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Abstract: In this paper, we estimate the effect of temperature shocks on the price of nine vegetables 
with a high contribution to Mexico's non core inflation. We utilize monthly panel data of the price index 
of each vegetable at the city level which we combine with high resolution weather data of the producing 
states. For every city, we construct a relevant temperature measure by weighting the different 
temperatures of its supplier states using historic production shares and distance. Our findings elicit a 
convex U-shaped relationship between temperature and vegetable prices and a high sensitivity of the 
latter to contemporaneous and lagged temperature shocks that occur within their growing period.  Our 
findings also suggest that temperature shocks may have a detrimental effect on vegetable yields which 
may be an important driver of the impact on prices.
Keywords: Food Inflation, Weather Shocks, Vegetable Prices, Local Markets
JEL Classification: E31, Q15, Q54

Resumen: En este artículo estimamos el efecto de choques de temperatura en el precio de nueve 
hortalizas con una elevada contribución a la inflación no subyacente en México. Utilizamos datos en 
panel mensuales del INPC de cada hortaliza a nivel de ciudad y datos de alta resolución del clima en los 
estados productores. Para cada ciudad, se generó una temperatura relevante ponderando las temperaturas 
de sus estados proveedores utilizando su producción histórica y distancia a la ciudad. Los resultados 
revelan una relación funcional convexa y en forma de U entre la temperatura y el precio de las hortalizas 
y una elevada sensibilidad de los precios a choques de temperatura contemporáneos o rezagados que 
ocurren durante su periodo de crecimiento. Los resultados también sugieren que los choques de 
temperatura pueden tener un efecto negativo en el rendimiento de las hortalizas mismo que sería un 
factor determinante del impacto de la temperatura en los precios.
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1. Introduction 

 

The measurement of inflation considers two main aggregates, core and non-core inflation. 

The latter is typically considered a transitory influence on inflation and includes volatile 

items of the Consumer Price Index (CPI), such as energy and some food items. Usually, these 

short-run changes in inflation are formed from unexpected shocks that raise prices but are 

not likely to lead to a permanent increase in inflation (Wynne M. A., 2008). In Mexico, recent 

episodes of high inflation can be explained by temporary increases in non-core inflation. In 

particular, inflation in the Fruits and Vegetables component of non-core inflation has been 

the most volatile and explains about a third of the total non-core inflation observed between 

2012 and 2020 (see Figure A1 in the Appendix).  

 

Fruits and vegetables inflation may be caused by different supply and demand factors. On 

the demand side, the domestic price of vegetables could be highly sensitive to demand shocks 

from domestic and international markets (Banco de México, 2021). On the supply side, the 

price of vegetables could be responsive to the seasonality of their production cycle and 

unexpected weather shocks (frosts, heat waves, floods, droughts) that might affect their 

productivity. Depending on their magnitude, weather-driven productivity changes could 

decrease or increase the availability of vegetables in the market and modify their market 

price. The effect of weather shocks could be magnified if production is geographically 

concentrated in certain regions and if the local domestic market heavily depends on the 

production of the affected region. For example, towards the end of 2017, in the north of 

Mexico, a region of particular importance in vegetable production, was hit with extremely 

low temperatures. As a result, the supply of tomato, squash, tomatillo (green tomato) and 

onions in the overall Mexican market was reduced, which caused annual inflation in Fruits 

and Vegetables to increase from 14.9% in November 2017 to 20.7% in January 2018 (Banco 

de México, 2018). 

 

In this paper, we estimate the functional relationship that exists between temperature and 

vegetable prices. We use monthly panel data of the price index of nine vegetables that 

together represent 30.9% of the weight assigned to the Fruits and Vegetables component of 
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non-core inflation: squash, onion, chili pepper, tomato, cucumber, tomatillo, lettuce-cabbage 

and potato.1 Our price index data varies at the city level and covers the period 2001-2020. 

We focus on vegetables because their production cycle is short (4 months long on average) 

which allows us to closely tie short run vegetable price movements with short run 

temperature shocks. We combine price index data with a unique dataset that contains the 

commercialization patterns of these vegetables among states. This information allows us to 

infer the supplier states for each city and construct a relevant temperature measure for each 

by combining the temperature of its supplier states using production and distance as 

weighting factors. Thus, our panel estimates capture the production and the 

commercialization patterns of each vegetable’s market. Our estimation strategy relies on a 

fixed effects model in which present and past realizations of temperature are included as 

regressors.  

 

Our results reveal a convex U-shaped relationship between temperature and vegetable prices 

in which very low or very high temperatures are associated with higher vegetable prices. This 

U-shaped relationship exists for current and past temperatures. Using the estimated 

functional relationship, we simulate the effect of temperature shocks on vegetable prices. 

Results from this simulation indicate that vegetable prices are highly sensitive to temperature 

shocks. For example, a decrease of 2 standard deviations (s.d.) below average temperature 

would immediately increase the price of squash and onion by 9.6% and 6.0% respectively. 

Similarly, a 2 s.d. increase above average temperature would immediately increase the price 

of squash (3.7%), chili pepper (3.3%) and tomatillo (3.3%). Temperature shocks also have 

lagged effects in the price of all the vegetables analyzed. For example, the price of tomatoes 

would increase by 5.6%, 2.5% and 9.2% in the first, second and third month after a 2 s.d. 

increase above average temperature. In general, temperature shocks of at least 2 s.d. raise 

vegetables prices by a magnitude that is larger than the average monthly change in prices 

observed during the sample period. Interestingly, the estimated impacts of temperature 

                                                           
1 For the purposes of this article, by squash we refer to the Mexican variety known as calabacita (Mexican 

squash). Also, by chili pepper we refer to the serrano pepper also known as chile verde or green pepper. The 

pair lettuce-cabbage is bundled by INEGI in a single price index because of the similarities among them, 

including their price variations (INEGI, 2018). 
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shocks in vegetables prices are larger in markets closer to the main producing areas. Prices 

in markets surrounding an important producing area affected by a temperature shock could 

be the most sensitive because such markets are most likely to rely on local production to meet 

all of their local supply. Prices in markets located farther away might be less sensitive to 

temperature shocks because in those markets, supply could be fulfilled using a more 

diversified portfolio of suppliers. Overall, results indicate that temperature shocks are a 

driving force of upward pressures in vegetable prices and ultimately, inflation. 

 

The convex U-shaped relationship between temperature and vegetable prices that we find is 

in line with the relationship typically found between temperature and agricultural yields in 

which very low or very high levels of temperature are associated with lower crop yields 

(Schlenker and Roberts, 2009; Burke and Emerick, 2016; Moore and Lobell, 2014; Mérrel 

and Gammans, 2021). This suggest that the productivity damages caused by temperature 

shocks could be the main mechanism by which they increase vegetable prices. In order to 

evaluate the hypothesis of productivity affectations, we estimate the link between 

temperature and vegetable yields using a fixed effects model that relies on vegetable yields 

and weather data at municipality level. This data varies by season (Spring-Summer, 

Fall-Winter) and covers the period 2003-2020. Our results reveal a concave inverted 

U-shaped relationship between temperature and vegetable yields. In general, temperature 

shocks of at least 2 s.d. above or below average seasonal temperature decrease vegetable 

productivity. Thus, the supply shortfalls caused by temperature shocks may ultimately lead 

to increased prices. The sensitivity of vegetable prices to current and past temperature shocks 

that we find could be due to productivity damages at different stages of the growing period 

of the vegetable (Ortiz-Bobea and Just, 2013, Ortiz-Bobea et al., 2019) and/or to the updating 

of supply and price expectations around the timing of the temperature shock (Letta et al., 

2021). Our results indicate that vegetable markets adjust prices as a response to temperature 

shocks and the supply imbalances they create.  

 

The contribution of this paper is threefold. First, this research contributes to the empirical 

evidence regarding the effect of weather on agricultural prices using panel data (Letta et al., 

2021; Banco de México, 2021). Most of the available empirical analysis use time series 
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techniques that rely on variation over time of aggregated measures of prices and weather 

(Banco de México, 2013; Abril-Salcedo et al., 2020; Ubilava, 2018; Ubilava and Holt, 2013; 

Ubilava, 2012; Bastiani et al., 2018). Instead, this paper relies on time and spatial variation 

of weather and prices at more disaggregated levels. Spatially, our price series vary at the city 

level while our weather variables vary at the state level. Over time, our information varies 

monthly and spans two decades. In general, the effect of weather shocks is first experienced 

at the local level affecting local production and prices. Then, it gets transmitted to other 

markets through commercial exchanges. Thus, by relying on local variation of weather and 

prices we get closer to the process that originates the joint evolution of these two variables. 

 

Second, this research focuses on vegetables, a set of agricultural products that have received 

little attention in the literature linking weather with agricultural yields and prices. Most of 

the studies relating weather and yields have centered on grains (namely, corn, wheat, 

soybean, sorghum and rice) due to their importance in human caloric intake (Schlenker and 

Roberts, 2009, Burke and Emerick, 2016; Ortiz-Bobea et al., 2019; Welch et al., 2010; Tack 

et al., 2017). On the other hand, studies relating weather and prices have focused on 

aggregated food categories (Abril-Salcedo et al., 2020; Banco de México, 2013; Cashin et 

al., 2017) or, again, on grains (Letta et al., 2021; Banco de México, 2021). This paper 

contributes to the literature by providing seminal evidence of the causal effect of weather on 

vegetable yields and prices.  

 

Third, the findings of this paper corroborate that weather is a driving factor of food price 

fluctuations. This result is of particular importance for countries where the share of food in 

their CPI baskets is high. In Mexico and other developing countries this share is larger than 

20% (Cashin et al., 2017). In these settings, the understanding of weather-related risks as an 

underlying cause of food price increases may facilitate the design of policies seeking to 

reduce inflation. Besides upward pressures in food prices, weather shocks might also 

exacerbate inflation in other sectors as agricultural products are often inputs of other 

processed foods and of restaurant services. With climate change, the frequency and intensity 

of extreme weather events is expected to increase (Perkins-Kirkpatrick and Lewis, 2020; 
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Diffenbaugh, 2020), thus, upward pressures on inflation associated to higher agricultural 

prices could become larger and more frequent in the future.  

 

The organization of this paper is as follows. In section 2 we review the existing literature 

investigating the effects of weather in food prices. In section 3, we provide some context 

about the production of vegetables in Mexico. In section 4, we derive a reduced form 

relationship between temperature and prices. In section 5, we lay out our empirical 

specification. In section 6, we describe the price and weather data used and the methodology 

implemented to construct a relevant temperature for each city. In section 7, we present the 

estimated functional relationship between temperature and weather. In section 8 we use it to 

simulate the effect of extreme increases in temperature on vegetable prices. In section 9, we 

deepen our analysis and explore the direct effect of temperature on vegetable yields. We 

conclude in section 10 by providing some insights on the relevance of these results for policy 

making.  

 

2. Existing Literature 

 

The role of temperature as a driving factor of agricultural prices has been investigated in 

previous literature. A first effect comes from the impact that weather shocks may have on 

agricultural yields. Previous literature has found evidence of a non-linear relationship 

between temperature and agricultural yields in which yields increase up to a certain 

temperature threshold, or optimum. Once this threshold is surpassed, yields start to decrease 

(Deschênes and Greenstone, 2007; Schlenker and Roberts, 2009; Burke and Emerick, 2016; 

Moore and Lobell, 2014; Mérrel and Gammans, 2021). It follows that extreme temperatures, 

say, a frost or a heat wave, could have detrimental effects on agricultural yields reducing the 

availability of the crop in the market. As a result, extreme temperatures might drive prices 

up. 

 

The direct effect of weather on agricultural prices has been explored using two main 

approaches. The first approach relies on time series techniques applied to aggregated 

measures of prices and weather. Much of the existing literature using time series techniques 
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focus on El Niño Southern Oscillation (ENSO), a weather phenomenon that occurs in the 

tropical area of the Pacific Ocean which modifies weather in several countries and regions 

around the globe. For example, Ubilava (2018) and Ubilava and Holt (2013) deploy the 

smooth transition autoregressive framework to study how sea surface temperature anomalies 

(SST) (deviations from the historical mean) linked to ENSO determine the price dynamics 

of several agricultural commodities. These studies find a significant effect of SST anomalies 

on the price of coffee, vegetable oils, oilseeds, fishmeal and salmon. Results vary by 

commodity but, in general, positive anomalies (El Niño episodes) are associated with price 

increases while negative anomalies (La Niña episodes) result in prices decreases. 

Abril-Salcedo et al. (2020) also apply the smooth transition framework to investigate the 

influence of SST anomalies on food inflation in Colombia. They find that positive SST 

anomalies increase the growth rate of food inflation in this country by as much as 7.3% with 

the effect being observed between the fifth and ninth months following the shock. Bastianini 

et al. (2018) estimate a structural vector autoregression (VAR) to investigate the effect of 

SST ENSO anomalies on the production, exports, and international price of Colombian 

coffee. Their findings suggest that positive SST anomalies decrease coffee prices because 

higher temperatures stimulate the growth and flowering of coffee trees, which increases 

production (see also Ubilava, 2012). All of these findings are in line with Cashin et al. (2017) 

who estimate a Global VAR for 21 countries/regions. Their findings suggest that most 

countries in their sample experience short-run inflationary pressures following positive 

ENSO anomalies due, in part, to increased prices of non-fuel commodities, including 

agricultural raw materials.  

 

The second approach relies on panel data. One of the advantages of this approach is that it 

utilizes weather and price information that is disaggregated temporally and spatially. The 

identifying variation in panel data comes from weather anomalies experienced at the local 

level which could, in turn, affect local prices. This is a more realistic representation of the 

causal effect that weather may have on price formation, which could be obscured when using 

aggregated data. Another advantage of the panel approach is the possibility to control for 

unobserved factors potentially correlated with weather using fixed effects which reduces the 
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threat of omitted variable bias (Dell et al., 2014; Blanc and Schlenker, 2017). In spite of its 

advantages, the panel approach has been rarely used to investigate the direct effect of weather 

on prices. Maystadt and Ecker (2014) estimate the effect of weather anomalies on livestock 

prices and the probability of civil conflict in Somalia using monthly panel data for 

administrative regions. Their results indicate that larger temperature anomalies are associated 

a higher likelihood of conflict and that the main mechanism exacerbating civil unrest is the 

direct effect of weather anomalies on livestock prices. Letta et al. (2021) investigate the effect 

of weather anomalies on the local price of maize, rice and wheat in India relying on monthly 

panel data at the district level. The authors proxy for abnormal weather using a drought index 

that jointly considers precipitation, evaporation, and temperature. Their results indicate that 

drought conditions during the growing season increase the price of these crops, even before 

any harvest failure is materialized. Similarly, the Bank of Mexico used monthly panel data 

at the state level to conclude that episodes of low precipitation during the growing period of 

maize and dry beans increase their prices. The magnitude of the effect increases with the 

severity of rainfall scarcity (Banco de México, 2021). 

 

This paper contributes to the nascent body of empirical evidence using panel data. 

Importantly, we propose a methodology to link weather in producing areas with prices in 

final markets which are often distant from each other.   

 

3. The Context of Vegetable Production in Mexico 

 

In Mexico, agriculture occurs in two different growing seasons, the Spring-Summer or rainy 

season which runs from April to September and the Fall-Winter or dry season which runs 

from October to March. Vegetable production is distributed almost evenly across seasons 

(52.7% of the value of vegetable production in 2020 was obtained in Spring-Summer) and is 

almost entirely produced under irrigated conditions (93.6% of the total value of vegetable 

production in 2020 was produced using irrigation). In the short run, this feature of vegetable 

production in Mexico makes it more susceptible to temperature shocks and less susceptible 

to precipitation shocks. In the medium and long run, sustained precipitation shocks might 

also reduce the amount of water available for irrigation.  
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Vegetable production is widely dispersed across Mexico; however, some states are 

particularly important at producing certain vegetables in specific months of the year. Figure 

1 plots the share of the top four producers of each vegetable in historical monthly production 

for the period 2004-2020 (SIAP, 2020a). There are three results to highlight. First, the top 

four state producers are different for each vegetable, but in most cases, the northern states of 

Sinaloa, Sonora, Baja California, Chihuahua, Tamaulipas and Zacatecas concentrate a high 

share of vegetable historic production. This productive configuration makes vegetable supply 

particularly vulnerable to weather shocks that occur in those states.  

 

Second, for some vegetables and during some months, the overall market heavily depends 

on the production of a single state. For example, in February, Sinaloa’s tomato production is 

at its peak and concentrates 66.4% of the total production of tomatoes in Mexico. In this 

month, Sinaloa also concentrates a large proportion of the squash, chili pepper, cucumber, 

tomatillo and potato production.  

 

Third, the overall vegetable supply evolves with the production cycle of the producing states. 

This generates different market configurations for each vegetable at different points in time. 

In some cases, an important state producer is replaced by another important state producer 

once the production cycle of the former is finished. Such is the case of onion and chili pepper. 

In other cases, once the production cycle of the top state producer concludes, vegetable 

supply is spread between several other states. This is the case of tomato and cucumber.  
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Figure 1. Share of the Top 4 State Producers on Historical Monthly Production 

(2004-2020) 

 

Note: Figure 1 plots the share of the top four producers of each vegetable in historical monthly production for 

the period 2004-2020. Monthly production data is available for this period only.  

Source: Own elaboration using monthly production data from SIAP (2020a). 

 

The changing conditions of the vegetable supply creates a dynamic setting of location and 

time in which temperature shocks, in certain states and months, matter more to price 

formation than in others. Consequently, monthly market prices will be responsive to 

temperature shocks experienced in states where production is highly concentrated in a 

particular month. This sensitivity varies with time as state producers substitute each other 

over the course of the year. Their effect on vegetable market prices could be magnified if the 

affected area is widely connected with markets through commercialization. For example, in 

February of 2011, the state of Sinaloa, a major vegetable producer, experienced freezing 

temperatures as low as -8oC. February is when Sinaloa’s production of several vegetables is 

at its peak (see Figure 1) (USDA, 2011). As a result of these frosts, more than 50% of the 
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total area planted with tomato, squash and cucumber and about a third of the area planted 

with tomatillo and chili pepper were lost (SIAP, 2020a). This event had immediate 

consequences in their domestic prices. For example, the price of tomatoes sold in Sinaloa 

increased by 100% with large price increases also observed in other cities (González, 2011). 

This frost also had an important effect in the price of vegetables in the USA with reports of 

a 300% increase in tomato prices relative to prices a year before (Notimex, 2011). Mexico is 

the largest foreign supplier of vegetables to the USA (Davis et al., 2022), which explains the 

high influence of domestic supply shocks in the market prices of that country.   

 

The sensitivity of vegetable prices to extreme weather events also depends on the ability of 

the market to substitute lost production with imports. Figure 2 shows the imports-to-exports 

ratio of the vegetables analyzed. Historically, imports of squash, peppers, tomato, cucumber 

and tomatillo have been low representing less than 1% of exports (panel a). For lettuce (panel 

b), the imports-to-exports ratio has decreased over time passing from 27.0% in 2013 to less 

than 3% in 2020. In contrast, the ratio for onions has increased to about 30% in 2020. Finally, 

while the imports-to-exports ratio for potatoes has decreased (panel c), by 2020, imports were 

still 30 times larger than exports. Overall, Figure 2 indicates that, for most of the vegetables 

analyzed, prices are mostly determined domestically with little influence from international 

prices. Because of this, domestic vegetable prices could be highly sensitive to the negative 

effects that domestic weather events could have in vegetable production. The price of onions 

and potatoes could be less affected given the higher reliance of the domestic market on 

imports. In these cases, international prices would be a major reference for domestic prices.    

 

 

 

 

 

 

 

 

https://www.ers.usda.gov/authors/ers-staff-directory/wilma-v-davis/
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Figure 2. Imports-to-Exports Ratio for Each Vegetable (percentages) 

a) Low dependence 

 
b) Moderate dependence 

 
c) High dependence 

 

 Source: Own elaboration using data from SIAVI (2022). 
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Typically, when natural disasters impact agricultural production, imports of food products 

tend to increase. In some cases, this is facilitated by the elimination of tariffs and quotas for 

the affected goods (Forbes, 2013; Carbajal, 2022). Between 2003 and 2020, a total of 500 

agricultural natural disasters were declared by the Mexican government, all associated with 

extreme temperature and precipitation events (SEMARNAT, 2022). Farmers located in 

municipalities covered by these declarations, affected by a natural disaster and without public 

or private insurance are granted access to governments funds in order to reduce their 

monetary losses and re-engage in agricultural production. While these funds help stabilize 

farmers´ income, they might not alleviate the immediate upward pressures in agricultural 

market prices associated to the possibility of a reduced supply because of the natural disaster.      

 

4. A Reduced Form Relationship Between Temperature and Prices 

 

In this section we present a conceptual framework to rationalize the empirical strategy 

adopted in the paper. A large body of literature has documented a robust influence of 

temperature on agricultural yields (Schlenker and Roberts, 2009; Burke and Emerick, 2016). 

Based on this evidence, we postulate that the main channel by which temperature shocks 

affect vegetable prices is through their effect on vegetable supply. We assume that the market 

of each vegetable is in equilibrium and that demand remains constant conditional on controls 

to generate a reduced form expression of prices as function of temperature using the supply 

curve.  

 

Let 𝑄𝑖𝑡 represent the quantity supplied of vegetables in city i at time t. Also, let 𝑇𝑖𝑡 be a 

relevant temperature measure for city i that somehow weights the temperatures of the N 

locations that produce vegetables and that supply them to city i. The supply of vegetables as 

function of relevant temperature is given by:    

 

𝑄𝑖𝑡 = 𝑓(𝑇𝑖𝑡)                                             (1) 

 

Then, the (inverse) supply function of vegetables can be expressed as: 
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𝑃𝑖𝑡 = 𝛼 + 𝜂𝑓(𝑇𝑖𝑡)+𝜉𝑖𝑡                           (2) 

 

Equation (2) allows vegetables prices in city i to vary as a function of the temperatures 

observed in its N supplier states. If most of the vegetable supply of city i is locally produced, 

temperature shocks affecting local production will impact local price formation. On the 

contrary, if most of the vegetable supply of city i is imported from elsewhere, then, 

temperature shocks affecting production on those other areas will determine price formation. 

In Section 6, we describe the weighting procedure used to construct the relevant temperature 

measure introduced here. 

 

The estimation of equation (2) yields unbiased parameter estimates of the relationship 

between temperature and prices as long as the relevant temperature is not correlated with 

other unknown determinants of vegetable supply and demand.  

 

5. Empirical Strategy 

 

To identify the effects of temperature shocks on vegetable prices, this paper deploys a fixed 

effects model using price index data at the city level. The estimation controls for unobserved 

time-invariant factors affecting vegetable prices using city fixed effects. We also control for 

precipitation in order to account for the possible correlation of local temperature variations 

with local precipitation variations (Burke et al., 2015). For each vegetable, we estimate the 

following equation: 

 

𝑙𝑛𝑃𝑖𝑡𝑗 = 𝛿 + ∑ 𝜑𝑠𝑇𝑖𝑡,𝑗−𝑠

𝑆

𝑠=0

+ ∑ 𝛾𝑠𝑇𝑖𝑡,𝑗−𝑠
2

𝑆

𝑠=0

+ ∑ 𝛼𝑠𝑃𝑟𝑖𝑡,𝑗−𝑠

𝑆

𝑠=0

+ ∑ 𝜗𝑠𝑃𝑟𝑖𝑡,𝑗−𝑠
2

𝑆

𝑠=0

+ 𝜇𝑖 + 𝜏𝑡𝑗 + 𝜖𝑖𝑡𝑗  (3) 

 

where 𝑙𝑛𝑃𝑖𝑡𝑗 represents the logarithm of each vegetable’s price index in city i in year t and 

month j which is modeled as a quadratic function of relevant temperature (T) and relevant 

precipitation (Pr). These relevant weather measures are constructed by weighting the 

temperature and precipitation of the different supplier states of the state where city i is 

located. Thus, cities located in the same state are assigned the same relevant weather. In our 

model, we limit the effect of weather on vegetable prices to the duration of their growing 
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period, 4 months on average (Ruiz et al., 2013). As a result, the model includes up to 3 lags 

of temperature and precipitation (S=3). By including past realizations of relevant weather, 

the model allows for the possibility of delayed weather effects on vegetable prices. That is, 

the possible impact that past weather shocks may have had on vegetable productivity is 

known by markets at time t and contemporaneous vegetable prices would be adjusted 

accordingly.  

 

The model includes city fixed effects (𝜇𝑖) and month-by-year fixed effects (𝜏𝑡𝑗). City fixed 

effects control for all the common time-invariant factors at the city level explaining vegetable 

prices. Month-by-year fixed effects flexibly control for all the common time-varying factors 

affecting vegetable prices across markets in each month of the sample. In Mexico, vegetable 

production is highly seasonal. Because of the varying climatic conditions across the country, 

there are months when some vegetables are more abundant relative to other months which 

tends to lower the price. Our month-by-year fixed effects control for the common seasonality 

between weather and vegetable prices. They also control for any other time-varying factors 

that have determined vegetable prices over time and that are common to all cities such the 

evolution of transportation infrastructure, inputs costs and international trade. In our 

estimation, standard errors are clustered at the city and state-year levels to account for the 

potential correlation of errors over time in a given city and the potential correlation of errors 

due to yearly shocks affecting cities located in the same state.  

 

The identifying assumption is that, conditional on 𝜇𝑖 and 𝜏𝑡𝑗, contemporaneous and lagged 

realizations of relevant weather are not correlated with the rest of unobserved determinants 

of vegetable prices at the city level (𝜖𝑖𝑡𝑗). In other words, weather is expected to be randomly 

determined. The panel estimation relies on weather anomalies (deviations from the long-term 

climate) as the main source of identifying variation. Thus, in the very short run these 

deviations are generally random, unpredictable and unknown to economic agents which gives 

the fixed effects model strong foundations for causal interpretation (Dell et al., 2014; Blanc 

and Schlenker, 2017).  
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6. Data 

 

6.1 Price data 

 

In this paper we model the relationship that exists between temperature and the price of nine 

vegetables: squash, onion, chili pepper, tomato, cucumber, tomatillo, lettuce, cabbage and 

potato. Together, these vegetables represent 30.9% of the weight assigned to the Fruits and 

Vegetables component of non-core inflation in Mexico. Time series of the price index for 

each vegetable are generated by the National Institute of Statistics and Geography (INEGI 

by its Spanish acronym). INEGI is the federal institution in charge of calculating and 

publishing the CPI. For this process, INEGI quotes the price of 299 different items in 55 large 

cities across Mexico. The price index for each of the vegetables analyzed is available at the 

city level. The pair lettuce-cabbage is bundled by INEGI in a single price index because of 

the similarities among them, including their price variations (INEGI, 2018). From the 55 

cities, we excluded 10 cities from the sample because price index series for these cities were 

not available before July 2018 or because of the lack of the commercialization information 

necessary to identify supplier states.2,3 Our final sample includes 45 cities and covers the 

period from January 2001 to December 2020. Figure A3 (in the Appendix) displays the 

location of the 45 cities included in the sample.  

 

Figure 3 shows the evolution of each vegetable’s price index during the sample period. Dark 

green lines refer to the national average while light green lines represent the price index series 

of each of the 45 cities in the sample. The price of the vegetables analyzed displays a large 

seasonal component. For example, the price of tomatoes (panel d) tends to increase toward 

the end of year, when the availability of tomatoes at the national level is low. Then, the price 

of tomatoes tends to decrease in February-March when the availability of tomatoes is high 

                                                           
2 On July 2018, INEGI updated its methodology to generate the CPI. As part of this update, INEGI increased 

the number of cities from 46 to 55 (INEGI, 2018). The cities for which information is not available before July 

2018 are Atlacomulco, Cancún, Coatzacoalcos, Esperanza, Izúcar de Matamoros, Pachuca, Saltillo, Tuxtla 

Gutiérrez y Zacatecas. 
3 The only city excluded due to the lack of commercialization information is Tlaxcala.  
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and the production of the state of Sinaloa, the largest tomato producer, is at its peak. Figure 

3 also shows that vegetables prices vary substantially at the city level.  

 

Figure 3. Evolution of Each Vegetable’s Price Index, 2001-2020 

 
Note: Dark green lines refer to the national average while light green lines depict the price series of each of the 

45 cities in the sample, July 2018 =100. 

Source: Own elaboration based on data from INEGI. 

 

6.2 Weather data 

 

Monthly weather data for the period 1980-2020 was obtained from DAYMET (Thornton et 

al., 2018), a gridded dataset distributed by the Oak Ridge National Laboratory (ORNL) 

Distributed Active Archive Center (DAAC) with a spatial resolution of 1 km x 1 km for 

North America. DAYMET provides monthly averages for minimum and maximum 

temperature as well as monthly accumulated precipitation. Monthly average temperature 

results from averaging monthly maximum and minimum temperatures. Weather variables 
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were created for each grid point and aggregated at the state level by averaging grid cell values 

over agricultural land in each state. To identify agricultural land, we relied on a map 

generated by the Mexican Ministry of Agriculture (SIAP, 2020b).4 Thus, our analysis 

excludes weather data that is not relevant for agricultural purposes.  

 

Figure 4 displays the monthly average temperature series generated for each of the 32 

Mexican states (the geographical location of each state can be seen in Figure A2). The orange 

line highlights the case of Sinaloa, a major vegetable producer, while grey lines depict the 

temperature series of the other states. Monthly average temperature shows a large interannual 

and intra-annual variation oscillating between 5.7oC and 35.0oC during the sample period. 

Temperature also varies largely across space. The state of Sinaloa, for example, is among the 

hottest states with monthly average temperatures oscillating between 17.0oC and 35.0oC.  

 

Figure 5 plots the corresponding monthly temperature deviations (anomalies) from the 

1991-2020 temperature normal.5 During the sample period, temperature deviations range 

from -5.3oC to 12.7oC. Sinaloa displays some of the largest anomalies. In February of 2011, 

this state experienced some of its lowest temperatures on record because of a cold snap that 

lasted almost a week. This caused major losses in winter-grown crops including vegetables 

(USDA, 2011; WMO, 2012). The temperature anomaly for that month was -2.7oC, the lowest 

for the state of Sinaloa in the sample period. This state also experienced a major heat wave 

during the first half of 2014 with temperature anomalies as high as 6.5oC in April. In general, 

deviations from the temperature normal display and upward trend that is more evident in the 

last ten years of the sample period.6  

 
 

                                                           
4 The Mexican Ministry of Agriculture utilizes SPOT5 satellite imagery to estimate agricultural land. The most 

recent version of this map that is publicly available is representative of the 2010-2011 agricultural year (SIAP, 

2020b). We assume that agricultural land over the whole 2001-2020 period remains close to the 2010-2011 

agricultural year. 
5 Climate normals are used to represent the long-term weather pattern of a particular area. They describe the 

typical meteorological conditions and provide a comparison point for weather variations. 30-year climate 

normals are often used in economic literature. In our setting, 30-year normals for temperature and precipitation 

were obtained by averaging monthly temperature and precipitation from 1991 to 2020.    
6 The monthly precipitation series generated can be seen in Figures A4 and A5.   
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Figure 4. Monthly Temperature Series by State, 2001-2020 

 
Note: Orange lines refer to Sinaloa, a major state producer of vegetables while grey lines depict the temperature 

series of each of the other 31 Mexican states. 

Source: Own elaboration based on data from Thornton et al. (2018) and SIAP (2020b). 

 

Figure 5. Monthly Deviations from the Temperature Normal by State, 2001-2020 

 
Note: Orange lines refer to Sinaloa, a major state producer of vegetables while grey lines depict the temperature 

series of each of the other 31 Mexican states. Monthly temperature normals calculated as the average for the 

1991-2020 period.  

Source: Own elaboration based on data from Thornton et al. (2018) and SIAP (2020b). 
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6.3 Relevant temperature 

 

The vegetables commercialized across the 45 different cities are produced in the same state 

where the city is located or in other states. If most of the vegetable supply of the city comes 

from the same state where the city is located, then the temperature shocks associated with 

price movements at the city level are those experienced in that state. On the other hand, if 

most of the vegetable supply of a city is produced in other states, then price movements in 

the city are tied to temperature shocks experienced in those other states. Thus, a city’s price 

sensitivity to temperature changes is determined by the commercialization links that exist 

between the city and the producing states.  

 

To elicit commercialization patterns among Mexican states, we traced the distribution routes 

of producing states using monthly commercialization data from the National System of 

Market Information and Integration (SNIIM by its Spanish acronym), published by the 

Ministry of Economic Affairs, for the period 2000-2020. While trade volumes are not 

recorded by SNIIM, the origin (producing) state and the destination (purchasing) state are 

identified in each operation. For each vegetable and month, we identified a 

commercialization pattern between a pair of states if vegetables were sold and bought among 

said states in at least 9 years out of the 21 years contained in the data (about 40 % of the 

time). This procedure allowed us to identify the supplier states of a vegetable for every state 

in every month. We discarded possible intermediary states using production data (SIAP, 

2020a). Specifically, states whose average yearly production of a vegetable over the period 

2004-2020 is less than 1000 tons were excluded from the list of potential supplier states. 

Diagrams of the commercialization patterns identified for each vegetable for the whole 

2000-2020 period can be seen in Figure A6 (in the Appendix).   

 

For every state, we generated a relevant temperature by weighting the temperature of its N 

supplier states. Specifically, the relevant temperature T for vegetable k sold in a city located 

in state m in year t and month j results from weighting the temperature of the N supplier states 

of state m with the following formula:  
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𝑇𝑚𝑡𝑗
𝑘 = ∑ 𝑠𝑚𝑛𝑗

𝑘 ∗ 𝑡𝑚𝑛𝑡𝑗

𝑁

𝑛=1

                                    (4) 

 

where 𝑡𝑚𝑛𝑡𝑗 is the average temperature of the 𝑛th state provider of state m in year 𝑡 and 

month 𝑗 and 𝑠𝑚𝑛𝑗
𝑘  is the corresponding weight which is specific for vegetable k and given by: 

 

𝑠𝑚𝑛𝑗
𝑘 =

1

√𝑑𝑚𝑛

∗ 𝑠ℎ𝑝𝑟𝑜𝑑𝑛𝑗
𝑘

∑
1

√𝑑𝑚𝑛

∗ 𝑠ℎ𝑝𝑟𝑜𝑑𝑛𝑗
𝑘𝑁

𝑛=1

                       (5) 

 

Here, 𝑑𝑚𝑛 is the driving distance (in kilometers) between state m and its nth provider. 

Distances were calculated using each state’s main wholesale market (central de abasto)7 as 

starting and ending points to closely approximate the real distance traveled by vegetables 

when exchanged among states. 𝑠ℎ𝑝𝑟𝑜𝑑𝑛𝑗
𝑘  is the share of the nth supplier state in the historic 

production (2004-2020) of vegetable k in month j at the national level. The production 

component increases the weight of producing states that have specialized at producing 

vegetable k in month j over time. The inverse of the square root of the distance increases the 

weight of producing states located close to state m as it is more likely that cities in state m 

purchase vegetables from states nearby. The inverse of the square root of the distance has 

been used as weighting factor in other empirical work to generate weather variables for a 

location of interest using nearby locations (Jessoe et al., 2018).  

 

We selected historic production to reduce the threat of reverse causality between prices and 

the shares in production utilized in equation (5). Higher prices for a vegetable might stimulate 

the production of a state which could result in an increased production share. In fact, 

production shares over time display certain variability and trends (see Figure A7 in the 

                                                           
7 A Central de Abasto is a wholesale market where food products coming from different producing areas or 

imported are concentrated to then be sold to specialized local retailers who in turn sell them to final consumers. 

To generate distances among states, we used the location of 44 Centrales de Abasto considered by SNIIM. For 

states with multiple Centrales de Abasto, the starting or ending point was defined as the location of the Central 

de Abasto closest to the state’s largest city.    
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Appendix), thus, historically, prices might have had some effect on the evolution of 

production shares. By relying on historical production, we minimize the effect of short run 

changes in prices on short run changes of the shares.  

 

Note that the calculations in equation (4) are made just for the N supplier states of state m 

which could vary from one month to another. Also, note that while temperature and distances 

between state providers are not specific for each vegetable, this double-weighting procedure 

generates a relevant temperature that is vegetable specific because the production component 

of the weight varies across vegetables. Altogether, the relevant temperature T summarizes in 

a single variable the commercialization patterns between producing and purchasing states 

and the production patterns among producing states. The relevant temperature generated was 

merged to each one of the 45 cities in our sample based on the state in which the city is 

located. That is, all the cities located in state m were assigned the relevant temperatures 

generated for state m. Relevant precipitation (Pr) was analogously constructed.  

 

Figure 6 exemplifies this procedure for the case of tomatoes sold in Mexico City during the 

month of February. Panel A shows the share of every Mexican state in the total historic 

production of tomatoes during the month of February (2004-2019). The state of Sinaloa 

accounts for 66.4% of the total historic production because in February tomato production in 

Sinaloa is at its peak. Panel B shows that between 2004 and 2019, Mexico City bought 

tomatoes from 16 producing states in February. Among them is Sinaloa which is located 

1,236 kms away from Mexico City. Panel C shows the final weight assigned to each 

producing state after combining panels A and B according to equation (5). The final weight 

for Sinaloa is 71.4%. In simple words, Sinaloa accounts for 71.4% of the relevant temperature 

assigned to Mexico City in the month of February. Temperature fluctuations affecting tomato 

production in Sinaloa in February could have an important influence in Mexico City’s tomato 

prices. The weights shown on panel C vary over time. As the production cycle of tomato 

evolves over the course of the year, Sinaloa’s production is outpaced by other producing 

states and the weights are reassigned. This dynamic evolution of the weights reflects the 

changing structure of the tomato market and embed in T the temperature settings of the 

relevant producing states at different points of the production cycle.  
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Figure 6. Weighting Example: Tomatoes Sold in Mexico City in February 

a) Historic production shares by state, 2004-2020 (percentages)  

  
b) Mexico City’s state providers and distances (thousands of kms) 

 
c) Final weight of Mexico City’s state providers (percentages) 

 
Source: Own elaboration based on data from SNIIM (2020) and SIAP (2020a). 
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Table 1 presents summary statistics of the relevant temperature and precipitation variables 

generated. On average, vegetables are produced in temperate settings with mean relevant 

temperatures oscillating between 18.5oC and 21.9oC. Yet, for most of the vegetables 

analyzed, average monthly temperatures drop below 12oC and above 34oC in some months. 

 

Table 1. Summary Statistics of the Working Sample, 2001-2020 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Squash Onion Chili pepper Tomato Cucumber Tomatillo 
Lettuce & 

Cabbage 

Potato 

T (oC) 
       

 

Mean 20.3 19.9 21.3 21.6 21.9 20.7 18.5 21.1 

Std. Dev 3.2 3.1 3.8 3.4 3.5 2.6 2.8 4.2 

Min 10.1 10.6 6.8 11.0 10.3 11.3 10.1 8.1 

Max 34.4 32.4 34.9 34.8 34.9 34.9 30.8 34.8 

Pr (mm)         

Mean 57.7 41.5 42.5 43.8 49.9 54.3 60.4 56.5 

Std. Dev 70.0 45.2 50.9 55.4 67.3 65.6 68.9 74.8 

Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Max 558.8 411.9 480.0 468.1 554.3 488.8 384.9 553.9 

Obs. 10,800 10,800 10,560 10,800 10,720 10,800 9,900 10,800 

Notes: The summary statistics shown in this table are calculated using the whole sample period, that is, statistics 

are calculated pooling all markets and year-months. The number of observations is lower for some vegetables 

due to the unavailability of commercialization information for the states of Tlaxcala (all vegetables), Chiapas 

(chili pepper), Campeche (cucumber) and Hidalgo (lettuce and cabbage). Also, price index information for 

lettuce and cabbage is not available before July 2002.  

Source: Own elaboration based on data from INEGI, SNIIM (2020) and Thornton et al. (2018). 

 

7. Results 

 

Parameter estimates of equation (3) are shown in Table 2. Each column shows the results of 

a separate regression for each vegetable’s ln(P) on current and lagged quadratic functions of 

relevant temperature and precipitation. There are three main results.  

 

First, there is a convex U-shaped relationship between contemporaneous temperatures and 

the contemporaneous price of most of the vegetables analyzed although the estimated 

relationship is statistically significant only for the case of squash (at a 1% level), chili pepper 

and tomato (at a 5% or 10% level). This convex U-shaped relationship between temperature 

and vegetable prices is consistent with the existence of an optimum temperature, so that 
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temperatures above or below are associated with higher vegetables prices. This result is also 

consistent with the relationship between temperature and agricultural yields that has been 

found in related literature in which low and high temperatures are associated with lower 

yields (Schlenker and Roberts, 2009; Burke and Emerick, 2016; Moore and Lobell, 2014; 

Mérrel and Gammans, 2021). 

 

Second, there is also a convex U-shaped relationship between lagged temperatures and 

contemporaneous vegetables prices. This relationship is present in most lags and for most of 

the vegetables analyzed although the precision of the estimates varies by case. In general, the 

relationship is estimated with a high precision for squash and tomato (statistically significant 

at a 1% level for some lags). For the rest of the vegetables, the relationship is estimated with 

a relatively good precision (at a 5% or 10% level). The varying levels of statistical 

significance across different lags might indicate that the price of some vegetables is 

particularly sensitive to temperature at specific points of their growing period. The price of 

squash and tomato seems particularly sensitive to temperature shocks throughout most of 

their growing period. In other vegetables this sensitivity is more evident at the beginning 

(tomatillo), the middle (cucumber) or the end (chili pepper). These results could be explained 

by the damages caused by temperature shocks to plant health at different stages of 

development such as the germination, flowering, or ripening periods (Ortiz-Bobea and Just 

2013). The biological cycle of each vegetable is different and so is their sensitivity to 

temperature fluctuations.   

 

Third, precipitation has a limited role at explaining vegetable prices with most of the 

estimates not being statistically significant. This result is not surprising given the fact that 

most of vegetable production in Mexico is obtained using irrigation.  
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Table 2. Panel Estimates of the Relationship Between Weather and Vegetable Prices 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Squash Onion Chili 

pepper 

Tomato Cucumber Tomatillo Lettuce & 

Cabbage 

Potato 

         

Tt -0.0726*** -0.0248 -0.0175** -0.0224** 0.0009 -0.0152 -0.0076 0.0065 
 (0.0191) (0.0165) (0.0078) (0.0110) (0.0110) (0.0104) (0.0129) (0.0059) 

Tt
2 0.0017*** 0.0004 0.0004** 0.0005* -0.0000 0.0005** 0.0001 -0.0002 

 (0.0004) (0.0004) (0.0002) (0.0002) (0.0002) (0.0002) (0.0003) (0.0001) 
 

       
 

Tt-1 -0.0504*** -0.0205** -0.0073* -0.0199* -0.0088** -0.0063 -0.0031 -0.0098** 
 (0.0153) (0.0078) (0.0042) (0.0103) (0.0043) (0.0103) (0.0050) (0.0039) 

Tt-1
2 0.0011*** 0.0003* 0.0002* 0.0006*** 0.0003** 0.0002 0.0000 0.0002** 

 (0.0003) (0.0002) (0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0001) 

         

Tt-2 -0.0359*** -0.0129* -0.0011 0.0008 -0.0076** -0.0152** -0.0061 0.0038 
 (0.0119) (0.0068) (0.0069) (0.0102) (0.0036) (0.0073) (0.0039) (0.0031) 

Tt-2
2 0.0009*** 0.0001 -0.0000 0.0001 0.0002*** 0.0004** 0.0003** -0.0001 

 (0.0002) (0.0001) (0.0002) (0.0002) (0.0001) (0.0002) (0.0001) (0.0001) 
   

     
 

Tt-3 0.0186* -0.0280* -0.0111 -0.0446*** -0.0010 -0.0260** -0.0088* -0.0056 
 (0.0104) (0.0153) (0.0093) (0.0160) (0.0032) (0.0119) (0.0045) (0.0084) 

Tt-3
2 -0.0005** 0.0005 0.0002 0.0012*** -0.0000 0.0006** 0.0004** 0.0002 

 (0.0002) (0.0003) (0.0002) (0.0004) (0.0001) (0.0002) (0.0001) (0.0002) 
   

     
 

Prt 0.0036 0.0061*** 0.0064*** 0.0021 -0.0003 -0.0003 -0.0015 0.0026** 

 (0.0023) (0.0016) (0.0019) (0.0016) (0.0011) (0.0021) (0.0013) (0.0011) 

Prt
2 -0.0000 -0.0002*** -0.0001** -0.0000 -0.0000 -0.0000 0.0000 -0.0001*** 

 (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

         

Prt-1 0.0057** 0.0037* -0.0005 0.0010 -0.0014 -0.0011 -0.0000 -0.0013 

 (0.0024) (0.0020) (0.0015) (0.0015) (0.0013) (0.0014) (0.0017) (0.0010) 

Prt-1
2 -0.0001 -0.0001** 0.0000 -0.0001 0.0000 0.0000 -0.0001 -0.0000 

 (0.0001) (0.0001) (0.0000) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) 

         

Prt-2 0.0004 -0.0014 -0.0003 0.0027* -0.0011 -0.0001 -0.0004 0.0002 

 (0.0029) (0.0026) (0.0015) (0.0015) (0.0013) (0.0014) (0.0016) (0.0010) 

Prt-2
2 0.0001 0.0000 -0.0000 -0.0001 0.0001* 0.0000 -0.0000 -0.0000* 

 (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

         

Prt-3 -0.0028 -0.0039 0.0020 0.0044** -0.0004 0.0003 -0.0005 -0.0006 

 (0.0028) (0.0026) (0.0027) (0.0019) (0.0013) (0.0016) (0.0015) (0.0011) 

Prt-3
2 0.0001 0.0001 0.0000 -0.0001 0.0000 -0.0000 -0.0000 -0.0000 

 (0.0001) (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) 

         

City FE Yes Yes Yes Yes Yes Yes Yes Yes 

Month-by-

year FE 

Yes Yes Yes Yes Yes Yes Yes Yes 

R2 0.8536 0.9325 0.8872 0.9053 0.8953 0.8678 0.8901 0.9081 

N 10800 10800 10560 10800 10720 10800 9900 10800 

Note: Regressions are weighted by the share of each city on the national CPI. Standard errors (in parenthesis) 

clustered at the city and state-year level. * p<0.10, ** p<0.05, *** p<0.01. 

Source: Own elaboration based on data from INEGI, SNIIM (2020) and Thornton et al. (2018). 

 

Table A1 (in the Appendix), shows that these results are robust to the exclusion of 

precipitation as a control, which demonstrates that results are not driven by multicollinearity 

among weather variables.  Table A2 (in the Appendix) shows the results obtained when 
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region-by-year-by-month fixed effects are included in the estimation. This identification 

strategy conditions the identification of the parameters to rely on weather variation over time 

and across cities within the same region. Results are robust to the inclusion of these fixed 

effects, but the estimation is less precise because there is less residual variation in prices left 

to be explained by weather. Table A3 displays the results obtained when we modify the 

calculation of the production shares used in the weighting procedure to generate relevant 

weather. Specifically, instead of calculating shares using historical monthly production we 

use shares calculated using monthly production in 2004, the first year for which monthly data 

is available. We keep shares constant at 2004 levels to avoid the potential endogeneity that 

arises by the influence of price movements on the production shares after 2004. Table A3 

shows that our main finding, the existence of a convex U-shaped relationship between 

temperature and vegetable prices, is robust to this change in the weighting procedure albeit 

some changes in the statistical significance of the estimated parameters for some vegetables. 

Finally, Table A4 shows the results obtained when we allow for spatial dependence in the 

error term of a city with its corresponding neighboring cities. Specifically, we estimate a 

spatial error model assuming that the correlation among errors is limited to the 4 closest 

cities. With this approach we allow for the possibility of spatial spillovers from weather 

shocks to prices among neighboring cities. Table A4 confirms that our main results are robust 

to spatial correlation with minimal differences in the point estimates and their statistical 

significance.  

 

Figure 7 displays the marginal effects for each vegetable calculated using the parameter 

estimates of Table 2 and evaluating at different temperature levels. In most cases, the 

marginal effect is upward slopping with negative values to the left of the optimal temperature 

and positive values to the right. This means that for average monthly temperatures above the 

optimal, a 1oC increase translates into higher vegetable prices. The converse is true for 

average monthly temperatures below the optimal level. 
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Figure 7. Marginal Effects of Temperature on Vegetable Prices  
   

 
Source: Own elaboration based on data from INEGI, SNIIM (2020) and Thornton et al. (2018). 
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Several interesting patterns emerge from Figure 7. First, some vegetable prices are sensitive to 

both colder and hotter than optimal temperatures. Such is the case of squash (lags 0 to 2), chili 

pepper (lag 0), tomato (lags 1 and 3), cucumber (lags 1 and 2), tomatillo (lags 2 and 3) and potato 

(lag 1). Lettuce and cabbage seem to be sensitive to only hot temperatures (see lags 2 and 3). 

Finally, the price of onions seems to be particularly sensitive to cold temperatures (see lags 1 to 

3).  

 

8. Simulating Temperature Shocks  

 

We use the parameter estimates shown in Table 2 to calculate the percentage change in vegetable 

prices associated with extreme shocks of temperature. Specifically, we simulate a 2 s.d. decrease 

and increase in monthly average temperatures to recreate a frost and a heat wave. This increase is 

roughly equal to 6oC above or below observed monthly temperatures (see Table 1). The percentage 

change in the price of each vegetable after a temperature shock of 2 s.d. in period (lag) s is obtained 

using the following expression: 

 

∆𝑙𝑛𝑃𝑠 = 𝜑�̂� ∗ (�̿�𝑠 − �̅�𝑠) + 𝛾�̂� ∗ (�̿�2
𝑠 − �̅�2

𝑠)                                (6) 

 

where �̅�𝑠 is the average monthly temperature in period (lag) s and �̿�𝑠 = �̅�𝑠 ± 2𝑠. 𝑑.𝑇𝑠
. �̅�𝑠 is 

calculated by averaging monthly temperatures over the whole sample pooling all markets and 

year-months. Figure 8 displays a graphic representation of the calculation given by equation (6) 

for the case of an increase of 2 s.d. The figure also represents the case in which the average 

temperature �̅�𝑠 is larger than the optimal temperature 𝑇∗
𝑠. The percentage change in price after the 

temperature increase of 2 s.d. is equivalent to the difference between points A and B.  
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Figure 8. Graphic Representation of a Temperature Shock 

Source: Own elaboration. 
 

Figure 9 summarizes the results. A 2 s.d. decrease in monthly average temperature has a positive 

and statistically significant effect in the price of squash and onions. In both cases de estimated 

effects are of considerable magnitude. For example, the price of squash immediately increases 

9.6% after the temperature shock and 7.9% one month later. The price of onions is particularly 

sensitive to low temperatures with estimated effects that are larger than 6.0% in every lag. These 

findings are in line with previous results that associate extremely cold temperatures with high food 

inflation in Mexico (Banco de México, 2013). Temperature decreases do not have statistically 

significant effects in the price of the other six vegetables. A variety of factors could explain this 

result. First, vegetable imports could increase and mitigate the upward pressure in vegetable prices 

caused by a frost. Second, for vegetables with a larger imports share, the domestic price could be 

closely tied to the international price making it less sensitive to domestic weather shocks. This is 

particularly true for potatoes (see Figure 2). Finally, some vegetables are highly substitutable 

among each other. Such is the case of tomatoes and tomatillos whose use in Mexican cuisine is 

almost interchangeable. Also, there is a large number of different chili peppers varieties in 

T (oC) 

A 

B 

ln(P) 

�̿�𝑠  �̅�𝑠  𝑇𝑠
∗ 

Δln(P) 
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Mexico.8 In the event of a sizable price increase in one of them, consumers could decide to use 

another variety.   

 

Figure 9. Percentage Change in Vegetable Prices after a Decrease or Increase of 2 s.d. in 

Temperature 

 
Note: Bars denote 90% confidence intervals. 

Source: Own elaboration based on data from INEGI, SNIIM (2020) and Thornton et al. (2018). 
 

A 2 s.d. increase in average monthly temperatures immediately increases the price of squash 

(3.7%), chili pepper (3.3%) and tomatillo (3.2%). The temperature shock also has lagged effects 

on the price of most of the vegetables analyzed. For example, the price of tomato increases by 

5.6%, 2.5% y 9.2% in the first, second and third months after the shock. The prices of squash, 

cucumber, tomatillo, lettuce and cabbage and potato behave similarly. This effect is possibly 

                                                           
8 https://www.inah.gob.mx/reportajes/597-chiles-y-salsas-en-mexico-un-sabor-a-identidad 
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explained by damages caused by heat stress in early stages of the crop’s development such as the 

germination or the flowering periods (Ortiz-Bobea and Just 2013) particularly in cool-weather 

vegetables such as squash, cucumber, lettuce and cabbage.  

 

Figure 10 presents results of this simulation when the estimation is restricted to a sub-sample 

composed of the main vegetable producers. Specifically, equation (3) is re-estimated using only 

the 14 states shown in Figure 1 (see parameter estimates in Table A5). By doing this, the estimation 

only considers prices and relevant weather in cities located in or close to the main producing areas. 

Such cities are more likely to rely on local production to meet local supply as opposed to more 

distant cities that could have a more diversified portfolio of vegetable suppliers. In the event of a 

temperature shock affecting a main producing area, vegetable prices in nearby cities could be more 

sensitive relative to vegetable prices in more distant cities.  Figure 10 suggests that this is the case.  

In general, the estimated effects of 2 s.d. temperature shocks are larger when the estimation is 

restricted to the main producing areas. For example, the price of tomato would increase by 13.0% 

three months after a temperature increase of 2 s.d. above average (panel d). This is 3.8% higher 

than the effect estimated when using the whole sample (see panel d in Figure 8). The immediate 

affect is also larger (5.0% vs 3.0%). Overall, these results show that vegetable prices in markets 

geographically close to main producing areas are the most sensitive to temperature shocks.  
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Figure 10. Percentage Change in Vegetable Prices after a Decrease or Increase of 2 s.d. in 

Temperature, Sample Restricted to Main Producers 
 

 
Note: Bars denote 90% confidence intervals. 

Source: Own elaboration based on data from INEGI, SNIIM (2020) and Thornton et al. (2018). 
 

Observed monthly changes on each vegetable’s price index display a large variation with some 

months experiencing increases or decreases of more than 50% (see Figure 11). Yet, a 2 s.d. 

temperature shock would induce a change on vegetable prices that is, in general, larger than the 

mean monthly change of the vegetable’s price index. For example, the price of tomatillo would 

increase 3.2% immediately after a temperature increase of 2 s.d. which is about 19 times the mean 

monthly change in tomatillo prices observed in the sample period. Some lagged effects are also 

sizable. The increase in the price of tomato after three months of the temperature increase (9.2%) 

is about 48 times larger than the observed average monthly change in tomato prices. A 2 s.d. 

decrease in temperature rises the prices of squash and onions by a magnitude that is also 

considerable larger than the average increase observed in the sample. Thus, our results show that 

temperature shocks are one of the factors explaining the observed variation in vegetable prices. 
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Their effect is large enough to induce larger-than-average price changes. Repeated shocks to 

temperature might translate into successive increases in vegetables prices which might lead to 

higher inflation.  

 

Figure 11. Histograms of Monthly Changes in each Vegetable’s Price Index during the 

Sample Period 

 
Note: Histograms based on seasonally adjusted CPI series for each city in the sample.  

Source: Own elaboration based on data from INEGI.  

 

9. The Productivity Mechanism 

 

In this section we deepen the analysis of the possible mechanisms leading to price increases after 

a temperature shock. In particular, we explore the productivity channel by which a temperature 

shock impacts vegetables prices through its effect on yields. In this section, we offer suggestive 

evidence of it by exploring the relationship between vegetable yields and temperature. Previous 

findings have documented a non-linear concave relationship between agricultural yields and 
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temperature (Schlenker and Roberts, 2009; Burke and Emerick, 2016; Moore and Lobell, 2014; 

Mérrel and Gammans, 2021) but almost all of the existing evidence of this relationship applies to 

grains. For example, Schlenker and Roberts (2009) find that the corn, wheat and soybean yields in 

the US decrease sharply once temperature surpasses a 29-32oC threshold. No previous evidence 

for the case of vegetables exists. In this section, we investigate whether such concave relationship 

holds also for the case of vegetables. If it does, then vegetable yield decreases associated to 

temperature shocks could explain the price increases found in the previous section. To investigate 

the influence of temperatures on vegetable yields we rely on yield data for each vegetable at the 

municipality level for the period 2003-2020 (SIAP, 2021). Yield data is separated by agricultural 

season (Spring-Summer, Fall-Winter) and by mode of production (rainfed and irrigated). We 

combine yield data with weather data from DAYMET aggregated at the municipality level by 

averaging grid cell values over agricultural land in each municipality (SIAP, 2020b). Rather than 

aggregating our weather data to the state level (as in our price analysis), we keep the analysis at 

the municipality level in order to take advantage of the large yield and weather variation observed 

in Mexico at the municipality level.9 For each vegetable, we estimate the following fixed effects 

model:  

 

𝑙𝑛𝑌𝑖𝑒𝑙𝑑𝑖𝑚𝑠𝑡 = 𝛽1𝑇𝑖𝑚𝑠𝑡 + 𝛽2𝑇𝑖𝑚𝑠𝑡
2 + 𝛽3𝑃𝑟𝑖𝑚𝑠𝑡 + 𝛽4𝑃𝑟𝑖𝑚𝑠𝑡

2 + 𝜔𝑖 + 𝜎𝑚+ 𝜌𝑠 + 𝜏𝑡 + 𝜖𝑖𝑚𝑠𝑡           (7) 

 

where 𝑌𝑖𝑒𝑙𝑑𝑚𝑠𝑡 represents the yield (in tons per hectare) of a vegetable in municipality i, mode of 

production m (m=Irrigated, Rainfed), season s (s=Spring-Summer, Fall-Winter) and year t. T and 

Pr stand for average seasonal temperature and accumulated seasonal precipitation for each 

municipio, respectively. The estimation includes municipality (𝜔𝑖), mode (𝜎𝑚), season (𝜌𝑠) and 

year (𝜏𝑡) fixed effects. Seasonal temperature (precipitation) results from averaging (summing up) 

monthly temperature (precipitation) over the length of each season (April-September for 

Spring-Summer and October-March for Fall-Winter).  

 

Estimation results for equation (7) are presented in Table 3. Each column presents results for each 

vegetable with lettuce and cabbage analyzed separately due the availability of yield data for each. 

Results document a concave inverted-U shaped relationship between temperature and vegetables 

                                                           
9 A municipality is the lowest level of federal administration in Mexico. As of 2020, there are a total of 2,469 

municipalities.   
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yields in seven out of the nine vegetables analyzed. This relationship is statistically significant in 

five cases. Such functional relationship implies optimum temperatures than range from 14.6oC in 

the case of potato to 26.8oC in the case of tomato (see bottom row). Temperatures below and above 

such optimum are associated to lower vegetable yields. In general, the estimated optimal 

temperatures fall within the temperature range at which each vegetable is expected to grow 

optimally (Ruiz et al., 2013). These findings echo the results documented for other crops in related 

literature and suggest that temperature is also a determinant of vegetable yields. Table 3 also shows 

that, in general, the relationship between precipitation and vegetable yields is weak, a result 

consistent with the fact that vegetable production in Mexico takes place mostly under irrigated 

conditions.  

 

Figure 12 plots the estimated functional relationship for all the vegetables analyzed, except 

tomatillo and lettuce due to the absence of statistically significant results.10 Each panel identifies 

the estimated optimal temperature (thick vertical line) along with the average temperature of the 

top four producing states (thin vertical lines). The average temperature of each producing state is 

calculated using as reference the four months in which their share in total production is at their 

highest (see Figure 1). In general, the average temperature of the main producing states clusters 

around the estimated optimal temperatures. Thus, positive (heat waves) or negative (frosts) 

temperature shocks are likely to negatively impact vegetable yields. In the case of onion, 

cucumber, potato and cabbage, the average temperature of some of the main producing states is 

larger than the estimated optimal temperature. As a result, the yield and price of these vegetables 

could be particularly sensitive to heat waves in those areas.   

 

                                                           
10 The quadratic function shown in each panel results from evaluating the following expression:  

𝑙𝑛𝑌𝑖𝑒𝑙𝑑 = 𝛽1̂𝑇 + 𝛽2̂𝑇2 

where 𝛽1̂ and 𝛽2̂ are the paremeter estimates for temperature in equation (7). 
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Table 3. Panel Estimates of the Effect of Weather on Vegetable Yields 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 Squash Onion Chili pepper Tomato Cucumber Tomatillo Lettuce Cabbage Potato 

T 0.0533** 0.0672*** 0.1975*** 0.0525** 0.0496 0.0083 -0.0049 0.0675*** 0.0241 

 (0.0251) (0.0171) (0.0680) (0.0225) (0.0358) (0.0333) (0.0315) (0.0241) (0.0302) 

          

T2 -0.0011** -0.0016*** -0.0037** -0.0010* -0.0014* 0.0002 -0.0001 -0.0017*** -0.0008 

 (0.0005) (0.0004) (0.0014) (0.0005) (0.0008) (0.0008) (0.0008) (0.0005) (0.0007) 

          

P 0.0019* -0.0026* 0.0017 0.0026** -0.0009 -0.0001 -0.0025** -0.0001 -0.0002 

 (0.0011) (0.0014) (0.0017) (0.0011) (0.0014) (0.0016) (0.0012) (0.0008) (0.0010) 

          

P2 -0.0000 0.0000** -0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

          

Fall-Winter=1 0.0606 -0.0090 0.2194** 0.1075** -0.0495 0.0121 -0.1508** 0.0180 -0.0731 

 (0.0518) (0.0434) (0.1049) (0.0483) (0.0563) (0.0669) (0.0666) (0.0634) (0.0591) 

          

Irrigated=1 0.3786*** 0.3943*** 0.2191*** 0.2938*** 0.2105*** 0.3345*** 0.1036* 0.0875*** 0.3796*** 

 (0.0681) (0.1224) (0.0461) (0.0573) (0.0279) (0.0434) (0.0594) (0.0287) (0.0814) 

          
          

Optimum T* 23.67*** 20.41*** 26.78*** 26.82*** 17.53*** -17.79 -17.83 20.18*** 14.62** 

 (2.93) (1.08) (2.54) (4.81) (4.05) (133.20) (212.34) (2.46) (7.30) 
          

R2 0.6830 0.8385 0.8623 0.7383 0.8319 0.6339 0.7055 0.7876 0.8618 

N 12795 9156 14741 18396 7943 13394 4635 3934 4213 

Note: Regressions are weighted by the 2003-2020 average planted area (has) at the municipality level. Standard errors (in parenthesis) clustered at the 

municipality and state-year level. * p<0.10, ** p<0.05, *** p<0.01. 

Source: Own elaboration based on data from SIAP (2021) and Thornton et al. (2018). 
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Figure 12. Estimated Functional Relationship Between Temperature and Vegetable Yields 

 
Source: Own elaboration based on data from INEGI, SNIIM (2020) and Thornton et al. (2018). 
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Finally, Figure 13 plots the estimated yield effect of temperature shocks. Using the parameter 

estimates of Table 3, we calculate the percentage change in vegetable yields associated with a 2 

s.d. decrease (increase) below (above) the average seasonal temperature using a procedure similar 

to the one described in section 7. In general, temperature shocks have a detrimental effect on 

vegetable yields. In some cases, the effect is sizable. For example, very cold temperatures could 

decrease chili pepper yields by 41.7%. On the other hand, very hot temperatures could decrease 

cucumber yields by 17.6%. Overall, results indicate that the productivity channel is one of the 

mechanisms by which temperature shocks impact vegetable prices.  

 

Figure 13. Percentage Change in Vegetable Yields after a Decrease or Increase of 2 s.d. in 

Temperature 
 

 
Source: Own elaboration based on data from INEGI, SNIIM (2020) and Thornton et al. (2018). 
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10. Conclusions 

 

In this paper, we estimate the functional relationship that exists between temperature and 

vegetables prices using 20 years of monthly panel data at the city level. The estimation accounts 

for city fixed effects and controls for market seasonality by including month-by-year fixed effects 

which minimizes the risk of omitted variables bias. Importantly, in our estimation, a relevant 

temperature for each city is constructed using a double-weighting procedure that considers the 

historical importance of supplier states in producing each vegetable and their distance to the cities. 

Our results reveal a non-linear U-shaped relationship between temperature and vegetable prices 

that exists for current and past temperatures.  

 

Using the parameter estimates of the temperature-price relationship for vegetables we infer the 

percentage change in monthly prices after a temperature shock of 2 s.d. below and above monthly 

average temperatures. In some cases, the shock increases prices immediately (squash, onions, chili 

pepper and tomatillo). In other cases, the shock has lagged effects and prices increase in subsequent 

periods. This lagged effect is possible due to crop damages at early stages of its growing period 

(Ortiz-Bobea and Just, 2013) and/or to the updating of price expectations around the timing of the 

shock (Letta et al, 2021). Price increases due to temperature shocks are not negligible. For 

example, after a temperature increase of 2 s.d. the price of squash, chili pepper and tomatillo would 

immediately go up by more than 3%. The price of tomato would increase by more than 9% three 

months after the shock. Interestingly, the impact of temperature shocks in vegetables prices are 

larger in cities closer to the main producing areas. In general, price increases explained by 

temperature shocks are larger than the average monthly increase in each vegetable’s price index 

observed in the sample.  

 

The findings of this article also suggest that temperature shocks may have a detrimental effect on 

vegetable yields which could be an important driver of the impact on prices. We document a 

concave relationship between vegetable yields and temperature and evaluate the potential effect of 

temperature shocks using the estimated relationship. Our results confirm that temperature shocks 

of at least 2 s.d. decrease the yield of most of the vegetables analyzed. The supply shortfalls caused 

by the shocks ultimately lead to increased prices. Our results suggest that markets anticipate these 

damages, form expectations, and adjust vegetable prices accordingly. 
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Mexican agriculture is frequently exposed to extreme weather with recent examples of frosts, 

heatwaves, droughts and extreme precipitation. The findings of this paper demonstrate that 

temperature shocks are among the factors explaining monthly changes in vegetable prices. These 

results highlight the importance of considering weather events when understanding the sources of 

inflation for agricultural products. Our results could be used to infer the price effects of heat waves 

or frosts in the price of vegetables and thus anticipate actions seeking to reduce price volatility. 

Those actions could include the timely programing of imports to substitute lost production or lower 

yields and the promotion of policies aimed at reducing the dependency of local markets on few 

producing areas. The diffusion of technologies seeking to improve the resilience of vegetable crops 

to high temperatures, such as heat tolerant varieties, could also reduce the sensibility of vegetable 

prices to temperature shocks. In the context of ongoing climate change, upward pressures on prices 

associated to temperature shocks could become larger and more frequent (Perkins-Kirkpatrick and 

Lewis, 2020; Diffenbaugh, 2020), thus, in the future, the effect of temperature shocks on vegetable 

yields and prices could become larger and more evident and adaptive actions will be necessary to 

mitigate the adverse effects of climate change on prices.   
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12. Appendix 

 

12.1 Tables 

 

Table A1. Estimated Non-Linear Relationship Between Temperature and Vegetable Prices, 

No Precipitation 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Squash Onion Chili pepper Tomato Cucumber Tomatillo Lettuce & 
Cabbage 

Potato 

         

Tt -0.0792*** -0.0281 -0.0141* -0.0169 0.0032 -0.0148 0.0028 0.0065 
 (0.0206) (0.0175) (0.0072) (0.0107) (0.0113) (0.0106) (0.0136) (0.0059) 

Tt
2 0.0017*** 0.0005 0.0003* 0.0004 -0.0001 0.0005* -0.0000 -0.0002 

 (0.0005) (0.0004) (0.0002) (0.0002) (0.0003) (0.0002) (0.0003) (0.0001) 
         

Tt-1 -0.0530*** -0.0240*** -0.0092** -0.0218** -0.0088** -0.0065 -0.0029 -0.0108*** 
 (0.0154) (0.0069) (0.0045) (0.0107) (0.0043) (0.0110) (0.0048) (0.0039) 

Tt-1
2 0.0011*** 0.0004** 0.0002** 0.0006*** 0.0003** 0.0002 0.0001 0.0003*** 

 (0.0003) (0.0002) (0.0001) (0.0002) (0.0001) (0.0003) (0.0001) (0.0001) 

         

Tt-2 -0.0343*** -0.0135* -0.0017 -0.0003 -0.0073** -0.0139* -0.0076** 0.0024 
 (0.0125) (0.0076) (0.0065) (0.0104) (0.0033) (0.0075) (0.0037) (0.0033) 

Tt-2
2 0.0008*** 0.0002 0.0000 0.0001 0.0002*** 0.0004** 0.0003*** -0.0000 

 (0.0003) (0.0002) (0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0001) 

         

Tt-3 0.0116 -0.0290** -0.0129 -0.0529*** -0.0005 -0.0259** -0.0121*** -0.0058 
 (0.0110) (0.0134) (0.0090) (0.0179) (0.0030) (0.0114) (0.0040) (0.0087) 

Tt-3
2 -0.0004 0.0005* 0.0002 0.0013*** -0.0000 0.0006** 0.0005*** 0.0002 

 (0.0002) (0.0003) (0.0002) (0.0004) (0.0001) (0.0002) (0.0001) (0.0002) 

         

City FE Yes Yes Yes Yes Yes Yes Yes Yes 

Month-by-year FE Yes Yes Yes Yes Yes Yes Yes Yes 

R2 0.8521 0.9323 0.8866 0.9049 0.8951 0.8678 0.8893 0.9075 

N 10800 10800 10560 10800 10720 10800 9900 10800 

Note: Regressions are weighted by the share of each city on the national CPI. Standard errors (in parenthesis) 

clustered at the city and state-year level. * p<0.10, ** p<0.05, *** p<0.01. 

Source: Own elaboration based on data from INEGI, SNIIM (2020) and Thornton et al. (2018). 
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Table A2. Panel Estimates of the Relationship Between Weather and Vegetable Prices with 

Time-Varying Regional Fixed Effects 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Squash Onion Chili 

pepper 

Tomato Cucumber Tomatillo Lettuce & 

Cabbage 

Potato 

         

Tt -0.0592*** -0.0239* -0.0120 -0.0130 -0.0137 -0.0221** -0.0208* 0.0072 
 (0.0189) (0.0134) (0.0097) (0.0107) (0.0082) (0.0101) (0.0106) (0.0063) 

Tt
2 0.0015*** 0.0005 0.0003 0.0003 0.0004** 0.0005** 0.0004 -0.0002 

 (0.0004) (0.0003) (0.0002) (0.0002) (0.0002) (0.0002) (0.0003) (0.0002) 
 

       
 

Tt-1 -0.0381*** -0.0221*** -0.0149*** -0.0231*** -0.0072* -0.0154 -0.0016 -0.0049 
 (0.0104) (0.0080) (0.0052) (0.0085) (0.0038) (0.0110) (0.0047) (0.0040) 

Tt-1
2 0.0009*** 0.0004** 0.0004*** 0.0006*** 0.0002** 0.0003 -0.0000 0.0001 

 (0.0002) (0.0002) (0.0001) (0.0002) (0.0001) (0.0003) (0.0001) (0.0001) 

         

Tt-2 -0.0420*** -0.0047 -0.0090 -0.0150 -0.0037 -0.0250*** -0.0044 -0.0008 
 (0.0070) (0.0074) (0.0069) (0.0121) (0.0030) (0.0079) (0.0035) (0.0039) 

Tt-2
2 0.0010*** -0.0000 0.0002 0.0003 0.0001 0.0006*** 0.0002 0.0000 

 (0.0001) (0.0002) (0.0002) (0.0002) (0.0001) (0.0002) (0.0001) (0.0001) 
   

     
 

Tt-3 0.0168 -0.0292** -0.0043 -0.0547*** 0.0013 -0.0290** -0.0062 -0.0024 
 (0.0136) (0.0123) (0.0104) (0.0181) (0.0031) (0.0129) (0.0044) (0.0095) 

Tt-3
2 -0.0005* 0.0006** 0.0001 0.0013*** -0.0001 0.0007** 0.0002* 0.0001 

 (0.0003) (0.0003) (0.0002) (0.0004) (0.0001) (0.0003) (0.0001) (0.0002) 
   

     
 

Prt 0.0024 0.0039* 0.0053** 0.0012 0.0005 -0.0002 -0.0033* 0.0010 

 (0.0025) (0.0021) (0.0022) (0.0018) (0.0013) (0.0020) (0.0019) (0.0012) 

Prt
2 0.0000 -0.0001* -0.0001** -0.0000 -0.0000 -0.0000 0.0001 -0.0000 

 (0.0001) (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0001) (0.0000) 

         

Prt-1 0.0027 0.0043** -0.0006 0.0020 -0.0016 -0.0012 0.0000 0.0011 

 (0.0028) (0.0021) (0.0016) (0.0019) (0.0013) (0.0016) (0.0019) (0.0011) 

Prt-1
2 -0.0000 -0.0001** -0.0000 -0.0001 0.0000 0.0000 -0.0000 -0.0001** 

 (0.0001) (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0001) (0.0000) 

         

Prt-2 -0.0001 0.0025 -0.0024 0.0037** -0.0007 -0.0018 -0.0009 0.0019* 

 (0.0031) (0.0029) (0.0018) (0.0016) (0.0011) (0.0016) (0.0018) (0.0011) 

Prt-2
2 0.0000 -0.0001 0.0001 -0.0001** 0.0000 0.0001* 0.0000 -0.0001*** 

 (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) (0.0001) (0.0000) 

         

Prt-3 0.0009 0.0022 0.0012 0.0040** -0.0004 0.0010 -0.0018 0.0023* 

 (0.0036) (0.0033) (0.0027) (0.0016) (0.0015) (0.0014) (0.0019) (0.0012) 

Prt-3
2 -0.0000 -0.0001 0.0001 -0.0001** -0.0000 -0.0000 0.0000 -0.0001*** 

 (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) (0.0001) (0.0000) 

         

City FE Yes Yes Yes Yes Yes Yes Yes Yes 

Region-by-year-

by-month FE 

Yes Yes Yes Yes Yes Yes Yes Yes 

R2 0.8885 0.9396 0.9035 0.9199 0.9132 0.8986 0.9095 0.9204 

N 10800 10800 10560 10800 10720 10800 9900 10800 

Note: Regressions are weighted by the share of each city on the national CPI. Standard errors (in parenthesis) 

clustered at the city and state-year level. * p<0.10, ** p<0.05, *** p<0.01. 

Source: Own elaboration based on data from INEGI, SNIIM (2020) and Thornton et al. (2018). 
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Table A3. Panel Estimates of the Relationship Between Weather and Vegetable Prices with 

an Alternative Procedure to Generate Relevant Weather 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Squash Onion Chili 

pepper 

Tomato Cucumber Tomatillo Lettuce & 

Cabbage 

Potato 

         

Tt -0.0641*** -0.0072 -0.0082 -0.0125 -0.0038 -0.0226 -0.0037 -0.0022 
 (0.0183) (0.0126) (0.0052) (0.0085) (0.0111) (0.0147) (0.0122) (0.0060) 

Tt
2 0.0015*** 0.0001 0.0002 0.0003* 0.0001 0.0006* 0.0001 0.0001 

 (0.0004) (0.0003) (0.0001) (0.0002) (0.0002) (0.0003) (0.0003) (0.0001) 
 

       
 

Tt-1 -0.0083 -0.0007 -0.0011 -0.0191* -0.0041 -0.0120*** 0.0000 0.0002 
 (0.0060) (0.0044) (0.0041) (0.0097) (0.0028) (0.0025) (0.0018) (0.0017) 

Tt-1
2 0.0002 -0.0001 -0.0000 0.0005** 0.0001 0.0004*** -0.0001 0.0000 

 (0.0001) (0.0001) (0.0001) (0.0002) (0.0001) (0.0001) (0.0001) (0.0000) 

         

Tt-2 -0.0020 -0.0004 0.0051 -0.0197 -0.0047** -0.0114*** -0.0035*** -0.0019 
 (0.0046) (0.0042) (0.0073) (0.0135) (0.0022) (0.0034) (0.0010) (0.0015) 

Tt-2
2 0.0001 -0.0001 -0.0002 0.0006* 0.0001** 0.0003*** 0.0002*** 0.0001** 

 (0.0001) (0.0001) (0.0002) (0.0003) (0.0001) (0.0001) (0.0000) (0.0000) 
   

     
 

Tt-3 0.0023 0.0014 -0.0055 -0.0301 -0.0038** -0.0054** -0.0042*** -0.0020 
 (0.0028) (0.0053) (0.0079) (0.0187) (0.0016) (0.0022) (0.0014) (0.0016) 

Tt-3
2 -0.0001 -0.0002 0.0000 0.0008* 0.0001* 0.0001** 0.0002** 0.0001** 

 (0.0001) (0.0001) (0.0002) (0.0004) (0.0001) (0.0001) (0.0001) (0.0000) 
   

     
 

Prt 0.0037* 0.0066*** 0.0028** 0.0051** -0.0010 0.0006 -0.0013 0.0013 

 (0.0019) (0.0024) (0.0014) (0.0023) (0.0013) (0.0019) (0.0012) (0.0015) 

Prt
2 -0.0000 -0.0002* -0.0000 -0.0001 -0.0000 0.0000 -0.0000 -0.0000 

 (0.0001) (0.0001) (0.0000) (0.0001) (0.0000) (0.0001) (0.0000) (0.0000) 

         

Prt-1 0.0042** 0.0049** -0.0004 0.0006 -0.0024 0.0004 0.0012 -0.0013 

 (0.0020) (0.0019) (0.0014) (0.0023) (0.0015) (0.0016) (0.0013) (0.0014) 

Prt-1
2 -0.0001 -0.0002*** 0.0000 -0.0000 0.0000 0.0000 -0.0001* 0.0000 

 (0.0000) (0.0001) (0.0000) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) 

         

Prt-2 -0.0023 0.0020 0.0016 0.0016 -0.0016 -0.0001 -0.0015 -0.0009 

 (0.0020) (0.0023) (0.0021) (0.0025) (0.0013) (0.0014) (0.0012) (0.0010) 

Prt-2
2 0.0001** -0.0001 -0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000 

 (0.0001) (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) 

         

Prt-3 -0.0040 -0.0003 0.0034 0.0008 0.0007 0.0006 -0.0039** -0.0012 

 (0.0024) (0.0019) (0.0026) (0.0020) (0.0014) (0.0014) (0.0017) (0.0009) 

Prt-3
2 0.0001 -0.0000 -0.0000 0.0000 0.0000 -0.0000 0.0001 -0.0000 

 (0.0001) (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) 

         

City FE Yes Yes Yes Yes Yes Yes Yes Yes 

Year-by-month 

FE 

Yes Yes Yes Yes Yes Yes Yes Yes 

R2 0.8502 0.9316 0.8873 0.9043 0.8955 0.8679 0.8908 0.9092 

N 10700 10760 10560 10800 10580 10720 8963 10520 

Note: Regressions are weighted by the share of each city on the national CPI. Standard errors (in parenthesis) 

clustered at the city and state-year level. * p<0.10, ** p<0.05, *** p<0.01. 

Source: Own elaboration based on data from INEGI, SNIIM (2020) and Thornton et al. (2018). 
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Table A4. Spatial Panel Estimates of the Relationship Between Weather and Vegetable 

Prices  

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Squash Onion Chili 

pepper 

Tomato Cucumber Tomatillo Lettuce & 

Cabbage 

Potato 

         

Tt -0.0644*** -0.0253 -0.0151** -0.0189* -0.0024 -0.0211* -0.0080 0.0049 
 (0.0198) (0.0164) (0.0076) (0.0105) (0.0087) (0.0113) (0.0115) (0.0060) 

Tt
2 0.0015*** 0.0005 0.0004** 0.0004* 0.0001 0.0005** 0.0002 -0.0001 

 (0.0004) (0.0004) (0.0002) (0.0002) (0.0002) (0.0002) (0.0003) (0.0001) 
 

       
 

Tt-1 -0.0504*** -0.0209*** -0.0089** -0.0181* -0.0184** -0.0110 -0.0087 -0.0084** 
 (0.0159) (0.0071) (0.0041) (0.0098) (0.0084) (0.0080) (0.0072) (0.0040) 

Tt-1
2 0.0011*** 0.0003** 0.0002** 0.0005*** 0.0005** 0.0003 0.0002 0.0002** 

 (0.0003) (0.0002) (0.0001) (0.0002) (0.0002) (0.0002) (0.0002) (0.0001) 

         

Tt-2 -0.0434*** -0.0123* -0.0045 -0.0038 -0.0153** -0.0170** -0.0132* 0.0029 
 (0.0134) (0.0064) (0.0072) (0.0110) (0.0065) (0.0074) (0.0072) (0.0030) 

Tt-2
2 0.0010*** 0.0001 0.0001 0.0001 0.0004*** 0.0004*** 0.0004** -0.0001 

 (0.0003) (0.0001) (0.0002) (0.0002) (0.0001) (0.0002) (0.0002) (0.0001) 
   

     
 

Tt-3 0.0217* -0.0275* -0.0111 -0.0431** -0.0139 -0.0224** -0.0129 -0.0061 
 (0.0116) (0.0148) (0.0089) (0.0170) (0.0091) (0.0103) (0.0114) (0.0087) 

Tt-3
2 -0.0006** 0.0005 0.0002 0.0011*** 0.0003 0.0005** 0.0005* 0.0002 

 (0.0003) (0.0003) (0.0002) (0.0004) (0.0002) (0.0002) (0.0003) (0.0002) 
   

     
 

Prt 0.0035 0.0061*** 0.0060*** 0.0026* -0.0004 0.0010 -0.0007 0.0025** 

 (0.0025) (0.0016) (0.0018) (0.0016) (0.0010) (0.0020) (0.0013) (0.0011) 

Prt
2 -0.0000 -0.0002*** -0.0001*** -0.0001 -0.0000 -0.0000 -0.0000 -0.0001*** 

 (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

         

Prt-1 0.0034 0.0037* -0.0007 0.0016 -0.0019 -0.0005 0.0007 -0.0011 

 (0.0030) (0.0019) (0.0016) (0.0016) (0.0014) (0.0013) (0.0016) (0.0011) 

Prt-1
2 -0.0000 -0.0001** 0.0000 -0.0001 0.0000 0.0000 -0.0001 -0.0000 

 (0.0001) (0.0001) (0.0000) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) 

         

Prt-2 -0.0016 -0.0013 -0.0011 0.0035** -0.0022 0.0001 0.0001 0.0005 

 (0.0035) (0.0026) (0.0015) (0.0016) (0.0014) (0.0015) (0.0016) (0.0010) 

Prt-2
2 0.0001 0.0000 0.0000 -0.0001** 0.0001*** 0.0000 -0.0001 -0.0000** 

 (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

         

Prt-3 -0.0033 -0.0035 0.0007 0.0049*** -0.0012 0.0006 -0.0004 -0.0003 

 (0.0035) (0.0028) (0.0026) (0.0018) (0.0015) (0.0017) (0.0016) (0.0011) 

Prt-3
2 0.0001 0.0000 0.0001 -0.0001** 0.0000 -0.0000 -0.0000 -0.0000* 

 (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

         

City FE Yes Yes Yes Yes Yes Yes Yes Yes 

Year-by-month 

FE 

Yes Yes Yes Yes Yes Yes Yes Yes 

N 0.7253 0.8951 0.8339 0.8549 0.8358 0.7707 0.8470 0.8304 

R2 10800 10800 10560 10800 10560 10800 9768 10800 

Note: Results were obtained from the estimation of a spatial error model limiting the correlation among errors to the 

4 closest cities. Regressions are weighted by the share of each city on the national CPI. Standard errors (in parenthesis) 

clustered at the city level. * p<0.10, ** p<0.05, *** p<0.01. 

Source: Own elaboration based on data from INEGI, SNIIM (2020) and Thornton et al. (2018). 
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Table A5. Panel Estimates of the Relationship Between Weather and Vegetable Prices, 

Sample Restricted to the Main Producers 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Squash Onion Chili 

pepper 

Tomato Cucumber Tomatillo Lettuce & 

Cabbage 

Potato 

Tt -0.0730*** -0.0292 -0.0167** -0.0127 0.0025 -0.0231 -0.0043 0.0125 

 (0.0227) (0.0183) (0.0074) (0.0143) (0.0119) (0.0146) (0.0148) (0.0088) 

Tt
2 0.0017*** 0.0006 0.0005*** 0.0004 -0.0000 0.0006** 0.0000 -0.0004* 

 (0.0005) (0.0005) (0.0002) (0.0003) (0.0003) (0.0003) (0.0004) (0.0002) 

         

Tt-1 -0.0558** -0.0209* -0.0086 -0.0238** -0.0232*** 0.0024 -0.0117 -0.0064 
 (0.0209) (0.0109) (0.0059) (0.0103) (0.0081) (0.0135) (0.0087) (0.0052) 

Tt-1
2 0.0012*** 0.0003 0.0003* 0.0006*** 0.0006*** 0.0000 0.0002 0.0001 

 (0.0004) (0.0002) (0.0001) (0.0002) (0.0002) (0.0003) (0.0002) (0.0001) 
         

Tt-2 -0.0367** -0.0134 -0.0115 -0.0032 -0.0151* -0.0014 -0.0049 0.0014 

 (0.0161) (0.0083) (0.0071) (0.0149) (0.0074) (0.0100) (0.0078) (0.0037) 
Tt-2

2 0.0009*** 0.0002 0.0002 0.0001 0.0004** 0.0001 0.0002 -0.0001 

 (0.0003) (0.0002) (0.0002) (0.0003) (0.0002) (0.0002) (0.0002) (0.0001) 

         
Tt-3 0.0310** -0.0236 -0.0073 -0.0581*** -0.0022 -0.0140 -0.0151 0.0029 

 (0.0146) (0.0187) (0.0122) (0.0174) (0.0094) (0.0147) (0.0125) (0.0103) 

Tt-3
2 -0.0008** 0.0004 0.0001 0.0015*** 0.0000 0.0004 0.0006* 0.0000 

 (0.0003) (0.0004) (0.0003) (0.0004) (0.0002) (0.0003) (0.0003) (0.0002) 

         

Prt 0.0069* 0.0061** 0.0046* 0.0044* 0.0006 0.0024 -0.0046** 0.0022 
 (0.0037) (0.0022) (0.0025) (0.0025) (0.0015) (0.0027) (0.0019) (0.0016) 

Prt
2 -0.0001 -0.0002* -0.0001 -0.0001 -0.0001 -0.0000 0.0001* -0.0000 

 (0.0001) (0.0001) (0.0001) (0.0001) (0.0000) (0.0001) (0.0000) (0.0000) 
         

Prt-1 0.0072* 0.0040* -0.0015 0.0042** -0.0009 -0.0001 -0.0027 -0.0014 

 (0.0038) (0.0023) (0.0024) (0.0020) (0.0016) (0.0019) (0.0028) (0.0014) 
Prt-1

2 -0.0001 -0.0001 0.0000 -0.0002*** 0.0000 -0.0000 0.0000 0.0000 

 (0.0001) (0.0001) (0.0001) (0.0001) (0.0000) (0.0001) (0.0001) (0.0000) 

         

Prt-2 0.0008 0.0012 -0.0007 0.0048** -0.0007 0.0012 -0.0015 -0.0005 

 (0.0040) (0.0031) (0.0022) (0.0019) (0.0017) (0.0019) (0.0025) (0.0014) 

Prt-2
2 0.0000 -0.0001 0.0000 -0.0001** 0.0000 0.0000 -0.0000 -0.0000 

 (0.0001) (0.0001) (0.0001) (0.0001) (0.0000) (0.0001) (0.0001) (0.0000) 

         

Prt-3 -0.0029 -0.0019 0.0026 0.0050** -0.0011 -0.0002 -0.0011 0.0001 
 (0.0029) (0.0027) (0.0032) (0.0022) (0.0019) (0.0023) (0.0021) (0.0016) 

Prt-3
2 0.0001 -0.0000 0.0001 -0.0000 0.0001* 0.0000 -0.0000 -0.0001** 

 (0.0001) (0.0001) (0.0001) (0.0001) (0.0000) (0.0001) (0.0001) 0.0125 

City FE Yes Yes Yes Yes Yes Yes Yes Yes 

Year-by-

month FE 

Yes Yes Yes Yes Yes Yes Yes Yes 

R2 0.8407 0.9154 0.8558 0.8815 0.8721 0.8406 0.8956 0.8698 

N 5280 5280 5280 5280 5280 5280 4884 5280 

Note: This table presents results obtained from the estimation of equation (3) restricting the sample to the main 

vegetable producers defined as the 14 states shown in Figure 1. Regressions are weighted by the share of each city on 

the national CPI. Standard errors (in parenthesis) clustered at the city level. * p<0.10, ** p<0.05, *** p<0.01. 

Source: Own elaboration based on data from INEGI, SNIIM (2020) and Thornton et al. (2018). 
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12.2 Figures 

 

Figure A1. Non-Core Inflation and its Components, 2012-2020 

 

 
Source: Own elaboration based on data from INEGI. 
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Figure A2. States and Regions of Mexico 

 

 
Note: State numbering is as follows: 1=Aguascalientes, 2=Baja California, 3=Baja California Sur, 4=Campeche, 

5=Coahuila, 6=Colima, 7=Chiapas, 8=Chihuahua, 9=Ciudad de México, 10=Durango, 11=Guanajuato, 12=Guerrero, 

13=Hidalgo, 14=Jalisco, 15=México, 16=Michoacán, 17=Morelos, 18=Nayarit, 19=Nuevo León, 20=Oaxaca, 

21=Puebla, 22=Querétaro, 23=Quintana Roo, 24=San Luis Potosí, 25=Sinaloa, 26=Sonora, 27=Tabasco, 

28=Tamaulipas, 29=Tlaxcala, 30=Veracruz, 31=Yucatán, 32=Zacatecas. 

Source: Own elaboration. 
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Figure A3. Location of Cities 

 

 
Note: The map shows the location of the 45 cities (red dots) contained in the sample. There is at least one city in every 

state, except for Tlaxcala. For the city located in this state, data on trading patterns was not available and is thus 

excluded from the final sample.  

Source: Own elaboration based on data from INEGI and SNIIM (2020). 
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Figure A4. Monthly Precipitation Series by State, 2001-2020 

 
Note: Dark blue lines refer to Sinaloa, a major state producer of vegetables while grey lines depict the precipitation 

series of each of the other 31 Mexican states. 

Source: Own elaboration based on Thornton et al. (2018) and SIAP (2020b). 

 

Figure A5. Monthly Deviations from the Precipitation Normal by State, 2001-2020 

 
Note: Dark blue lines refer to Sinaloa, a major state producer of vegetables while grey lines depict the precipitation 

series of each of the other 31 Mexican states. Monthly precipitation normals calculated as the average for the 1991-

2020 period.  

Source: Own elaboration based on Thornton et al. (2018) and SIAP (2020b). 
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Figure A6. Vegetable Commercialization Patterns among Mexican States 

  

  

Note: The figure shows the patterns of commecialization among Mexican states for each vegetable. For its construction 

we first identified state producers using production information for the period 2004-2020. (SIAP, 2020a). Then, using 

SNIIM data for the period 2000-2020 we identified a pattern of commercialization between a pair of states if 

vegetables were sold and bought among said states in at least 9 years out of the 21 years contained in the data (about 

40 % of the time). Black dots represent producing states that concentrate at least 60% de the accumulated production 

during the period 2004-2020. The size of each black dot is proporcional to the participation of each producing state in 

the total acumulated production (in parhentesis). Red dots represent intermediary states. Lines connecting states 

indicate that commercialization links exist among them.   

Source: Own elaboration based on data from SIAP (2020a) and SNIIM (2020) 

 

Imported 

a) Squash b) Onion 

c) Chili pepper d) Tomato 
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Figure A6. Vegetable Commercialization Patterns among Mexican States, continued 
 

 
 

  
Note: The figure shows the patterns of commecialization among Mexican states for each vegetable. For its construction 

we first identified state producers using production information for the period 2004-2020. (SIAP, 2020a). Then, using 

SNIIM data for the period 2000-2020 we identified a pattern of commercialization between a pair of states if 

vegetables were sold and bought among said states in at least 9 years out of the 21 years contained in the data (about 

40 % of the time). Black dots represent producing states that concentrate at least 60% de the accumulated production 

during the period 2004-2020. The size of each black dot is proporcional to the participation of each producing state in 

the total acumulated production (in parhentesis). Red dots represent intermediary states. Lines connecting states 

indicate that commercialization links exist among them.   

Source: Own elaboration based on data from SIAP (2020a) and SNIIM (2020) 

e) Cucumber 

Imported 

h) Potato 

f) Tomatillo 

g) Lettuce and cabbage 
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Figure A7. Share of the Top 4 State Producers on Annual Production (2004-2020) 

 

 

Note: This figure plots the share of the top four producers of each vegetable in annual production for the period 2004-

2020.  

Source: Own elaboration using monthly production data from SIAP (2020a). 

 

 


