ECDNETOR

Make Your Publications Visible.

A Service of 2Bய

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Working Paper
 Foster care: A dynamic matching approach

Working Papers, No. 2023-01

Provided in Cooperation with:
Bank of Mexico, Mexico City

Suggested Citation: Mac Donald, Diana E. (2023) : Foster care: A dynamic matching approach, Working Papers, No. 2023-01, Banco de México, Ciudad de México

This Version is available at: https://hdl.handle.net/10419/296957

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Banco de México

Working Papers
N° 2023-01

Foster Care: A Dynamic Matching Approach

Diana E. Mac Donald
Banco de México

March 2023

La serie de Documentos de Investigación del Banco de México divulga resultados preliminares de trabajos de investigación económica realizados en el Banco de México con la finalidad de propiciar el intercambio y debate de ideas. El contenido de los Documentos de Investigación, así como las conclusiones que de ellos se derivan, son responsabilidad exclusiva de los autores y no reflejan necesariamente las del Banco de México.

The Working Papers series of Banco de México disseminates preliminary results of economic research conducted at Banco de México in order to promote the exchange and debate of ideas. The views and conclusions presented in the Working Papers are exclusively the responsibility of the authors and do not necessarily reflect those of Banco de México.

Documento de Investigación 2023-01

Foster Care: A Dynamic Matching Approach

Diana E. Mac Donald ${ }^{\dagger}$
Banco de México

Abstract

This paper studies the two-sided dynamic matching problem that occurs in the US foster care system. In this market, foster parents and foster children can form reversible matches, which may separate, continue in their reversible state, or transition to permanency via adoption. I first present an empirical analysis that yields four new facts. Thereafter, I develop a two-sided search and matching model used to rationalize the empirical facts and carry out predictions regarding match quality. Interestingly, I find that match separation plays a crucial role in adoption by influencing the incentives of foster parents to adopt. Due to the presence of a financial penalty on adoption, parents accept the penalty in exchange for eliminating the likelihood that the child separates from the match in the future. Moreover, I show that the adoption penalty not only exacerbates the intrinsic disadvantage (being less preferred by foster parents) faced by children with a disability, but it also creates incentives for highquality matches to not transit to adoption.

Keywords: Search, Matching, Foster Care, Adoption
JEL Classification: C78, D83

Resumen: El documento estudia el problema de emparejamiento dinámico dentro del sistema de acogida de Estados Unidos. En este mercado, padres y niños de acogida forman emparejamientos reversibles, que pueden separarse, continuar en su estado reversible, o transitar a la permanencia mediante la adopción. Primero, presento un análisis empírico que establece cuatro nuevos hechos estilizados. A continuación, desarrollo un modelo de búsqueda y emparejamiento bilateral utilizado para racionalizar los hechos empíricos y realizar predicciones sobre la calidad del emparejamiento. Interesantemente, encuentro que la separación del emparejamiento desempeña un papel crucial en la adopción al influir los incentivos de los padres de acogida a adoptar. Debido a la presencia de una penalización económica a la adopción, los padres aceptan la penalización a cambio de eliminar la probabilidad de que el niño abandone el emparejamiento en el futuro. Además, muestro que la penalización de la adopción no solo agrava la desventaja intrínseca (ser menos preferidos por los padres de acogida) a la que se enfrentan los niños con discapacidad, sino que también crea incentivos para que los emparejamientos de alta calidad no transiten hacia la adopción.
Palabras Clave: Búsqueda, Emparejamiento, Sistema de Acogida, Adopción

[^0]
1 Introduction

Each year more than a half-million children spend at least one day in the US foster care system, a federal program that costs taxpayers almost US $\$ 30$ billion dollars annually. The foster care system provides out-of-home care for children removed from their homes due to abuse, maltreatment, neglect, or other reasons. ${ }^{1}$ While in foster care, children are placed in foster family homes or institutional care, and can be moved from one foster home to another, or from a foster home to institutional care. ${ }^{2}$ The stay in foster care is meant to be temporary until children can reunite with their birth families, but when reunification is not possible, children might be relinquished for adoption. ${ }^{3}$ Each year, close to 18% of children in foster care are at risk of experiencing long-term care if they are not adopted. In fact, more than 20,000 children leave foster care each year without an adoptive family, and out of those children, less than 3% will earn a college degree, and almost 20% will become homeless. ${ }^{4}$

This paper studies both, theoretically and empirically, the two-sided dynamic matching problem that occurs in the US foster care system. First, I present an empirical analysis that yields four new facts related to match transitions of children in foster care and their exit through adoption. Second, I develop a two-sided search and matching model where (a) children are heterogeneous in their disability status, (b) children search for parents while matched to another parent, (c) parents receive a smaller payoff when adopting than fostering (capturing a financial penalty on adoption), and (d) matches differ in their quality. I use the model to disentangle the driving forces behind the empirical facts and derived other equilibrium properties regarding match quality. The main finding is that

[^1]the penalty on adoption exacerbates the disadvantage faced by children with a disability (being less preferred by parents), and it also creates incentives for highquality matches to not transit from a reversible fostering to adoption. This is mainly driven by the fact that foster parents have fewer incentives to adopt children who are less likely to separate the match in the future.

Two main concerns in foster care are match separation and adoption. In the former, research has shown that separations have adverse effects on children, and it has become a priority to limit the match disruptions experienced by children. ${ }^{5}$ In the latter, evidence suggests that adoption is a better alternative than long-term foster care, thus policymakers had made significant efforts to increase the adoption rates of children through major federal policies. ${ }^{6}$ However, my findings suggest that limiting match separation might be counterproductive for the adoption goal: parents have incentives to foster a child indefinitely (without adopting) due to the presence of a financial penalty. First, the monthly payments received by parents (from the state child welfare agency) are lower as an adoptive parent than as a foster parent and often fall to zero. Second, parents are responsible for the medical and educational expenditures of adopted children. Thus, parents face the following trade-off when deciding to adopt: accept the adoption penalty in exchange for eliminating the likelihood that the child disrupts the match in the future. Hence, match separations play a crucial role in adoption by influencing the incentives of foster parents to adopt. ${ }^{7}$

Therefore, it is crucial to understand why certain children are more likely to have their matches separated and why certain children are less likely to be adopted. Besides, the presence of the adoption penalty might have a different effect on cer-

[^2]tain children, and it might influence the type of matches that transit to adoption (in terms of match quality). I distinguish children by whether they have a disability and study how this affects match disruption and adoption. I focus on disability for two reasons. First, most of the efforts made to increase adoption target children with a disability. Second, the adoption penalty might be higher for children with a disability as parents are responsible for higher medical expenditures. Nevertheless, the model can be used to study the effect of other observable characteristics of the child, such as gender, race, and ethnicity.

Using a rich panel dataset, describing the universe of children relinquished for adoption in the US foster care system over the period 2010 to 2016, I document the following empirical facts: (1) the presence of a disability decreases the probability that a child transits to permanency via adoption, (2) the presence of a disability increases the probability that a foster placement separates, (3) the presence of a disability decreases the probability that a child transits from institutional care to a foster home (becomes foster matched), and (4) the presence of a disability increases the probability that a child transits from a foster home to institutional care (becomes unmatched).

To analyze how different forces interact in the agents' decisions of forming a foster match, disrupting a foster match, and transiting to permanency via adoption, I develop a dynamic matching model with search frictions (it takes time to find a match) and non-transferable utility (transfers are exogenously given). Children and parents can form two types of matches: foster (reversible) and adoption (irreversible). The setting assumes that children are heterogeneous (with and without a disability), agents must be foster matched before forming an adoption match, parents receive a smaller per-period payoff when adoption matched than when foster matched, and matches differ in their quality. Children and parents prefer matches of higher quality, and parents prefer children without a disability to children with a disability. The timing is as follows. Every period, when a child (unmatched or foster matched) and parent meet (unmatched only), agents draw a match quality. Before deciding whether to form a foster match, they observe only a noisy signal about this quality. A foster match forms if and only if both accept. If
a new foster match forms, any old foster match dissolves. The uncertainty about the quality resolves once foster match forms, and it remains constant throughout the match. After observing the match quality, agents decide whether to destroy the foster match (and become unmatched), transit to adoption, or remain foster matched.

The theoretical model allows me to disentangle the driving forces behind the aforementioned empirical facts. More concretely, I establish sufficient conditions on primitives for these facts to emerge in equilibrium. One of the key features captured by the model is that a foster separation can be the result of the uncertainty resolving, or it can be the result of a child forming a new foster match. Thus, foster match separations allow agents to avoid 'bad matches', and more importantly, it enables children to search for 'better matches' while in a foster environment. Moreover, I show that the increase in the probability of foster match separation due to a disability (Fact 2) depends on two driving forces working in opposite directions. On the one hand, children with a disability are more likely (relative to children without a disability) to have a foster match destroyed after the uncertainty is resolved, which itself makes them more likely to separate. On the other hand, I find that children with a disability are less likely (relative to children without a disability) to form a new foster match, which itself makes them less likely to separate. Hence, Fact 2 suggests that the former driving force prevails in equilibrium. It is important to highlight that the dataset used for the analysis does not allow me to identify the reason for the separation so this gap is filled entirely by the theoretical model.

Another important insight of the model is that the decrease in the probability of being adopted due to a disability (Fact 1) arises for two reasons. First, I show that children with a disability are less likely to form a foster match because foster parents require higher signals to be willing to form a foster match with them. Second, parents foster matched to these children (relative to parents foster matched to children without a disability) have a greater incentive to remain in the reversible foster match and not transit to adoption. The reason is that the adoption penalty for children with a disability is higher, and the likelihood that they
break the match in the future is lower. Thus, the intrinsic disadvantage (being less preferred by foster parents) faced by children with a disability exacerbates in the presence of the adoption penalty due to the fact that children with a disability are less likely to find a 'better' match in the future. Hence, the theoretical model highlights the key role of match separation on adoption.

Furthermore, the model allows me to obtain additional predictions regarding match quality which is unobservable to the econometrician. As a model prediction, I find that high-quality matches are less likely to separate, and both types of separations are aligned. That is, high-quality matches are less likely to separate after the uncertainty is resolved, and they are also less likely to separate due to the search for a 'better' match. Additionally, I find that parents in high-quality matches might have fewer incentives to adopt. The result is driven by the fact that children in foster matches of high-quality have fewer incentives to separate the foster match in the future. Hence, the adoption penalty not only exacerbates the intrinsic disadvantage faced by children with a disability, but also creates incentives for high-quality matches to not transit to adoption.

Related Literature. Most of the literature on dynamic matching with heterogeneous agents analyzes environments where matches do not reverse endogenously. Under this assumption, the literature has addressed issues regarding stability (Doval, 2021; Altinok, 2021), matching algorithms and its implications on welfare (Ünver, 2010; Anderson et al., 2015; Akbarpour et al., 2020; Baccara et al., 2020; Leshno, 2021), and positive assortative matching (Burdett and Coles, 1997; Eeckhout, 1999; Shimer and Smith, 2000; Chade, 2001, 2006; Smith, 2006). In these papers, agents face the trade-off of whether to form a match today or wait for a better partner. Now, if agents are allowed to form a match today and reverse it when a better partner arrives, an additional feature arises. In the presence of reversibility, agents must take into account that today's partner and the potential better partner of tomorrow might leave the match in the future. There is a small literature analyzing dynamic matching environments with reversibility of matches, but the focus is on stability and cooperative solution concepts (Damiano and Lam, 2005; Kurino, 2009; Kadam and Kotowski, 2018; Liu, 2021). This paper is more related
to the literature on positive assortative matching by analyzing two-sided markets with search frictions, heterogeneous agents, and irreversible matches. My contribution adds to the literature on sorting along two dimensions. First, I allow for irreversible and reversible matches. Second, instead of addressing positive sorting, I estimate stylized facts present on the market and establish sufficient conditions for these patterns to arise in equilibrium.

In addition, I contribute to the narrow set of papers analyzing foster care as a matching market. Slaugh et al. (2015) studies the Pennsylvania Adoption Exchange program, a computational tool created to facilitate the adoption of children in foster care and make several recommendations to improve the success of adoptions. Olberg et al. (2021) constructs a dynamic search and matching model to compare two different search processes use by the child welfare agencies to identify potential adoption matches between parents and children. Lastly, Robinson-Cortés (2019) presents an empirical framework to study how children are assigned to foster homes using a confidential dataset, and uses the estimates to study different policy interventions. This paper departs from the previous literature mainly by considering both types of matches in one model, adoption (irreversible) and foster (reversible), allowing me to analyze a greater set of match transitions experienced by children.

Lastly, there is a vast literature analyzing the effect of children's characteristics on, placement disruption and adoption (Courtney and Wong, 1996; Barth, 1997; Wulczyn et al., 2003; James, 2004; Snowden et al., 2008). Here, I contribute by documenting four new stylized facts and building a model that formally rationalizes the patterns observed in the data.

Organization of the Paper. The rest of the paper is organized as follows. Section 2 presents the empirical analysis and the facts that motivate the theoretical model. Section 3 describes the theoretical environment, and introduces the equilibrium definition. Section 4 presents the equilibrium analysis and the conditions under which the equilibrium is consistent with the stylized facts, as well as the model predictions regarding match-quality. Lastly, Section 5 concludes. All proofs are in the Appendix.

2 Empirical Analysis

I motivate the key features of the two-sided dynamic matching model described in the next section with an empirical analysis. ${ }^{8}$ Using data describing the universe of children in the US foster care system over the period 2010 to 2016, I document four new facts about the match process between foster children and foster parents. ${ }^{9}$

2.1 Data and Descriptive Statistics

I use the 6-month Foster Care Files from AFCARS, ${ }^{10}$ an unbalanced panel of all children in the US foster care system between the federal fiscal years of 2010 and 2016. The data track a child upon entry into foster care until she exits, which could be due to reunification with birth-family, adoption, emancipation, guardianship, transfer to another agency, runaway, or death. If a child exits foster care, both the exit manner and date of exit are indicated. Additionally, the data include a rich set of variables describing the child, ${ }^{11}$ such as gender, race and ethnicity, disability, whether the child is federally funded by Title IV-E, ${ }^{12}$ date of birth, date of most recent entry into foster care, and date of termination of parental rights (if applicable). ${ }^{13}$

In the data, the disability variable, which is the focus of my empirical analysis, indicates whether a child has been clinically diagnosed with a disability, clinically diagnosed without a disability, or not yet diagnosed. For example, a disability includes conditions such as blindness, glaucoma, arthritis, multiple sclerosis, down syndrome, personality disorder, attention deficit, and anxiety disorder, among others. Unfortunately, data do not allow us to identify a specific disability, nor

[^3]quantify either the number of disabilities or the severity. For the analysis, I say a child has a disability if she has been clinically diagnosed with at least one disability, and a child has no disability otherwise. In the majority of the cases, once a child enters the foster care system, a mandatory medical evaluation is performed; thus I assume that disabilities are pre-existing conditions. ${ }^{14}$

For each period (semester in the data) that a child remains in foster care, the data provide information about the last placement of the child during that period, including the start date of the placement. These placements are classified as: pre-adoptive home, non-relative foster home, relative foster home, group home, institution, supervised independent living, and runaway. Using these variables, I define a child as being foster matched in a given period if the child is placed in a pre-adoptive home, a non-relative foster home, or a relative foster home. ${ }^{15}$ I define a child as being unmatched in a given period if the child is placed in a group home or institution.

To maintain a consistent estimation sample, I restrict the sample to children younger than age 16 whose parental rights have been terminated. The former restriction excludes older children who often exit through legal emancipation, and the latter is to ensure that children are eligible for adoption. I also restrict the sample to children who are either foster matched or unmatched. This leaves a full sample of 451,967 children (sample A). Additionally, I create two subsamples. The first subsample (sample B) keeps only those child-period observations where the child is foster matched at the beginning of the period and still in foster care at the end of the period. The second subsample (sample C) keeps only those childperiod observations where the child is unmatched at the beginning of the period and still in foster care at the end of the period. Table 1 presents summary statistics for the full sample and the two subsamples, and Table A1 presents these summary statistics conditioned on, the variable of interest, child's disability.

[^4]Table 1: Descriptive Statistics, All Samples

	Sample A $o b s=1,165,818$		Sample B $o b s=659,253$		Sample C obs $=65,970$	
	Mean	sd	Mean	sd	Mean	sd
Adopted	0.28	0.45	-	-	-	-
Foster matched	0.93	0.25	1.00	0.00	0.00	0.00
Becomes foster matched	-	-	-	-	0.24	0.42
Becomes unmatched	-	-	0.02	0.14	-	-
Foster match separates	-	-	0.19	0.39	-	-
Age in years	6.80	4.43	6.81	4.36	12.17	2.80
Disabled	0.41	0.49	0.43	0.50	0.68	0.47
Male	0.53	0.50	0.52	0.50	0.63	0.48
White	0.43	0.50	0.42	0.49	0.44	0.50
Black	0.24	0.43	0.26	0.44	0.27	0.44
Hispanic	0.22	0.41	0.22	0.42	0.20	0.40
Title IV-E eligible	0.48	0.50	0.51	0.50	0.47	0.50
Months in foster care	34.87	24.38	34.86	24.86	53.10	36.72
Months since PRT		17.09	22.62	16.23	22.15	41.99
ending in adoption	12.46	11.85	-	-	-	-
Months in current placement	16.06	15.72	17.31	16.32	10.85	13.99
foster matched	16.44	15.78	-	-	-	-

Notes: Data are from Adoption and Foster Care Analysis and Reporting System (AFCARS). Means and standard deviations are calculated for child-period observations. Sample A is the full sample containing all children younger than age 16 whose parental rights have been terminated and who are either foster matched or unmatched. Sample B and Sample C are subsamples of A. Sample B (sample C) keeps only those child-period observations such that the child is foster matched (unmatched) at the beginning of the period and still in foster care at the end of the period.

* PRT stands for Parental Rights Terminated.

In Table 1 (sample A), children are, on average, almost 7 years old and have had their parental rights terminated for 17 months. Out of all children, 41 percent have been diagnosed with a disability. In a given period, 93 percent of children are foster matched, with the average duration of that match being 16 months. I say a child is adopted if she exits the system through adoption. On average, 28 percent of children are adopted in each period. I say a child becomes unmatched if conditional on being foster matched at the beginning of a period she is unmatched

Table 2: Stylized Facts from Foster Care - Effect of Disability

	Adoption I	Foster match Separation II	Becomes Foster matched III	Becomes Unmatched IV
Disability γ	$-0.059^{* * *}$ (0.005)	$0.023^{* * *}$ (0.002)	$-0.045^{* * *}$ (0.006)	$0.011^{* * *}$ (0.001)
Mean of dependent variable	0.279	0.185	0.236	0.021
Number of child-period observations	$1,165,818$	659,253	65,970	659,253

Notes: Data are from Adoption and Foster Care Analysis and Reporting System (AFCARS). All specifications control for child's demographics, states indicators and period indicators. The first and second columns consider sample A, third and fifth columns use sample B, and the fourth column uses sample C. Standard errors are cluster at the state-period level and shown in parentheses. ${ }^{* * *} P<0.01 ;{ }^{* *} P<0.05 ;{ }^{*} P<0.10$.
at the end of the same period. Conditional on starting the period foster matched (sample B), the probability that a child becomes unmatched is 2 percent. Now, I say a child becomes foster matched if conditional on being unmatched at the beginning of a period she is foster matched at the end of the same period. The probability that a child becomes foster matched is 24 percent (sample C). It is important to highlight that the rates at which children experience match transitions are affected by the rates at which foster matches are separated. I say a child's foster match separates if conditional on being foster matched at the beginning of a period the child is no longer foster matched to the same parent at the end of the period. ${ }^{16}$ Table 1 (sample B) shows that foster matches separate with probability 19 percent. In practice, a separation can arise for different reasons such as the social worker decides to move the child to institutional care, the parent requests the removal of the child, or the social worker finds a more suitable foster parent for the child and decides to move the child. Unfortunately, the dataset does not contain this information.

[^5]
2.2 Empirical Specifications and Stylized Facts

I estimate the impact of disability on four outcomes: (1) the probability that a child is adopted, (2) the probability that a foster match separates, (3) the probability that a child becomes foster matched, and (4) the probability that a child becomes unmatched. For each outcome, I estimate the following linear probability model:

$$
\begin{equation*}
y_{i j t}=\alpha+\gamma \text { disability }_{i}+\beta X_{i}+\theta Z_{i t}+\xi_{j}+\lambda_{t}+\epsilon_{i j t} \tag{1}
\end{equation*}
$$

where $y_{i j t}$ is an indicator for the outcome of child i in state j at period t. disability ${ }_{i}$ is an indicator equal to one if child i has a disability and zero otherwise. X_{i} is a vector of time-invariant characteristics of child i such as gender, race, ethnicity, and whether the child is federally funded through Title IV-E. $Z_{i t}$ is a vector of timevarying characteristics of child i including age in months, number of months in foster care, and number of months since parental rights have been terminated. I include a vector of period fixed-effects λ_{t} to control for time-trends, and a vector of state fixed-effects ξ_{j} to control for unobserved state characteristics.

2.2.1 Fact 1: Disability Decreases the Probability of Being Adopted

The adoption rates of children with and without a disability are 0.22 and 0.32 , respectively (see Table A1). To evaluate the significance of this effect conditional on other demographics, I use sample A to estimate Equation 1 where the dependent variable $y_{i j t}$ is equal to one if child i in state j is adopted in period t and zero if she either remains in foster care or exits through any other manner. Table 2 column I shows that children with a disability are 6 percent less likely to be adopted than children without a disability.

As many states require parents to foster a child before an adoption can take place, the fact that children with a disability are less likely to be adopted might be driven by the fact that these children are less likely to be fostered in the first place. To analyze this, I estimate a version of Equation 1where the dependent variable $y_{i j t}$ is redefined to take the value of one if child i in state j is foster matched in period t and zero otherwise. As in adoption, the coefficient on disability is negative (see

Table A2). While this is suggestive, the theoretical model will allow me to show that children with a disability are less likely to be adopted not only because they are less likely to be foster matched, but they are also less likely to transit from a foster match to adoption.

2.2.2 Fact 2: Disability Increases the Probability of Foster Match Separation

From the data, foster matches constituted by children with and without a disability separate at rates 0.19 and 0.18 , respectively (see Table A1). Using sample B, I estimate Equation 1 where the dependent variable $y_{i j t}$ is equal to one if child i in state j has her foster match separated in period t and zero otherwise. Here, the vector $Z_{i t}$ includes the number of months that the child has been in her current foster match and what type of foster match it is (i.e., whether a pre-adoptive home, non-relative foster home or relative foster home).

Table 2 column II shows that children with a disability are 2 percent more likely to have their foster match separated than children without a disability. Even though, the dataset does not allow to identify the reason of the separation, the theoretical model will separately identify two types of separations: (1) the child transits from foster matched to unmatched i.e. from foster home to institutional care, and (2) the child transits from a foster match to another foster match i.e. from foster home to foster home. Furthermore, I will show that these two forces work on opposition directions: children with a disability are more likely to experience the first type of separation, and less likely to experience the second type.

2.2.3 Fact 3: Disability Decreases the Probability of Becoming Foster Matched

The rates of foster match formation (conditional on starting the period unmatched) of children with and without a disability are 0.22 and 0.28 , respectively (see Table A1). To study the effect of disability on the probability of becoming foster matched, I use sample C to estimate Equation 1 where the dependent variable $y_{i j t}$ equal one indicates that child i in state j becomes foster matched in period t and zero otherwise. In this specification, the vector $Z_{i t}$ additionally includes the number of months that the child has been in her current unmatched state and where
she is currently living (i.e., whether a group home or institution).
Table 2 column III shows that disability decreases the probability of becoming foster matched by 5 percent. That is, children with a disability are less likely to become foster matched than children without a disability. The theoretical model will show that this probability is driven by the fact that disability decreases the probability that a child finds a parent willing to foster her, and if they do, disability increases the probability that the foster match is later on destroyed.

2.2.4 Fact 4: Disability Increases the Probability of Becoming Unmatched

From the data, the rates of unmatched formation (conditional on starting the period foster matched) of children with and without a disability are 0.03 and 0.01 , respectively (see Table A1). Here, I use sample B to estimate Equation 1 where the dependent variable $y_{i j t}$ equal one indicates child i in state j becomes unmatched in period t and zero otherwise. As in the previous estimation, $Z_{i t}$ includes the number of months that the child has been in her current foster match and the type of foster match.

As we can see from Table 2 column IV, disability increases the probability of becoming unmatched. In the model, the probability of becoming unmatched will depend on the rate at which foster matches separate and the probability that a child finds a parent willing to foster her. Thus, behind this stylized fact, there are driving forces working on opposite directions, as in the case of separations.

2.2.5 Other Demographics

Table A3 exhibits the complete results of all regressions. The effect of one more year of age is the same, qualitatively, to the effect of a disability. Similarly, being a male has a similar pattern to disability, except that it decreases the probability of disruption. Now, an interesting result is that the probability of being adopted is decreasing in the length of time that a child remains in foster care since her parental rights have been terminated. This is very similar to the documented evidence in unemployment spells and job finding rates. On the one hand, the child's behavior might become 'more difficult' the longer she stays in foster care, search-
ing for an adoptive family. On the other hand, parents might interpret a long wait as a signal that those children might be 'difficult'. As future research, it would be interesting to build a model incorporating these features and analyze these two effects.

3 Model

In this section, I develop a search and matching model to analyze how different incentives interact in agents' decisions over match formation and separation. With the data available is not possible to make any statement regarding what type of matches, in terms of match quality, are more likely to form a foster match, separate, or transit to adoption. Thus, the theoretical model will be used not only to have a better understanding of the empirical facts estimated in Section 2 but also it will allow us to establish how the match transition of children is affected by matchquality which is not observable to the econometrician.

3.1 Environment

Time is discrete with an infinite-horizon. One side of the market is populated by children who differ in an observable attribute $x \in X=\left\{x_{1}, x_{2}\right\}$ where x_{1} denotes a child with a disability, x_{2} indicates a child without a disability, and $x_{1}<x_{2}$. Each period, a strictly positive mass of children ρ enters the market and each child draws an attribute from a full support probability distribution $l(x)$. The other side of the market is constituted by homogeneous parents. The mass of parents out of the market is strictly positive, and parents make entry and exit decisions each period.

Children and parents who are in the market can be unmatched or matched. Let $u_{t}^{p} \geq 0$ denote the endogenous distribution of unmatched parents in the market, and $u_{t}^{c}(x)$ denote the endogenous distribution of unmatched children in the market. Matches are one-to-one, formed between children and parents, and heterogeneous in quality denoted as $q \in Q=\left\{q_{1}, q_{2}\right\}$ where $q_{1}<q_{2} .{ }^{17}$ Further, I

[^6]define two types of matches: foster matches (reversible) and adoption matches (irreversible). Agents who form a foster match (hereafter f-match) remain in the market, while agents who form an adoption match (hereafter a-match) leave the market. Let $m(x, q)$ denote the endogenous distribution over f-matches. Thus, the aggregate state of the market is summarized by $\phi=\left(u^{p}, u^{c}, m\right)$.

All agents are risk-neutral and discount future at rate $\beta \in(0,1)$. Payoffs for unmatched children are normalized to zero. For children who are f-matched or amatched, payoffs are given by the real-valued function $b^{c}(x, q, z)$ where $z \in\{f, a\}$, where $z=f$ indicates an f-match, $z=a$ indicates an a-match, and $a>f$. I assume that children' payoff function satisfies the following:

Assumption 1 (Children' payoffs). (a) $b^{c}(x, q, a)>b^{c}(x, q, f) \geq 0$ for all (x, q);
(b) $b^{c}(x, q, z)$ is decreasing in x;
(c) $b^{c}(x, q, z)$ is increasing in q;
(d) $b^{c}\left(x, q_{2}, f\right)>b^{c}\left(x, q_{1}, a\right)$;
(e) $b^{c}(x, q, z)$ is supermodular in (x, z);
(f) $b^{c}(x, q, z)$ is submodular in (x, q); and
$(g) b^{c}\left(x_{1}, q_{2}, f\right)-b^{c}\left(x_{1}, q_{1}, a\right)>b^{c}\left(x_{2}, q_{2}, f\right)-b^{c}\left(x_{2}, q_{1}, a\right)$.
Assumption 1(a) captures that children are better-off with a foster parent than in institutional care, and better-off when adopted than fostered. 1(b) reflects that children with a disability benefit more from the family environment and emotional stability provided by foster and adoption. The intuition that children are better-off in high-quality matches is addressed in 1(c). Assumption 1(d) states that children prefer to be f-matched when the quality is high than a-matched when the quality is low. 1 (e) imposes that the gain of being adopted is greater for children without a disability, and 1(f) captures that the gain of being in high-quality matches is greater for children with a disability. Lastly, assumption $1(\mathrm{~g})$ implies
such as the emotional bond between the child and parent, and the relationship between the parent and the child's birth family.
that the gain of being in an f-match of high-quality versus being in an a-match of low-quality is greater for children with a disability.

Payoffs for parents out of the market are normalized to zero. Parents incur on a per-period cost $k>0$ to hold a license and stay in the market. Parents who are f-matched or a-matched receive payoffs according to the real-valued function $b^{p}(x, q, z)$. I assume that parents' payoff function satisfies the following:

Assumption 2 (Parents' payoffs). (a) $b^{p}(x, q, f)>b^{p}(x, q, a)$ for all (x, q);
(b) $b^{p}(x, q, z)$ is increasing in x;
(c) $b^{p}(x, q, z)$ is increasing in q;
(d) $b^{p}(x, q, z)$ is log-supermodular in (x, z); and
(e) $b^{p}(x, q, z)$ is \log-submodular in (q, z).

Assumption 2(a) reflects the presence of the adoption penalty. 2(b) captures the intuition that parents prefer children without a disability to children with a disability. 2(c) reflects that parents in high-quality matches benefit more from fostering/adopting than parents in low-quality matches. Now, the term $1-\frac{b^{p}(x, q, a)}{b^{p}(x, q, f)}$ represents the adoption penalty. Assumption 2(d) states that the adoption penalty is higher for children with a disability. Lastly, assumption 2(e) imposes that the adoption penalty is increasing in the match quality.

Figure 1: Timeline

Figure 1 exhibits the timeline within a period. Each period is divided into four stages:

1. Search and f-matching stage. Children search when unmatched or f-matched,
and parents search only when unmatched. Meetings are stochastic and can be described in terms of the market tightness $\theta \in \mathbb{R}_{+}$(i.e. parents-to-children ratio):

$$
\begin{equation*}
\theta=\frac{u^{p}}{\sum_{x} u^{c}(x)+\sum_{q} m(x, q)} . \tag{2}
\end{equation*}
$$

A child meets a parent with probability $\pi^{c}(\theta)$ which is a strictly increasing and strictly concave function such that $\pi^{c}(0)=0$. Similarly, a parent meets a child with probability $\pi^{p}(\theta)$ which is a strictly decreasing and convex function such that $\pi^{p}(\theta)=\frac{\pi^{c}(\theta)}{\theta}$ and $\pi^{p}(0)=1$. Next, when a child and parent meet, a match quality q is drawn from the full support probability distribution $h(q)$. A match quality is constant through the duration of the f-match, and learned through experience. Before forming an f-match, agents observe a noisy signal $s \in S=\left\{s_{1}, s_{2}\right\}$ generating a full support conditional probability distribution $g(q \mid s)$ such that if $s^{\prime}>s$ then $G\left(q \mid s^{\prime}\right) \leq G(q \mid s)$. After observing the noisy signal, agents announce simultaneously 'foster' or 'reject'. An f-match is formed if and only if both agents announce foster. If a new f-match is formed, any old f-match dissolves.
2. Payoff realization stage. Agents in newly formed f-matches perfectly observe the quality q. Once a match quality is complete information, payoffs received during the remaining duration of the f-match are known.
3. Destruction and a-matching stage. A child x is adopted by a relative with exogenous probability $\delta_{x} \in(0,1)$ where $\delta_{x_{2}} \geq \delta_{x_{1}} .{ }^{18}$ The f-match separates, if a child is adopted exogenously. Now, If the f-match remains, then child and parent announce simultaneously 'adoption', 'destroy', or 'remain'. An f-match destroys if at least one agent announces destroy, and an a-match takes place if and only if both agents announce adoption. If an f-match destroys, the parent remains unmatched that period and the child searches. Agents who form an a-match receive adoption payoffs to perpetuity, and I assume q remains the same when transitioning from f-matched to a-matched. Children adopted by a relative receive $b^{c}\left(x, q_{2}, a\right)$ to perpetuity.

[^7]4. Entry and exit stage. A mass of new children enters the market and parents make entry/exit decisions. Parents and children who enter the market remain unmatched that period. Agents who formed an a-match during the previous stage leave the market, and only unmatched parents can decide to exit the market.

I restrict attention to stationary pure symmetric Markov strategies. Strategies depend on the aggregate state of the market ϕ, and to simplify notation I suppress it. I refer to a parent f-matched to child x with match quality q as parent (\mathbf{x}, \mathbf{q}). For each parent, a strategy consists of the tuple (in, out, $\left.f^{p}, d^{p}, a^{p}\right)$ where in $\in\{n o, y e s\}$ is the entry strategy, out $\in\{n o$, yes $\}$ is the exit strategy, $f^{p}(x, s)$: $X \times S \rightarrow\{$ reject, foster $\}$ is the decision to form an f-match with child x after observing signal $s, d^{p}: X \times Q \rightarrow\{0,1\}$ is the decision to destroy the f -match such that $d^{p}(x, q)=1$ when parent (x, q) announces destroy, and $a^{p}: X \times Q \rightarrow\{0,1\}$ is the decision to form an a-match such that $a^{p}(x, q)=1$ when parent (x, q) announces adoption. Now, refer to child x f-matched with quality q as child (\mathbf{x}, \mathbf{q}), and refer to an unmatched child x as child $\left(\mathbf{x}, \mathbf{q}_{0}\right)$. To make reference to a child's match status, I define an auxiliary set $\bar{Q}=Q \cup\left\{q_{0}\right\}$. For each child x, a strategy consists of the triple $\left(f^{c}, d^{c}, a^{c}\right)$ where $f^{c}: X \times \bar{Q} \times S \rightarrow\{$ reject, foster $\}$ is the decision to form a new f-match after child (x, \bar{q}) observes signal s, and $d^{c}: X \times Q \rightarrow\{0,1\}$ and $a^{c}: X \times Q \rightarrow\{0,1\}$ are the destruction and adoption decisions, respectively.

Lastly, let $d(x, q)=d^{c}(x, q)+\left(1-d^{c}(x, q)\right) d^{p}(x, q)$ and $a(x, q)=a^{c}(x, q) a^{p}(x, q)$ denote the joint destruction and adoption decisions of an f -match (x, q), and define the f-matching correspondence as follows:

Definition 1. A foster-matching correspondence is a map $\mathcal{M}: X \times \bar{Q} \mapsto S$ such that $s \in \mathcal{M}(x, \bar{q})$ if and only if (\boldsymbol{i}) child (x, \bar{q}) is willing to form an f-match after observing signal s, and (ii) unmatched parent is willing to form an f-match after meeting child x and observing signal s.

3.2 Value Functions

3.2.1 Value Functions for Children

Let $\mathcal{C}(x, \bar{q})$ denote the value function for child (x, \bar{q}) at the end of a period, and define $\hat{\mathcal{C}}(x, \bar{q})$ as the search value for child (x, \bar{q}) at the beginning of the search and f-matching stage. The search value function is specified by Equation 3. At the beginning of the search and f-matching stage, child (x, \bar{q}) meets a parent with endogenous probability $\pi^{c}(\theta)$. If no meeting takes place, status-quo is preserved and she receives the continuation value $\mathcal{C}(x, \bar{q})$. If a meeting takes place, a noisy signal s is realized where $f(s)$ is the probability distribution over signals derived from $h(q)$ and $g(q \mid s)$. If at least one agent announces reject after observing s, then the status-quo is preserved. If both agents announce foster after observing s, then the child receives the conditional expected value $\mathbb{E}_{s}[\mathcal{C}(x, q)]=\sum_{q} \mathcal{C}(x, q) g(q \mid s)$.

$$
\begin{equation*}
\hat{\mathcal{C}}(x, \bar{q})=\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, \bar{q})} f(s)\right) \mathcal{C}(x, \bar{q})+\pi^{c}(\theta) \sum_{\mathcal{M}(x, \bar{q})} \mathbb{E}_{s}[\mathcal{C}(x, q)] f(s) \tag{3}
\end{equation*}
$$

Thus, child (x, \bar{q}) announces foster after observing s if and only if the conditional expected value of forming a new f-match is greater than the continuation value of the status-quo i.e. $\mathbb{E}_{s}[\mathcal{C}(x, q)] \geq \mathcal{C}(x, \bar{q})$. For child x who is unmatched at the end of a period, the value function is:

$$
\begin{equation*}
\mathcal{C}\left(x, q_{0}\right)=\beta \delta_{x} \frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta}+\beta\left(1-\delta_{x}\right) \hat{\mathcal{C}}\left(x, q_{0}\right) \tag{4}
\end{equation*}
$$

Now, consider a child x f-matched with quality q at the end of a period. Child (x, q) 's value function is specified by Equation 5. In the current period, she receives the f-match payoff $b^{c}(x, q, f)$. At the beginning of the next period, she is adopted by a relative with probability δ_{x}. If the f-match remains, child and parent decide between transit to an a-match, destroy the f-match, or remain f-matched. In each case, child (x, q) 's possible continuation values are $\frac{b^{c}(x, q, a)}{1-\beta}, \hat{\mathcal{C}}\left(x, q_{0}\right)$, and
$\hat{\mathcal{C}}(x, q)$ respectively.

$$
\begin{align*}
& \mathcal{C}(x, q)=b^{c}(x, q, f)+ \beta \delta_{x} \frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta}+\beta\left(1-\delta_{x}\right)\left[d^{p}(x, q) \hat{\mathcal{C}}\left(x, q_{0}\right)\right. \\
&+a^{p}(x, q) \max \left\{\frac{b^{c}(x, q, a)}{1-\beta}, \hat{\mathcal{C}}\left(x, q_{0}\right), \hat{\mathcal{C}}(x, q)\right\} \\
&\left.+\left(1-d^{p}(x, q)-a^{p}(x, q)\right) \max \left\{\hat{\mathcal{C}}\left(x, q_{0}\right), \hat{\mathcal{C}}(x, q)\right\}\right] \tag{5}
\end{align*}
$$

Thus, child (x, q) chooses adoption if and only if the value of being adopted is greater than the value of continue searching while unmatched and the value of continue searching while f-matched when the quality is q. Hence, a child faces the following trade-off: receive a higher adoption payoff but forgo the opportunity of finding a 'better' match. Similarly, child (x, q) chooses destroy if and only if the value of searching while unmatched is greater than the value of being adopted and the value of continue searching while f-matched. Hence, when a child decides to destroy a f-match, she is destroying a 'bad' match.

3.2.2 Value Functions for Parents

At the end of a period, let \mathcal{P}^{u} denote the value function for an unmatched parent and $\mathcal{P}(x, q)$ denote the value function for parent (x, q). For an unmatched parent, the value function is presented in Equation 6. In the current period, the unmatched parent incurs in the per-period cost k of holding a license. Next, the parent decides between stay or exit the market. If she exits her payoff is zero, and if she stays she meets a child with probability $\pi^{p}(\theta)$. When no meeting takes place, the parent remains unmatched. When a meeting takes place, a child is drawn from the endogenous probability distribution $\hat{m}(x, \bar{q})$ derived from u^{c} and m (for detail see Appendix C.1). After meeting child (x, \bar{q}), agents observe some signal. If at least one agent announces reject, then the parent remains unmatched. If both announce foster, then the parent receives $\mathbb{E}_{s}[\mathcal{P}(x, q)]$.

$$
\begin{equation*}
\mathcal{P}^{u}=\max \left\{0, \frac{-k+\beta \pi^{p}(\theta) \sum_{\mathcal{M}(x, \bar{q})} \sum_{x, \bar{q}} \mathbb{E}_{s}[\mathcal{P}(x, q)] \hat{m}(x, \bar{q}) f(s)}{1-\beta\left(1-\pi^{p}(\theta) \sum_{\mathcal{M}(x, \bar{q})} \sum_{x, \bar{q}} \hat{m}(x, \bar{q}) f(s)\right)}\right\} \tag{6}
\end{equation*}
$$

Thus, an unmatched parent forms an f-match with child (x, \bar{q}) after observing signal s if and only if the conditional expected value of forming the f-match is greater than the unmatched value.

For parent (x, q), the value function is Equation 7. In this period, she receives the f-match payoff $b^{p}(x, q, f)$. Next period, she becomes unmatched with exogenous probability δ_{x}. If the f-match remains, child and parent decide between transit to adoption, destroy the f-matched or remain f-matched. When transiting to adoption, the parent receives $\frac{b^{p}(x, q, a)}{1-\beta}$. When the f-match destroys, the parent receives the unmatched value \mathcal{P}^{u}. Lastly, when the f-match remains, her continuation value depends on the outcome of the search and f-matching stage: with probability $\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)$ she becomes unmatched due to the child forming a new f-match, and with probability $\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right)$ the f-match remains.

$$
\begin{align*}
& \mathcal{P}(x, q)=b^{p}(x, q, f)+\beta \delta_{x} \mathcal{P}^{u}+\beta\left(1-\delta_{x}\right)\left[d^{c}(x, q) \mathcal{P}^{u}\right. \\
& +a^{c}(x, q) \max \left\{\frac{b^{p}(x, q, a)}{1-\beta}, \mathcal{P}^{u},\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right) \mathcal{P}(x, q)+\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s) \mathcal{P}^{u}\right\} \\
& \left.+\left(1-d^{c}(x, q)-a^{c}(x, q)\right) \max \left\{\mathcal{P}^{u},\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right) \mathcal{P}(x, q)+\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s) \mathcal{P}^{u}\right\}\right] \tag{7}
\end{align*}
$$

When parent (x, q) is deciding to adopt she faces the following trade-off: eliminate the likelihood that the f-match is destroyed but forgo part of the per-period payoff.

3.3 Aggregate State of the Market

The distribution of unmatched parents in the market depends on the entry and exit strategies of parents. Thus, the stationary mass of unmatched parents u^{p} satisfies the following inequality:

$$
\begin{equation*}
\pi^{p}\left(\frac{u^{p}}{\sum_{x} u^{c}(x)+\sum_{q} m(x, q)}\right) \leq \frac{k}{\beta \sum_{\mathcal{M}(x, \bar{q})} \sum \mathbb{E}_{s}[\mathcal{P}(x, q)] \hat{m}(x, \bar{q}) f(s)} \tag{8}
\end{equation*}
$$

with equality if u^{p} is strictly positive. For distributions $u^{c}(x)$ and $m(x, q)$ to be time invariant, the mass destruction and mass creation must exactly balance (for detail see Appendix C.2).

3.4 Definition of Equilibrium

I use the following equilibrium definition:
Definition 2. A foster care equilibrium consists of tuple ($\mathcal{M}, d^{c}, d^{p}, a^{c}, a^{p}$, in $\left., \mathcal{C}, \mathcal{P}^{u}, \mathcal{P}, \phi\right)$ such that the following properties are satisfied:

(1) Value Functions.

(a) Given $\left(\mathcal{M}, d^{c}, d^{p}, a^{c}, a^{p}, \phi\right)$, value functions $\mathcal{C}\left(x, q_{0}\right)$ and $\mathcal{C}(x, q)$ are specified by Equations 4 and 5, respectively.
(b) Given $\left(\mathcal{M}, d^{c}, d^{p}, a^{c}, a^{p}\right.$, in, $\left.\phi\right)$, value functions \mathcal{P}^{u} and $\mathcal{P}(x, q)$ are specified by Equations 6 and 7, respectively.
(2) Strategies.
(a) Given ($\left.d^{c}, d^{p}, a^{c}, a^{p}, \mathcal{C}, \mathcal{P}^{u}, \mathcal{P}, \phi\right), s \in \mathcal{M}(x, \bar{q})$ if and only if $\mathbb{E}_{s}[\mathcal{P}(x, q)] \geq$ \mathcal{P}^{u} and $\mathbb{E}_{s}[\mathcal{C}(x, q)] \geq \mathcal{C}(x, \bar{q})$.
(b) Given $\left(\mathcal{M}, d^{p}, a^{p}, \mathcal{C}, \phi\right), a^{c}(x, q)=1$ if and only if Equation C. 4 holds, and $d^{c}(x, q)=1$ if and only if Equation C. 5 holds.
(c) Given $\left(\mathcal{M}, d^{c}, a^{c}, \mathcal{P}^{u}, \mathcal{P}, \phi\right)$, in $=$ yes if and only if C. 6 holds, $a^{p}(x, q)=1$ if and only if Equation C. 7 holds, and $d^{p}(x, q)$ is one if and only if Equation C. 8 holds.

(3) Aggregate state of the market.

(a) Given $\left(\mathcal{M}, d^{c}, d^{p}, a^{c}, a^{p}\right.$, in, $\left.\mathcal{P}^{u}, \mathcal{P}, u^{c}, m\right), u^{p}$ satisfies Equation 8.
(b) Given ($\left.\mathcal{M}, d^{c}, d^{p}, a^{c}, a^{p}\right)$, for each $x,\left\{m\left(x, q_{i}\right)\right\}_{i=1}^{N}$ and $u^{c}(x)$ solve the system of equations given by Equations C. 2 and C.3.

4 Theoretical Analysis

I first derive equilibrium properties and identify the driving forces behind the empirical results estimated in Section 2. Afterwards, I use these properties to ensure that the empirical facts arise in equilibrium and carry out model predictions regarding match quality.

4.1 Equilibrium Analysis

The analysis focuses on foster care equilibria with a positive mass of parents in the market i.e $u^{p}>0$ which implies that $\mathcal{P}^{u}=0$ (from Equations 6 and 8). Moreover, I assume that for each child, there is at least one signal such that parents receive a positive expected foster payoff.

Assumption 3. For each x, there exists \hat{s} such that $\mathbb{E}_{\hat{s}}\left[b^{p}(x, q, f)\right] \geq 0$.

Proposition 1 exhibits how the destruction of f-matches varies with disability and match quality. In item (i), I show that f-matches involving children with a disability destroy more than f-matches involving children without a disability. Formally, fixing q, if the f-match $\left(x_{2}, q\right)$ is destroyed then the f -match $\left(x_{1}, q\right)$ is also destroyed. Recall that, an f-match can be destroyed by either the child or the parent, $d(x, q)=d^{c}(x, q)+\left(1-d^{c}(x, q)\right) d^{p}(x, q)$. By assumption 1 (a), it follows that children never destroy an f-match. Thus, in equilibrium, the destruction is driven by parents, which is consistent with the anecdotal evidence suggesting that when a child moves from foster home to institutional care is generally due to the request of the foster parent. Now, by assumption 2(b), it follows that if $d^{p}\left(x_{2}, q\right)=1$ then $d^{p}\left(x_{1}, q\right)=1$ for all q. In item (ii), I establish that if the f -match (x, q_{1}) is destroyed, then f -matches $\left(x, q_{2}\right)$ is also destroyed. In words, if a parent f -matched to child x when the quality is q_{2} is not willing to continue providing care, then a parent f matched to child x when the quality is q_{1} is also not willing to continue providing care. This follows from assumption 2(c).

Proposition 1 (Destruction). Assume children' payoffs satisfy Assumption 1(a), and parents' payoffs satisfy Assumptions 2(a)-(c). Then, in any foster care equilibrium:
(i) f-match destruction is greater for children with a disability,

$$
d\left(x_{1}, q\right) \geq d\left(x_{2}, q\right) \text { for all } q .
$$

(ii) f-match destruction is greater for low quality matches,

$$
d\left(x, q_{1}\right) \geq d\left(x, q_{2}\right) \text { for all } x .
$$

Proof. See Appendix D.1.

To establish the empirical facts, I will ensure that parents' strategies satisfy the following:
(1) if a parent is willing to form an f-match with child x_{1} after observing signal s, then she is also willing to form an f-match with child x_{2} after observing s.
(2) if a parent is willing to adopt child x_{1} when the quality is q, then she is also willing to adopt child x_{2} when the quality is q.

Since (1) might contradict (2), I impose Assumption 4 which allows me to characterize parents' f-match formation strategies using the per-period payoffs. This assumption ensures that, if the conditional expected payoff received by a parent f-matched to child (x, q) is negative, then the conditional expected value of being f -matched to child (x, q) is also negative.

Assumption 4. For each (s, x), if $\mathbb{E}_{s}\left[b^{p}(x, q, f)\right]<0$ then the following condition on primitives holds:

$$
\mathbb{E}_{s}\left[b^{p}(x, q, f)+\beta\left(1-\delta_{x}\right) \sum_{q} \max \left\{\frac{b^{p}(x, q, a)}{1-\beta}, 0, \frac{b^{p}(x, q, f)}{1-\beta\left(1-\delta_{x}\right)}\right\} g(q \mid s)\right]<0
$$

Proposition 2 exhibits how the formation of f-matches involving unmatched children varies with disability and match quality. Recall that f-matches must be mutually agreed upon, that is, $s \in \mathcal{M}\left(x, q_{0}\right)$ if and only if $s \in F^{p}(x)$ and $s \in F^{c}\left(x, q_{0}\right)$. By Assumption 1(a), it follows that children always announce foster after observing signal s. Intuitively, as the law requires, children are placed
in foster family homes whenever possible. Thus, the formation of an f-match depends on the parent's decision. In item (i), I show that conditional on observing signal s, if a parent is willing to foster a child with a disability, then he must also be willing to foster a child without a disability i.e. if $s \in F^{p}\left(x_{1}\right)$ then $s \in F^{p}\left(x_{2}\right)$. This follows from Assumption 2(b). In words, children with a disability are less likely to find a parent willing to foster them. In item (i), I state that if a parent announces foster after meeting child x and observing signal s_{1}, then he also announces foster after observing signal s_{2}. The result follows from Assumption 2(c). Since $G\left(q \mid s_{1}\right)$ first-order stochastically dominates $G\left(q \mid s_{2}\right)$, it follows that the conditional expected value received by a parent when fostering a child is increasing in the signal.

Proposition 2 (F-match formation involving unmatched children). Assume children' payoffs satisfy Assumption 1(a), and parents' payoffs satisfy Assumptions 2(b)-(c), 3 and 4. Then, in any foster care equilibrium:
(i) f-match formation is lower for unmatched children with a disability,

$$
\mathcal{M}\left(x_{1}, q_{0}\right) \subseteq \mathcal{M}\left(x_{2}, q_{0}\right) .
$$

Moreover, $\mathcal{M}\left(x, q_{0}\right)$ is non-empty for all x.
(ii) f-match formation is greater for high signals,

$$
s_{1} \in \mathcal{M}\left(x, q_{0}\right) \text { implies } s_{2} \in \mathcal{M}\left(x, q_{0}\right) \text { for all } x .
$$

Proof. See Appendix D.2.

Proposition 3 exhibits how f-match formation involving f-matched children varies with disability and match quality. Item (i) states that children without a disability are more likely to form a new f-match than children with a disability. The result is driven by the parents' decision: children without a disability are more demanded by foster parents. Item (ii) shows that low-quality matches are more likey to form new f-matches than high-quality matches. The result is driven by the children' decision. By Assumption 1(d), children value more quality than the adoption status, thus they have no incentives to separate high-quality matches.

Proposition 3 (F-match formation involving f-matched children). Assume children' payoffs satisfy Assumptions 1(a),(c)-(d), and parents' payoffs satisfy Assumptions 2(a)-(c), 3 and 4. Then, in any foster care equilibrium:
(i) f-match formation is lower for children with a disability,

$$
\sum_{\mathcal{M}\left(x_{2}, q\right)} f(s) \geq \sum_{\mathcal{M}\left(x_{1}, q\right)} f(s) \text { for all } q .
$$

(ii) f-match formation is greater when the old match is low quality,

$$
\sum_{\mathcal{M}\left(x, q_{1}\right)} f(s) \geq \sum_{\mathcal{M}\left(x, q_{2}\right)} f(s)=0 \text { for all } x .
$$

Proof. See Appendix D.3.
Due to Proposition 3(i), children with a disability are more willing to announce adoption after observing a low-quality match because their search opportunities are smaller. However, the intuition suggests that social workers might be pickier when searching for an adoptive parent for a child with a disability since these children benefit more from higher quality matches. Thus, to ensure that this intuition arises in equilibrium, I impose stronger conditions presented in Assumption 5(a)-(c). These conditions will help to ensure that if a child with a disability is willing to give up the opportunity of continue searching for a high-quality match, then children without a disability will also be willing to give up this opportunity.

Assumption 5. Assume children' payoffs satisfy the following:
(a) $\frac{\delta_{x_{1}}}{\delta_{x_{2}}}>\frac{b^{c}\left(x_{2}, q_{2}, a\right)-b^{c}\left(x_{2}, q_{1}, a\right)}{b^{c}\left(x_{1}, q_{2}, a\right)-b^{c}\left(x_{1}, q_{1}, a\right)}$
(b) $\frac{\left\{b^{c}\left(x_{1}, q_{2}, f\right)-b^{c}\left(x_{1}, q_{1}, a\right)\right\}\left(1-\beta\left(1-\delta_{x_{1}}\right)\right)-\left\{b^{c}\left(x_{1}, q_{2}, a\right)-b^{c}\left(x_{1}, q_{2}, f\right)\right\} \beta\left(1-\delta_{x_{1}}\right)}{1-\beta\left(1-\delta_{x_{1}}\right)}>$ $b^{c}\left(x_{2}, q_{2}, f\right)-b^{c}\left(x_{2}, q_{1}, a\right)$
(c) $\frac{\left\{b^{c}\left(x_{1}, q_{2}, f\right)-b^{c}\left(x_{1}, q_{1}, a\right)\right\} \beta \delta_{x_{1}}-\left\{b^{c}\left(x_{1}, q_{2}, a\right)-b^{c}\left(x_{1}, q_{2}, f\right)\right\}(1-\beta)}{g\left(q_{2} \mid s_{1}\right)}>$ $b^{c}\left(x_{2}, q_{2}, f\right)(1-\beta)+b^{c}\left(x_{2}, q_{2}, a\right) \beta-b^{c}\left(x_{2}, q_{1}, a\right)$

Proposition 4 exhibits how adoption outcomes vary with disability and match quality. Item (i) states that children with a disability transit to adoption less than
children without a disability. Both parents' and children's decisions drive the result. Item (ii) shows that if the probability that the child leaves the f-match is sufficiently low, then high-quality matches do not transit to adoption due to the parents' decision. Thus, high-quality matches transit to adoption less than lowquality matches.

Proposition 4 (Adoption). Assume children' payoffs satisfy Assumptions 1(a)-(g) and 5(a)-(c), and parents' payoffs satisfy Assumptions 2(a)-(e), 3 and 4. Then, in any foster care equilibrium:
(i) a-match formation is lower for children with a disability,

$$
a\left(x_{2}, q\right) \geq a\left(x_{1}, q\right) \text { for all } q .
$$

(ii) a-match formation is greater for low quality matches,

$$
a\left(x, q_{1}\right) \geq a\left(x, q_{2}\right) \text { for all } x .
$$

Proof. See Appendix D.4.

4.2 Empirical Facts and Model Predictions

Now, I establish sufficient conditions on primitives such that the empirical results estimated in Section 2 emerge in equilibrium, and analyze the role of match quality in the empirical facts. From now on, I assume all the assumptions specified previously hold.

4.2.1 Probability of Being Adopted

Consider child (x, \bar{q}) at the beginning of a period, and let $A(x, \bar{q})$ denote the probability that she becomes a-matched next period specified as:

$$
A\left(x, q_{0}\right)=\delta_{x}+\left(1-\delta_{x}\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right)\left[\delta_{x}+\left(1-\delta_{x}\right) a\left(x, q^{\prime}\right)\right]
$$

and

$$
\begin{aligned}
& A(x, q)=\delta_{x} \\
& +\left(1-\delta_{x}\right)\left\{a(x, q)+d(x, q) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right)\left[\delta_{x}+\left(1-\delta_{x}\right) a\left(x, q^{\prime}\right)\right]\right. \\
& \left.+(1-a(x, q)-d(x, q)) \pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right)\left[\delta_{x}+\left(1-\delta_{x}\right) a\left(x, q^{\prime}\right)\right]\right\}
\end{aligned}
$$

In the first case, the probability that a child $\left(x, q_{0}\right)$ is adopted endogenously depends on the child forming an f-match during the search and f-matching stage, and both agents announcing adoption after observing some quality q. In the second case, the probability that child (x, q) is adopted endogenously can be decomposed in three events: (a) f-match (x, q) transits to adoption, (b) f-match (x, q) destroys and the unmatched child transits to an a-match with another parent, and (c) the f-match (x, q) remains but the child finds a new f-match and transits to an a-match with another parent.

Corollary 1. In any foster care equilibrium, the probability of being adopted is:
(i) lower for children with a disability whenever $\frac{\delta_{x_{2}}-\delta_{x_{1}}}{1-\delta_{x_{1}}}>\bar{\pi}$ holds.
(ii) greater for low quality matches whenever $b^{p}\left(x, q_{1}, a\right)>0$ and $\frac{b^{p}\left(x, q_{2}, a\right)}{b^{p}\left(x, q_{2}, f\right)} \leq \frac{1-\beta}{1-\beta\left(1-\delta_{x}\right)}$ hold.

Proof. See Appendix E.1.
Corollary 1(i) exhibits sufficient conditions for Fact 1 to arise in equilibrium. I say that children with a disability are less likely to be adopted if $A\left(x_{2}, \bar{q}\right) \geq A\left(x_{1}, \bar{q}\right)$ holds for all \bar{q}. Loosely speaking, children with a disability are less likely to form an f-matched, and if they do, they are less likely to transit to adoption.

Corollary 1(ii) presents the impact of match quality on the probability of being adopted. I say that the probability of being adopted is decreasing in match quality if $A\left(x, q_{1}\right) \geq A\left(x, q_{2}\right)$ holds for all x. In the presence of the adoption penalty, when the exhibited conditions are satisfied, high-quality matches are less likely to transit to an a-match than low-quality matches. Intuitively, if the separation of
high-quality matches is low enough, then parents have no incentives to choose adoption.

4.2.2 Probability of Foster Match Separation

Consider child (x, q) at the beginning of a period, and let $D(x, q)$ denote the probability that the f-match separates within a period:

$$
D(x, q)=\left(1-\delta_{x}\right)(1-a(x, q))\left[d(x, q)+(1-d(x, q)) \pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right]
$$

The probability that an f-match (x, q) separates is decomposed in two events. First, f-match (x, q) destroys during the destruction and a-matching stage. Second, f-match (x, q) remains but, during the search and f-matching stage, child x forms a new f-match with some parent after observing signal s.

Corollary 2. In any foster care equilibrium, the probability of foster match separation is:
(i) greater for children with a disability whenever $\frac{\delta_{x_{2}}-\delta_{x_{1}}}{1-\delta_{x_{1}}} \geq f\left(s_{1}\right)$ holds.
(ii) greater for low quality matches whenever $a\left(x, q_{1}\right)=0$ and $a\left(x, q_{2}\right)=0$ hold.

Proof. See Appendix E.2.
Corollary 2(i) exhibits sufficient conditions for Fact 2 to arise in equilibrium. I say that children with a disability are more likely to have a foster match separation if $D\left(x_{2}, q\right) \geq D\left(x_{1}, q\right)$ holds for all q. This depends on two forces working on opposite directions, and the empirical result sheds light on which of the driving forces prevails in equilibrium. On the one hand, Proposition 1(i) shows that children with a disability are more likely to have an f-matched destroyed, which by itself makes them more likely to separate On the other hand, Proposition 3(i) shows that children with a disability are less likely to form a new f-match, which by itself makes them less likely to separate. Hence, foster separation involving children with a disability are mainly driven by the uncertainty on the quality of the match, while foster separations affecting children without a disability are driven mostly by the search to improve the match quality.

Corollary 2(ii) presents sufficient conditions such that the probability of foster match separation is decreasing in match quality, $D\left(x, q_{1}\right) \geq D\left(x, q_{2}\right)$ for all x. In this case, the driving forces behind separation are aligned. Specifically, as long as agents' payoffs are increasing in quality (along with other conditions), the probability of separation is decreasing in match quality.

4.2.3 Probability of Becoming Foster Matched

Consider child $\left(x, q_{0}\right)$ at the beginning of a period, then the probability that child x becomes f -matched next period is denoted as $M(x)$:

$$
M(x)=\left(1-\delta_{x}\right)\left[\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} f(s) \sum_{q} g(q \mid s)\left(1-\delta_{x}\right)(1-d(x, q))\right]
$$

Corollary 3 describes the sufficient conditions for Fact 3 to arise in equilibrium. I say that children with a disability are less likely to become foster matched if $M\left(x_{2}\right) \geq M\left(x_{1}\right)$ holds. In this case, children with a disability are less likely to form an f-match, and if they form an f-match, children with a disability are more likely to have it destroyed.

Corollary 3. In any foster care equilibrium, the probability of becoming foster matched is lower for children with a disability.

Proof. See Appendix E.3.

4.2.4 Probability of Becoming Unmatched

Consider child (x, q) at the beginning of a period, and let $U(x, q)$ denote the probability that she becomes unmatched:

$$
\begin{aligned}
& U(x, q)=\left(1-\delta_{x}\right)(1-a(x, q))\{d(x, q) \underbrace{\left[1-\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right)\left(1-d\left(x, q^{\prime}\right)\right)\right]}_{1-M(x)} \\
&\left.+(1-d(x, q)) \pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right) d\left(x, q^{\prime}\right)\right\}
\end{aligned}
$$

Here, child (x, q) becomes unmatched if f-match (x, q) is destroyed and she remains unmatched after the search and f-matching stage, or if the f-match (x, q) dissolves and the new f-match is later on destroyed.

Corollary 4. In any foster care equilibrium, the probability of becoming unmatched is:
(i) greater for children with a disability whenever $\frac{\delta_{x_{2}}-\delta_{x_{1}}}{1-\delta_{x_{1}}} \geq f\left(s_{1}\right)$ and $\frac{1-\delta_{x_{1}}}{2-\delta_{x_{1}}-\delta_{x_{2}}}>\bar{\pi}$ hold.
(ii) greater for low quality matches, whenever $a\left(x, q_{1}\right)=0$ and $a\left(x, q_{2}\right)=0$ hold.

Proof. See Appendix E.4.
Corollary 4(i) exhibits sufficient conditions for Fact 4 to arise in equilibrium. I say that disability increases the probability of becoming unmatched if $U\left(x_{1}, q\right) \geq$ $U\left(x_{2}, q\right)$ for all q. There are potentially two driving forces working on opposite directions in this case. On the one hand, by Proposition 1(i) and Corollary 3, children with a disability are more likely to destroy an f-match and more likely to remain unmatched, which makes them more likely to become unmatched. On the other hand, by Propositions 1(i) and 3(i), children with a disability are less likely to form a new f-match but are more likely to destroy the new f-match later on, thus is not clear who is more likely to become unmatched.

Corollary 4(ii) shows that the probability of becoming unmatched is decreasing in match quality, $U\left(x, q_{1}\right) \geq U\left(x, q_{2}\right)$ for all x. In this case, the driving forces behind becoming unmatched are aligned.

5 Concluding Remarks

This paper provides an extensive analysis of the match transitions of children relinquished for adoption in the US foster care system. I first present an empirical analysis that yields four new facts. Thereafter, I develop a two-sided search and matching model used to rationalize the empirical facts and carry out predictions regarding match quality.

Using the theoretical model, I show that foster separation involving children with a disability is mainly driven by the uncertainty of the quality of the match, while foster separation involving children without a disability is driven to improve match quality. Also, I find that high-quality matches are less likely to be separated. Surprisingly, I find that foster match separation plays a crucial role in adoption by influencing the incentives of foster parents to adopt. Due to the presence of the financial penalty on adoption, parents face the following trade-off when deciding to adopt: accept the penalty in exchange for eliminating the likelihood that the child breaks the foster match in the future. For adoption, I show that the adoption penalty not only exacerbates the intrinsic disadvantage faced by children with a disability but also creates incentives for high-quality matches to not transit to adoption. Moreover, I show that foster parents in high-quality matches might have fewer incentives to adopt.

Acknowledgment. Data used were made available by the National Data Archive on Child Abuse and Neglect, Cornell University, Ithaca, NY, and have been used with permission. Data from the Adoption and Foster Care Analysis and Reporting System (AFCARS) were originally collected by the Children's Bureau. The collector of the original data, the funder, the Archive, Cornell University, and their agents or employees bear no responsibility for the analyses or interpretations presented here.

References

Akbarpour, M., S. Li, and S. O. Gharan (2020): "Thickness and Information in Dynamic Matching Markets," Journal of Political Economy, 128, 783-815.

Altinok, A. (2021): "Dynamic Many-to-One Matching," Working Paper.
Anderson, R., I. Ashlagi, D. Gamarnik, and Y. Kanoria (2015): "A Dynamic Model of Barter Exchange," Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 1925-1933.

Argys, L. and B. Duncan (2012): "Economic Incentives and Foster Child Adoption," Demography, 50, 933-954.

Baccara, M., S. Lee, and L. Yariv (2020): "Optimal Dynamic Matching," Theoretical Economics, 15, 1221-1278.

Barth, R. (1993): "Fiscal Issues and Stability in Special-needs Adoption," Public Welfare, 51, 21-28.
—— (1997): "Effects of Age and Race on the Odds of Adoption Versus Remaining in Long-term Out-of-Home Care," Child Welfare, 76, 285-308.

- (2002): "Institutions vs. Foster Homes: The Empirical Base for a Century of Action," Chapel Hill, NC: UNC, School of Social Work, Jordan Institute for Families.

Barth, R., C. Lee, J. Wildfire, and S. Guo (2006): "A Comparison of the Governmental Cost of Long-term Foster Care and Adoption," Social Service Review, 80, 127-158.

Berrick, J., M. Courtney, and R. Barth (1993): "Specialized Foster Care and Group Home Care: Similarities and Differences in the Characteristics of Children in Care," Children and Youth Services Review, 15, 453-473.

Bishor, K. and D. MacDonald (2022): "The Effect of Paying Parents to Adopt: Evidence from Minnesota's Foster-Care System," Working Paper.

Brehm, M. (2017): "The Effects of Federal Adoption Incentive Awards for Older Children on Adoptions from US Foster Care," Journal of Policy Analysis and Management, 37, 301-330.

Buckles, K. (2013): "Adoption Subsidies and Placement Outcomes for Children in Foster Care," Journal of Human Resources, 48, 596-627.

Burdett, K. and M. Coles (1997): "Marriage and Class," The Quarterly Journal of Economics, 112, 141-168.

Chade, H. (2001): "Two-sided Search and Perfect Segregation with Fixed Search Costs," Mathematical Social Sciences, 42, 31-51.
__ (2006): "Matching with Noise and the Acceptance Curse," Journal of Economic Theory, 129, 81-113.

Courtney, M. and Y.-L. Wong (1996): "Comparing the Timing of Exits from Substitute Care," Children and Youth Services Review, 18, 307-334.

Damiano, E. and R. Lam (2005): "Stability in Dynamic Matching Markets," Games and Economic Behavior, 52, 34-53.

DeVooght, K. and D. Blazey (2013): "Family Foster Care Reimbursement Rate in the US: A Report from a 2012 National Survey on Family Foster Care Provider Classifications and Rates," Child Trends Publications.

Doval, L. (2021): "Dynamically Stable Matching," Mimeo.
Dregan, A. and M. Gulliford (2012): "Foster Care, Residential Care and Public Care Placement Patterns are Associated with Adult Life Trajectories: Population-based Cohort Study," Social Psychiatry and Psychiatric Epidemiology, 47, 1517-1526.

Eeckhout, J. (1999): "Bilateral Search and Vertical Heterogeneity," International Economic Review, 40, 869-887.

Hansen, M. (2008): "The value of Adoption," Adoption Quarterly, 10, 65-87.

James, S. (2004): "Why do Foster Care Placement Disrupt? An Investigation of Reasons for Placement Change in Foster Care," Social Service Review, 78, 601627.

Kadam, S. and M. Kotowski (2018): "Multiperiod Matching," International Economic Review, 59, 1927-1947.

Kurino, M. (2009): "Credibility, Efficiency, and Stability: A Theory of Dynamic Matching Markets," Jena economic research papersw.

Leshno, J. (2021): "Dynamic Matching in Overloaded Waiting Lists," Mimeo.
Liu, C. (2021): "Stability in Repeated Matching Markets," Mimeo.
Mech, E., C. Ludy-Dobson, and F. Hulseman (1994): "Life-skills Knowledge: A Survey of Foster Adolescents in Three Placement Settings," Children and Youth Services Review, 16, 181-200.

Newton, R., A. Litrownik, and J. Landsverk (2000): "Children and Youth in Foster Care: Disentangling their Relationship Between Problem Behaviors and Number of Placements," Child Abuse and Neglect, 24, 1363-1374.

Ünver, U. (2010): "Dynamic Kidney Exchange," Review of Economic Studies, 77, 372-414.

Olberg, N., L. Dierks, S. Seuken, V. W. Slaugh, and U. Unver (2021): "Search and Matching for Adoption from Foster Care," Working Paper.

Robinson-Cortés, A. (2019): "Who Gets Placed Where and Why? An Empirical Framework for Foster Care Placement," Working Paper.

Rosinsky, K. and D. Connelly (2016): "Child Welfare Financing SFY 2014: A Survey of Federal, State, and Local Expenditures," Child Trend Publications.

Ryan, J., J.-M. Marshall, D. Herz, and P. Hernandez (2008): "Juvenile Delinquency in Child Welfare: Investigating Group Home Effects," Children and Youth Services Review, 30, 1088-1099.

Ryan, J. and M. Testa (2005): "Child Maltreatment and Juvenile Delinquency: Investigating the Role of Placement and Placement Instability," Children and Youth Services Review, 27, 227-249.

Shimer, R. and L. Smith (2000): "Assortative Matching and Search," Econometrica, 68, 343-369.

Slaugh, V., M. Akan, O. Kesten, and U. Unver (2015): "The Pennsylvania Adoption Exchange Improves Its Matching Process," Boston College Working Papers in Economics 858.

Smith, L. (2006): "The Marriage Model with Search Frictions," Journal of Political Economy, 114, 1124-1144.

Snowden, J., S. Leon, and J. Sieracki (2008): "Predictors of Children in Foster Care Being Adopted: A Classification Tree Analysis," Children and Youth Services Review, 30, 1318-1327.

Triseliotis, J. (2002): "Long-term Foster Care or Adoption? The Evidence Examined," Child and Family Social Work, 7, 23-33.
U.S. Department of Health and Human Services (2014): "The AFCARS Reports," Retrieved from https://www.acf.hhs.gov/cb/research-data-technology/ statistics-research/afcars.

Wulczyn, F., J. Kogan, and B. Harden (2003): "Placement Stability and Movement Trajectories," Social Service Review, 77, 212-236.

Zima, B., R. Bussing, S. Freeman, X. Yang, T. Belin, and S. Forness (2000): "Behavior Problems, Academic Skills Delays and School Failure Among School-aged Children in Foster Care: Their Relationship to Placement Characteristic," Journal of Child and Family Studies, 9, 87-103.

A Appendix: Foster Care in the US

A. 1 Overview

Foster care is authorized by title IV-E of the Social Security Act, and all states are eligible to participate in the program and receive federal funding. According to Rosinsky and Connelly (2016), the national spending on child welfare in 2014 was approximately $\$ 29.1$, out of which $\$ 12.8$ billion was federally funded, and the remaining was financed directly by states. ${ }^{19}$ Furthermore, 47% of the national spending was destined to out of home placement expenditure (including payments to foster parents and their training), and 17% was intended to finance adoption and guardianship programs (including monthly payments to adoptive parents and adoption fees).

Researchers and child welfare agencies have focused their attention on three significant issues: children' placements while in foster care, children' exit from foster care through adoption, and placement separation.

A.1.1 Foster Homes and Institutional Care

Foster parents provide the highest source of out-of-home care. ${ }^{20}$ At the end of the federal fiscal year of 2014, the number of children in foster care was 415,129, out of which 79% were placed with foster parents, and 14% were placed in institutional care (U.S. Department of Health and Human Services, 2014). Federal and state child welfare agencies have a strong preference for foster homes over institutional care ${ }^{21}$, and research supports this preference. First, evidence shows that institutional care is between six to ten times more expensive than foster family homes (Barth, 2002). Second, research shows that children placed in institutional

[^8]care have lower academic outcomes, lower levels of education, higher risk to engage in delinquent behavior, and a higher risk of criminal convictions when adults (Berrick et al., 1993; Mech et al., 1994; Ryan et al., 2008; Dregan and Gulliford, 2012).

A.1.2 Adoption and Long-term Care

At the end of the federal fiscal year of 2014, 18\% of children in foster care had their parental rights terminated, out of which 41% were adopted (U.S. Department of Health and Human Services, 2014). Research suggests that adoption is a better alternative to long-term care for two main reasons. First, maintaining a child in long-term care is more expensive than adoption (Barth, 1993; Barth et al., 2006; Hansen, 2008). Second, adoption generates better outcomes for children. Triseliotis (2002) and Hansen (2008) show that children who are adopted exhibit better social and educational outcomes. Since adoption from foster care is a major concern for policy markets, laws have been enacted to increase adoption. In particular, AACWA created the Adoption Assistance Program, which mandates states to make adoption assistance payments to parents who adopt children with special needs, including disability. ${ }^{22}$

A.1.3 Placement Separation

Research shows that an increase in the number of placements can delay academic skills formation, increase problematic behavior among children, and increase the risk of delinquency among male children (Zima et al., 2000; Newton et al., 2000; Ryan and Testa, 2005). At the end of the federal fiscal year of 2014, children exhibited in average 2.7 placements for a single foster care episode. ${ }^{23}$ This is above the ideal number set by the Children's Bureau that defines adequate placement stability as limiting the number of placements for a child to no more than two for

[^9]a single foster care episode. This paper focuses on the role that placement separation plays on adoption, which has not been addressed in the literature.

A. 2 Matching Process

Foster care is conducted and administered at the state level by Child Protective Services (CPS). When an allegation concerning a child's well-being is received, CPS assigns a social worker to the case and initiates an investigation. If sufficient evidence supporting an accusation is found, the case is presented to a juvenile or family court, where a judge decides whether the child is removed from her birthfamily home and placed in foster care. If the social worker believes that the child is in serious or imminent danger; she is allowed to execute an emergency removal without the court's approval. Yet, the decision must be later on approved by the judge.

In most states, decisions concerning children' placements are made by social workers. On behalf of a child, the social worker (a) searches and contacts foster parents, (b) arranges a meeting between the foster parent and child in order to obtain information of whether the foster parent is a good fit for the child, and (c) decides where to place the child. A placement in a foster home must be mutually agreed upon between the foster parent and social worker. The social worker can switch a child from one foster home to another or from a foster home to institutional care. Similarly, foster parents can request the child's removal from their home. Adoptions must be mutually agreed upon between the foster parent and social worker. Once the child is adopted, she exits foster care. It is essential to mention that an increasing number of states require parents to foster a child before adopting. For example, some states mandate that the child must reside in the foster home for at least six months before foster parents can adopt.

Foster parents must hold a license to provide care for children. The licensing process includes a home study and training requirements. The home study ensures that the foster parent's house is clean, in good condition, and free from danger. The initial training (15 to 30 hours of mandatory classes) addresses topics such as agency policies and procedures, roles and responsibilities of foster par-
ents, and behavior management. Also, most states require ongoing post-training to maintain the license.

Foster parents receive financial transfers when a child is placed on their care, which differ on whether the parent is fostering or adopting. While in foster, the parent receives financial payments for the duration of the placement. If the child is adopted, the parent gets monthly financial payments until the child reaches at least 18 years old. Each state has its own payment scheme, but as a rule-of-thumb, foster parents who provide care for a child with higher needs receive higher payments and adoption payments are lower than foster payments. For more detail on payment schemes, see DeVooght and Blazey (2013).

B Appendix: Tables

Table A1: Descriptive Statistics by Disability, All Samples

	Sample A $o b s=1,165,818$		$\begin{gathered} \text { Sample B } \\ o b s=659,253 \end{gathered}$		$\begin{gathered} \text { Sample C } \\ o b s=65,970 \end{gathered}$	
Disability	Yes	No	Yes	No	Yes	No
Adopted	$\begin{gathered} 0.22 \\ (0.41) \end{gathered}$	$\begin{gathered} 0.32 \\ (0.47) \end{gathered}$	-	-	-	-
Foster matched	$\begin{gathered} 0.89 \\ (0.31) \end{gathered}$	$\begin{gathered} 0.96 \\ (0.19) \end{gathered}$	$\begin{gathered} 1.00 \\ (0.00) \end{gathered}$	$\begin{gathered} 1.00 \\ (0.00) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.00) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.00) \end{gathered}$
Becomes foster matched	-	-	-	-	$\begin{gathered} 0.22 \\ (0.41) \end{gathered}$	$\begin{gathered} 0.28 \\ (0.45) \end{gathered}$
Becomes unmatched	-	-	$\begin{gathered} 0.03 \\ (0.18) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.11) \end{gathered}$	-	-
Foster match separates	-	-	$\begin{gathered} 0.19 \\ (0.40) \end{gathered}$	$\begin{gathered} 0.18 \\ (0.38) \end{gathered}$	-	-
Age in years	$\begin{gathered} 7.96 \\ (4.45) \end{gathered}$	$\begin{gathered} 6.01 \\ (4.23) \end{gathered}$	$\begin{gathered} 7.79 \\ (4.35) \end{gathered}$	$\begin{gathered} 6.07 \\ (4.22) \end{gathered}$	$\begin{gathered} 12.34 \\ (2.56) \end{gathered}$	$\begin{aligned} & 11.81 \\ & (3.22) \end{aligned}$
Male	$\begin{gathered} 0.57 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.50 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.60 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.50 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.65 \\ (0.48) \end{gathered}$	$\begin{gathered} 0.58 \\ (0.49) \end{gathered}$
White	$\begin{gathered} 0.43 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.44 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.41 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.42 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.45 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.42 \\ (0.49) \end{gathered}$
Black	$\begin{gathered} 0.25 \\ (0.43) \end{gathered}$	$\begin{gathered} 0.23 \\ (0.42) \end{gathered}$	$\begin{gathered} 0.27 \\ (0.44) \end{gathered}$	$\begin{gathered} 0.24 \\ (0.43) \end{gathered}$	$\begin{gathered} 0.26 \\ (0.44) \end{gathered}$	$\begin{gathered} 0.29 \\ (0.45) \end{gathered}$
Hispanic	$\begin{gathered} 0.22 \\ (0.41) \end{gathered}$	$\begin{gathered} 0.22 \\ (0.41) \end{gathered}$	$\begin{gathered} 0.22 \\ (0.41) \end{gathered}$	$\begin{gathered} 0.23 \\ (0.42) \end{gathered}$	$\begin{gathered} 0.19 \\ (0.39) \end{gathered}$	$\begin{gathered} 0.21 \\ (0.41) \end{gathered}$
Title IV-E eligible	$\begin{gathered} 0.49 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.47 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.53 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.50 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.45 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.50 \\ (0.50) \end{gathered}$
Months in foster care	$\begin{gathered} 41.20 \\ (28.66) \end{gathered}$	$\begin{gathered} 30.53 \\ (19.80) \end{gathered}$	$\begin{gathered} 40.91 \\ (28.62) \end{gathered}$	$\begin{gathered} 30.23 \\ (20.37) \end{gathered}$	$\begin{gathered} 55.94 \\ (37.34) \end{gathered}$	$\begin{gathered} 46.99 \\ (34.54) \end{gathered}$
Months since PRT*	$\begin{gathered} 21.71 \\ (26.53) \end{gathered}$	$\begin{gathered} 13.91 \\ (18.83) \end{gathered}$	$\begin{gathered} 20.09 \\ (25.27) \end{gathered}$	$\begin{gathered} 13.29 \\ (18.92) \end{gathered}$	$\begin{gathered} 44.14 \\ (37.02) \end{gathered}$	$\begin{gathered} 37.34 \\ (36.09) \end{gathered}$
Months in current placement	$\begin{gathered} 16.67 \\ (17.32) \end{gathered}$	$\begin{gathered} 15.64 \\ (14.51) \\ \hline \end{gathered}$	$\begin{gathered} 18.18 \\ (18.16) \\ \hline \end{gathered}$	$\begin{gathered} 16.64 \\ (14.72) \\ \hline \end{gathered}$	$\begin{gathered} 11.03 \\ (14.67) \\ \hline \end{gathered}$	$\begin{gathered} 10.47 \\ (12.38) \\ \hline \end{gathered}$

[^10]Table A2: Stylized Facts from Foster Care - Effect of Disability

	Foster matched
Disability γ	$-0.043^{* * *}$ (0.002)
Mean of dependent variable	0.934
Number of child-period observations	$1,165,818$

Notes: Data are from Adoption and Foster Care Analysis and Reporting System (AFCARS). All specifications control for child's demographics, states indicators and period indicators. The first and second columns consider sample A, third and fifth columns use sample B, and the fourth column uses sample C. Standard errors are cluster at the state-period level and shown in parentheses. ${ }^{* * *} P<0.01 ;{ }^{* *} P<0.05 ;{ }^{*} P<0.10$.

Table A3: Regression Output

	Adoption I	Foster match Separation II	Becomes Foster matched III	Becomes Unmatched IV
Age in years	$\begin{gathered} -0.002^{* * *} \\ (0.000) \end{gathered}$	$\begin{aligned} & 0.001^{* * *} \\ & (0.000) \end{aligned}$	$\begin{gathered} -0.002^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} 0.000^{* * *} \\ (0.000) \end{gathered}$
Disability	$\begin{gathered} -0.059^{* * *} \\ (0.005) \end{gathered}$	$\begin{aligned} & 0.023^{* * *} \\ & (0.002) \end{aligned}$	$\begin{gathered} -0.045^{* * *} \\ (0.006) \end{gathered}$	$\begin{gathered} 0.011^{* * *} \\ (0.001) \end{gathered}$
Male	$\begin{gathered} -0.011^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} -0.003^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} -0.030^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.003^{* * *} \\ (0.000) \end{gathered}$
White	$\begin{aligned} & 0.022^{* *} \\ & (0.002) \end{aligned}$	$\begin{gathered} -0.006^{* *} \\ (0.002) \end{gathered}$	$\begin{gathered} -0.002 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.001) \end{gathered}$
Black	$\begin{gathered} -0.025^{* * *} \\ (0.003) \end{gathered}$	$\begin{gathered} 0.005 \\ (0.003) \end{gathered}$	$\begin{gathered} -0.009 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.001) \end{gathered}$
Hispanic	$\begin{gathered} 0.007^{* * *} \\ (0.003) \end{gathered}$	$\begin{gathered} -0.004 \\ (0.002) \end{gathered}$	$\begin{gathered} -0.007 \\ (0.009) \end{gathered}$	$\begin{gathered} -0.001 \\ (0.001) \end{gathered}$
Receiving Title IV-E	$\begin{gathered} -0.079^{* * *} \\ (0.005) \end{gathered}$	$\begin{gathered} -0.002 \\ (0.002) \end{gathered}$	$\begin{gathered} 0.013^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} -0.000 \\ (0.001) \end{gathered}$
Months in foster care	$\begin{gathered} 0.002^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} -0.000^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} -0.000^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} -0.000^{* * *} \\ (0.000) \end{gathered}$
Months since PRT*	$\begin{gathered} -0.001^{* * *} \\ (0.000) \end{gathered}$	$\begin{aligned} & 0.000^{* * *} \\ & (0.000) \end{aligned}$	$\begin{gathered} -0.001^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} -0.000^{* * *} \\ (0.000) \end{gathered}$
Months in the current placement		$\begin{gathered} -0.002^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} -0.001^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} -0.001^{* * *} \\ (0.000) \end{gathered}$
Mean of dependent variable	0.279	0.185	0.236	0.021
Number of child-period observations	1,165,818	659,253	65,970	659,253
R-square observations	0.073	0.113	0.053	0.046

Notes: Data are from Adoption and Foster Care Analysis and Reporting System (AFCARS). All specifications control for child's demographics, states indicators and period indicators. The first and second columns consider sample A, third and fifth columns use sample B, and the fourth column uses sample C. Standard errors are cluster at the state-period level and shown in parentheses. ${ }^{* * *} P<0.01 ;{ }^{* *} P<0.05 ;{ }^{*} P<0.10$.
*PRT stands for Parental Rights Terminated.

C Appendix: Omitted Equations

C. 1 Endogenous Distribution of Children

A parent can meet a child who is unmatched or f-matched with quality q. Thus, an unmatched parent meets a child (x, \bar{q}) according to the probability distribution $\hat{m}(x, \bar{q})$ where:

$$
\hat{m}(x, \bar{q})= \begin{cases}\frac{u^{c}(x)}{\sum_{x} u^{c}(x)+\sum_{q} m(x, q)} & \text { if } \bar{q}=q_{0} \tag{C.1}\\ \frac{m(x, q)}{\sum_{x} u^{c}(x)+\sum_{q} m(x, q)} & \text { if } \bar{q}=q\end{cases}
$$

Therefore, a parent meets an unmatched child x with total probability $\pi^{p}(\theta) \hat{m}\left(x, q_{0}\right)$. Similarly, a parent meets a child (x, q) with total probability $\pi^{p}(\theta) \hat{m}(x, q)$.

C. 2 Aggregate State of the Market

For each $(x, q), m(x, q)$ satisfies the following equality:

$$
\begin{align*}
& \underbrace{m(x, q)\left\{\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)+\left(1-\pi^{c}\left(\theta_{t}\right) \sum_{\mathcal{M}(x, q)} f(s)\right)\left[\delta_{x}+\left(1-\delta_{x}\right) d(x, q) a(x, q)\right]\right\}}_{\text {mass destruction }}= \\
& \underbrace{u^{c}(x) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} f(s) g(q \mid s)\left(1-\delta_{x}\right)(1-d(x, q))(1-a(x, q))} \\
& \quad \underbrace{\sum_{q^{\prime}} m\left(x, q^{\prime}\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q^{\prime}\right)} f(s) g(q \mid s)\left(1-\delta_{x}\right)(1-d(x, q))(1-a(x, q))}_{\text {mass creation }}
\end{align*}
$$

For each $x, u^{c}(x)$ satisfies the following equality:

$$
\begin{aligned}
& u^{c}(x)\left\{\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} f(s) \sum_{q}\left[\delta_{x}+\left(1-\delta_{x}\right)(1-d(x, q)) g(q \mid s)\right]\right. \\
& \left.\quad+\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} f(s)\right) \delta_{x}\right\}= \\
& \sum_{q} m(x, q)\left(1-\delta_{x}\right)\left\{\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right) d\left(x, q^{\prime}\right)+\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right) d(x, q)\right\} \\
& +\rho l(x)
\end{aligned}
$$

C. 3 Children' Decision Conditions

Child (x, q) chooses $a^{c}(x, q)=1$ if and only if:

$$
\begin{align*}
\frac{b^{c}(x, q, a)}{1-\beta}> & \max \left\{\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} f(s)\right) \mathcal{C}\left(x, q_{0}\right)+\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} \mathbb{E}_{s}[\mathcal{C}(x, q)] f(s),\right. \\
& \left.\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right) \mathcal{C}(x, q)+\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} \mathbb{E}_{s}[\mathcal{C}(x, q)] f(s)\right\} \tag{C.4}
\end{align*}
$$

Child (x, q) chooses $d^{c}(x, q)=1$ if and only if:

$$
\begin{gather*}
\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} f(s)\right) \mathcal{C}\left(x, q_{0}\right)+\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} \mathbb{E}_{s}[\mathcal{C}(x, q)] f(s)>\max \left\{\frac{b^{c}(x, q, a)}{1-\beta},\right. \\
\left.\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right) \mathcal{C}(x, q)+\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} \mathbb{E}_{s}[\mathcal{C}(x, q)] f(s)\right\} \tag{C.5}
\end{gather*}
$$

C. 4 Parents' Decision Conditions

A parent chooses in $=1$ if and only if:

$$
\begin{equation*}
-k+\beta \pi^{p}(\theta) \sum_{\mathcal{M}(x, \bar{q})} \sum_{x, \bar{q}} \mathbb{E}_{s}[\mathcal{P}(x, q)] \hat{m}(x, \bar{q}) f(s)>0 \tag{C.6}
\end{equation*}
$$

Parent (x, q) chooses $a^{p}(x, q)=1$ if and only if:

$$
\frac{b^{p}(x, q, a)}{1-\beta}>\max \left\{\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right) \cdot \frac{b^{p}(x, q, f)}{1-\beta\left(1-\delta_{x}\right)\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right)}, \mathcal{P}^{u}\right\}
$$

Parent (x, q) chooses $d^{p}(x, q)=1$ if and only if:

$$
\begin{equation*}
\mathcal{P}^{u}>\max \left\{\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right) \cdot \frac{b^{p}(x, q, f)}{1-\beta\left(1-\delta_{x}\right)\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right)}, \frac{b^{p}(x, q, a)}{1-\beta}\right\} \tag{C.8}
\end{equation*}
$$

D Appendix: Proofs of Equilibrium Analysis

D. 1 Proof of Proposition 1

I start by describing the destruction strategies of children and parents. Lemma 1 states that, in any foster care equilibrium, child (x, q) does not destroy if $b^{c}(x, q, f)$ is non-negative.

Lemma 1 (Destruction Strategies of Children). In any foster care equilibrium, $d^{c}(x, q)=$ 0 if $b^{c}(x, q, f) \geq 0$ for all (x, q).

Proof. Fixing (x, q), assume that $b^{c}(x, q, f)$ is non-negative. By contradiction, suppose $d^{c}(x, q)=1$ then, by the equilibrium definition, it follows that $\hat{\mathcal{C}}\left(x, q_{0}\right)>$ $\hat{\mathcal{C}}(x, q)$, that is:

$$
\begin{align*}
&\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} f(s)\right) \mathcal{C}\left(x, q_{0}\right)+\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} \mathbb{E}_{s}[\mathcal{C}(x, q)] f(s)> \\
&\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right) \mathcal{C}(x, q)+\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} \mathbb{E}_{s}[\mathcal{C}(x, q)] f(s) \tag{D.1}
\end{align*}
$$

By assumption $\hat{\mathcal{C}}\left(x, q_{0}\right)>\hat{\mathcal{C}}(x, q)$, then the value function for child (x, q) is:

$$
\begin{aligned}
\mathcal{C}(x, q) & =b^{c}(x, q, f)+\beta \delta_{x} \frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta} \\
+ & \beta\left(1-\delta_{x}\right)\left[\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} f(s)\right) \mathcal{C}\left(x, q_{0}\right)+\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} \mathbb{E}_{s}[\mathcal{C}(x, q)] f(s)\right]
\end{aligned}
$$

Since $b^{c}(x, q, f)$ is non-negative, it follows that:

$$
\begin{aligned}
\mathcal{C}(x, q) & =b^{c}(x, q, f)+\beta \delta_{x} \frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta} \\
& +\beta\left(1-\delta_{x}\right)\left[\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} f(s)\right) \mathcal{C}\left(x, q_{0}\right)+\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} \mathbb{E}_{s}[\mathcal{C}(x, q)] f(s)\right] \\
& \geq \beta \delta_{x} \frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta} \\
& +\beta\left(1-\delta_{x}\right)\left[\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} f(s)\right) \mathcal{C}\left(x, q_{0}\right)+\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} \mathbb{E}_{s}[\mathcal{C}(x, q)] f(s)\right] \\
& =\mathcal{C}\left(x, q_{0}\right)
\end{aligned}
$$

In equilibrium, $s \in \mathcal{M}(x, \bar{q})$ if and only if $\mathbb{E}_{s}[\mathcal{C}(x, q)] \geq \mathcal{C}(x, \bar{q})$ and $\mathbb{E}_{s}[\mathcal{P}(x, q)] \geq \mathcal{P}^{u}$. Thus, if $\mathcal{C}(x, q) \geq \mathcal{C}\left(x, q_{0}\right)$ then $\mathcal{M}(x, q) \subseteq \mathcal{M}\left(x, q_{0}\right)$. Now, I show that $\mathcal{C}(x, q) \geq$ $\mathcal{C}\left(x, q_{0}\right)$ contradicts $\hat{\mathcal{C}}\left(x, q_{0}\right)>\hat{\mathcal{C}}(x, q)$. For this, I analyze two cases:

Case 1: Suppose $\mathcal{C}(x, q)=\mathcal{C}\left(x, q_{0}\right)$, then $\mathcal{M}(x, q)=\mathcal{M}\left(x, q_{0}\right)$. Thus, $\hat{\mathcal{C}}(x, q)=$ $\hat{\mathcal{C}}\left(x, q_{0}\right)$ which implies that $d^{c}(x, q)=0$. A contradiction.

Case 2: Suppose $\mathcal{C}(x, q)>\mathcal{C}\left(x, q_{0}\right)$, then $\mathcal{M}(x, q) \subset \mathcal{M}\left(x, q_{0}\right)$. Here, I define the set $\hat{\mathcal{M}}(x, q)=\left\{s \in S \mid s \in \mathcal{M}\left(x, q_{0}\right) \backslash \mathcal{M}(x, q)\right\}$. Thus, the following holds:

$$
\begin{aligned}
\hat{\mathcal{C}}(x, q)= & \left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right) \mathcal{C}(x, q)+\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} \mathbb{E}_{s}[\mathcal{C}(x, q)] f(s) \\
= & \left(1-\pi^{c}(\theta)\right) \mathcal{C}(x, q)+\pi^{c}(\theta) \sum_{s \notin \mathcal{M}(x, q)} f(s) \mathcal{C}(x, q)+\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} \mathbb{E}_{s}[\mathcal{C}(x, q)] f(s) \\
= & \left(1-\pi^{c}(\theta)\right) \mathcal{C}(x, q)+\pi^{c}(\theta) \sum_{s \notin \mathcal{M}\left(x, q_{0}\right)} f(s) \mathcal{C}(x, q)+\pi^{c}(\theta) \sum_{s \in \hat{\mathcal{M}}(x, q)} f(s) \mathcal{C}(x, q) \\
& +\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} \mathbb{E}_{s}[\mathcal{C}(x, q)] f(s) \\
> & \left(1-\pi^{c}(\theta)\right) \mathcal{C}\left(x, q_{0}\right)+\pi^{c}(\theta) \sum_{s \notin \mathcal{M}\left(x, q_{0}\right)} f(s) \mathcal{C}\left(x, q_{0}\right)+\pi^{c}(\theta) \sum_{s \in \hat{\mathcal{M}}(x, q)} f(s) \mathcal{C}(x, q) \\
& +\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} \mathbb{E}_{s}[\mathcal{C}(x, q)] f(s)
\end{aligned}
$$

By definition, if $s \in \hat{\mathcal{M}}(x, q)$ then $\mathcal{C}(x, q)>\mathbb{E}_{s}[\mathcal{C}(x, q)]>\mathcal{C}\left(x, q_{0}\right)$. Thus, the following holds:

$$
\begin{aligned}
\hat{\mathcal{C}}(x, q)> & \left(1-\pi^{c}(\theta)\right) \mathcal{C}\left(x, q_{0}\right)+\pi^{c}(\theta) \sum_{s \notin \mathcal{M}\left(x, q_{0}\right)} f(s) \mathcal{C}\left(x, q_{0}\right)+\pi^{c}(\theta) \sum_{s \in \hat{\mathcal{M}}(x, q)} f(s) \mathcal{C}(x, q) \\
& +\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} \mathbb{E}_{s}[\mathcal{C}(x, q)] f(s) \\
> & \left(1-\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} f(s)\right) \mathcal{C}\left(x, q_{0}\right)+\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{0}\right)} \mathbb{E}_{s}[\mathcal{C}(x, q)] f(s)=\hat{\mathcal{C}}\left(x, q_{0}\right)
\end{aligned}
$$

which contradicts equation D.1. Hence, if $b^{c}(x, q, f) \geq 0$ then $d^{c}(x, q)=0$.
Lemma 2 shows that parents destroy an f-match of quality q with child x if and only if $b^{p}(x, q, f)$ is negative.

Lemma 2 (Destruction Strategies of Parents). Assume parents' payoffs satisfy Assumption 2(a). In any foster care equilibrium, $d^{p}(x, q)=1$ if and only if $b^{p}(x, q, f)<0$ for all (x, q).

Proof. (\Rightarrow) Fix (x, q). Assume $d^{p}(x, q)=1$, then the following inequality must hold:

$$
0>\max \left\{\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right) \cdot \frac{b^{p}(x, q, f)}{1-\beta\left(1-\delta_{x}\right)\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right)}, \frac{b^{p}(x, q, a)}{1-\beta}\right\}
$$

By contradiction, suppose $b^{p}(x, q, f)$ is non-negative. Since $1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s) \geq$ 0 and $1-\beta\left(1-\delta_{x}\right)\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right) \geq 0$, there is a contradiction. Hence, $d^{p}(x, q)=1$ only if $b^{p}(x, q, f)$ is negative.
(\Leftarrow) Fixing (x, q), assume that $b^{p}(x, q, f)$ is negative. By contradiction, suppose $d^{p}(x, q)=0$. There are two possible cases:

Case 1: Suppose $a^{p}(x, q)=1$, then $\frac{b^{p}(x, q, a)}{1-\beta}>0$ must hold. Since $b^{p}(x, q, f)$ is negative then, by assumption $2(\mathrm{a}), b^{p}(x, q, a)$ is also negative. Hence, there is a contradiction.

Case 2: Suppose $a^{p}(x, q)=0$ and $d^{p}(x, q)=0$, then the following inequality must hold:

$$
\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right) \cdot \frac{b^{p}(x, q, f)}{1-\beta\left(1-\delta_{x}\right)\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right)} \geq \max \left\{0, \frac{b^{p}(x, q, a)}{1-\beta}\right\}
$$

Since $b^{p}(x, q, f)$ is negative then, by assumption $2(\mathrm{a}), b^{p}(x, q, a)$ is also negative. Thus, it must be that $d^{p}(x, q)=1$.

Now, I prove Proposition 1 using Lemmas 1 and 2. By Lemma 1 and Assumption 1(a), it follows that $d^{c}(x, q)=0$ for all (x, q). This implies that the total probability of destruction of an f-match depends on the destruction strategies of parents.
(i) Fix some quality q. Suppose a parent f-matched to child x_{2} when the quality is q chooses $d^{p}\left(x_{2}, q\right)=1$. Then, by Lemma 2, $b^{p}\left(x_{2}, q, f\right)$ is negative. By Assumption 2(b), $b^{p}\left(x_{1}, q, f\right)$ is also negative. Thus, by Lemma 2, $d^{p}\left(x_{1}, q\right)=$ 1. Hence, $d\left(x_{1}, q\right) \geq d\left(x_{2}, q\right)$.
(ii) Fix some child x. Suppose a parent f -matched to child x when the quality is q chooses $d^{p}(x, q)=1$. Then, by Lemma $2, b^{p}(x, q, f)$ is negative. Now, consider q^{\prime} such that $q>q^{\prime}$. By Assumption 2(c), $b^{p}\left(x, q^{\prime}, f\right)$ is also negative. Thus, by Lemma 2, $d^{p}\left(x, q^{\prime}\right)=1$. Hence, $d\left(x, q^{\prime}\right) \geq d(x, q)$ whenever $q>q^{\prime}$.

D. 2 Proof of Proposition 2

I start by describing the f-match formation strategies of unmatched children and parents. Lemma 3 shows that child (x, q_{0}) announces foster after observing signal s if $\mathbb{E}_{s}\left[b^{c}(x, q, f)\right]$ is non-negative.

Lemma 3 (F-match Formation Strategies of Unmatched Children). In any foster care equilibrium, $s \in F^{c}\left(x, q_{0}\right)$ if $\mathbb{E}_{s}\left[b^{c}(x, q, f)\right] \geq 0$ for all (x, s).

Proof. Fix x. In any foster care equilibrium, $s \in F^{c}\left(x, q_{0}\right)$ if and only if $\mathbb{E}_{s}[\mathcal{C}(x, q)] \geq$ $\mathcal{C}\left(x, q_{0}\right)$. I show that, for all $s \in S$, if $\mathbb{E}_{s}\left[b^{c}(x, q, f)\right] \geq 0$ then $\mathbb{E}_{s}[\mathcal{C}(x, q)] \geq \mathcal{C}\left(x, q_{0}\right)$. Note that, since the destruction of f -matches is unilateral, the conditional expected value $\mathbb{E}_{s}[\mathcal{C}(x, q)]$ is bounded bellow by $\sum_{q} b^{c}(x, q, f) g(q \mid s)+\beta \delta_{x} \frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta}+\beta(1-$ $\left.\delta_{x}\right) \hat{\mathcal{C}}\left(x, q_{0}\right)$. Assuming that $\mathbb{E}_{s}\left[b^{c}(x, q, f)\right]$ is non-negative, the following inequality holds:

$$
\begin{aligned}
\mathbb{E}_{s}[\mathcal{C}(x, q)] & \geq \sum_{q} b^{c}(x, q, f) g(q \mid s)+\beta \delta_{x} \frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta}+\beta\left(1-\delta_{x}\right) \hat{\mathcal{C}}\left(x, q_{0}\right) \\
& \geq \beta \delta_{x} \frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta}+\beta\left(1-\delta_{x}\right) \hat{\mathcal{C}}\left(x, q_{0}\right)=\mathcal{C}\left(x, q_{0}\right)
\end{aligned}
$$

Hence, if $\mathbb{E}_{s}\left[b^{c}(x, q, f)\right] \geq 0$ then $\mathbb{E}_{s}[\mathcal{C}(x, q)] \geq \mathcal{C}\left(x, q_{0}\right)$.
Lemma 4 establishes that parents announces foster after observing signal s if and only if the conditional expected payoff of being f-matched is non-negative.

Lemma 4 (F-match Formation Strategies of Parents). Assume parents' payoffs satisfy Assumption 4. In any foster care equilibrium, $s \in F^{p}(x)$ if and only if $\mathbb{E}_{s}\left[b^{p}(x, q, f)\right] \geq$ 0 for all (x, s).

Proof. (\Rightarrow) Fix x. In any foster care equilibrium, $s \in F^{p}(x)$ if and only if $\mathbb{E}_{s}[\mathcal{P}(x, q)] \geq$ 0 . I show that if $\mathbb{E}_{s}\left[b^{p}(x, q, f)\right] \geq 0$ then $\mathbb{E}_{s}[\mathcal{P}(x, q)] \geq 0$. Fixing s, consider the conditional expected value:

$$
\begin{aligned}
& \mathbb{E}_{s}[\mathcal{P}(x, q)]=\sum_{q} b^{p}(x, q, f) g(q \mid s) \\
& +\beta\left(1-\delta_{x}\right) \sum_{q}\left[a^{c}(x, q) \max \left\{\frac{b^{p}(x, q, a)}{1-\beta}, 0, \frac{\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right) b^{p}(x, q, f)}{1-\beta\left(1-\delta_{x}\right)\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right)}\right\}\right. \\
& \left.+\left(1-d^{p}(x, q)-a^{p}(x, q)\right) \max \left\{0, \frac{\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right) b^{p}(x, q, f)}{1-\beta\left(1-\delta_{x}\right)\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right)}\right\}\right] g(q \mid s)
\end{aligned}
$$

Since f-match destruction is unilateral, the conditional expected value $\mathbb{E}_{s}[\mathcal{P}(x, q)]$ is bounded bellow by $\mathbb{E}_{s}\left[b^{p}(x, q, f)\right]$.Thus, if $\mathbb{E}_{s}\left[b^{p}(x, q, f)\right] \geq 0$ then $\mathbb{E}_{s}[\mathcal{P}(x, q)] \geq 0$.
(\Leftarrow) Fix (x, s). I show that, if $\mathbb{E}_{s}\left[b^{p}(x, q, f)\right]$ is negative then $\mathbb{E}_{s}[\mathcal{P}(x, q)]$ is also negative. Note that, $\mathbb{E}_{s}[\mathcal{P}(x, q)]$ is bounded above by the following expression:

$$
\begin{aligned}
& \sum_{q} \overline{\mathcal{P}(x, q) g(q \mid s)}=\sum_{q} b^{p}(x, q, f) g(q \mid s) \\
&+\beta\left(1-\delta_{x}\right) \sum_{q}\left[\max \left\{\frac{b^{p}(x, q, a)}{1-\beta}, 0, \frac{b^{p}(x, q, f)}{1-\beta\left(1-\delta_{x}\right)}\right\}\right] g(q \mid s)
\end{aligned}
$$

Since $\sum_{q} b^{p}(x, q) g(q \mid s)$ is negative, by Assumption $4, \sum_{q} \overline{\mathcal{P}(x, q) g(q \mid s)}$ is also negative.

Now, I prove Proposition 2 using Lemmas 3 and 4. By definition, f-matches must be mutually agreed upon $s \in \mathcal{M}\left(x, q_{0}\right)$ if and only if $s \in F^{c}\left(x, q_{0}\right)$ and $s \in$ $F^{p}(x)$. By Assumption 1(a), it follows that $\mathbb{E}_{s}\left[b^{c}(x, q, f)\right] \geq 0$ for all $s \in S$. Hence, by Lemma 3, $F^{c}\left(x, q_{0}\right)=S$.
(i) Fix signal s, I show that if $s \in F^{p}\left(x_{1}\right)$ then $s \in F^{p}\left(x_{2}\right)$. Suppose $s \in F^{p}\left(x_{1}\right)$ then, by Lemma 4, it follows that $\mathbb{E}_{s}\left[b^{p}\left(x_{1}, q, f\right)\right]$ must be non-negative. Since $b^{p}\left(x_{2}, q, f\right) \geq b^{p}\left(x_{1}, q, f\right)$ for all q, by Assumption 2(b), then $\mathbb{E}_{s}\left[b^{p}\left(x_{2}, q, f\right)\right]$ is also non-negative. Thus, by Lemma $4, s \in F^{p}\left(x_{2}\right)$. By Assumption 3, it follows that $F^{p}\left(x_{1}\right)$ and $F^{p}\left(x_{2}\right)$ are non-empty. Hence, $\mathcal{M}\left(x, q_{0}\right)$ is non-empty
for all x, and $\mathcal{M}\left(x_{1}, q_{0}\right) \subseteq \mathcal{M}\left(x_{2}, q_{0}\right)$.
(ii) Fix child x. Consider s and s^{\prime} such that $s^{\prime}>s$. I show that, if $s \in F^{p}(x)$ then $s^{\prime} \in F^{p}(x)$. Suppose $s \in F^{p}(x)$ then, by Lemma 4, it follows that $\mathbb{E}_{s}\left[b^{p}(x, q, f)\right]$ is non-negative. Given that $G\left(q \mid s^{\prime}\right) \leq G(q \mid s)$ and $b^{p}(x, q, f)$ is increasing in q (Assumption 2(c)), it follows that $\mathbb{E}_{s^{\prime}}\left[b^{p}(x, q, f)\right]$ is also non-negative. Hence, by Lemma $4, s^{\prime} \in F^{p}(x)$. Hence, if $s \in \mathcal{M}\left(x, q_{0}\right)$ then $s^{\prime} \in \mathcal{M}\left(x, q_{0}\right)$.

D. 3 Proof of Proposition 3

First I establish that, as a best-response, children with and without a disability choose the same f-match formation strategy, and both are more willing to separate from an f-match of low-quality q_{1} than a high-quality match q_{2}.

Lemma 5 (F-match formation strategies of f-matched children). Assume children' payoffs satisfy Assumptions 1(a),(c)-(d). Then, for all $x, F^{c}\left(x, q_{1}\right)=S$ and $F^{c}\left(x, q_{2}\right)=$ $\{\emptyset\}$ whenever $d\left(x, q_{1}\right) \geq d\left(x, q_{2}\right)$ holds.

Proof. For each x, it follows that $F^{c}\left(x, q_{2}\right) \cap F^{c}\left(x, q_{1}\right)=S$ or $F^{c}\left(x, q_{2}\right) \cap F^{c}\left(x, q_{1}\right)=$ $\{\emptyset\}$. The reason is the following. For each signal, $s \in F^{c}\left(x, q_{2}\right)$ if and only if $\mathbb{E}_{s}[\mathcal{C}(x, q)]=\mathcal{C}\left(x, q_{1}\right) g\left(q_{1} \mid s\right)+\mathcal{C}\left(x, q_{2}\right) g\left(q_{2} \mid s\right) \geq \mathcal{C}\left(x, q_{2}\right)$. Then, it must be that $\mathcal{C}\left(x, q_{1}\right) \geq \mathcal{C}\left(x, q_{2}\right)$ independent of the distributions. Now, if $\mathcal{C}\left(x, q_{1}\right)>\mathcal{C}\left(x, q_{2}\right)$ then $s \notin F^{c}\left(x, q_{1}\right)$, and if $\mathcal{C}\left(x, q_{1}\right)=\mathcal{C}\left(x, q_{2}\right)$ then $s \in F^{c}\left(x, q_{1}\right)$. Hence, there are three possible cases:
(1) $F^{c}\left(x, q_{2}\right)=F^{c}\left(x, q_{1}\right)=\left\{s_{1}, s_{2}\right\}$.
(2) $F^{c}\left(x, q_{2}\right)=\left\{s_{1}, s_{2}\right\}$ and $F^{c}\left(x, q_{1}\right)=\{\emptyset\}$.
(3) $F^{c}\left(x, q_{2}\right)=\{\emptyset\}$ and $F^{c}\left(x, q_{1}\right)=\left\{s_{1}, s_{2}\right\}$.

I show that $\mathcal{C}\left(x, q_{2}\right)>\mathcal{C}\left(x, q_{1}\right)$ holds, thus only the third case is feasible. Since $d\left(x, q_{1}\right) \geq d\left(x, q_{2}\right)$, the following cases might arise:

Case a: Suppose $a\left(x, q_{1}\right)=1$, then $\mathcal{C}\left(x, q_{1}\right)=b^{c}\left(x, q_{1}, f\right)+\beta \delta_{x} \frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta}+\beta(1-$ $\left.\delta_{x}\right)^{\frac{b^{c}\left(x, q_{1}, a\right)}{1-\beta}}$
(a1) If $a\left(x, q_{2}\right)=1$, then $\mathcal{C}\left(x, q_{2}\right)-\mathcal{C}\left(x, q_{1}\right)=b^{c}\left(x, q_{2}, f\right)-b^{c}\left(x, q_{1}, f\right)+\beta(1-$ $\left.\delta_{x}\right)\left[\frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta}-\frac{b^{c}\left(x, q_{1}, a\right)}{1-\beta}\right]$
(a2) If $a\left(x, q_{2}\right)=0$ and $d\left(x, q_{2}\right)=0$, then $\mathcal{C}\left(x, q_{2}\right)-\mathcal{C}\left(x, q_{1}\right)=b^{c}\left(x, q_{2}, f\right)-$ $b^{c}\left(x, q_{1}, f\right)+\beta\left(1-\delta_{x}\right)\left[\hat{\mathcal{C}}\left(x, q_{2}\right)-\frac{b^{c}\left(x, q_{1}, a\right)}{1-\beta}\right]$

Case b: Suppose $d\left(x, q_{1}\right)=1$, then $\mathcal{C}\left(x, q_{1}\right)=b^{c}\left(x, q_{1}, f\right)+\beta \delta_{x} \frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta}+\beta(1-$ $\left.\delta_{x}\right) \hat{\mathcal{C}}\left(x, q_{0}\right)$
(b1) If $d\left(x, q_{2}\right)=1$, then $\mathcal{C}\left(x, q_{2}\right)-\mathcal{C}\left(x, q_{1}\right)=b^{c}\left(x, q_{2}, f\right)-b^{c}\left(x, q_{1}, f\right)$
(b2) If $a\left(x, q_{2}\right)=1$, then $\mathcal{C}\left(x, q_{2}\right)-\mathcal{C}\left(x, q_{1}\right)=b^{c}\left(x, q_{2}, f\right)-b^{c}\left(x, q_{1}, f\right)+\beta(1-$ $\left.\delta_{x}\right)\left[\frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta}-\hat{\mathcal{C}}\left(x, q_{0}\right)\right]$
(b3) If $a\left(x, q_{2}\right)=0$ and $d\left(x, q_{2}\right)=0$, then $\mathcal{C}\left(x, q_{2}\right)-\mathcal{C}\left(x, q_{1}\right)=b^{c}\left(x, q_{2}, f\right)-$ $b^{c}\left(x, q_{1}, f\right)+\beta\left(1-\delta_{x}\right)\left[\hat{\mathcal{C}}\left(x, q_{2}\right)-\hat{\mathcal{C}}\left(x, q_{0}\right)\right]$

Case c: Suppose $a\left(x, q_{1}\right)=0$ and $d\left(x, q_{1}\right)=0$, then $\mathcal{C}\left(x, q_{1}\right)=b^{c}\left(x, q_{1}, f\right)+\beta \delta_{x} \frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta}+$ $\beta\left(1-\delta_{x}\right) \hat{\mathcal{C}}\left(x, q_{1}\right)$
(c1) If $a\left(x, q_{2}\right)=1$, then $\mathcal{C}\left(x, q_{2}\right)-\mathcal{C}\left(x, q_{1}\right)=b^{c}\left(x, q_{2}, f\right)-b^{c}\left(x, q_{1}, f\right)+\beta(1-$ $\left.\delta_{x}\right)\left[\frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta}-\hat{\mathcal{C}}\left(x, q_{1}\right)\right]$
(c2) If $a\left(x, q_{2}\right)=0$ and $d\left(x, q_{2}\right)=0$, then $\mathcal{C}\left(x, q_{2}\right)-\mathcal{C}\left(x, q_{1}\right)=b^{c}\left(x, q_{2}, f\right)-$ $b^{c}\left(x, q_{1}, f\right)+\beta\left(1-\delta_{x}\right)\left[\hat{\mathcal{C}}\left(x, q_{2}\right)-\hat{\mathcal{C}}\left(x, q_{1}\right)\right]$

Assume 1(a) and 1(c), then $\mathcal{C}\left(x, q_{2}\right)-\mathcal{C}\left(x, q_{1}\right)>0$ for cases (a1) and (b1). For case (b3), if $d\left(x, q_{2}\right)=0$ then $\hat{\mathcal{C}}\left(x, q_{2}\right) \geq \hat{\mathcal{C}}\left(x, q_{0}\right)$. Thus, by Assumptions 1(a) and 1(c), it follows that $\mathcal{C}\left(x, q_{2}\right)-\mathcal{C}\left(x, q_{1}\right)>0$ in case (b3). By assumption 1(d), it follows that $\frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta} \geq \hat{\mathcal{C}}(x, \bar{q})$ for all q. Hence, by assumptions 1(a),(c)(d) it follows that $\mathcal{C}\left(x, q_{2}\right)-\mathcal{C}\left(x, q_{1}\right)>0$ for all the other cases. Therefore, $F^{c}\left(x_{1}, q_{2}\right)=F^{c}\left(x_{2}, q_{2}\right)=$ $\{\emptyset\}$ and $F^{c}\left(x_{1}, q_{1}\right)=F^{c}\left(x_{2}, q_{1}\right)=\left\{s_{1}, s_{2}\right\}$.

Now, I establish Proposition 3. By Assumptions 1(a), 2(a), and 2(c), Proposition 1(ii) holds. Thus, for children, Lemma 5 holds. For parents, by Assumptions 2(b), 3, and 4, Proposition 2(i) holds, that is, $F^{p}(x)$ is non-empty for all x, and
$F^{p}\left(x_{1}\right) \subseteq F^{p}\left(x_{2}\right)$. Moreover, by adding Assumption 2(c), Proposition 2(ii) holds. That is, for all x, if $s_{1} \in F^{p}(x)$ then $s_{2} \in F^{p}(x)$.

Since $s \in \mathcal{M}(x, q)$ if and only if $s \in F^{c}(x, q)$ and $s \in F^{p}(x)$, the following holds:
(a) $\mathcal{M}\left(x, q_{1}\right)$ is non-empty for all x.
(b) $\mathcal{M}\left(x, q_{2}\right)=\{\emptyset\}$ for all x.
(c) $\mathcal{M}\left(x_{1}, q_{1}\right) \subseteq \mathcal{M}\left(x_{2}, q_{1}\right)$.
(d) $s_{1} \in \mathcal{M}\left(x, q_{1}\right)$ implies $s_{2} \in \mathcal{M}\left(x, q_{1}\right)$ for all x.

Finally, since $\mathcal{M}\left(x, q_{2}\right)=\{\emptyset\}$, then $\sum_{\mathcal{M}\left(x, q_{2}\right)} f(s)=0$. Hence, $\sum_{\mathcal{M}\left(x, q_{1}\right)} f(s) \geq$ $\sum_{\mathcal{M}\left(x, q_{2}\right)} f(s)$. Now, since $\mathcal{M}\left(x_{1}, q_{1}\right) \subseteq \mathcal{M}\left(x_{2}, q_{1}\right)$ then $\sum_{\mathcal{M}\left(x_{2}, q\right)} f(s) \geq \sum_{\mathcal{M}\left(x_{1}, q\right)} f(s)$ for all q.

D. 4 Proof of Proposition 4

I start by describing the adoption strategies of children and parents. Lemma 6 presents some properties of the adoption strategies of parents.

Lemma 6 (Adoption Strategies of Parents). Assume parents' payoffs satisfy Assumptions $2(a)-(b),(d)-(e)$. Then, the adoption strategies of parents exhibit the following properties.
(i) for each (x, q), if $b^{p}(x, q, a)>0$ and $\frac{b^{p}(x, q, a)}{b^{p}(x, q, f)}>\frac{1-\beta}{1-\beta\left(1-\delta_{x}\right)}$ then $a^{p}(x, q)=1$.
(ii) for all q, if $\sum_{\mathcal{M}\left(x_{2}, q\right)} f(s) \geq \sum_{\mathcal{M}\left(x_{1}, q\right)} f(s)$ then the best-response of parents satisfies the following: if $a^{p}\left(x_{1}, q\right)=1$ then $a^{p}\left(x_{2}, q\right)=1$.
(iii) for all x, if $\sum_{\mathcal{M}\left(x, q^{\prime}\right)} f(s) \geq \sum_{\mathcal{M}\left(x_{1}, q\right)} f(s)$ and $b^{p}\left(x, q^{\prime}, a\right)>0$ whenever $q^{\prime}<$ q then the best-response of parents satisfies the following: if $a^{p}(x, q)=1$ then $a^{p}\left(x, q^{\prime}\right)=1$.

Proof. Assume 2(a). A parent f-matched to child x when the quality is q announces adoption if and only if the following inequalities hold:

$$
\begin{equation*}
\frac{b^{p}(x, q, a)}{1-\beta}>0 \tag{D.2}
\end{equation*}
$$

$\frac{b^{p}(x, q, a)}{1-\beta}>\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right) \cdot \frac{b^{p}(x, q, f)}{1-\beta\left(1-\delta_{x}\right)\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right)}$
(i) Fix (x, q). Assume $b^{p}(x, q, a)$ is positive then $a^{p}(x, q)=1$ if and only if inequality D. 3 holds. The right-hand side of this inequality is decreasing in $\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)$. Thus, for $a^{p}(x, q)$ to take value one independent of the endogenous objects $\pi^{c}(\theta)$ and $\mathcal{M}(x, q)$, the following inequality must hold:

$$
\frac{b^{p}(x, q, a)}{b(x, q)}>\frac{1-\beta}{1-\beta\left(1-\delta_{x}\right)}
$$

Or, equivalently $\delta_{x}>\frac{b^{p}(x, q, f)-b^{p}(x, q, a)}{b^{p}(x, q, a)} \frac{1-\beta}{\beta}$.
(ii) Consider a parent f-matched to child x_{1} when the quality is q. Assume $a^{p}\left(x_{1}, q\right)=1$, then inequalities D. 2 and D. 3 hold. By Assumption 2(b), it follows that $b^{p}\left(x_{2}, q, a\right)>0$. Hence, $a^{p}\left(x_{1}, q\right)=1 \operatorname{implies} a^{p}\left(x_{2}, q\right)=1$ if the following inequalities holds:

$$
\frac{b^{p}\left(x_{2}, q, a\right)}{b^{p}\left(x_{2}, q, f\right)}>\frac{b^{p}\left(x_{1}, q, a\right)}{b^{p}\left(x_{1}, q, f\right)}
$$

and
$\frac{(1-\beta)\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{1}, q\right)} f(s)\right)}{1-\beta\left(1-\delta_{x_{1}}\right)\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{1}, q\right)} f(s)\right)} \geq \frac{(1-\beta)\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{2}, q\right)} f(s)\right)}{1-\beta\left(1-\delta_{x_{2}}\right)\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{2}, q\right)} f(s)\right)}$

By Assumption 2(d), the first inequality holds. Moreover, since $\delta_{x_{2}} \geq \delta_{x_{1}}$ and $\sum_{\mathcal{M}\left(x_{2}, q\right)} f(s) \geq \sum_{\mathcal{M}\left(x_{1}, q\right)} f(s)$, the second inequality holds.
(iii) Consider a parent f-matched to a child x when the quality is q. Assume $a^{p}(x, q)=1$, then inequalities D. 2 and D. 3 hold. Also, consider a parent fmatched to child x when the quality is q^{\prime} such that $q^{\prime}<q$. Since $b^{p}\left(x, q^{\prime}, f\right) \geq$ 0 , then $a^{p}(x, q)=1$ implies $a^{p}\left(x, q^{\prime}\right)=1$ if the following inequalities holds:

$$
\frac{b^{p}\left(x, q^{\prime}, a\right)}{b^{p}\left(x, q^{\prime}, f\right)}>\frac{b^{p}(x, q, a)}{b^{p}(x, q, f)}
$$

$$
\begin{aligned}
& \frac{(1-\beta)\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right)}{1-\beta\left(1-\delta_{x}\right)\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right)} \geq \\
& \frac{(1-\beta)\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q^{\prime}\right)} f(s)\right)}{1-\beta\left(1-\delta_{x}\right)\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q^{\prime}\right)} f(s)\right)}
\end{aligned}
$$

By Assumption 2(e), the first inequality always holds. The second inequality holds since $\sum_{\mathcal{M}\left(x, q^{\prime}\right)} f(s) \geq \sum_{\mathcal{M}(x, q)} f(s)$ by assumption.

The next lemma presents some properties of the adoption strategies of children.

Lemma 7 (Adoption Strategies of Children). Assume children' payoffs satisfy Assumptions 1(a)-(g), and 5(a)-(c). Moreover, suppose the following
(a) $d\left(x, q_{2}\right)=0$ for all x,
(b) $\mathcal{M}\left(x, q_{1}\right)$ is non-empty for all x,
(c) $\mathcal{M}\left(x, q_{2}\right)$ is empty for all x,
(d) $\mathcal{M}\left(x_{1}, q_{1}\right) \subseteq \mathcal{M}\left(x_{2}, q_{1}\right)$,
(e) $s_{1} \in \mathcal{M}\left(x, q_{1}\right)$ implies $s_{2} \in \mathcal{M}\left(x, q_{1}\right)$ for all x, and
(f) $a^{p}\left(x_{2}, q\right) \geq a^{p}\left(x_{1}, q\right)$ for all q.

Then, the adoption strategies of children are $a^{c}\left(x_{2}, q\right) \geq a^{c}\left(x_{1}, q\right)$ for all q. Moreover, $1=a^{c}\left(x, q_{2}\right) \geq a^{c}\left(x, q_{1}\right)$ for all x.

Proof. Fix child (x, q). Since $d^{c}(x, q)=0$ by Assumption 1(a) and Lemma 1, she announce adoption if and only if:

$$
\begin{align*}
& \frac{b^{c}(x, q, a)}{1-\beta}> \\
& \frac{\left(b^{c}(x, q, f)+\beta \delta_{x} \frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta}\right)\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right)+\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} \mathbb{E}_{s}[\mathcal{C}(x, q)] f(s)}{1-\beta\left(1-\delta_{x}\right)\left(1-\pi^{c}(\theta) \sum_{\mathcal{M}(x, q)} f(s)\right)} \tag{D.4}
\end{align*}
$$

Since $\mathcal{M}\left(x, q_{2}\right)=\{\emptyset\}$, inequality D. 4 is equal to:

$$
\frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta}>\frac{b^{c}\left(x, q_{2}, f\right)+\beta \delta_{x} \frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta}}{1-\beta\left(1-\delta_{x}\right)}
$$

By Assumption 1(a), this inequality holds. Hence, $a^{c}\left(x, q_{2}\right)=1$ for all x.
For all x, assume that $\mathcal{M}\left(x, q_{1}\right)$ is non-empty , $\mathcal{M}\left(x_{1}, q_{1}\right) \subseteq \mathcal{M}\left(x_{2}, q_{1}\right)$, and $s_{1} \in$ $\mathcal{M}\left(x, q_{1}\right)$ implies $s_{2} \in \mathcal{M}\left(x, q_{1}\right)$. Thus, there are three outcomes:

Case 1: Suppose $\mathcal{M}\left(x_{1}, q_{1}\right)=\left\{s_{1}, s_{2}\right\}$ and $\mathcal{M}\left(x_{2}, q_{1}\right)=\left\{s_{1}, s_{2}\right\}$. Fixing $\left(x, q_{1}\right)$, inequality D. 4 is equal to:

$$
\begin{align*}
& b^{c}\left(x, q_{1}, a\right)\left\{\left(1-\pi^{c}(\theta)\right)(1-\beta)+\beta \delta_{x}\left(1-\pi^{c}(\theta)\right)+\pi^{c}(\theta)\left(g\left(q_{2} \mid s_{1}\right) f\left(s_{1}\right)+g\left(q_{2} \mid s_{2}\right) f\left(s_{2}\right)\right)\right\}> \\
& \quad\left(b^{c}\left(x, q_{1}, f\right)+\beta \delta_{x} \frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta}\right) . \\
& \left(1-\pi^{c}(\theta)\right)(1-\beta)+\mathcal{C}\left(x, q_{2}\right) \pi^{c}(\theta)\left(g\left(q_{2} \mid s_{1}\right) f\left(s_{1}\right)+g\left(q_{2} \mid s_{2}\right) f\left(s_{2}\right)\right)(1-\beta) \quad \text { (D.5) } \tag{D.5}
\end{align*}
$$

Since $d\left(x, q_{2}\right)=0$ and given the strategies of parents, the value function $\mathcal{C}\left(x, q_{2}\right)$ can take two values:

$$
\mathcal{C}\left(x, q_{2}\right)=b^{c}\left(x, q_{2}, f\right)+\beta \frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta} \quad \text { or } \quad \mathcal{C}\left(x, q_{2}\right)=\frac{b^{c}\left(x, q_{2}, f\right)+\beta \delta_{x} \frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta}}{1-\beta\left(1-\delta_{x}\right)} .
$$

Now, since $a^{p}\left(x_{2}, q\right) \geq a^{p}\left(x_{1}, q\right)$ for all q, I analyze the following sub-cases:
(1a) Suppose $a^{p}\left(x_{1}, q_{2}\right)=1$ and $a^{p}\left(x_{2}, q_{2}\right)=1$. The child announces adoption if and only if the following inequality holds:

$$
\begin{gather*}
\left\{b^{c}\left(x, q_{1}, a\right)-b^{c}\left(x, q_{1}, f\right)\right\}\left(1-\pi^{c}(\theta)\right)(1-\beta)> \\
\left\{b^{c}\left(x, q_{2}, a\right)-b^{c}\left(x, q_{1}, a\right)\right\} \beta \delta_{x}\left(1-\pi^{c}(\theta)\right)+ \\
\left\{b^{c}\left(x, q_{2}, f\right)(1-\beta)+b^{c}\left(x, q_{2}, a\right) \beta-b^{c}\left(x, q_{1}, a\right)\right\}\left(g\left(q_{2} \mid s_{1}\right) f\left(s_{1}\right)+g\left(q_{2} \mid s_{2}\right) f\left(s_{2}\right)\right) \pi^{c}(\theta) \tag{D.6}
\end{gather*}
$$

where:

$$
\begin{aligned}
& b^{c}\left(x, q_{1}, a\right)-b^{c}\left(x, q_{1}, f\right)>0 \text { by Assumption } 1(\mathrm{a}) \\
& b^{c}\left(x, q_{2}, a\right)-b^{c}\left(x, q_{1}, a\right)>0 \text { by Assumption } 1(\mathrm{c}) \\
& b^{c}\left(x, q_{2}, f\right)(1-\beta)+b^{c}\left(x, q_{2}, a\right) \beta-b^{c}\left(x, q_{1}, a\right)>0 \text { by Assumptions } 1(\mathrm{c})-(\mathrm{d})
\end{aligned}
$$

Now, I show that if Equation D. 6 holds for child x_{1} then it also holds for child x_{2}. By Assumption 1(e), the following inequality holds:

$$
\begin{align*}
\left\{b^{c}\left(x_{2}, q_{1}, a\right)-b^{c}\left(x_{2}, q_{1}, f\right)\right. & \}\left(1-\pi^{c}(\theta)\right)(1-\beta) \geq \\
& \left\{b^{c}\left(x_{1}, q_{1}, a\right)-b^{c}\left(x_{1}, q_{1}, f\right)\right\}\left(1-\pi^{c}(\theta)\right)(1-\beta) \tag{D.7}
\end{align*}
$$

By Assumptions 1(f) and 5(a), the following inequality holds:

$$
\begin{align*}
& \left\{b^{c}\left(x_{1}, q_{2}, a\right)-b^{c}\left(x_{1}, q_{1}, a\right)\right\} \beta \delta_{x_{1}}\left(1-\pi^{c}(\theta)\right) \geq \\
& \left\{b^{c}\left(x_{2}, q_{2}, a\right)-b^{c}\left(x_{2}, q_{1}, a\right)\right\} \beta \delta_{x_{2}}\left(1-\pi^{c}(\theta)\right) \tag{D.8}
\end{align*}
$$

By Assumptions 1(f)-(g), the following inequality holds:

$$
\begin{align*}
& \left\{b^{c}\left(x_{1}, q_{2}, f\right)(1-\beta)+b^{c}\left(x_{1}, q_{2}, a\right) \beta-b^{c}\left(x_{1}, q_{1}, a\right)\right\} \\
& \left(g\left(q_{2} \mid s_{1}\right) f\left(s_{1}\right)+g\left(q_{2} \mid s_{2}\right) f\left(s_{2}\right)\right) \pi^{c}(\theta) \geq \\
& \left\{b^{c}\left(x_{2}, q_{2}, f\right)(1-\beta)+b^{c}\left(x_{2}, q_{2}, a\right) \beta-b^{c}\left(x_{2}, q_{1}, a\right)\right\} \\
& \quad\left(g\left(q_{2} \mid s_{1}\right) f\left(s_{1}\right)+g\left(q_{2} \mid s_{2}\right) f\left(s_{2}\right)\right) \pi^{c}(\theta) \tag{D.9}
\end{align*}
$$

Hence, if $a^{c}\left(x_{1}, q_{1}\right)=1$ then $a^{c}\left(x_{2}, q_{1}\right)=1$.
(1b) Suppose $a^{p}\left(x_{1}, q_{2}\right)=0$ and $a^{p}\left(x_{2}, q_{2}\right)=0$. The child announces adoption if and only if the following inequality holds:

$$
\begin{align*}
& \left\{b^{c}\left(x, q_{1}, a\right)-b^{c}\left(x, q_{1}, f\right)\right\}\left(1-\pi^{c}(\theta)\right)(1-\beta)> \\
& \left\{b^{c}\left(x, q_{2}, a\right)-b^{c}\left(x, q_{1}, a\right)\right\} \beta \delta_{x}\left(1-\pi^{c}(\theta)\right)+ \\
& \left\{\frac{b^{c}\left(x, q_{2}, f\right)(1-\beta)}{1-\beta\left(1-\delta_{x}\right)}+\frac{b^{c}\left(x, q_{2}, a\right) \beta \delta x}{1-\beta\left(1-\delta_{x}\right)}-b^{c}\left(x, q_{1}, a\right)\right\} \\
& \quad\left(g\left(q_{2} \mid s_{1}\right) f\left(s_{1}\right)+g\left(q_{2} \mid s_{2}\right) f\left(s_{2}\right)\right) \pi^{c}(\theta) \tag{D.10}
\end{align*}
$$

Now, I show that if Equation D. 10 holds for child x_{1} then it also holds for child x_{2}. Since Equations D. 7 and D. 8 hold, then I check whether the follow-
ing inequality is satisfied:

$$
\begin{align*}
& {\left[b^{c}\left(x_{1}, q_{2}, f\right)(1-\beta)+b^{c}\left(x_{1}, q_{2}, a\right) \beta-b^{c}\left(x_{1}, q_{1}, a\right)\right.} \\
& \left.\quad-\left\{b^{c}\left(x_{1}, q_{2}, f\right)-b^{c}\left(x_{1}, q_{1}, f\right)\right\} \beta\left(1-\delta_{x_{1}}\right)\right]\left(1-\beta+\beta \delta_{x_{2}}\right) \geq \\
& \quad\left[b^{c}\left(x_{2}, q_{2}, f\right)(1-\beta)+b^{c}\left(x_{2}, q_{2}, a\right) \beta-b^{c}\left(x_{2}, q_{1}, a\right)\right. \\
& \left.\quad-\left\{b^{c}\left(x_{2}, q_{2}, f\right)-b^{c}\left(x_{2}, q_{1}, f\right)\right\} \beta\left(1-\delta_{x_{2}}\right)\right]\left(1-\beta+\beta \delta_{x_{1}}\right) \tag{D.11}
\end{align*}
$$

After some algebra, this inequality holds given Assumptions 1(f)-(g) and $5(\mathrm{a})$. Hence, if $a^{c}\left(x_{1}, q_{1}\right)=1$ then $a^{c}\left(x_{2}, q_{1}\right)=1$.
(1c) Suppose $a^{p}\left(x_{1}, q_{2}\right)=0$ and $a^{p}\left(x_{2}, q_{2}\right)=1$. I show that if Equation D. 10 holds for child x_{1} then Equation D. 6 holds for child x_{2}. Since Equations D. 7 and D. 8 hold, I check whether the following inequality is satisfied:

$$
\begin{align*}
& b^{c}\left(x_{1}, q_{2}, f\right)(1-\beta)+b^{c}\left(x_{1}, q_{2}, a\right) \beta-b^{c}\left(x_{1}, q_{1}, a\right) \\
& \quad \beta\left(1-\delta_{x_{1}}\right)\left[b^{c}\left(x_{1}, q_{2}, a\right)-b^{c}\left(x_{1}, q_{1}, a\right)\right] \geq \\
& b^{c}\left(x_{2}, q_{2}, f\right)(1-\beta)+b^{c}\left(x_{2}, q_{2}, a\right) \beta-b^{c}\left(x_{2}, q_{1}, a\right) \\
&-\beta\left(1-\delta_{x_{1}}\right)\left[b^{c}\left(x_{2}, q_{2}, f\right)(1-\beta)+b^{c}\left(x_{2}, q_{2}, a\right) \beta-b^{c}\left(x_{2}, q_{1}, a\right)\right] \tag{D.12}
\end{align*}
$$

After some algebra, this inequality holds given assumptions 1(b),(f)-(g) and $5(\mathrm{~b})$. Hence, if $a^{c}\left(x_{1}, q_{1}\right)=1$ then $a^{c}\left(x_{2}, q_{1}\right)=1$.

Case 2: Suppose $\mathcal{M}\left(x_{1}, q_{1}\right)=\left\{s_{2}\right\}$ and $\mathcal{M}\left(x_{2}, q_{1}\right)=\left\{s_{2}\right\}$. Fixing $\left(x, q_{1}\right)$, inequality D. 4 is equal to:

$$
\begin{gather*}
b^{c}\left(x, q_{1}, a\right)\left\{\left(1-\pi^{c}(\theta) f\left(s_{2}\right)\right)(1-\beta)+\beta \delta_{x}\left(1-\pi^{c}(\theta) f\left(s_{2}\right)\right)+\pi^{c}(\theta) g\left(q_{2} \mid s_{2}\right) f\left(s_{2}\right)\right\} \\
> \\
\left(b^{c}\left(x, q_{1}, f\right)+\beta \delta_{x} \frac{b^{c}\left(x, q_{2}, a\right)}{1-\beta}\right)\left(1-\pi^{c}(\theta) f\left(s_{2}\right)\right)(1-\beta)+\mathcal{C}\left(x, q_{2}\right) \pi^{c}(\theta) g\left(q_{2} \mid s_{2}\right) f\left(s_{2}\right)(1-\beta) \tag{D.13}
\end{gather*}
$$

As in the previous case, I analyze the following sub-cases:
(2a) Suppose $a^{p}\left(x_{1}, q_{2}\right)=1$ and $a^{p}\left(x_{2}, q_{2}\right)=1$. The child announces adoption if
and only if the following inequality holds:

$$
\begin{align*}
& \left\{b^{c}\left(x, q_{1}, a\right)-b^{c}\left(x, q_{1}, f\right)\right\}\left(1-\pi^{c}(\theta) f\left(s_{2}\right)\right)(1-\beta)> \\
& \left\{b^{c}\left(x, q_{2}, a\right)-b^{c}\left(x, q_{1}, a\right)\right\} \beta \delta_{x}\left(1-\pi^{c}(\theta) f\left(s_{2}\right)\right)+ \\
& \left\{b^{c}\left(x, q_{2}, f\right)(1-\beta)+b^{c}\left(x, q_{2}, a\right) \beta-b^{c}\left(x, q_{1}, a\right)\right\} g\left(q_{2} \mid s_{2}\right) f\left(s_{2}\right) \pi^{c}(\theta) \tag{D.14}
\end{align*}
$$

By Equations D.7, D. 8 and D.9, it follows that if Equation D. 14 holds for child x_{1} then it also holds for child x_{2}. Hence, if $a^{c}\left(x_{1}, q_{1}\right)=1$ then $a^{c}\left(x_{2}, q_{1}\right)=1$.
(2b) Suppose $a^{p}\left(x_{1}, q_{2}\right)=0$ and $a^{p}\left(x_{2}, q_{2}\right)=0$. The child announces adoption if and only if the following inequality holds:

$$
\begin{align*}
& \left\{b^{c}\left(x, q_{1}, a\right)-b^{c}\left(x, q_{1}, f\right)\right\}\left(1-\pi^{c}(\theta) f\left(s_{2}\right)\right)(1-\beta)> \\
& \quad\left\{b^{c}\left(x, q_{2}, a\right)-b^{c}\left(x, q_{1}, a\right)\right\} \beta \delta_{x}\left(1-\pi^{c}(\theta) f\left(s_{2}\right)\right)+ \\
& \left.\left\{\frac{b^{c}\left(x, q_{2}, f\right)(1-\beta)}{1-\beta\left(1-\delta_{x}\right)}+\frac{b^{c}\left(x, q_{2}, a\right) \beta \delta x}{1-\beta\left(1-\delta_{x}\right)}-b^{c}\left(x, q_{1}, a\right)\right\} g\left(q_{2} \mid s_{2}\right) f\left(s_{2}\right)\right) \pi^{c}(\theta) \tag{D.15}
\end{align*}
$$

By Equations D.7, D. 8 and D.11, it follows that if Equation D. 15 holds for child x_{1} then it also holds for child x_{2}. Hence, if $a^{c}\left(x_{1}, q_{1}\right)=1$ then $a^{c}\left(x_{2}, q_{1}\right)=$ 1.
(2c) Suppose $a^{p}\left(x_{1}, q_{2}\right)=0$ and $a^{p}\left(x_{2}, q_{2}\right)=1$. By Equations D.7, D. 8 and D.12, it follows that if Equation D. 15 holds for child x_{1} then equation D. 14 holds for child x_{2}. Hence, if $a^{c}\left(x_{1}, q_{1}\right)=1$ then $a^{c}\left(x_{2}, q_{1}\right)=1$.

Case 3: Suppose $\mathcal{M}\left(x_{1}, q_{1}\right)=\left\{s_{2}\right\}$ and $\mathcal{M}\left(x_{2}, q_{1}\right)=\left\{s_{1}, s_{2}\right\}$.
(3a) Suppose $a^{p}\left(x_{1}, q_{2}\right)=1$ and $a^{p}\left(x_{2}, q_{2}\right)=1$. I show that if Equation D. 14 holds for child x_{1} then Equation D. 6 holds for child x_{2}. After some algebra, since Equations D.7, D. 8 and D. 9 hold, it suffices to check whether the following inequality holds:

$$
\begin{gather*}
\left\{b_{a}^{c}\left(x_{1}, q_{2}, a\right)-b^{c}\left(x_{1}, q_{1}, a\right)\right\} \beta \delta_{x_{1}} \geq\left\{b^{c}\left(x_{1}, q_{2}, a\right)-b^{c}\left(x_{1}, q_{1}, f\right)\right\}(1-\beta)+ \\
\left\{b^{c}\left(x_{2}, q_{2}, f\right)(1-\beta)+b^{c}\left(x_{2}, q_{2}, a\right) \beta-b^{c}\left(x_{2}, q_{1}, a\right)\right\} g\left(q_{2} \mid s_{1}\right) \tag{D.16}
\end{gather*}
$$

This inequality is satisfied by Assumption 5(c). Hence, if $a^{c}\left(x_{1}, q_{1}\right)=1$ then $a^{c}\left(x_{2}, q_{1}\right)=1$.
(3b) Suppose $a^{p}\left(x_{1}, q_{2}\right)=0$ and $a^{p}\left(x_{2}, q_{2}\right)=0$. I show that if Equation D. 15 holds for child x_{1} then Equation D. 10 holds for child x_{2}. After some algebra, since Equations D.7, D. 8 and D. 9 hold, it suffices to check whether the following inequality holds:

$$
\begin{align*}
& \left\{b^{c}\left(x_{1}, q_{2}, a\right)-b^{c}\left(x_{1}, q_{1}, a\right)\right\} \beta \delta_{x_{1}} \geq\left\{b^{c}\left(x_{1}, q_{2}, a\right)-b^{c}\left(x_{1}, q_{1}, f\right)\right\}(1-\beta)+ \\
& \left\{\frac{b^{c}\left(x_{2}, q_{2}, f\right)(1-\beta)}{1-\beta\left(1-\delta_{x_{2}}\right)}+\frac{b^{c}\left(x_{2}, q_{2}, a\right) \beta \delta_{x_{2}}}{1-\beta\left(1-\delta_{x_{2}}\right)}-b^{c}\left(x_{2}, q_{1}, a\right)\right\} g\left(q_{2} \mid s_{1}\right) \tag{D.17}
\end{align*}
$$

This inequality is satisfied by Assumption 5(c). Hence, if $a^{c}\left(x_{1}, q_{1}\right)=1$ then $a^{c}\left(x_{2}, q_{1}\right)=1$.
(3c) Suppose $a^{p}\left(x_{1}, q_{2}\right)=0$ and $a^{p}\left(x_{2}, q_{2}\right)=1$. Since Equations D.7, D.8, D. 12 and D. 16 hold, it follows that if Equation D. 15 holds for child x_{1} then Equation D. 6 holds for child x_{2}. Hence, if $a^{c}\left(x_{1}, q_{1}\right)=1$ then $a^{c}\left(x_{2}, q_{1}\right)=1$.

Now, I establish Proposition 4.
(i) Fix q. By definition, $a(x, q)=1$ if and only if $a^{c}(x, q)=1$ and $a^{p}(x, q)=1$. Since $a^{c}\left(x_{2}, q\right) \geq a^{c}\left(x_{1}, q\right)$ and $a^{p}\left(x_{2}, q\right) \geq a^{p}\left(x_{1}, q\right)$, then $a\left(x_{2}, q\right) \geq a\left(x_{1}, q\right)$.
(ii) Fix x. Suppose $b^{p}\left(x, q_{1}, a\right)>0$, then $b^{p}\left(x, q_{2}, a\right)>0$. Since $\frac{b^{p}\left(x, q_{2}, a\right)}{b^{p}\left(x, q_{2}, f\right)} \leq \frac{1-\beta}{1-\beta\left(1-\delta_{x}\right)}$ and $\mathcal{M}\left(x, q_{2}\right)$ is empty, then $a^{p}\left(x, q_{2}\right)=0$. Thus, $a^{p}\left(x, q_{1}\right) \geq a^{p}\left(x, q_{2}\right)=0$. Since $a^{c}\left(x, q_{2}\right) \geq a^{c}\left(x, q_{1}\right)$, it follows that $a\left(x, q_{1}\right) \geq a\left(x, q_{2}\right)=0$.

E Appendix: Proofs of Empirical Facts and Model Predictions

E. 1 Proof of Corollary 1

(i) I show that $A\left(x_{2}, q_{0}\right) \geq A\left(x_{1}, q_{0}\right)$, and $A\left(x_{2}, q\right) \geq A\left(x_{1}, q\right)$ for all q. For the first inequality, the result follows from Propositions 2(i) and 4(i), $\mathcal{M}\left(x_{1}, q_{0}\right) \subseteq$ $\mathcal{M}\left(x_{2}, q_{0}\right)$ and $a\left(x_{2}, q\right) \geq a\left(x_{1}, q\right)$ for all q. Now, defined the following set $\hat{\mathcal{M}}\left(x_{2}, q_{0}\right)=\left\{s \in S \mid s \in \mathcal{M}\left(x_{2}, q_{0}\right) \backslash \mathcal{M}\left(x_{1}, q_{0}\right)\right\}$, then the following holds:

$$
\begin{aligned}
A\left(x_{2}, q_{0}\right) & =\delta_{x_{2}}+\left(1-\delta_{x_{2}}\right)\left\{\pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{2}, q_{0}\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right)\left[\delta_{x_{2}}+\left(1-\delta_{x_{2}}\right) a\left(x_{2}, q^{\prime}\right)\right]\right\} \\
& =\delta_{x_{2}}+\left(1-\delta_{x_{2}}\right)\left\{\pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{1}, q_{0}\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right)\left[\delta_{x_{2}}+\left(1-\delta_{x_{2}}\right) a\left(x_{2}, q^{\prime}\right)\right]\right. \\
& +\underbrace{}_{\left.\pi^{c}(\theta) \sum_{\hat{\mathcal{M}}\left(x_{2}, q_{0}\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right)\left[\delta_{x_{2}}+\left(1-\delta_{x_{2}}\right) a\left(x_{2}, q^{\prime}\right)\right]\right\}} \\
& \geq \underbrace{\delta_{x_{2}}+\left(1-\delta_{x_{2}}\right)\{\pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{1}, q_{0}\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right) \underbrace{}_{\left.\geq \delta_{x_{1}+\left(1-\delta_{x_{1}}\right) a\left(x_{1}, q^{\prime}\right)}^{\left[\delta_{x_{2}}+\left(1-\delta_{x_{2}}\right) a\left(x_{2}, q^{\prime}\right)\right]}\right\}}}_{=A\left(x_{1}, q_{0}\right)} \begin{array}{l}
\geq \delta_{x_{1}}+\left(1-\delta_{\left.x_{1}\right)}\left\{\pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{1}, q_{0}\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right)\left[\delta_{x_{1}}+\left(1-\delta_{x_{1}}\right) a\left(x_{1}, q^{\prime}\right)\right]\right\}\right.
\end{array}
\end{aligned}
$$

Now, for the second inequality, fix quality q. By Propositions 1(i) and 4(i), there are three cases to analyze:

Case 1: Suppose $a\left(x_{1}, q\right)=1$, then $a\left(x_{2}, q\right)=1$. Thus, $A\left(x_{2}, q\right)=A\left(x_{1}, q\right)$.
Case 2: Suppose $d\left(x_{1}, q\right)=1$, then:
(2a) If $a\left(x_{2}, q\right)=1$, then $A\left(x_{2}, q\right)=1$ and $A\left(x_{1}, q\right)=A\left(x_{1}, q_{0}\right) \leq 1$.
(2b) If $d\left(x_{2}, q\right)=1$, then $A\left(x_{2}, q\right)=A\left(x_{2}, q_{0}\right)$ and $A\left(x_{1}, q\right)=A\left(x_{1}, q_{0}\right)$.
(2c) If $a\left(x_{2}, q\right)=d\left(x_{2}, q\right)=0$, then:

$$
\begin{aligned}
& A\left(x_{2}, q\right)-A\left(x_{1}, q\right)= \\
& \begin{aligned}
& \delta_{x_{2}}+\left(1-\delta_{x_{2}}\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{2}, q\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right)\left[\delta_{x_{2}}+\left(1-\delta_{x_{2}}\right) a\left(x_{2}, q^{\prime}\right)\right] \\
&-\pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{1}, q_{0}\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right)\left[\delta_{x_{1}}+\left(1-\delta_{x_{1}}\right) a\left(x_{1}, q^{\prime}\right)\right]
\end{aligned}
\end{aligned}
$$

Note that, it suffices to show that $\delta_{x_{2}}>\delta_{x_{1}}+\left(1-\delta_{x_{1}}\right) \pi^{c}(\theta)$ holds. Since $\frac{\delta_{x_{2}}-\delta_{x_{1}}}{\left(1-\delta_{x_{1}}\right)}>\bar{\pi}$, then $A\left(x_{2}, q\right) \geq A\left(x_{1}, q\right)$.

Case 3: Suppose $a\left(x_{1}, q\right)=0$ and $d\left(x_{1}, q\right)=0$.
(3a) If $a\left(x_{2}, q\right)=1$, then $A\left(x_{2}, q\right)=1$ and $A\left(x_{1}, q\right) \leq 1$.
(3b) If $a\left(x_{2}, q\right)=d\left(x_{2}, q\right)=0$, then:

$$
\begin{aligned}
& A\left(x_{2}, q\right)-A\left(x_{1}, q\right)= \\
& \quad \delta_{x_{2}}+\left(1-\delta_{x_{2}}\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{2}, q\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right)\left[\delta_{x_{2}}+\left(1-\delta_{x_{2}}\right) a\left(x_{2}, q^{\prime}\right)\right] \\
& -\left\{\delta_{x_{1}}+\left(1-\delta_{x_{1}}\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{1}, q\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right)\left[\delta_{x_{1}}+\left(1-\delta_{x_{1}}\right) a\left(x_{1}, q^{\prime}\right)\right]\right\}
\end{aligned}
$$

By Proposition 3(i) and 4(i), the following inequality holds:

$$
\sum_{\mathcal{M}\left(x_{2}, q\right)} f(s) \sum_{q} g(q \mid s) a\left(x_{2}, q\right) \geq \sum_{\mathcal{M}\left(x_{1}, q\right)} f(s) \sum_{q} g(q \mid s) a\left(x_{1}, q\right)
$$

Hence, $A\left(x_{2}, q\right) \geq A\left(x_{1}, q\right)$.
(ii) For each child x, I show that $A\left(x, q_{1}\right) \geq A\left(x, q_{2}\right)$. By Propositions 3(ii) and 4(ii), it follows that $A\left(x, q_{2}\right)=\delta_{x}$. For quality q_{1}, by Proposition 1(ii), there are three cases to analyze:

Case 1: Suppose $a\left(x, q_{1}\right)=1$, then $A\left(x, q_{1}\right)=1$. Thus, $A\left(x, q_{1}\right) \geq A\left(x, q_{2}\right)$.
Case 2: Suppose $d\left(x, q_{1}\right)=1$, then $A\left(x, q_{1}\right)=\delta_{x}+\left(1-\delta_{x}\right) A\left(x, q_{0}\right)$. Thus, $A\left(x, q_{1}\right) \geq A\left(x, q_{2}\right)$.

Case 3: Suppose $a\left(x, q_{1}\right)=d\left(x, q_{1}\right)=0$, then:

$$
A\left(x, q_{1}\right)=\delta_{x}+\left(1-\delta_{x}\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{1}\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right)\left[\delta_{x_{1}}+\left(1-\delta_{x_{1}}\right) a\left(x_{1}, q^{\prime}\right)\right]
$$

Thus, $A\left(x, q_{1}\right) \geq A\left(x, q_{2}\right)$.

E. 2 Proof of Corollary 2

(i) I show that $D\left(x_{1}, q\right) \geq D\left(x_{2}, q\right)$ for all q. Fixing quality q, by Propositions 1 (i) and 4(i), there are three cases to analyze:

Case 1: Suppose $a\left(x_{1}, q\right)=a\left(x_{2}, q\right)=1$, then $D\left(x_{1}, q\right)=D\left(x_{2}, q\right)$
Case 2: Suppose $d\left(x_{1}, q\right)=1$, then:

$$
\begin{aligned}
& D\left(x_{1}, q\right)-D\left(x_{2}, q\right)= \\
& \left(1-\delta_{x_{1}}\right)-\left(1-\delta_{x_{2}}\right)\left(1-a\left(x_{2}, q\right)\right)\left[d\left(x_{2}, q\right)+\left(1-d\left(x_{2}, q\right)\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{2}, q\right)} f(s)\right]
\end{aligned}
$$

It follows that $D\left(x_{1}, q\right) \geq D\left(x_{2}, q\right) \geq 0$ holds from $\delta_{x_{2}} \geq \delta_{x_{1}}$ and:

$$
1 \geq\left(1-a\left(x_{2}, q\right)\right)\left[d\left(x_{2}, q\right)+\left(1-d\left(x_{2}, q\right)\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{2}, q\right)} f(s)\right] \geq 0
$$

Case 3: Suppose $d\left(x_{1}, q\right)=a\left(x_{1}, q\right)=0$, then:

$$
\begin{aligned}
& D\left(x_{1}, q\right)-D\left(x_{2}, q\right)=\left(1-\delta_{x_{1}}\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{1}, q\right)} f(s) \\
& \quad-\left(1-\delta_{x_{2}}\right)\left(1-a\left(x_{2}, q\right)\right)\left[d\left(x_{2}, q\right)+\left(1-d\left(x_{2}, q\right)\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{2}, q\right)} f(s)\right]
\end{aligned}
$$

(3a) If $a\left(x_{2}, q\right)=1$, then:

$$
\begin{equation*}
D\left(x_{1}, q\right)-D\left(x_{2}, q\right)=\left(1-\delta_{x_{1}}\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{1}, q\right)} f(s) \geq 0 \tag{E.1}
\end{equation*}
$$

(3b) Suppose $a\left(x_{2}, q\right)=d\left(x_{2}, q\right)=0$ then:

$$
D\left(x_{1}, q\right)-D\left(x_{2}, q\right)=\left(1-\delta_{x_{1}}\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{1}, q\right)} f(s)-\left(1-\delta_{x_{2}}\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{2}, q\right)} f(s)
$$

For match quality q_{2}, from Proposition 3 we know that $\mathcal{M}\left(x, q_{2}\right)=\{\emptyset\}$ for all x. Hence, $D\left(x_{1}, q_{2}\right) \geq D\left(x_{2}, q_{2}\right)$.

For match quality q_{1}, since $1 \geq \sum_{\mathcal{M}\left(x_{2}, q_{1}\right)} f(s)$, it suffices to check that the following inequality holds:

$$
\left(1-\delta_{x_{1}}\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{1}, q_{1}\right)} f(s)-\left(1-\delta_{x_{2}}\right) \pi^{c}(\theta) \geq 0
$$

Proposition 3 shows that $\mathcal{M}\left(x_{1}, q_{1}\right)=\left\{s_{1}, s_{2}\right\}$ or $\mathcal{M}\left(x_{1}, q_{1}\right)=\left\{s_{2}\right\}$. In the first case, $D\left(x_{1}, q_{1}\right)-D\left(x_{2}, q_{1}\right)=\left(1-\delta_{x_{1}}\right)-\left(1-\delta_{x_{2}}\right) \geq 0$. In the second case, $D\left(x_{1}, q_{1}\right)-D\left(x_{2}, q_{1}\right)=\left(1-\delta_{x_{1}}\right) \pi^{c}(\theta) f\left(s_{2}\right)-\left(1-\delta_{x_{2}}\right) \pi^{c}(\theta)$ which is positive if and only if $f\left(s_{2}\right) \geq \frac{\left(1-\delta_{x_{2}}\right)}{\left(1-\delta_{x_{1}}\right)}$.
(ii) Fixing child x, suppose that $a\left(x, q_{1}\right)=a\left(x, q_{2}\right)=0$. From Propositions 1(ii) and 3 (ii), $d\left(x, q_{1}\right) \geq d\left(x, q_{2}\right)$ and $\sum_{\mathcal{M}\left(x, q_{1}\right)} f(s) \geq \sum_{\mathcal{M}\left(x, q_{2}\right)} f(s)=0$ respectively. Hence, the following inequality holds:

$$
\begin{aligned}
D\left(x, q_{1}\right) & =\left(1-\delta_{x}\right)\left[d\left(x, q_{1}\right)+\left(1-d\left(x, q_{1}\right)\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{1}\right)} f(s)\right] \\
& \geq\left(1-\delta_{x}\right)\left[d\left(x, q_{2}\right)+\left(1-d\left(x, q_{2}\right)\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{1}\right)} f(s)\right] \\
& \geq\left(1-\delta_{x}\right)\left[d\left(x, q_{2}\right)+\left(1-d\left(x, q_{2}\right)\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{2}\right)} f(s)\right]=D\left(x, q_{2}\right)
\end{aligned}
$$

E. 3 Proof of Corollary 3

The result follows from Propositions 1(i) and 2(i): $d\left(x_{1}, q\right) \geq d\left(x_{2}, q\right)$ for all q, and $\mathcal{M}\left(x_{1}, q_{0}\right) \subseteq \mathcal{M}\left(x_{2}, q_{0}\right)$. Let $\hat{\mathcal{M}}\left(x_{2}, q_{0}\right)=\left\{s \in S \mid s \in \mathcal{M}\left(x_{2}, q_{0}\right) \backslash \mathcal{M}\left(x_{1}, q_{0}\right)\right\}$, then
the following inequality holds:

$$
\begin{aligned}
M\left(x_{2}\right) & =\pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{2}, q_{0}\right)} f(s) \sum_{q} g(q \mid s)\left(1-d\left(x_{2}, q\right)\right) \\
& \geq \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{2}, q_{0}\right)} f(s) \sum_{q} g(q \mid s)\left(1-d\left(x_{1}, q\right)\right) \\
& \geq \pi^{c}(\theta)\left[\sum_{\hat{\mathcal{M}}\left(x_{2}, q_{0}\right)} f(s) \sum_{q} g(q \mid s)\left(1-d\left(x_{1}, q\right)\right)\right. \\
& \left.+\sum_{\mathcal{M}\left(x_{1}, q_{0}\right)} f(s) \sum_{q} g(q \mid s)\left(1-d\left(x_{1}, q\right)\right)\right] \\
& \geq \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{1}, q_{0}\right)} f(s) \sum_{q} g(q \mid s)\left(1-d\left(x_{1}, q\right)\right)=M\left(x_{1}\right)
\end{aligned}
$$

Hence, $M\left(x_{2}\right) \geq M\left(x_{1}\right)$.

E. 4 Proof of Corollary 4

(i) Fixing quality q, I show that $U\left(x_{1}, q\right) \geq U\left(x_{2}, q\right)$ for all q. From Propositions 1 (i) and $4(\mathrm{i})$, there are three cases to analyze:

Case 1: Suppose $a\left(x_{1}, q\right)=a\left(x_{2}, q\right)=1$ then $U\left(x_{1}, q\right)=U\left(x_{2}, q\right)$
Case 2: Suppose $d\left(x_{1}, q\right)=1$ then:

$$
\begin{aligned}
& U\left(x_{1}, q\right)-U\left(x_{2}, q\right)=\left(1-\delta_{x_{1}}\right)\left(1-M\left(x_{1}\right)\right) \\
&-\left(1-\delta_{x_{2}}\right)\left(1-a\left(x_{2}, q\right)\right)\left\{d\left(x_{2}, q\right)\left(1-M\left(x_{2}\right)\right)\right. \\
&\left.+\left(1-d\left(x_{2}, q\right)\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{2}, q\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right) d\left(x_{2}, q^{\prime}\right)\right\}
\end{aligned}
$$

(2a) If $a\left(x_{2}, q\right)=1$, then $U\left(x_{1}, q\right)-U\left(x_{2}, q\right)=\left(1-\delta_{x_{1}}\right)\left(1-M^{3}\left(x_{1}\right)\right) \geq 0$.
(2b) If $d\left(x_{2}, q\right)=1$, then:

$$
U\left(x_{1}, q\right)-U\left(x_{2}, q\right)=\left(1-\delta_{x_{1}}\right)\left(1-M\left(x_{1}\right)\right)-\left(1-\delta_{x_{2}}\right)\left(1-\gamma^{3}\left(x_{2}\right)\right)
$$

By Corollary 3, it follows that $U\left(x_{1}, q\right) \geq U\left(x_{2}, q\right)$.
(2c) If $a\left(x_{2}, q\right)=d\left(x_{2}, q\right)=0$, then:

$$
\begin{aligned}
& U\left(x_{1}, q\right)-U\left(x_{2}, q\right)= \\
& \left(1-\delta_{x_{1}}\right)\left(1-M\left(x_{1}\right)\right)-\left(1-\delta_{x_{2}}\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{2}, q\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right) d\left(x_{2}, q^{\prime}\right)
\end{aligned}
$$

For match quality q_{2}, Proposition 3 shows that $\mathcal{M}\left(x, q_{2}\right)=\{\emptyset\}$ for all x.
Hence, $U\left(x_{1}, q_{2}\right)-U\left(x_{2}, q_{2}\right)=\left(1-\delta_{x_{1}}\right)\left(1-M\left(x_{1}\right)\right) \geq 0$.
For match quality q_{1}, since the following holds:

$$
\left(1-\pi^{c}(\theta)\right) \geq\left(1-M\left(x_{1}\right)\right) \text { and } 1 \geq \sum_{\mathcal{M}\left(x_{2}, q_{1}\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right) d\left(x_{2}, q^{\prime}\right)
$$

it suffices to check that the following inequality holds:

$$
\left(1-\delta_{x_{1}}\right)\left(1-\pi^{c}(\theta)\right)-\left(1-\delta_{x_{2}}\right) \pi^{c}(\theta) \geq 0
$$

which holds if and only if $\frac{1-\delta_{x_{1}}}{2-\delta_{x_{1}-}-\delta_{x_{2}}} \geq \bar{\pi}$.
Case 3: Suppose $a\left(x_{1}, q\right)=0$ and $d\left(x_{1}, q\right)=0$ then:

$$
\begin{aligned}
& U\left(x_{1}, q\right)-U\left(x_{2}, q\right)=\left(1-\delta_{x_{1}}\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{1}, q\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right) d\left(x_{1}, q^{\prime}\right) \\
& -\left(1-\delta_{x_{2}}\right)\left(1-a\left(x_{2}, q\right)\right)\left\{d\left(x_{2}, q\right)\left(1-M\left(x_{2}\right)\right)\right. \\
& \left.\quad+\left(1-d\left(x_{2}, q\right)\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{2}, q\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right) d\left(x_{2}, q^{\prime}\right)\right\}
\end{aligned}
$$

(3a) If $a\left(x_{2}, q\right)=1$, then:

$$
U\left(x_{1}, q\right)-U\left(x_{2}, q\right)=\left(1-\delta_{x_{1}}\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{1}, q\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right) d\left(x_{1}, q^{\prime}\right) \geq 0
$$

(3b) If $a\left(x_{2}, q\right)=d\left(x_{2}, q\right)=0$, then:

$$
\begin{aligned}
& U\left(x_{1}, q\right)-U\left(x_{2}, q\right)=\left(1-\delta_{x_{1}}\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{1}, q\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right) d\left(x_{1}, q^{\prime}\right) \\
&-\left(1-\delta_{x_{2}}\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{2}, q\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right) d\left(x_{2}, q^{\prime}\right)
\end{aligned}
$$

For match quality q_{2}, Proposition 3 states that $\mathcal{M}\left(x, q_{2}\right)=\{\emptyset\}$ for all x. Hence, $U\left(x_{1}, q\right)=U\left(x_{2}, q\right)$.
For match quality q_{1}, since $1 \geq \sum_{\mathcal{M}\left(x_{2}, q_{1}\right)} f(s)$, it suffices to check that the following inequality holds:

$$
\left(1-\delta_{x_{1}}\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x_{1}, q_{1}\right)} f(s)-\left(1-\delta_{x_{2}}\right) \pi^{c}(\theta) \geq 0
$$

Proposition 3 shows that $\mathcal{M}\left(x_{1}, q_{1}\right) \neq\{\emptyset\}$ and $\mathcal{M}\left(x_{1}, q_{1}\right)=\left\{s_{1}, s_{2}\right\}$ or $\mathcal{M}\left(x_{1}, q_{1}\right)=\left\{s_{2}\right\}$. In the first case, $D\left(x_{1}, q_{1}\right)-D\left(x_{2}, q_{1}\right)=\left(1-\delta_{x_{1}}\right)-(1-$ $\left.\delta_{x_{2}}\right) \geq 0$. In the second case, $D\left(x_{1}, q_{1}\right)-D\left(x_{2}, q_{1}\right)=\left(1-\delta_{x_{1}}\right) \pi^{c}(\theta) f\left(s_{2}\right)-$ $\left(1-\delta_{x_{2}}\right) \pi^{c}(\theta)$ which is positive if and only if $f\left(s_{2}\right) \geq \frac{\left(1-\delta_{x_{2}}\right)}{\left(1-\delta_{x_{1}}\right)}$.
(ii) Fixing child x, suppose that $a\left(x, q_{1}\right)=0$ and $a\left(x, q_{2}\right)=0$. By Propositions 1(ii) and 3(ii) it follows that $d\left(x, q_{1}\right) \geq d\left(x, q_{2}\right)$ and $\sum_{\mathcal{M}\left(x, q_{1}\right)} f(s) \geq$ $\sum_{\mathcal{M}\left(x, q_{2}\right)} f(s)=0$ respectively. Hence, the following inequality holds:

$$
\begin{aligned}
U\left(x, q_{1}\right) & =\left(1-\delta_{x}\right)\left\{d\left(x, q_{1}\right)(1-M(x))\right. \\
& \left.+\left(1-d\left(x, q_{1}\right)\right) \pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{1}\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right) d\left(x, q^{\prime}\right)\right\} \\
& \geq\left(1-\delta_{x}\right)\left\{d\left(x, q_{1}\right)(1-M(x))\right. \\
& +\left(1-d\left(x, q_{1}\right)\right) \underbrace{\pi^{c}(\theta) \sum_{\mathcal{M}\left(x, q_{2}\right)} f(s) \sum_{q^{\prime}} g\left(q^{\prime} \mid s\right) d\left(x, q^{\prime}\right)}_{=0}\}
\end{aligned}
$$

$$
\geq\left(1-\delta_{x}\right) d\left(x, q_{2}\right)(1-M(x))=U\left(x, q_{2}\right)
$$

[^0]: † Dirección General de Investigación Económica. Email: diana.macdonald@banxico.org.mx.

[^1]: ${ }^{1}$ A child can enter foster care for several reasons such as sexual or physical abuse, parents' drug or alcohol addictions, parents' incarceration, parents' inability to provide care, parents' death, inadequate housing, abandonment, child's behavioral problem, or child's addiction.
 ${ }^{2}$ Foster homes are private homes licensed to provide 24 -hour care for children in a familybased environment. Institutional care are licensed facilities that provide 24-hour care for several children at once (groups from seven to twenty), and it includes group homes, shelter care, and other institutions.
 ${ }^{3}$ By federal law, if a child has been in foster care for at least 15 of the last 22 months, the process to terminate her parental rights must be started immediately. Further, a judge can decide to terminate parental rights at any moment in time if it is in the best interest of the child.
 ${ }^{4}$ Source: National Foster Youth Institute.

[^2]: ${ }^{5}$ Match disruptions experienced by children is part of the national outcome standards used by federal agencies to monitor the state's performance.
 ${ }^{6}$ The Adoption and Safe Families Act of 1997 (ASFA), created the Adoption Incentive Program, which establishes performance bonuses to states that increase the adoption of children. The performance bonuses consisted of US $\$ 4,000$ dollars per child plus an additional US $\$ 2,000$ if the child has special needs (including disability). Later on, the Increasing Adoptions Act of 2008 increased the extra bonus to US $\$ 4,000$ if the child has special needs.
 ${ }^{7}$ The empirical literature supports this intuition. Argys and Duncan (2012) show that when the difference between the foster and adoption monthly payments decreases, a child's probability of adoption increases. Bishop and MacDonald (2022) analyze a policy change in the state of Minnesota that eliminated the financial penalty on adoption for children aged six and older, finding that the probability of adoption increased after the implementation.

[^3]: ${ }^{8}$ The empirical analysis does not seek to establish causality, but to obtain robust correlations controlling for a rich set of covariates.
 ${ }^{9}$ For a more detail background of the foster care system in the US see Appendix A.
 ${ }^{10}$ AFCARS is a federally mandated data collection system. All fifty US states and the District of Columbia are required to collect data on all children in foster care and all children adopted from foster care.
 ${ }^{11}$ Following Buckles (2013) and Brehm (2017), for all demographics I use the most recent record of each child since it updates all information.
 ${ }^{12}$ Title IV-E is a federal program through which states receive reimbursement of payments made on behalf of eligible children.
 ${ }^{13}$ To protect the confidentiality of the child, the date of birth is set to the 15th of the month and all dates are recoded to maintain consistent spans of time.

[^4]: ${ }^{14}$ This is a strong assumption since disabilities could vary with the amount of time spent in a group home, or with the care provided by a foster parent. Ideally, we should consider disabilities as a potentially time-variant characteristic; however, data do not allow me to observe how a disability might evolve over time.
 ${ }^{15}$ It is important to mention that foster parents are not identifiable; when a child is placed in a foster home only family structure, foster parents' race and foster parents' year of birth are reported.

[^5]: ${ }^{16}$ Even though, foster parents are not identifiable, a variable recording the number of placements allows me to identify whether the child is being fostered by the same parent.

[^6]: ${ }^{17}$ Match quality captures other factors affecting the match independent of the child's attribute,

[^7]: ${ }^{18}$ In some cases, relatives reach out when they learn about the situation and request to adopt the child. Child welfare agencies have strong preferences for relatives.

[^8]: ${ }^{19}$ Federal fund sources include Title IV-E and Title IV-B of the Social Security Act, Medicaid, Social Services Block Grant, Temporary Assistance for Needy Families, and other federal grants and awards.
 ${ }^{20}$ Foster homes are divided in relative and non-relative. In a relative foster home, the foster parent is a relative or someone with a prior connection to the child who joins the program to care for a particular child. In a non-relative foster-home, the foster parent joins the program without prior connection to any child and later on is matched to a child to care for.
 ${ }^{21}$ The Adoption Assistance and Child Welfare Act of 1980 (AACWA) requires children to be placed in the most family-like placement when possible

[^9]: ${ }^{22}$ AACWA states that 'a child with special needs is a child who: can not be returned to her birthfamily home, has a special condition such that the child can not be placed for adoption without providing assistance, and has not been able to be placed for adoption without assistance'.
 ${ }^{23}$ A child can enter foster care multiple times, each time a child enters foster care is a different foster care episode.

[^10]: Notes: Data are from Adoption and Foster Care Analysis and Reporting System (AFCARS). Means and standard deviations are calculated for child-period observations. Sample A is the full sample containing all children younger than age 16 whose parental rights have been terminated and who are either foster matched or unmatched. Sample B and Sample C are subsamples of A. Sample B (sample C) keeps only those child-period observations such that the child is foster matched (unmatched) at the beginning of the period and still in foster care at the end of the period.

 * PRT stands for Parental Rights Terminated.

