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Abstract

This paper studies optimal taxation of income and education when employers cannot

observe workers’ productivity and workers signal their productivity to firms by choosing

both quantity and quality of education. We characterize constrained efficient allocations

and derive conditions under which there is predistribution, i.e., redistribution through wage

compression. Implementation through income and education dependent taxes is discussed,

as well as education mandates. A key insight is that achieving predistribution requires

complementing the income tax with additional policy instruments that regulate the flow

of information in the labor market and prevent high-skilled individuals from separating

themselves from their low-skilled counterparts.
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1 Introduction

In the canonical framework of optimal income taxation originally developed by Mirrlees (1971),
the primary challenge facing tax policy stems from the presence of asymmetric information
between the government and private individuals. The government’s goal is to redistribute re-
sources based on the innate productive abilities of individuals. However, since these abilities
remain unobservable for tax purposes, the government resorts to taxing income and other ob-
servable measures that can serve as proxies for these unobserved abilities. This leads to the
introduction of second-best solutions, where incentive compatibility considerations justify the
introduction of distortions, often in the form of positive marginal tax rates. These distortions fa-
cilitate targeted transfers to low-income individuals while providing incentives for high-income
individuals to exert labor effort. In scenarios involving extensive margin choices, such as mi-
gration and labor market participation, negative marginal tax rates may be desirable.

The prevailing optimal tax literature has largely overlooked a crucial aspect of tax policy
design: in addition to the standard information asymmetry between the government and pri-
vate agents emphasized in traditional optimal tax theory, there is a second layer of information
asymmetry between workers and employers. As economists have recognized since the seminal
contributions of Spence (1973) and Akerlof (1976), asymmetric information in the labor market
profoundly shapes the dynamics of interactions between workers and firms and can contribute
significantly to market inefficiencies. This asymmetry implies that employers cannot accurately
gauge the productivity of workers, and as a result, even in a competitive labor market, work-
ers may not receive compensation commensurate with their marginal productivity. Instead,
the wage distribution becomes endogenous, influenced by the screening and signaling methods
available to employers and workers alike.

Two recent papers extend Mirrlees’ framework by introducing a second layer of asymmet-
ric information between workers and employers, highlighting how firms screen workers based
on their choices about working hours. Stantcheva (2014) examines the implications of adverse
selection in the labor market for the design of optimal income taxation. She shows that firms’
use of hours and compensation as screening tools can help governments achieve redistributive
goals by mitigating the adverse response of high-skilled workers to progressive taxation. Bas-
tani et al. (2015) adopt a similar screening framework, focusing on how governments can use the
progressive income tax schedule to influence the wage distribution by implementing bunching
or pooling of worker types.

The purpose of the current paper is to propose a framework for evaluating optimal redis-
tributive policies in the presence of educational signaling, recognizing the possibility of redis-
tribution through wage compression, which we refer to as predistribution. Despite the central
role of signaling theory in economics, its place as a cornerstone of economics curricula around
the world, and its presence in policy discussions (as evidenced, for example, by Caplan 2018),
it is surprising that signaling has received the attention of only a handful of papers in the vast
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literature on the optimal design of tax systems that has followed the seminal work of Mirrlees
(1971). By studying optimal taxation in the presence of education signaling, our paper seeks to
make progress in filling this knowledge gap in the literature.

Consistent with the prevailing literature on optimal income taxation, we assume that work-
ers differ in their intrinsic productive capabilities, which are unobservable to the government.
However, unlike the vast majority of papers in the optimal income tax literature, and in line
with the two studies discussed above, we assume that these abilities are also unobservable to
potential employers. The distinguishing feature of our analysis is that workers must signal
their type to firms by making costly effort choices. In addition, we allow information trans-
mission between workers and firms to occur along more than one dimension, and we analyze
constrained efficient allocations that combine taxes on income and taxes on the signaling activ-
ity that the government can observe in the labor market. As we show, these aspects are essential
for understanding how to design optimal redistribution policies in economies with two levels of
asymmetric information. In particular, they determine the feasibility and social desirability of
redistribution via the wage channel (predistribution).1

While the current paper shares the feature of a second layer of asymmetric information with
the studies mentioned above, it differs from them in at least five ways. First, we focus on worker
signaling through investment in education.2 Second, we consider multidimensional signaling in
the context of taxation, which allows us to retain the realistic Mirrleesian feature that firms are
more informed about workers than the government. Third, we consider tax systems that depend
not only on income but also on the signals that the government can observe in the labor market.3

Fourth, in line with Bastani et al. (2015) but in contrast to Stantcheva (2014), we emphasize the
important role of redistribution through the wage (as opposed to the income) channel. Finally, in
contrast to Stantcheva (2014), we show that the presence of adverse selection due to asymmetric
information between firms and workers does not necessarily lead to a higher level of welfare
in the social optimum than that achieved under a Mirrleesian setup in which worker types are
observable by firms.

Our analytical vehicle is a model that captures the equity-efficiency tradeoff in a manner
similar to the two-type Stiglitz (1982) version of the Mirrlees (1971) optimal income tax model.

1Notably, predistribution is a phenomenon which occurs even when the production technology is linear and skill
types are perfect substitutes, as in Mirrlees (1971). The mechanism behind wage compression in our signaling
context is therefore different from the one emphasized in papers studying optimal income taxation in a general
equilibrium context, where redistribution through the wage channel occurs due to sectoral reallocation of labor
(see, for example, Stiglitz 1982, Rothschild and Scheuer 2013, and Sachs et al. 2020).

2By focusing on signaling, our study is related to recent work by Craig (2023), who studies signaling in the
context of human capital investment and the design of optimal income taxation in a different setting where em-
ployers make Bayesian inferences about workers’ productivity and the equilibrium wage is a weighted average of
the worker’s own productivity and the productivity of other similar workers, and Sztutman (2024), who studies
optimal taxation in a dynamic job signaling model where the career profile of labor supply conveys information
about worker productivity. Other papers that discuss signaling in the context of taxation are Spence (1974) and
Manoli (2006).

3The taxation of signals has received surprisingly little attention in the optimal income tax literature. The only
previous paper that we are aware of that explicitly discusses the taxation of signals is Andersson (1996).
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We characterize optimal nonlinear tax policy by focusing on feasible and incentive-compatible
(constrained efficient) allocations, invoking the revelation principle, and solving for the optimal
direct revelation mechanism. We consider a realistic setting where employers are uninformed
about workers’ productivity, but have better information than the government. We do so by
assuming that workers’ signaling has two dimensions: quantity (e.g., years of schooling), which
is universally observable (i.e., by both the government and employers), and quality (e.g., the
difficulty or intensity of a particular educational track), which is observed only by employers.4

To make signaling feasible, we assume that workers differ not only in their innate productive
ability, but also in their costs of signaling (e.g., the cost of obtaining education). A natural
interpretation of the signals in our model is that they represent components of educational effort.
Consistent with this interpretation, the signals in our model are not pure waste, but realistically
also enhance human capital.5

We begin by defining the labor market equilibrium in the presence of a general tax func-
tion, recognizing that it can be given by either a separating tax equilibrium (STE) or a pooling

tax equilibrium (PTE). We recognize that the richness of the tax function plays a key role in
determining whether a predistributive PTE is attainable. We then characterize the constrained
efficient allocation (CEA), assuming a max-min social objective, and show that it is either given
by an STE or a PTE, depending on which equilibrium configuration produces the highest level
of social welfare. We derive necessary and sufficient conditions for the CEA to feature predistri-
bution, emphasizing the role of both differences in agents’ innate productivities and differences
in the costs of signaling. We also discuss how the optimality of predistribution depends on the
fraction of high-skilled agents in the population, the properties of the human capital production
function, and the pattern of binding self-selection constraints faced by the government. Note
that in our setting, incentive constraints can flow from low types to high types as well as from
high types to low types. Low types may have an incentive to invest more in signaling in order
to qualify for higher compensation, while high types may have an incentive to mimic low types
in order to qualify for a more lenient tax treatment.

We also derive the optimal wedges in the CEA and discuss how these wedges can be imple-
mented using either a tax function that depends jointly on income and the observable component
of educational effort, or a tax function that depends only on income but is complemented by ed-
ucational mandates. Our study highlights a central policy insight: when workers signal their
productivity through their educational choices, the government can use a complementary wage
channel for redistribution, namely predistribution. Crucially, achieving predistribution requires
augmenting the income tax system with additional policy instruments that directly regulate the

4In most of our analysis, we assume that the signal observable to the government is the one in which the low
type has a comparative advantage. However, we also discuss what happens in situations where neither signal is
observable, where both signals are observable, and where the signal in which the high type has a comparative
advantage is observable. We also briefly discuss some extensions of our analysis, such as the cases of more than
two signals and more than two types.

5Our paper is thus related to papers that study the design of optimal income taxation in the presence of human
capital investment and learning-by-doing, see, for example, Stantcheva (2017).
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flow of information between workers and firms and prevent high-skilled individuals from sepa-
rating themselves from their low-skilled counterparts.6

The policy framework needed to implement the CEA (either given by an STE or by a PTE)
can take several forms, including education mandates and means-tested education taxes/subsidies
that supplement the income tax system. These policy tools serve to limit the ability of high-
achieving individuals to engage in signaling tactics, and thereby separating themselves from
their lower-skill counterparts. For example, to discourage signaling, the government could im-
pose penalties on students who complete their education unusually quickly or restrict the ability
of students to enroll in multiple programs simultaneously, a practice often used for signaling
purposes. Our study also suggests that income-contingent student loans, which are commonly
offered on favorable terms in many countries, can be instrumental in achieving redistribution.
The main re-distributive feature of these programs is that they tend to subsidize education for
individuals with lower skill levels. Our findings argue for improving these programs by fo-
cusing subsidies on dimensions of educational attainment in which low-skilled workers have a
comparative advantage.7

If the CEA is an STE, a (means-tested) subsidy on the observable (quantity) dimension of
educational effort in which the low-skilled have a comparative advantage serves to alleviate
the binding incentive constraint associated with high-income workers, thereby increasing the
amount of redistribution that can be achieved through traditional income redistribution. The
logic is similar to what happens in models of optimal hybrid taxation (combining income and
commodity taxation) when low-skilled and high-skilled workers have different consumption
preferences (see, e.g., Blomquist and Christiansen 2008). In this case, using the income tax
to finance subsidies for the good preferred by low-skilled agents allows redistribution to be
achieved at a lower efficiency cost than if the income tax were used alone.

If the CEA is given by a PTE, workers earn a common income and exert a common level
of (observable) quantity effort. In this case, implementation requires a kink in the tax schedule
along both the income and the effort dimensions. In particular, there is no redistribution through
the income channel in a PTE, so the main role of the tax schedule in this case is to maintain the
pooling equilibrium and thereby support predistribution. The latter is achieved by discourag-
ing high-skilled agents from differentiating themselves from their low-skilled counterparts by
choosing an off-equilibrium lower level of quantity effort. This is done by offering a quantity
effort subsidy for levels of quantity effort below the equilibrium (”common”) effort level, which

6Our formal analysis, detailed in Appendix H, shows that, in our setting, predistribution cannot be achieved by
an income tax system in isolation.

7Education subsidies have traditionally been used to correct market failures and directly redistribute income.
In the optimal tax literature, education subsidies are often used for two purposes: i) to mitigate/offset the negative
effects of income taxation on human capital formation, and ii) to enhance redistribution. See for example Ulph
(1977), Tuomala (1986), Boadway and Marchand (1995), Brett and Weymark (2003), Bovenberg and Jacobs
(2005), Maldonado (2008). Some studies also suggest the possibility of education taxes. For example, Blumkin
and Sadka (2008) justifies education taxes by the positive correlation between observed education and unobserved
ability. More recently, Findeisen and Sachs (2016) study income-contingent loans and find that it may be optimal
to make very rich individuals pay back more than the value of the loan, implying an education tax.
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effectively imposes a marginal tax on downward deviations along the quantity effort dimension.
Preventing such deviations by high-skilled mimickers can be achieved more easily by supple-
menting the non-linear income tax system with a binding education mandate (thus setting a
lower bound on quantity effort).

Note that while it is commonly understood that kinks in the income tax schedule result
in individuals with different labor productivities being pooled at the same pre-tax income and
receiving the same after-tax income (which can sometimes serve redistributive purposes, see,
e.g., Ebert 1992), our study highlights that kinks in the education tax/subsidy schedule can
serve to bunch people together at the education choice, thereby causing bunching in the wage
dimension, achieving redistribution through wage compression.

While our primary focus is on how tax systems that depend jointly on income and edu-
cation can achieve predistribution in a signaling context, predistribution can also be achieved
through other policy instruments in different contexts. For example, anti-discrimination laws
can discourage firms from screening or discriminating on the basis of observable characteristics
or choices, thereby promoting a more equitable wage distribution. Thus, our policy insight ex-
tends beyond education, although we consider it a central tenet. We believe that redistribution
through wage compression is an important aspect of real-world economies, and future empirical
research would be valuable in quantifying the degree of redistribution associated with different
policies that discourage signaling/screening through educational choice or other means in the
broader labor market, thereby causing workers with different labor productivities to receive the
same compensation.

The paper is organized as follows. In section 2, we present our basic model, define the STE
and PTE in the presence of a general tax function, and describe the government optimization
problem and the concept of CEA. In section 3, we characterize the optimal wedges associated
with the CEA. In section 4, we discuss how these wedges can be implemented using a tax
schedule that depends jointly on income and the observable component of educational effort,
or using an income tax function that depends only on income supplemented by educational
mandates, and discuss the relationship to existing policy instruments. In section 5, we discuss
alternative observational assumptions and some robustness and extensions of the basic setup.
Section 6 concludes. Most of our formal derivations and proofs are relegated to the Appendix.

2 The model

Consider an economy with a competitive labor market consisting of two types of workers: a
low-skilled worker, denoted by i = 1, and a high-skilled worker, denoted by i = 2, who differ
in their innate ability. The proportion of workers of type i in the population (normalized to a
unit measure, without loss of generality) is denoted by 0 < γi < 1. The innate ability of a
worker is assumed to be private information not available to the firm. Thus, we deviate from the
standard Mirrleesian setup by considering two layers of asymmetric information, one between
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the government and private agents and one between workers and firms.8

Workers exert costly effort that serves the dual purpose of (i) increasing worker productivity
and (ii) signaling innate ability. Our model is general, but for concreteness we focus on educa-
tional attainment, which is interpreted as educational effort prior to entering the labor market.
In line with this interpretation, workers are first movers in the interaction with firms.

We consider educational attainment in two dimensions. The first dimension is denoted by
es and represents the quantity of effort. The second dimension is denoted by eq and represents
the intensity of effort. For example, in the context of education, the variables es and eq would
capture the quantity (e.g., time spent acquiring vocational training and/or academic degrees)
and quality (e.g., GPA, reputation of certifying institution, interviews, and letters of recommen-
dation) dimensions of educational attainment, respectively. Our main focus is on the case where
es is observed by both the government and the firms, while eq is only observed by the firms (or is
prohibitively costly for the government to observe). However, we will discuss the implications
of other observability assumptions later.

The output of a worker of type i is given by the production function:

zi = h(eis, e
i
q)θ

i, (1)

where h(·) is jointly strictly concave and strictly increasing in both arguments and represents
the acquired human capital; and θi denotes the innate productive ability of type i.9 We define
the wage rate earned by a given individual as the ratio of pre-tax income, denoted by y, and
the value of the h function evaluated at the effort vector chosen by the individual. We will also
denote by h1 and h2 the first derivative with respect to the first and second arguments of h,
respectively.

The utility function is
ui(c, es.eq) = c−Ri(es, eq), (2)

where c is consumption and
Ri(es, eq) = pises + piqeq, (3)

is the cost function for agents of type i, where pis and piq denote the unitary marginal cost of
es and the unitary marginal cost of eq, respectively, for an agent of type i. The linear cost
specification is used for tractability, and the qualitative features of our results could be obtained
under more general specifications. We henceforth make the following assumptions:

p1s = p2s ≡ ps and p1q > p2q, (4)

8Other papers that have considered two layers of asymmetric information in the context of optimal policy
design are Stantcheva (2014), Bastani et al. (2015, 2019), Craig (2023), and Sztutman (2024).

9We further assume that the Inada conditions are satisfied, i.e., limes→0+
∂h
∂es

= limeq→0+
∂h
∂eq

= ∞ and

limes→∞
∂h
∂es

= limeq→∞
∂h
∂eq

= 0.
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which together imply that type-2 agents have a (weak) absolute advantage in signaling through
each channel, and a comparative advantage in the quality signal eq.

Note that without being overly unrealistic, and in order to simplify the exposition and make
the setup more tractable, we assume that labor supply is inelastic and normalized to a unit of
time. We discuss the case of endogenous labor supply in subsection 5.4 below, where we argue
that endogenous labor supply can be viewed as a special case of adding another signal.

2.1 Labor market equilibrium with taxes

We focus on the following two-stage signaling game. In the first stage, workers choose their
level of effort (both quality and quantity components), (eis, e

i
q); i = 1, 2. In the second stage,

each firm offers a labor contract that specifies the income level as a function of the observed sig-
nals, y(es, eq). We characterize the set of Perfect Bayesian Equilibria of this signaling game.10

Based on the observed signals, firms form their beliefs θ(es, eq) about the types of workers.
In equilibrium, choices are consistent in the sense that firms maximize their expected profits
by choosing labor contracts given their beliefs; and workers maximize their utility (by choos-
ing their signal/effort levels) given the labor contracts offered by firms and the applicable tax
schedule. Due to the existence of asymmetric information between firms and workers, we need
to consider both the possibility of a pooling equilibrium and a separating equilibrium.

The characteristic feature of signaling games is that the informed party moves first. Thus,
a critical question is how a less informed agent will react to an unexpected action by the first
mover. The beliefs that players have about what it means to observe an unexpected signal are
called off-equilibrium path beliefs. Different off-equilibrium path beliefs can support different
equilibria. In our analysis, we rely on the commonly used intuitive criterion (Cho and Kreps
1987), which is a so-called equilibrium ”refinement” used to narrow the set of plausible equi-
libria and eliminate equilibria that are considered unreasonable or implausible. In particular,
following Grossman and Perry (1986), we consider an extended version of the intuitive crite-
rion that requires the equilibrium to be robust to credible profitable deviations by a subset of
types.

The above modeling choices are consistent with Riley (2001), who shows that this refine-
ment condition implies that under a laissez-faire regime with no taxes, there is no pooling
equilibrium, and a separating equilibrium exists only if the fraction of low-skilled types is suf-
ficiently large. However, these results may change in the presence of taxes. In particular,
depending on what is observable by the government, and thus on how large the set of variables
on which an individual’s tax liability can be conditioned, there may always be a separating
equilibrium, and pooling equilibria may also become sustainable.

Below we provide a formal definition of separating and pooling tax equilibria, which refer
to the labor market equilibrium obtained under a general tax function. Although the analysis

10For a formal exposition of the notion of Perfect Bayesian Equilibrium, see Fudenberg and Tirole (1991).
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that follows will mostly focus on the realistic baseline case where, based on the information
available to the government, the tax function is conditioned on y and es, our definition of tax
equilibria is broader since it considers a general (nonlinear) tax function that is allowed to
depend on any of the variables y, es, and eq. The alternative tax systems will be analyzed later
and compared to the baseline case. We will assume throughout that the government cannot run
a deficit, and since we are primarily interested in the use of taxation as a redistributive policy
tool, we will assume without loss of generality that the government has no revenue needs. We
begin by defining the concept of separating tax equilibrium (STE).

Definition 1 (Separating Tax Equilibrium, STE). Let T (y, es, eq) denote a general tax function.

Define

(
y1∗, e1

∗

s , e1
∗

q

)
= argmax

y1,e1s,e
1
q

{
y1 − T

(
y1, e1s, e

1
q

)
− pse

1
s − p1qe

1
q

}
subject to y1 ≤ θ1h(e1s, e

1
q)

(5)(
y2∗, e2

∗

s , e2
∗

q

)
= argmax

y2,e2s,e
2
q

{
y2 − T

(
y2, e2s, e

2
q

)
− pse

2
s − p2qe

2
q

}
subject to (6)

y1∗ − T
(
y1∗, e1∗s , e1∗q

)
− pse

1∗
s − p1qe

1∗
q ≥ y2 − T

(
y2, e2s, e

2
q

)
− pse

2
s − p1qe

2
q (7)

y2 ≤ θ2h(e2s, e
2
q). (8)

An allocation given by the quadruplets

(
y1∗, c1∗, e1

∗

s , e1
∗

q

)
=

(
y1∗, y1∗ − T

(
y1∗, e1∗s , e1∗q

)
, e1

∗

s , e1
∗

q

)
,(

y2∗, c2∗, e2
∗

s , e2
∗

q

)
=

(
y2∗, y2∗ − T

(
y2∗, e2∗s , e2∗q

)
, e2

∗

s , e2
∗

q

)
,

with
(
e1

∗
s , e1

∗
q

)
̸=
(
e2

∗
s , e2

∗
q

)
, is a Separating Tax Equilibrium (STE) under the tax function

T (y, es, eq) if

γ1T
(
y1∗, e1∗s , e1∗q

)
+ γ2T

(
y2∗, e2∗s , e2∗q

)
≥ 0 (9)

and there is no allocation (y, es, eq) ∈ R3+ jointly satisfying the three inequalities below:

y ≤ θ̄h(es, eq) (10)

y − T (y, es, eq)− pses − p1qeq > y1∗ − T
(
y1∗, e1∗s , e1∗q

)
− pse

1∗
s − p1qe

1∗
q (11)

y − T (y, es, eq)− pses − p2qeq > y2∗ − T
(
y2∗, e2∗s , e2∗q

)
− pse

2∗
s − p2qe

2∗
q . (12)

Definition 1 captures that the STE allocation is stable since it is immune to strictly prof-
itable deviations both on and off the equilibrium path (applying, in the context of the latter, the
extended intuitive criterion previously mentioned). The interpretation of the above set of con-
ditions is as follows. Condition (5) states that the choices of low-skilled agents in equilibrium
maximize their utility, provided that the firm makes non-negative profits. Condition (6) states
that the equilibrium choices of high-skilled workers maximize their utility subject to the firm
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making non-negative profits (given by condition (8)) and the incentive compatibility constraint
associated with a mimicking low-skilled worker (given by condition (7)). Taken together, con-
ditions (5)–(8) guarantee that no type can strictly benefit from deviating to an allocation that
separates it from the other type while allowing the firm to make non-negative profits. Condition
(9) is the government’s revenue constraint, which states that the government maintains a weakly
positive budget surplus. Finally, conditions (11)–(12) state that both types cannot strictly profit
from deviating to a pooling allocation while allowing the firm to make non-negative profits
(given by condition (10)).

We turn next to define the concept of pooling tax equilibrium (PTE).

Definition 2 (Pooling Tax Equilibrium, PTE). An allocation given by the quadruplet

(
ŷ∗, ĉ∗, ê∗s, ê

∗
q

)
=
(
ŷ∗, ŷ∗ − T

(
ŷ∗, ê∗s, ê

∗
q

)
, ê∗s, ê

∗
q

)
,

is a Pooling Tax Equilibrium (PTE) under the tax function T (y, ee, eq) if:

ŷ∗ ≤ θ̄h
(
ê∗s, ê

∗
q

)
(13)

T
(
ŷ∗, ê∗s, ê

∗
q

)
≥ 0, (14)

and the following conditions jointly hold:

a) There is no (y1, e1s, e
1
q) ∈ R3+ satisfying y1 ≤ θ1h(e1s, e

1
q) such that:

y1 − T
(
y1, e1s, e

1
q

)
− pse

1
s − p1qe

1
q > ŷ∗ − T

(
ŷ∗, ê∗s, ê

∗
q

)
− psê

∗
s − p1q ê

∗
q (15)

b) There is no (y2, e2s, e
2
q) ∈ R3+ satisfying y2 ≤ θ2h(e2s, e

2
q) such that:

ŷ∗ − T
(
ŷ∗, ê∗s, ê

∗
q

)
− psê

∗
s − p1q ê

∗
q ≥ y2 − T

(
y2, e2s, e

2
q

)
− pse

2
s − p1qe

2
q (16)

y2 − T
(
y2, e2s, e

2
q

)
− pse

2
s − p2qe

2
q > ŷ∗ − T

(
ŷ∗, ê∗s, ê

∗
q

)
− psê

∗
s − p2q ê

∗
q (17)

c) There is no (ŷ, ês, êq) ∈ R3+ \ {ŷ∗, ê∗s, ê∗q} satisfying ŷ ≤ θ̄h(ês, êq) such that for both

i = 1 and i = 2:

ŷ − T (ŷ, ês, êq)− psês − piqêq > ŷ∗ − T
(
ŷ∗, ê∗s, ê

∗
q

)
− psê

∗
s − piqê

∗
q. (18)

Definition 2 captures that the PTE allocation is stable since it is immune to strictly profitable
deviations off the equilibrium path. The interpretation of the above conditions is as follows.
Condition (13) states that the firm makes non-negative profits under the PTE allocation. Condi-
tion (14) states that the government runs a weakly positive budget surplus. Condition (15) states
that low-skilled workers cannot strictly benefit from deviating to an allocation that separates
them from their high-skilled counterparts while allowing the firm to earn non-negative profits.
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Conditions (16) and (17) state that high-skilled workers cannot strictly profit from deviating to
an allocation that separates them from their low-skilled counterpart while allowing the firm to
earn non-negative profits. Finally, condition (18) states that both types cannot strictly benefit
from deviating to an alternative pooling allocation while allowing the firm to make non-negative
profits.

Before turning to the introduction of the government problem, several observations are in
order. First, note that by invoking a general tax function, our formulation of the tax equilibria
nests all possible configurations, including laissez-faire, in which the tax is set identically to
zero across the board, the income-tax-only regime, in which neither of the two education sig-
nals is taxed, and the unrestricted case, in which both income and the two education signals are
subject to taxation. Note, however, that the general formulation does not imply that an equi-
librium exists for each and every possible configuration. In particular, a pooling equilibrium
does not exist under the laissez-faire regime (a standard result in the literature), nor does it ex-
ist under the income-tax-only regime (formally proved in Appendix H). Intuitively, to sustain
a pooling equilibrium, the set of policy instruments must be sufficiently rich to guarantee that
type-2 agents are denied the possibility of exploiting their comparative advantage (in one of the
effort dimensions) to achieve separation from their low-ability counterpart. Framing the argu-
ment in terms of the conditions stated in Definition 2, a pooling equilibrium does not exist under
laissez-faire, or with only an income tax in place, because condition b) is necessarily violated.
Moreover, a separating equilibrium does not necessarily exist under the laissez-faire regime,
since one can find an allocation that satisfies conditions (10)–(12) if the fraction of low-skilled
workers in the population is sufficiently small.

Finally, note that in formulating the tax equilibria, we have assumed that firms earn non-
negative profits, rather than imposing a zero-profit condition. The latter will necessarily hold
(due to the competition among firms for workers and due to the continuity of h(es, eq)) when
at least one of the three variables y, es, and eq is not subject to taxation. However, for a (po-
tentially discontinuous) tax function that depends on all three variables, a zero-profit condition
does not necessarily hold (e.g., setting a confiscatory tax on any allocation other than the pool-
ing equilibrium allocation in which the firm earns positive profits). Of course, for continuous
tax functions, the zero-profit condition would hold (e.g., this would be the case for the separat-
ing equilibrium under the laissez-faire regime, if it exists). When we solve for the optimal tax
equilibrium in what follows, the zero-profit condition will necessarily hold because the govern-
ment could always change the tax function to extract the positive profits and thereby increase
redistribution.

2.2 The government’s problem

We now turn to describe the optimal tax problem solved by the government. In line with the
informational assumptions described at the beginning of Section 2, we will focus on a setting

11



where the (quality) signal eq is observed only by firms, and thus an individual’s tax liability can
be conditioned only on labor income y and the (quantity) signal es.11 We also assume that the
social welfare function is of the max-min type. In line with most of the literature on optimal
taxation, instead of directly optimizing the tax function T (y, es), we will follow a mechanism
design (self-selection) approach, first characterizing a constrained efficient allocation and then,
in a separate section, considering the properties of the implementing tax function.

Definition 3 (Constrained Efficient Allocation, CEA). A Constrained Efficient Allocation (CEA)

is given by the solution to:

{(
y1, c1, e1s, e

1
q

)
,
(
y2, c2, e2s, e

2
q

)}
= argmax

y1,c1,e1s,e
1
q ,y

2,c2,e2s,e
2
q

c1 −R1
(
e1s, e

1
q

)
, (19)

subject to the government revenue constraint

(
y1 − c1

)
γ1 +

(
y2 − c2

)
γ2 = 0, (20)

the zero-profit conditions which require for i = 1, 2 that

yi =

h
(
eis, e

i
q

)
θi, for all

(
e1s, e

1
q

)
̸=
(
e2s, e

2
q

)
h
(
eis, e

i
q

)
θ, for all

(
e1s, e

1
q

)
=
(
e2s, e

2
q

)
,

(21)

and the incentive-compatibility (IC) constraints

c2 −R2
(
e2s, e

2
q

)
≥ c1 −R2

(
e1s, ê

2
q

)
, (22)

c1 −R1
(
e1s, e

1
q

)
≥ c2 −R1

(
e2s, e

2
q

)
, (23)

where

ê2q =

eq which solves y1 = h (e1s, eq) θ, for all
(
e1s, e

1
q

)
̸=
(
e2s, e

2
q

)
e1q, for all

(
e1s, e

1
q

)
=
(
e2s, e

2
q

)
.

(24)

We make several observations. First, as shown in Appendix A, the feasible set defined
by the constraints in the optimization problem in Definition 3 contains both STE and PTE.
Second, the social objective invoked by the government is max-min, which aims to maximize
the welfare of type-1 workers. This means that our definition of a CEA refers to a specific point
on the second-best Pareto frontier.12 Finally, note that the above formulation of CEA assumes
that the zero-profit condition holds and that the government’s revenue constraint is binding.

11In Section 5 we discuss how our results would change under alternative observational assumptions.
12To relax the assumption of a max-min social objective, it would suffice to add an additional constraint to our

maximization problem, namely a constraint requiring that the utility achieved by type-2 agents is weakly greater
than a given pre-specified target level V . All points on the second-best Pareto frontier could be obtained by varying
V and repeatedly solving the government’s optimization problem.
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A relaxation of either condition would allow the government to change the tax function and
increase redistribution.13

In the following, we discuss the two possible configurations of CEA separately, leaving the
discussion of the conditions under which the social optimum is given by an STE or a PTE to
section 2.3.

The CEA is given by an STE In this case, each of the two groups of agents is induced to
choose a type-specific pair (es, eq), and workers are compensated by firms according to their true
productivity. Redistribution to the least well-off agents (type-1) occurs through the traditional
ex-post tax/transfer channel, with high ability agents (type-2) paying a tax that is used to finance
a transfer to their low ability counterparts (type-1).

Even if taxation is used to redistribute to type-1 agents, asymmetric information between
firms and workers implies that both the IC constraint associated with type-2 mimicking type-1
and the IC constraint associated with type-1 mimicking type-2 must be taken into account (and
indeed both are often binding in the optimal solution). The former IC constraint is relevant
because the government wants to redistribute from type-2 agents to their type-1 counterparts;
this implies that type-2 agents may have an incentive to mimic type-1 agents in order to qualify
for more a lenient tax treatment (i.e., to receive a tax transfer instead of paying a tax). The latter
IC constraint is relevant due to the problem of asymmetric information in the labor market; this
implies that type-1 agents may have an incentive to mimic type-2 agents in order to be rewarded
according to a higher productivity than their real one.

Note that in the standard setup with no second layer of asymmetric information between
firms and workers, typically only the downward IC constraint (associated with a mimick-
ing high-skill type) is binding in the optimal solution. The two IC constraints are given by
(22)–(23). Their structure reflects the idea that, since the government can condition the tax
schedule on both y and es, the only potential room for maneuver for a mimicker is in the choice
of the quality signal eq (since this signal is unobservable to the government).

The incentive constraint for type-1 agents (constraint 23) is easy to interpret. In order for a
type-1 agent to qualify for a higher wage, the only way is to replicate both effort dimensions of
type-2 agents, since the firm observes both dimensions of education. Therefore, the constraint
(23) requires that type-1 agents must weakly prefer their bundle to replicating the effort mix of
their high-productivity (type-2) counterparts.

For type 2 agents, things are a bit more complicated because one has to consider possible off-
equilibrium deviations. In order to qualify for the low-skill tax treatment, they must replicate the
pre-tax income level and quantity effort es of type-1 agents. Type-2 agents may also replicate the

13To see this, note that when the revenue constraint is slack (a budget surplus), the government can offer a
small lump-sum transfer to both types. Because of continuity, it will not violate the revenue constraint. Incentive
compatibility is maintained by the linearity of utility in consumption. If the firm makes positive profits, then one
can slightly raise the compensation level, y, which will maintain non-negative profits by continuity. The latter will
create a fiscal surplus which, according to the previous argument, can be refunded as a lump sum transfer.
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quality effort eq of type-1 agents, which would make the two types indistinguishable to the firm
(which would therefore treat them both as low-skilled types). To prevent such a deviation, the
social planner must pay type-2 agents an information rent, because type-2 agents can earn the
same income (y1) as the low-skilled type by incurring lower costs due to the fact that p2q < p1q .

Although firms do not observe the productivity of workers, and thus type-2 agents cannot
identify themselves as high-productivity types while mimicking their type-1 counterparts, there
is a possibility of out-of-equilibrium deviation that is even more profitable for type-2 workers
than simply replicating the choices of type-1 agents. To see this possibility, note that if the
lower-quality effort chosen by type-2 agents were also chosen by type-1 agents, the two agents
would become indistinguishable for the firm, leading the firm to pay a wage equal to average
productivity (since it rationally expects to hire both types of workers). For type-2 agents this
off-equilibrium deviation is more appealing because the level of quality effort required to earn
y1 while being paid the average wage is always less than the level of quality effort required to
earn y1 while being paid the wage θ1.

Two observations about the incentive constraint (22) are in order. First, violating this con-
straint leads to violating the extended intuitive criterion (discussed at the beginning of section
2.1 above) —since both types would find it strictly profitable to deviate to the pooling allocation
associated with y1. Second, constraint (22) reflects an information rent, accruing to high-ability
workers, associated with the productivity difference between types (a type-2 agent, behaving
as a mimicker, is rewarded according to average productivity rather than low productivity, as
would be the case if he/she replicated both low-type signals). Note, however, that this informa-
tion rent is smaller than in the standard Mirrleesian setup, where a type-2 mimicker would be
rewarded according to his/her true productivity. Thus, asymmetric information between firms
and workers may make it less attractive for high-skilled types to mimic low-skilled types, which
may serve to enhance redistribution relative to the standard setup (see also Stantcheva 2014).
However, this is not a general result because, as our analysis shows, one must also consider
the potentially binding upward incentive constraint relative to the standard Mirrlees setup. We
return to this issue in section 2.4.

The CEA is given by a PTE In this case we have
(
y1, c1, e1s, e

1
q

)
=
(
y2, c2, e2s, e

2
q

)
≡ (ŷ, ĉ, ês, êq).

In a PTE, all agents are induced to choose the same pair (es, eq), and thus each is compensated
by firms according to average productivity θ̄ (earning ŷ = θ̄h (ês, êq)). As a consequence of the
fact that all agents make the same choices and earn the same income, everyone pays the same
tax, which is zero given our assumption that there is no exogenous revenue requirement for
the government. Redistribution occurs, but instead of working through the traditional income
channel (taxes are paid by high-income earners and used to finance a transfer to low-income
earners), it works through the wage channel by compressing (suppressing) wage inequality.

To distinguish between these two channels of redistribution, we will use the term ”predistri-
bution” to refer to the redistribution that occurs through the wage channel. Note also that under
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a PTE, the incentive compatibility constraints (22)–(23) become de facto irrelevant since they
are trivially satisfied.

2.3 When is predistribution optimal?

Let us now turn to an analysis of the social optimality of STE and PTE. In an STE, the govern-
ment typically cannot fully eliminate the information rents associated with productivity differ-
ences. In a PTE, on the other hand, the government fully eliminates these information rents by
forcing full wage compression, but the PTE typically has less desirable efficiency properties.
The equity-efficiency tradeoff between pooling and separation depends crucially on the differ-
ences in productivity and in the cost of acquiring the quality signal eq between the two types of
workers.14 Proposition 1 below gives the main results.

Proposition 1 (Optimality of Predistribution). Let the ability advantage of type 2 agents be

denoted by ϵ = θ2 − θ1 > 0 and the cost disadvantage of type 1 agents denoted by δ =

p1q − p2q > 0. The CEA can be characterized as follows:

i) There is a non-empty set of parameters in the (ϵ, δ)-space for which the CEA is given by

a PTE (and thus features predistribution).

ii) For any ϵ > 0, there exists a threshold δ∗(ϵ) ≥ 0 such that the CEA is given by an STE

for δ > δ∗ and a PTE for δ < δ∗.

iii) There exists some cutoff ε∗ > 0 such that δ∗(ε) = 0 for any ε > ε∗ (and thus the CEA is

an STE for all δ), while δ∗(ε) > 0 for all ε < ε∗ (so the CEA is either an STE or a PTE,

depending on the value of δ).

Proof. See Appendix B

While augmenting the income tax system with taxes/subsidies on education can improve
redistribution under separation —by alleviating the binding IC constraints faced by the govern-
ment —Proposition 1 delineates scenarios in which the taxation/subsidization of education, by
enabling the implementation of a PTE, allows increasing social welfare beyond what’s achiev-
able under an STE.

Part i) of Proposition 1 establishes the case for predistribution by identifying a non-empty
set of parameters under which pooling is welfare enhancing relative to separation. Part ii)
shows that pooling is socially desirable when the difference in the cost of obtaining the quality
signal across types is moderate. In such a scenario, type-1 workers—who tend to invest more
effort in the quality dimension to qualify for higher wage rates—are more inclined to engage
in mimicking. In contrast to the standard Mirrlees model, in this scenario both IC constraints

14In a standard Mirrleesian setup with two types of agents, pooling is never optimal and is in fact Pareto-
dominated by the laissez-faire allocation.
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are binding, and the efficiency gains from separation over pooling are limited. Part iii) shows
that pooling is socially preferred when the productivity gap between the two types of workers
is moderate, making the efficiency loss from wage compression relatively small.

2.4 Welfare implications of the second layer of asymmetric information

Stantcheva (2014) shows that adverse selection in the labor market can increase welfare by
reducing the information rent that high-skilled workers can earn by mimicking low-skilled
workers. In other words, adverse selection makes it more costly for high-skilled workers to
underinvest in human capital and pretend to be low-skilled. However, we show that this result
does not necessarily hold in our setting if both types of workers have an incentive to mimic each
other, depending on the relative productivity and cost of acquiring human capital.

Our analysis suggests (see the proof of Proposition 1 in Appendix B) that when the CEA is
given by an STE, it may well be the case that both IC constraints bind in the optimal solution
for the government’s optimization program. This will happen when the comparative advantage
of type 2 workers in the quality dimension of education is modest (δ is small) and the difference
in productivity between types is significant (ε is large). The former makes mimicking by type-1
workers (who want to be paid as if they had high productivity) more attractive. The latter makes
the STE superior to a PTE because of the disincentives to human capital acquisition associated
with a pooling equilibrium. That welfare may be lower in such a setting than in a “Mirrleesian”
setting where firms observe workers’ productivity is formally shown in Proposition 2.

Proposition 2. If δ is sufficiently small and ε > 0 is sufficiently large, the CEA is given by an

STE and the welfare level is lower than in a scenario where firms observe the productivity of

workers.

Proof. See Appendix C.

2.5 Further discussion of predistribution optimality

Given a particular functional form of the human capital production function, we can provide a
complete analytical representation of the ϵ and δ combinations where predistribution is favor-
able. To do so, we assume that

h(es, eq) = (eseq)
β , (25)

where 0 < β < 1/2 (implying that the production function is strictly concave), and we adopt
the following approach. For each combination (ϵ, δ), based on Definition 3, we compute the
optimal STE that yields the highest welfare for type-1 agents and the optimal PTE that yields
the highest welfare for type-1 agents, and then compare them to assess which one is superior.
We then provide a graphical illustration of the parameter regions in which predistribution (PTE)
constitutes the social optimum, highlighting how these regions depend on the set of binding
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incentive constraints in the optimal STE. The analytical inequalities characterizing the regions
are derived in Appendix D and summarized in Appendix D.4. We evaluate the regions in Figure
1 with the parameters β = 0.10, γ1 = γ2 = 0.5, p1q = 10, and θ2 = 10, with δ ranging from 0

to p1q and ϵ ranging from 0 to θ2.

Figure 1: Illustration of the case for predistribution and the pattern of binding IC constraints.
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Left panel: Dark purple region is where both IC constraints are binding under the optimal STE.
Light purple region is where only the downward constraint is binding under such an equilibrium.
Right panel: Dark green region is the subregion of dark purple where the optimal PTE welfare
dominates the optimal STE. Light green region is the subregion of the light purple region where
the optimal PTE welfare-dominates the optimal STE.

Figure 1 shows that the region where PTE dominates STE (the dark green region in the right
panel) largely overlaps with the region where both IC constraints are binding in the STE (the
dark purple region in the left panel). However, for moderate values of ϵ, one can also find cases
(see the light green region in the right panel) where the PTE is welfare superior to the STE, even
though in the latter only the downward IC constraint is binding.

The vertical axis δ = 0 Along the vertical axis, where δ = 0 (i.e., p1q = p2q), pooling domi-
nates separation for almost all values of ϵ. To understand this result, note that when p1q = p2q , it
must necessarily be the case that y1 = e1s = 0 in the STE.15 The fact that type-1 agents are idle
in the STE is not a major concern when θ1 is very small (corresponding in our Figure 1 to cases

15The reason is as follows. When p1q = p2q , the left side of the downward IC constraint (22) coincides with the
right side of the upward IC constraint (23) (since p1q = p2q implies R2

(
e2s, e

2
q

)
= R1

(
e2s, e

2
q

)
). At the same time,

however, the right-hand side of the downward IC constraint (22) is strictly larger than the left-hand side of the
upward IC constraint (23) whenever type-1 agents are required to produce a positive amount of output. Thus, for
p1q = p2q , the IC constraints (22)–(23) can be jointly satisfied only if y1 = 0, implying that type-1 agents remain
idle.
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where ϵ is large): when their productivity is very small, the efficiency loss from leaving them
idle is also very small. However, as θ1 increases (i.e., as ϵ decreases in Figure 1), the efficiency
loss associated with setting y1 = 0 becomes larger and larger.

Small δ > 0 Now consider the case where δ is small but strictly positive. By replicating
the choices of type-2 agents and acting as mimickers, type-1 agents achieve a utility that is
strictly lower than the utility of type-2 agents; however, given the assumption that δ is small,
the difference between the two utilities is also small. Thus, in order to jointly satisfy the IC
constraints (22)–(23), the information rent enjoyed by type-2 agents must also be small. This
information rent, which reflects the difference between the utility of type-2 agents behaving as
mimickers and the utility of type-1 agents, is given by p1qe

1
q − p2q ê

2
q and can be decomposed into

two components. One is due to the fact that δ > 0, and the other is due to the fact that, for
y1 > 0, ê2q < e1q . The latter component reflects the information rent arising from productivity

differences and, under the assumption given by (25), it is given by
[(

y1

θ1

) 1
β −

(
y1

θ

) 1
β

]
1
e1s

, and is

therefore increasing in y1 (and increasing in the productivity difference between the two types).
Thus, if δ is small, an STE will be characterized by a value of y1 that is positive but neces-

sarily small. Whether this leads to a large or small efficiency loss depends on the productivity
of type-1 agents. In particular, forcing y1 to be very small is more costly the higher the produc-
tivity of type-1 agents (i.e. the lower is ϵ in Figure 1). This observation seems to suggest that
when δ is small, a PTE dominates an STE, provided that the productivity of type-1 agents is
sufficiently large (i.e., ϵ is sufficiently low). Looking at Figure 1, we can see that this intuition is
only partially confirmed. In particular, we can see that for small values of δ, an STE dominates
a PTE both when ϵ is sufficiently high and when it is sufficiently low. The fact that separat-
ing dominates when ϵ is sufficiently high is consistent with the intuition that follows from our
argument.

What remains to be explained is why STE dominates PTE when ϵ is sufficiently small.
When ϵ is small, θ1 is close to θ2, and this implies that in an STE, the information rent to type-
2 agents (arising from the difference in productivities) is small. But this in turn means that
the equity gains from moving from an STE to a PTE are also small. The reason is that these
equity gains arise from the elimination of the information rent associated with the difference in
productivities enjoyed by type-2 agents in an STE.

Large δ Figure 1 also shows that for sufficiently large values of δ, an STE is always superior to
a PTE. Two things should be noted when interpreting this result. First, if δ is sufficiently large,
the upward IC constraint (constraint (23)) is slack regardless of the value of ϵ, and therefore
the effort exerted by type-2 agents is first-best optimal in an STE (i.e., it satisfies the equality
h1

(
e2s, e

2
q

)
/h2

(
e2s, e

2
q

)
= ps/p

2
q). Second, for a given value of ϵ, the PTE is invariant to changes

in δ (in our Figure 1, a variation in δ corresponds to a variation in p2q , for given p1q); this implies
that, as δ increases, the efficiency loss associated with pooling all agents at a common effort
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mix becomes larger. Thus, for sufficiently large values of δ, the efficiency losses of switching
from a separating to a pooling equilibrium outweigh any possible equity gains.

Finally, two remarks are in order regarding the effect of changes in the relative size of the
two groups of individuals and the effect of changes in the parameter β on the trade-off between
STE and PTE. To save space, we do not provide the figures, but the simulations are available
upon request.

The role of γ1 A PTE tends to become more attractive when the size of the two groups of
agents is more similar. This is because when γ1 is very small, the efficiency cost of leaving type-
1 agents idle becomes small, regardless of their productivity. Thus, even if IC considerations
require that y1 be set close to zero in an STE, the associated efficiency cost is negligible. At
the other extreme, when γ1 is very large, the difference between θ and θ1 also becomes small,
implying that in an STE the information rent to type-2 agents, arising from the productivity
difference, is quite small. This in turn implies that the equity gains of moving from an STE to a
PTE are also small.

The role of β A PTE tends to become more attractive when β is small, i.e., when the degree
of decreasing returns to scale characterizing the h function is large. Intuitively, note that the
output production function is given by a product of θ, the innate productivity, and h, the ac-
quired human capital, and exhibits overall increasing returns to scale. Consequently, there is an
efficiency loss associated with pooling all agents in a common effort mix relative to a separating
allocation. As β increases and the h function approaches constant returns to scale, the efficiency
loss becomes more pronounced, making pooling less desirable.16

In Appendix K, we provide an additional analysis that quantifies the welfare gains from
predistribution.

3 Wedges in the constrained efficient allocation

We turn next to the characterization of the optimal wedges, denoted by Ω and defined as the
differences, at the CEA, between the marginal rates of transformation and the marginal rates of
substitution among the variables entering individuals’ utility functions. Proposition 3 summa-
rizes the main results.

16The argument is similar to a study by Cremer et al. (2011), which shows that a meritocratic education system
(a “separating” allocation with unequal wages) supplemented by a progressive labor income tax system would
be preferable to an egalitarian education system (a “pooling” allocation with equal wages) from a redistributive
perspective.
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Proposition 3. (i) If the CEA is a PTE (ĉ, ŷ, ês, êq), then it satisfies:

Ω̂1
es,eq ≡ M̂RTS

1
− ps

p1q
= 0 and Ω̂2

es,eq ≡ M̂RTS
2
− ps

p2q
< 0, (26)

Ω̂1
es,c ≡ 1− ps

θ1h1 (ês, êq)
= Ω̂1

eq ,c = 1−
p1q

θ1h2 (ês, êq)
< 0, (27)

Ω̂2
eq ,c ≡ 1−

p2q
θ2h2 (ês, êq)

> Ω̂2
es,c = 1− ps

θ2h1 (ês, êq)
> 0, (28)

where M̂RTS
1
= M̂RTS

2
≡ h1(ês,êq)

h2(ês,êq)
.

(ii) If the CEA is an STE {(c1, y1, e1s, e1q), (c2, y2, e2s, e2q)}, then it satisfies:

Ω1
es,eq ≡ MRTS1 − ps

p1q
=

λ2

γ1

(
MRTS21

p2q
p1q

−MRTS1

)
< 0, (29)

Ω1
eq ,c ≡ 1−

p1q

θ1h2

(
e1s, e

1
q

) =
λ2

γ1

(
p1q

θ1h2

(
e1s, e

1
q

) − p2q

θh2

(
e1s, ê

2
q

)) > 0, (30)

Ω1
es,c ≡ 1− ps

θ1h1

(
e1s, e

1
q

) =
λ2

γ1

(
h1

(
e1s, ê

2
q

)
h1

(
e1s, e
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q

) 1

θ1
− 1

θ

)
p2q

h2

(
e1s, ê

2
q

) , (31)

Ω2
es,eq ≡ MRTS2 − ps

p2q
=

λ1

γ2

(
p1q
p2q

− 1

)
·MRTS2 ≥ 0, (32)

Ω2
eq ,c ≡ 1−

p2q

θ2h2

(
e2s, e

2
q

) =
λ1

γ2

p2q − p1q

θ2h2

(
e2s, e

2
q

) ≤ 0, (33)

Ω2
es,c ≡ 1− ps

θ2h1

(
e2s, e

2
q

) = 0, (34)

where λ2 and λ1 denote the Lagrange multipliers associated with constraint (22) and

constraint (23), respectively, MRTSi ≡ h1(eis,eiq)
h2(eis,eiq)

and MRTS21 ≡ h1(e1s,ê2q)
h2(e1s,ê2q)

, and ê2q is

the quality effort chosen by a type 2 mimicker when pooling with type 1 agents at income

level y1, as defined by (24).

Proof. See Appendix E.

Starting with part i), condition (26) implies that in a PTE, the effort mix of type-1 agents
is undistorted, while the effort mix of type-2 agents is distorted in the direction of es. The first
result is driven by our assumption that the social objective is to maximize the welfare of type-1
agents. This assumption implies that the effort mix (ês, êq) is chosen so that type-1 agents earn
ŷ most efficiently. Since type-2 agents also have to exert (ês, êq) in the PTE, and since they have
a comparative advantage in the quality dimension, they would prefer more quality effort eq and
correspondingly less quantity effort es, and thus face a distortion in their effort mix. Since h

represents the acquired human capital, condition (26) also implies that in a PTE the acquired
human capital of type-1 agents is distorted upward (equation (27)), while the acquired human

20



capital of type-2 agents is downward distorted (equation (28)).
Now consider part ii) of Proposition 3, which refers to the case of an STE. Condition (29)

implies that the effort mix of type-1 agents is distorted towards es (i.e., e1s is distorted upward
vis-à-vis e1q).17 To provide an intuition for this result, consider the following. For a given
isoquant θ1h (es, eq) = y1, assume that type-1 agents are induced to choose the effort mix
(e1s, e

1
q) that satisfies the no-distortion condition MRTS1 = ps

p1q
. Since the government observes

es, a type-2 mimicker must choose e1s, while ê2q satisfies the equation θh (e1s, eq) = y1, so
ê2q < e1q . It follows that MRTS21 < MRTS1 = ps

p1q
< ps

p2q
. Thus, in this case, type-2 mimickers

are induced to choose an effort mix that is distorted toward es. Condition (29) implies that
instead of letting type-1 agents satisfy the condition MRTS1 = ps

p1q
, it is welfare superior to

induce type-1 agents to choose an effort mix that is slightly distorted toward es. To see this, note
that if the distortion is small, it will have only a second-order effect on the total cost pse1s + p1qe

1
q

incurred by type-1 agents. However, it will have a negative first-order welfare effect on type 2
mimickers, increasing their total cost pse1s + p2q ê

2
q (since it exacerbates the initial distortion in

their effort mix).18

Eqs. (30)–(31) shed light on the distortion of each given dimension of effort vis-à-vis con-
sumption. According to (30), e1q is distorted downward relative to consumption. This happens
for two reasons. On the one hand, type-1 agents incur higher costs to acquire eq (p1q > p2q)
compared to type-2 agents, and thus also compared to type-2 as mimickers. On the other hand,
the marginal productivity of eq is lower for type-1 agents compared to type-2 mimickers (again,
this is due to the fact that θ > θ1 implies ê2q < e1q and therefore h2

(
e1s, e

1
q

)
< h2

(
e1s, ê

2
q

)
). Taken

together, these two circumstances imply that the additional cost that type-1 agents would incur
in raising e1q to the extent necessary to earn an additional dollar exceeds the corresponding cost
for type-2 agents acting as mimickers.

Eq. (31) tells us that one cannot unambiguously determine the direction of the optimal
distortion of e1s (relative to consumption). This is due to the fact that one cannot unambiguously
say whether the marginal productivity of es is higher or lower for a type-1 agent than for a
type-2 mimicker. On the one hand, the fact that type-2 agents are more productive suggests that
the marginal productivity of es should be lower for type-1 agents than for type-2 mimickers;
this provides a motive to distort e1s downward. On the other hand, the higher productivity of
type-2 agents also implies that ê2q < e1q , which in turn implies (assuming the cross derivative h12

is positive) that h1

(
e1s, e

1
q

)
> h1

(
e1s, ê

2
q

)
; this represents a motive to distort e1s upwards. Note

that since p1s = p2s = ps, price considerations play no role in determining the direction of the
distortion. Note also that, at least for the case where the h function is additively separable in es

17Recall that our focus on a max-min social objective implies that the downward IC constraint (22) is necessarily
binding, i.e., λ2 > 0.

18Inducing type-1 agents to choose an effort mix that is slightly distorted toward eq is welfare inferior. To see
this, note that if the distortion is small, it will again have only a second-order effect on the total costs pse1s + p1qe

1
q

incurred by type-1 agents; but will have a first-order beneficial welfare effect on type-2 mimickers, reducing their
total cost pse1s + p2q ê

2
q (since it alleviates the initial distortion in their effort mix).
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and eq, one can conclude that e1s is distorted downward relative to consumption.
Now consider the equations (32)–(34), which provide expressions for the wedges character-

izing the allocation obtained by type-2 agents. The first thing to note is that λ1 can be either
positive (the upward IC constraint (23) is binding) or zero (the upward IC constraint (23) is
slack). 19 When λ1 = 0, the equations (32)–(34) tell us that all wedges are zero in the allocation
obtained by type-2 agents.

Consider the case where λ1 > 0. Eq. (32) tells us that the effort mix of type-2 agents
is distorted toward eq (i.e., e2q is distorted upward vis-à-vis e2s). The reason is that this is the
dimension of effort in which type-2 agents have a comparative advantage over their type-1
counterparts. Thus, by distorting the effort mix of type-2 agents in the direction of eq, one can
make mimicking by type-1 agents less attractive. The intuition behind this result is as follows.
For a given isoquant θ2h (es, eq) = y2, suppose that type-2 agents are induced to choose the
effort mix (e2s, e

2
q) that satisfies the no-distortion condition MRTS2 = ps

p2q
. From the constraint

(23) we know that type-1 agents, when acting as mimickers, replicate the effort choices of
type-2 agents. Given that p2q < p1q , it follows that when acting as mimickers, type-1 agents are
forced to choose an effort mix that is distorted toward eq: MRTS2 > ps

p1q
. Now suppose that

instead of letting type-2 agents satisfy the condition MRTS2 = ps
p2q

, they are induced to choose
an effort mix that is slightly distorted towards eq. If the distortion is small, it will have only a
second-order effect on the total cost pse2s+p2qe

2
q incurred by type-2 agents; however, it will have

a first-order adverse effect on type-1 mimickers, since the total cost pse2s + p1qe
2
q will increase.

According to (33), e2q is unambiguously distorted upward relative to consumption. This hap-
pens because compared to type-1 agents, and therefore also compared to type-1 as a mimicker,
type-2 agents incur a lower cost to acquire eq (p2q < p1q). Thus, the additional cost that type-2
agents would incur to raise e2q to the extent necessary to earn an additional dollar is less than the
corresponding cost for type-1 agents acting as mimickers.

Finally, looking at (34), we can see that e2s is not distorted relative to consumption. The
reason for this is a combination of two circumstances. First, the marginal cost of acquiring es

is the same for all agents. Second, when acting as mimickers, type-1 agents replicate the effort
choices of type-2 agents. Taken together, these two circumstances imply that the additional
cost that type-2 agents would incur if they were to raise e2s to the extent necessary to earn an
additional dollar is the same as for type-1 agents acting as mimickers.

4 Implementation

We now turn to discuss how the wedges given in Proposition 3 translate into properties of the
implementing tax function T (y, es). We start with the case where the CEA is given by an STE.

19A necessary but not sufficient condition for λ1 > 0 is that the upward IC constraint associated with the low-
skilled workers is binding under laissez-faire. This is because the redistribution in favor of type-1 agents that
occurs through the tax system necessarily reduces the incentive for type-1 agents to mimic type-2 agents.
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4.1 Implementation of the STE

Under a tax schedule that is a function of both y and es, type 1 agents solve the following
optimization problem:

max
e1s,e

1
q

θ1h
(
e1s, e

1
q

)
− pse

1
s − p1qe

1
q − T

(
θ1h

(
e1s, e

1
q

)
, e1s
)
.

Using subscripts on T to denote partial derivatives, the corresponding first-order conditions are

1− T ′
1

(
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)
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)
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2

(
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(
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)
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)
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) = 0, (35)
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(
e1s, e
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q

)
, e1s
)
−

p1q

θ1h2

(
e1s, e

1
q

) = 0, (36)

which leads to the following implicit characterization of marginal tax rates:
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1

(
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)
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)
= 1−
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)
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)
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)p1q − ps. (38)

Instead, type 2 agents solve the following optimization problem:

max
e2s,e
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)
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subject to:
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)
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)
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)
e2q. (39)

Denoting by ϕ the Lagrange multiplier attached to the IC constraint (39), the associated first-
order conditions are
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which leads to the following implicit characterization of marginal tax rates:
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We can then establish the following.

Proposition 4. The implicit marginal tax rates characterizing the constrained efficient alloca-

tion in the case of an STE {(c1, y1, e1s, e1q), (c2, y2, e2s, e2q)} are as follows:

T ′
1

(
y1, e1s

)
=

λ2

γ1

(
p1q
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(
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q

) − p2q
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y1, e1s
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=

p1qλ
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γ1
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MRTS21

p2q
p1q

−MRTS1

)
< 0, (45)

T ′
1

(
y2, e2s

)
= T ′

2

(
y2, e2s

)
= 0. (46)

Proof. See Appendix F.

The fact that we get the canonical “efficiency-at-the-top” result for high-ability agents with
bounded skill distributions (Sadka 1976) is somewhat surprising. One might have expected, for
example, that it would be desirable to use the tax function to distort the effort mix of type-2
agents toward eq (the component in which type-2 agents have a comparative advantage) in or-
der to discourage mimicking by type-1 agents. A key point, however, is that the IC constraint
associated with type-1 agents is already embedded in the laissez-faire equilibrium, and is there-
fore already internalized by type-2 agents in their decision-making process. The labor contract
offered to type-2 agents maximizes their utility subject to the IC constraint of type-1 workers.
This maximization is consistent with the government’s goal of extracting the maximum amount
of taxes from type-2 agents and thereby enhancing redistribution. Note also that although for
high-skilled agents T ′

1 = T ′
2 = 0 under the implementing tax function, y2 in the STE will be

lower than under laissez-faire if the upward IC constraint associated with low-skilled workers
is binding under laissez-faire. This is due to the redistribution performed by the tax system,
which increases the utility of type-1 agents (relative to their utility under laissez-faire), thereby
making them less inclined to imitate their type-2 counterparts.

The above discussion suggests that implementing an STE requires supplementing the in-
come tax system with an education subsidy provided exclusively to low-skilled workers (who
produce a low level of income), which serves to distort their effort mix (toward the quantity
dimension) in order to make mimicking more costly for high-skilled workers (whose effort mix
remains undistorted by taxation). The latter allows the government to extract more taxes from
high-skilled workers, thereby increasing redistribution.

Finally, note that it may also be possible to achieve implementation by means of a tax
function that depends only on income, supplemented by a mandate on es that enforces a lower
bound, set at es = e1s, on the value that agents can choose for this variable. However, this
alternative implementation scheme is only an option in the case where the inequality e1s ≤ e2s is
satisfied in the CEA.
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4.2 Implementation of the PTE

If the CEA is given by a PTE, the implementation can be achieved by the combined use of a tax
that depends only on income and a mandate that enforces a lower bound on es. In particular,
one can obtain the following result.

Proposition 5. Let emin
q be the value of eq that solves the following problem:

min
eq

θ2h (ês, eq) subject to θ1h (ês, êq)− T
(
θ1h (ês, êq)

)
− p1q êq ≥ θ2h (ês, eq)− p1qeq,
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(
ês, e
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q

)
. Furthermore, denote by

(
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)
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solves the following unconstrained maximization problem:
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θ2h (es, eq)− pses − p2qeq.

Implementation can be achieved by combining a binding mandate on es, set to es = ês, with an
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,
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2∗
q ]−[ŷ−psês−p2q êq]
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}
, for all y > ŷ.

(47)

Proof. See Appendix G.

Formula (47) defines a two-bracket piecewise linear income tax with a kink at y = ŷ,
a negative marginal tax rate on the first bracket, a positive marginal tax rate on the second
bracket, and a U-shaped profile of average tax rates (always positive except at y = ŷ, where the
average tax rate is zero). The negative marginal tax rate on the first bracket serves to distort the
acquired human capital of type-1 agents upward, and to incentivize them to choose the effort
mix (ês, êq).20 The (positive) marginal tax rate on the second bracket serves to distort downward
the acquired human capital of type-2 agents, and it is designed to be high enough to achieve two
goals. One is to ensure that type-2 agents (weakly) prefer pooling at ŷ to pooling at a higher
income; the other is to discourage type-2 agents from choosing an effort mix that would allow
them to achieve separation from their low-ability counterpart at an income level higher than ŷ.
The marginal tax rate on the second bracket achieves both of these goals because it is given by
the maximum of two quantities: the first term in the max operator represents the tax rate that
guarantees that type-2 agents will not prefer to pool at an income higher than ŷ; the second term
represents the tax rate that guarantees that type-2 agents will be discouraged from achieving
separation from their low-ability counterpart.

20If faced with a zero marginal tax rate, type-1 agents would choose es = ês (because of the lower bound on es
set by the mandate), but eq < êq .
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The binding mandate on es serves primarily to ensure the stability of the PTE. The reason is
that it prevents type-2 agents from choosing an effort mix that would allow them to earn ŷ while
being compensated according to their true productivity θ2 rather than the average productivity
θ. More generally, the lower bound on es helps preserve the PTE because it effectively raises
the cost that type-2 agents would have to incur to achieve separation.

Note also that a binding mandate on es, set at es = ês is an extreme version of a nonlinear
tax on es with a large marginal subsidy for values of es less than es = ês and a zero marginal
tax/subsidy elsewhere. This suggests that the implementation of the PTE could also be achieved
by supplementing a piecewise linear tax on income with a piecewise linear tax on es with a
sufficiently large marginal subsidy on the first bracket.

Finally, note that public provision of education is another way to implement the PTE. In
particular, suppose that the government publicly provides es free of charge up to a maximum
amount ês, so that agents only have to bear the marginal cost ps for those units of es that
exceed ês. The implementation of the PTE could then be achieved by supplementing this public
provision scheme with an income tax T̃ (y) given by a uniform upward shift, by an amount psês,
of the income tax function T (y) provided in (47), namely T̃ (y) = T (y) + psês.21

4.3 Relation to existing policy instruments

In the previous subsection, we have shown how supplementing the income tax system with a
means-tested education subsidy or an education mandate serves to implement the CEA (given
by either an STE or a PTE).

Means-tested subsidies for education, which play a dual role of correcting market failures
and achieving redistributive goals, exist in many countries, either as part of the general tax
system or, as has become quite common in recent years, in the form of income-contingent
student loans. Student loans are often offered on favorable terms and are used to cover tuition
fees and/or living expenses, depending on the country. The size of the subsidy depends on the
difference between the tuition charged and the actual cost of providing the education, as well as
the extent to which the loans are offered at below-market (subsidized) rates. A notable example
is Australia’s Higher Education Loan Program (HELP), where students receive loans to finance
their education, which are repaid once their income exceeds a certain threshold.22 The threshold
and repayment rate vary depending on the borrower’s income level. In 2023–2024 the income
threshold is AUD 51,550 and above this threshold the repayment rate varies from 1 percent to
a maximum of 10 percent for incomes above AUD 151,201. The income-contingent repayment
system is essentially a means-tested progressive tax on graduates, as high-achieving students

21The uniform upward shift is necessary to ensure that the government’s budget constraint is still satisfied. In
particular, under this alternative implementation scheme, each agent will pay at the PTE an income tax of psês,
allowing the government to raise enough revenue to cover the public expenditures associated with public provision.

22According to Australian Government Department of Education, Skills and Employment (2020), approximately
2.8 million Australians will owe AUD 68.1 billion in HELP debt in 2020.
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reach the income threshold earlier and earn higher wages. Similar income-contingent repayment
systems exist in the United Kingdom and Sweden, as well as in many other countries.23

Education mandates are common in the real world and are often justified on both efficiency
and equity grounds. Such mandates typically take the form of minimum compulsory schooling
laws, commonly applied in the context of primary/secondary education.

We offer novel normative justifications for the use of both means-tested education subsidies
and education mandates (in the context of postsecondary education) to promote redistributive
goals by limiting the ability of high-skilled individuals to engage in signaling that serves to
separate them from their low-skilled counterparts. Accordingly, a notable feature of our analysis
is that both policy instruments should target those components of educational effort in which
low-skilled agents have a comparative advantage.

5 Discussion

We next discuss how the case for predistribution in the CEA depends on the observability as-
sumptions (sections 5.1–5.3), the number of signals (section 5.4), and the number of types in
the economy (section 5.5).

5.1 The case where neither signal is observable

In Appendix H we study the case where the government can only observe income. In this
case, due to the weaker policy instruments available, the possibilities for mimickers to deviate
are expanded. The main insight from our analysis is that predistribution is not feasible with
only an income tax. Thus, the ability to tax the signals transmitted in the labor market is
essential to achieve predistribution. In Appendix K, we use the case with only an income tax as
a benchmark to numerically quantify the welfare gains of taxing the quantity signal. Note that
the welfare gains from taxing the education signal arise regardless of whether the CEA features
predistribution or not. However, consistent with Proposition 1, the results show that the CEA
tends to feature predistribution when the productivity variance between the two categories of
workers and the discrepancy in the cost of obtaining the quality signal across types is moderate.

23In Sweden, student loans have relatively favorable terms compared to many other countries. Repayment
usually begins the year after the student graduates, and the repayment period can last up to 25 years. The interest
rate on these loans is set by the government and is usually very low. Notably, the repayment amount is based on
the borrower’s income, making it an income-contingent repayment plan. This means that the amount a graduate
pays back each year is a percentage of his or her income above a certain threshold, ensuring that repayments are
affordable. If a borrower’s income is below that threshold, he or she may be eligible for a repayment waiver for
that year.
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5.2 The case when both signals are taxed

In Appendix I we characterize the optimal tax structure under the assumption that the govern-
ment can tax both quantity and quality signals. In this case, while the government can eliminate
the information rent from productivity differences between workers, a residual information rent
remains for type-2 workers due to the difference in the cost of acquiring the quality signal. Thus,
the first-best allocation remains unattainable. The government’s options are the same as when
it could only tax the quantity signal: it can implement a pooling or a separating equilibrium.
However, there is a difference now: with both signals being observable by the government, a
mimicker is always forced to replicate the effort choices of the mimicked type (the mimicker
cannot adapt in any other way). As Appendix I shows, this implies that the CEA is always
an STE. When both signals can be taxed/subsidized, a separating equilibrium is cheaper (more
efficient) than a pooling equilibrium in eliminating the information rent arising from productiv-
ity differences. A key insight from this analysis is that while the feasibility of predistribution
hinges on the ability to tax at least one of the two signals, the desirability of predistribution
depends crucially on the government’s inability to tax both signals.

5.3 The observable signal is eq instead of es

Our analysis has focused on the case where the signal observable to the government is es. It
is worth noting that while the PTE does not change depending on which of the two signals is
assumed to be observable to the government, the same is not true for the STE.24 Consequently,
the assumption about which signal is observable is not unimportant for comparing the welfare
properties of pooling and separating tax equilibria. For the Cobb-Douglas example studied in
section 2.5, one can show that the STE achieved when the government observes es is always
welfare superior to the STE achieved when the government observes eq.25 This implies that a
PTE becomes relatively more attractive when the signal observed by the government is the one
for which type-2 agents have a comparative advantage.

With respect to wedges, the most interesting difference between the STE when the observ-
able signal is es and the STE when the observable signal is eq is that in the latter case it is a
priori ambiguous in which direction it is optimal to distort the effort mix of type-1 agents. This
contrasts with the result provided by (29) for the case where the observable signal is es, namely
that the effort mix chosen by type-1 agents should be distorted towards the effort dimension at
which they have a comparative advantage (i.e., es). When the observable signal is eq instead
of es, it may happen that mimicking-deterrence considerations justify distorting the effort mix
chosen by type-1 agents towards eq.26

24An intuition for this result is provided in the first part of Appendix J.
25However, this is not a general result, and one can easily construct counterexamples where the opposite result

holds.
26An intuition for this result is provided in the second part of Appendix J.
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5.4 More than two signals

As noted above, if the government cannot observe and tax/subsidize (both income and) all
signals, then it can only reduce (but not eliminate) the information rent from productivity dif-
ferences. One might therefore think that a pooling equilibrium would be better for equity, and
that the case for pooling would be stronger, if fewer signals were taxed. The problem with this
argument is that it ignores the fact that pooling must be sustainable in order to be socially desir-
able. In general, where there are n signals, pooling will be sustainable either if the government
taxes (at least) n − 1 signals, or if it taxes n − j signals (with 1 < j < n) and the high-skill
types have no comparative advantage in the untaxed signals.

A possible example of adding more signals is when individuals can commit to their hours
of work/availability (in addition to the quality and quantity of educational effort). Maintaining
our assumptions that p1s = p2s and p1q > p2q , and assuming that work/leisure preferences are
the same across types and that labor costs are separable, the result would be that conditioning
the tax function on both income and the quantity signal es would not be sufficient to make
predistribution feasible. The reason is that within the set of untaxed signals (in this case eq

and hours worked), the high-skilled types have a comparative advantage in one dimension (eq).
However, predistribution would be feasible if the observable signal were eq (instead of es). This
is because in such a case the tax function could be conditioned on both income and eq, implying
that the high-skilled types have no comparative advantage within the set of untaxed signals (es
and hours worked).

Of course, endogenizing labor supply in this way hinges on the assumption that the worker
pre-commits to his workload, and then the firm uses this information (as well as information
about the worker’s educational background) to decide on the level of compensation. Alterna-
tively, one could assume that the order is reversed (the firm is the first mover), in which case
the model combines signaling (via ex-ante investment in education) with screening (via ex-post
choice of hours), making the analysis much more complicated. This latter configuration, while
interesting, is beyond the scope of the current analysis.

Before concluding this subsection, a note on the measurement of comparative advantage is
in order. For simplicity, our model assumes that agents are free to adjust the signal (quantity
and quality efforts are continuous variables). In reality, such adjustment is usually more con-
strained. For example, schooling may be limited to a high school diploma or a college degree,
and working hours (except in the “gig” economy) may be limited to full-time (say, 40 hours per
week) or part-time (20 hours per week). This should be taken into account, at least empirically,
when assessing comparative advantage. Within the limited set, high-skilled types may not be
able to distinguish themselves from their low-skilled counterparts.
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5.5 More than two types

To keep our analysis tractable, we have limited our attention to a model with two types. The
case with more than two types is more complex because the number of incentive constraints
increases significantly. There are also more tax equilibrium configurations to consider, since
some types may be pooled while others are separated. Nevertheless, the main qualitative insight
that constrained efficient allocations may involve predistribution is not sensitive to the number
of types. Several features stand out, however.

First, as in the two-type case, predistribution is not feasible when neither signal is observ-
able, since the high-skill types can always separate from the low-skill types. Second, when
only the quantity signal is observable, partial pooling (bunching) becomes feasible and may
be superior to full pooling and full separation. Third, when both signals are taxed, while a
pooling equilibrium with full wage compression can still be shown to be suboptimal (using
a similar argument as in Appendix I), partial pooling (bunching of a subset of types) can be
shown to be desirable and superior to full separation. The reason is that bunching can serve
to mitigate the downward (“adjacent”) IC constraints (type j mimicking type j − 1), so as to
reduce the information rent associated with the cost of acquiring the quality signal. This serves
to enhance redistribution through the income channel while achieving redistribution through
the wage channel.27 The reason that bunching is desirable is not to eliminate the information
rents associated with the difference in productivity between types (the latter is taken care of by
the ability to tax both signals), but rather to increase redistribution along the income channel.
Pooling, on the other hand, does not achieve redistribution through the income channel and is
therefore suboptimal.

6 Conclusions

We have analyzed optimal redistribution in the presence of signaling, introducing two realistic
new features to the standard Mirrleesian framework: (i) the existence of a second layer of
asymmetric information between employers and workers regarding the productivity of workers,
with the latter having the possibility to engage in signaling to credibly convey this information
to potential employers; (ii) a tax system that conditions taxes/transfers on the income earned
by workers as well as on the signals that the government can observe in the labor market.
The combination of these two new features is shown to preserve the second-best nature of the
government optimization problem and the inherent trade-off between conflicting equity and
efficiency considerations.

We focused on a model with two-dimensional signals (quality and quantity of education) and

27For example, consider the case with three types 1, 2, and 3, where 3 represents the high-skilled type and 1
represents the low-skilled agent. Implementing a hybrid allocation in which types 1 and 2 are bunched together
could be superior to a fully separating allocation by allowing a combination of redistribution from type 3 to its
low-skilled counterparts and predistribution between types 1 and 2.
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two types of agents (low- and high-skilled) that differ in the cost of acquiring the signal(s), in
which high-skilled agents have a (weak) absolute advantage in signaling through each channel
and a comparative advantage in the quality signal.

We have shown that constrained efficient allocations can be given by either a separating or
a pooling tax equilibrium, the latter implying that the government engages in predistribution,
which we have defined as a change in the wage structure that results in cross-subsidization
between skill levels.

From a policy perspective, by treating educational attainment as a signaling device used by
high-skilled workers to differentiate themselves in the labor market from their low-skilled coun-
terparts, our analysis sheds new light on commonly used policy instruments such as education
mandates and (means-tested) education subsidies. These policy instruments are often justified
on efficiency grounds to address pervasive market failures (e.g., alleviating credit constraints or
internalizing externalities). However, we argue that these instruments can also be viewed as a
form of tax on the signals acquired by workers, and thus serve to promote redistributive goals
by interfering with the exchange of information between workers and employers.

Our analysis is a first step in exploring redistributive policy in the presence of signaling, and
we invoke several restrictive simplifying assumptions to gain tractability. In particular, we have
limited the analysis to a setup with two types of agents. However, our main qualitative insights
carry over to the general case with many types. In the general case, the social optimum could be
given by a hybrid allocation that combines predistribution (bunching) with redistribution, rather
than taking one of the two extreme configurations (full separation or pooling) as in the two-type
setting.

Finally, taking a broader view of the social desirability of predistribution, this paper empha-
sizes the signaling role of educational attainment and the potential welfare-enhancing role of
educational subsidies and mandates, but there are clearly other contexts in which additional pol-
icy instruments can serve to enhance predistribution. A notable example is the widespread use
of anti-discrimination legislation to limit the ability of firms to engage in screening or statistical
discrimination.
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A Feasibility of both STE and PTE

If the government has access to a general tax T (y, es), both configurations of tax equilibria
always exist, regardless of the relative size of the two groups of agents and regardless of how
large the difference p1q − p2q is.

First, consider the STE. It is always possible to design a tax function that maintains a sep-
arating equilibrium where y1 = e1s = 0 (implying e1q = ê2q = 0). To see that this is indeed the
case, invert the function y = θh (es, eq) to get eq = f

(
y
θ
, es
)
, and denote by y∗ and e∗s the values

of y and es that maximize y − pses − p2qf
(

y
θ2
, es
)
. Consider the two quadruplets

(
y1, c1, e1s, e

1
q

)
=

(
0, γ2

[
y∗ − pse

∗
s − p2qf

(
y∗

θ2
, e∗s

)]
, 0, 0

)
(A1)

and

(
y2, c2, e2s, e

2
q

)
=

(
y∗, y∗ − γ1

[
y∗ − pse

∗
s − p2qf

(
y∗

θ2
, e∗s

)]
, e∗s, f

(
y∗

θ2
, e∗s

))
. (A2)

It is straightforward to verify that they satisfy the government revenue constraint (20):

(
y1 − c1

)
γ1 +

(
y2 − c2

)
γ2 = −γ1γ2

[
y∗ − pse

∗
s − p2qf

(
y∗

θ2
, e∗s

)]
+ γ2y∗ − γ2

{
y∗ − γ1

[
y∗ − pse

∗
s − p2qf

(
y∗

θ2
, e∗s

)]}
= 0. (A3)

Furthermore, they also satisfy the incentive constraints (22) and (23), the former as an equality
and the latter as a strict inequality. In particular, taking into account that

(
y1, c1, e1s, e

1
q

)
=(

0, γ2
[
y∗ − pse

∗
s − p2qf

(
y∗

θ2
, e∗s
)]

, 0, 0
)

implies R2
(
e1s, ê

2
q

)
= R1

(
e1s, e

1
q

)
= 0, constraint (22)

simplifies to
c2 −R2

(
e2s, e

2
q

)
≥ c1, (A4)

and constraint (23) simplifies to

c1 ≥ c2 −R1
(
e2s, e

2
q

)
. (A5)

Substituting y∗ − γ1
[
y∗ − pse

∗
s − p2qf

(
y∗

θ2
, e∗s
)]

for c2, γ2
[
y∗ − pse

∗
s − p2qf

(
y∗

θ2
, e∗s
)]

for c1, e∗s
for e2s and f

(
y∗

θ2
, e∗s
)

for e2q , constraints (A4) and (A5) become, respectively:

y∗−γ1

[
y∗ − pse

∗
s − p2qf

(
y∗

θ2
, e∗s

)]
−pse

∗
s−p2qf

(
y∗

θ2
, e∗s

)
= γ2

[
y∗ − pse

∗
s − p2qf

(
y∗

θ2
, e∗s

)]
,

γ2

[
y∗ − pse

∗
s − p2qf

(
y∗

θ2
, e∗s

)]
> y∗−γ1

[
y∗ − pse

∗
s − p2qf

(
y∗

θ2
, e∗s

)]
−pse

∗
s−p1qf

(
y∗

θ2
, e∗s

)
.

The key point to note is that if type-1 agents refrain from investing in education, the information
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rent enjoyed by type-2 agents can be driven to zero. This implies that the right-hand side of the
constraint (22) takes the same value as the left-hand side of the constraint (23). Thus, if the
incentive constraint (22) that applies to type-2 agents is satisfied, the incentive constraint (23)
that applies to type-1 agents is necessarily slack (due to the assumption that p1q > p2q).

The separating equilibrium represented by the quadruplets (A1)-(A2) can be implemented
by a tax function characterized by the following properties:

T (y∗, e∗s) = γ1

[
y∗ − pse

∗
s − p2qf

(
y∗

θ2
, e∗s

)]
> 0, (A6)

T (0, 0) = −γ2

[
y∗ − pse

∗
s − p2qf

(
y∗

θ2
, e∗s

)]
< 0, (A7)

T (y, es) = ∞ for (y, es) /∈ {(0, 0) , (y∗, e∗s)} . (A8)

Next, consider the PTE. Let y1∗ = y2∗ = c1∗ = c2∗, e1∗s = e2∗s , e1∗q = e2∗q and yi∗ =

h
(
ei∗s , e

i∗
q

)
θ denote a pooling allocation. It is easy to check that the zero-profit condition is

satisfied and that the tax revenue is zero. A tax function that implements the pooling allocation
is given by T (yi∗, ei∗s ) = 0 and T (y, es) = ∞ for (y, es) ̸= (yi∗, ei∗s ). To see this, note that
given the existing tax function, the only possible profitable deviation is given by a downward
adjustment along the (untaxed) quality effort dimension eq. However, such a deviation would
not allow type 2 to separate from its less skilled counterpart. The reason is that, if both types de-
viate (implying that workers are compensated based on average productivity), firms will suffer
losses, since yi∗ > h

(
ei∗s , e

i
q

)
θ for eiq < ei∗q .

B Proof of Proposition 1

Part (i) We first prove that there exist some ε > 0 and δ > 0, where ε = θ2 − θ1 and
δ = p1q − p2q , such that the PTE is welfare superior to the separating tax equilibrium. We let
ps = 1 without loss of generality; fix p1q , θ1, and γ1, and let ε = δ > 0 and small. For the set of
given parameters, (γ1, θ1, p1q, ε), we can solve for the optimal separating and pooling optima.

Denote the resulting Rawlsian welfare measures by:

W sep(γ1, θ1, p1q, ε) (B1)

W pool(γ1, θ1, p1q, ε) (B2)

Obviously, for ε = 0, W sep = W pool. We will show that for ε > 0 and small, W sep < W pool.
Using a first-order approximation, it suffices to show this:

∂W sep(γ1, θ1, p1q, ε)

∂ε

∣∣∣∣
ε=0

<
∂W pool(γ1, θ1, p1q, ε)

∂ε

∣∣∣∣
ε=0

. (B3)

The separating optimum is given by the solution of the following maximization program (for-

35



mulated in a Lagrangian form for convenience):

W sep(ε) = max
{
[c1 − e1s − e1qp

1
q] + µ[γ1(θ1h(e1s, e

1
q)− c1) + (1− γ1)((θ1 + ε)h(e2s, e

2
q)− c2)]

+ λ[(c2 − e2s − e2q(p
1
q − ε))− (c1 − e1s − ê1q(p

1
q − ε))]

+ η · [θ1h(e1s, e1q)− (θ1 + (1− γ1)ε)h(e1s, ê
1
q)]
}
, (B4)

where µ, λ, and η correspond to the Lagrange multipliers associated with the revenue constraint,
the type-2 IC-constraint, and the condition implicitly defining the off-equilibrium quality signal
effort chosen by a type-2 mimicker (the effort is defined by ê1q). Note that we implicitly assume
that the IC-constraint of the low-skilled (type-1) agent is slack.

The pooling optimum is given by the following maximization program:

W pool(ε) = max{(θ1 + (1− γ1)ε)h(es, eq)− es − eqp
1
q}. (B5)

Using the envelope theorem, it follows that:

∂W pool(ε)

∂ε

∣∣∣∣
ε=0

= (1− γ1)h(e∗s, e
∗
q) (B6)

∂W sep(ε)

∂ε

∣∣∣∣
ε=0

= (µ∗ − η∗)(1− γ1)h(e∗s, e
∗
q), (B7)

where the asterisk (∗) refers to the optimal allocations under the separation and pooling config-
urations. Note that for ε = 0, the effort choices coincide.

To prove our claim, it suffices to show that µ∗ − η∗ < 1. Deriving the first-order conditions
of the separating optimal allocation with respect to e1q, c

1, c2 and ê1q , evaluated at ε = 0, yields
the following:

−p1q + µ∗γ1θ1
∂h

∂e1q
+ η∗θ1

∂h

∂e1q
= 0 (B8)

1− µ∗γ1 − λ∗ = 0 (B9)

−µ∗(1− γ1) + λ∗ = 0 (B10)

λ∗p1q − η∗θ1
∂h

∂e1q
= 0. (B11)
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After some algebraic manipulations, one can show that:

µ∗ = 1 (B12)

λ∗ = (1− γ1) (B13)

p1q = θ1
∂h

∂e1q
(B14)

η∗ =
(1− γ1)p1q

θ1 ∂h
∂e1q

< 1. (B15)

Thus, µ∗ − η∗ < 1 as needed (note that p1q = θ1 ∂h
∂e1q

defines the efficiency condition for the qual-
ity signal effort choice, which trivially holds for ε = 0). Note that in the maximization program
associated with the separating allocation, we have assumed that the incentive constraint associ-
ated with the low-skilled (type-1) agents is slack. It clearly follows that, under the parametric
assumptions of the proposition, the pooling allocation is welfare superior to the separating allo-
cation when we account for this additional (potentially binding) constraint. This concludes the
proof of part (i).

Part (ii) Fixing p1q , θ
2, and γ1, we next prove that for any difference in the productivity be-

tween the two types of workers, 0 < ε ≤ θ2, there exists 0 ≤ δ∗(ϵ) ≤ p1q , representing the
difference in the cost of acquiring the quality signal, such that the separating allocation is wel-
fare superior to the pooling allocation when δ > δ∗(ϵ), whereas the pooling allocation is welfare
superior to the separating allocation when δ < δ∗(ϵ).

Reformulation of the maximization program associated with the optimal separating alloca-
tion (similar to part (i)), but now taking into account the type-1 incentive constraint:

W sep(ε, δ) = max
{
[c1 − e1s − e1qp

1
q] + µ[γ1((θ2 − ε)h(e1s, e

1
q)− c1)

+ (1− γ1)(θ2h(e2s, e
2
q)− c2)] + λ[(c2 − e2s − e2q(p

1
q − δ))

− (c1 − e1s − ê1q(p
1
q − δ))] + η[θ1h(e1s, e

1
q)− (θ2 − γ1ε)h(e1s, ê

1
q)]

+ ϕ[(c1 − e1s − e1qp
1
q)− (c2 − e2s − e2qp

1
q)]
}
, (B16)

where µ, λ, η, and ϕ correspond to the Lagrange multipliers associated with the revenue con-
straint, the type-2 IC-constraint, the condition implicitly defining the off-equilibrium quality
signal effort chosen by a type-2 mimicker (the effort is defined by ê1q), and the type-1 IC-
constraint.

Reformulation of the maximization program associated with the optimal pooling allocation
yields:

W pool(ε, δ) = max{(θ2 − γ1ε)h(es, eq)− es − eqp
1
q}. (B17)
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Using the envelope theorem implies that

∂W sep(ε, δ)

∂δ
= λ∗[e2∗q − ê1∗q ] > 0, (B18)

where the asterisk (∗) refers to the optimal allocation under the separating equilibrium, where
λ∗ > 0 denotes the multiplier associated with the type-2 binding IC constraint due to the max-
min social welfare function, and where e2∗q > ê1∗q denote the quality signal effort levels asso-
ciated with type-2 and a mimicking type-2, respectively. Note that the strict inequality follows
from the construction of the separating equilibrium (note that a separating equilibrium always
exists, even if δ → 0, in which case ê1q = e1q = es = 0).

Clearly, ∂W pool(ε,δ)
∂δ

= 0, by virtue of the max-min welfare function and as by construction
both types choose the same bundle under a pooling allocation. By virtue of the signs of the
derivatives, fixing ε, it follows that W sep(ε, δ) and W pool(ε, δ) intersect at most once.

Let δ∗(ϵ) denote the implicit solution to W sep(ε, δ) = W pool(ε, δ) if it exists, and otherwise
let δ∗(ϵ) = 0 if W sep(ε, δ) > W pool(ε, δ) for all δ and δ∗(ϵ) = p1q if W sep(ε, δ) < W pool(ε, δ)

for all δ, which completes the proof of part (ii).

Part (iii) Fixing p1q , θ
2, and γ1, and denoting by ε and δ, as in the previous parts, the difference

in productivity and the cost of acquiring the quality signal, respectively, we turn next to prove
that there exists some cutoff, 0 < ε∗ < θ2, such that δ∗(ε) = 0 for any ε > ε∗, while δ∗(ε) > 0

for any ε < ε∗.
Consider the case where δ = 0. Note that in this case the optimal separating equilibrium is

given by the two triplets: (c1, e1s = e1q = 0) and (c2, e2s, e
2
q), which maximize c1 subject to:

c2 − (e2s + e2qp
1
q) = c1 (B19)

(1− γ1)θ2h(e2s, e
2
q) = γ1c1 + (1− γ1)c2 (B20)

where the first equality condition (B19) denotes the binding incentive constraint (for both
types!) and the second equality condition (B20) denotes the binding revenue constraint.

Since δ = 0, the two types of agents are observationally equivalent, and thus for the separat-
ing allocation to be incentive compatible, the output produced by the low-skilled (type-1) agents
must be zero. If output were bounded away from zero, the high-skilled (type-2) agents could
mimic by choosing (off-equilibrium) a lower level of the quality signal than the level chosen
(on the equilibrium path) by the type-1 agents. Then the two IC-constraints associated with the
two types of workers could not hold simultaneously.

To see this formally, assume that the output level associated with the type-1 bundle is posi-
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tive. The IC constraints associated with type-2 and type-1 would then be:

c2 − (e2s + e2qp
1
q) ≥ c1 − (e1s + ê1qp

1
q) (B21)

c1 − (e1s + e1qp
1
q) ≥ c2 − (e2s + e2qp

1
q) (B22)

where e1q > ê1q and ê1q being the implicit solution to (θ2 − ε)h(e1s, e
1
q) = (θ2 − γ1ε)h(e1s, ê

1
q).

However, using the two IC-constraints implies that:

c1 − (e1s + e1qp
1
q) ≥ c2 − (e2s + e2qp

1
q) ≥ c1 − (e1s + ê1qp

1
q) (B23)

Hence,
c1 − (e1s + e1qp

1
q) ≥ c1 − (e1s + ê1qp

1
q) ⇔ ê1qp

1
q ≥ e1qp

1
q (B24)

but this clearly contradicts e1q > ê1q .
Using the two binding conditions (B19) and (B20) yields that the welfare level associated

with the optimal separating equilibrium is given by:

W sep(ϵ, δ = 0) = max{(1− γ1)[θ2h(e2s, e
2
q)− (e2s + e2qp

1
q)]} (B25)

The optimal pooling equilibrium is given by:

W pool(ε, δ = 0) = max{(θ2 − γ1ε)h(es, eq)− (es + eqp
1
q)} (B26)

Let Ω(ε, δ = 0) ≡ W sep(ϵ, δ = 0)−W pool(ε, δ = 0). It is easy to verify that Ω(0, δ = 0) <

0, and Ω(θ2, δ = 0) > 0. Thus, by continuity, using the Intermediate Value Theorem, there
exists some 0 < ε∗ < θ2 such that Ω(ε∗, δ = 0) = 0.

Denoting by e∗s(ε) and e∗q(ε) the effort levels associated with the quantity and quality signals
in the optimal pooling equilibrium when the productivity difference is ε, using the envelope
theorem, it follows that

∂Ω(ε, δ = 0)

∂ε
= γ1h[e∗s(ε), e

∗
q(ε)] > 0. (B27)

It follows that for all ε < ε∗, W sep(ϵ, δ = 0) < W pool(ε, δ = 0), while for all ε > ε∗,
W sep(ϵ, δ = 0) > W pool(ε, δ = 0). This completes the proof.

C Proof of Proposition 2

Let ε → θ2 (with ε < θ2) and further let δ = 0, hence p1q = p2q = pq. Without loss of generality
let ps = 1. Our result will extend by continuity to sufficiently small values of δ > 0. As shown
in the proof of part (iii) of Proposition 1 [see Appendix B, Eqs. (B19) and (B20)], under the
above parametric assumptions, the CEA is given by an STE in which the effort levels associated
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with type-1 (low-skilled) workers are given by e1s = e1q = 0. Formally, the CEA is given by the
solution to the following maximization program:

P1

max
e2s,e

2
q ,c

1,c2

{
c1
}

subject to: (C1)

c2 − e2s − pqe
2
q = c1, (C2)

γ2θ2h(e2s, e
2
q) = γ1c1 + γ2c2, (C3)

where (C2) and (C3) replicate (B19) and (B20), representing the binding IC-constraint (associ-
ated with both type-1 and type-2 workers) and the binding revenue constraint, respectively.

Now consider the CEA associated with an STE under a “Mirrleesian” setup in which firms
observe worker types (but the government doesn’t):

P2

max
e1s,e

1
q ,e

2
s,e

2
q ,ê

1
q ,c

1,c2

{
c1 − e1s − pqe

1
q

}
subject to: (C4)

c2 − e2s − pqe
2
q = c1 − e1s − pqê

1
q, (C5)

γ1θ1h(e1s, e
1
q) + γ2θ2h(e2s, e

2
q) = γ1c1 + γ2c2, (C6)

θ1h(e1s, e
1
q) = θ2h(e1s, ê

1
q), (C7)

where condition (C5) is the binding IC-constraint associated with type-2 workers (the IC-
constraint associated with type-1 workers is slack due to a single-crossing property and is there-
fore omitted), and condition (C6) is the binding revenue constraint. The quality effort chosen by
the type-2 mimicker is implicitly given by condition (C7), which states that type-2 receives the
same compensation as type-1, y1 = θ1h(e1s, e

1
q), and chooses the same quantity effort as type-1,

e1s. However, type-2 agents choose a lower quality effort level than type-1 agents, ê1q ≤ e1q ,
with strict inequality when e1s > 0 and e1q > 0, and are compensated according to their true
productivity, θ2.28

Comparing the maximization programs P1 and P2, one can see that problem P1 is obtained
by setting the effort levels associated with type-1 workers to zero in the formulation of problem
P2. Thus, the optimal solution to problem P1 is a feasible solution (but not necessarily the
optimal one) to problem P2. To show that the maximization program P2 yields a higher level of
welfare than the maximization program P1, we construct an alternative feasible allocation with
strictly positive effort levels for type-1 workers and show that it increases their level of utility.

28Recall the difference from the case where types are unobservable by firms, in which a mimicking type-2 will
choose a lower quality of effort than type-1 but higher than ê1q , and be rewarded according to average productivity
rather than true productivity.
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Formally, let the allocation (e1∗s = e1∗q = 0, e2∗s , e2∗q , c1∗, c2∗) denote the optimal solution for
the program P1, and consider the following small perturbation of this allocation: e2s = e2∗s , e2q =

e2∗q , e1s = e1q = σ > 0 where σ is small, c1 = c1∗ + γ1θ1h(σ, σ), c2 = c2∗ + γ1θ1h(σ, σ), and
ê1q is implicitly given by θ1h(σ, σ) = θ2h(σ, ê1q). In other words, the effort vector of the type-1
worker is raised slightly above zero, and the resulting fiscal surplus is returned to both types of
workers as a lump-sum transfer. The proposed perturbation leads to a relaxation of the type-
2 worker’s IC-constraint and satisfies the revenue constraint. By continuity, the perturbation
maintains the slack in the type-1 worker’s IC-constraint. Thus, the perturbed allocation is a
feasible solution for program P2. The change in type-1 utility due to the proposed perturbation
is given by

∆u1 = γ1θ1h(σ, σ)− σ(1 + pq). (C8)

hence,

∆u1 > 0 ⇔ h(σ, σ)

σ
>

(1 + pq)

γ1θ1
(C9)

Since limσ→0

[
h(σ,σ)

σ

]
= limσ→0[h1(σ, σ)+h2(σ, σ)] = ∞ by the Inada conditions of the human

capital production function, it follows that for σ sufficiently small, ∆u1 > 0. This concludes
the proof.

D Closed-form solutions for social welfare and derivations
for Figure 1

In the first part of this appendix we derive the pooling tax equilibrium and the associated social
welfare value. In the second and third parts, we derive the optimal allocation under a separating
tax equilibrium and the associated value of social welfare, first for the case when the upward
IC constraint is not binding and then for the case when it is binding. Finally, in the last part of
the appendix, we use our results to derive the inequalities characterizing the regions described
in Figure 1. All results are based on the functional form assumption (25).

D.1 Pooling tax equilibrium

When implementing a pooling equilibrium, the government chooses (y, es) to maximize

u1 = y − pses − p1qeq(y, es, θ̄), (D1)

where eq(y, es, θ̄) is the value of eq which solves the equation y = (eseq)
β θ̄, i.e. êq =

(
y
θ̄

) 1
β 1

es
.
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We can then rewrite the government’s objective function as

Upool = y − pses −
(y
θ̄

) 1
β p1q
es
, (D2)

which has to be maximized by the optimal choice of y and es.
The first order conditions with respect to es and y are respectively given by

(y
θ̄

) 1
β p1q

(es)
2 = ps, (D3)

p1q
es

1

βθ̄

(y
θ̄

) 1−β
β

= 1. (D4)

Dividing (D3) by (D4) gives
y =

pses
β

. (D5)

Noticing that (D3) can be restated as

(y
θ̄

) 1
β p1q
es

= pses, (D6)

it follows that, by using (D5) and (D6), we can re-express Upool, given by (D2), as

Upool = y − pses −
(y
θ̄

) 1
β p1q
es

=
pses
β

− pses − pses =
1− 2β

β
pses. (D7)

Finally, given that from (D3) we have

(es)
2 =

p1q
ps

(y
θ̄

) 1
β
, (D8)

using (D5) we get that

(es)
2 =

p1q
ps

(
pses
βθ̄

) 1
β

,

which implies

(es)
2β−1

β =
p1q
ps

(
ps
βθ̄

) 1
β

,

and therefore

es = (ps)
1−β
β

β
2β−1

(
p1q
) β

2β−1

(
1

θ̄β

) β
2β−1

1
β

=

(
θ̄β
) 1

1−2β

(ps)
1−β
1−2β

(
p1q
) β

1−2β

. (D9)
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We can then conclude that

Upool =
1− 2β

β
pses =

1− 2β

β
ps

(ps)
1−β
2β−1(

p1q
) β

1−2β

(
θ̄β
) 1

1−2β =
1− 2β

β

[
θ̄β(

psp1q
)β
] 1

1−2β

. (D10)

Since we have that y = pses
β

, we can equivalently express Upool as

Upool = (1− 2β) y, (D11)

where

y =

(
θ̄
) 1

1−2β β
2β

1−2β(
psp1q

) β
1−2β

. (D12)

D.2 Separating tax equilibrium when only the downward IC-constraint
is binding

Consider now the separating tax equilibrium. The upward and downward IC-constraints are
given, respectively, by:

c1 − pse
1
s −

(
y1

θ1

) 1
β p1q
e1s

≥ c2 − pse
2
s −

(
y2

θ2

) 1
β p1q
e2s
, (D13)

c2 − pse
2
s −

(
y2

θ2

) 1
β p2q
e2s

≥ c1 − pse
1
s −

(
y1

θ̄

) 1
β p2q
e1s
. (D14)

We first proceed to solve the government’s problem assuming that the upward IC constraint
can be neglected. Substituting the resource constraint of the economy into the government’s
objective function, we can rewrite the government’s problem as follows:

max
y2,y1,c2,e1s,e

2
s

γ2

γ1

(
y2 − c2

)
+ y1 − pse

1
s − p1q

(
y1

θ1

) 1
β 1

e1s

subject to the downward IC-constraint

c2 − γ2

γ1

(
y2 − c2

)
− y1 − pse

2
s −

(
y2

θ2

) 1
β p2q
e2s

+ pse
1
s +

(
y1

θ̄

) 1
β p2q
e1s

≥ 0. (D15)

Denote by λ the multiplier attached to the IC-constraint (D15). From the first order condition
with respect to c2 we have that λ = γ2. Taking this into account, the first order conditions with
respect to e1s, e

2
s, y

1 and y2 are, respectively:

−ps +

(
y1

θ1

) 1
β p1q

(e1s)
2 + γ2ps − γ2

(
y1

θ̄

) 1
β p2q

(e1s)
2 = 0, (D16)
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(
y2

θ2

) 1
β p2q

(e2s)
2 = ps, (D17)

1−
(
y1
) 1−β

β
p1q
e1s

1

(θ1)
1
β

1

β
− γ2 + γ2

(
y1
) 1−β

β
p2q
e1s

1(
θ̄
) 1

β

1

β
= 0, (D18)

γ2

γ1
− γ2γ

2

γ1
− γ2

(
y2
) 1−β

β
p2q
e2s

1

(θ2)
1
β

1

β
= 0. (D19)

Rewrite (D19) as (
y2
) 1−β

β
p2q
e2s

1

(θ2)
1
β

1

β
= 1. (D20)

Dividing (D17) by (D20) gives

y2 =
pse

2
s

β
, (D21)

from which, substituting in (D17), we obtain

e2s =
(θ2β)

1
1−2β

(ps)
1−β
1−2β

(
p2q
) β

1−2β

, (D22)

and therefore

y2 =
pse

2
s

β
=

ps
β

(θ2β)
1

1−2β

(ps)
1−β
1−2β

(
p2q
) β

1−2β

= θ2

 θ2β(
psp2q

) 1
2


2β

1−2β

. (D23)

Now rewrite (D16) and (D18) as: p1q

(θ1)
1
β

−
γ2p2q(
θ̄
) 1

β

(y1) 1
β = ps

(
e1s
)2 − γ2ps

(
e1s
)2

, (D24)

 p1q

(θ1)
1
β

−
γ2p2q(
θ̄
) 1

β

(y1) 1−β
β = βe1s − γ2βe1s. (D25)

Dividing (D24) by (D25) gives

y1 =
pse

1
s

β
. (D26)

Substituting in (D24) the value for y1 provided by (D26) gives p1q

(θ1)
1
β

−
γ2p2q(
θ̄
) 1

β

(pse
1
s

β

) 1
β

= γ1ps
(
e1s
)2

,
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and therefore

(
e1s
) 1−2β

β =
γ1 (β)

1
β (ps)

β−1
β

p1q
(

1
θ1

) 1
β − γ2p2q

(
1
θ̄

) 1
β

=
(β)

1
β (ps)

β−1
β

p1q
(

1
θ1

) 1
β + γ2

1−γ2

[
p1q
(

1
θ1

) 1
β − p2q

(
1
θ̄

) 1
β

] ,
i.e.

e1s =
(γ1)

β
1−2β (β)

1
1−2β (ps)

β−1
1−2β[

p1q
(

1
θ1

) 1
β − γ2p2q

(
1
θ̄

) 1
β

] β
1−2β

=
(θ1β)

1
1−2β

(ps)
1−β
1−2β

(
p1q
) β

1−2β

[
1
γ1 − γ2

γ1

p2q
p1q

(
θ1

θ̄

) 1
β

] β
1−2β

, (D27)

and therefore

y1 =
pse

1
s

β
=

(γ1)
β

1−2β (β)
2β

1−2β[
p1q

(θ1)
1
β
− γ2p2q

(θ̄)
1
β

] β
1−2β

1

(ps)
β

1−2β

=
(β)

2β
1−2β[

p1q

(θ1)
1
β
− γ2p2q

(θ̄)
1
β

] β
1−2β

(
γ1

ps

) β
1−2β

=
(θ1)

1
1−2β (β)

2β
1−2β{

psp1q +
γ2

1−γ2ps (θ1)
1
β

[
p1q

(θ1)
1
β
− p2q

(θ̄)
1
β

]} β
1−2β

. (D28)

Combining (D22) and (D27) gives

e1s
e2s

=

(γ1)
β

1−2β (β)
1

1−2β (ps)
β−1
1−2β p1q

(θ1)
1
β

− γ2p2q

(θ̄)
1
β


β

1−2β

(θ2β)
1

1−2β

(ps)
1−β
1−2β (p2q)

β
1−2β

=
(γ1)

β
1−2β (β)

1
1−2β (ps)

β−1
1−2β[

p1q

(θ1)
1
β
− γ2p2q

(θ̄)
1
β

] β
1−2β

(ps)
1−β
1−2β

(
p2q
) β

1−2β

(θ2β)
1

1−2β

=

 γ1p2q

p1q
(
θ2

θ1

) 1
β − γ2p2q

(
θ2

θ

) 1
β


β

1−2β

. (D29)

Consider now the difference y1 − pse
1
s − p1qe

1
q . Notice that, by using (D24), we can write

p1qe
1
q =

(
y1

θ1

) 1
β p1q
e1s

= pse
1
s −

[
ps −

(
y1

θ̄

) 1
β p2q

(e1s)
2

]
γ2e1s

= γ1pse
1
s + γ2

(
y1

θ̄

) 1
β p2q
e1s
. (D30)
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Therefore, using (D26) and (D30), we can express y1 − pse
1
s − p1qe

1
q as

y1 − pse
1
s − p1qe

1
q =

pse
1
s

β
− pse

1
s − γ1pse

1
s − γ2

(
y1

θ̄

) 1
β p2q
e1s

=
1− β − γ1β

β
pse

1
s − γ2p2q

(
y1

θ̄

) 1
β 1

e1s

=
1− 2β

β
pse

1
s + γ2

[
pse

1
s − p2q

(
y1

θ̄

) 1
β 1

e1s

]

=
1− 2β

β
pse

1
s + γ2

[
pse

1
s − p2q

(
ps
βθ̄

) 1
β (

e1s
) 1−β

β

]
. (D31)

Given that the downward IC-constraint (D15) must be binding at the separating tax equilib-
rium (this follows from our assumption that the social welfare function is of the max-min type),
we have that

c2

γ1
= y1 − pse

1
s −

(
y1

θ

) 1
β p2q
e1s

+
γ2

γ1
y2 + pse

2
s +

(
y2

θ2

) 1
β p2q
e2s

=
pse

1
s

β
− pse

1
s +

γ2

γ1

pse
2
s

β
+ pse

2
s + p2q

[(
pse

2
s

βθ2

) 1
β 1

e2s
−
(
pse

1
s

βθ

) 1
β 1

e1s

]

=
pse

1
s

β
− pse

1
s +

γ2

γ1

pse
2
s

β
+ pse

2
s + p2q

(
ps
β

) 1
β

[(
1

θ2

) 1
β (

e2s
) 1−β

β −
(
1

θ

) 1
β (

e1s
) 1−β

β

]

=
1− β

β
pse

1
s +

γ2

γ1

pse
2
s

β
+ pse

2
s + p2q

(
ps
β

) 1
β

[(
1

θ2

) 1
β (

e2s
) 1−β

β −
(
1

θ

) 1
β (

e1s
) 1−β

β

]
,

and therefore

c2 =
1− β

β
γ1pse

1
s + γ2pse

2
s

β
+ γ1pse

2
s + γ1p2q

(
ps
β

) 1
β

[(
1

θ2

) 1
β (

e2s
) 1−β

β −
(
1

θ

) 1
β (

e1s
) 1−β

β

]

=
[
(1− β) γ1e1s + γ2e2s + γ1βe2s

] ps
β

+ γ1p2q

(
ps
β

) 1
β

[(
1

θ2

) 1
β (

e2s
) 1−β

β −
(
1

θ

) 1
β (

e1s
) 1−β

β

]

=
(
γ1e1s + γ2e2s

) ps
β

+
(
e2s − e1s

)
γ1ps + γ1p2q

(
ps
β

) 1
β

[(
1

θ2

) 1
β (

e2s
) 1−β

β −
(
1

θ

) 1
β (

e1s
) 1−β

β

]
.
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It then follows that the transfer provided to each type-1 agent, γ2

γ1 (y
2 − c2), is given by

γ2

γ1

(
y2 − c2

)
=

γ2

γ1

pse
2
s

β
− γ2

γ1

(
γ1e1s + γ2e2s

) ps
β

− γ2

γ1

(
e2s − e1s

)
γ1ps

−γ2

γ1
γ1p2q

(
ps
β

) 1
β

[(
1

θ2

) 1
β (

e2s
) 1−β

β −
(
1

θ

) 1
β (

e1s
) 1−β

β

]
= −γ2

(
e1s − e2s

) ps
β

−
(
e2s − e1s

)
γ2ps

−γ2p2q

(
ps
β

) 1
β

[(
1

θ2

) 1
β (

e2s
) 1−β

β −
(
1

θ

) 1
β (

e1s
) 1−β

β

]
=

1− β

β

(
e2s − e1s

)
γ2ps

−γ2p2q

(
ps
β

) 1
β

[(
1

θ2

) 1
β (

e2s
) 1−β

β −
(
1

θ

) 1
β (

e1s
) 1−β

β

]
. (D32)

We have now all the ingredients to determine the value of the government’s objective function,
i.e. the utility of type-1 agents, under a separating tax equilibrium. Using (D31) and (D32), the
government’s objective function is given by

U sep =
γ2

γ1

(
y2 − c2

)
+ y1 − pse

1
s − p1qe

1
q

=
1− β

β

(
e2s − e1s

)
γ2ps − γ2p2q

(
ps
β

) 1
β

[(
1

θ2

) 1
β (

e2s
) 1−β

β −
(
1

θ

) 1
β (

e1s
) 1−β

β

]

+
1− 2β

β
pse

1
s + γ2

[
pse

1
s − p2q

(
ps
βθ̄

)1/β (
e1s
) 1−β

β

]

=
1− β

β

(
e2s − e1s

)
γ2ps +

1− 2β

β
pse

1
s + γ2pse

1
s − γ2p2q

(
ps
βθ2

) 1
β (

e2s
) 1−β

β

=
1

β

[
γ2e2s − γ2e1s − γ2βe2s + γ2βe1s + βγ2e1s + e1s − 2βe1s

]
ps − γ2p2q

(
ps
βθ2

) 1
β (

e2s
) 1−β

β

=
1

β

[
(1− β) γ2e2s + (1− 2β) γ1e1s

]
ps − γ2p2q

(
ps
βθ2

) 1
β (

e2s
) 1−β

β .

Given that from (D22) we have

(
e2s
) 1−β

β =
(θ2β)

1
1−2β

1−β
β

(ps)
1−β
1−2β

1−β
β
(
p2q
) 1−β

1−2β

,
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it follows that

γ2p2q

(
ps
βθ2

) 1
β (

e2s
) 1−β

β = γ2p2q

(
ps
βθ2

) 1
β (θ2β)

1
1−2β

1−β
β

(ps)
1−β
1−2β

1−β
β
(
p2q
) 1−β

1−2β

= γ2
(
psp

2
q

) β
2β−1

(
βθ2
) 1

1−2β .

Therefore, we can rewrite U sep as

U sep =
1

β

[
(1− β) γ2e2s + (1− 2β) γ1e1s

]
ps − γ2

(
psp

2
q

) β
2β−1

(
βθ2
) 1

1−2β ,

i.e., exploiting (D22),

U sep =
1

β

[
(1− β) γ2e2s + (1− 2β) γ1e1s

]
ps − γ2pse

2
s =

1− 2β

β

(
γ1e1s + γ2e2s

)
ps, (D33)

or, equivalently, since y1 = pse1s
β

and y2 = pse2s
β

,

U sep = (1− 2β)
(
γ1y1 + γ2y2

)
, (D34)

where y1 is provided by (D28) and y2 is provided by (D23).
The above analysis was performed under the assumption that the upward IC-constraint could

be neglected. We can now proceed to verify under which condition this assumption is justified.
The upward IC-constraint is satisfied if the following condition holds:

c1 − pse
1
s − p1q

(
y1
) 1

β
1

(θ1)
1
β

1

e1s
≥ c2 − pse

2
s − p1q

(
y2
) 1

β
1

(θ2)
1
β

1

e2s
, (D35)

or equivalently, exploiting the fact that we know the downward IC-constraint is necessarily
binding, (

p1q − p2q
)
e2q ≥ p1qe

1
q − p2q ê

2
q,

where the RHS of the inequality represents the difference between the utility of a type-1 as a
non-mimicker and the utility of a type-2 behaving as a mimicker, and the LHS represents the
difference between the utility of a type-2 as a non-mimicker and the utility of a type-1 as a
mimicker.

According to the binding version of the downward IC-constraint, we have that

c2 − pse
2
s − p2q

(
y2
) 1

β
1

(θ2)
1
β

1

e2s
= c1 − pse

1
s − p2q

(
y1
) 1

β
1(
θ
) 1

β

1

e1s
,
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i.e.,

c2 − pse
2
s − p1q

(
y2
) 1

β
1

(θ2)
1
β

1

e2s
= c1 − pse

1
s − p2q

(
y1
) 1

β
1(
θ
) 1

β

1

e1s
−
(
p1q − p2q

) (
y2
) 1

β
1

(θ2)
1
β

1

e2s
.

(D36)

Replace in the RHS of (D35) the RHS of (D36). We get:

c1 − pse
1
s − p1q

(
y1
) 1

β
1

(θ1)
1
β

1

e1s
≥ c1 − pse

1
s − p2q

(
y1
) 1

β
1(
θ
) 1

β

1

e1s
−
(
p1q − p2q

) (
y2
) 1

β
1

(θ2)
1
β

1

e2s
,

i.e.,
−p1q

(
y1
) 1

β
1

(θ1)
1
β

1

e1s
≥ −p2q

(
y1
) 1

β
1(
θ
) 1

β

1

e1s
−
(
p1q − p2q

) (
y2
) 1

β
1

(θ2)
1
β

1

e2s
,

i.e.,  p1q

(θ1)
1
β

−
p2q(
θ
) 1

β

 (y1)
1
β

e1s
≤

p1q − p2q

(θ2)
1
β

(y2)
1
β

e2s
. (D37)

The LHS of (D37) captures the information rent that has to be paid to type-2 agents to deter
them from mimicking. The RHS captures the difference between the utility of a type-2 agent
and that of a type-1 agent behaving as a mimicker. Intuitively, one can safely disregard the
upward IC-constraint if enough redistribution can be performed towards type-1 agents, i.e. if
the information rent that accrues to type-2 agents is sufficiently small.

Noticing that (from (D21) and (D26))

(y1)
1
β

e1s
=

(ps)
1
β (e1s)

1
β

β
1
β

1

e1s
=

(ps)
1
β (e1s)

1−β
β

β
1
β

=
ps (y

1)
1−β
β

β
,

(y2)
1
β

e2s
=

(ps)
1
β (e2s)

1
β

β
1
β

1

e2s
=

(ps)
1
β (e2s)

1−β
β

β
1
β

=
ps (y

2)
1−β
β

β
,

it follows that
(y1)

1
β

e1s

(y2)
1
β

e2s

=
(y1)

1−β
β

(y2)
1−β
β

,

and therefore, since

(y1)
1
β

e1s
=

(ps)
1
β (e1s)

1−β
β

β
1
β

,

(y2)
1
β

e2s
=

(ps)
1
β (e2s)

1−β
β

β
1
β

,
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we can rewrite condition (D37) as p1q

(θ1)
1
β

−
p2q(
θ
) 1

β

(e1s) 1−β
β ≤

p1q − p2q

(θ2)
1
β

(
e2s
) 1−β

β . (D38)

Finally, exploiting (D29) we can rewrite (D38) as

p1q − p2q

(θ2)
1
β

≥

 γ1p2q

p1q
(
θ2

θ1

) 1
β − γ2p2q

(
θ2

θ

) 1
β


1−β
1−2β  p1q

(θ1)
1
β

−
p2q(
θ
) 1

β

 . (D39)

D.3 Separating tax equilibrium when both IC-constraints are binding

Suppose now that (D39) is violated so that both IC-constraints are binding at a separating tax
equilibrium. In this case the government maximizes

max
y2,y1,c2,e1s,e

2
s

γ2

γ1

(
y2 − c2

)
+ y1 − pse

1
s − p1q

(
y1

θ1

) 1
β 1

e1s

subject to the binding version of the downward IC-constraint (D15)

c2 − γ2

γ1

(
y2 − c2

)
− y1 − pse

2
s − p2q

(
y2

θ2

) 1
β 1

e2s
+ pse

1
s + p2q

(
y1

θ̄

) 1
β 1

e1s
= 0 (D40)

and the upward IC-constraint

p1q − p2q

(θ2)
1
β

(y2)
1
β

e2s
=

 p1q

(θ1)
1
β

−
p2q(
θ
) 1

β

 (y1)
1
β

e1s
. (D41)

Rewriting (D40) we have that

−γ2γ
2

γ1
y2 − γ2y1 − γ2pse

2
s − γ2p2q

(
y2

θ2

) 1
β 1

e2s
+ γ2pse

1
s + γ2p2q

(
y1

θ̄

) 1
β 1

e1s
= −γ2

γ1
c2 (D42)

Therefore, we can restate the government’s problem by eliminating c2 from the objective func-
tion (exploiting (D42)) and write

max
y2,y1,e1s,e

2
s

γ2

γ1
y2 + y1 − pse

1
s − p1q

(
y1

θ1

) 1
β 1

e1s
− γ2γ

2

γ1
y2 − γ2y1 − γ2pse

2
s

−γ2p2q

(
y2

θ2

) 1
β 1

e2s
+ γ2pse

1
s + γ2p2q

(
y1

θ̄

) 1
β 1

e1s

subject to the upward IC-constraint (D41).
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Collecting terms in the objective function we can reformulate the government’s problem as

max
y2,y1,e1s,e

2
s

γ2y2 + γ1y1 − γ1pse
1
s − γ2pse

2
s − p1q

(
y1

θ1

) 1
β 1

e1s
− γ2p2q

(
y2

θ2

) 1
β 1

e2s
+ γ2p2q

(
y1

θ̄

) 1
β 1

e1s

subject to upward IC constraint (D41).
Finally, noticing that the constraint (D41) can be equivalently restated as

1

e2s
=

(θ2)
1
β (y1)

1
β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

]
(
p1q − p2q

)
(y2)

1
β (θ1)

1
β
(
θ
) 1

β e1s

, (D43)

we can exploit (D43) to eliminate e2s from the variables entering the objective function. The
government’s problem can then be restated as

max
y2,y1,e1s

γ2y2 + γ1y1 − γ1pse
1
s − γ2ps

p1q − p2q

(θ2)
1
β

(y2)
1
β

(y1)
1
β

(
θ1θ
) 1

β

p1q
(
θ
) 1

β − p2q (θ
1)

1
β

e1s

−p1q

(
y1

θ1

) 1
β 1

e1s
− γ2p2q

(
y2

θ2

) 1
β (y1θ2)

1
β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

]
(
p1q − p2q

) (
y2θ1θ

) 1
β e1s

+ γ2p2q

(
y1

θ̄

) 1
β 1

e1s
,

or equivalently,

max
y2,y1,e1s

γ2y2 + γ1y1 − γ1pse
1
s − γ2

p1q − p2q

(θ2)
1
β

(
θ1θ
) 1

β

p1q
(
θ
) 1

β − p2q (θ
1)

1
β

(y2)
1
β

(y1)
1
β

pse
1
s

+

 γ2p1qp
2
q

p1q − p2q

(θ1)
1
β −

(
θ
) 1

β(
θ
) 1

β

− p1q

 (y1)
1
β

(θ1)
1
β e1s

.

The first order condition with respect to y2, y1 and e1s are respectively given by:

(
y1
) 1

β =
1

β

p1q − p2q

(θ2)
1
β

(
θ1θ
) 1

β

p1q
(
θ
) 1

β − p2q (θ
1)

1
β

(
y2
) 1−β

β pse
1
s, (D44)

γ1+
1

β
γ2

p1q − p2q

(θ2)
1
β

(
θ1θ
) 1

β

p1q
(
θ
) 1

β − p2q (θ
1)

1
β

(y2)
1
β

(y1)
1+β
β

pse
1
s+

1

β

 γ2p1qp
2
q

p1q − p2q

(θ1)
1
β −

(
θ
) 1

β(
θ
) 1

β

− p1q

 (y1)
1−β
β

(θ1)
1
β e1s

= 0,

(D45)

−γ1ps − γ2
p1q − p2q

(θ2)
1
β

(
θ1θ
) 1

β

p1q
(
θ
) 1

β − p2q (θ
1)

1
β

(y2)
1
β

(y1)
1
β

ps =

 γ2p1qp
2
q

p1q − p2q

(θ1)
1
β −

(
θ
) 1

β(
θ
) 1

β

− p1q

 (y1)
1
β

(θ1)
1
β (e1s)

2
.

(D46)
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We can rewrite (D45)-(D46), respectively, as
 γ2p1qp

2
q

p1q − p2q

(θ1)
1
β −

(
θ
) 1

β(
θ
) 1

β

− p1q

 1

(θ1)
1
β

+
p1q − p2q

(θ2)
1
β

(
θ1θ
) 1

β (e1s)
2
γ2ps(

θ
) 1

β p1q − (θ1)
1
β p2q

(y2)
1
β

(y1)
2
β

 (y1)
1−β
β

e1s
= −βγ1,

(D47)
 γ2p1qp

2
q

p1q − p2q

(θ1)
1
β −

(
θ
) 1

β(
θ
) 1

β

− p1q

 1

(θ1)
1
β

+
p1q − p2q

(θ2)
1
β

(
θ1θ
) 1

β (e1s)
2
γ2ps(

θ
) 1

β p1q − (θ1)
1
β p2q

(y2)
1
β

(y1)
2
β

 (y1)
1
β

(e1s)
2 = −psγ

1.

(D48)

from which one obtains that
y1 =

pse
1
s

β
. (D49)

Using (D49), from the first order condition (D44) we get

(
pse

1
s

β

) 1
β

=
1

β

p1q − p2q

(θ2)
1
β

(
θ1θ
) 1

β

p1q
(
θ
) 1

β − p2q (θ
1)

1
β

(
y2
) 1−β

β pse
1
s,

and therefore

y2 =
pse

1
s

β

(θ2)
1

1−β(
p1q − p2q

) β
1−β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

(
θ1θ
) 1

1−β

, (D50)

from which we also obtain that

y2

y1
=

(θ2)
1

1−β(
p1q − p2q

) β
1−β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

(
θ1θ
) 1

1−β

,

and therefore (
y2

y1

) 1
β

=
(θ2)

1
1−β

1
β(

p1q − p2q
) 1

1−β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] 1
1−β

(
θ1θ
) 1

1−β
1
β

(D51)

Using (D51) to substitute for (
y2)

1
β

(y1)
1
β

on the LHS of (D46) gives

−γ1ps − γ2
p1q − p2q

(θ2)
1
β

(
θ1θ
) 1

β

p1q
(
θ
) 1

β − p2q (θ
1)

1
β

(θ2)
1

1−β
1
β(

p1q − p2q
) 1

1−β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] 1
1−β

(
θ1θ
) 1

1−β
1
β

ps

=

 γ2p1qp
2
q

p1q − p2q

(θ1)
1
β −

(
θ
) 1

β(
θ
) 1

β

− p1q

 (y1)
1
β

(θ1)
1
β (e1s)

2
,
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i.e.,

γ1ps + γ2ps
(θ2)

1
1−β(

θ1θ
) 1

1−β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

(
p1q − p2q

) β
1−β

=

p1q − γ2p1qp
2
q

p1q − p2q

(θ1)
1
β −

(
θ
) 1

β(
θ
) 1

β

 (y1)
1
β

(θ1)
1
β (e1s)

2
,

i.e. (exploiting the fact that y1 = pse1s
β

),

γ1+γ2

(
θ2

θ1θ

) 1
1−β

p1q (θ) 1
β − p2q (θ

1)
1
β

p1q − p2q


β

1−β

=

p1q − γ2p1qp
2
q

p1q − p2q

(θ1)
1
β −

(
θ
) 1

β(
θ
) 1

β

 (e1s)
1−2β

β (ps)
1−β
β

(βθ1)
1
β

,

i.e.,

γ1 + γ2

(
θ2

θ1θ

) 1
1−β

p1q (θ) 1
β − p2q (θ

1)
1
β

p1q − p2q


β

1−β

=

p1q
(
θ
) 1

β − p2q (θ
1)

1
β

p1q − p2q
+

γ1p2q

[
(θ1)

1
β −

(
θ
) 1

β

]
p1q − p2q

 p1q
(ps)

1−β
β

(β)
1
β

(e1s)
1−2β

β(
θθ1
) 1

β

,

from which one obtains that

e1s =

(
βθθ1

) 1
1−2β

γ1 + γ2
(

θ2

θ1θ

) 1
1−β

[
p1q(θ)

1
β −p2q(θ1)

1
β

p1q−p2q

] β
1−β


β

1−2β

(ps)
1−β
1−2β

(
p1q
) β

1−2β

γ1p2q
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1
β −(θ)

1
β

]
p1q−p2q

+
p1q(θ)

1
β −p2q(θ

1)
1
β

p1q−p2q


β

1−2β

,

or equivalently

e1s =


γ1
(
p1q − p2q

) β
1−β
(
θ1θ
) 1

1−β + γ2 (θ2)
1

1−β
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p1q
(
θ
) 1

β − p2q (θ
1)

1
β
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1−β

γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
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p1q
(
θ
) 1

β − p2q (θ
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1
β

]
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β
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×
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1
1−2β

(
θ1θ
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1−β
(
p1q − p2q

) β
1−β
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1−β
1−2β

(
p1q
) β

1−2β

. (D52)
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Having found an expression for e1s, we have that

y1 =
pse

1
s

β
= β

2β
1−2β

(
θθ1
) 1

1−2β
(
p1q − p2q

) β
1−β(
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p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

γ1p2q

[
(θ1)

1
β −
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β

]
+ p1q

(
θ
) 1

β − p2q (θ
1)

1
β
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β
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,

or equivalently,
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(
p1q − p2q
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(
θ1θ
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(
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1)

1
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(
p1q − p2q
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(
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(
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) β

1−2β

, (D53)

and using (D50) we get that

y2 = β
2β

1−2β

(
θθ1
) 1

1−2β(
psp1q

) β
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or equivalently,
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. (D54)

Having found expressions for y1, y2 and e1s, we can use (D43) to get the following expression
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for e2s:

e2s =
p1q − p2q
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i.e.,
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1
1−2β (θ2)

1
1−β

(ps)
1−β
1−2β

(
p1q
) β

1−2β

×


γ1
(
p1q − p2q

) β
1−β
(
θ1θ
) 1

1−β + γ2 (θ2)
1

1−β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

]


β
1−2β

(D55)

From (D54) and (D55) we also see that

y2 =
pse

2
s

β
. (D56)

We can now calculate the value of the government’s objective function

U sep = γ2y2 + γ1y1 − γ1pse
1
s − γ2pse

2
s − p1q

(
y1

θ1

) 1
β 1

e1s
− γ2p2q

(
y2

θ2

) 1
β 1

e2s
+ γ2p2q

(
y1

θ̄

) 1
β 1

e1s
,

which can also be rewritten (using (D49) and (D56)) as

U sep =

(
1− β

β

)(
γ2e2s + γ1e1s

)
ps+

γ2p2q

(
ps
βθ̄

) 1
β (

e1s
) 1−β

β − p1q

(
ps
βθ1

) 1
β (

e1s
) 1−β

β − γ2p2q

(
ps
βθ2

) 1
β (

e2s
) 1−β

β . (D57)
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Let’s first compute γ2p2q

(
ps
βθ̄

) 1
β
(e1s)

1−β
β − p1q

(
ps
βθ1

) 1
β
(e1s)

1−β
β . Using (D52) we have

γ2p2q

(
ps
βθ̄

) 1
β (

e1s
) 1−β

β − p1q

(
ps
βθ1

) 1
β (

e1s
) 1−β

β

=

 γ2p2q(
θ
) 1

β

−
p1q

(θ1)
1
β

 (β)
1

1−2β
(
θ1θ
) 1

β
(
p1q − p2q

)
(ps)

β
1−2β

(
p1q
) 1−β

1−2β

×


γ1
(
p1q − p2q

) β
1−β
(
θ1θ
) 1

1−β + γ2 (θ2)
1

1−β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

]


1−β
1−2β

.

Let’s now compute −γ2p2q

(
ps
βθ2

) 1
β
(e2s)

1−β
β . Using (D55) we have

−γ2p2q

(
ps
βθ2

) 1
β (

e2s
) 1−β

β

= −γ2p2q

[
p1q
(
θ
) 1

β − p2q
(
θ1
) 1

β

] (β)
1

1−2β

(ps)
β

1−2β
(
p1q
) 1−β

1−2β

×


γ1
(
p1q − p2q

) β
1−β
(
θ1θ
) 1

1−β + γ2 (θ2)
1

1−β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

]


1−β
1−2β

.

The government’s objective function (D57) can then be re-expressed as

U sep =

(
1− β

β

)(
γ2e2s + γ1e1s

)
ps

+

 γ2p2q(
θ
) 1

β

−
p1q

(θ1)
1
β

 (β)
1

1−2β
(
θ1θ
) 1

β
(
p1q − p2q

)
(ps)

β
1−2β

(
p1q
) 1−β

1−2β

×


γ1
(
p1q − p2q

) β
1−β
(
θ1θ
) 1

1−β + γ2 (θ2)
1

1−β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

]


1−β
1−2β

−γ2p2q

[
p1q
(
θ
) 1

β − p2q
(
θ1
) 1

β

] (β)
1

1−2β

(ps)
β

1−2β
(
p1q
) 1−β

1−2β

×


γ1
(
p1q − p2q

) β
1−β
(
θ1θ
) 1

1−β + γ2 (θ2)
1

1−β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

]


1−β
1−2β

,
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i.e.,

U sep =

(
1− β

β

)(
γ2e2s + γ1e1s

)
ps

+


 γ2p2q(

θ
) 1

β

−
p1q

(θ1)
1
β

(θ1θ) 1
β
(
p1q − p2q

)
− γ2p2q

[
p1q
(
θ
) 1

β − p2q
(
θ1
) 1

β

] (β)
1

1−2β

(ps)
β

1−2β
(
p1q
) 1−β

1−2β

×


γ1
(
p1q − p2q

) β
1−β
(
θ1θ
) 1

1−β + γ2 (θ2)
1

1−β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

]


1−β
1−2β

.

Since we have that γ2p2q(
θ
) 1

β

−
p1q

(θ1)
1
β

(θ1θ) 1
β
(
p1q − p2q

)
− γ2p2q

[
p1q
(
θ
) 1

β − p2q
(
θ1
) 1

β

]

= γ2p2q

(
1

θ̄

)1/β (
θ1θ
) 1

β
(
p1q − p2q

)
− p1q

(
1

θ1

)1/β (
θ1θ
) 1

β
(
p1q − p2q

)
− γ2p2qp

1
q

(
θ
) 1

β + γ2p2qp
2
q

(
θ1
) 1

β

= γ2p2q
(
θ1
) 1

β
(
p1q − p2q

)
− p1q

(
θ
) 1

β
(
p1q − p2q

)
− γ2p2qp

1
q

(
θ
) 1

β + γ2p2qp
2
q

(
θ1
) 1

β

=
[
γ2p2q

(
θ1
) 1

β − p1q
(
θ
) 1

β + γ1p2q
(
θ
) 1

β

]
p1q

= −
{
γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
[
p1q
(
θ
) 1

β − p2q
(
θ1
) 1

β

]}
p1q,

the government’s objective function can be re-expressed as

U sep =

(
1− β

β

)(
γ2e2s + γ1e1s

)
ps

−
{
γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
[
p1q
(
θ
) 1

β − p2q
(
θ1
) 1

β

]} (β)
1

1−2β(
psp1q

) β
1−2β

×


γ1
(
p1q − p2q

) β
1−β
(
θ1θ
) 1

1−β + γ2 (θ2)
1

1−β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

]


1−β
1−2β

,

i.e.,

U sep =

(
1− β

β

)(
γ2e2s + γ1e1s

)
ps

− (β)
1

1−2β(
psp1q

) β
1−2β

{
γ1
(
p1q − p2q

) β
1−β
(
θ1θ
) 1

1−β + γ2 (θ2)
1

1−β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

} 1−β
1−2β

{
γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

]} β
1−2β

,
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or equivalently,

U sep =

(
1− 2β

β

)(
γ2e2s + γ1e1s

)
ps

− (β)
1

1−2β(
psp1q

) β
1−2β

{
γ1
(
p1q − p2q

) β
1−β
(
θ1θ
) 1

1−β + γ2 (θ2)
1

1−β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

} 1−β
1−2β

{
γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

]} β
1−2β

+
(
γ2e2s + γ1e1s

)
ps.

Noticing that

(
γ2e2s + γ1e1s

)
ps

= γ2e2sps + γ1e1sps

= γ2ps

[
p1q
(
θ
) 1

β − p2q
(
θ1
) 1

β

] β
1−β (β)

1
1−2β (θ2)

1
1−β

(ps)
1−β
1−2β

(
p1q
) β

1−2β

×


γ1
(
p1q − p2q

) β
1−β
(
θ1θ
) 1

1−β + γ2 (θ2)
1

1−β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

]


β
1−2β

+γ1ps


γ1
(
p1q − p2q

) β
1−β
(
θ1θ
) 1

1−β + γ2 (θ2)
1

1−β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

]


β
1−2β

×
(β)

1
1−2β

(
θ1θ
) 1

1−β
(
p1q − p2q

) β
1−β

(ps)
1−β
1−2β

(
p1q
) β

1−2β

=


γ1
(
p1q − p2q

) β
1−β
(
θ1θ
) 1

1−β + γ2 (θ2)
1

1−β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

]


β
1−2β

(β)
1

1−2β(
psp1q

) β
1−2β

×

{
γ2
[
p1q
(
θ
) 1

β − p2q
(
θ1
) 1

β

] β
1−β (

θ2
) 1

1−β + γ1
(
θ1θ
) 1

1−β
(
p1q − p2q

) β
1−β

}

=
(β)

1
1−2β(

psp1q
) β

1−2β

{
γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

(θ2)
1

1−β + γ1
(
θ1θ
) 1

1−β
(
p1q − p2q

) β
1−β

} 1−β
1−2β

{
γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

]} β
1−2β

,

58



we have that(
1− 2β

β

)(
γ2e2s + γ1e1s

)
ps

− (β)
1

1−2β(
psp1q

) β
1−2β

{
γ1
(
p1q − p2q

) β
1−β
(
θ1θ
) 1

1−β + γ2 (θ2)
1

1−β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

} 1−β
1−2β

{
γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

]} β
1−2β

+
(
γ2e2s + γ1e1s

)
ps

=

(
1− 2β

β

)(
γ2e2s + γ1e1s

)
ps

− (β)
1

1−2β(
psp1q

) β
1−2β

{
γ1
(
p1q − p2q

) β
1−β
(
θ1θ
) 1

1−β + γ2 (θ2)
1

1−β

[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

} 1−β
1−2β

{
γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

]} β
1−2β

+
(β)

1
1−2β(

psp1q
) β

1−2β

{
γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

(θ2)
1

1−β + γ1
(
θ1θ
) 1

1−β
(
p1q − p2q

) β
1−β

} 1−β
1−2β

{
γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

]} β
1−2β

=

(
1− 2β

β

)(
γ2e2s + γ1e1s

)
ps.

Thus, the government’s objective function can be re-expressed as
(

1−2β
β

)
(γ2e2s + γ1e1s) ps.

Substituting the optimal values for e1s and e2s gives

U sep =

(
1− 2β

β

)(
γ2e2s + γ1e1s

)
ps

=

(
1− 2β

β

)
(β)

1
1−2β(

psp1q
) β

1−2β

{
γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

] β
1−β

(θ2)
1

1−β + γ1
(
θ1θ
) 1

1−β
(
p1q − p2q

) β
1−β

} 1−β
1−2β

{
γ1
(
p1q − p2q

) (
θ
) 1

β + γ2
[
p1q
(
θ
) 1

β − p2q (θ
1)

1
β

]} β
1−2β

.

(D58)

Finally, notice that (D49) and (D56) allow restating U sep as

U sep = (1− 2β)
(
γ2y2 + γ1y1

)
. (D59)

59



D.4 The regions used to generate Figure 1

From (D11), (D12), (D34) and (D59), we have that a pooling tax equilibrium dominates a
separating tax equilibrium if and only if

(
θ̄
) 1

1−2β β
2β

1−2β(
psp1q

) β
1−2β

> γ1y1 + γ2y2. (D60)

Under a separating tax equilibrium the upward IC-constraint can be safely disregarded when
(D39) holds. In this case, the values of y1 and y2 are given by (D28) and (D23).

When instead condition (D39) is violated, both IC-constraints will be binding at a separating
tax equilibrium; in this case the values of y1 and y2 are given by (D53) and (D54).

For given values of p1q and θ2, let the ability advantage of type-2 agents be denoted by
ϵ = θ2 − θ1 > 0 and the cost disadvantage of type-1 agents denoted by δ = p1q − p2q > 0.
Moreover, define the function f (δ, ε), for (δ, ε) ∈

[
0, p1q

]
× [0, θ2], as

f (δ, ε) ≡ δ

(θ2)
1
β

−

[
p1q

(θ2 − ε)
1
β

−
p1q − δ

(θ2 − γ1ε)
1
β

] γ1
(
p1q − δ

)
p1q
(

θ2

θ2−ε

) 1
β − γ2

(
p1q − δ

) (
θ2

θ2−γ1ε

) 1
β


1−β
1−2β

.

(D61)
Our results imply that:

i) For (δ, ε)-pairs such that f (δ, ε) ≥ 0, predistribution is desirable if and only if

[
(θ2 − γ1ε)

1
β

p1q

] β
1−2β

> γ1

 γ1

p1q

(θ2−ε)
1
β
− γ2(p1q−δ)

(θ2−γ1ε)
1
β


β

1−2β

+ γ2

[
(θ2)

1
β

p1q − δ

] β
1−2β

. (D62)

ii) For (δ, ε)-pairs such that f (δ, ε) < 0, predistribution is desirable if and only if

(
θ2 − γ1ε

) 1
1−2β >

{
γ2

[
p1q −

(
p1q − δ

) (
θ2−ε

θ2−γ1ε

) 1
β

] β
1−β

(θ2)
1

1−β + γ1 (θ2 − ε)
1

1−β (δ)
β

1−β

} 1−β
1−2β

{
γ1δ + γ2

[
p1q −

(
p1q − δ

) (
θ2−ε

θ2−γ1ε

) 1
β

]} β
1−2β

.

(D63)
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E Proof of Proposition 3

Part (i) The government’s problem under pooling can be equivalently stated as

max
es,eq

θh (es, eq)− pses − p1qeq, (E1)

Denoting by a hat symbol the optimal values of es and eq, and using subscripts on h to denote
partial derivatives, the associated first order conditions are

1− ps

θh1 (ês, êq)
= 0, (E2)

1−
p1q

θh2 (ês, êq)
= 0, (E3)

from which it also follows that

ps
p1q

=
h1 (ês, êq)

h2 (ês, êq)
<

ps
p2q
. (E4)

Part ii) From the relationship θh (es, eq) = y, one can derive a function, denoted by f , that
expresses eq as a function of y, es and θ: eq = f (y, es, θ). Relying on such a function, define
R1 (y1, e1s), R

2 (y2, e2s), R̂
2 (y1, e1s) and R̃1(y2, e2s) as follows:

R1
(
y1, e1s

)
≡ pse

1
s + p1qf

(
y1, e1s, θ

1
)
, (E5)

R2
(
y2, e2s

)
≡ pse

2
s + p2qf

(
y2, e2s, θ

2
)
, (E6)

R̂2
(
y1, e1s

)
≡ pse

1
s + p2qf

(
y1, e1s, θ

)
, (E7)

R̃1(y2, e2s) ≡ pse
2
s + p1qf

(
y2, e2s, θ

2
)
. (E8)

Based on (E5)-(E8) we can then equivalently reformulate the government’s optimal tax problem
as

max
y1,e1s,c

1,y2,e2s,c
2
c1 −R1

(
y1, e1s

)
(E9)

subject to

c2 −R2
(
y2, e2s

)
≥ c1 − R̂2

(
y1, e1s

)
(E10)

c1 −R1
(
y1, e1s

)
≥ c2 − R̃1(y2, e2s) (E11)

γ1
(
y1 − c1

)
+ γ2

(
y2 − c2

)
≥ 0. (E12)
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Denote by λ2, λ1 and µ the Lagrange multipliers of the government’s problem. The first order
conditions with respect to, respectively y1, e1s, c

1, y2, e2s, c
2, are

−∂R1 (y1, e1s)

∂y1
+ λ2∂R̂

2 (y1, e1s)

∂y1
− λ1∂R

1 (y1, e1s)

∂y1
+ µγ1 = 0, (E13)

−∂R1 (y1, e1s)

∂e1s
+ λ2∂R̂

2 (y1, e1s)

∂e1s
− λ1∂R

1 (y1, e1s)

∂e1s
= 0, (E14)

1− λ2 + λ1 − µγ1 = 0, (E15)

−λ2∂R
2 (y2, e2s)

∂y2
+ λ1∂R̃

1 (y2, e2s)

∂y2
+ µγ2 = 0, (E16)

−λ2∂R
2 (y2, e2s)

∂e2s
+ λ1∂R̃

1 (y2, e2s)

∂e2s
= 0, (E17)

λ2 − λ1 − µγ2 = 0. (E18)

From (E15) and (E18) we get that µ = 1 and λ2 − λ1 = 1− γ1 = γ2. Taking this into account,
from (E17)-(E18) we get

−∂R2 (y2, e2s)

∂e2s
=

λ1

γ2

(
∂R2 (y2, e2s)

∂e2s
− ∂R̃1 (y2, e2s)

∂e2s

)

=
λ1

γ2

[(
ps −

h1 (e
2
s, f (y2, e2s, θ

2))

h2 (e2s, f (y2, e2s, θ
2))

p2q

)
−
(
ps −

h1 (e
2
s, f (y2, e2s, θ

2))

h2 (e2s, f (y2, e2s, θ
2))

p1q

)]
=

λ1

γ2

(
p1q − p2q

) h1 (e
2
s, f (y2, e2s, θ

2))

h2 (e2s, f (y2, e2s, θ
2))

. (E19)

Noticing that
∂R2(y2,e2s)

∂e2s
= ps − p2q

h1(e2s,f(y2,e2s,θ2))
h2(e2s,f(y

2,e2s,θ
2))

, eq. (E19) implies eq. (32). We therefore
have that

h1 (e
2
s, f (y2, e2s, θ

2))

h2 (e2s, f (y2, e2s, θ
2))

=
h1

(
e2s, e

2
q

)
h2

(
e2s, e

2
q

) ≥ ps
p2q
. (E20)

Combining (E16) and (E18) gives

1− ∂R2 (y2, e2s)

∂y2
=

λ1

γ2

(
p2q − p1q

)(de2q
dy2

)
de2s=0

=
λ1

γ2

p2q − p1q
θ2h2 (e2s, f (y2, e2s, θ

2))
≤ 0. (E21)

Noticing that
∂R2(y2,e2s)

∂y2
=

p2q
θ2h2(e2s,f(y

2,e2s,θ
2))

, eq. (E21) implies eq. (33). The result stated by eq.
(34) can then be easily obtained combining the results provided by (E19) and (E21).

From (E14)-(E15) we have that

−∂R1 (y1, e1s)

∂e1s

(
λ2 + γ1

)
= −λ2∂R̂

2 (y1, e1s)

∂e1s
, (E22)
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or equivalently

−∂R1 (y1, e1s)

∂e1s
=

λ2

γ1

(
∂R1 (y1, e1s)

∂e1s
− ∂R̂2 (y1, e1s)

∂e1s

)
. (E23)

Noticing that
∂R1(y1,e1s)

∂e1s
= ps − p1q

h1(e1s,f(y1,e1s,θ1))
h2(e1s,f(y

1,e1s,θ
1))

, eq. (E23) can be restated as

− ps + p1q
h1 (e

1
s, f (y1, e1s, θ

1))

h2 (e1s, f (y1, e1s, θ
1))

(E24)

=
λ2

γ1

[(
ps −

h1 (e
1
s, f (y1, e1s, θ

1))

h2 (e1s, f (y1, e1s, θ
1))

p1q

)
−

(
ps −

h1

(
e1s, f

(
y1, e1s, θ

))
h2

(
e1s, f

(
y1, e1s, θ

))p2q
)]

(E25)

=
λ2

γ1

[
h1

(
e1s, f

(
y1, e1s, θ

))
h2

(
e1s, f

(
y1, e1s, θ

))p2q − h1 (e
1
s, f (y1, e1s, θ

1))

h2 (e1s, f (y1, e1s, θ
1))

p1q

]
, (E26)

from which eq. (29) is obtained. Notice that the right hand side of the equation above has a nega-

tive sign given that p2q < p1q and f
(
y1, e1s, θ

)
< f (y1, e1s, θ

1) (which implies that
h1(e1s,f(y1,e1s,θ))
h2(e1s,f(y1,e1s,θ))

<

h1(e1s,f(y1,e1s,θ1))
h2(e1s,f(y

1,e1s,θ
1))

). It therefore follows that

h1 (e
1
s, f (y1, e1s, θ

1))

h2 (e1s, f (y1, e1s, θ
1))

=
h1

(
e1s, e

1
q

)
h2

(
e1s, e

1
q

) <
ps
p1q
. (E27)

From (E13) and (E15) we have that

−∂R1 (y1, e1s)

∂y1
(
λ2 + γ1

)
= −λ2∂R̂

2 (y1, e1s)

∂y1
− γ1, (E28)

or equivalently

1− ∂R1 (y1, e1s)

∂y1
=

λ2

γ1

(
∂R1 (y1, e1s)

∂y1
− ∂R̂2 (y1, e1s)

∂y1

)
. (E29)

Noticing that
∂R1(y1,e1s)

∂y1
=

p1q
θ1h2(e1s,f(y

1,e1s,θ
1))

, eq. (E29) can be restated as

1− ∂R1 (y1, e1s)

∂y1
=

λ2

γ1

(
p1q

θ1h2 (e1s, f (y1, e1s, θ
1))

−
p2q

θh2

(
e1s, f

(
y1, e1s, θ

))) , (E30)

from which eq. (30) is obtained. Notice that the right hand side of the equation above has a posi-
tive sign given that p1q > p2q and f (y1, e1s, θ

1) > f
(
y1, e1s, θ

)
(which implies that h2 (e

1
s, f (y1, e1s, θ

1)) <

h2

(
e1s, f

(
y1, e1s, θ

))
). Finally, the result stated by eq. (31) can be easily obtained combining

the results provided by (29) and (30).
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F Proof of Proposition 4

Condition (37) tells us that the right hand side of (30) can be interpreted as T ′
1 (y

1, e1s), namely,
the marginal income tax rate. Condition (38) tells us that the right hand side of (29) can be
interpreted as T ′

2 (y
1, e1s) /p

1
q , namely, the marginal subsidy on es faced by low-ability agents

(discounted by p1q). Next, we show that (42) and (43) imply that the tax function implementing
the separating tax equilibrium is characterized by the property that T ′

1 (y
2, e2s) = T ′

2 (y
2, e2s) = 0.

Exploiting (43), from (E19) we obtain that

T2

(
y2, e2s

)
=

(
λ1

γ2
− ϕ

1− ϕ

)(
p1q − p2q

) h1 (e
2
s, f (y2, e2s, θ

2))

h2 (e2s, f (y2, e2s, θ
2))

. (F1)

Exploiting (42), from (E21) we have that

T1

(
θ2h

(
e2s, e

2
q

)
, e2s
)
=

(
ϕ

1− ϕ
− λ1

γ2

)
p1q − p2q

θ2h2 (e2s, f (y2, e2s, θ
2))

. (F2)

Taking into account that the government’s budget constraint requires that c2 = y2+ γ1

γ2 (y
1 − c1),

notice that for given values of c1, y1 and e1s, the socially optimal values of y2 and e2s are those
maximizing

y2 +
γ1

γ2

(
y1 − c1

)
−R2

(
y2, e2s

)
(F3)

subject to the IC-constraint

c1 −R1
(
y1, e1s

)
≥ y2 +

γ1

γ2

(
y1 − c1

)
− R̃1(y2, e2s). (F4)

But these are precisely the choices that would be made by type-2 agents if they were subject
to a lump-sum tax of amount γ1

γ2 (y
1 − c1). This means that, at an optimum, λ1

γ2 = ϕ
1−ϕ

or,
equivalently (taking into account that from the government’s first order conditions we have that
γ2 = λ2 − λ1), ϕ = λ1/λ2. One can then conclude that, along the tax function implementing
the socially optimal separating equilibrium,

T1

(
y2, e2s

)
= T2

(
y2, e2s

)
= 0. (F5)

Exploiting (38), and taking into account that
∂R1(y1,e1s)

∂e1s
= ps − p1q

h1(e1s,f(y1,e1s,θ1))
h2(e1s,f(y

1,e1s,θ
1))

, it follows
from (E23) that

T2

(
y1, e1s

)
=

λ2

γ1

[
h1

(
e1s, f

(
y1, e1s, θ

))
h2

(
e1s, f

(
y1, e1s, θ

))p2q − h1 (e
1
s, f (y1, e1s, θ

1))

h2 (e1s, f (y1, e1s, θ
1))

p1q

]
< 0. (F6)

64



Exploiting (37) , it follows from (E29) that

T1

(
y1, e1s

)
=

λ2

γ1

(
p1q

θ1h2 (e1s, f (y1, e1s, θ
1))

−
p2q

θh2

(
e1s, f

(
y1, e1s, θ

))) > 0. (F7)

G Proof of Proposition 5

Consider the optimization problem solved by an agent of type-1 under a tax system featuring a
proportional tax/subsidy on income supplemented by a mandate on es prescribing that es ≥ ês:

max
e1s,e

1
q

(1− t) θ1h
(
e1s, e

1
q

)
− pse

1
s − p1qe

1
q subject to e1s ≥ ês. (G1)

The associated first order conditions would be

(1− t) θ1h1

(
e1s, e

1
q

)
≤ ps, (G2)

(1− t) θ1h2

(
e1s, e

1
q

)
= p1q. (G3)

Suppose that t =
(

1
θ
− 1

θ1

)
p1q

h2(ês,êq)
< 0. The first order conditions (G2)-(G3) would become

1 +

(
1

θ1
− 1

θ

)
p1q

h2 (ês, êq)
≤ ps

θ1h1

(
e1s, e

1
q

) , (G4)

1 +

(
1

θ1
− 1

θ

)
p1q

h2 (ês, êq)
=

p1q

θ1h2

(
e1s, e

1
q

) . (G5)

Given that the CEA satisfies (E3), it follows that the effort mix (ês, êq) satisfies the first
order condition (G5). Moreover, given that the CEA also satisfies (E4), it also follows that the
effort mix (ês, êq) satisfies (as an equality) the first order condition (G4).

Exploiting the above result, let the mandate on es be set at ês, and assume that, for y ∈ [0, ŷ],
the income tax chosen by the government takes the following linear form:

T (y) =

(
1

θ1
− 1

θ

)
p1q

h2 (ês, êq)
ŷ︸ ︷︷ ︸

>0

+

(
1

θ
− 1

θ1

)
p1q

h2 (ês, êq)︸ ︷︷ ︸
<0

y. (G6)

Notice that the tax function (G6) features a constant marginal subsidy (T ′ =
(

1
θ
− 1

θ1

)
p1q

h2(ês,êq)
<

0), a decreasing average tax rate, and also that, by construction, it satisfies the condition T (ŷ) =

0. Assume initially that T (y) = 0 also for y > ŷ (we will later revise this assumption). It fol-
lows that (ês, êq) represents the effort mix (es, eq) that maximizes θ1h (es, eq)−T (θ1h (es, eq))−
pses − p1qeq subject to the constraint es ≥ ês.

Consider now the various options available to type-2 agents.
i) Suppose that they try to achieve separation from their low-skilled counterpart. Under
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separation, type-1 agents get a utility equal to y1 − T (y1) − psês − p1q êq. Notice also that,
given our assumptions about T (y), type-2 agents cannot achieve separation at a level of income
y ∈ [y1, θ2h2 (ês, êq)] (where one should notice that θ2h2 (ês, êq) > ŷ > y1) and would not find
attractive to achieve separation at a level of income lower than y1. To show this, notice first
that, to verify whether or not it is possible or attractive for type-2 agents to achieve separation
at y2 ≤ θ2h2 (ês, êq), it suffices to check whether separation is achievable or attractive when
choosing e2s = ês. This is because type-2 agents have a comparative advantage in the eq-
dimension, and the mandate on es prevents them from choosing a value of es smaller than ês.
Consider first what would happen if type-2 agents try to achieve separation at an equilibrium
where they earn ŷ; they would choose the effort mix (ês, eq (ŷ, ês, θ

2)). However, given that
y1 = θ1h (ês, êq) < ŷ, T (y1) > T (ŷ) = 0 and eq (ŷ, ês, θ

2) < êq, if type-2 agents were to
choose the effort mix (ês, eq (ŷ, ês, θ

2)) they would not succeed in achieving separation (because
type-1 agents would be strictly better off by replicating the effort mix of type-2 agents than by
choosing (ês, êq): y1 − T (y1)− psês − p1q êq < ŷ − psês − p1qeq (ŷ, ês, θ

2)). A similar argument
can be invoked to show that type-2 agents could never achieve separation at a level of income
y2 such that y2 ∈ (ŷ, θ2h2 (ês, êq)].29 A similar argument can also be used to show that type-
2 agents could never achieve separation at a level of income y2 such that y2 ∈ [y1, ŷ). In
particular, for type-2 agents to be able to achieve separation it must be that

y1 − T
(
y1
)
− p1q êq > y2 − T

(
y2
)
− p1qeq

(
y2, ês, θ

2
)
. (G7)

Given the assumptions made about T (y), for y2 ∈ [y1, ŷ) we have that [y2 − T (y2)]−[y1 − T (y1)] ≥
0. But given that eq (y

2, ês, θ
2) − êq < 0, the inequality [y2 − T (y2)] − [y1 − T (y1)] <

p1q [eq (y
2, ês, θ

2)− êq] is violated. Now consider the case where y2 < y1. In this case we
have that [y2 − T (y2)]− [y1 − T (y1)] < 0 and therefore one cannot rule out the possibility that
(G7) is satisfied and therefore separation is achievable. However, even if type-2 agents could
achieve separation at some value of income smaller than y1 , they would not have an incentive
to do that. In fact, for separation to be attractive for them it must be that

y2 − T
(
y2
)
− p2qeq

(
y2, ês, θ

2
)
> y1 − T

(
y1
)
− p2qeq

(
y1, ês, θ

)
. (G8)

Together, the two inequalities (G7)-(G8) require that

p2q
[
eq
(
y2, ês, θ

2
)
− eq

(
y1, ês, θ

)]
<
[
y2 − T

(
y2
)]
−
[
y1 − T

(
y1
)]

< p1q
[
eq
(
y2, ês, θ

2
)
− êq

]
.

(G9)
But since eq (y

2, ês, θ
2)− êq < eq (y

2, ês, θ
2)− eq

(
y1, ês, θ

)
< 0, and p2q < p1q , we have that

p2q
[
eq
(
y2, ês, θ

2
)
− eq

(
y1, ês, θ

)]
> p1q

[
eq
(
y2, ês, θ

2
)
− êq

]
, (G10)

29In this case the argument also takes into account that we have assumed that T (y) = 0 for y > ŷ.
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i.e. (G7)-(G8) cannot be jointly satisfied.
We can then conclude that, for type-2 agents, the only feasible and attractive way to achieve

separation requires them to choose eq > êq and earn a pre-tax income that is strictly larger
than θ2h (ês, êq). Denote by emin

q the minimum level of eq that allows type-2 agents to achieve
separation when choosing es = ês. Formally, emin

q is defined as the solution to the following
problem:

min
eq

θ2h (ês, eq) subject to y1 − T
(
y1
)
− p1q êq ≥ θ2h (ês, eq)− p1qeq. (G11)

Furthermore, denote by
(
e2∗s , e2∗q

)
the effort mix that solves the following unconstrained maxi-

mization problem:
max
es,eq

θ2h (es, eq)− pses − p2qeq. (G12)

Notice that, since (ês, êq) is the effort mix that maximizes θh (es, eq)− pses − p1qeq, it must
necessarily be that e2∗s > ês and e2∗q > êq.

Finally, define ysep as ysep ≡ θ2h
(
ês, e

min
q

)
. Notice that, under the assumption that T (y) =

0 for y ≥ ŷ, the gain that type-2 agents can obtain by separating from their low-ability counter-
part (instead of choosing the effort mix (ês, êq) and pooling with them at ŷ) cannot exceed the
amount

[
θ2
(
e2∗s , e2∗q

)
− pse

2∗
s − p2qe

2∗
q

]
−
[
ŷ − psês − p2q êq

]
. Thus, to ensure that type-2 agents

never find attractive to separate from their low-ability counterpart, it would suffice to modify
our initial assumption that T (y) = 0 for y ≥ ŷ and let T (y), for y ≥ ysep, be given by

T (y) =
[
θ2
(
e2∗s , e2∗q

)
− pse

2∗
s − p2qe

2∗
q

]
−
[
ŷ − psês − p2q êq

]
> 0. (G13)

ii) What we have established so far is that a pooling equilibrium at ŷ, where both agents
choose (ês, êq), is weakly better for type-2 agents than any separating equilibrium that they
can achieve. Moreover, for type-1 agents, a pooling equilibrium at ŷ is strictly better than
a separating equilibrium; this is because under separation they achieve a utility equal to y1 −
T (y1)−psês−p1q êq, which is lower than ŷ−psês−p1q êq (remember that y1 < ŷ and T (y1) > 0).
Notice also that from the perspective of type-1 agents, the best pooling allocation is the one
where all agents earn ŷ (the pooling allocation (ŷ, ĉ, ês, êq) was obtained as the outcome of
the government’s problem where the utility of type-1 agents was maximized within the set of
pooling allocation, and therefore pooling at ŷ would be the preferred choice of type-1 agents
even in the absence of taxes; the conclusion is strengthened by the fact that we have defined an
income tax function such that T (y) ≥ 0 for all values of y). Thus, the only thing that is left to
check, in order to establish that our function T (y) implements the optimal pooling allocation, is
to verify whether, for type-2 agents, pooling at ŷ is not dominated by pooling at some other level
of income weakly smaller than θh

(
ês, e

min
q

)
.30 Clearly, given that p2q < p1q and the income tax

30Notice that we can safely disregard the case of pooling at θh
(
ês, e

min
q

)
< y < θ2h

(
ês, e

min
q

)
; the reason is

that type-2 agents achieve separation when choosing eq ≥ emin
q , and therefore there can be no pooling at levels of
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function is regressive in the interval [0, ŷ], pooling at ŷ is strictly preferred by type-2 agents to
pooling at a level of income smaller than ŷ. Notice, however, that pooling at a value of y slightly
higher than ŷ would be strictly better for type-2 agents than pooling at ŷ if, as we have assumed
so far, T (y) = 0 for y ∈ [ŷ, θ2h

(
ês, e

min
q

)
). Moreover, pooling at a value of y slightly larger

than ŷ would still allow type-1 agents to achieve a utility that is higher than the one achieved
at a separating equilibrium. This represents a threat to the implementability of the pooling
allocation intended by the government. To eliminate this threat we need to properly adjust the
tax schedule T (y). For this purpose, notice that, switching from pooling at ŷ to pooling at a
marginally higher level of income entails for type-2 agents a maximum gain that is given by
1− p2q

θh2(ês,êq)
.31 Notice, also, that the benefit of pooling at a marginally higher level of income is

decreasing in income.32 Therefore, to make sure that type-2 agents weakly prefer pooling at ŷ to
pooling at levels of income higher than ŷ, it would suffice to assume that T ′ (y) = 1− p2q

θh2(ês,êq)

for y ≥ ŷ.
Combining the insights obtained in i) and ii), it follows that one way to implement the

allocation (ŷ, ĉ, ês, êq) as a pooling tax equilibrium is to enforce a lower bound on es, set at ês,
supplemented by a two-bracket piecewise-linear income tax T (y) such that

T (y) =


(

1
θ1

− 1
θ

)
p1q

h2(ês,êq)
ŷ +

(
1
θ
− 1

θ1

)
p1q

h2(ês,êq)
y, for all y ∈ [0, ŷ]

(y − ŷ)max

{
1− p2q

θh2(ês,êq)
,
[θ2(e2∗s ,e2∗q )−pse2∗s −p2qe

2∗
q ]−[ŷ−psês−p2q êq]

ysep−ŷ

}
, for all y > ŷ.

(G14)

H The case when neither signal is observable

Here we consider the special case where an individual’s tax liability is only a function of his or
her labor income. The income tax is defined by a set of pre-tax/post-tax income bundles denoted
by (yi, ci), where the total tax (or transfer, if negative) is defined by ti ≡ yi − ci. Recall that the
wage rate earned by a given individual is defined as the ratio of his or her pre-tax income y and
the value of the h-function evaluated at the effort vector chosen by the individual.

H.1 A pooling tax equilibrium when neither signal is observable

Since there is no exogenous public revenue requirement, in a pooling equilibrium the income
tax system offers the same pre-tax income ŷ to both types of agents, which is also equal to the

pre-tax income higher than θh
(
ês, e

min
q

)
.

31Since h1(ês,êq)
h2(ês,êq)

< ps

p2
q

, the maximum gain can be calculated assuming that the additional output is produced
by only relying on an upward variation in eq .

32Switching from pooling at ŷ to pooling at ŷ + ϵ raises the utility of type-2 agents by a larger amount than
switching from pooling at ŷ + ϵ to pooling at ŷ + 2ϵ.
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net income denoted by ĉ. Lemma 1 below shows that pooling equilibria where all agents choose
the same effort vector do not exist.

Lemma 1. With only an income tax in place, a pooling tax equilibrium where both workers

choose the same effort vector does not exist.

Proof. Consider a candidate pooling allocation (ŷ, ĉ) where both workers choose the same ef-
fort mix, given by the pair (ês, êq). By construction we have that ĉ = ŷ = θ̄h(ês, êq), with
θ̄ ≡

∑
i γ

iθi. Let ûi = ui(ĉ, ês, êq). Then ĉ − (pse
i
s + piqe

i
q) = ûi, for i = 1, 2, will de-

scribe the indifference curves, in the (es, eq) plane, passing through the point (ês, êq). Since
the indifference curve for agents of type i (with i = 1, 2) has a slope of −ps/p

i
q, it follows that

the indifference curve associated with type-2 workers is steeper than that associated with their
type-1 counterparts. The intersection of the two downward-sloping indifference curves creates
a forked region northwest of point (ês, êq). Now suppose that instead of choosing (ês, êq), type-
2 agents deviate to the effort mix

(
ês − ϵ, êq +

ps
p2q+ν

ϵ
)

, where ϵ > 0 and 0 < ν < p1q − p2q . By

construction, the effort mixture
(
ês − ϵ, êq +

ps
p2q+ν

ϵ
)

is inside the above forked region, which
implies that it has a lower cost for type-2 agents than the effort mix (ês, êq), while it has a higher
cost for type-1 agents. Therefore, by deviating to the effort mix

(
ês − ϵ, êq +

ps
p2q+ν

ϵ
)

, type-2
workers can credibly reveal their productivity. Moreover, since in (es, eq)-space the isoquant
ŷ = θ2h (es, eq) is strictly below the isoquant ŷ = θh (es, eq), it follows by continuity that for
sufficiently small ϵ, the total output produced by a deviating type-2 worker would strictly ex-
ceed ŷ. Thus, it would also be the case that firms find it profitable to hire the deviating type-2
worker.

Note that due to the two dimensions of signaling, it is possible to have pooling in income
without pooling in the effort vectors chosen by the two agents. Lemma 2 shows that such an
equilibrium will never be the social optimum.

Lemma 2. With only an income tax in place, pooling on income without pooling on the effort

signals observed by firms is socially suboptimal.

Proof. When there is pooling of income without pooling of effort signals, type 1 individuals
are: (a) paid their true productivity before taxes, and (b) pay zero net taxes. Both (a) and (b)
are true under laissez-faire. In addition, they have an undistorted effort mix under laissez-faire.
So a pooling allocation can’t possibly be better than laissez-faire in terms of type 1’s welfare.
However, the laissez-faire equilibrium is clearly dominated by the socially optimal separating
allocation implemented by the income tax, which entails some redistribution and thus yields a
higher level of utility for type 1 workers than under laissez-faire. We conclude that pooling of
income without pooling of effort signals is suboptimal.33

33The argument is similar to the standard argument why bunching with two types is never optimal in a standard
Mirrleesian setting without asymmetric information between firms and workers, see, e.g., Stiglitz (1982).
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Lemma 1 and Lemma 2 together imply that under a pure income tax system the optimal
solution is given by a separating equilibrium in which types 1 and 2 earn different levels of
income.

Proposition 6. With only an income tax in place, pre-distribution cannot be achieved and the

social optimum is always given by a separating tax equilibrium.

H.2 A separating tax equilibrium when neither signal is observable

In a separating tax equilibrium, agents are paid by the firms according to their true productivity
(a type i agent is paid a wage rate of θi). The problem of choosing the tax schedule T (y) can be
equivalently formulated as the problem of properly selecting two pairs of pre-tax and after-tax
incomes (yi, ci), where ci = yi − T (yi), y1 − c1 < 0 and y2 − c2 > 0. Besides satisfying
the government budget constraint, the two bundles must be chosen in such a way that they are
incentive-compatible: agents of type i, for i = 1, 2 must be weakly better off at the bundle
intended for them, i.e. the bundle (yi, ci), than at the bundle intended for agents of type j ̸= i,
i.e. the bundle (yj, cj). The main difference from the standard Mirrleesian (1971) setup is the
presence of a second layer of asymmetric information between workers and employers. The
latter implies that to render the allocation incentive compatible, one should not only consider
(as stated above) mimicking by replication (that is, choosing the bundle intended for the other
type), but also off-equilibrium path mimicking options. We turn next to explore this in detail.

Consider first the bundle associated with type-1 workers. As we will formally prove below,
in the socially optimal separating equilibrium, type-2 workers will never resort to mimicking
by replication (they will hence strictly prefer their bundle to choosing the bundle intended for
type-1 workers). In the standard model, mimicking by replication is the only option available to
type-2 workers and hence the associated IC constraint will be binding in the optimal solution.
In our setup, in contrast, there will be superior alternatives for type 2, due to the presence of
asymmetric information between workers and employers.

As in equilibrium, type-2 workers will never mimic by replication, if type-1 agents choose
the bundle (y1, c1) intended for them, they would select an efficient mix of es and eq, denoted
by (e1s(y

1), e1q(y
1)), with an associated cost given by:

R1(y1) = min
es,eq

R1(es, eq) subject to h(es, eq)θ
1 = y1. (H1)

The only case in which the effort mix is being distorted in the optimal solution, is when an IC
constraint associated with mimicking by replication is binding in the optimal solution. In such
a case, distorting the effort mix would serve to mitigate the constraint.

Notice that efficiency in the choice of the effort mix means that e1s(y
1) and e1q(y

1) satisfy the
condition

∂h
(
e1s(y

1), e1q(y
1)
)
/∂e1s

∂h
(
e1s(y

1), e1q(y
1)
)
/∂e1q

=
ps
p1q
, (H2)

70



which equates the marginal rate of technical substitution (MRTS) to the marginal cost ratio.
In contrast to type-1 workers, the effort mix of type-2 workers may well be distorted in the

optimal solution. This is because, as we will formally show below, mimicking by replication
would be desirable for type-1 agents. If the associated IC constraint would bind, distorting the
effort mix would serve to alleviate the constraint. If they were to choose the bundle (y2, c2)
intended for them, type-2 agents would select a mix of es and eq, denoted by (e2s(y

2), e2q(y
2)),

with an associated cost given by:

R2(y2) = min
es,eq

R2(es, eq) subject to (H3)

h(es, eq)θ
2 = y2 (H4)

c1 −R1
(
y1
)
≥ c2 −R2

(
y2
)
−
(
p1q − p2q

)
e2q. (H5)

The second constraint captures the fact that type-2 agents take also into account that the effort
mix that they choose must not be attractive for type-1 agents. Therefore, the effort mix chosen
by type-2 agents will depend on whether this constraint is binding or slack. If it is slack, the

effort mix (e2s(y
2), e2q(y

2)) will satisfy the efficiency condition
∂h(e2s,e2q)/e2s
∂h(e2s,e2q)/e2q

= ps
p2q

; if the constraint

is binding, the effort mix will satisfy the inequality
∂h(e2s,e2q)/e2s
∂h(e2s,e2q)/e2q

> ps
p2q

(i.e., it will be distorted
towards eq, the effort dimension on which type-2 agents have a comparative advantage).

Let’s now consider the incentive-compatibility constraints that should be accounted for by
the government in the choice of the two bundles (yi, ci). To implement a given separating
equilibrium, the government must guard against various deviating strategies available to agents,
i.e., the government must ensure that no agent has an incentive to deviate from the expected
behavior. In principle, there are three deviating strategies that an agent of type i can choose to
earn the income yj intended for the other type. Agents of type i can choose an effort vector
that allow them to be compensated according to (i) the productivity of the other type, (ii) the
average productivity, or (iii) their true productivity. We consider these three deviating strategies
in more detail below. Since a deviating agent is someone who earns an amount of income that is
intended for some other type of agent, we will use the word ”mimicker” to refer to a deviating
agent in all three cases.

A first deviating strategy is for type-i agents to earn the income level yj by choosing the
effort mix (ejs(y

j), ejq(y
j)) chosen in equilibrium by type-j agents. By behaving in this way, a

type-i mimicker would be paid a wage rate θj (i.e., according to the productivity of the type
being mimicked) and would incur the following costs:

R̆i(yj) = pisĕ
i
s(y

j) + piqĕ
i
q(y

j), (H6)

where (ĕis(y
j), ĕiq (y

j)) = (ejs(y
j), ejq(y

j)) denotes the effort mix of a mimicker of type i, which
is identical to the effort mix chosen in equilibrium by agents of type j.
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In addition to the deviating strategy described above, in which a mimicker of type i chooses
the effort vector chosen in equilibrium by agents of type j ̸= i, there are also deviating strategies
in which a mimicker chooses a off-equilibrium effort vector.

The first of such strategies is the possibility for a type-i agent to earn the income level yj

by choosing an effort vector that is at once: i) different from the one chosen in equilibrium
by type-j agents, ii) attractive also to type-j agents, and iii) sufficient to allow firms to make
non-negative profits when paying agents according to the average productivity θ̄. For a type-i
mimicker, the most attractive of such strategies is the one with associated costs given by:

R̂i(yj) = min
(es,eq )̸=(ejs(yj),e

j
q(yj))

Ri(es, eq) (H7)

subject to:

Rj(es, eq) ≤ Rj(yj), (H8)

yj ≤ h(es, eq)θ̄. (H9)

The constraint (H8) captures the fact that the deviating strategy is feasible in the sense that it also
induces type j agents to change their effort vectors. The constraint (H9) ensures that the effort
vector is sufficient to provide a non-negative profit for the hiring firm in a pooling equilibrium
where both agents are paid according to the average productivity θ̄. Lemma 3 shows that, in
equilibrium, this out-of-equilibrium deviation would never be profitable for type-1 agents.

Lemma 3. The IC constraint associated with type-1 agents mimicking by pooling with their,

type-2, high-skilled counterparts will be slack in the optimal solution.

Proof. Under the proposed deviating strategy, both types of workers would earn y2 while being
paid according to the average productivity θ̄ and exerting the same effort vector (es, eq) satisfy-
ing h(es, eq)θ̄ ≥ y2. To sustain the deviation to the pooling allocation, in equilibrium, type-2
agents should be indifferent between the pooling allocation and the bundle intended for them.
The latter follows from a combination of two weak inequalities: the intended bundle should
be weakly preferred to the pooling allocation (by construction of the equilibrium) and at the
same time the pooling allocation should be weakly preferred to the intended bundle (to make
the deviation to the pooling allocation feasible). However, by Lemma 1, we can find an alterna-
tive bundle to the presumably optimal bundle offered to type-2 agents in equilibrium, that will
separate them from type-1 agents and deliver them a strictly higher level of utility. This yields
the desired contradiction, as, by offering the new bundle to type-2 agents, the government can
create a slack in the IC-constraint of type-2 agents and thereby enhance redistribution towards
type-1 agents.

The next lemma shows that the off-equilibrium strategy with cost R̂i(yj) is always superior
(in the sense of being less costly) for type-2 agents to the mimicking strategy of replicating the
effort vector chosen in equilibrium by type-1 agents.
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Lemma 4. For a type-2 agent, it is always more attractive to earn y1 while being rewarded

according to average productivity θ̄ than to earn y1 while being rewarded according to low

productivity θ1 < θ̄. In other words, R̂2(y1) < R̆2(y1).

Proof. Let (e1s(y
1), e1q(y

1)) denote the effort vector chosen by type-1 agents at the bundle in-
tended for them by the government, and let ēs = e1s(y

1) − ϵ and ēq = e1q(y
1) − ϵ, for small

ϵ > 0, represent a candidate effort vector for a type-2 mimicker. As θ̄ > θ1 and y1 =

h(e1s(y
1), e1q(y

1)) · θ1, it follows by continuity that h(ēs, ēq) · θ̄ > y1. Hence, the suggested
effort vector does not violate the constraint requiring firms to make non-negative profits. By
construction, R2(ēs, ēq) < R̆2(y1) and R1(ēq, ēs) < R1(y1), so the candidate effort vector
is preferred by both types of workers and induces pooling. Moreover, by virtue of the fact
that R̂2(y1) represents the minimal cost for type 2 under a pooling equilibrium, we have that
R̂2(y1) ≤ R2(ēs, ēq). Thus, it follows that R̂2(y1) < R̆2(y1). This completes the proof.

The other deviating strategy involving the choice of an off-equilibrium effort vector is the
one in which type-i agents mimic the earned income yj of type-j agents, but invest in the signals
in such a way as to differentiate themselves from type-j agents and thereby succeed in being
compensated by firms according to their true productivity θi. For a type-i mimicker, the most
attractive of such strategies is the one with associated costs given by:

R̃i(yj) = min
(es,eq )̸=(ejs(yj),e

j
q(yj))

Ri(es, eq) (H10)

subject to:

Rj(es, eq) ≥ Rj(yj), (H11)

yj ≤ h(es, eq)θ
i. (H12)

In the above problem, the constraint (H11) ensures that the effort vector chosen by type-i mim-
ickers is not attractive to type-j agents, thereby allowing type-i mimickers to separate from their
type-j counterparts. The constraint (H12) instead ensures that the effort vector chosen by type-i
mimickers is sufficient to produce yj . Notice that since θ2 > θ1, and given our assumptions that
p1s = p2s ≡ ps and p1q > p2q , it necessarily follows that R̃2(y1) < R1(y1) and R̃1(y2) > R2(y2).
Notice also that there are two possible scenarios in which type-i agents succeed in separating
from type-j agents at income level yj: one in which the constraint (H11) is binding, and another
in which it is slack. In the former case, the agent behaving as a mimicker will use a distorted
effort mix (i.e, an effort mix that violates the condition ∂h(es,eq)/∂es

∂h(es,eq)/∂eq
= ps

piq
); in the latter case, the

effort mix chosen by the mimicker will be undistorted.
Consider now which of the deviating strategies described above are really relevant, from the

point of view of the government, when choosing the bundles (yi, ci). As we have previously
pointed out, of the three deviating strategies that are potentially available to type-2 agents,
the deviating strategy with associated cost R̂2(y1) is necessarily more attractive than the one
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with associated cost R̆2(y1). The government can then safely neglect the latter. Thus, a first
incentive-compatibility constraint that is relevant for the government is that

c2 −R2(y2) ≥ c1 −min
{
R̃2(y1), R̂2(y1)

}
, (H13)

Regarding type-1 agents we know, given the content of Lemma 1, that the only two available
strategies are the one with associated cost R̆1(y2) and the one with associated cost R̃1(y2). Thus,
it would appear that a second IC-constraint that is relevant for the government is

c1 −R1(y1) ≥ c2 −min
{
R̆1(y2), R̃1(y2)

}
. (H14)

Suppose however that the social optimum is a separating equilibrium and that the constraint
(H14) is binding with min

{
R̆1(y2), R̃1(y2)

}
= R̃1(y2). Given that y1−c1 < 0 and y2−c2 > 0,

the government could then do better by removing (y1, c1) from the menu of bundles available
on the income tax schedule and letting type-1 agents bear the cost of R̃1(y2) and pool with
type-2 agents at (y2, c2). type-1 agents would not suffer, since we have, by assumption, that
c1 − R1(y1)) = c2 − R̃1(y2). At the same time, since y1 − c1 < 0 and y2 − c2 > 0 in the
supposedly optimal separating equilibrium, the government would experience an increase in
revenue. Thus, if min

{
R̆1(y2), R̃1(y2)

}
= R̃1(y2), then the constraint (H14) is necessarily

slack. Put differently, the only relevant IC-constraint pertaining to the behavior of type-1 agents
is c1 − R1(y1) ≥ c2 − R̆1(y2). However, notice that this constraint is already embedded in the
optimization problem solved by type-2 agents. This implies that it is possible to formulate the
government’s problem in a way that does not include this IC-constraint as a separate constraint.
In order to do this, the only requirement is that one rewrites the IC-constraint pertaining to
type-2 agents as follows:

c2 −R2(y2, c2, y1, c1) ≥ c1 −min
{
R̃2(y1), R̂2(y1)

}
. (H15)

The constraint (H15) embeds implicitly also the IC-constraint pertaining to type-1 agents
(c1 − R1(y1) ≥ c2 − R̆1(y2)) because it highlights that the minimum cost sustained by type-2
agents in order to produce y2 is not only a function of y2 but also of the variables c2, y1 and
c1, which all affect the incentives for type-1 agents to behave as mimickers. This observation
allows restating the government’s optimal tax problem in a simplified way as follows:

max
{yi,ci}i=1,2

c1 −R1(y1) (H16)

subject to the government budget constraint∑
i

γi(yi − ci) = 0, (H17)
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and the downward IC-constraints

c2 −R2(y2, c2, y1, c1) ≥ c1 − R̃2(y1), (H18)

c2 −R2(y2, c2, y1, c1) ≥ c1 − R̂2(y1). (H19)

Denote respectively by µ, λ2s and λ2p the Lagrange multipliers attached to constraint (H17),
(H18) and (H19). The first order conditions with respect to, respectively y1, c1, y2 and c2, are

− ∂R1 (y1)

∂y1
−
(
λ2s + λ2p

) ∂R2 (y2, c2, y1, c1)

∂y1
+ λ2s∂R̃

2 (y1)

∂y1
+ λ2p∂R̂

2 (y1)

∂y1
+ µγ1 = 0,

(H20)

1−
(
λ2s + λ2p

)
−
(
λ2s + λ2p

) ∂R2 (y2, c2, y1, c1)

∂c1
− µγ1 = 0, (H21)

−
(
λ2s + λ2p

) ∂R2 (y2)

∂y2
+ µγ2 = 0, (H22)

λ2s + λ2p −
(
λ2s + λ2p

) ∂R2 (y2, c2, y1, c1)

∂c2
− µγ2 = 0. (H23)

Adding up (H21) and (H23), and simplifying terms, gives

1−
(
λ2s + λ2p

) ∂R2 (y2, c2, y1, c1)

∂c1
−
(
λ2s + λ2p

) ∂R2 (y2, c2, y1, c1)

∂c2
= µ. (H24)

But given that
∂R2(y2,c2,y1,c1)

∂c1
+

∂R2(y2,c2,y1,c1)
∂c2

= 0 (a joint marginal increase in c1 and c2 has
no impact on the upward IC-constraint that enters the optimization problem solved by type-2
agents, and therefore has no impact on R2 (y2, c2, y1, c1)), eq. (H24) implies that µ = 1. Taking
this into account we can rewrite (H22) and (H23) as, respectively

−
(
λ2s + λ2p

) ∂R2 (y2)

∂y2
= −γ2, (H25)

(
λ2s + λ2p

)(
1− ∂R2 (y2, c2, y1, c1)

∂c2

)
= γ2. (H26)

Dividing (H25) by (H26) and rearranging terms gives

1−
∂R2(y2)

∂y2

1− ∂R2(y2,c2,y1,c1)
∂c2

= 0. (H27)

To interpret (H27) in terms of the properties of the implementing tax function, consider the
individual optimization problem for type-2 agents under a nonlinear income tax T (y). This can
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be described as follows:

max
e2s,e

2
q

θ2h
(
e2s, e

2
q

)
− T

(
θ2h

(
e2s, e

2
q

))
− pse

2
s − p2qe

2
q (H28)

subject to the IC-constraint

U1 ≥ θ2h
(
e2s, e

2
q

)
− T

(
θ2h

(
e2s, e

2
q

))
− pse

2
s −

(
p1q − p2q

)
e2q. (H29)

Equivalently, the optimization problem of type-2 agents can be reformulated as a two-stage
problem. In the first stage, for a given amount of production y, consumption y − T (y), and
for a given level of utility U1 achieved by type-1 agents when not behaving as mimickers,
type-2 agents choose the effort mix that minimizes production costs subject to the IC-constraint
prescribing that type-1 agents have no incentive to replicate the choices of type-2 agents. This
gives a conditional indirect utility function

V 2
(
y, y − T (y) , U1

)
= y − T (y)−R

(
y, y − T (y) , U1

)
, (H30)

where R (y, y − T (y) , U1) = pse
2
s (y, y − T (y) , U1) + p2qe

2
q (y − T (y) , U1). Notice that

type-2 agents will not necessarily choose an effort mix that satisfies the efficiency condition
h1(e2s,e2q)
h2(e2s,e2q)

= ps
p2q

(where h1

(
e2s, e

2
q

)
≡ ∂h(e2s,e2q)

∂e2s
and h2

(
e2s, e

2
q

)
≡ ∂h(e2s,e2q)

∂e2q
). Given that the opti-

mization problem solved by type-2 agents is subject to an IC-constraint that is aimed at deterring

type-1 agents from replicating their effort choices, the efficiency condition
h1(e2s,e2q)
h2(e2s,e2q)

= ps
p2q

will
be satisfied only if the IC-constraint is not binding. If instead the IC-constraint is binding,

the effort mix chosen by type-2 agents will satisfy the inequality
h1(e2s,e2q)
h2(e2s,e2q)

> ps
p2q

(i.e. it will
be distorted towards eq, which reflects the circumstance that type-2 agents have a comparative
advantage in the quality dimension of effort).

At the second stage y is optimally chosen subject to the link between pre-tax earnings and
post-tax earnings determined by the tax schedule T (y). The first order condition for this prob-
lem is given by

1− T ′ (y)− ∂R (y, y − T (y) , U1)

∂y
− ∂R (y, y − T (y) , U1)

∂c
(1− T ′ (y)) = 0, (H31)

from which we can derive the following implicit characterization of the marginal income tax
rate faced by type-2 agents:

T ′ (y) =
1− ∂R(y,y−T (y),U1)

∂y
− ∂R(y,y−T (y),U1)

∂c

1− ∂R(y,y−T (y),U1)
∂c

= 1−
∂R(y,y−T (y),U1)

∂y

1− ∂R(y,y−T (y),U1)
∂c

. (H32)
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Thus, combining (H27) and (H32), we can conclude that

T ′ (y2) = 0, (H33)

namely that the constrained social optimum can be implemented letting type-2 agents face a
zero marginal income tax rate. It is important to emphasize that this result does not imply that
y2 is going to be equal to its first-best efficient level. If the upward IC-constraint that enters
the optimization problem of type-2 agents is binding at the constrained social optimum, y2 is
going to exceed its first-best efficient level. What (H27) tells us is that, even if the socially
(constrained) optimal value of y2 is above its first-best efficient level, there is no reason to use
the marginal income tax rate faced by type-2 agents to affect the incentives underlying their
decision process. The reason is that these incentives are already aligned with those underlying
the social decision problem: given that the upward IC-constraint is already part, even in the
absence of taxation, of the optimization problem solved by type- 2 agents, there is no need to
use the policy instruments to let type-2 agents internalize this constraint.

Consider now the first order conditions (H20)-(H21) and rewrite them, respectively, as

− ∂R1 (y1)

∂y1
=
(
λ2s + λ2p

) ∂R2 (y2, c2, y1, c1)

∂y1
− λ2s∂R̃

2 (y1)

∂y1
− λ2p∂R̂

2 (y1)

∂y1
− γ1, (H34)

1 =
(
λ2s + λ2p

)(
1 +

∂R2 (y2, c2, y1, c1)

∂c1

)
+ γ1. (H35)

Dividing (H34) by (H35) and multiplying by the right hand side of (H35) gives

−∂R1 (y1)

∂y1

[(
λ2s + λ2p

)(
1 +

∂R2 (y2, c2, y1, c1)

∂c1

)
+ γ1

]
=

(
λ2s + λ2p

) ∂R2 (y2, c2, y1, c1)

∂y1
− λ2s∂R̃

2 (y1)

∂y1
− λ2p∂R̂

2 (y1)

∂y1
− γ1, (H36)

or equivalently:

γ1

(
1− ∂R1 (y1)

∂y1

)
=
(
λ2s + λ2p

) ∂R1 (y1)

∂y1
− λ2s∂R̃

2 (y1)

∂y1
− λ2p∂R̂

2 (y1)

∂y1

+
(
λ2s + λ2p

)(∂R2 (y2, c2, y1, c1)

∂y1
+

∂R2 (y2, c2, y1, c1)

∂c1
∂R1 (y1)

∂y1

)
. (H37)

Notice however that eq. (H37) can be further simplified by realizing that a marginal increase in

y1, coupled with an upward adjustment in c1 by
∂R1(y1)

∂y1
, leaves unaffected the utility of type-

1 agents and therefore has no impact on R2 (y2, c2, y1, c1). Thus, (H37) can be equivalently
restated as

1− ∂R1 (y1)

∂y1
=

λ2s

γ1

(
∂R1 (y1)

∂y1
− ∂R̃2 (y1)

∂y1

)
+

λ2p

γ1

(
∂R1 (y1)

∂y1
− ∂R̂2 (y1)

∂y1

)
. (H38)
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To interpret (H38) in terms of the properties of the implementing tax function, consider the
individual optimization problem for type-1 agents under a nonlinear income tax T (y). This can
be described as follows:

max
e1s,e

1
q

θ1h
(
e1s, e

1
q

)
− T

(
θ1h

(
e1s, e

1
q

))
− pse

1
s − p1qe

1
q. (H39)

Once again, this optimization problem can be equivalently reformulated as a two-stage problem.
In the first stage, for a given amount of production y and consumption y − T (y), type-1 agents
choose the effort mix that minimizes production costs, i.e. the effort mix that satisfies the

condition
h1(e1s,e1q)
h2(e1s,e1q)

= ps
p1q

(where h1

(
e1s, e

1
q

)
≡ ∂h(e1s,e1q)

∂e1s
and h2

(
e1s, e

1
q

)
≡ ∂h(e1s,e1q)

∂e1q
). This gives

a conditional indirect utility function

V 1 (y, y − T (y)) = y − T (y)−R (y) , (H40)

where R (y) = pse
1
s (y)− p1qe

1
q (y). At the second stage y is optimally chosen subject to the link

between pre-tax earnings and post-tax earnings determined by the tax schedule T (y). The first
order condition for this problem is given by

1− T ′ (y)− ∂R (y)

∂y
= 0, (H41)

from which we can derive the following implicit characterization of the marginal income tax
rate faced by type-1 agents:

T ′ (y) = 1− ∂R (y)

∂y
. (H42)

Thus, combining (H38) and (H42), we can conclude that

T ′ (y1) = λ2s

γ1

(
∂R1 (y1)

∂y1
− ∂R̃2 (y1)

∂y1

)
+

λ2p

γ1

(
∂R1 (y1)

∂y1
− ∂R̂2 (y1)

∂y1

)
. (H43)

To shed light on the sign of T ′ (y1), consider first
∂R1(y1)

∂y1
. When the tax liability is only a

function of earned income we know that, when not behaving as mimickers, type-1 agents choose
an undistorted (efficient) effort mix. This means that

∂R1 (y1)

∂y1
=

ps

θ1h1

(
e1s, e

1
q

) =
p1q

θ1h2

(
e1s, e

1
q

) , (H44)

where subscripts on h are again used to denote partial derivatives.

Consider now
∂R̃2(y1)

∂y1
. Two possibilities should separately be considered: i) in order to earn

y1 while being remunerated according to their true productivity θ2, type-2 agents are not forced
to choose a distorted effort mix; ii) in order to earn y1 while being remunerated according to
their true productivity θ2, type-2 agents are forced to choose a distorted effort mix.
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Under case i) the effort mix chosen by a type-2 mimicker, denoted by
(
ẽ2s, ẽ

2
q

)
, satisfies the

condition

h1

(
ẽ2s, ẽ

2
q

)
/h2

(
ẽ2s, ẽ

2
q

)
= ps/p

2
q (H45)

and therefore
∂R̃2 (y1)

∂y1
=

ps

θ2h1

(
ẽ2s, ẽ

2
q

) =
p2q

θ2h2

(
ẽ2s, ẽ

2
q

) , (H46)

implying that

∂R1 (y1)

∂y1
− ∂R̃2 (y1)

∂y1
=

(
1

θ1h1

(
e1s, e

1
q

) − 1

θ2h1

(
ẽ2s, ẽ

2
q

)) ps. (H47)

Notice that the sign of (H47) is opposite to the sign of ∂(θh1)
∂θ

+ ∂(θh1)
∂pq

dpq
dθ

. Furthermore, we have
that

∂ (θh1)

∂θ
+

∂ (θh1)

∂pq

dpq
dθ

= h1 + θ

[
h11

(
des
dθ

+
des
dpq

dpq
dθ

)
+ h12

(
deq
dθ

+
deq
dpq

dpq
dθ

)]
. (H48)

For a given y, an undistorted effort mix solves the system of equations:

θh (es, eq) = y, (H49)

pqh1 (es, eq)− psh2 (es, eq) = 0. (H50)

Differentiating (H49)-(H50) with respect to es, eq and θ gives, in matrix form[
θh1 (es, eq) θh2 (es, eq)

pqh11 (es, eq)− psh12 (es, eq) pqh12 (es, eq)− psh22 (es, eq)

][
des/dθ

deq/dθ

]
=

[
−h (es, eq)

0

]
,

from which one obtains

des
dθ

= −h
pqh12 − psh22

Γ
, (H51)

deq
dθ

= h
pqh11 − psh12

Γ
, (H52)

where Γ ≡ θ {h1 [pqh12 − psh22]− h2 [pqh11 − psh12]} > 0.
Differentiating (H49)-(H50) with respect to es, eq and pq gives, in matrix form[

θh1 (es, eq) θh2 (es, eq)

pqh11 (es, eq)− psh12 (es, eq) pqh12 (es, eq)− psh22 (es, eq)

][
des/dpq

deq/dpq

]
=

[
0

−h1 (es, eq)

]
,
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from which one obtains

des
dpq

=
θh1h2

Γ
, (H53)

deq
dpq

= −θ (h1)
2

Γ
. (H54)

Plugging (H51)-(H54) into (H48) gives

∂ (θh1)

∂θ
+

∂ (θh1)

∂pq

dpq
dθ

= h1 + θ

[
h11

(
−h

pqh12 − psh22

Γ
+

θh1h2

Γ

dpq
dθ

)
+ h12

(
h
pqh11 − psh12

Γ
− θ (h1)

2

Γ

dpq
dθ

)]

= h1 +
θ

Γ

[
−pqhh11h12 + pshh11h22 + pqhh12h11 − pshh12h12 + θh1h2h11

dpq
dθ

− θ (h1)
2 h12

dpq
dθ

]
= h1 +

θ

Γ

[
(h11h22 − h12h12) psh+ (h2h11 − h1h12) θh1

dpq
dθ

]
. (H55)

Given that h11h22 − h12h12 > 0 (by concavity of the h-function) and dpq
dθ

< 0, we can conclude
that

∂ (θh1)

∂θ
+

∂ (θh1)

∂pq

dpq
dθ

> 0, (H56)

which in turn implies that 1

θ1h1(e1s,e1q)
> 1

θ2h1(ẽ2s,ẽ2q)
in (H47).

Under case ii) the effort mix
(
ẽ2s, ẽ

2
q

)
chosen by a type-2 mimicker is by assumption distorted

(i.e., it violates the condition h1

(
ẽ2s, ẽ

2
q

)
/h2

(
ẽ2s, ẽ

2
q

)
= ps/p

2
q) and can be obtained as a solution

to the following system of equations:

psẽ
2
s + p1q ẽ

2
q = pse

1
s + p1qe

1
q, (H57)

θ2h
(
ẽ2s, ẽ

2
q

)
= y1, (H58)

where pse
1
s + p1qe

1
q represents the total costs incurred by type-1 agents to earn y1 when abid-

ing by the efficiency condition h1/h2 = ps/p
1
q and being remunerated according to their true

productivity θ1. For a concave h-function there will be two pairs
(
ẽ2s, ẽ

2
q

)
that solve the sys-

tem (H57)-(H58): one pair that lies north-west of
(
e1s, e

1
q

)
and one pair that lies south-east of(

e1s, e
1
q

)
. Given that p2q < p1q and that both pairs

(
ẽ2s, ẽ

2
q

)
lie on the same iso-cost line, pertaining

to type-1 agents, with slope −ps/p
1
q , it follows that the least costly pair for a type-2 mimicker

will be the one lying north-west of
(
e1s, e

1
q

)
. Thus, ẽ2s < e1s and ẽ2q > e1q; moreover, at the relevant(

ẽ2s, ẽ
2
q

)
-pair, the effort mix will be distorted towards eq, i.e. we will have that h1/h2 > ps/p

2
q .

Taking into account that d
(
pse

1
s + p1qe

1
q

)
/dy1 = dR1(y1)/dy1 = ps/

[
θ1h1

(
e1s, e

1
q

)]
, differ-
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entiating (H57)-(H58) with respect to ẽ2s, ẽ
2
q and y1 gives, in matrix form:

[
ps p1q

θ2h1

(
ẽ2s, ẽ

2
q

)
θ2h2

(
ẽ2s, ẽ

2
q

) ] [ dẽ2s/dy
1

dẽ2q/dy
1

]
=

 ps
θ1h1(e1s,e1q)

1

 . (H59)

Defining Ψ as
Ψ ≡

[
psh2

(
ẽ2s, ẽ

2
q

)
− p1qh1

(
ẽ2s, ẽ

2
q

)]
θ2, (H60)

we have that

dẽ2s
dy1

=

ps
θ1h1(e1s,e1q)

θ2h2

(
ẽ2s, ẽ

2
q

)
− p1q

Ψ
, (H61)

dẽ2q
dy1

=
ps − ps

θ1h1(e1s,e1q)
θ2h1

(
ẽ2s, ẽ

2
q

)
Ψ

, (H62)

and therefore

∂R̃2 (y1)

∂y1
= ps

dẽ2s
dy1

+ p2q
dẽ2q
dy1

= ps

ps
θ1h1(e1s,e1q)

θ2h2

(
ẽ2s, ẽ

2
q

)
− p1q

Ψ
+ p2q

ps − ps
θ1h1(e1s,e1q)

θ2h1

(
ẽ2s, ẽ

2
q

)
Ψ

=

(
p2q − p1q

)
ps + (ps)

2 θ2h2(ẽ2s,ẽ2q)
θ1h1(e1s,e1q)

− psp
2
q

θ2h1(ẽ2s,ẽ2q)
θ1h1(e1s,e1q)

Ψ
. (H63)

Notice that, since h1

(
ẽ2s, ẽ

2
q

)
/h2

(
ẽ2s, ẽ

2
q

)
> ps/p

2
q , we have that Ψ < 0.

The difference
∂R1(y1)

∂y1
− ∂R̃2(y1)

∂y1
is then given by

∂R1 (y1)

∂y1
− ∂R̃2 (y1)

∂y1
=

ps

θ1h1

(
e1s, e

1
q

) −
(
p2q − p1q

)
ps + (ps)

2 θ2h2(ẽ2s,ẽ2q)
θ1h1(e1s,e1q)

− psp
2
q

θ2h1(ẽ2s,ẽ2q)
θ1h1(e1s,e1q)

Ψ

=

Ψ−
(
p2q − p1q

)
θ1h1

(
e1s, e

1
q

)
−
[
ps

θ2h2(ẽ2s,ẽ2q)
θ1h1(e1s,e1q)

− p2q
θ2h1(ẽ2s,ẽ2q)
θ1h1(e1s,e1q)

]
θ1h1

(
e1s, e

1
q

)
Ψθ1h1

(
e1s, e

1
q

) ps

=

[
psh2

(
ẽ2s, ẽ

2
q

)
− p1qh1

(
ẽ2s, ẽ

2
q

)]
θ2 −

(
p2q − p1q

)
θ1h1

(
e1s, e

1
q

)
Ψθ1h1

(
e1s, e

1
q

) ps

−

[
ps

θ2h2(ẽ2s,ẽ2q)
θ1h1(e1s,e1q)

− p2q
θ2h1(ẽ2s,ẽ2q)
θ1h1(e1s,e1q)

]
θ1h1

(
e1s, e

1
q

)
Ψθ1h1

(
e1s, e

1
q

) ps

=
p2qh1

(
ẽ2s, ẽ

2
q

)
θ2 − p1qh1

(
ẽ2s, ẽ

2
q

)
θ2 −

(
p2q − p1q

)
θ1h1

(
e1s, e

1
q

)
Ψθ1h1

(
e1s, e

1
q

) ps

=

[
h1

(
ẽ2s, ẽ

2
q

)
h1

(
e1s, e

1
q

) θ2
θ1

− 1

] (
p2q − p1q

) ps
Ψ
. (H64)
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Since p2q − p1q < 0 and Ψ < 0, we have that

sign

{
∂R1 (y1)

∂y1
− ∂R̃2 (y1)

∂y1

}
= sign

{
h1

(
ẽ2s, ẽ

2
q

)
h1

(
e1s, e

1
q

) θ2
θ1

− 1

}
. (H65)

Given that, as we have previously noticed, ẽ2s < e1s and ẽ2q > e1q , it follows that h1

(
ẽ2s, ẽ

2
q

)
>

h1

(
e1s, e

1
q

)
, guaranteeing that

h1(ẽ2s,ẽ2q)
h1(e1s,e1q)

θ2

θ1
> 1. Thus, as we had shown for case i), we can once

again establish that
∂R1(y1)

∂y1
− ∂R̃2(y1)

∂y1
> 0.

Now consider the term
∂R̂2(y1)

∂y1
appearing in (H43). Even for this term one should in prin-

ciple distinguish two scenarios. Under the first, in order to earn y1 while being remunerated
according to the average productivity θ, a type-2 agent is not forced to choose a distorted effort
mix. Under the second scenario, in order to earn y1 while being remunerated according to the
average productivity θ, a type-2 agent is forced to choose a distorted effort mix. However, it is
easy to show that the second scenario can be safely neglected for the purposes of our analysis.
The reason is that, if it is indeed the case that, in order to earn y1 while being remunerated
according to the average productivity θ, type-2 agents are forced to choose a distorted effort
mix, it necessarily follows that there is another, more attractive, deviating strategy available to
them. To understand this point, consider first the system of equations that determine ês and êq

under the assumption that, in order to earn y1 while being remunerated according to the average
productivity θ, a type-2 agent is forced to choose a distorted effort mix:

psês + p1q êq = pse
1
s + p1qe

1
q (H66)

θh (ês, êq) = y1, (H67)

where pse
1
s + p1qe

1
q represents the total costs incurred by type-1 agents to earn y1 when abid-

ing by the efficiency condition h1/h2 = ps/p
1
q and being remunerated according to their true

productivity θ1. For a concave h-function there will be two pairs (ês, êq) that solve the sys-
tem (H66)-(H67): one pair that lies north-west of

(
e1s, e

1
q

)
and one pair that lies south-east of(

e1s, e
1
q

)
. Given that p2q < p1q and that both pairs (ês, êq) lie on the same iso-cost line, pertaining

to type-1 agents, with slope −ps/p
1
q , it follows that the least costly pair for a type-2 mimicker

will be the one lying north-west of
(
e1s, e

1
q

)
.

Now consider again eqs. (H57)-(H58), i.e. the system of equations that determine ẽ2s and ẽ2q

under the assumption that, in order to earn y1 while being remunerated according to their true
productivity θ2, type-2 agents are forced to choose a distorted effort mix. Given that θ2 > θ,
the isoquant described by (H58) lies strictly below the isoquant described by (H67). Therefore,
since both

(
ẽ2s, ẽ

2
q

)
and (ês, êq) lie on the same iso-cost line, pertaining to type-1 agents, with

slope −ps/p
1
q , it must be that

(
ẽ2s, ẽ

2
q

)
lies north-west of (ês, êq): ẽ2s < ês, ẽ2q > êq. But then,

the fact that p2q < p1q (implying that the iso-cost lines pertaining to type-2 agents have slope
−ps/p

2
q < −ps/p

1
q) implies that, necessarily, choosing

(
ẽ2s, ẽ

2
q

)
represents for a type-2 mimicker

82



a more attractive deviating strategy than choosing (ês, êq).
As a consequence of the above discussion, a necessary condition for the deviating strategy

with associated cost R̂2 (y1) to be the least costly mimicking strategy for a type-2 agent is that,
in order to earn y1 while being remunerated according to the average productivity θ, type-2
agents are not forced to choose a distorted effort mix. Put differently, a necessary condition for

λ2p > 0 is that
∂R̂2(y1)

∂y1
= ps

θh1(ês,êq)
=

p2q
θh2(ês,êq)

. It then follows that, when λ2p > 0, it must
necessarily be that

∂R1 (y1)

∂y1
− ∂R̂2 (y1)

∂y1
=

ps

θ1h1

(
e1s, e

1
q

) − ps

θh1 (ês, êq)
=

(
1

θ1h1

(
e1s, e

1
q

) − 1

θh1 (ês, êq)

)
ps.

(H68)
Noticing that the sign of (H68) is opposite to the sign of ∂(θh1)

∂θ
+ ∂(θh1)

∂pq

dpq
dθ

, we can again rely

on (H56) to conclude that
∂R1(y1)

∂y1
− ∂R̂2(y1)

∂y1
> 0.

Going back to (H43) and summarizing our results for T ′ (y1), we have that T ′ (y1) is nec-
essarily positive (given that our max-min social welfare function implies that at least one of the
two downward IC-constraints, with associated multipliers λ2s and λ2p, will be binding). Notice
also that, if in order to earn y1 while being remunerated according to their true productivity θ2,
type-2 agents are not forced to choose a distorted effort mix, it must necessarily be that λ2s > 0

and λ2p = 0 (earning y1 while being remunerated according to the average productivity θ is
necessarily a dominated deviating strategy for type-2 agents). Thus, four different scenarios are
conceivable. Under the first, λ2s > 0, λ2p = 0 and

T ′ (y1) = λ2s

γ1

(
1

θ1h1

(
e1s, e

1
q

) − 1

θ2h1

(
ẽ2s, ẽ

2
q

)) ps > 0. (H69)

Under the second scenario we still have that λ2s > 0, λ2p = 0 but this time we have that

T ′ (y1) = λ2s

γ1

(
h1

(
ẽ2s, ẽ

2
q

)
h1

(
e1s, e

1
q

) θ2
θ1

− 1

)(
p2q − p1q

) ps
Ψ

> 0. (H70)

Under the third scenario λ2s > 0 and λ2p > 0; in this case we have that

T ′ (y1) = [λ2s

(
h1

(
ẽ2s, ẽ

2
q

)
h1

(
e1s, e

1
q

) θ2
θ1

− 1

)
p2q − p1q

Ψ
+ λ2p

(
1

θ1h1

(
e1s, e

1
q

) − 1

θh1 (ês, êq)

)]
ps
γ1

> 0.

(H71)
Under the last scenario λ2s = 0 and λ2p > 0; in this case we have that

T ′ (y1) = λ2p

γ1

(
1

θ1h1

(
e1s, e

1
q

) − 1

θh1 (ês, êq)

)
ps > 0. (H72)
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I The case when both signals are observable

We turn first to formulate the maximization program associated with a CEA given by a pooling
tax equilibrium. Without loss of generality, we will assume that ps = 1. The pooling tax
equilibrium is given by the triplet (c, es, eq) which solves the following maximization problem:

max
c,es,eq

[
c− (es + eqp

1
q)
]
, (I1)

where

c = θ̄h(es, eq) (I2)

θ̄ = γ1θ1 + γ2θ2. (I3)

That is, type-1 utility is maximized by choosing effort levels (quantity and quality) subject to the
constraints that workers are compensated based on average productivity and zero tax revenues
are being collected.

We turn next to formulate the maximization program associated with a constrained efficient
allocation given by a separating tax equilibrium. The separating tax equilibrium is given by
the two triplets (c1, e1s, e

1
q) and (c2, e2s, e

2
q), which solve the following constrained maximization

problem:

max
{(ci,eis,eiq)}i=1,2

[
c1 − (e1s + e1qp

1
q)
]

(I4)

subject to:

c1 − (e1s + e1qp
1
q) ≥ c2 − (e2s + e2qp

1
q) (I5)

c2 − (e2s + e2qp
2
q) ≥ c1 − (e1s + e1qp

2
q) (I6)

γ1θ1h(e1s, e
1
q) + γ2θ2h(e2s, e

2
q) ≥ γ1c1 + γ2c2 (I7)

In the separating regime, the utility of type 1 is maximized by offering two different bundles,
where types are compensated according to their productivity, and the redistribution is limited to
the income channel. Note that the IC-constraints actually only consider mimicking by replica-
tion, not (infeasible) off-equilibrium deviations. As p1q > p2q > 0, the single-crossing property
holds. Thus, as we are considering a Rawlsian welfare function, the only binding IC-constraint
is the one associated with the high-skilled (type-2) individual.

Next, we show that pooling is suboptimal, i.e., the socially optimal configuration will be a
separating allocation.

Proposition 7. Assuming that both signals are taxed, the pooling equilibrium is suboptimal

and thus predistribution is socially undesirable. Moreover, social welfare is strictly higher

compared to the case where only one signal is taxed.
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Proof. Let the triplet (e∗s, e
∗
q, c

∗) denote the (presumably) socially optimal pooling allocation,
and consider the following alternative separating allocation, obtained as a small perturbation
of the pooling allocation and given by the two triplets: (c1, e1s, e

1
q) and (c2, e2s, e

2
q) where e1s =

e∗s − ε, e1q = e∗q − ε, c1 = c∗ − ε(1 + p1q), where ε > 0 and small; and where e2s = e∗s + δ, e2q =

e∗q + δ, c2 = c∗ + δ(1 + p2q), with δ > 0 and small. It is easy to check that since p1q > p2q , the
perturbed allocation is incentive compatible, and that it preserves the utility level of both types
as in the pooling allocation.

Invoking a first-order approximation and following some algebraic manipulations, the total
effect of the perturbation on the aggregate output (∆Y ) is given by:

∆Y = [γ2θ2δ − γ1θ1ε][h1(e
∗
s, e

∗
q) + h2(e

∗
s, e

∗
q)] (I8)

where hj, j = 1, 2, denote the partial derivatives with respect to the first and second arguments
of h(·).

The corresponding total effect of the perturbation on the aggregate consumption (∆C) is
given by:

∆C = γ2δ(1 + p2q)− γ1ε(1 + p1q) (I9)

Thus,

∆Y −∆C = γ2δ
[
θ2[h1(e

∗
s, e

∗
q) + h2(e

∗
s, e

∗
q)]− (1 + p2q)

]
−

γ1ε
[
θ1[h1(e

∗
s, e

∗
q) + h2(e

∗
s, e

∗
q)]− (1 + p1q)

]
(I10)

Suppose now that κ ≡ γ2δ = γ1ε. It follows that:

∆Y −∆C = κ
[
(θ2 − θ1)[h1(e

∗
s, e

∗
q) + h2(e

∗
s, e

∗
q)] + (p1q − p2q)

]
> 0, (I11)

where the inequality sign follows as h1 > 0, h2 > 0, κ > 0, θ2 > θ1, and p1q > p2q .
The resulting tax surplus can be refunded as a lump sum transfer, which increases the utility

of both types relative to the pooling allocation without violating the IC-constraints. We have
thus obtained a contradiction to the presumed optimality of the pooling allocation as needed.

The fact that social welfare is strictly higher relative to the case where only one signal is
taxed follows from the following three observations: (i) the social optimum when both signals
are taxed is (always) given by a separating allocation, as just shown, (ii) the downward IC-
constraint is tightened (only replication is allowed) relative to the case where only the quantity
signal is taxed, and, (iii) the upward IC-constraint never binds (it may bind when only the
quantity signal is taxed). This concludes the proof.

As anticipated, the ability to tax both signals serves to enhance redistribution. However, the
interesting insight is that predistribution becomes suboptimal in contrast to the case where only
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the quantity signal is subject to taxation. If the government has the full capacity to tax both
signals, then the elimination of the information rent associated with the difference in produc-
tivity between types can be achieved through the separating allocation and does not require the
implementation of a pooling allocation. This is obviously a more efficient way to achieve this
goal and improve redistribution. The feasibility of predistribution depends on the ability to tax
signals, but the social desirability of its use depends critically on the limited ability to tax all
signals. Predistribution, which involves large inefficiencies, compensates for the inability to tax
the quality signal directly.

Note that unlike the standard (ABC) optimal tax formulas, which usually depend on the
skill distribution, the optimal marginal tax rates for the type-1 bundle do not depend on the
productivity difference between types, since both signals can be taxed directly to eliminate the
information rent of the type-2 bundle (which is undistorted, since the type-1 IC constraint is not
binding in the optimal solution). In particular, it can be shown (details available upon request)
that the optimal wedge on the effort mix chosen by type-1 agents is given by

h1

(
e1s, e

1
q

)
h2

(
e1s, e

1
q

) − ps
p1q

= −
γ2
(
p1q − p2q

)
γ1p1q + γ2

(
p1q − p2q

)ps < 0. (I12)

J The observable signal is eq instead of es
We divide this Appendix in two parts. In part i) we provide an intuition for the result that the
socially optimal separating tax equilibrium is not invariant to the assumption about which of the
two signals is observable by the government. In part ii) we provide an intuition for the result
that it is a priori ambiguous in which direction it is optimal to distort the effort-mix of type-1
agents under the socially optimal separating tax equilibrium.

Part i) Consider the right-hand side of the (downward) IC-constraint (22), which gives the
utility attainable by type-2 agents if they behave as mimickers. The constraint shows that,
as mimickers, type-2 agents do not need to replicate all the effort choices of type-1 agents;
they only need to replicate e1s, which is the choice of type-1 agents along the effort-dimension
that is observable by the government. The choice of type-2 mimickers along the other effort-
dimension, ê2q , is given by the value of eq that satisfies the equation θh (e1s, eq) = y1 (see (24)),
which implies that ê2q < e1q (given that the isoquant θh (e1s, eq) = y1 is strictly below the isoquant
θ1h (e1s, eq) = y1). In a setting where the signal observed by the government is eq instead of es,
type-2 mimickers would have instead to replicate e1q , while ê2s would be given by the value of es
that solves the equation θh

(
es, e

1
q

)
= y1 (implying that ê2s < e1s).

Thus, for a given quadruplet
(
y1, c1, e1s, e

1
q

)
intended for type-1 agents, the utility achiev-

able by type-2 agents will in general differ depending on whether the signal observable by
the government is es or eq. This implies the following two possibilities. i) The allocation{(

y1, c1, e1s, e
1
q

)
,
(
y2, c2, e2s, e

2
q

)}
, which is the socially optimal separating tax equilibrium in a

setting where the signal observed by the government is es, is not feasible, because it violates
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the downward IC-constraint in a setting where the observed signal is eq; ii) the allocation{(
y1, c1, e1s, e

1
q

)
,
(
y2, c2, e2s, e

2
q

)}
which represents the socially optimal separating tax equilib-

rium in a setting where the signal observed by the government is es is also feasible when the
observed signal is eq, but does not represent the socially optimal separating tax equilibrium in
the latter setting (because the downward IC-constraint is slack).

Part ii) Consider the following. For a given isoquant θ1h (es, eq) = y1, assume that type-
1 agents are induced to choose the effort mix (e1s, e

1
q) that satisfies the no-distortion condition

h1(e1s,e1q)
h2(e1s,e1q)

= ps
p1q

. In a setting where the observed signal is eq, a type-2 mimicker must choose

ê2q = e1q , while ê2s is set to satisfy the equation θh
(
es, e

1
q

)
= y1, (which implies that ê2s < e1s).

Given that p2q < p1q , but at the same time
h1(ê2s,ê2q)
h2(ê2s,ê2q)

>
h1(e1s,e1q)
h2(e1s,e1q)

, it follows that one cannot a priori

establish whether the effort-mix of type-2 mimickers is distorted towards es (i.e.,
h1(ê2s,ê2q)
h2(ê2s,ê2q)

< ps
p2q

)

or towards eq (i.e.,
h1(ê2s,ê2q)
h2(ê2s,ê2q)

> ps
p2q

).
This ambiguity is essentially the reason why it is not possible to determine once and for

all in which direction it is desirable to distort the effort mix chosen by type-1 agents. Suppose
for instance that it is indeed the case that when type-1 agents choose an undistorted effort mix,
the effort mix chosen by type-2 mimickers is distorted in the direction of eq. Then it will be
welfare enhancing to induce type-1 agents to choose an effort mix that is slightly distorted
towards eq. If the distortion is small, it will have only a second-order effect on the total costs
(pse1s + p1qe

1
q) borne by type-1 agents; but it will have a first-order negative effect on type-2

mimickers, increasing the total cost psê1s + p2qe
1
q (because the initial distortion in their effort mix

is exacerbated).
Finally, note that distorting the effort mix chosen by type-1 agents in the direction of eq is

more likely to be desirable when the difference p1q − p2q is relatively small and the ratio h1/h2

increases rapidly when lowering es (for given eq).

K The welfare gains from predistribution

This section uses the functional form in equation (25) to illustrate the welfare gains from pre-
distribution. We do this by setting up the constrained nonlinear optimization problem faced
by the government using AMPL and solving it using the state-of-the-art nonlinear optimization
package, KNITRO.

K.1 The income tax regime

Given that, as we explained in Appendix H.2, the incentives underlying the decision problem of
type-2 agents when they are not acting as mimickers are aligned with the incentives underlying
the social decision problem, the government’s problem can be equivalently reformulated as
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follows:
max

c1,c2,y1,y2,e2s

c1 −R1
(
y1
)

(K1)

subject to the budget constraint ∑
i

γi(yi − ci) = 0, (K2)

the upward IC-constraint

c1 −R1
(
y1
)
≥ c2 − pse

2
s −

(
y2

θ2

) 1
β p1q
e2s
, (K3)

and the downward IC-constraints

c2 − pse
2
s −

(
y2

θ2

) 1
β p2q
e2s

≥ c1 − R̃2(y1), (K4)

c2 − pse
2
s −

(
y2

θ2

) 1
β p2q
e2s

≥ c1 − R̂2(y1). (K5)

In the reformulated version of the government problem, we have included e2s as an artificial
control variable for the government; for this reason, we have also explicitly included the upward
IC-constraint in the government problem. Note also that we used assumption (25) to express e2q
as a function of y2 and e2s, namely e2q = (y2/θ2)

1
β /e2s.

Exploiting the assumption (25) also allows us to obtain closed-form expressions for the
government’s objective function and the right hand side of the incentive constraints (K4)–(K5).
To achieve this goal, we begin by deriving the effort costs incurred by agents who choose the
point on the income tax schedule intended for them.

Choices of a truthfully reporting agent of type 1 Consider agents of type 1 who earn the
income level y1 that the government intends for them. They will choose an efficient mix of es
and eq and solve:

min
es,eq

pses + p1qeq subject to (eseq)
β θ1 = y1. (K6)

The optimal effort choices are given by

e1s
(
y1
)
=

√(
y1

θ1

)1/β p1q
ps

and e1q
(
y1
)
=

√(
y1

θ1

)1/β
ps
p1q
. (K7)

Inserting (K7) into the cost function yields

R1(y1) = ps

√(
y1

θ1

)1/β p1q
ps

+ p1q

√(
y1

θ1

)1/β
ps
p1q

= 2

√(
y1

θ1

)1/β

psp1q. (K8)
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Optimal deviating strategies for agents of type 2 Now consider the different strategies avail-
able to type-2 agents. There are three cases to consider, depending on which of the two con-
straints (K4)–(K5) is relevant.34 These cases can be distinguished using conditions that depend
on the ratio θ2/θ1, the relative size of the two groups (γ1 and γ2), and a constant defined as:

Ω ≡
[(
p2q + p1q

)
/
(
2
√

p2qp
1
q

)]2β
. (K9)

Case 1: θ2/θ1 ≤ Ω In this case we have that min
{
R̃2(y1), R̂2(y1)

}
= R̃2(y1), and therefore

only constraint (K4) is relevant. The effort mix chosen by a type-2 mimicker under its optimal

deviation strategy is undistorted (satisfies eq/es = ps/p
2
q) and R̃2(y1) = 2

√
(y1/θ2)

1
β p2qps.

Thus, the relevant downward IC-constraint can be expressed as:

c2 − pse
2
s −

(
y2

θ2

) 1
β p2q
e2s

≥ c1 − 2

√
(y1/θ2)

1
β p2qps. (K10)

Case 2: θ/θ1 < Ω < θ2/θ1 In this case, we again have min
{
R̃2(y1), R̂2(y1)

}
= R̃2(y1).

This time, however, type-2 mimickers must choose a distorted effort mix (eq/es ̸= ps/p
2
q) in

order to achieve separation and be paid according to their true productivity. Thus, the relevant
downward IC-constraint can be formulated as

c2 − pse
2
s −

(
y2

θ2

) 1
β p2q
e2s

≥ c1 −
√

ps
p1q

(y1)
1
β

(
p1q − p2q

) (
1
θ2

) 1
β + 2p2q

√(
1
θ1

) 1
β

[√(
1
θ1

) 1
β +

√(
1
θ1

) 1
β −

(
1
θ2

) 1
β

]
√(

1
θ1

) 1
β +

√(
1
θ1

) 1
β −

(
1
θ2

) 1
β

. (K11)

Case 3: θ/θ1 ≥ Ω In this case, it is not possible to determine unambiguously whether
R̃2(y1) < R̂2(y1), R̃2(y1) > R̂2(y1), or R̃2(y1) = R̂2(y1). What can be established is that
the mimicking strategy with associated cost R̃2(y1) necessarily requires that a type 2 mimicker
chooses a distorted effort mix. Thus, there are two relevant downward IC-constraints, one given
by (K11) (the one associated with the cost R̃2(y1)), and the other (associated with the cost
R̂2(y1)) given by:

c2 − pse
2
s −

(
y2

θ2

) 1
β p2q
e2s

≥ c1 − 2

√(
y1/θ̄

)1/β
psp2q. (K12)

34In our numerical example, we will vary the parameters so that all three cases are considered. The derivations
needed to distinguish between the different cases are available on request.
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K.2 Government problem, constrained efficient allocation

We start with the separating equilibrium. In this case, denoting by an asterisk symbol the effort
choices of workers in equilibrium, and by a hat symbol the quality effort choice of a mimicking
type-2 worker, it follows:

ei∗q =

(
yi

θi

)1/β
1

eis
, (i = 1, 2) and êq =

(
y1

θ̄

)1/β
1

e1s
. (K13)

Thus, the IC-constraints (22)–(23) can be written as follows:

c1 − p1se
1
s −

(
y1

θ1

)1/β p1q
e1s

≥ c2 − p1se
2
s −

(
y2

θ2

)1/β p1q
e2s
, (K14)

c2 − p2se
2
s −

(
y2

θ2

)1/β p2q
e2s

≥ c1 − p2se
1
s −

(
y1

θ̄

)1/β p2q
e1s
. (K15)

When implementing a pooling equilibrium, IC-constraints can be neglected, and the govern-
ment chooses (y, es) to maximize

u1 = y − p1ses + p1q êq(y, es), (K16)

where êq(es, y) is the value of eq which solves the equation y = (eseq)
β θ̄.

K.3 Welfare gains

We fix type 2 productivity at θ2 = 100 and compute the social welfare level of the case with
only an income tax and compare it to the social welfare level in the CEA, while letting θ1 vary
between 1 and 100. In this way, we consider a wide range of values for the ratio θ1/θ2. We
keep the normalization p1s = p2s = p2q = 1 and set β = 0.10, γ1 = γ2 = 0.5, p1q = 1.05. We
then compute the maximum achievable welfare gain from predistribution, which is achieved
at the value of θ1 at which the difference between the social welfare level in the CEA and the
social welfare level in the income tax system is greatest. We express this maximum achievable
welfare gain in equivalent-variation terms by first computing the minimum amount of resources
that must be injected into the income-tax-only case in order to achieve the social welfare level
of the CEA (by repeatedly solving the government’s optimization program), and then dividing
this number by the total output of the income-tax-only case to obtain a measure of the welfare
gain expressed as a fraction of output.

Figure 2 shows the results. As expected, we see that the CEA (given by either an STE or a
PTE, depending on which results in the highest social welfare) always dominates the case with
only an income tax. We see that it is optimal to implement a separating allocation when θ1 takes
low and intermediate values, while the pooling allocation dominates when θ1 is relatively close
to θ2. Notice that when θ1 is very close to 100, the separating allocation dominates, although it
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is not visible in the figure. This is a knife edge case of no practical relevance. The maximum
welfare gain from the CEA relative to the pure income tax regime is obtained at θ1 = 75.1,
amounts to 12.44% of total output, and is associated with the implementation of a pooling
allocation.

Figure 2: The welfare gains from predistribution
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