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Designing the Menu of  Licenses  for  Foster  Care
 

 

Abstract: In the United States, prospective foster parents must become licensed by a child welfare
agency before a foster child can be placed in their care. This paper contributes by developing a
theoretical matching model to study the optimal menu of licenses designed to screen foster parents. We
construct a two-sided matching model with heterogeneous agents, adverse selection, search frictions,
and a designer who coordinates match formation through a menu of contracts. We focus on incentive
compatible contracts, examine  optimal allocations and transfers, and analyze equilibrium sorting
patterns. There are three main results: (i) optimal allocation calls for a segregation of the market, (ii) a
simple transfer schedule does the job, (iii) complementarities do not ensure that Positive Assortative
Matching (PAM) will arise in equilibrium, thus we provide an additional condition that guarantees it.
Our results suggests that the menu of licenses used in practice, exhibits some of the properties of the
optimal solution. However, the menu might not be reaching  its screening objective.
Keywords: Adverse Selection, Matching, Sorting, Search, Foster Care
JEL Classification: C78, D47, D82
 

Resumen: En Estados Unidos, los futuros padres de acogida deben obtener una licencia ofrecida por
la agencia de bienestar infantil antes de que un niño de acogida pueda quedar a su cargo. Este artículo
contribuye desarrollando un modelo teórico de emparejamiento para estudiar el menú óptimo de
licencias diseñado para que los padres de acogida se autoseleccionen. Construimos un modelo de
emparejamiento con agentes heterogéneos, selección adversa, fricciones de búsqueda, y un diseñador
que coordina la formación de emparejamientos mediante un menú de contratos. Nos centramos en los
contratos compatibles con incentivos, examinamos las asignaciones y transferencias óptimas, y
analizamos los patrones observados en equilibrio. Se obtienen tres resultados principales: (i) la
asignación óptima requiere una segregación del mercado, (ii) un esquema de transferencia simple es
suficiente, (iii) las complementariedades no garantizan que surja un emparejamiento selectivo positivo
(PAM, por sus siglas en inglés) en equilibrio, por lo que se establece una condición adicional que lo
garantiza. Los resultados sugieren que el menú de licencias utilizado en la práctica presenta algunas de
las características de la solución óptima. Sin embargo, el menú podría no estar alcanzando su objetivo de
autoselección.
Palabras Clave: Selección Adversa, Emparejamiento, Patrones de Emparejamiento, Búsqueda, Sistema
de Acogida
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1 Introduction

Each year more than a half-million children spend at least one day in the US foster

care system, a federal program that costs taxpayers almost US$31.4 billion annu-

ally.1 The foster care system provides out-of-home care for children removed from

their homes due to abuse, maltreatment, neglect, or other reasons.2 While in fos-

ter care, children are placed with foster parents or in institutional care.3 The former

are private individuals licensed to provide 24-hour care for children in a family-

based environment, and the latter are licensed facilities that provide 24-hour care

for several children at once. For child welfare agencies, placement decisions of

children are a key aspect, with two main goals: avoid placing children in institu-

tional care, and match children to the right foster parent.4

Foster care can be viewed as a two-sided matching market with heterogeneous

children and parents, where foster parents have preferences over children, and

child welfare agencies have preferences over foster parents (on behalf of children).

As in many other markets, matches form in the presence of private information,

since a foster parent’s ability to provide care for a child is unknown to the child

welfare agency. Aiming at solving for this adverse selection problem, a menu of

licenses is offered to foster parents. In practice, a license specifies the type of child

a parent can foster and the corresponding transfer received by parents. Further-

more, as a rule of thumb, children are grouped by the level of care needed, and

transfers vary across groups. For example, foster parents in Arizona can choose

between two licenses: traditional and therapeutic. In the former, foster parents
1Source: Rosinsky et al. (2023).
2A child can enter foster care for several reasons such as sexual or physical abuse, parents’ drug

or alcohol addictions, parents’ incarceration, parents’ inability to provide care, parents’ death,
inadequate housing, abandonment, child’s behavioral problem, child’s drug addiction, or child’s
alcohol addiction.

3Foster parents provide the highest source of out-of-home care. At the end of the federal fiscal
year of 2021, the number of children in foster care was 391,098, out of which 83% were placed with
foster parents, and 9% were placed in institutional care (U.S. Department of Health and Human
Services, 2021).

4First, evidence suggests that children placed in institutional care have lower academic out-
comes, lower levels of education, a higher risk to engage in delinquent behavior, and a higher
risk of criminal convictions during adulthood. (Berrick et al., 1993; Mech et al., 1994; Ryan et al.,
2008; Dregan and Gulliford, 2012). Second, research shows that children in foster care can be re-
traumatized when experiencing a negative placement, resulting in a lower physical and behavioral
well-being (Villodas et al., 2016).
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can only foster children with standard needs, whereas in the latter foster parents

can foster children with standard needs and also children with special needs. Par-

ents receive US$20.80 per day for children with standard needs, and US$36.87 for

children with special needs. These transfers are based only on the estimated cost

of providing care for a child, and do not depend on any other characteristic of

the market. This raises the question of whether the current menu of licenses can

achieve its screening objective, and more importantly, whether the current mech-

anism used in the system is optimal.

This paper develops a theoretical matching model to study the optimal menu

of licenses designed to screen foster parents in the US foster care system. We con-

struct a two-sided matching model with heterogeneous agents (children differ in

the level of care needed and parents differ in their ability to provide care), private

information on the parents’ attribute, search frictions, and a designer who coor-

dinates match formation through a menu of contracts. The analysis focuses on

incentive-compatible licenses, which specify an allocation of parents across sub-

markets of children and the corresponding transfers, and the sorting patterns that

might arise in equilibrium as in Becker (1973).5

Our results suggests that the menu of licenses used in practice exhibits some

of the properties of the optimal solution. First, we find that it is never optimal to

randomly match all types of parents to all types of children, that is, optimal alloca-

tion calls for a segregation of the market. Second, we show that a simple transfer

schedule does the job, that is, parents holding different licenses and providing

care for the same type of child can receive the same monetary transfer. However,

we find that optimal transfers must not only account for the child’s attribute (as

in practice), but also for other features of the market such as the distributions of

agents. This suggests that the menu of licenses might not be reaching its screening

objective.

On the matter of equilibrium sorting patterns, we find that supermodularity
5Becker (1973) analyzes a frictionless two-sided matching market in a marriage context, and

provides sufficient conditions in the match payoff function such that the equilibrium sorting ex-
hibits positive or negative assortative matching (PAM or NAM).
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in the surplus of a match6 (i.e. complementarity in child’s and parent’s attributes)

is not sufficient to ensure that Positive Assortative Matching (PAM) will arise in

equilibrium. This is due to the search friction assumption, which we discuss in

more detail after we introduce the model. We provide sufficient conditions for

the equilibrium sorting to exhibit PAM: either a stronger complementarity deter-

mined by the distribution of children’ attributes, or a lower bound on the share of

children with special needs. Notice, since this is a sufficient condition, the child

welfare agency could optimally impose PAM even when this condition does not

hold, but for this it needs to have more information such as the distribution of par-

ents’ attributes. Lastly, it is important to highlight that our theoretical predictions

over the optimal sorting pattern conveys information that can not be obtained em-

pirically, since the publicly available data does not allow to identify parents nor

their choices over licenses.

The model is as follows. There are two sides of the market populated by a

continuum of agents: children and parents. Children are heterogeneous in the

level of care needed, low- (x1) or high-needs (x2); and parents are heterogeneous

in their ability to provide care, low-(y1) or high-ability (y2). A child’s attribute is

common knowledge, and a parent’s attribute is private information. We assume

that children receive greater payoffs when matched than unmatched, and parents

incur a cost when a match forms. The designer maximizes expected utility from

children minus transfers to parents. We assume that the surplus of each match

is nonnegative, thus profitable.7 As in practice, we construct submarkets for each

child’s attribute, that is, there is a submarket populated by low-needs children and

another submarket populated by high-needs children.

At the beginning of the game, the designer announces and commits to a menu

of licenses. A license specifies: (1) a randomization rule that determines the prob-

ability with which a parent is allocated into each submarket, and (2) a correspond-

ing transfer when a match forms. After observing the menu, each parent chooses

a license. Next, the randomization device is realized and parents are allocated
6Surplus of a match is a function whose argument are parent’s and child’s attributes.
7In our framework, surplus of a match is a cost-net benefit function whose argument are par-

ent’s ability and child’s level of care needed.
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across submarkets determining endogenously the parents-to-children ratio (mar-

ket tightness) for each submarket. Lastly, within each submarket, meetings take

place, matches are formed, and transfers occur. We assume that meetings are

not certain, that is, the probability of a child (parent) meeting a parent (child) is

represented by a meeting technology which is a function of the market-tightness.

Thus, we introduce a search friction assumption into the model.

In this market, the child welfare agency does not act as a matchmaker, but as

a coordinator. Given the menu of licenses, social workers on behalf of children

are responsible for finding a suitable foster parent through a search process. Our

assumption captures the fact that the outcome of this search process could be un-

successful. For example, it could be that the foster parent’s location is too far from

the child’s school, or the foster parent could not be comfortable with the child’s

birth family. In addition, since social workers compete for foster parents, we as-

sume that the meeting probability depends on the market tightness. For children

this probability is increasing and concave in the endogenous market tightness cap-

turing the following intuition: if the market tightness is greater in submarket x1
than submarket x2 (i.e. if there are more parents relative to children in submarket

x1), then the probability of a child finding a parent is greater in submarket x1 than

x2. Similarly, for parents we assume that the meeting technology is decreasing and

convex in the market tightness.

It is important to highlight that the search friction assumption is a key aspect

of our model, since it introduces non-trivial effects on the analysis. In particular,

when a mass of type-y parents is re-allocated from one submarket to the other,

there are three effects taking place: (i) surplus effect is the change in total expected

surplus of the market, (ii) congestion effect is the increase in the market tightness of

the submarket to where the parents are reallocated (submarket becomes thicker),

and finally (iii) decongestion effect is the decrease in the market tightness of the

submarket from where the parents are reallocated (submarket becomes thinner).

These effects not only introduce challenges in the analysis, but also make our

model predictions richer.

We start by analyzing the complete information case and establish results for
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a super- and a sub-modular surplus function.8 First, we find that, if the surplus of

a match is super-modular (i.e. there are complementarities between level of care

needed and ability to provide care) then it is never optimal for the designer to

allocate both type-y parents with strictly positive probability into submarkets x1
and x2.9 This result rationalizes the nested nature of the licenses used in practice,

such as the case of the state of Arizona described above.

Second, we show that super-modularity is neither sufficient nor necessary for

the optimal sorting to exhibit PAM. In our framework, the randomization device

establishes who can match with whom in the market so we use it to define sorting

patterns: a sorting exhibits PAM (NAM) if y2-parents are allocated to submarket

x2 with a greater (smaller) probability than y1-parents are.10 For a frictionless en-

vironment with a super-modular surplus function, it is well known that matching

agents in a positive assortative way maximizes total welfare. But, when search

frictions are introduced, we find that this result does not hold because the ex-

pected total welfare, calculated using the meeting technologies in each submarket,

is not necessarily super-modular even if the surplus function is super-modular.

By imposing a lower bound on the fraction of type-x2 children along with super-

modularity, we can ensure that PAM arises in equilibrium. Intuitively, type-y2
parents are more desirable in any submarket, thus the designer would like to al-

locate them to a more profitable and thicker submarket x2. Thus, by imposing a

lower bound on the share of type-x2 children we ensure that the market is thick

enough.

Third, we find that any transfer scheme that is on the participation constraint

for each type of parent is optimal, and it does not affect the equilibrium sorting.

Therefore, our framework predicts the same equilibrium sorting regardless of in-

terim or ex-post participation constraints. This is intuitive as, in equilibrium, given
8We discuss the case of super-modularity and leave sub-modularity to be discussed in the body

of the paper.
9In other words, if the optimal randomization rule is interior for type-y parents, then it is a

corner solution for type-y′ parents, where y and y′ are distinct.
10One can equivalently define the sorting pattern through a matching correspondence as stan-

dard in the literature, and say that a sorting exhibits PAM if the matching correspondence is a
lattice as in Shimer and Smith (2000). Since the randomization device provides more information
than the correspondence, our sorting notion is more general: any feasible-unequal allocation of
parents in our setting exhibits either PAM or NAM, but not both, unlike Shimer and Smith (2000).
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a license, parents only care about the expected transfer that equalizes the expected

cost. Moreover, the optimal transfers must account for the child’s attribute, and

other features of the market such as number of children and number of parents.

In this context, one might imagine that the child welfare agency could screen

foster parent using observable characteristics such as race, marital status, educa-

tional level, employment status, or income. Under this scenario, our complete

information analysis would be sufficient. However, the literature suggests that

foster parents’ observable characteristics are not associated with their willingness

to foster children with higher-needs, but the license they hold does (Cox et al.,

2011).11 This motivates our next analysis relaxing the assumption over the ob-

servability of a parent’ attribute.

With the private information, our results from complete information carry on,

except the additional condition for PAM. Due to the greater expected cost for low-

ability parents to provide care, the expected transfer they receive is greater than

what high-ability parents receive given the first-best menu of licenses. As a re-

sult, high-ability parents have incentives to mimic low-ability parents, thus the

designer pays information rent to high-ability parents to eliminate such incen-

tives. To determine the optimal sorting, one needs to know the cost of a parent-

child pairing, as well as the parent distribution which need not be known under

complete information.12 In this case, a super-modular cost function increases the

forces for the equilibrium sorting to be NAM. The intuition is as follows: a super-

modular cost function means that the difference between the cost for low-ability

parents and high-ability parents of taking care of a child with low-needs is greater

than the difference of providing care for a child with high-needs. Thus, it would be

more expensive to shut down a deviation by high-type parents from high-needs

children to low-needs children than a deviation from low-needs to high-needs
11Using a sample of 297 foster mothers and a linear multiple regression analyses, Cox et al.

(2011) found that foster mothers’ observable characteristics (such as race, marital status, highest
level of education completed, and income) are not associated with the willingness to foster chil-
dren with emotional and behavioral problems. Moreover, they find that foster mothers who hold
a therapeutic license were significantly more willing, than foster mothers holding a traditional
license, to foster children with emotional and behavioral problem.

12Knowing the surplus of a match is sufficient to determine the equilibrium licenses under com-
plete information, we do not need to disentangle utility and the cost to determine the optimal
sorting. This is not the case in the presence of information friction.
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children. As a result, the designer would pay less information rent if high-ability

parents are allocated into the submarket of children with low-needs.

Literature Review. The main contribution of this paper is to develop a theoreti-

cal matching model with adverse selection and search frictions to study the op-

timal menu of licenses in the US foster care system. There are a few papers an-

alyzing foster care as a matching market. Slaugh et al. (2015), using a reduced

form approach, studies the Pennsylvania Adoption Exchange program, a compu-

tational tool created to facilitate the adoption of children in foster care, and makes

several recommendations to improve the success of adoptions. Robinson-Cortés

(2019) presents an empirical framework to study how children are assigned to

foster homes using a confidential dataset, and uses the estimates to study differ-

ent policy interventions. Olberg et al. (2021) constructs a dynamic search and

matching model, where agents’ attributes are perfectly observable, to compare

two different search processes used by child welfare agencies to identify potential

adoption matches between parents and children. Lastly, MacDonald (2022) con-

ducts an empirical analysis that yields four new facts related to match transitions

of children, and develops a dynamic search and matching model where parents

and children can form reversible (foster) or irreversible (adoption) matches to ra-

tionalize these empirical facts. Thus, our paper is the first one to incorporate the

menu of licenses into the analysis, and tailor a model to fit the main features of

foster care while incorporating adverse selection.

This paper is related to the literature on assortative matching under asymmet-

ric information. In a principal-agent setting with adverse selection, several pa-

pers have studied sorting patterns arising from microfinance loan contracts where

a population of heterogeneous borrowers optimally matches into pairs (Ghatak,

1999; Van Tassel, 1999; Ghatak, 2000; Guttman, 2008; Altinok, 2023). As in our

framework, the lender can induce PAM or NAM, but a significant difference is

that in these papers there is only one side of the market. In a principal-agent set-

ting with moral hazard, less related to our model but relevant, Serfes (2005) ana-

lyzes equilibrium sorting patterns between heterogeneous principals and agents
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restricting attention to lineal contracts and a CARA utility function. His results ra-

tionalize the empirical finding of Ackerberg and Botticini (2002) who document a

positive relationship between the degree of risk aversion of tenants and landlords

with the riskiness of a crop. Franco et al. (2011) and Kaya and Vereshchagina

(2014) examine a framework where a manager assigns heterogeneous workers

to teams in the presence of moral hazard, and show that even in the presence of

complementarities, the equilibrium sorting might exhibit NAM.

Lastly, our paper relates to the search and matching literature. The random-

ization device that allocates parents into a particular submarket has a flavor of

directed search as in Menzio and Shi (2010a) and Menzio and Shi (2010b). In

their labor market framework, they define submarkets, directed search into these

submarkets, and use the notion of market tightness. Now, Shi (2001) was the first

to highlight that super-modularity in the match value is not sufficient to ensure

PAM when considering a specific directed search technology. Later on, Eeckhout

and Kircher (2010) provide a stronger complementarity condition necessary and

sufficient for PAM using a general directed search technology. Our model dif-

fers from the aforementioned papers because we introduce private information

and transfers from the designer to one-side of the market. In addition, Shimer

and Smith (2000) and Smith (2006) analyze a two-sided matching setting with

random search and complete information, showing that PAM fails and providing

stronger complementarity conditions to ensure it. In conclusion, by incorporat-

ing search frictions, greater complementarity in attributes is needed , such as log-

supermodularity and even more, depending on the specific assumption over the

search friction. Therefore, our results are in line with the literature, since our com-

plete information result also needs a stronger condition than complementarities.

Organization of the Paper. The rest of the paper is organized as follows. Section

2 introduces the model. Section 3 presents the analysis for the complete informa-

tion case, and Section 4 extends the analysis to the case of private information.

Lastly, Section 5 concludes. Appendix A presents a description of foster care in

the US. All omitted proofs and examples are in the Appendices B and C.
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2 Model

One side of the market is populated by a continuum of children who differ in

an observable attribute x ∈ X = {x1, x2} where x1 denotes a low-needs child

(without a disability), x2 denotes a high-needs child (with a disability), and x2 >

x1.The fraction of children with low-needs is f(x1) ∈ [0, 1], whereas the fraction

with high-needs is f(x2) = 1 − f(x1). For the purpose of exposition, we refer to

the set of children with attribute x as submarket x. The other side of the market

is constituted by a continuum of parents who are heterogeneous in their ability

to provide care for a child. In particular, y1 denotes parents with low-ability, y2
denotes parents with high-ability, and y2 > y1. The fraction of parents with low-

ability is g(y1) ∈ [0, 1], and that with high-ability is g(y2) = 1 − g(y1). A parent’s

ability to provide care is private information.

Matches are formed between children and parents, and one-to-one. There is

a designer who facilitates the matching process by offering a menu of licenses

to parents. A license L is represented by a pair (λ, τ) where λ : X → [0, 1] is a

randomization device that determines the probability with which a parent is al-

located to submarket x, and τ : X → R represents a transfer between the designer

and the parent if the parent forms a match with child x. Throughout the paper,

we restrict attention to the menu of licenses with the following features: (i) allo-

cations are non-wasteful, that is,
∑

x∈X λ(x) = 1,13 and (ii) parents have limited

liability, that is, τ(x) ≥ 0 for any x ∈ X .

Figure 1 presents two examples of licenses. In Panel 1a, parents holding license

L are allocated to submarket x1 with probability one, and to submarket x2 with

probability zero. In Panel 1b, parents holding licenseL′ are allocated to submarket

x1 with probability 1
4
, and to submarket x2 with probability 3

4
.

13For the complete information case, this assumption does not play a role in our results: if we
relax it to

∑
x∈X λ(x) ≤ 1, at the optimum this inequality will still be binding. In the private in-

formation setting, the optimum could change if we relax this equality: the designer might find
optimal to leave some foster parents out of the market to mitigate the incentives of mimicking.
However, we believe that our assumption is reasonable considering that foster care exhibits short-
age of foster parents, parents who have pass a rigorous assessment to be accepted to participate
in the market. Thus, imposing that the system would like to employ all available parents is in line
with the child welfare’s objectives. In addition, relaxing this assumption would make the problem
intractable for the private information case.
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Submarket
x1

Submarket
x2

License L

λ(x1) = 1 λ(x2) = 0

(a)

Submarket
x1

Submarket
x2

License L′

λ′(x1) =
1
4 λ′(x2) =

3
4

(b)

Figure 1: Examples of Licenses

All agents are risk-neutral. The designer maximizes children welfare net of

transfers. Payoffs for unmatched agents are normalized to zero. When a child x

and a parent y form a match, the child receives payoffs according to a real-valued

function u(x, y), and the parent incurs a cost of providing care according to a real-

valued function c(x, y).

Assumption 1. (a) for all (x, y), u(x, y) ≥ 0, c(x, y) ≥ 0 and u(x, y) − c(x, y) ≥ 0,

(b) u(x, y) is increasing in y, and (c) c(x, y) is increasing in x and decreasing in y.

Assumption 1(a) reflects the following: children are better-off placed with a

foster parent than in institutional care, parents always incur a cost when provid-

ing care for a child, and all matches are profitable. Assumption 1(b) states that

children prefer high- to low-ability parents. Finally, Assumption 1(c) implies that

parents incur in a smaller cost when matched to low-needs children than to high-

needs children, and high-ability parents incur in a smaller cost when providing

care than low-ability parents.

Timing is as follows:

1. First, the designer announces and commits to a menu of licenses. By the

revelation principle, we restrict attention to direct revelation mechanisms.

Thus, without loss of generality, we consider menus with two licenses, one

for each type of parent {Lk}2k=1 ≡
{{(

λk(xi), τ
k(xi)

)}2
i=1

}2

k=1
.

2. After observing the menu, each parent chooses a license, whereσy ∈ {L1,L2}

10



denotes this decision. Then, the allocation of parents
{
{λk(xi)}2i=1

}2
k=1

across

submarkets is realized.

3. Next, within each submarket, children and parents meet stochastically. The

meeting technology can be described in terms of the parents-to-children ra-

tio (market tightness). The market tightness of each submarket x ∈ X , de-

noted by θx, is equal to:

θx =

∑2
k=1 h

k(y1)λ
k(x) + hk(y2)λ

k(x)

f(x)

where hk(y) denotes the endogenous mass of parents y ∈ {y1, y2} choosing

license k. A child x meets a parent according to a meeting technology πc(θx)

where πc : R+ → [0, 1] is a strictly increasing and strictly concave function

such that πc(0) = 0. Similarly, a parent meets a child x with probability

πp(θx) where πp : R+ → [0, 1] is a strictly decreasing and convex function

such that πp(θx) = πc(θx)
θx

and πp(0) = 1.

4. Finally, when a child x and a parent y meet, a match (x, y) is formed and

transfers take place according to
{
{τ k(xi)}2i=1

}2
k=1

.

Designer’s Problem: The designer aims to maximize children welfare while mini-

mizing the transfers. We start by specifying the objective function of the designer.

Let L ≡
{{(

λk(xi), τ
k(xi)

)}2
i=1

}2

k=1
be an arbitrary menu of licenses. A child x

receives utility u(x, yj) when she matches with a parent yj . Notice that, parent yj
might hold either contract, thus the net utility when a child xmatches with parent

yj under contract k is u(x, yj)−τ k(x). Now, conditional on a meeting taking place,

the probability that child x has met a parent yj holding license k is equal to:

λk(x)hk(yj)
2∑

k=1

[
λk(x)

2∑
j=1

hk(yj)
]

Thus, the net expected utility in each submarket x, conditional on a meeting taking

11



place, is:

W (x) =

2∑
k=1

[ 2∑
j=1

([
u(x, yj)− τk(x)

]
λk(x) · hk(yj)

]
2∑

k=1

λk(x) ·
2∑
j=1

hk(yj)

.

Then, the designer’s problem is:

max{{(
λk(xi),τk(xi)

)}2

i=1

}2

k=1

{
2∑
i=1

πc
(
θxi
)
W (xi) f(xi)

}
(1)

subject to:

[FC] τ k(x) ≥ 0 and λk(x) ≥ 0 for all (k, x), and
2∑
i=1

λk(xi) = 1 for all k = 1, 2.

[MT] θx =
1

f(x)
·

2∑
k=1

[
λk(x)

2∑
j=1

hk(yj)
]

, for all x.

[PC]
2∑
i=1

[
τ k(xi)− c(xi, yk)

]
λk(xi)π

p(θxi) ≥ 0 , for all k = 1, 2.

[IC]
2∑
i=1

[
τ k(xi)−c(xi, yk)

]
λk(xi)π

p(θxi) ≥
2∑
i=1

[
τ k

′
(xi)−c(xi, yk)

]
λk

′
(xi)π

p(θx) ,

for all k, k′ = 1, 2

where [FC] are the feasibility constraints specifying restrictions over each λk(x)

and τ k(x). The restrictions [MT] corresponds to the market tightness (parents-to-

children ratio) in each submarket. [PC] are the participation constraints guaran-

tying that each parent yj receives a higher expected payoff when holding license

k = j than when unmatched. Lastly, [IC] are the incentive compatibility con-

straints that ensures that our equilibria are truth-telling.

2.1 Definition of Sorting Patterns

Next, we define a matching correspondence using the randomization device of

each license, {λ1(xi), λ2(xi)}2i=1, and establish sorting patterns based on the ran-

12



domization device.

Definition 1. A matching correspondence is a map µ : Y 7→ X such that x ∈ µ(yk)

if and only if λk(x) > 0 . Moreover, if λ2(x2) ≥ λ1(x2) then the sorting exhibits Posi-

tive Assortative Matching (PAM). Analogously, if λ2(x2) ≤ λ1(x2) then the sorting

exhibits Negative Assortative Matching (NAM).

(a) Perfect PAM
y2

y1

x2

x1

µ(y2) = {x2}

µ(y1) = {x1}

(b) Low-type PAM
y2

y1

x2

x1

µ(y2) = {x2}

µ(y1) = {x1, x2}

(c) High-type PAM
y2

y1

x2

x1

µ(y2) = {x1, x2}

µ(y1) = {x1}

Figure 2: Examples of Positive Assortative Matching (PAM)

We are interested not only in establishing properties that ensures monotone

sorting, but also in characterizing the optimal menu of licenses offered by the de-

signer. As a result, our notion of monotone sorting follows: We say j–type sort-

ing if type-yj parents are allocated into both submarkets x1 and x2, while type-

y−j parents are allocated only into submarket xi ∈ {x1, x2}.14 To avoid confu-

sion for the rest of the paper, we call it low–type if j = 1 and high–type if j = 2.

Figure 2 illustrates examples using our notion of monotone sorting patterns. In

Panel 2a, y2-parents are allocated into submarket x2 with probability one and y1-

parents are allocated into submarket x2 with probability zero, thus it follows that

1 = λ2(x2) ≥ λ1(x2) = 0. In Panel 2b, y2-parents are allocated into submarket

x2 with probability one and y1-parents are allocated into both submarket with

strictly positive probability, thus 1 = λ2(x2) ≥ λ1(x2) ∈ (0, 1). Lastly, in Panel

2c, y2-parents are allocated into both submarket with strictly positive probabil-

ity and y1-parents are allocated into submarket x2 with probability zero, thus

λ2(x2) ∈ (0, 1) ≥ λ1(x2) = 0. Note that, the randomization device in Panel 2c
14Here,−j denotes parents of type that is not j. Formally, we say j–type sorting if λj(x) ∈ (0, 1)

while λ−j(x) ∈ {0, 1}.
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could represent the menu of licenses used in practice as described in the intro-

duction, where low-needs children can be fostered by two types of parents, while

high-needs children are fostered only by one type of parent.

3 Equilibrium Analysis: Complete Information

In this section, we examine the optimal menu of licenses and analyze sorting pat-

terns that might arise in equilibrium under complete information. First, note that

by incorporating the [PC] constraints into the objective function in Equation 1,

reduces the designer’s problem to:

max
{λk(x1),λk(x2)}2k=1

{
2∑
i=1

πp
(
θxi
) [ 2∑

k=1

(
u(xi, yk)− c(xi, yk)︸ ︷︷ ︸

S(x,y)

)
λk(xi) g(yk)

]}
(2)

subject to [FC] and [MT]. For notational ease, from now on, let θ1 and θ2 denote

θx1 and θx2 , respectively. In addition, let S(x, y) = u(x, y) − c(x, y) denote the

surplus of a match (x, y) where S(x, y) is increasing in y following Assumption 1,

and by Assumption 2, the surplus is greater for matches involving children with

low needs:

Assumption 2. S(x, y) is decreasing in x.15

Lemma 1 states that if the surplus of a match is super- or sub-modular then

it is never optimal for the designer to allocate both type of y-parents with strictly

positive probability into submarkets x1 and x2.

Lemma 1. For at least one of the licenses, the optimal randomization rule (allocation)

yields a corner solution whenever S(x, y) is super- or sub-modular.

Proof. See Appendix B.1. �

To prove Lemma 1, we start by assuming that the designer allocates both type

of y-parents into both submarkets with strictly positive probabilities. Note that,
15This assumption allows the following over the children’s payoff function: (i)u(x, y) constant in

x, (ii) u(x, y) increasing in x, and (iii) u(x, y)decreasing in x but satisfying that u(x1, y)−u(x2, y) >
c(x1, y)− c(x2, y) for all y .
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the market tightness derived from any interior
(
λ1(x1), λ

2(x1)
)

can be achieved by

any allocation on a line passing through
(
λ1(x1), λ

2(x1)
)
. Thus, meeting probabil-

ities along that line are constant. Hence, super- or sub-modularity of the surplus

function ensures a greater (expected) welfare on the corners than it does in the

interior. This result speaks to the optimality of the nested hierarchy property ex-

hibited in the licenses used in practice. That is, one license allocates parents into

only one submarket, while the other license allocates parents into both submar-

kets.

Now, to characterize the optimal randomization rule, we follow a nonstandard

technique due to the presence of corner solutions. We start with an arbitrary inte-

rior allocation, and examine whether the designer can increase total expected wel-

fare by simply reallocating parents across submarkets. Formally, for each (x, k),

let λk(x) be an arbitrary-feasible interior probability that generates a total welfare

equal to:

W
(
λ1(x1), λ

2(x1)
)

= πp(θ1) ·
[
g(y1) λ

1(x1) S(x1, y1) +
(
1− g(y1)

)
λ2(x1) S(x1, y2)

]
+ πp(θ2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
where:

θ1 =
g(y1) λ

1(x1) +
(
1− g(y1)

)
λ2(x1)

f(x1)
and θ2 =

g(y1)
(
1− λ1(x1)

)
+
(
1− g(y1)

)(
1− λ2(x1)

)
1− f(x1)

(3)

After trembling λ1(x1) by ε1 and λ2(x1) by ε2 such that ε2 ≡ − ε1g(y1)
1−g(y1) , ensuring

that the market tightness in each market remains constant, the change in welfare

is equal to:

∆W = W
(
λ1(x1) + ε1, λ

2(x1) + ε2
)
−W

(
λ1(x1), λ

2(x1)
)

= ε1 g(y1)
(
πp(θ2)

[
S(x2, y2)− S(x2, y1)

]
− πp(θ1)

[
S(x1, y2)− S(x1, y1)

])︸ ︷︷ ︸
ZCI(θ1)

where θ1 and θ2 are defined as in Equation 3. Note that, θ2 = 1−f(x1)θ1
1−f(x1) , thusZCI(θ1)
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can be written as a function of only θ1. From the change in welfare, it is easy to

see that the designer can always increase total welfare by changing
(
λ1(x1), λ

2(x1)
)

such that the market tightness remains constant. The optimal allocation of parents

can be characterized byZCI(θ1), which represents the expected difference in gains

between children x2 and x1 of being matched to a high-ability parent as opposed

to a low-ability parent. Moreover, the sign of ZCI(θ1) determines the equilibrium

sorting. Let θ̄1 be such that ZCI(θ̄1) = 0, then the following result holds:

Proposition 1. Let θ∗1 be the equilibrium market tightness. (i) If θ∗1 > θ̄1 then the equi-

librium sorting exhibits PAM. (ii) If θ∗1 < θ̄1 then the equilibrium sorting exhibits NAM.

(iii) θ∗1 = θ̄1 is never optimal.

Proof. See Appendix B.2. �

Proposition 1 states that, if the equilibrium market tightness θ∗1 is such that

ZCI(θ∗1) is positive then PAM arises in equilibrium. To see this, note that, ZCI(θ1)

is increasing in θ1, that is, the change in welfare increases as θ1 increases. Thus,

for any θ1 > θ1 it follows that ZCI(θ1) is positive. Therefore, when ZCI(θ1) is posi-

tive, we can pick ε1 > 0, increasing the share of y1-parents allocated in submarket

x1 and decreasing the share of y2-parents allocated in submarket x1, until either

λ1(x1) = 1 or λ2(x1) = 0. Either way, we move in the direction of PAM. Intu-

itively, a high θ∗1 translates into a small probability of a parent meeting a child in

submarket x1. Since y2-parents generate a greater surplus, optimality requires to

minimize the probability with which they remain unmatched. Thus, the designer

chooses to use y2-parents in submarket x2, leading to PAM. Analogously, NAM

follows.

Figure 3 illustrates environments capturing Lemma 1 and Proposition 1. In

each box, the x- and y-axis correspond to the probability with which parents

holding license 1 and 2 are allocated into submarket x1, respectively. Thus, ev-

ery point inside the box
(
λ1(x1), λ

2(x1)
)

is a feasible allocation of parents. Yet,

note that, by Lemma 1 only the points at the borders can be an equilibrium. In ad-

dition, each black-dotted line corresponds to the values of
(
λ1(x1), λ

2(x1)
)

such

that ZCI(θ1) = 0, each blue-line shows the feasible allocations that can be an
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(a) (b)

Figure 3: Illustration of PAM and NAM given ZCI(θ1)

equilibrium when ZCI(θ1) > 0 (above the black-dotted line), and each red-line

shows the feasible allocations that can be an equilibrium when ZCI(θ1) < 0 (be-

low the black-dotted line). In Panel 3a, the equilibrium candidates are along the

vertical blue-line and vertical red-line. In the former, allocations are such that

λ2(x2) ≥ λ1(x2) = 0, which corresponds to high-type PAM. In the latter, alloca-

tions are such that 1 = λ1(x2) ≥ λ2(x2), which corresponds to high-type NAM.

Analogously, in Panel 3b, the equilibrium candidates are along the red- and the

blue-lines.

Now, we are interested in establishing sufficient conditions for PAM and NAM

to arise in equilibrium. Corollary 1 follows directly from Proposition 1.16

Corollary 1. (i) If S(x2,y2)−S(x2,y1)
S(x1,y2)−S(x1,y1) ≥

1

πp
(

1
f(x2)

) holds, then the equilibrium sorting ex-

hibits PAM. (ii) If S(x1,y2)−S(x1,y1)
S(x2,y2)−S(x2,y1) ≥

1

πp
(

1
f(x1)

) holds, then the equilibrium sorting ex-

hibits NAM.

Proof. See Appendix B.3. �

For Corollary 1(i), notice thatZCI(θ1) reaches its minimum value at θ1 = 0, im-

plying that πp(0) = 1 and θ2 = 1
f(x2)

. Thus, we ensure PAM by imposing that the

minimum value of ZCI(θ1) is positive. Observe that (i) requires a super-modular

surplus function since the right-hand side is greater than 1. Moreover, the greater
16Corollary 1 ensures that PAM or NAM will arise in equilibrium, but it does not specify whether

we will observe either low-type PAM (NAM), high-type PAM (NAM), or perfect PAM (NAM).
See Appendix B.4 for a detail characterization.
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the left-hand side of (i) is, the stronger the super-modularity is. Thus, strong

super-modularity dominates the adversary effect of the search friction, and be-

comes sufficient to induce PAM at the optimum. From another point of view, one

can think of the inequality (i) as a lower bound over the share of children with

high-needs to ensure PAM in equilibrium. Intuitively, by imposing a lower bound

on the share of type-x2 children we ensure that the market is thick enough for the

more desirable type-y2 parents , that is, the probability of meeting a child in sub-

market x2 is bounded bellow. This is in line with the literature in dynamic search

and matching, which imposes stronger complementarity conditions to ensure that

more desirable partner have incentives to wait for more desirable partner from the

other side of the market.17 Similar arguments and intuition follows for (ii).

Figure 4 exhibits environments illustrating Corollary 1. In Panel 4a, the equi-

librium sorting can only exhibit PAM, sinceZCI(θ) = 0 is located in the left-bottom

corner. Analogously, in Panel 4b, the equilibrium sorting can only exhibit NAM,

since ZCI(θ) = 0 is located in the right-top corner.

(a) PAM (b) NAM

Figure 4: Illustration of Sufficient Conditions for Monotone Sorting
17Shimer and Smith (2000) and Smith (2006) analyze a dynamic two-sided matching setting

with heterogeneous agents, random search and complete information. The former paper assumes
that utility is fully transferable and establishes as a sufficient condition not only supermodularity
on the value of a match f(x, y)where x and y are the agent’s attributes, but also supermodulariy on
log fx and log fxy . The latter paper assumes that utility is strictly non-transferable and establishes
as sufficient conditions monotonicity and log-supermodularity in f(x, y). In both papers, these
conditions ensure that, in the search process, high-partners do not give up to a low-partner but
instead wait for the arrival of a high-partner. This is in the same spirit as our condition: we are
also making sure that the payoffs received from matching high-types together compensate for the
adversary effect of search frictions.
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Next, we study the optimal transfer scheme. By fixing the optimal allocations

{λk∗(x1), λk∗(x2)}2k=1 from Equation 2, the designer solves the following:

min
{τk(x1),τk(x2)}2k=1

{
2∑
i=1

πp
(
θi
) 2∑

k=1

τ k(xi)λ
k∗(xi) g(yk)

}

subject to [FC], [MT], and [PC] from Equation 1. The following proposition states

that the transfer scheme is characterize by [PC]:

Proposition 2. Given an equilibrium allocation of parents {λk∗(x1), λk∗(x2)}2k=1, any

feasible transfer schedule for which the participation constraints hold with equality is an

equilibrium.

Proof. See Appendix B.5. �

Recall that the optimal allocation of at least one type of parent is a corner so-

lution, in which case the transfer can be trivially pinned down. As an example,

suppose that the equilibrium sorting exhibits perfect PAM, that is, y1-parents are

allocated into submarket x1 with probability one, while y2-parents are allocated

into submarket x2 with probability one. Then, the optimal transfer scheme is

τ 1(x1) = c(x1, y1) and τ 2(x2) = c(x2, y2), that is, parents receive exactly the cost

of providing care as in practice.

In case of an interior solution for at least one license, the optimal transfers

scheme is not unique. As an example, suppose that the equilibrium sorting ex-

hibits high-type PAM, that is, y1-parents are allocated into submarket x1 with

probability one, while y2-parents are allocated into both submarkets with strictly

positive probability. Note that, this is similar to the example of Arizona discussed

in the introduction where low-needs children can be fostered by parents hold-

ing any of the two licenses, and high-needs children can only be fostered by par-

ents holding one particular license. Here, the optimal transfer scheme is τ 1(x1) =

c(x1, y1), τ 2(x1) ≥ 0 and τ 2(x2) = c(x2, y2) − [τ 2(x1) − c(x1, y2)]
πp(θ1)λ2(x1)
πp(θ2)λ2(x2)

. Now,

as in practice, let’s suppose that we include a restriction imposing that parents

who provide care in the same market receive the same transfer, that is, τ 1(x1) =

τ 2(x1) = c(x1, y1). In this case, the optimal transfer for parent y2 in submarket x2
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would be the following:

τ 2(x2) = c(x2, y2)−
[
c(x1, y1)− c(x1, y2)

]πp(θ1)λ2(x1)
πp(θ2)λ2(x2)

Therefore, as we can see, equilibrium transfers depend on other features of the

market such as number of children, number of parents, and the resulting meeting

probabilities.

Lastly, before concluding this sections, we present two examples. One illus-

trating an environment where, in equilibrium, super-modularity does not imply

PAM. Another example presents an environment where the sufficient conditions

for monotone sorting described in Corollary 1 hold.

Example 1. (Positive Assortative Matching Fails). Figure 5 illustrates an en-
vironment where super-modularity in the surplus function S(x, y) is not a suffi-
cient condition for PAM. Here, we assume that the share of low-needs children
is f(x1) = 0.8, the functional form of the meeting technology is πp(θ) = 1

1+θ
, and

S(x, y) is a super-modular function with values S(x2, y2) = 191, S(x1, y2) = 201,
S(x2, y1) = 40 and S(x1, y1) = 51.18 Here, the condition over primitives presented
in Corollary 1(i) is violated:

1 =
S(x2, y2)− S(x2, y1)
S(x1, y2)− S(x1, y1)

≥ 1

πp
(

1
f(x2)

) = 5.99

Panel 5a presents the optimal probability with which parents holding licenses

1 (blue-line) and 2 (orange-line) are allocated into submarket x1. The y-axis cor-

responds to these probabilities while the x-axis presents possible values for the

share of low-ability parents, g(y1). In Panel 5b, we plot the optimal market tight-

ness for submarket x1 (blue-line) and x2 (orange-line) as a function of the share

of low-ability parents, g(y1). Here, the y-axis corresponds to possible values for

the market tightness. In Panel 5c, we plot the optimal expected transfers received

by all y1-parents (blue-line) and all y2-parents (orange-line) as a function of the

share of low-ability parents, g(y1). In addition, we also include the optimal total
18The share of low-needs children is similar to the one observed in practice. See Appendix A.
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expected transfers (green-line), or equivalently, the optimal total cost incurred by

the child welfare agency to implement the optimal sorting. Lastly, in every graph,

the blue- and golden- shared regions correspond to PAM and NAM, respectively.

(a) Randomization Device (b) Market Tightness

(c) Expected Transfers

Figure 5: Monotone Sorting Fails

As Panel 5a illustrates, for small enough values of g(y1), the equilibrium sort-

ing exhibits NAM, even when the surplus function is super-modular. Thus, super-

modularity is not a sufficient condition for PAM to hold in equilibrium. For the

same interval of g(y1), Panel 5b shows that the equilibrium market tightness is

greater in submarket x2 than x1; thus, parents are more likely to meet a child in

submarket x1. This induces the designer to allocate y2-parents in submarket x1,

resulting in NAM. As g(y1) increases, the equilibrium market tightness becomes

larger in submarket x1 than in x2, and thus the equilibrium sorting reverses to

PAM. Lastly, we can see from Panel 5c that the total expected cost of imposing

NAM increases as the share of low-ability parents increases. This is intuitive, since

low-ability parents incur in a greater cost of providing care than high-ability par-

ents, the designer must pay greater transfers to low-ability parents to satisfy the

[PC]. �
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Example 2. (Positive Assortative Matching Holds). Figure 6 considers an en-
vironment that satisfies the condition presented in Corollary 1(i) to ensure that
PAM will arise in equilibrium. In this environment, we assume that the share of
low-needs children is equal to 0.8, and S(x, y) is a super-modular function with
revised values S(x2, y2) = 100, S(x1, y2) = 201, S(x2, y1) = 30 and S(x1, y1) = 191.
This primitives satisfy the following:

7 =
S(x2, y2)− S(x2, y1)
S(x1, y2)− S(x1, y1)

≥ 1

πp
(

1
f(x2)

) = 5.99

As Panel 6a illustrates the equilibrium sorting exhibits PAM for any value of

g(y1). Moreover, for sufficiently high values of g(y), there is a perfect segregation

of the market, where all type-y1 (y2) parents are allocated into submarket x1 (x2).

In Panel 6b, we observe that the market tightness in both submarkets remains flat

for a fair range of values of g(y1), even though the share of y2-parents being al-

located into submarket x1 decreases. Here, we have two effects compensating:

(i) θ?1 increases as g(y1) increases, and (ii) θ?1 decreases as λ2?(x1) decreases. Note

that, market tightness is larger in submarket x1 than in x2 for any value of g(y1),

resulting in parents being more likely to meet a child in submarket x2. Interest-

ingly, in Panel 6c, the total expected cost of implementing PAM is decreasing in

the share of low-ability parents, unlike the intuition presented in the previous ex-

ample. Here, we have assumed that c(x2, y2) = 13, c(x1, y2) = 1, c(x2, y1) = 20 and

c(x1, y1) = 2. Thus, y1-parents receive a transfer equal to 2 while y2-parents receive

13 − πp(θ?1)λ
2?(x1)

πp(θ?2)λ
2?(x2)

. Note that, the expected transfers receive by y2-parents (orange-

line) exhibits two effect when g(y1) increases: (i) since the expected transfer de-

pends on the share of y2-parents, it decreases as g(y1) increases, and (ii) since the

expected transfer depends on the transfer received by each y2-parent, it increases

as λ2?(x1) decreases. In this environment, (i) overcomes (ii). Hence, given our

cost function assumption, even though the expected transfers received by all y1-

parents (blue-line) are increasing with g(y), this is not enough to compensate the

decrease of the expected transfers received by all y2-parents (orange-line).
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(a) Randomization Device (b) Market Tightness

(c) Expected Transfers

Figure 6: Monotone Sorting Holds

�

4 Equilibrium Analysis: Private Information

In this section, we analyze the case where a parent’s ability is private informa-
tion by solving the problem specified in Equation 1. Note that, by assumption,
high-ability parents incur in a smaller cost when providing care than low-ability
parents do, regardless of the disability status of the child. This translates to high-
ability parents receiving a smaller expected transfer under the menu of licenses
specified under complete information. Thus, in the presence of private informa-
tion, high-ability parents have incentives to mimic low-ability parents in order
to receive greater transfers, regardless of the sorting pattern. Therefore, in equi-
librium, [PC] holds with equality for low-ability parents, and [IC] holds with
equality for high-ability parents. After incorporating these two constraints into
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the objective function in Equation 1, the designer’s problem reduces to:

max
{λk(x1),λk(x2)}2k=1


2∑
i=1

πp
(
θxi
) [ 2∑

k=1

(
u(xi, yk)− c(xi, yk)︸ ︷︷ ︸

S(x,y)

)
λk(xi) g(yk)

]

−
[
c(x1, y1)− c(x1, y2)

]
λ1(x1)π

p(θ1)g(y2)−
[
c(x2, y1)− c(x2, y2)

]
λ1(x2)π

p(θ2)g(y2)

}
(4)

subject to [FC], [MT], and [IC] for low-ability parents.19

We start our analysis by establishing that Lemma 1 and Proposition 1 pre-

sented in the previous section hold under private information (See Appendix C.1

and C.2). Following the same arguments as we did previously, the term that char-

acterizes the optimal allocation of parents across submarkets becomes:

ZPI(θ1) = πp(θ2)

([
u(x2, y2)−

c(x2, y2)

g(y1)

]
−
[
u(x2, y1)−

c(x2, y1)

g(y1)

])
− π(θ1)

([
u(x1, y2)−

c(x1, y2)

g(y1)

]
−
[
u(x1, y1)−

c(x1, y1)

g(y1)

])
(5)

where ZPI(θ1) is analogous to ZCI(θ1), adjusted by the cost due to information

friction. Recall,

ZCI(θ1) = πp(θ2)
([
u(x2, y2)− c(x2, y2)

]
−
[
u(x2, y1)− c(x2, y1

])
− πp(θ1)

([
u(x1, y2)− c(x1, y2)

]
−
[
u(x1, y1)− c(x1, y1)

])
(6)

A couple of remarks worth mentioning. First, if g(y1) = 1 then Equations 5

and 6 are equivalent. In words, if there is no high-ability parents then there is no

screening problem. Second, c(x,y)
g(y1)

is greater than c(x, y) for all (x, y). That is, in the

private information case, the cost of providing care is amplified by the informa-

tion friction. Third, as g(y1) increases, c(x,y)
g(y1)

decreases and approaches to c(x, y).

In words, as the share of low-ability parents increases, the cost of information

frictions decreases. Lastly, as g(y2) approaches to one (equivalently as g(y1) ap-
19Notice, [PC] for low-ability parents and [IC] for high-ability parents imply [PC] for high-

ability parents, see Proposition 3 in Appendix C.5.
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proaches to zero), then the cost function becomes the parameter of interest deter-

mining the equilibrium sorting pattern, unlike the case of complete information.

Therefore, the sign of ZPI(θ1) will determine the equilibrium sorting.

Now, we present sufficient conditions for monotone sorting under private in-

formation, analogous to Corollary 1:20

Corollary 2. (i) If
S(x2,y2)−S(x2,y1)+ g(y2)

g(y1)
·[c(x2,y1)−c(x2,y2)]

S(x1,y2)−S(x1,y1)+ g(y2)
g(y1)

·[c(x1,y1)−c(x1,y2)]
≥ 1

πp
(

1
f(x2)

) and c(x2,y1)−c(x2,y2)
c(x1,y1)−c(x1,y2) ≥

1

πp
(

1
f(x2)

) hold, then the equilibrium sorting exhibits PAM.

(ii) If
S(x1,y2)−S(x1,y1)+ g(y2)

g(y1)
·[c(x1,y1)−c(x1,y2)]

S(x2,y2)−S(x2,y1)+ g(y2)
g(y1)

·[c(x2,y1)−c(x2,y2)]
≥ 1

πp
(

1
f(x1)

) and c(x1,y1)−c(x1,y2)
c(x2,y1)−c(x2,y2) ≥

1

πp
(

1
f(x1)

)
hold, then the equilibrium sorting exhibits NAM.

Proof. See Appendix C.3. �

Unlike complete information, the surplus of a match is not a sufficient statistics

to ensure monotone sorting under the presence of private information. Here, we

need to take into account the cost of a match as well as the exogenous distribution

of parents. In Corollary 2(i), the second condition over the cost function ensures

that the incentive-compatibility constrains are satisfied. We require for c(x, y) to

be a sub-modular function, that is, the difference in the cost of providing care for a

child x2 and child x1 must be greater for low-ability than for high-ability parents.

A reasonable condition since we would expect to see that in practice. Note that, if

the cost function is sub-modular, the informational rents paid to high-ability par-

ents are lower under PAM than NAM. In other words, it is easier for the designer

to incentivize high-ability parents to report truthfully under PAM. The first con-

dition in Corollary 2(i), ensures that we will observe PAM in equilibrium. Under

both conditions, even if the surplus function is sub-modular we will observe PAM.

Thus, by imposing sub-modularity in c(x, y), we can relax the super-modularity

assumption over S(x, y), which is intuitive since this condition over c(x, y) moves

the sorting towards PAM for the reason mentioned above. Analogous for (ii).

Next, motivated by the fact that the child welfare agency may not know the

distribution of parents’ attributes, we establish conditions that do not depend on
20See Appendix C.4 for a detailed characterization.
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the share of low-ability parents in the market:

Corollary 3. (i) If S(x2,y2)−S(x2,y1)
S(x1,y2)−S(x1,y1) ≥

1

πp
(

1
f(x2)

) and c(x2,y1)−c(x2,y2)
c(x1,y1)−c(x1,y2) ≥

1

πp
(

1
f(x2)

) hold,

then the equilibrium sorting exhibits PAM.

(ii) If S(x1,y2)−S(x1,y1)
S(x2,y2)−S(x2,y1) ≥

1

πp
(

1
f(x1)

) and c(x1,y1)−c(x1,y2)
c(x2,y1)−c(x2,y2) ≥

1

πp
(

1
f(x1)

) hold, then the equi-

librium sorting exhibits NAM.

Corollary 3(i) requires S(x, y) to be a strong super-modular function as in

Corollary 1(i). This condition is ensuring that PAM will maximize the total ex-

pected surplus. Also, we impose the condition of strong sub-modularity in c(x, y)

to ensure incentive-compatibility. Thus, we are adding an extra condition to the

complete information result. Similar arguments and intuition follows for NAM.

Now, we analyze the equilibrium transfers under private information. By fix-

ing the optimal allocations {λk∗(x1), λk∗(x2)}2k=1 from Equation 4, the designer

solves the following:

min
{τk(x1),τk(x2)}2k=1

{
2∑
i=1

πp
(
θi
) 2∑

k=1

τ k(xi)λ
k∗(xi) g(yk)

}

subject to [FC], [PC] and [IC] from Equation 1. Here, the [PC] for low-ability

parents, and the [IC] for high-ability parents determine the equilibrium transfer

scheme. Formally:

Proposition 3. Suppose conditions in Corollary 2 holds. Given an equilibrium allocation

of parents {λk∗(x1), λk∗(x2)}2k=1, any feasible transfer schedule for which the participation

constraint of y1-type parent as well as the incentive-compatibility constraint of y2-type

parent hold by equality is an equilibrium.

Proof. See Appendix C.5. �

When the equilibrium sorting exhibits perfect PAM, the optimal transfer scheme

is τ 1(x1) = c(x1, y1) and τ 2(x2) = c(x2, y2) + [c(x1, y1) − c(x1, y2)]π
p(θ1)
πp(θ2)

, that is, y1-

parents receive exactly the cost of providing care, while y2-parents receive the

cost of providing care plus informational rents. Thus, when information frictions
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are introduced, it is no longer optimal to just transfer parents the cost of provid-

ing care, but screening requires to compensate high-ability parents to disclose

their type truthfully. Now, suppose that the equilibrium sorting exhibits high-

type PAM. In this case, the optimal transfers are τ 1(x1) = c(x1, y1) and τ 2(x2) =

c(x2, y2)− [τ 2(x1)− c(x1, y2)]π
p(θ1)λ2(x1)
πp(θ2)λ2(x2)

+ [c(x1, y1)− c(x1, y2)] πp(θ1)
πp(θ2)λ2(x2)

. Compared

to the complete information setting, we also observe a positive extra term in the

transfer for high-ability parents who provide care in submarket x2, reflecting the

incentive for high-ability parents to reveal their true type. Therefore, we can see

that high-ability parents receive information rents.

Next, we present two examples illustrating the same environment as in Exam-

ples 1 and 2, incorporating private information.

Example 3. (Positive Assortative Matching Fails). Figure 7 illustrates the envi-

ronment in Example 1, where super-modularity in the surplus function is not a

sufficient condition for PAM. In both panels, the solid-lines represent the equilib-

rium objects under the complete information, while the dash-lines corresponds to

the private information. We assume that the cost function is super-modular with

values c(x2, y2) = 15, c(x1, y2) = 1, c(x2, y1) = 20 and c(x1, y1) = 15. Notice, it

guarantees the existence of a separating menu of licenses under NAM, whereas

any equilibrium exhibiting PAM does not screen parents.
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(a) Randomization Device (b) Market Tightness

(c) Expected Transfers

Figure 7: Monotone Sorting Fails under Private Information

Almost for any value of g(y1), the sorting patterns are the same in the com-

plete information case as in the private information one. However, when g(y1)

is approximately in (0.8, 0.9), the equilibrium sorting pattern is PAM under the

complete information, whereas it is NAM with the private information. To see

the intuition, consider an equilibrium menu of licenses that implements perfect

sorting under complete information, such that c(x, y) = τ y(x). If the menu imple-

ments NAM, y2 mimics y1 and matches with x2 instead of x1, and if it implements

PAM, y2 mimics y1 and matches with x1 instead of x2.21 The former misreport al-

lows y2 to (ex-post) gain as much as τ y1(x2)− c(x2, y2) = 5 whereas the latter does

τ y1(x1)− c(x1, y2) = 14. That is, y2 has stronger incentives to misreport if the equi-

librium sorting is PAM than when is NAM under complete information. Thus, it

is cheaper for the designer to switch the equilibrium sorting from PAM to NAM

for the (roughly) specified region of g(y1).

It is important to highlight that, in this environment, the optimal randomiza-

tion device, λ1(x1) and λ2(x2), is very similar for the complete and private infor-
21For exposition, yi represents type-yi parent and xi represents type-xi child for each i = 1, 2.

28



mation cases. As a result, the optimal market tightness coincides for a fair big

interval of g(y). However, note that implementing PAM is more expensive for pri-

vate than for incomplete information cases. Thus, the designer is able to reach the

same allocation as with complete information but at a greater cost.

�

Example 4. (Positive Assortative Matching Holds). Figure 8 illustrates an en-

vironment as in Example 2 that satisfies the additional conditions presented in

Corollary 3(i). We assume c(x, y) is a sub-modular function with values c(x2, y2) =

13, c(x1, y2) = 1, c(x2, y1) = 20 and c(x1, y1) = 2.

(a) Randomization Device (b) Market Tightness

(c) Expected Transfers

Figure 8: Monotone Sorting Holds under Private Information

One can easily verify that the cost function guarantees the existence of a sep-

arating menu of licenses under PAM. In this case, the conditions over primitives

presented in Corollary 3(i) are satisfied:

S(x2, y2)− S(x2, y1)

S(x1, y2)− S(x1, y1)
= 7 =

c(x2, y1)− c(x2, y2)
c(x1, y1)− c(x1, y2)

≥ 1

πp
(

1
f(x2)

) = 5.99
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As Panel 8a illustrates the equilibrium sorting exhibits PAM for any value of

g(y1). In Panel 8b, we observe that the market tightness in both submarkets re-

mains flat for a fair range of values of g(y1). As the cost function is sub-modular,

it is easier for the designer to incentivize high-ability parents to report truthfully

under PAM. Thus, the equilibrium sorting (PAM) is robust to information friction

here, unlike it is in Example 3. Lastly, Panel 8c we observe that its more expensive

to impose PAM under private information. �

5 Concluding Remarks

This paper analyzes the foster care system in the US as a two-sided matching mar-

ket wherein one side consists of children who are heterogeneous in level of care

needed, and the other side consists of parents who differ from each other in their

ability to take care of a child. We solve for the optimal menu of licenses which spec-

ifies allocation of parents across submarkets of children as well as corresponding

transfers, under the presence of search and information frictions.

There are two main results of the paper that hold regardless of the informa-

tion frictions: (i) it is not optimal to mix multiple types of parents into multi-

ple submarkets of children, and (ii) super-modularity and sub-modularity of the

surplus of a match are neither sufficient nor necessary conditions for the optimal

sorting to exhibit PAM and NAM, respectively. The former rationalizes the nested

licenses in the foster care system offered by various states in the US. The latter has

implications on the optimal allocation of parents: even if the surplus shows com-

plementarity (substitutability) in child and parent’s attributes, allocating parents

into submarkets such that the sorting exhibits PAM (NAM) is not necessarily op-

timal due to search frictions.

We also make inferences once information friction is introduced: as the share

of low-type parents increases, the allocation of parents approaches to the first-best

(complete information). Because, high-type parents mimic the low-type ones to

receive a greater expected transfer. As a result, the designer pays information

rent to high-type parents to overcome such incentives. The smaller the share of
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high-type parents, the less the designer cares about such mimicking incentives.

However, if the proportion of high-type parents is high, then not only the alloca-

tion diverge from the first-best, but also the optimal sorting may reverse.
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A Appendix: Foster Care in the US

A.1 Overview

During 2020 Federal Fiscal Year (FFY),22 child welfare agencies across the United

States received more than 3.9 million allegations of suspected child abuse or ne-

glect (equivalent to approximately 7.1 million children). Out-of-these children,

9 percent were removed from their homes and placed into foster care. Accord-

ing to Rosinsky et al. (2023), the national spending on child welfare in 2020 FFY

was approximately US$34.1, out of which US$15.2 billion was federally funded,

and the remaining was financed directly by states. Furthermore, 45 percent of the

national spending was destined to foster care placement expenditure, including

payments to foster parents.

Using the Foster Care Files from AFCARS,23 we observed that in 2020 FFY

there were 631,254 children in foster care. On average, these children were almost

7 years old, 49 percent were females, 69 percent were white, and 24 percent were

clinically diagnosed with a disability.24 Thus, based on the disability variable, we

can infer that at least 24 percent of children in the US foster care are special needs.25

During their stay in foster care, 77 percent of these children were placed with foster

parents, 9 percent were placed in institutional care, and the remaining had other

arrangements. Foster parents caring for children with and without a disability

received an average payment of US$1,423 and US$ 2,704 per month, respectively.

In this data set, foster parents are not identifiable; only family structure, race and

year of birth are reported. Thus, since we do not know how many times a foster

parent might appear, we can not provide reliable statistics.

Most of the information regarding foster parents comes from Census data and

surveys. Using Census data from 2000, O’Hare (2008) finds that households
22October 1, 2019 to September 30, 2020.
23AFCARS is a federally mandated data collection system. All fifty US states and the District of

Columbia are required to collect data on all children in foster care and all children adopted from
foster care.

24A disability includes conditions such as blindness, glaucoma, arthritis, multiple sclerosis,
down syndrome, personality disorder, attention deficit, and anxiety disorder, among others.

25In the majority of the cases, once a child enters the foster care system, a mandatory medical
evaluation is performed, therefore we assume that the level of care needed is common knowledge.
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with foster children, compared to households with children, are: less likely to

be married-couples, less likely to have a member who finished college, less likely

to work full-time, more likely to be low income families, and more likely to receive

public assistance income. Now, after conducting a survey of 297 foster moth-

ers, Cox et al. (2011) finds that the average is 44.1 years old, 88.2 percent are

European-American, 75.1 percent are married, 28.9 percent have a bachelor’s de-

gree, 33 percent works full-time, and 50.1 percent have a year family income less

than USD$50,000.

A.2 Matching Process

Foster care is overseen and managed at the state level by Child Protective Services

(CPS). Upon receiving an allegation regarding a child’s well-being, CPS assigns a

social worker to the case, starting an investigation. If sufficient evidence support-

ing an accusation is identified, the case is presented to a juvenile or family court.

The judge then determines whether the child should be removed from their birth-

family home and placed in foster care.

In many states, decisions regarding the placement of children are made by

social workers. Acting on behalf of the child, the social worker (a) searches for

and contacts foster parents, (b) facilitates a meeting between the foster parent

and child to assess compatibility, and (c) decides on the placement of the child.

In this search process, the social worker can only consider foster parent who are

certified, though a license, to provide care for the child.

Foster parents must obtain a license to provide care for children. The licensing

process involves a home study and mandatory training. The home study ensures

the foster parent’s residence is clean, in good condition, and free from hazards.

Initial training, ranging from 15 to 30 hours, covers topics such as agency policies,

foster parent roles and responsibilities, and behavior management. The menu of

licenses varies across states (for more details see DeVooght and Blazey (2013)).

As we mentioned in the introduction, children are grouped by the level of care

needed, and transfers vary across groups. These transfers follow the principle

that foster parents caring for children with high-needs receive greater transfers.
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B Appendix: Complete Information

In this section, we prove the results for the complete information case. For each
parent yk with k = {1, 2}, the designer offers a licenses (λk, τ k). The designer
solves the following problem:

max{(
λk(xi),τk(xi)

)2
i=1

}2

k=1

{
2∑
i=1

πc
(
θi
) ∑2

k=1

[
u(xi, yk)− τk(xi)

]
λk(xi)g(yk)∑2

k=1 λ
k(xi) g(yk)

f(xi)

}

subject to:

[FC] τ k(x) ≥ 0 and λk(x) ≥ 0 for all (k, x), and
2∑
i=1

λk(xi) = 1 for all k = 1, 2.

[MT] θx =
1

f(x)
·

2∑
k=1

[
λk(x)

2∑
j=1

hk(yj)
]

, for all x.

[PC]
2∑
i=1

[
τ k(xi)− c(xi, yk)

]
λk(xi)π

p(θi) ≥ 0 , for all k = 1, 2.

Now, recall that πp(θ) = πc(θ)
θ

. Thus, the objective function can be written as:

max{(
λk(xi),τk(xi)

)2
i=1

}2

k=1

{
2∑
i=1

πp
(
θi
) 2∑
k=1

[
u(xi, yk)− τk(xi)

]
λk(xi)g(yk)

}

Next, by rearranging terms from the objective function:

2∑
i=1

πp
(
θi
) 2∑

k=1

u(xi, yk)λ
k(xi)g(yk)−

2∑
i=1

πp
(
θi
) 2∑
k=1

τ k(xi)λ
k(xi)g(yk)

⇒
2∑
i=1

πp
(
θi
) 2∑

k=1

u(xi, yk)λ
k(xi)g(yk)

−
[ 2∑
i=1

τ 1(xi)λ
1(xi)π

p
(
θi
)
g(y1) +

2∑
i=1

τ 2(xi)λ
2(xi)π

p
(
θi
)
g(y2)

]

At the optimum, we know that the [PC] hold with equality (see Proof of Propo-

sition 2):
2∑
i=1

τ k(xi)λ
k(xi)π

p(θi) =
2∑
i=1

c(xi, yk)λ
k(xi)π

p(θi) (B.1)
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Thus, by replacing Equation B.1 into the objective function, the optimization prob-
lem is:

max{
λk(x1),λk(x2)

}2

k=1

{
2∑
i=1

πp
(
θi
) 2∑
k=1

[
u(xi, yk)− ck(xi)

]
λk(xi)g(yk)

}

subject to:

[FC] λk(x) ≥ 0 for all (k, x), and
2∑
i=1

λk(xi) = 1 for all k = 1, 2.

[MT] θx =
1

f(x)
·

2∑
k=1

[
λk(x)

2∑
j=1

hk(yj)
]

, for all x.

The following corollary is immediate:

Corollary B.1. In the first best, the randomization device
{
λk(x1), λ

k(x2)
}2
k=1

is inde-

pendent of whether we consider interim or ex-post participation constraints.

Proof. This follows from the fact that the objective function is independent of the

transfers after incorporating the participation constraints. �

B.1 Proof of Lemma 1

For each (x, k), let λk(x) be an arbitrary-feasible interior probability that generates

a total welfare equal to:

W
(
λ1(x1), λ

2(x1)
)

= πp(θ1) ·
[
g(y1) λ

1(x1) S(x1, y1) +
(
1− g(y1)

)
λ2(x1) S(x1, y2)

]
+ πp(θ2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
where:

θ1 =
g(y1) λ

1(x1) +
(
1− g(y1)

)
λ2(x1)

f(x1)
and θ2 =

g(y1)
(
1− λ1(x1)

)
+
(
1− g(y1)

)(
1− λ2(x1)

)
1− f(x1)

(B.2)

After trembling λ1(x1) by ε1 and λ2(x1) by ε2 such that ε2 ≡ − ε1g(y1)
1−g(y1) , ensuring

that the market tightness in each market remains constant, the new total welfare
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is:

W
(
λ1(x1)+ε1, λ

2(x1)+ε2
)

= πp(θ1)·
[
g(y1)λ

1(x1)S(x1, y1)+
(
1−g(y1)

)
λ2(x1)S(x1, y2)

]
+ πp(θ2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
+ ε1 g(y1)

(
πp(θ2)

[
S(x2, y2)− S(x2, y1)

]
− πp(θ1)

[
S(x1, y2)− S(x1, y1)

])
Thus, the change in welfare is equal to:

∆W = W
(
λ1(x1) + ε1, λ

2(x1) + ε2
)
−W

(
λ1(x1), λ

2(x1)
)

= ε1 g(y1)
(
πp(θ2)

[
S(x2, y2)− S(x2, y1)

]
− πp(θ1)

[
S(x1, y2)− S(x1, y1)

])︸ ︷︷ ︸
ZCI(θ1)

where θ1 and θ2 are defined as in Equation B.2. Note that, θ2 = 1−f(x1)θ1
1−f(x1) , thus

ZCI can be written as a function of only θ1. It is easy to see that ZCI(θ1) is strictly

increasing in θ1. Therefore, ZCI(θmax
1 ) ≥ ZCI(θ1) ≥ ZCI(0) for any θ1 ∈ [0, θmax

1 ]

where θmax
1 = 1

f(x1)
. Now, we analyze three cases:

1. Suppose ZCI(θ1) > 0. Then, pick ε1 > 0 with ε2 = − ε1g(y1)
1−g(y1) such that either

λ̂1(x1) ≡ λ1(x1) + ε1 = 1 or λ̂2(x1) ≡ λ2(x1) + ε2 = 0. In the former case,

λ̂1(x2) = 0 and λ̂2(x2) ∈ (0, 1); and in the latter case, λ̂1(x2) ∈ (0, 1) and

λ̂2(x2) = 1. In both cases, the definition of PAM is satisfied.

2. Suppose ZCI(θ1) < 0. Then, pick ε1 < 0 with ε2 = − ε1g(y1)
1−g(y1) such that either

λ̂1(x1) ≡ λ1(x1) + ε1 = 0 or λ̂2(x1) ≡ λ2(x1) + ε2 = 1. In the former case,

λ̂1(x2) = 1 and λ̂2(x2) ∈ (0, 1); and in the latter case, λ̂1(x2) ∈ (0, 1) and

λ̂2(x2) = 0. In both cases, the definition of NAM is satisfied.

3. Suppose ZCI(θ1) = 0. We show that an interior randomization device can
not be an equilibrium. To see this, first tremble λ1(x1) by ε1, and calculate
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welfare:

W
(
λ1(x1)+ε1, λ

2(x1)
)
= πp(θ̂1)·

[
g(y1)λ

1(x1)S(x1, y1)+
(
1−g(y1)

)
λ2(x1)S(x1, y2)

]
+ πp(θ̂2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
+ ε1g(y1)

[
πp(θ̂1) S(x1, y1)− πp(θ̂2) S(x2, y1)

]
where θ̂1 = θ1 + ε1g(y1)

f(x1)
, θ̂2 = θ2− ε1g(y1)

1−f(x1) , and θ1, θ2 are defined as in Equation
B.2. Now, let’s tremble λ2(x1) by ε2, and calculate welfare:

W (λ2(x1), λ
2(x1)+ε2) = πp(θ̃1)·

[
g(y1)λ

1(x1)S(x1, y1)+
(
1−g(y1)

)
λ2(x1)S(x1, y2)

]
+ πp(θ̃2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
+ ε2

(
1− g(y1)

)[
πp(θ̃1) S(x1, y2)− πp(θ̃2) S(x2, y2)

]
where θ̃1 = θ1 + ε2(1−g(y1))

f(x1)
, θ̃2 = θ2 − ε2(1−g(y1))

1−f(x1) , and θ1, θ2 are defined as in

Equation B.2.

For any small ε1 with ε2 ≡ ε1g(y1)
1−g(y1) , it follows that θ̂1 = θ̃1 and θ̂2 = θ̃2. Pick

such ε2. Then, increasing λ1(x1) is marginally more profitable than increas-

ing λ2(x1) if and only if

πp(θ̂2) ·
[
S(x2, y2)− S(x2, y1)

]
− πp(θ̂1) ·

[
S(x1, y2)− S(x1, y1)

]︸ ︷︷ ︸
ZCI(θ̂1)

≥ 0

Since ZCI(θ̂1) > ZCI(θ1) = 0, then the inequality holds. Therefore, at least

one of the partial derivatives of W at
(
λ1(x1), λ

2(x1)
)

is non-zero, meaning

that
(
λ1(x1), λ

2(x1)
)

at ZCI(θ1) = 0 is not an equilibrium. This finishes the

proof.

B.2 Proof of Proposition 1

By assumptionS(x, y) is increasing in y, thusZCI(θ1) is increasing in θ1. Therefore,

items (i) to (iii) from the previous proof of Lemma 1 apply here.
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B.3 Proof of Corollary 1

Notice that, ZCI(θ1) is increasing in θ1 reaching its minimum value at θ1 = 0, and

when θ1 = 0 it follows that πp(0) = 1 and θ2 = 1
1−f(x1) . Therefore, from Proposition

1, we can ensure PAM by imposing that the following inequality must hold:

πp
( 1

1− f(x1)

)
·
[
S(x2, y2)− S(x2, y1)

]
−
[
S(x1, y2)− S(x1, y1)

]
≥ 0

Now,ZCI(θ1) reaches its maximum value at θ1 = 1
f(x1)

.Therefore, from Proposition

1, we can ensure NAM by imposing that the following inequality must hold:

[
S(x2, y2)− S(x2, y1)

]
− πp

( 1

f(x1)

)
·
[
S(x1, y2)− S(x1, y1)

]
≤ 0

B.4 Assortative Matching in Equilibrium

Under the light of the results above, we can characterize the equilibrium sorting

patterns. We will start by providing some auxiliary lemmas.

Lemma B.1. The rate of change in Welfare W
(
λ1(x1), λ

2(x1)
)

monotonically decreases

in λk(x1) for each k = 1, 2.

Proof. Recall the total welfare:

W
(
λ1(x1), λ

2(x1)
)

= πp(θ1)·
[
g(y1) λ

1(x1) S(x1, y1) +
(
1− g(y1)

)
λ2(x1) S(x1, y2)

]
︸ ︷︷ ︸

EU1

+ πp(θ2) ·
[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
︸ ︷︷ ︸

EU2

where

θ1 =
g(y1) λ

1(x1) +
(
1− g(y1)

)
λ2(x1)

f(x1)
and θ2 =

1− θ1f(x1)

1− f(x1)

Fix λ−k(x1). Increasing λk(x1) by a small amount ε > 0, increases EU1 and θ1

linearly, and decreases EU2 and θ2 linearly. Recall that, πp(·) is a decreasing and

convex function, thus the rate of increase through πp(θ1) ·EU1 decreases, while the
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rate of decrease through πp(θ2) · EU2 increases in λk(x1), for any k = 1, 2. �

Lemma B.1 is useful since it implies that ∂W(λ1(x1),λ2(x1))
∂λk(x1)

is monotonically de-

creasing. Thus, if it is zero at some λk′(x1), then it is negative at any λk(x1) if and

only if λk(x1) > λk′(x1) for any λ−k(x1). Note that the same analysis applies to any

pair (λ1(x1), λ
2(x1)) that yields the same market tightness. Now, another useful

lemma follows:

Lemma B.2. Fix (λ̂1(x1), λ̂
2(x1)). For any (λ̃1(x1), λ̃

2(x1)) such that θ1(λ̂1(x1), λ̂2(x1)) =

θ1(λ̃
1(x1), λ̃

2(x1)) and λ̂1(x1) ≥ λ̃1(x1), the following holds:

∂W (λ1(x1), λ
2(x1))

∂λk(x1)
|(λ̂1(x1),λ̂2(x1)) ≤

∂W (λ1(x1), λ
2(x1))

∂λk(x1)
|(λ̃1(x1),λ̃2(x1))

Proof. Taking partial derivatives on welfare yields the followings:

∂W (λ1(x1), λ
2(x1))

∂λ1(x1)
=

g(y1) · V (λ1(x1), λ
2(x1)) + g(y1) ·

[
πp(θ1)S(x1, y1)− πp(θ2)S(x2, y1)

]

∂W (λ1(x1), λ
2(x1))

∂λ2(x1)
=(

1− g(y1)
)
· V (λ1(x1), λ

2(x1)) +
(
1− g(y1)

)
·
[
πp(θ1)S(x1, y2)− πp(θ2)S(x2, y2)

]
with

V (λ1(x1), λ
2(x1)) =

πp′(θ1)

f(x1)
· EU1(λ

1(x1), λ
2(x1))−

πp′(θ2)

1− f(x1)
· EU2(λ

1(x1), λ
2(x1))

where EU1(λ
1(x1), λ

2(x1)) and EU2(λ
1(x1), λ

2(x1)) are defined as in Lemma B.1. It

is easy to verify that V (λ1(x1), λ
2(x1)) decreases as we move down on the market

tightness θ1, that is, as we increase λ1(x1) while decreasing λ2(x1). This implies

that the rate of change with respect to λ1(x1) decreases as one moves down on the

same market tightness, which finishes the proof. �

Now, by using Lemmas B.1 and B.2, we characterize the equilibrium allocation

of parents across submarket step by step. Initially, we establish the equilibrium
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allocation of parents when the sufficient conditions of Corollary 1 hold. Later, we

extend the analysis to the case where the sufficient conditions are violated.

Proposition B.1 (Positive Assortative Matching (PAM)). Suppose S(x2,y2)−S(x2,y1)
S(x1,y2)−S(x1,y1) ≥

1

πp
(

1
f(x2)

) holds. The equilibrium sorting exhibits:

i. low-type PAM with λ1?(x1) ∈ (0, 1) and λ2?(x1) = 0 if

∂W (λ1(x1), λ
2(x1))

∂λ1(x1)
|{λ2(x1)=0} = 0 for some λ1?(x1) ∈ (0, 1) (B.3)

ii. perfect PAM with λ1?(x1) = 1 and λ2?(x1) = 0 if

∂W (λ1(x1), λ
2(x1))

∂λ1(x1)
|{λ2(x1)=1,λ2(x1)=0} ≥ 0 ≥ ∂W (λ1(x1), λ

2(x1))

∂λ2(x1)
|{λ1(x1)=1,λ2(x1)=0}

(B.4)

iii. high-type PAM with λ1?(x1) = 1 and λ2?(x1) ∈ (0, 1) if

∂W (λ1(x1), λ
2(x1))

∂λ2(x1)
|{λ1(x1)=1} = 0 for some λ2?(x1) ∈ (0, 1) (B.5)

Proof. By assumption, S(x2,y2)−S(x2,y1)
S(x1,y2)−S(x1,y1) ≥

1

πp
(

1
f(x2)

) , which implies that ZCI(θ1) ≥ 0

for any θ1. Therefore, starting from an initial allocation λ1(x1) = 0 and λ2(x1) = 0,

the designer first allocates y1-parents into submarket x1 until either parents are

exhausted or it is not profitable anymore. Accordingly, perfect PAM and high-

type PAM follows. �

One can easily characterize the equilibrium distribution of parents across sub-

markets for NAM, with a parallel argument.

Proposition B.2 (Negative Assortative Matching (NAM)). Suppose S(x1,y2)−S(x1,y1)
S(x2,y2)−S(x2,y1) ≥

1

πp
(

1
f(x1)

) holds. The equilibrium sorting exhibits:

i. low-type NAM with λ1?(x1) ∈ (0, 1) and λ2?(x1) = 1 if

∂W (λ1(x1), λ
2(x1))

∂λ1(x1)
|{λ2(x1)=1} = 0 for some λ1?(x1) ∈ (0, 1) (B.6)
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ii. perfect NAM with λ1?(x1) = 0 and λ2?(x1) = 1 if

∂W (λ1(x1), λ
2(x1))

∂λ2(x1)
|{λ1(x1)=0,λ2(x1)=1} ≥ 0 ≥ ∂W (λ1(x1), λ

2(x1))

∂λ1(x1)
|{λ1(x1)=0,λ2(x1)=1}

(B.7)

iii. high-type NAM with λ1?(x1) = 0 and λ2?(x1) ∈ (0, 1) if

∂W (λ1(x1), λ
2(x1))

∂λ2(x1)
|{λ1(x1)=0} = 0 for some λ21

∗ ∈ (0, 1) (B.8)

Proof. QED following the same arguments as in Proposition B.1. �

Propositions B.1 and B.2 characterize the equilibrium sorting patterns when

the conditions specified in Corollary 1 hold. Now, we extend the analysis to the

case where the sufficient conditions are violated. As the dashed-lines in Figure

B.1, suppose that ZCI(θ̄1) = 0 for some θ̄1 ∈
(

0, 1
f(x1)

)
. Then, for NAM (red-lines

in Figure B.1), there exists either, (i) λ̃1(x1) = 0 and λ̃2(x1) ≤ 1 or (ii) λ̃1(x1) > 0

and λ̃2(x1) = 1, with θ̄1 = g(y1)λ̃1(x1)+(1−g(y1))λ̃2(x1)
f(x1)

. Similarly, for PAM (blue-lines

in Figure B.1), there exists either, (i) λ̂1(x1) ≤ 1 and λ̂2(x1) = 0 or (ii) λ̂1(x1) = 1

and λ̂2(x1) ≥ 0, with θ̄1 = g(y1)λ̂1(x1)+(1−g(y1)λ̂2(x1)
f(x1)

. In what follows, we study each

possible case illustrated in Figure B.1.

Case 1. Fix λ̃1(x1) = 0 and λ̃2(x1) ≤ 1. We consider sub-cases of λ̂1(x1):

(1A) Consider λ̂1(x1) ≤ 1 and λ̂2(x1) = 0 [Panel B.1a]. By starting from a partic-

ular corner λ1(x1) = 0 and λ2(x1) = 0, we initially increase λ2(x1) until it is

either not profitable any more or we switch from NAM to PAM by increasing

λ1(x1) instead. Now, the following characterizes the equilibrium sorting for

this particular case:

Proposition B.3. Consider λ̃1(x1) = 0 and λ̃2(x1) ≤ 1, and λ̂1(x1) ≤ 1 and λ̂2(x1) =

0.

i. Suppose λ1?(x1) = 0 and λ2?(x1) < λ̃2(x1), then the equilibrium sorting exhibits

high-type NAM if λ2?(x1) ∈ [0, λ̃2(x1)) solves Equation B.8

ii. Suppose λ2?(x1) = 0 and λ1?(x1) > λ̂1(x1), then the equilibrium sorting exhibits:
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Figure B.1: Possible Cases given ZCI(θ1)

(a) Case 1A

λ̃1(x1) = 0 and λ̃2(x1) ≤ 1

λ̂1(x1) ≤ 1 and λ̂2(x1) = 0

(b) Case 1B

λ̃1(x1) = 0 and λ̃2(x1) ≤ 1

λ̂1(x1) = 1 and λ̂2(x1) ≥ 0

(c) Case 2A

λ̃1(x1) ≥ 0 and λ̃2(x1) = 1

λ̂1(x1) = 1 and λ̂2(x1) ≥ 0

(d) Case 2B

λ̃1(x1) ≥ 0 and λ̃2(x1) = 1

λ̂1(x1) ≤ 1 and λ̂2(x1) = 0

a. low-type PAM if λ1?(x1) ∈ (λ̂1(x1), 1) solves Equation B.3

b. perfect PAM if λ1?(x1) = 1 solves Equation B.4

iii. Suppose λ1?(x1) = 1 and λ2?(x1) > 0, then the equilibrium sorting exhibits high-

type PAM if λ2?(x1) ∈ (0, 1] solves Equation B.5

(1B) Consider λ̂1(x1) = 1 and λ̂2(x1) ≥ 0 [Panel B.1b]. Following a symmetric

argument, the characterization of this case follows:

Proposition B.4. Consider λ̃1(x1) = 0 and λ̃2(x1) ≤ 1, and λ̂1(x1) = 1 and λ̂2(x1) ≥

0.
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i. Suppose λ1?(x1) = 0 and λ2?(x1) < λ̃2(x1), then the equilibrium sorting exhibits

high-type NAM if λ2?(x1) ∈ [0, λ̃2(x1)) solves Equation B.8

ii. Suppose λ1?(x1) = 1 and λ2?(x1) > λ̂2(x1), then the equilibrium sorting exhibits

high-type PAM if λ2?(x1) ∈ (λ̂2(x1), 1] solves Equation B.5

Case 2. Fix λ̃1(x1) ≥ 0 and λ̃2(x1) = 1. We consider sub-cases of λ̂1(x1):

(2A) Consider λ̂1(x1) = 1 and λ̂2(x1) ≥ 0 [Panel B.1c]. Following a symmetric

argument, the characterization of this case follows:

Proposition B.5. Consider λ̃1(x1) ≥ 0 and λ̃2(x1) = 1, and λ̂1(x1) = 1 and λ̂2(x1) ≥

0.

i. Suppose λ1?(x1) = 1 and λ2?(x1) > λ̂2(x1), then the equilibrium sorting exhibits

high-type PAM if λ2?(x1) ∈ (λ̂2(x1), 1] solves Equation B.5

ii. Suppose λ2?(x1) = 1 and λ1?(x1) < λ̃1(x1), then the equilibrium sorting exhibits:

a. low-type NAM if λ1?(x1) ∈ (0, λ̃1(x1)) solves Equation B.6

b. perfect NAM if λ1?(x1) = 0 solves Equation B.7

iii. Suppose λ1?(x1) = 0 and λ2?(x1) < 1, then the equilibrium sorting exhibits high-

type NAM if λ2?(x1) ∈ [0, 1) solves Equation B.8.

(2B) Consider λ̂1(x1) ≤ 1 and λ̂2(x1) = 0 [Panel B.1d]. The following character-

izes the equilibrium sorting for this particular case:

Proposition B.6. Consider λ̃1(x1) ≥ 0 and λ̃2(x1) = 1, and λ̂1(x1) ≤ 1 and λ̂2(x1) =

0.

i. Suppose λ2?(x1) = 1 and λ1?(x1) < λ̃1(x1), then the equilibrium sorting exhibits:

a. low-type NAM if λ1?(x1) ∈ (0, λ̃1(x1)) solves Equation B.6

b. perfect NAM if λ1?(x1) = 0 solves Equation B.7

ii. Suppose λ1?(x1) = 0 and λ2?(x1) < 1, then the equilibrium sorting exhibits high-

type NAM if λ2?(x1) ∈ [0, 1) solves Equation B.8

iii. Suppose λ2?(x1) = 0 and λ1?(x1) > λ̂1(x1), then the equilibrium sorting exhibits:

a. low-type PAM if λ1?(x1) ∈ (λ̂1(x1), 1) solves Equation B.3
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b. perfect PAM if λ1?(x1) = 1 solves Equation B.4

iv. Suppose λ1?(x1) = 1 and λ2?(x1) > 0, then the equilibrium sorting exhibits high-

type PAM if λ2?(x1) ∈ (0, 1] solves Equation B.5

B.5 Proof of Proposition 2

The designer solves the following problem:

max{(
λk(xi),τk(xi)

)2
i=1

}2

k=1

{
2∑
i=1

πc
(
θi
) ∑2

k=1

[
u(xi, yk)− τk(xi)

]
λk(xi)g(yk)∑2

k=1 λ
k(xi) g(yk)

f(xi)

}

subject to [FC], [MT], and [PC]. We will show that at the optimal solution, the

participation constraints hold with equality. By contradiction, suppose that for

some license k, the [PC] holds with strict inequality at the optimum:

2∑
i=1

τ k(xi)λ
k(xi)π

p(θi) >
2∑
i=1

c(xi, yk)λ
k(xi)π

p(θi)

Then, the designer can decrease τ k(x1) and τ k(x2) by a small ε > 0 satisfying the

constraint while increasing the objective function. A contradiction. Therefore, the

optimal transfers can be pinned-down by the [PC] which hold with equality.
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C Appendix: Private Information

First, it is useful to understand who has incentives to mimic whom under the

first best menu of licenses. Recall the incentive compatibility constraint [IC] for

k 6= k′ = 1, 2:

2∑
i=1

[
τ k(xi) − c(xi, yk)

]
λk(xi)π

p(θxi) ≥
2∑
i=1

[
τ k

′
(xi) − c(xi, yk)

]
λk

′
(xi)π

p(θx)

and the participation constraint [PC] for k = 1, 2:

2∑
i=1

[
τ k(xi)− c(xi, yk)

]
λk(xi)π

p(θxi) ≥ 0

In the complete information case, [PC]s holds with equality. Now, plugging [PC](k)

and [PC](k′) into [IC](k) yields the following inequality:

0 ≥
[
c(x1, yk′)− c(x1, yk)

]
λk

′
(x1)π

p(θ1) +
[
c(x2, yk′)− c(x2, yk)

]
λk

′
(x2)π

p(θ2)

Since c(x, y) is decreasing in y, the inequality holds for k = 1 but not for k =

2. Thus, under the first best, type-y2 parents have incentives to mimic type-y1
parents.

Next, we know that the [IC] for high-ability and the [PC] for low-ability par-

ents hold with equality in equilibrium (see Proof of Proposition 3):

[PC1]
2∑
i=1

[
τ 1(xi)− c(xi, y1)

]
λ1(xi)π

p(θxi) = 0

[IC2]
2∑
i=1

[
τ 2(xi)−c(xi, y2)

]
λ2(xi)π

p(θxi) =
2∑
i=1

[
τ 1(xi)−c(xi, y2)

]
λ1(xi)π

p(θx)
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Replacing [PC1] in [IC2]:

τ 2(x1)λ
2(x1)π

p(θ1)+τ
2(x2)λ

2(x2)π
p(θ2) = c(x1, y2)λ

2(x1)π
p(θ1)+c(x2, y2)λ

2(x2)π
p(θ2)+[

c(x1, y1)− c(x1, y2)
]
λ1(x1)π

p(θ1) +
[
c(x2, y1)− c(x2, y2)

]
λ1(x2)π

p(θ2)

Now, replacing the restrictions into the objective function, the designer solves:

max
{λk(x1),λk(x2)}2k=1


2∑
i=1

πp
(
θxi
) [ 2∑

k=1

(
u(xi, yk)− c(xi, yk)︸ ︷︷ ︸

S(x,y)

)
λk(xi) g(yk)

]

−
[
c(x1, y1)−c(x1, y2)

]
λ1(x1)π

p(θ1)g(y2)−
[
c(x2, y1)−c(x2, y2)

]
λ1(x2)π

p(θ2)g(y2)

}

subject to [FC], [MT], and

[AC] =


c(x2,y2)−c(x2,y1)
c(x1,y2)−c(x1,y1) ≥

1

πp
(

1
f(x2)

) if λ2(x2) > λ1(x2)

c(x1,y2)−c(x1,y1)
c(x2,y2)−c(x2,y1) ≥

1

πp
(

1
f(x1)

) if λ2(x2) < λ1(x2)

(C.1)

This additional constraint [AC] ensures that the [IC] for low-ability parents is

satisfied when the [IC] for high ability parents holds (see Proof of Proposition 3).

Corollary C.1. In the private information setting, the randomization device
{
λk(x1), λ

k(x2)
}2
k=1

is independent of whether we consider interim or ex-post participation constraints.

Proof. This follows from the fact that the objective function is independent of the

transfers after incorporating the participation constraints. �

C.1 Proof of Lemma 1 under Private Information

We can establish Lemma 1 for the private information case.

Lemma C.1. In the private information setting, for at least one of the licenses, the optimal

randomization rule yields a corner solution whenever S(x, y) is super- or sub-modular.

For each (x, k), let λk(x1) ∈ (0, 1) be an arbitrary-feasible interior probability
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that generates a total welfare equal to:

Ŵ
(
λ1(x1), λ

2(x1)
)

= πp(θ1) ·
[
g(y1) λ

1(x1) S(x1, y1) +
(
1− g(y1)

)
λ2(x1) S(x1, y2)

]
+ πp(θ2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
−
[
c(x1, y1)−c(x1, y2)

]
λ1(x1)π

p(θ1)g(y2)−
[
c(x2, y1)−c(x2, y2)

](
1−λ1(x1)

)
πp(θ2)g(y2)

where:

θ1 =
g(y1) λ

1(x1) +
(
1− g(y1)

)
λ2(x1)

f(x1)
and θ2 =

g(y1)
(
1− λ1(x1)

)
+
(
1− g(y1)

)(
1− λ2(x1)

)
1− f(x1)

(C.2)

As in the complete information, we tremble λ1(x1) by ε1 and λ2(x1) by ε2 such

that ε2 ≡ − ε1g(y1)
1−g(y1) ensuring that the market tightness in each submarket remains

constant. The new total welfare is:

Ŵ
(
λ1(x1)+ε1, λ

2(x1)+ε2
)

= πp(θ1)·
[
g(y1)λ

1(x1)S(x1, y1)+
(
1−g(y1)

)
λ2(x1)S(x1, y2)

]
+ πp(θ2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
−
[
c(x1, y1)−c(x1, y2)

]
λ1(x1)π

p(θ1)g(y2)−
[
c(x2, y1)−c(x2, y2)

](
1−λ1(x1)

)
πp(θ2)g(y2)

+ ε1g(y1)

{
πp(θ2)

[
S(x2, y2)− S(x2, y1) +

g(y2)

g(y1)

(
c(x2, y1)− c(x2, y2)

)]
− πp(θ1)

[
S(x1, y2)− S(x1, y1) +

g(y2)

g(y1)

(
c(x1, y1)− c(x1, y2)

)]}

Thus, the change in welfare is equal to:

∆Ŵ = ε1g(y1)

{
πp(θ2)

[
S(x2, y2)− S(x2, y1) +

g(y2)

g(y1)

(
c(x2, y1)− c(x2, y2)

)]
−πp(θ1)

[
S(x1, y2)− S(x1, y1) +

g(y2)

g(y1)

(
c(x1, y1)− c(x1, y2)

)]
︸ ︷︷ ︸

ZPI(θ1)

}

where θ1 and θ2 are defined as in Equation C.2. As earlier, ZPI(θ1) is strictly in-

creasing in θ1. Therefore, ZPI(θmax
1 ) ≥ ZPI(θ1) ≥ ZPI(0) for any θ1 ∈ [0, θmax

1 ]

where θmax
1 = 1

f(x1)
. Now, we analyze three cases:
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1. Suppose ZPI(θ1) > 0. Then, pick ε1 > 0 with ε2 ≡ − ε1g(y1)
1−g(y1) such that either

λ̂1(x1) ≡ λ1(x1) + ε1 = 1 or λ̂2(x1) ≡ λ2(x1) + ε2 = 0. In the former case,

λ̂1(x2) = 0 and λ̂2(x2) ∈ (0, 1); and in the latter case, λ̂1(x2) ∈ (0, 1) and

λ̂2(x2) = 1. In both cases, the definition of PAM is satisfied.

2. Suppose ZPI(θ1) < 0. Then, pick ε1 < 0 with ε2 ≡ − ε1g(y1)
1−g(y1) such that either

λ̂1(x1) ≡ λ1(x1) + ε1 = 0 or λ̂2(x1) ≡ λ2(x1) + ε2 = 1. In the former case,

λ̂1(x2) = 1 and λ̂2(x2) ∈ (0, 1); and in the latter case, λ̂1(x2) ∈ (0, 1) and

λ̂2(x2) = 0. In both cases, the definition of NAM is satisfied.

3. Suppose ZPI(θ) = 0. We show that an interior randomization device can
not be an equilibrium. To see this, first tremble λ1(x1) by ε1, and calculate
welfare:

Ŵ
(
λ1(x1)+ε1, λ

2(x1)
)
= πp(θ̂1)·

[
g(y1)λ

1(x1)S(x1, y1)+
(
1−g(y1)

)
λ2(x1)S(x1, y2)

]
+ πp(θ̂2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
−
[
c(x1, y1)−c(x1, y2)

]
λ1(x1)π

p(θ̂1)g(y2)−
[
c(x2, y1)−c(x2, y2)

](
1−λ1(x1)

)
πp(θ̂2)g(y2)

+ ε1g(y1)
[
πp(θ̂1) S(x1, y1)− πp(θ̂2) S(x2, y1)

]
+ ε1g(y2)

{
πp(θ̂2)

[
c(x2, y1)− c(x2, y2)

]
− πp(θ̂1)

[
c(x1, y1)− c(x1, y2)

]}

where θ̂1 = θ1 + ε1g(y1)
f(x1)

, θ̂2 = θ2− ε1g(y1)
1−f(x1) , and θ1, θ2 are defined as in Equation

C.2. Now, let’s tremble λ2(x1) by ε2, and calculate welfare:

Ŵ (λ2(x1), λ
2(x1)+ε2) = πp(θ̃1)·

[
g(y1)λ

1(x1)S(x1, y1)+
(
1−g(y1)

)
λ2(x1)S(x1, y2)

]
+ πp(θ̃2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
−
[
c(x1, y1)−c(x1, y2)

]
λ1(x1)π

p(θ̃1)g(y2)−
[
c(x2, y1)−c(x2, y2)

](
1−λ1(x1)

)
πp(θ̃2)g(y2)

+ ε2
(
1− g(y1)

)[
πp(θ̃1) S(x1, y2)− πp(θ̃2) S(x2, y2)

]
where θ̃1 = θ1 + ε2(1−g(y1))

f(x1)
, θ̃2 = θ2 − ε2(1−g(y1))

1−f(x1) , and θ1, θ2 are defined as in

Equation C.2.

For any small ε1 with ε2 ≡ ε1g(y1)
1−g(y1) , it follows that θ̂1 = θ̃1 and θ̂2 = θ̃2. Pick

such ε2. Then, increasing λ1(x1) is marginally more profitable than increas-
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ing λ2(x1) if and only if

πp(θ2)
[
S(x2, y2)− S(x2, y1) +

g(y2)

g(y1)

(
c(x2, y1)− c(x2, y2)

)]
−πp(θ1)

[
S(x1, y2)− S(x1, y1) +

g(y2)

g(y1)

(
c(x1, y1)− c(x1, y2)

)]
︸ ︷︷ ︸

ZPI(θ1)

≥ 0

Since ZPI(θ̂1) > ZPI(θ1) = 0, then the inequality holds. Therefore, at least

one of the partial derivatives of W at
(
λ1(x1), λ

2(x1)
)

is non-zero, meaning

that
(
λ1(x1), λ

2(x1)
)

at ZPI(θ1) = 0 is not an equilibrium. This finishes the

proof.

C.2 Proof of Proposition 1 under Private Information

We can establish Proposition 1 for the private information case. Let θ̂1 be such that

ZPI(θ̂1) = 0, then the following result holds:

Proposition C.1. In the private information setting, let θ∗∗1 be the equilibrium market

tightness. (i) If θ∗∗1 > θ̂1 then the equilibrium sorting exhibits PAM. (ii) If θ∗∗1 < θ̂1 then

the equilibrium sorting exhibits NAM. (iii) θ∗∗1 = θ̂1 is never optimal.

By assumption S(x, y) is increasing in y, thusZPI(θ1) is increasing in θ1. There-

fore, items (i) to (iii) from the previous proof applies here.

C.3 Proof of Corollary 2

ZPI(θ1) is increasing in θ1 reaching its minimum value at θ1 = 0, and when θ1 = 0

it follows that πp(0) = 1 and θ2 = 1
1−f(x1) . Therefore, from Proposition C.1, we can

ensure PAM by imposing that the following inequality must hold:

πp
(

1

f(x2)

)[
S(x2, y2)− S(x2, y1) +

g(y2)

g(y1)

(
c(x2, y1)− c(x2, y2)

)]
−
[
S(x1, y2)− S(x1, y1) +

g(y2)

g(y1)

(
c(x1, y1)− c(x1, y2)

)]
≥ 0
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Now,ZPI(θ1) reaches its maximum value at θ1 = 1
f(x1)

.Therefore, from Proposition

C.1, we can ensure NAM by imposing that the following inequality must hold:

[
S(x2, y2)− S(x2, y1) +

g(y2)

g(y1)

(
c(x2, y1)− c(x2, y2)

)]
− πp

(
1

f(x1)

)[
S(x1, y2)− S(x1, y1) +

g(y2)

g(y1)

(
c(x1, y1)− c(x1, y2)

)]
≤ 0

C.4 Assortative Matching in Equilibrium

First, we show that Lemmas B.1 and B.2 carry over to the case of private informa-

tion.

Lemma C.2. The rate of change in Welfare Ŵ
(
λ1(x1), λ

2(x1)
)

monotonically decreases

in λk(x1) for each k = 1, 2.

Proof. Recall the welfare of children:

Ŵ
(
λ1(x1), λ

2(x1)
)
= πp(θ1)·{

g(y1) λ
1(x1) S(x1, y1) +

(
1− g(y1)

) [
λ2(x1) S(x1, y2)− λ1(x1)

(
c(x1, y1)− c(x1, y2)

)]}
︸ ︷︷ ︸

EÛ1

+ πp(θ2)·{
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) [(
1− λ2(x1)

)
S(x2, y2)−

(
1− λ1(x1)

)(
c(x2, y1)− c(x2, y2)

)]}
︸ ︷︷ ︸

EÛ2

where

θ1 =
g(y1)λ

1(x1) +
(
1− g(y1)

)
λ2(x1)

f(x1)
and θ2 =

1− θ1f(x1)

1− f(x1)

Fix λ−k(x1). Increasing λk(x1) by a small amount ε > 0, increases EÛ1 and θ1, and

decreases EÛ2 and θ2 linearly. Since πp(·) is a decreasing and convex function, the

rate of increase through πp(θ1) ·EÛ1 decreases, while the rate of decrease through

πp(θ2) · EÛ2 increases in λk(x1), for any k = 1, 2. �

Lemma C.2 implies that ∂Ŵ(λ1(x1),λ2(x1))
∂λk(x1)

is monotonically decreasing. Now, an-

other useful lemma follows:

53



Lemma C.3. Fix
(
λ̂1(x1), λ̂

2(x1)
)
. For any

(
λ̃1(x1), λ̃

2(x1)
)

such that θ1
(
λ̂1(x1), λ̂

2(x1)
)

=

θ1(λ̃
1(x1), λ̃

2(x1)
)

and λ̂1(x1) ≥ λ̃1(x1), the following holds:

∂Ŵ
(
λ1(x1), λ

2(x1)
)

∂λk(x1)
|(
λ̂1(x1),λ̂2(x1)

) ≤ ∂Ŵ
(
λ1(x1), λ

2(x1)
)

∂λk(x1)
|(
λ̃1(x1),λ̃2(x1)

)
Proof. Taking partial derivative on welfare under private information yields the

followings:

∂Ŵ
(
λ1(x1), λ

2(x1)
)

∂λ1(x1)
=

g(y1) · V (λ1(x1), λ
2(x1)) + g(y1) ·

[
πp(θ1)S(x1, y1)− πp(θ2)S(x2, y1)

]
−(

1− g(y1)
)
·
{
πp(θ1)

[
c(x1, y1)− c(x1, y2)

]
− πp(θ2)

[
c(x2, y1)− c(x2, y2)

]}

∂Ŵ
(
λ1(x1), λ

2(x1)
)

∂λ2(x1)
=(

1− g(y1)
)
· V (λ1(x1), λ

2(x1)) +
(
1− g(y1)

)
·
[
πp(θ1)S(x1, y2)− πp(θ2)S(x2, y2)

]
with

V (λ1(x1), λ
2(x1)) =

πp′(θ1)

f(x1)
· EÛ1(λ

1(x1), λ
2(x1))−

πp′(θ2)

1− f(x1)
· EÛ2(λ

1(x1), λ
2(x1))

where EÛ1(λ
1(x1), λ

2(x1)) and EÛ2(λ
1(x1), λ

2(x1)) are defined as in Lemma C.2.

Notice, plugging V (λ1(x1), λ
2(x1)) into ∂Ŵ

(
λ1(x1),λ2(x1)

)
∂λ1(x1)

yields the following:

∂Ŵ
(
λ1(x1), λ

2(x1)
)

∂λ1(x1)
=

g(y1)(
1− g(y1)

) · ∂Ŵ(λ1(x1), λ2(x1))
∂λ2(x1)

+ g(y1) · ZPI(θ1)

It is easy to see that V (λ1(x1), λ
2(x1)) is the same as the complete information

case, and thus, it decreases as we move down on the market tightness θ1. In other

words, as we increase λ1(x1) while decreasing λ2(x1), V (λ1(x1), λ
2(x1)) decreases.

This implies that the rate of change with respect to λ1(x1) decreases as one moves

down on the same market tightness, which finishes the proof. �
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Now, by using Lemmas C.2 and C.3, we characterize the equilibrium alloca-

tion of parents across submarkets as in the complete information case. Initially,

we establish the equilibrium allocation of parents when the sufficient conditions

of Corollary 2 hold. Later, we extend the analysis to the case where sufficient

conditions in Corollary 2 are violated.

Proposition C.2 (Positive Assortative Matching(PAM)). Suppose that
S(x2,y2)−S(x2,y1)+ g(y2)

g(y1)
·[c(x2,y1)−c(x2,y2)]

S(x1,y2)−S(x1,y1)+ g(y2)
g(y1)

·[c(x1,y1)−c(x1,y2)]
≥ 1

πp
(

1
f(x2)

) holds. The equilibrium exhibits:

i. low-type PAM with λ1?(x1) ∈ (0, 1) and λ2?(x1) = 0 if

∂Ŵ (λ1(x1), λ
2(x1))

∂λ1(x1)
|{λ2(x1)=0} = 0 for some λ1?(x1) ∈ (0, 1) (C.3)

ii. perfect PAM with λ1?(x1) = 1 and λ2?(x1) = 0 if

∂Ŵ (λ1(x1), λ
2(x1))

∂λ1(x1)
|{λ1(x1)=1,λ2(x1)=0} ≥ 0 ≥ ∂Ŵ (λ1(x1), λ

2(x1))

∂λ2(x1)
|{λ1(x1)=1,λ2(x1)=0}

(C.4)

iii. high-type PAM with λ1?(x1) = 1 and λ2?(x1) ∈ (0, 1) if

∂Ŵ (λ1(x1), λ
2(x1))

∂λ2(x1)
|{λ1(x1)=1} = 0 for some λ2(x1)

∗ ∈ (0, 1) (C.5)

Proof. By assumption,
S(x2,y2)−S(x2,y1)+ g(y2)

g(y1)
·[c(x2,y1)−c(x2,y2)]

S(x1,y2)−S(x1,y1)+ g(y2)
g(y1)

·[c(x1,y1)−c(x1,y2)]
≥ 1

πp
(

1
f(x2)

) holds, which

implies that ZPI(θ1) ≥ 0 for any θ1. Therefore, starting from an initial allocation

λ1(x1) = 0 and λ2(x1) = 0, the designer first allocated y1-parents into submarket

x1 until either parents are exhausted or itis not profitable anymore. Accordingly,

perfect PAM and high-type PAM follows. �

Proposition C.3 (Negative Assortative Matching (NAM)). Suppose that
S(x1,y2)−S(x1,y1)+ g(y2)

g(y1)
·[c(x1,y1)−c(x1,y2)]

S(x2,y2)−S(x2,y1)+ g(y2)
g(y1)

·[c(x2,y1)−c(x2,y2)]
≥ 1

πp
(

1
f(x1)

) holds. The equilibrium exhibits:

i. low-type NAM with λ1?(x1) ∈ (0, 1) and λ2?(x1) = 1 if

∂Ŵ (λ1(x1), λ
2(x1))

∂λ1(x1)
|{λ2(x1=1} = 0 for some λ1?(x1) ∈ (0, 1) (C.6)
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ii. perfect NAM with λ1?(x1) = 0 and λ2?(x1) = 1 if

∂Ŵ (λ1(x1), λ
2(x1))

∂λ2(x1)
|{λ1(x1)=0,λ2(x1)=1} ≥ 0 ≥ ∂Ŵ (λ1(x1), λ

2(x1))

∂λ1(x1)
|{λ1(x1)=0,λ2(x1)=1}

(C.7)

iii. high-type NAM with λ1?(x1) = 0 and λ2?(x1) ∈ (0, 1) if

∂Ŵ (λ1(x1), λ
2(x1))

∂λ2(x1)
|{λ1(x1=1} = 0 for some λ2?(x1) ∈ (0, 1) (C.8)

Proof. QED following the same arguments in the proof of Proposition C.2 �

Propositions C.2 and C.3 characterize the equilibrium sorting patterns when

the conditions specified in Corollary 2 hold. Now, we extend the analysis to the

case where the sufficient conditions are violated.

Case 1. Fix λ̃1(x1) = 0 and λ̃2(x1) ≤ 1. We consider sub-cases of λ̂1(x1):

(1A) Consider λ̂1(x1) ≤ 1 and λ̂2(x1) = 0 [Panel B.1a]. By starting from a partic-

ular corner λ1(x1) = 0 and λ2(x1) = 0, we initially increase λ2(x1) until it is

either not profitable any more or we switch from NAM to PAM by increasing

λ1(x1) instead. Now, the following characterizes the equilibrium sorting for

this particular case:

Proposition C.4. Consider λ̃1(x1) = 0 and λ̃2(x1) ≤ 1, and λ̂1(x1) ≤ 1 and λ̂2(x1) =

0.

i. Suppose λ1?(x1) = 0 and λ2?(x1) < λ̃2(x1), then the equilibrium sorting exhibits

high-type NAM if λ2?(x1) ∈ [0, λ̃2(x1)) solves Equation C.8

ii. Suppose λ2?(x1) = 0 and λ1?(x1) > λ̂1(x1), then the equilibrium sorting exhibits:

a. low-type PAM if λ1?(x1) ∈ (λ̂1(x1), 1) solves Equation C.3

b. perfect PAM if λ1?(x1) = 1 solves Equation C.4

iii. Suppose λ1?(x1) = 1 and λ2?(x1) > 0, then the equilibrium sorting exhibits high-

type PAM if λ2?(x1) ∈ (0, 1] solves Equation C.5

(1B) Consider λ̂1(x1) = 1 and λ̂2(x1) ≥ 0 [Panel B.1b]. Following a symmetric

argument, the characterization of this case follows:
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Proposition C.5. Consider λ̃1(x1) = 0 and λ̃2(x1) ≤ 1, and λ̂1(x1) = 1 and λ̂2(x1) ≥

0.

i. Suppose λ1?(x1) = 0 and λ2?(x1) < λ̃2(x1), then the equilibrium sorting exhibits

high-type NAM if λ2?(x1) ∈ [0, λ̃2(x1)) solves Equation C.8

ii. Suppose λ1?(x1) = 1 and λ2?(x1) > λ̂2(x1), then the equilibrium sorting exhibits

high-type PAM if λ2?(x1) ∈ (λ̂2(x1), 1] solves Equation C.5

Case 2. Fix λ̃1(x1) ≥ 0 and λ̃2(x1) = 1. We consider sub-cases of λ̂1(x1):

(2A) Consider λ̂1(x1) = 1 and λ̂2(x1) ≥ 0 [Panel B.1c]. Following a symmetric

argument, the characterization of this case follows:

Proposition C.6. Consider λ̃1(x1) ≥ 0 and λ̃2(x1) = 1, and λ̂1(x1) = 1 and λ̂2(x1) ≥

0.

i. Suppose λ1?(x1) = 1 and λ2?(x1) > λ̂2(x1), then the equilibrium sorting exhibits

high-type PAM if λ2?(x1) ∈ (λ̂2(x1), 1] solves Equation C.5

ii. Suppose λ2?(x1) = 1 and λ1?(x1) < λ̃1(x1), then the equilibrium sorting exhibits:

a. low-type NAM if λ1?(x1) ∈ (0, λ̃1(x1)) solves Equation C.6

b. perfect NAM if λ1?(x1) = 0 solves Equation C.7

iii. Suppose λ1?(x1) = 0 and λ2?(x1) < 1, then the equilibrium sorting exhibits high-

type NAM if λ2?(x1) ∈ [0, 1) solves Equation C.8.

(2B) Consider λ̂1(x1) ≤ 1 and λ̂2(x1) = 0 [Panel B.1d]. The following character-

izes the equilibrium sorting for this particular case:

Proposition C.7. Consider λ̃1(x1) ≥ 0 and λ̃2(x1) = 1, and λ̂1(x1) ≤ 1 and λ̂2(x1) =

0.

i. Suppose λ2?(x1) = 1 and λ1?(x1) < λ̃1(x1), then the equilibrium sorting exhibits:

a. low-type NAM if λ1?(x1) ∈ (0, λ̃1(x1)) solves Equation C.6

b. perfect NAM if λ1?(x1) = 0 solves Equation C.7

ii. Suppose λ1?(x1) = 0 and λ2?(x1) < 1, then the equilibrium sorting exhibits high-

type NAM if λ2?(x1) ∈ [0, 1) solves Equation C.8
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iii. Suppose λ2?(x1) = 0 and λ1?(x1) > λ̂1(x1), then the equilibrium sorting exhibits:

a. low-type PAM if λ1?(x1) ∈ (λ̂1(x1), 1) solves Equation C.3

b. perfect PAM if λ1?(x1) = 1 solves Equation C.4

iv. Suppose λ1?(x1) = 1 and λ2?(x1) > 0, then the equilibrium sorting exhibits high-

type PAM if λ2?(x1) ∈ (0, 1] solves Equation C.5

C.5 Proof of Proposition 3

The designer solves the following problem:

max{(
λk(xi),τk(xi)

)2
i=1

}2

k=1

{
2∑
i=1

πc
(
θi
) ∑2

k=1

[
u(xi, yk)− τk(xi)

]
λk(xi)g(yk)∑2

k=1 λ
k(xi) g(yk)

f(xi)

}

subject to [FC], [MT],[PC], and [IC]. We will analyze the constraints in this max-

imization problem.

First, consider the [IC]s for low- and high-ability parents, respectively:

2∑
i=1

c(xi, y1)
[
λ2(xi)− λ1(xi)

]
πp(θxi) ≥

2∑
i=1

[
τ 2(xi) λ

2(xi)− τ 1(xi) λ1(xi)
]
πp(θxi)

2∑
i=1

[
τ 2(xi) λ

2(xi)− τ 1(xi) λ1(xi)
]
πp(θxi) ≥

2∑
i=1

c(xi, y2)
[
λ2(xi)− λ1(xi)

]
πp(θxi)

From these two inequalities, we get the following expression:

2∑
i=1

c(xi, y1)
[
λ2(xi)− λ1(xi)

]
πp(θxi) ≥

2∑
i=1

c(xi, y2)
[
λ2(xi)− λ1(xi)

]
πp(θxi)

⇒ c(x1, y1)
[
λ2(x1)− λ1(x1)

]
πp(θ1) + c(x2, y1)

[
λ2(x2)− λ1(x2)

]
πp(θ2) ≥

c(x1, y2)
[
λ2(x1)− λ1(x1)

]
πp(θ1) + c(x2, y2)

[
λ2(x2)− λ1(x2)

]
πp(θ2)
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⇒
[
c(x2, y1)− c(x2, y2)

]
·
[
λ2(x2)− λ1(x2)

]
πp(θ2) ≥[

c(x1, y2)− c(x1, y1)
]
·
[
λ2(x1)− λ1(x1)

]
πp(θ1)

Note the following:

λ2(x1)− λ1(x1) = 1− λ2(x2)− [1− λ1(x2)] = λ1(x2)− λ2(x2)

Therefore, replacing in the previous inequality:

[
c(x2, y1)− c(x2, y2)

]
·
[
λ2(x2)− λ1(x2)

]
πp(θ2) ≥[

c(x1, y1)− c(x1, y2)
]
·
[
λ2(x2)− λ1(x2)

]
πp(θ1) (C.9)

This inequality depends on the sign of the term [λ2(x2) − λ1(x2)], which defines

PAM and NAM. Hence, consider the following cases:

• Case 1: Suppose λ2(x2)− λ1(x2) is positive. Then, Equation C.9 reduces to:

[
c(x2, y1)− c(x2, y2)

]
· πp(θ2) ≥

[
c(x1, y1)− c(x1, y2)

]
· πp(θ1)

which it is satisfied if the following holds:

c(x2, y2)− c(x2, y1)
c(x1, y2)− c(x1, y1)

≥ 1

πp
(

1
f(x2)

) (C.10)

• Case 2: Suppose λ2(x2)− λ1(x2) is negative. Then, Equation C.9 reduces to:

[
c(x1, y1)− c(x1, y2)

]
· πp(θ1) ≥

[
c(x2, y1)− c(x2, y2)

]
· πp(θ2)

which it is satisfied if the following holds:

c(x1, y2)− c(x1, y1)
c(x2, y2)− c(x2, y1)

≥ 1

πp
(

1
f(x1)

) (C.11)
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Now, we show that the [PC] for low-ability parents, and the [IC] for high-ability

parents imply the [PC] for high-ability parents:

2∑
i=1

[
τ 2(xi)− c(xi, y2)

]
λ2(xi)π

p(θxi) ≥
2∑
i=1

[
τ 1(xi)− c(xi, y2)

]
λ1(xi)π

p(θxi)

≥
2∑
i=1

[
τ 1(xi)− c(xi, y1)

]
λ1(xi)π

p(θxi)

≥ 0

Thus, we can ignore the [PC] for high-ability parents.

Next, suppose that the [IC] for high-ability parents holds with strict inequality:

2∑
i=1

[
τ 2(xi)− c(xi, y2)

]
λ2(xi)π

p(θxi) >
2∑
i=1

[
τ 1(xi)− c(xi, y2)

]
λ1(xi)π

p(θxi)

Then, the designer can decrease τ 2(x1) and τ 2(x2) by a small ε > 0 satisfying the

constraint while increasing the objective function. A contradiction. Therefore, the

[IC] for high-ability parents holds with equality at the optimum.

Similarly, suppose that the [PC] for low-ability parents holds with strict in-

equality:
2∑
i=1

[
τ 1(xi)− c(xi, y1)

]
λ1(xi)π

p(θxi) > 0

Then, the designer can decrease τ 1(x1) and τ 1(x2) by a small ε > 0 satisfying the

constraint while increasing the objective function. A contradiction. Therefore, the

[PC] for low-ability parents holds with equality at the optimum.

Lastly, we show that the [IC] for high-ability parents combined with Equations

C.10 and C.11 imply the [IC] for low-ability parents. Thus, consider the [IC] for

high-ability parents:

2∑
i=1

[
τ 2(xi)− c(xi, y2)

]
λ2(xi)π

p(θxi) =
2∑
i=1

[
τ 1(xi)− c(xi, y2)

]
λ1(xi)π

p(θxi)

⇒
2∑
i=1

[
τ 2(xi)λ

2(xi)− τ 1(xi)λ1(xi)
]
πp(θxi) =

2∑
i=1

c(xi, y2)
[
λ2(xi)− λ1(xi)

]
πp(θxi)
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The right-hand side of the previous equation can be written as:

c(x1, y2)
[
λ2(x1)− λ1(x1)

]
πp(θ1) + c(x2, y2)

[
λ2(x2)− λ1(x2)

]
πp(θ2)

⇒ c(x2, y2)
[
λ2(x2)− λ1(x2)

]
πp(θ2)− c(x1, y2)

[
λ2(x2)− λ1(x2)

]
πp(θ1)

⇒
[
c(x2, y2)π

p(θ2)− c(x1, y2)πp(θ1)
]
·
[
λ2(x2)− λ1(x2)

]
Thus, the [IC] for high-ability parents can be written as:

2∑
i=1

[
τ 2(xi)λ

2(xi)− τ 1(xi)λ1(xi)
]
πp(θxi) =[

c(x2, y2)π
p(θ2)− c(x1, y2)πp(θ1)

]
·
[
λ2(x2)− λ1(x2)

]
As previously, we need to consider the following cases:

• Case 1: Suppose λ2(x2) − λ1(x2) is positive. Equation C.10 ensures that the

following inequality holds:

[
c(x2, y1)− c(x2, y2)

]
πp(θ2) ·

[
λ2(x2)− λ1(x2)

]
≥[

c(x1, y1)− c(x1, y2)
]
πp(θ1) ·

[
λ2(x2)− λ1(x2)

]
After some algebra:

[
c(x2, y1)π

p(θ2)− c(x1, y1)πp(θ1)
]
·
[
λ2(x2)− λ1(x2)

]
≥[

c(x2, y2)π
p(θ2)− c(x1, y2)πp(θ1)

]
·
[
λ2(x2)− λ1(x2)

]
Which implies the [IC] for low-ability parents:

[
c(x2, y1)π

p(θ2)− c(x1, y1)πp(θ1)
]
·
[
λ2(x2)− λ1(x2)

]
≥

2∑
i=1

[
τ 2(xi)λ

2(xi)− τ 1(xi)λ1(xi)
]
πp(θxi)

• Case 2: Suppose λ2(x2)− λ1(x2) is negative. Equation C.11 ensures that the
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following inequality holds:

[
c(x1, y1)− c(x1, y2)

]
πp(θ1) ·

[
λ1(x2)− λ2(x2)

]
≥[

c(x2, y1)− c(x2, y2)
]
πp(θ2) ·

[
λ1(x2)− λ2(x2)

]
After some algebra:

[
c(x2, y1)π

p(θ2)− c(x1, y1)πp(θ1)
]
·
[
λ1(x2)− λ2(x2)

]
≥[

c(x2, y2)π
p(θ2)− c(x1, y2)πp(θ1)

]
·
[
λ1(x2)− λ2(x2)

]
Which implies the [IC] for low-ability parents:

[
c(x2, y1)π

p(θ2)− c(x1, y1)πp(θ1)
]
·
[
λ2(x2)− λ1(x2)

]
≥

2∑
i=1

[
τ 2(xi)λ

2(xi)− τ 1(xi)λ1(xi)
]
πp(θxi)

Therefore, we can drop the [IC] for low-ability parents.
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