2,q0)

f(s)
∑
q

g(q|s)
(
1− d(x1, q)

)
≥ πc(θ)

[ ∑
M̂(x2,q0)

f(s)
∑
q

g(q|s)
(
1− d(x1, q)

)
+

∑
M(x1,q0)

f(s)
∑
q

g(q|s)
(
1− d(x1, q)

)]
≥ πc(θ)

∑
M(x1,q0)

f(s)
∑
q

g(q|s)
(
1− d(x1, q)

)
= M(x1)

Hence, M(x2) ≥M(x1).

E.4 Proof of Corollary 4

(i) Fixing quality q, I show that U(x1, q) ≥ U(x2, q) for all q. From Propositions

1(i) and 4(i), there are three cases to analyze:

Case 1: Suppose a(x1, q) = a(x2, q) = 1 then U(x1, q) = U(x2, q)

Case 2: Suppose d(x1, q) = 1 then:

U(x1, q)− U(x2, q) = (1− δx1)
(

1−M(x1)
)

− (1− δx2)
(
1− a(x2, q)

){
d(x2, q)

(
1−M(x2)

)
+
(
1− d(x2, q)

)
πc(θ)

∑
M(x2,q)

f(s)
∑
q′

g(q′|s) d(x2, q
′)

}

(2a) If a(x2, q) = 1, then U(x1, q)− U(x2, q) = (1− δx1)(1−M3(x1)) ≥ 0.

(2b) If d(x2, q) = 1, then:

U(x1, q)− U(x2, q) = (1− δx1)(1−M(x1))− (1− δx2)(1− γ3(x2))

By Corollary 3, it follows that U(x1, q) ≥ U(x2, q).
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(2c) If a(x2, q) = d(x2, q) = 0, then:

U(x1, q)− U(x2, q) =

(1− δx1)(1−M(x1))− (1− δx2)πc(θ)
∑
M(x2,q)

f(s)
∑
q′

g(q′|s) d(x2, q
′)

For match quality q2, Proposition 3 shows thatM(x, q2) = {∅} for all x.

Hence, U(x1, q2)− U(x2, q2) = (1− δx1)(1−M(x1)) ≥ 0.

For match quality q1, since the following holds:

(1− πc(θ)) ≥ (1−M(x1)) and 1 ≥
∑
M(x2,q1) f(s)

∑
q′ g(q′|s) d(x2, q

′)

it suffices to check that the following inequality holds:

(1− δx1)(1− πc(θ))− (1− δx2)πc(θ) ≥ 0

which holds if and only if 1−δx1
2−δx1−δx2

≥ π.

Case 3: Suppose a(x1, q) = 0 and d(x1, q) = 0 then:

U(x1, q)− U(x2, q) = (1− δx1)πc(θ)
∑
M(x1,q)

f(s)
∑
q′

g(q′|s) d(x1, q
′)

− (1− δx2)
(
1− a(x2, q)

){
d(x2, q)

(
1−M(x2)

)
+
(
1− d(x2, q)

)
πc(θ)

∑
M(x2,q)

f(s)
∑
q′

g(q′|s) d(x2, q
′)

}

(3a) If a(x2, q) = 1, then:

U(x1, q)− U(x2, q) = (1− δx1)πc(θ)
∑
M(x1,q)

f(s)
∑
q′

g(q′|s) d(x1, q
′) ≥ 0
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(3b) If a(x2, q) = d(x2, q) = 0, then:

U(x1, q)− U(x2, q) = (1− δx1)πc(θ)
∑
M(x1,q)

f(s)
∑
q′

g(q′|s) d(x1, q
′)

− (1− δx2)πc(θ)
∑
M(x2,q)

f(s)
∑
q′

g(q′|s) d(x2, q
′)

For match quality q2, Proposition 3 states thatM(x, q2) = {∅} for all x.

Hence, U(x1, q) = U(x2, q).

For match quality q1, since 1 ≥
∑
M(x2,q1) f(s), it suffices to check that

the following inequality holds:

(1− δx1)πc(θ)
∑

M(x1,q1)

f(s)− (1− δx2)πc(θ) ≥ 0

Proposition 3 shows thatM(x1, q1) 6= {∅} andM(x1, q1) = {s1, s2} or

M(x1, q1) = {s2}. In the first case,D(x1, q1)−D(x2, q1) = (1−δx1)−(1−

δx2) ≥ 0. In the second case,D(x1, q1)−D(x2, q1) = (1−δx1)πc(θ)f(s2)−

(1− δx2)πc(θ) which is positive if and only if f(s2) ≥ (1−δx2 )

(1−δx1 )
.

(ii) Fixing child x, suppose that a(x, q1) = 0 and a(x, q2) = 0. By Proposi-
tions 1(ii) and 3(ii) it follows that d(x, q1) ≥ d(x, q2) and

∑
M(x,q1) f(s) ≥∑

M(x,q2) f(s) = 0 respectively. Hence, the following inequality holds:

U(x, q1) = (1− δx)
{
d(x, q1)

(
1−M(x)

)
+
(
1− d(x, q1)

)
πc(θ)

∑
M(x,q1)

f(s)
∑
q′

g(q′|s) d(x, q′)
}

≥ (1− δx)
{
d(x, q1)

(
1−M(x)

)
+
(
1− d(x, q1)

)
πc(θ)

∑
M(x,q2)

f(s)
∑
q′

g(q′|s) d(x, q′)

︸ ︷︷ ︸
=0

}

≥ (1− δx) d(x, q2)
(
1−M(x)

)
= U(x, q2)
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