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Abstract

I propose a new measure of price discovery, which I will refer to as the Independent
Component based Information Share (IC-IS). This measure constitutes a variant of the
widespread Information Share, with the main difference being it does not suffer the
same identification issues. Under the assumptions of non-normality and independence
of the shocks, a rather general theoretical framework leading to the estimation of
the IC-IS is illustrated. After testing the robustness of the proposed measures to
different non-Normal distributions in a simulated environment, an empirical exercise
encompassing different price discovery applications will follow.
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The quantification of the contribution of agents and exchanges to the price formation
process acquired increasing importance in the literature. Processes of market fragmenta-
tion, carried out together with the proliferation of algorithmic trading strategies and the
introduction of complex financial products, dramatically increased the complexity of finan-
cial markets and made the possibility to measure their informativeness a concrete challenge
in the financial environment. In this respect, the information share (IS) measure of Has-
brouck (1995) represents a milestone in the literature, being one of the most widely adopted
measures for price discovery as documented by its large adoption in recent works as well
(Chen and Tsai, 2017; Kryzanowski et al., 2017; Lin et al., 2018; Ahn et al., 2019; Baur
and Dimpfl, 2019; Brogaard et al., 2019; Hagströmer and Menkveld, 2019; Entrop et al.,
2020).

From a market microstructure modeling perspective, the IS build its fundamentals upon
the modeling of price changes through vector error correction models (VECM). The main
shortfall of the IS measure is it can be uniquely determined only when the VECM residuals
are not contemporaneously correlated. Hasbrouck’s suggested solution was, in absence of a
sound financial theory suggesting appropriate causal relationships, to identify the model by
performing the Choleski decomposition on the residuals for all the possible permutations of
the variables, which leads to upper and lower bounds for the IS. In empirical applications
upper and lower bounds are often very wide because of substantial cross-correlations in the
model residuals, raising interpretative ambiguities about the real allocation of information
between the analyzed variables.

In this paper I propose a solution by defining a variant of the widespread IS measure,
which I will refer to as the Independent Component based Information Shares (IC-IS), and
for which the identification issues related to the well-established IS are tremendously alle-
viated. The proposed measure build its fundamentals on the exploitation of non-normality
for the estimation and identification of the contemporaneous coefficient matrix through
which the shocks reveal in the market. The estimation procedure is implemented adopt-
ing the pseudo maximum likelihood (PML) approach of Gouriéroux et al. (2017). Being
the newly introduced IC-IS a precise point estimate for the contribution of each variable
to price discovery, a simple testing framework for these contributions is also illustrated
exploiting the asymptotic properties of the PML estimates.

The article is organized as follows. Section 1 briefly reviews the state of the art, recalling
the most recent updates on the topic and the need for further progresses. Section 2 set up
the general market microstructure framework on which the proposed methodology will be
based on. Section 3 introduces the new price discovery measure, with theory, estimation,
and simulations details. Section 4 shows an empirical application on IBM trading data,
implementing a variety of price discovery applications. Section 5 concludes.

1 State of the art

The present work is not the first one dealing with such a long-standing issue. Even if several
attempts have been made to solve the identification problem associated to the IS measure,
a general strategy is not available yet. The idea of estimating unique IS measures by
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exploiting the distributional properties of the variables was firstly introduced by Grammig
and Peter (2013). The authors, inspired by Rigobon (2003), introduced different volatility
regimes to identify the IS. The intuition was that the occurrence of extreme price changes
causes differences between tail and center correlations, information which can be exploited
to reach full identification of the model. Subject to the condition of observing different
volatility regimes in the market, which might not always be the case, the above mentioned
solution is effective.

A solution to the problem of obtaining unique information share measures can be found
also in Lien and Shrestha (2009) and Fernandes and Scherrer (2018). Both authors, handled
the problem by computing the IS on the spectral decomposition of either the correlation
or the covariance matrix of the innovations. Even if these approaches are effective in
getting unique measures, the problem at the origin of the impossibility to obtain a pre-
cise quantification of the IS is the lack of an identification procedure commonly accepted.
Computing the IS on the factor structure associated to the spectral decomposition of the
covariance(correlation) matrix does not provide a solution to the identification issue which
constitutes the real problem.

From a more recent data-driven perspective Hasbrouck (2021) proposed to exploit the
high-frequency at which quotes and trades occur, modeling in natural time to drastically
reduce the range obtained by permuting the variables. The idea is that sampling prices at
incredibly short time scales, even at micro or nanoseconds precision, inevitably and drasti-
cally reduce the presence of contemporaneous cross-correlations (see also Dias et al., 2021),
which consequently leads to narrower IS bounds and discards any possible interpretative
ambiguity. Still, modeling in this natural time framework requires to estimate an enor-
mous amount of coefficients. The author handled the problem adopting the heterogeneous
autoregressive approach (HAR) proposed by Corsi (2009). Nevertheless, this modeling ap-
proach raised interesting and useful comments and discussions in the literature, in some
cases controversial, directly related to the econometric model specification, treatment of
the high level of data sparsity in natural time, and subsequent identification of where price
discovery occurs (Brugler and Comerton-Forde, 2021; Buccheri et al., 2021; de Jong, 2021;
Ghysels, 2021).

The most recent contribution which tried to provide a solution to the identification
problem of the IS, by fixing the permutation indeterminacy of the variables in the model,
can be found in Zema (2022). The author proposed the adoption of a causal discovery
model, well-established in the machine learning literature, which exploits the non-Normal
distributions of the variables to recover the directed acyclic graph (DAG) structure which
is more likely to be true given the data. Given the obtained DAG, the associated causal
chain was finally used to pick the corresponding permutation of the variable and compute
the associated and unique IS measure. However, this approach works if and only if the
assumption of the existence of a recursive causal structure in the system holds true.

In this respect, the present work tries to make a step forward in the literature by
providing a rather generalized and practical framework for the estimation of unique market
information shares when the shocks are non-normally distributed. This will lead to the
introduction of the previously mentioned IC-IS, for which is not necessary to assume the
presence of either different volatility regimes or causal chains in the system. Moreover, the
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measure has been found to provide consistent results, even if in a limited sample, with no
need to increase the model and computational complexities introduced when working at
incredibly high resolutions in natural time.

While the scope of this work is to provide a solution to a long-standing issue in the
context of price discovery through the IS measures of Hasbrouck (1995), it should be noted
that a variety of other measures and approaches have been proposed in the literature for
price discovery (Harris et al., 1995; Booth et al., 1999; De Jong and Schotman, 2010;
Putniņs̆, 2013, see for instance). For the readers interested in having a general overview,
comprehensive reviews of different price discovery measures and how they relate with each
other can be found in Baillie et al. (2002), Lehmann (2002), and Yan and Zivot (2010).

2 Measuring price discovery: The general framework

The general market microstructure setting is the one of Hasbrouck (1995). Let pt ={p1t,
p2t, ... , pnt} be a vector of time series log-prices observed in n different exchanges but
pertaining the same security. Being the time-series arbitrage linked, their dynamic can
be modeled by the vector error correction model (VECM) of Engle and Granger (1987),
specified as

∆pt = αβ′pt−1 +
k∑

i=1

Φi∆pt−k + ut (1)

with β ∈ Rn×n−1 containing the n − 1 cointegrating vectors p1 − p2, p1 − p3, p1 − pn and
α ∈ Rn×n−1 being a matrix of loadings. The system in equation 1 is covariance stationary,
with Cov(ut) = Ω, and admits the common trend representation

pt = p0 +Ψ(1)
t∑

i=1

ϵi +Ψ∗(L)ut (2)

where Ψ(L) = Ψ(1) + (1 − L)Ψ∗(L) holds and the matrix Ψ(1) can be computed as (Jo-
hansen, 1991):

Ψ(1) = β⊥

[
α

′

⊥

(
I −

k∑
i=1

Φi

)
β⊥

]−1

α
′

⊥. (3)

The information share measure for market j is the share of variance of the common com-
ponent which is induced by the jth market, which means ISj = ψ2

jΩjj/ψΩψ
′
, with ψ being

the common row of Ψ(1) and ψj denoting the j-th element of ψ corresponding to market
j. In many empirical applications Ω is non-diagonal and the information shares are not
identified. A practical solution widely adopted in the literature is to consider the Choleski
decomposition Ω = FF

′
and compute

ISj =

(
[ψF ]j

)2
ψΩψ′ (4)

for each possible permutation of the variables in the model so to get upper and lower bounds
for each IS. Zema (2022) proposed to identify the IS measure by means of a causal search
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algorithm which exploits the non-Normal distribution of the variables to pick a specific
order and performing Choleski accordingly. Still, the proposed solution works only when
the assumption of a causal recursive structure among the variables is not violated. In the
next section a generalized framework to identify and test the IS measure in a non-Normal
setting will be introduced, without imposing any recursive causal structure in the system
(i.e., lower triangular matrix of the contemporaneous coefficients).

3 Non-Normal identification: The independent com-

ponent based information shares

Let consider the n-dimensional vector of price innovations ut = [u1t, u2t, ..., unt], with non-
diagonal covariance matrix Ω, to be a linear combination of n unobserved shocks ϵt =
[ϵ1t, ϵ2t, ..., ϵnt]:

ut = Cϵt (5)

Where C ∈ Rn×n is an invertible mixing matrix through which the unobserved shocks ϵt
are revealed in each market. If ϵ is normally distributed, the knowledge of u makes CC

′

identifiable but C itself cannot be identified. For any non-singular matrix Q, the matrix
C and the shocks ϵt could be replaced respectively by C∗ = CQ and ϵ∗t = Q−1ϵt leading
to an observationally equivalent model. However, when ϵt is not Normal the identification
problem almost disappears and C can be identified under few conditions. This follows from
well established results (see Comon, 1994; Eriksson and Koivunen, 2004) which lead to the
following theorem

Theorem 3.1. Let ut = Cϵt and the following conditions hold true:

i The latent shocks ϵ1, ϵ2, ..., ϵn are mutually independent: p(ϵ1, ϵ2, ..., ϵn) =
∏n

i p(ϵi).

ii The sequence ϵ1, ϵ2, ..., ϵn contains at most one Normal distribution.

then, C can be identified up to column permutation, sign and scaling.

This brings important implications in our price discovery framework. If the conditions in
Theorem 3.1 are satisfied it is possible to introduce the following new information share
measure, which I will refer to as the Independent Component based Information Shares
(IC-IS), for which the identification problem is strongly alleviated:

IC-ISj =

(
[ψC(p)]j

)2
ψ(C(p)C(p)′)ψ′ . (6)

Where C(p) is matrix C after a specific permutation of its columns has been picked, that is
C(p) = CP . The scaling indeterminacy (i.e., local lack of identification) is easily removed
by imposing C to be an orthogonal matrix and pre-whitening the price innovations ut
(Hyvärinen and Oja, 1998, 2000; Moneta et al., 2013; Gouriéroux et al., 2017). Permutation
and change in signs of the columns in C (i.e., global lack of identification) imply that, once
C is estimated, the order in which the shocks are returned and the signs of their impact
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are unknown. However, the sign indeterminacy in the columns of C is totally irrelevant in
the context of price discovery through the IS measure. Being the newly defined IC-IS still
a ratio between two quadratic forms, the sign of the columns of C does not affect the result
of the variance allocation mechanism for the efficient price process.

The only remaining cause of lack of identification is the column permutation indeter-
minacy which leads to the following proposition

Proposition 3.1. Let P be a permutation matrix such that the matrix C(p) = CP satisfies
|cii| ≥ |cij| ∀ i ̸= j and assume the conditions stated in Theorem 3.1 are met. Then, under
the following conditions:

i E(ϵt) = 0 and V (ϵt) = Id

ii C is orthogonal,

the IC-IS measures defined in equation 6 are uniquely identified and invariant to arbitrary
permutations of the variable in the model.

Proof. See Appendix A.

Proposition 3.1 ensures the uniqueness of the IC-IS measure by fixing, under a set of
conditions, a specific permutation for the columns of C. Assuming that permutation to be
true is not such a strong economic imposition: it implies each price series reacts to its own
shock more than what other price series do. Then what remains is to obtain an estimate
of C and related properties of the IC-IS measure, aspects which will be covered in the
remainder of this section1.

It is worth noticing the flexibility of such approach. When the permutation just men-
tioned is not plausible from an economic standpoint, alternative permutation strategies for
the columns of C can be implemented accordingly. This could be the case, for instance,
of price discovery trough derivative instruments (Blanco et al., 2005; Guidolin et al., 2021;
Ahn et al., 2019). Imagine we want to quantify the contribution to the price formation
process of leveraged exchange traded funds (ETFs). Leveraged ETFs are synthetic prod-
ucts which do not hold the underlying assets taken as benchmarks for their investment
strategy. Still, these products replicate the benchmark’s dynamic amplifying its return by
opening derivative positions on the underlying (Leung et al., 2017; Shum et al., 2016). The
spillover effect on these leveraged ETFs, originating from a shock on the underlying assets,
would have an higher magnitude than the shock itself. As a consequence, considering for
simplicity a system of two variables only, the permutation matrix P might be such that
C(p) = CP satisfies the condition c

(p)
11 < c

(p)
21 , where 1 = underlying and 2 = leveraged ETF.

1The interested readers might refer to Moneta et al. (2013) and Zema (2022) for more intuitive explana-
tions, and graphical representations, about the advantages of exploiting the non-normality assumption for
identification purposes. Comprehensive and rigorous explanations given also by Gouriéroux et al. (2020).
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3.1 Estimation and testing

The framework is the pseudo maximum likelihood approach of Gouriéroux et al. (2017).
Let consider a set of unknown p.d.f. gi(ϵi), where i = 1, . . . , n, and consider the pseudo
log-likelihood function

lnLT (C) =
T∑
t=1

n∑
i=1

ln gi(c
′

iYt) (7)

where c
′
i is the i-th row of the orthogonal matrix C, and c

′
iYt = ϵi. Then, the problem to

be solved is
Ĉ = argmax

C
lnLT (C)

s.t. C ′C = Id.
(8)

The problem (8) is a typical constrained optimization where the constraints consist in the
orthogonality condition for C, that is c

′
icj = 0 for i < j, and c

′
ici = 1 ∀ i. The first order

conditions (FOCs) then can be written as
T∑
t

Yt
∂ ln gi(ĉ

′
iYt)

∂ϵi
−

n∑
j=1

λ̂ij ĉj = 0, ∀ i,

ĉ
′
iĉi = 1, ∀i
ĉ
′
iĉj = 0, i < j.

(9)

The asymptotic properties of the estimates resulting from the system of equations (9)
have been proven under a set of necessary assumptions by Gouriéroux et al. (2017) and
summarized in Lemma 3.12

Lemma 3.1. Suppose the conditions in Theorem 3.1 and Proposition 3.1 hold true. Then,
under the following assumptions:

i The functions ln gi are twice continuously differentiable.

ii Uniform integrability: supC |
∑n

i ln gi(c
′
iY

′
i ) ≤ m(Y

′
i )| where E [m(Y )] <∞.

the PML estimator ĈT of the true parameter C0 is asymptotically normal with speed of
convergence 1/

√
T . That is, being the covariance matrix ΣC = 1/(E [(∇ lnL(C)|C=C0)

2]
the reciprocal of the Fisher information matrix, vec

√
T (ĈT − C0) ∼ N(0,ΣC).

The assumptions in Proposition 3.1(i)-(ii) consists of regularity conditions needed to guar-
antee the convergence of the finite-sample estimates to the asymptotic ones as T → ∞.
It should be remarked that other estimation strategies, different from the PML approach,
could be implemented to get an estimate of the mixing matrix C, computing the IC-IS con-
sequently. In principle, one could opt for a relatively simpler but less general framework as
in Lanne et al. (2017), where the non-Normal distributions are assumed to be known (i.e.,

2For the sake of clarity and readability, I refer the interested readers directly to Gouriéroux et al. (2017)
for the proof of the asymptotic properties of the PML estimator stated in the Lemma.
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Student in practice) in a standard maximum likelihood estimation (MLE) approach under
the same regularity conditions in 3.1(i)-(ii). Another very popular estimator of C, which
is worth mentioning, is the FastICA estimator (Hyvärinen and Oja, 2000) for which the
asymptotic properties have been proven by Reyhani et al. (2012) under similar regularity
conditions.

The IC-IS measures previously defined do not require the knowledge of a specific non-
Normal distribution. For this reason, the PML strategy is appealing since it allows to get
an estimate for C when the true probability density functions (p.d.f.) of the unobserved
shocks ϵt are unknown. A comparison between different estimation strategies is not the
objective of this work3. Still, when appropriate non-Normal distributions are chosen, given
the data of interest, the IC-IS should be robust to the miss-specifications in the pseudo
log-likelihood in equation (7). This will be tested both in a simulated environment and
empirically.

Given the asymptotic distribution for C, a precise point-estimate of the IC-IS can be
obtained and typical testing procedures for the contribution of each market/variable to the
variance of the common trend can be performed. This lead to the next proposition

Proposition 3.2. Let (Ĉ − C0) ∼ N(0,Σc) for T → ∞ as shown in Lemma 3.1, and
consider the contribution of market j (ψĉj) to the variance of the common trend, being ĉj
the j-th column of Ĉ and ψ the common row of Ψ(1). Then, the second central moment of
(ψĉj) is distributed according to a Gamma distribution with shape parameter λ = 1/2 and
scale parameter k = 2ψ

′
Σc

jjψ. That is, (ψĉj − ψcj)
2 ∼ Γ(1/2, 2ψ

′
Σc

jjψ).

Proof. See Appendix B.

Remark 1. The Gamma distribution simply arise as a scaled-χ2 with scaling parameter
equal to ψ

′
Σc

jjψ, that is (ψĉj−ψcj)2/ψ
′
Σc

jjψ ∼ χ2
1. Then (ψĉj)

2 ∼ σχ
′2(m), where σχ

′2(m)

is a non-central χ
′2(m) with non-centrality parameter m = ψcj multiplied by a scaling

factor σ = ψ
′
Σc

jjψ.

The above results imply that typical Wald testing procedures can be easily implemented
to test whether the contribution of each market to the price discovery process is significant
or not. These results can be summarized as follows. First, when the transitory shocks
generating market microstructure noise are not normally distributed, the historical identi-
fication problem of the IS measure is tremendously alleviated since it is not necessary to
compute all the possible permutations in the model to get an heuristic range of solutions
for the IS measure. A unique IC-IS measure, consisting in a precise point estimate for the
contribution of each market/variable to the price formation process, can be defined and
implemented. Second, this measure can be statistically tested starting from the asymptotic
distribution of the estimated matrix C of contemporaneous coefficients.

What remains is to assess the robustness of the IC-IS measure to misspecifications of
the pseudo log-likelihood used to get the PML estimator, which will be investigated in a
Monte Carlo exercise.

3An interesting evaluation study encompassing some of these different approaches can be found, among
others, in Moneta and Pallante (2022).
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3.2 Montecarlo simulation exercise

In this subsection the robustness of the IC-IS measure to different density functions gi(ϵi) is
investigated. The IC-IS measure, computed starting from the PML estimates, should not
be too sensitive to the specification of the pseudo log-likelihood function. In other words,
the allocation mechanism for the variance of the common trend should be consistent across
different suitable non-Normal density functions chosen. The results will be compared with
the standard and well established IS computed with upper and lower bounds associated to
different Choleski decompositions.

I simulate N = 500 samples each of length T = 5000. The shocks ϵt are drawn from
Student distributions with time-varying degree of freedoms vt to let the variance change
over time with a U-shape pattern (Andersen et al., 2012; Bollerslev et al., 2016; Hasbrouck,
2002)

σϵ(t) =M +De−dt +We−w(1−t) (10)

where parameters are set as M = 1, D = 0.75, W = 0.25, d = 10, and w = 10 (see
Appendix C). Time-varying variance is introduced for two main reasons. First, the U-
shape patterns allow to simulate the data more realistically. Intraday financial returns
typically display higher levels of volatility both at the beginning and at the end of the
trading day, with lower levels of volatility in the middle. Second, being the variance of a
Student equal to v/(v − 2), the time-varying variance is obtained by letting the degrees of
freedoms v(t) of the Student distributions vary accordingly. This introduce an additional
source of misspecification with respect to which the robustness of the IC-IS measure is
evaluated, being the true distributions not known to the econometrician.

After having specified the 4-dimensional orthogonal mixing matrix C to be estimated,
and a matrix S which is used to cross-correlate the shocks ϵt to get the correlated price
innovations ut = SCϵt, I simulate 4-dimensional VECMs using the price innovations ut.
For each simulated sample, the VECM is estimated equation by equation given the known
cointegration vectors. The price innovations ut are recovered as residuals and jointly pre-
whitened using a Choleski decomposition to both remove the scaling indeterminacy and
be compliant with the orthogonality conditions. Then, the PML procedure is performed
on the whitened innovations, obtaining the estimates Ĉ needed to compute the IC-IS as
illustrated in section 3.

Being Di the true Students with time-varying vi(t), I set as pseudo distributions gi =
t(vi), meaning I use Student distributions with different but fixed and predetermined de-
grees of freedom vi. Different combinations of degrees of freedom vi will be considered.
The obtained IC-IS are compared with the true IS implied by the simulated model param-
eters 4, but also with the well-known upper and lower bounds of the IS we would obtain
by performing Choleski decompositions over all the possible variable permutations in the
model. As an additional robustness check the IC-IS will be computed under an additional
source of misspecification: I do not limit the misspecification to the degrees of freedom of
the Student but I estimate the IC-IS using other non-Normal distributions as well, namely
the Laplace and the Hyperbolic secant distributions.

4Parameters are shown in Appendix C, all codes for both the empirical and simulation analysis moreover
will be made available publicly.
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Table 1: Montecarlo simulation results.

True IS = [0.0025, 0.1042, 0.5500, 0.3433]

(1) ϵ1,3 ∼ t(3), ϵ2,4 ∼ t(4)

IC-IS 0.0103 0.1194 0.5186 0.3515
All permutations [0.0011, 0.4563] [0.0000, 0.3018] [0.1242, 0.9168] [0.0151, 0.4194]

(Mean) (0.2287) (0.1509) (0.5205) (0.2173)

(2) ϵ1,3 ∼ t(5), ϵ2,4 ∼ t(6)

IC-IS 0.0084 0.1133 0.5313 0.3469
All permutations [0.0046, 0.5027] [0.0035, 0.3125] [0.1191, 0.8695] [0.0163, 0.3716]

(Mean) (0.2537) (0.158) (0.4943) (0.1940)

(3) ϵ1 ∼ t(4), ϵ2 ∼ t(5), ϵ3 ∼ t(7), ϵ4 ∼ t(12)

IC-IS 0.0072 0.1042 0.5371 0.3515
All permutations [0.0000, 0.4280] [0.0016, 0.2800] [0.1316, 0.9381] [0.0180, 0.4387]
(Mean range) (0.2140) (0.1408) (0.5349) (0.2284)

(4) ϵ1,2,3,4 ∼ Laplace(µ = 0, p = 1)

IC-IS 0.0358 0.1473 0.4624 0.3545
All permutations [0.0035, 0.5276] [0.0009, 0.2597] [0.1199, 0.8755] [0.0211, 0.3604]
(Mean range) (0.2656) (0.1304) (0.4976) (0.1908)

(5) ϵ1,2,3,4 ∼ Hyperbolic secant

IC-IS 0.0102 0.1066 0.5405 0.3427
All permutations [0.0009, 0.5170] [0.0000, 0.2557] [0.1265, 0.8969] [0.022, 0.3776]
(Mean range) (0.2590) (0.1278) (0.5117) (0.1998)

Notes: Average IC-IS obtained in each Montecarlo simulation. Five different simulation settings
from (1) to (5) have been implemented, each of them corresponding to a different specification of
the pseudo log-likelihood used to estimate the matrix C and needed to compute the IC-IS. For
each specification, the results are compared with the IS obtained performing the standard Choleski
procedure with upper and lower bounds and their average. The true IS implied by the data generating
process are shown in the first row of the table.
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Table 1 reports the average values of the IC-IS obtained from the 500 simulated sam-
ples. It is common practice in price discovery applications to get a ’mid-point’ of the IS
range obtained implementing all the possible Choleski permutations in the model. For
this reason I also display that mid-point under the field ’(Mean range)’, which simply is
the average of the upper and lower bounds. Results can be summarized as follows. In-
dependently from the non-Normal distributions chosen in the specification of the pseudo
log-likelihood, the proposed IC-IS always allocates the variances across the variables con-
sistently (i.e., the ranking in terms of informativeness is respected and the magnitude of
the different shares are close to the true ones). Figure 1 graphically shows some of the
scenarios illustrated in table 1, comparing the estimated IC-IS with the true values and
showing also the distribution of the IC-IS measure which belongs to the closed interval [0,1].

Remark 2. Given (ψĉj − ψcj)
2 ∼ Γ(1/2, 2ψ

′
Σc

jjψ), the quantity X= (ψĉj-ψcj)
2/
∑N

j=1(ψĉj
- ψcj)

2 follows a Beta distribution being a ratio of independent Gamma distributions of

the form Γj/
∑N

j=1 Γj. Then, the non-central version of this quantity is exactly the IC-IS
measure which arise as the ratio of non-central chi-square distributions, which follows the
non-central Beta distribution (see Johnson et al., 1995).

Overall, the methodology performs well and it is robust to the different sources of
misspecifications stemming both from the choice of specific non-normal distributions and
time-varying variances. Most importantly, from this simulation exercise is possible to
appreciate how the Choleski permutation procedure would yield very large ranges from
which is almost impossible to disentangle the real informativeness of the variables in the
model. Taking the mean of these ranges alleviates the problem only partially. Only two
variables out of four get shares which are comparable, to some extent, to the true ones by
taking the mid-range of the Choleski, while the other two variables are largely either over or
underestimated. After having assessed the IC-IS in a simulated environment, an empirical
application of the IC-IS on real high-frequency data will follow in the next section.

4 Empirical Application

To evaluate the goodness of the proposed measures, I perform the empirical application on
the same IBM data adopted by Hasbrouck (2021), for the day 3 October 2016, which have
been shared under the authorization of the NYSE. This allows to keep detailed analyses
already established in the literature as a benchmark to compare with, making clearer the
interpretation of the obtained results. The recent results of Hasbrouck (2021) have been
already reproduced also by Zema (2022), for this reason they will be simply reported here
with no need to recompute them.

The econometric analysis is performed on IBM’s trades and quotes recorded the day
3 October 2016, with each record reporting both participants and Securities Information
Processor (SIP) timestamps, with a sample for the day consisting of around 30.000 observa-
tions for each variable. The objective is to evaluate empirically the robustness of the IC-IS
measure under different time settings. For this reason, the IC-IS will be implemented both
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Figure 1: Comparison between the estimated IC-IS (continuous vertical lines) and true IS (dashed
lines) measures for each simulated variable, together with the underline distributions of the IC-IS
obtained from the N=500 Montecarlo samples. Each color corresponds to a different variable.
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in natural and event time, setting a relatively low level of resolution (i.e., second precision)
for the data in the natural time specification. This will allow to check the robustness of the
obtained results without increasing both the computational complexity and data sparsity
introduced when working at very high-frequencies.

The empirical analysis follows three main lines of investigation. The first study focuses
on the analysis of participants and SIP timestamps, quantifying the impact of time report-
ing differentials on the measurement of price discovery. SIP data are needed to establish
a consolidated and transparent way to disseminate market data to the public audience.
Starting from participants trades and quotes, the SIP compute and publicly disseminate
national best bids (NBBs) and offers (NBOs) at which brokers are required to trade, by the
regulation, when acting on behalf of their customers. Since SIP data are by construction
delayed signals of the participants ones, one expects to attribute leadership in the price
discovery process to the participants-based data almost entirely. To perform the analysis,
a 4-variables VECM will be estimated including both SIP national NBBs and NBOs plus
participants bid and ask prices.

The second study will quantify price discovery across different exchanges instead. Fi-
nancial instruments are often traded on multiple markets. In particular, public companies
can have their stocks traded contemporaneously both in the primary listing exchanges (i.e.,
where the initial public offering occurred) and other exchanges indeed (same examples in-
clude cross-listing, dark pools, OTC markets among others). The VECM here will include
IBM bids and offers placed on the primary listing exchange, plus best bids and offers taken
from all the other exchanges in which IBM were traded except the primary one.

Finally, the third study analyzes the contribution to price discovery of trades and quotes.
Here, the model will include trades occurred on lit and dark pools plus NBBs and NBOs
quotes from participant timestamps. Differently from lit pools characterized by stricter
regulatory requirements (such as NYSE, NASDAQ, or LSE among others), dark pools
are alternative private trading venues with no regulatory transparency requirements. The
rationale behind the existence of these dark pools is to let institutional investors trade large
volumes of securities without making their hand visible. Trading with an order book not
visible to the public avoids potential adverse price effects generated by large movements in
the market, still with detrimental effects in terms of transparency. While the analysis of
the benefits of lit versus dark pools is not the objective of the analysis from a regulatory
perspective, it is interesting to investigate how trades occurred on these two different venues
contribute to the price discovery process with respect to quotes.

The three VECM models implemented to perform the three empirical analyses men-
tioned are the following:

1. pModel1
t =

[
NBBParticipants

t ,NBOParticipants
t ,NBBSIP

t ,NBOSIP
t

]
;

2. pModel2
t =

[
NBBOtherExchanges

t ,NBOOtherExchanges
t ,BidPrimary

t ,AskPrimary
t

]
;

3. pModel3
t =

[
NBBParticipants

t ,NBOParticipants
t ,TradeLitPoolst ,TradeDarkPools

t

]
.

The results of the analysis are then displayed and commented in the next subsection.
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4.1 Results

For each model, related to a given price discovery analysis, the IC-IS measure is computed
and compared with the standard Choleski based IS in which upper and lower bounds are
computed by going through all the possible permutations of the variables in the model.
The results are shown in table 2 and can be summarized as follows.

In the participant versus SIP timestamps analysis, the IC-IS attributed importance to
the participants in the price discovery process almost entirely, as expected, with a 99 percent
share of price discovery in the event-time specification. Noticeably, the IC-IS consistently
attributed to the participants 86 percent of price discovery even in the 1-second resolution
in natural time. This is not the case for the standard approach where very large upper and
lower bounds for the IS are obtained, making impossible to disentangle the real contribution
of price discovery in natural time.

In the primary listing versus other exchanges analysis the same hold. The IC-IS at-
tribute most of the price discovery to the primary listing exchange consistently across the
two time specifications. Interestingly, in the event-time framework where the identification
problem for the IS is relaxed (cross-correlations in event-time are lower compared to the
natural-time setting) the IC-IS gives a 78 percent share to the primary exchange, thus
attributing much more importance than the one attributed by the Choleski permutation
procedure (with a range for the primary listing being 46-56 percent). In the natural time
the IC-IS still manage to give leadership in price discovery to the primary market with a
55 percent share, while the permutation procedure would still yield very large bounds.

Finally, in the quotes versus trade analysis results suggest that quote are more informa-
tive than trades. Since trades in dark pools had a totally negligible contribution in terms
of price discovery, their shares have been added to the ones obtained for the lit pools. The
IC-IS consistently attribute the majority of the information to quotes both in natural and
event-time. Still, as in the previous cases, it is possible to appreciate discrepancies across
the two different time settings in terms of shares magnitude.

The IC-IS does not solve the cross-correlation problem which arise aggregating infor-
mation inside each second interval, and the event-time analysis should be considered in this
respect more reliable being the time counter updated any time new information arrives. It’s
still valuable to notice how the measure still provide consistent and reasonable results even
with a relatively low level of resolution in natural time, something which hardly happen
with a Choleski permutation procedure. In the event-time, where the identification issue is
relaxed, results are consistent with the upper and lower bound except for the primary ver-
sus other exchange analysis, with the IC-IS giving much more importance to the primary
listing compared to the classical IS.

As illustrated in the previous section the contribution of each variable to the price
discovery process, quantified by the IC-IS measure, can be easily tested defining the Wald
statistics Ŵj,T = (ψ̂ĉj − ψcj)

2/ψ̂
′
Σ̂c

jjψ̂ whose asymptotic distribution is χ2(1). The null
hypothesis is H0 : ψcj = 0 (i.e., the contribution of the generic variable j to the price
discovery process is not significant), versus H1 : ψcj ̸= 0. The tables 3 and 4 display the
Wald tests for each variable, in each price discovery analysis, in natural and event-time
respectively.
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Table 2: IC-IS and IS comparison: Summary results.

IC-IS All permutations

participants SIP participants SIP

Min Max Min Max

1-sec 0.86 0.14 0.002 0.999 0.001 0.998
Event time 0.997 0.002 0.943 0.999 0.001 0.057

primary non-primary primary non-primary

Min Max Min Max

1-sec 0.55 0.45 0.12 0.994 0.006 0.88
Event time 0.78 0.22 0.46 0.56 0.44 0.54

Quotes Trades Quotes Trades

Min Max Min Max

1-sec 0.90 0.10 0.39 0.979 0.021 0.61
Event time 0.67 0.33 0.61 0.67 0.33 0.39

Notes: Information shares measures for each price discovery analysis, comparing the IC-IS
with the classical IS based on all permutations. In natural-time(1-sec), the most recent
price observed in a given second interval is taken. In the event time specification, the time
counter is incremented whenever there is an update to any variable in the system. Trades
include both lit and dark trades, given that the contribution of the latter is negligible.
The all permutations approach yielded results consistent with Hasbrouck (2021). For the
specification of the pseudo log-likelihood pairs of Student distributions with 3 and 4 d.o.f.
have been used, but results have been found to be consistent with the adoption of other
heavy tail distributions such as the Laplace or the Hyperbolic secant.

15



Table 3: Wald tests in natural time at 1-second resolution.

Natural time (1-sec) analysis

Model 1: Participant VS SIP

NBBpart NBOpart NBBsip NBOsip
W 78.083 52.106 21.672 9.069

p-value 9.87e-19 5.25e-13 3.23e-06 2.59e-03

Model 2: Primary listing VS Other Exchanges

NBB(others) NBO(others) Bid(primary) Ask(primary)
W 40.507 4.867 13.385 34.439

p-value 1.95e-10 2.737e-02 2.54e-04 4.39e-09

Model 3: Trades VS Quotes

Trades(Lit) Trades(Dark) NBBpart NBOpart
W 2.758 0.015 14.431 10.063

p-value 0.096 0.903 1.4e-4 1.5e-3

Notes: Wald tests for the contribution of each variable j to the price discovery
process in natural time, W is the Wald statistic. The test is performed using the
χ2(1) under the null hypothesis H0 : ψcj = 0. The contribution of both lit and
dark trades to price discovery is statistically equal to zero (α = 0.05) and only
quotes are informative at 1-second resolution.
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Table 4: Wald tests in event-time.

Event-time analysis

Model 1: Participant VS SIP

NBBpart NBOpart NBBsip NBOsip
W 83.988 50.594 0.026 0.261

p-value 4.97e-20 1.14e-12 0.871 0.609

Model 2: Primary listing VS Other Exchanges

NBB(others) NBO(others) Bid(primary) Ask(primary)
W 7.634 0.002 14.797 14.604

p-value 5e-03 0.962 1.19e-04 1.33e-04

Model 3: Trades VS Quotes

Trades(Lit) Trades(Dark) NBBpart NBOpart
W 12.753 0.009 18.34 11.105

p-value 3.55e-04 0.923 1.85e-05 8.61e-04

Notes: Wald tests for the contribution of each variable j to the price discovery
process in event-time, W is the Wald statistic. The test is performed using the
χ2(1) under the null hypothesis H0 : ψcj = 0. SIP timestamps are both statis-
tically equal to zero (α = 0.05) as well as NBO from exchanges that are not the
primary listing one. Dark trades are not informative also in event-time.
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In a natural time framework at 1-second resolution, all variables appear to be informa-
tive except trades. The contribution of both lit and dark trades is statistically equal to
zero and only quotes are informative. Lit trades, despite having an IC-IS of a 10 percent
magnitude, have high level of uncertainty at 1 second resolution indeed.

In the event-time analysis SIP timestamps completely lose statistical significance as
expected, also quotes placed outside the primary listing exchange partially lose significance
being the contribution of NBO(others) statistically equal to zero. Finally, in event-time lit
trades are informative while dark trades remain uninformative.

Overall, the empirical results obtained with the proposed IC-IS measure are consistent
across different time-specifications in choosing the leaders in the price formation process.
Results are also coherent with Hasbrouck (2021) except they attribute a greater importance
to the primary listing exchange. These results have been achieved without either increasing
the modeling and computational complexity which arise when working at incredibly short
time scales, or introducing the rather restrictive directed acyclic graph structure assumption
of Zema (2022). This leads to the conclusion.

5 Conclusion

Measuring the contributions to the price formation process through the estimation of unique
information share measures represents a long-standing issue in empirical finance and market
microstructure modeling. While several attempts have been made in the literature, a
general and relatively easy to implement procedure is not available yet. To this end, a new
measure of price discovery, namely the IC-IS, has been introduced. The measure, does not
suffer from the identification issues inherited by the historical IS measure.

Differently from both the historical IS and the DAG-IS defined by Zema (2022), for
which a recursive structure is imposed in the system through the adoption of Choleski
decompositions, the IC-IS provides a less restrictive framework in which no triangular
structure assumptions is needed to resolve the identification issues. Moreover, this new
measure neither require the adoption of different volatility regimes nor require to model in
natural-time at incredibly short time-scales. For these reasons, the IC-IS could bring new
insights about the way in which the contributions to price discovery, through the variance of
the efficient price process as historically proposed by Hasbrouck (1995), are both identified
and quantified.

Even if the IC-IS can be adopted as a standalone measure, being a testing framework
available for it, the greatest benefits might come with an adoption which is complementary
to other established measures, especially when no sound prescription in favor of a specific
approach is available. The empirical application on IBM data, performed keeping the
results of Hasbrouck (2021) as a sound benchmark in the literature, provided consistent
and reasonable results indeed, raising the possibility for future applications in the field to
benefit from the new measure.
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Appendix A. Proof of proposition 3.1

Proof. Consider the estimated orthogonal mixing matrix of the independent shocks Ĉ. As
a consequence of Theorem 3.1 columns permutations in Ĉ create a lack of identification.

Being Ĉ orthogonal, c
′
icj = 0 for i < j, and c

′
ici = 1 ∀ i. Let then P be the permutation

matrix such that Ĉp = ĈP satisfies the identification condition |cii| ≥ |cij| ∀ i ̸= j stated
in Proposition 3.1.

Consider now the estimated mixing matrix ĈP (r) with columns randomly permuted
by a random permutation matrix P (r). Then, there always exists a permutation matrix

P ∗ = P (r)
′
P such that ĈP (r)P ∗ = ĈP .

Exploiting basic properties of permutation matrices, the proof above simply shows that
independently from the arbitrary column ordering obtained after estimating the mixing
matrix C, it is always possible to find an appropriate permutation matrix, being the prod-
uct of two permutation matrices a permutation matrix itself, such that the identification
conditions in Proposition 3.1 are met.

Appendix B. Proof of proposition 3.2

The proof for the asymptotic distribution of (ψĉj − ψcj)
2, recalling cj is the j-th column

of C, is a trivial application of the delta method in the multivariate case knowing that
asymptotically vec

√
T (ĈT − C) ∼ N(0,ΣC).

Proof. Given the continuous differentiable function f(ĉj) = ψĉj, consider the first order
Taylor series expansion around the true value cj (higher order terms are exactly zero being
f(ĉj) linear)

f(ĉjT ) = f(cj) +∇f(cj)
′
(ĉjT − cj)

that is
ψĉjT = ψcj + ψ(ĉjT − cj),

then from the Slutsky’s Theorem (Gut, 2005) follows that if
√
T (ĉjT − cj)

d−→ N(0,Σcj),
being Σcj the covariance matrix of the j-th column of C, then

√
T (f(ĉj)− f(cj))

d−→ N(0,∇f(cj)
′
Σcj∇f(cj))

that is √
T (ψĉj − ψcj)

d−→ N(0, ψΣcjψ
′
).

It follows that (ψĉj−ψcj)/
√
ψΣcjψ′ ∼ N(0, 1) which implies (ψĉj−ψcj)2/ψΣcjψ

′ ∼ χ2(1).
Then, (ψĉj−ψcj)2 ∼ ψΣcjψ

′
χ2(1) → (ψĉj−ψcj)2 ∼ Γ(1/2, 2ψ

′
Σc

jjψ) being the χ2 a special
case of a Gamma with parameters λ = d.o.f./2 and k = 2, where the scale parameter k
absorbs the variance ψ

′
Σc

jjψ and d.o.f = 1.
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Appendix C: Simulation setting and parameters

Data for the illustrative exercise are simulated from the equivalent VAR representation of
the VECM as follows

Π(L)pt = ut (B.1)

where

Π(L) ≡ In −
k∑
i

ΠiL
i (B.2)

αβ′ = (
k∑
i

Πi − In) (B.3)

Φs = −(Πs+1 +Πs+2 + ...+Πk) (B.4)

for s = 1, 2, ..., k − 1, and such that |In − Π1z − Π2z
2 − ... − Πkz

k| = 0 has only one unit
root since the system is driven by only one common stochastic trend. Consequently, the
matrix β contains the known cointegration vectors and has rank equal to n-1. I simulate
the system with 1 lag only for simplicity, so parameters are

α =


0.025 0.05 0.03
0.08 0.07 0.06
0.1 0.01 0.04
0.09 0.06 0.09

 , β =

1
... −In−1

1

 ,Φ1 =


0.4 −0.9 −0.25 0.3
0.6 0.35 0.55 −0.1
0.2 −0.2 −0.7 0.4
0.1 0.35 0.6 0.1

 ,

and Φ1 = −Π2, Π1 = αβ′ + I − Π2. Finally, the matrix S used in ut = SCϵt is

S =


0.9 0 0 0
0.4 0.6 0 0
0.5 0.2 0.7 0
0.3 0.5 0.3 0.1

 .

It must be mentioned that typically the diurnal U-shape pattern is quantified in the liter-
ature by setting M ≈ 0.89. Here M = 1 simply to guarantee the existence of the variance
of the Students from which shocks are generated, being the degrees of freedom of the Stu-
dents mapped over time in a one-to-one relation with the time-varying variances. This
useful shift still preserves a U-shape patterns and does not hamper in any way the IC-IS
measure in the simulation exercise.
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