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Abstract

We develop a dynamic model where heterogeneous firms take investment decisions depend-

ing on their beliefs on future carbon prices. A policy-maker announces a forward-looking carbon

price schedule but can decide to default on its plans if perceived transition risks are high. We

show that weak policy commitment, especially when combined with ambitious mitigation an-

nouncements, can trap the economy into a vicious circle of credibility loss, carbon-intensive

investments and increasing risk perceptions, ultimately leading to a failure of the transition.

The presence of behavioural frictions and heterogeneity - both in capital investment choices and

in the assessment of the policy-maker’s credibility - has strong non-linear effects on the tran-

sition dynamics and the emergence of ‘high-carbon traps’. We identify analytical conditions

leading to a successful transition and provide a numerical application for the EU economy.
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1 Introduction

Transitioning to a low-carbon economy will require an expanding share of firms to allocate their

physical capital investments to carbon-free technologies (IPCC, 2022). In market economies, invest-

ment choices are mainly driven by profitability expectations: firms adopt low-carbon investment

strategies only if they expect them to be more convenient than carbon-intensive alternatives. In

turn, a major factor affecting their relative profitability expectations is the expected strength and

timing of future climate mitigation policies, the most prominent of which is the introduction of a

carbon price (World Bank, 2022).

What do firms expect future carbon prices to be, and how do they formulate their expectations?

It is reasonable to assume policy-makers’ stated intentions to act as a key expectation anchor. For

instance, a large number of countries in recent years have publicly pledged to reach ‘net-zero’

emissions by a certain date in the future,1 with an implicitly associated optimal carbon price

policy (Riahi et al., 2021). However, policy announcements trigger the desired behavioural changes

only if individuals believe these will be followed by actual policy actions. Recent history counts

many examples of failed policy commitments or complete policy reversals. In the climate/energy

policy sphere, examples include the rapid and sometimes retroactive withdrawal from clean energy

subsidies in Europe (Sendstad et al., 2022); the introduction and subsequent repeal of a carbon

tax in Australia (Crowley, 2017); the troubled relationship of the US with the Paris Agreement

(Urpelainen and Van de Graaf, 2018); the recalibration of French fiscal policy after the Gilet

Jaunes movement (Douenne and Fabre, 2020); and the numerous cases of fossil fuel subsidy reform

withdrawals following social unrest (McCulloch et al., 2022). Experience of policy volatility and

uncertainty can lead individuals to discount the credibility of their policy-makers’ commitments.

Failure to meet policy targets is often motivated by the perception of excessively high tran-

sition risks, i.e. socio-economic costs generated by the process of structural change away from

carbon-intensive technologies, triggered by policy implementation, technological progress or evolv-

ing preferences (Campiglio and van der Ploeg, 2022). In the context of the low-carbon transition,

certain sectors and countries are likely to lose out because of mitigation policies. More systemic

effects could potentially ensue - increase in energy prices, output loss, physical capital stranding,

unemployment, loss of competitiveness, financial instability - with dire political implications for the

implementing policy-maker (Carattini et al., 2018; Comerford and Spiganti, 2022; Konc et al., 2022;

Vona, 2018; Semieniuk et al., 2021). Governments in both high-income and emerging economies

might ultimately succumb to the discontent of (parts of) the population and return on their steps,

or just be replaced by new governments following different policy directions.

Confronted with multiple sources of uncertainty, individuals develop heterogeneous beliefs re-

1‘Net-zero’ commitments have been announced by the European Union (climate neutrality by 2050), United
States (2050), China (2060), Russia (2060) and India (2070), among others (Hale et al., 2022; Fankhauser et al.,
2022).
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garding the credibility of the policy-maker and the future schedule of carbon prices, depending on

the information they have access to, their ability to process it, their political preferences, the length

of their planning horizon, and a number of other behavioural factors. Beliefs and expectations

will also change in time with the arrival of new information, possibly amplified by herd behaviour

dynamics or, to the contrary, restrained by deep-rooted convictions creating inertia in the updat-

ing process. Indeed, in the scarce empirical evidence we have on the matter, expectations about

both future climate risks and climate policies - crucial in shaping investments towards alternative

technological options - have been shown to be volatile and heterogeneous across economic agents

(Barradale, 2014; Engle et al., 2020; Krueger et al., 2020; Noailly et al., 2021; Nordeng et al., 2021;

Stroebel and Wurgler, 2021).

In this paper, we develop a dynamic model to study how heterogeneous and dynamic beliefs

can affect the low-carbon transition, and how climate mitigation policies should be appropriately

communicated and implemented.2 In our model, firms choose the proportion of investments to

allocate between low- and high-carbon technological options depending on their expected relative

profitability, itself a function of expectations of future carbon prices. To formulate their carbon

price expectations, firms observe the forward-looking carbon price schedule announced by the policy-

maker. We assume firms to belong to one of two populations: ‘believers’ trust the climate mitigation

commitment of the policy-maker more than ‘sceptics’. Policy-makers can deviate from their carbon

price plans if they are concerned of transition socio-economic costs, which they perceive to be

larger when the economic system is more carbon-intensive and when the carbon price is higher.

In each period, firms can decide to switch their policy beliefs on the basis of the government’s

track-record in keeping its word. The share of firms believing the policy-maker’s announcements

can thus be interpreted as a measure of the policy-maker’s credibility, which is endogenous to

past policy choices. We allow firms’ choices - how to allocate investments across technologies and

whether to believe in the policy-maker announcements - to be subject to behavioural frictions. By

behavioural frictions, we mean factors such as bounded rationality, cognitive limitations, incomplete

information and any other behavioural dimension preventing firms from immediately choosing the

optimal alternative among their available options. As a result, these multiple frictions lead to

heterogeneous choices across firms. More specifically, building on the literature on behavioural

macroeconomics (see Hommes, 2021), we introduce parameters for both the investment and belief

responsiveness of firms, i.e. their ability to rapidly incorporate new available information and, if

appropriate, switch to different investment/belief strategies. We explore the full range of possible

values for these behavioural parameters, going from zero (investment choices are made at random,

as strong frictions fully debilitate firms’ decision-making process) to infinity (the ‘neoclassical limit’:

all firms immediately make the marginally most convenient choice, with no frictions).

2The code to replicate the results of our model is available at https://github.com/SMOOTH-
ERC/believe me green.
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We first derive analytical conclusions from a reduced version of the model. We show that, in

the neoclassical limit without behavioural frictions and heterogeneity, two steady states (each fully

dominated by one of the two technologies) can exist depending on i) the announced policy strin-

gency; and ii) the policy-maker commitment level. We derive the conditions for existence of these

steady states and find that the combination of ambitious mitigation plans and a weakly-committed

policy-maker can lead to the emergence of multiple equilibria (i.e. a ‘high-carbon trap’). When we

introduce behavioural frictions and the associated heterogeneity of beliefs/expectations, we identify

a set of ‘behavioural premiums’ that modify the long-run equilibria of the system. The conditions

for existence of the low-carbon steady state become harder to satisfy, with a higher minimum tax

target compared to the neoclassical limit case, and the emergence of a new minimum commit-

ment requirement. However, we also find that behavioural frictions could help the unambitious

policy-maker to achieve ‘mid-carbon’ steady states. Finally, we identify the sufficient conditions,

given commitment and belief responsiveness levels, for the tax announcement to create a unique

low-carbon steady state.

We then calibrate the full version of the model to European data and run forward-looking

numerical simulations. We distinguish two scenarios: (i) full commitment by the policy-maker, with

climate policy targets always met regardless of transition costs; and (ii) less-than-full climate policy

commitment. Under a fully-committed policy-maker and a sufficiently strong tax announcement,

the economic system is almost always eventually reaching full decarbonisation, but the speed of

the transition is significantly affected by behavioural dimensions (i.e. the investment and belief

responsiveness of the firms’ population). When allowing for the policy-maker to default on its

commitment due to potential transition costs, we find that the decarbonisation can endogenously

fail, getting trapped into a vicious circle of credibility loss, carbon-intensive investment choices and

increasing transition risk perceptions. Our results suggest that, while the weakly-committed policy-

maker could succeed in purposely overshooting its policy targets so to push the transition through

before the credibility loss takes over, exceeding in deception can backfire and eventually compromise

the transition process. Finally, we explore the role of belief polarisation, i.e. the distance between

the belief systems of believers and sceptics, finding that, under certain conditions, a highly polarised

belief system can lead to a more rapid transition than one with mildly polarised beliefs.

We build upon and contribute to three broad streams of research, which have largely proceeded

independently so far. First, we build on the literature investigating the effects of climate policy

uncertainty and the importance of ‘credible’ climate policies in achieving a rapid and orderly tran-

sition to a carbon-free economy (e.g. Barradale, 2014; Battiston et al., 2021; Berestycki et al., 2022;

Bosetti and Victor, 2011; Dunz et al., 2021; Fried et al., 2022; Fuss et al., 2008; Helm et al., 2003;

Nemet et al., 2017; van der Ploeg and Rezai, 2020). Against such background, we introduce the

innovation of heterogeneous forward-looking agents dynamically updating their beliefs about future

climate policy in response to the behaviour of the government. Second, our modelling framework,
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where policy expectations affect firms’ investment decisions and these in turn affect actual pol-

icy implementation, connects to the literature on policy time inconsistency (Kydland and Prescott,

1977; Barro and Gordon, 1983). Economic modelling in this area has usually been done in a context

of homogeneous and rational expectations, with the aim of identifying optimal policy paths. We

instead adopt an heterogeneous beliefs framework wherein agents continuously adapt their choices.

Third, we contribute to the modelling literature investigating the role of bounded rationality, such

as the finiteness of forward-looking planning horizons (Spiro, 2014; Quemin and Trotignon, 2021) or

the formation of heterogeneous and systematically biased expectations (Bordalo et al., 2022; Evans

and Honkapohja, 2012; Gigerenzer and Brighton, 2009; Hommes, 2006). In particular, we draw

upon the modelling framework with heterogeneous and dynamic expectations developed by Brock

and Hommes (1997, 1998), itself rooted in discrete choice theory (McFadden, 1974).

This family of logit models has been fruitfully applied to a number of research questions in mon-

etary economics, especially those related to the interaction between heterogeneous inflation expec-

tations and monetary policy decisions (Evans and Honkapohja, 2006; Salle et al., 2013; De Grauwe

and Macchiarelli, 2015; Hommes and Lustenhouwer, 2019; Assenza et al., 2021).3 The framework

is well suited to capture decisions taken by boundedly rational agents who strive to choose the best

option but are not always able to do so, for a number of unobservable factors. Its applications to

climate-related questions has been limited so far. Annicchiarico et al. (2022) introduce the possibil-

ity for agents to switch among forecasting rules for output and inflation and study how this affects

the impact of climate policies in a New Keynesian model. Zeppini (2015) and Mercure (2015) apply

a similar logit framework to the choice on technology adoption, while Cafferata et al. (2021) and

Dávila-Fernández and Sordi (2020) focus on switching attitudes towards green policies, and Galanis

et al. (2022b) employs it to study country participation in international environmental agreements.

Cahen-Fourot et al. (2022) study how heterogeneous transition expectations affect investment deci-

sion choices in a forward-looking probit model with capital ‘stranding’. Torren-Peraire et al. (2023)

study the interaction between decarbonisation and cultural change in an agent-based model where

the influence individuals have on each other recalls Brock and Hommes (1998) discrete choice mod-

els. We advance this nascent literature by developing a double logit framework - including both a

backward-looking choice on the perceived ex-post policy-maker’s credibility and a forward-looking

choice on the technology to invest in - to study the dynamic interactions between climate policy

strategies, firms’ behavioural response to such policy choices and the transition to a low-carbon

economy.

The remainder of the paper is structured as follows. Section 2 presents the model. Section 3

derives some analytical conclusions using a reduced version of the model. Section 4 explains our

calibration strategy for the full model. Section 5 presents and discusses our numerical results under

the assumption of a fully committed policy-maker. Section 6 extends the numerical analysis to the

3Probit models can also be fruitfully employed in this context, see Galanis et al. (2022a).

5



case of a weakly committed policy-maker. Section 7 concludes.

2 The model

We consider an economy in discrete time, moving from t0 to T . The system is populated by a

continuum of firms producing a homogeneous final good Y . We assume demand of good Y to grow

at an exogenous rate gY and supply to always be able to satisfy demand thanks to expansions of the

capital stock, which is the only factor of production.4 Two types of capital stocks exist: (i) high-

carbon (fossil-fuelled) capital Kh, producing greenhouse gas emissions; and (ii) low-carbon capital

Kl, with no production of emissions. Aggregate capital stock is the sum of the two technology-

specific stocks, i.e. K =
∑

Ki, where i ∈ {l, h} denotes the two technologies. We define κ as the

share of low-carbon capital over the aggregate capital stock, i.e. κt ≡ Kl,t∑
i Ki,t

.

The following sequence of events takes place in the model: (i) at t0, the policy-maker announces

a future schedule of target carbon prices; (ii) at each time t ≥ t0, the policy-maker implements a

carbon price, which may or may not be the one previously announced; (iii) at each time t ≥ t0,

firms evaluate the credibility of the policy announcement and take investment decisions.

2.1 Policy announcements and expectation dynamics

Climate policy in our model takes the form of a tax on high-carbon capital production. At t0,

the policy-maker announces its intention to implement a schedule of rising carbon tax rates τ̄t,

starting from an exogenous level τ0 and increasing at a constant growth rate ḡτ .
5 That is, at t0 the

policy-maker announces that, at each t ∈ [t0, T ],

τ̄t = τ0(1 + ḡτ )
t. (1)

At each time t, firms formulate expectations on future carbon prices by ‘discounting’ the policy-

maker announcement. We assume firms to be either ‘believers’ (b) or ‘sceptics’ (s), with j ∈ {b, s}
indicating the belief type. Belief-specific carbon price expectations are defined as

Ej,t(τt+r) = τ0(1 + ϵj ḡτ )
t+r, (2)

where the operator Et(·) denotes the expectations formulated at time t and ϵj ∈ [0, 1] is a parameter

indicating to what extent firms believe to the policy announcement, with ϵb > ϵs (i.e believers trust

4Alternatively, without loss of generality, one might consider a linear production function where labour and
capital are complements, and the former is abundant. We abstract from technical change.

5There is ample consensus in the climate economics literature that carbon prices should increase to stimulate
emission mitigation and that, in many cases, the optimal price trajectory is exponential (e.g. Golosov et al., 2014;
Nordhaus, 2017; Riahi et al., 2021; van den Bremer and van der Ploeg, 2021). For an alternative approach leading
to declining optimal carbon prices, see Daniel et al. (2019).
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policy announcements more than sceptics). The distance between ϵs and ϵb can be interpreted as

a proxy for opinion polarisation: when ϵs = ϵb, sceptics’ expectations are entirely aligned to those

of believers (homogeneous population); when ϵs = 0 and ϵb = 1, the system of beliefs is instead

heavily polarised.6.

Similarly to Brock and Hommes (1997, 1998), firms switch belief type depending on their relative

accuracy in predicting the policy-maker’s behaviour in the past. The larger is the difference between

forecast and actual policy, the higher is the likelihood of firms changing their belief. We define the

fitness measure of expectation rule j in period t, Uj,t, as the weighted sum of the last observed

absolute prediction error, and the previous value of the fitness measure:

Uj,t = (1− η) |Ej,t−1(τt)− τt|+ ηUj,t−1, (3)

where 0 ≤ η ≤ 1 is a memory parameter indicating to what extent firms update their evaluation of

the expectation rule with new information. If η is set to zero, firms only consider the last prediction

error, whereas if η > 0, firms also take into account past values of the fitness measure.

The switching mechanism between beliefs, based on the accuracy of predictions evaluated in

the previous period, determines the share n ∈ [0, 1] of firms adopting belief b (i.e. choosing to be

‘believers’) at time t:

nt =
exp(−βUb,t−1)∑
j exp(−βUj,t−1)

, (4)

where β ≥ 0 represents ‘belief responsiveness’, i.e. the responsiveness of firms’ beliefs to prediction

errors and, consequently, to policy choices.7. Low values of β indicate that firms’ beliefs react

mildly to prediction errors, with β = 0 indicating a population of firms evenly split between the

two beliefs, regardless of Uj . If instead β tends to infinity, all firms immediately adopt the best

performing expectation rule, even if the performance gap between the two is small (i.e. a ‘bang-bang’

solution) . In our framework, since firms’ expectations are driven by announced and implemented

policies, β also indicates the speed of firms’ response to policy choices. We interpret weak belief

responsiveness as a consequence of high behavioural frictions, which prevent firms to promptly

react to new information.8 Based on past policy choices and firms’ response to them, the share

of believers nt is determined endogenously and measures the ex-post policy-maker’s credibility,

similarly to Hommes and Lustenhouwer (2019).

6When using the expression ‘opinion polarisation’, we refer to the difference between the two system of beliefs,
regardless of the size of the two populations.

7In the framework developed by Brock and Hommes (1997, 1998), β is referred to as the ‘intensity of choice’
parameter.

8Appendix A shows that, under certain assumptions, the rule illustrated in equation (4) reflects a continuous
distribution of tax expectations. According to this interpretation, β represents the inverse of the dispersion of such
distribution.
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2.2 Investment choices and capital dynamics

At each time t, the aggregate amount of investments can be expressed as a function of the existing

capital stock, given exogenous and constant growth rate of output gY (also equivalent to growth

rate of the capital stock) and capital depreciation rate δ:

It = (gY + δ)Kt. (5)

Building on their chosen beliefs, firms decide how to allocate their investments I across the two

available technologies. They do so by evaluating the net present value of the expected production

costs Θi,t associated to each technology i ∈ {l, h} as

Ej,t(Θi,t) =


∑R

r=1 D
rθi,t+r if i = l,∑R

r=1 D
rθi,t+r [1 + Ej,t−1(τt+r)] if i = h,

(6)

where R is the length of firms’ planning horizon, D = 1
1+ρ is a discount factor with discount rate ρ,

and θ is the technology-specific pre-tax production cost, comprising both capital installation and

operational costs. Once a firm, pertaining to a specific belief population j, has assessed the cost

prospects of the two technologies, it allocates its investments to the technology it perceives to be

the most convenient.

Not all firms pertaining to the same belief population will invest in the same technology. In

line with the discrete choice theoretical framework, we assume that a number of other unobserv-

able variables affect firms’ investment decisions. In addition, similarly to the belief adoption rule

described in section 2.1, firms might be subject to imperfect information, bounded rationality and

a number of behavioural frictions.

We can thus define the j-specific share of low-carbon investment χj,t ≡ Il,j,t∑
i Ii,j,t

, as

χj,t =
exp(−γEj,t(Θl,t))∑
i exp(−γEj,t(Θi,t))

(7)

where γ indicates ‘investment responsiveness’, that is, the responsiveness of firms’ investment to

the difference in expected costs. As cost expectations depend on policy announcements and imple-

mentation, investment responsiveness, similarly to belief responsiveness β, can be interpreted as the

speed of firms’ response to the policy-maker’s behaviour. Also, it signals the degree of behavioural

frictions affecting firms’ decisions: γ = 0 implies that firms randomly choose the technology, leading

to a clean investment share of 0.5, regardless of cost differentials; if instead γ tends to infinity, all

firms choose the technology they expect to be marginally more convenient. This choice is belief-

specific; that is, given their different carbon price expectations, believers ad sceptics might have a

different perception of which technology is the best performing.
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Building on firms’ technology choice (equation 7) and on the belief switching dynamics (equation

4), we can derive the evolution of the aggregate low-carbon investment share over time, χt, as a

weighted average of χj,t

χt = ntχb,t + (1− nt)χs,t. (8)

Finally, assuming the standard capital law of motion Ki,t+1 = (1 − δ)Ki,t + Ii,t, and building

on equation (5), we can define the evolution of the low-carbon share of capital κ as a function of χ:

κt =
κt−1(1− δ) + χt(gy + δ)

1 + gy
. (9)

2.3 Transition risks and policy implementation

Once investment decisions are taken, the policy-maker decides if and to what extent the announced

policy will actually be implemented. While the policy-maker’s intentions might have been sincere

at the time of the announcement, the potential costs related to the low-carbon transition, together

with their electoral implications, might weaken its resolution and lead to a change of its mitigation

strategy. Transition costs can be of various nature, ranging from higher energy bills for households

and firms to unemployment in high-carbon industries and systemic financial disruptions.

We assume our policy-maker to formulate a ‘transition risk index’ 0 ≤ π ≤ 1, increasing in both

the announced tax target τ̄ and in the carbon intensity of the economy’s productive basis, 1−κ. The

intuition is that governments will consider their economies more exposed to the risk of transition

costs when climate objectives are more stringent (i.e. higher announced carbon prices) and when a

larger part of the productive system relies on high-carbon technologies (e.g. oil and gas extraction;

coal- and gas-fuelled electricity production; internal combustion engine vehicle production; etc.).

This is in line with the approach used by Peszko et al. (2020) to calculate the index of countries’

exposure to low-carbon transition risks.9 When no policy is scheduled (τ̄ = 0), or if the economy

is already entirely decarbonised (κ = 1), we assume perceived transition risks to be equal to zero

and to have no weight in the policy-maker’s decisions. We thus write

πt = 1− 1

1 + a(1− κt)τ̄t
, (10)

where a is a parameter capturing the vulnerability of the economy (as perceived by the policy-

maker) to transition risks. This vulnerability might depend on several factors, such as the exposure

of the banking and financial system to transition risks, the fragility of the welfare system and the

vulnerability to social turmoil (see Appendix D for a graphical representation). One can interpret

a as the inverse of the index of resilience to low-carbon transition impacts proposed by Peszko et al.

9More in detail, Peszko et al. (2020) uses four measures to compute the transition risk exposure index: carbon
intensity of manufacturing exports; committed power emissions as a proportion of current annual power generation;
fossil fuel export as a proportion of GDP; expected resource rents as a proportion of GDP.
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(2020). While our concave functional form is the one we believe to be most representative of the

current debate on transition costs, where even the announcement of relatively mild mitigation poli-

cies can lead to large protests by vocal minorities, we test for alternative formulations in Appendix

D, showing that the qualitative results of the model remain untouched.

Once transition risks have been estimated, the policy-maker weighs them against its climate

mitigation objectives in order to choose the carbon tax to actually implement. We formalise this

policy choice as a weighted average between the announced tax target τ̄t and the tax target reduced

by the transition risk index, τ̄t(1− πt):

τt = cτ̄t + (1− c)τ̄t(1− πt), (11)

where 0 ≤ c ≤ 1 is an exogenous parameter indicating the policy-maker commitment to climate

mitigation objectives. A value of c = 1 indicates a policy-maker fully committed to mitigation,

who will therefore always impose taxes as scheduled, regardless of the transition risks involved. On

the other hand, c = 0 represents the case of a policy-maker fully committed to the reduction of

transition risks and willing to reduce the tax to a floor level of τ̄t(1− πt).
10

3 Analytical results

In this section, we explore the analytical properties of the model. We study the existence of

multiple steady states and characterise their stability in order to assess the long-term behaviour of

the low-carbon transition and its dependence on policy settings and firms’ attitudes. We start by

introducing three sets of assumptions that grant us tractability without affecting the qualitative

behaviour of the system.11

Assumption 1. The announced carbon price is positive and constant, i.e. τ̄t = τ̄ ∈ R+
0 for all t.

We assume the policy-maker to just announce a carbon tax τ̄ , without including a forward-

looking increasing schedule of prices. In other words, a discrete jump from τ0 (the initial tax level)

and τ̄ is announced. The actual tax τt might however be different from what announced depending

on transition risk perceptions and the policy-maker’s commitment level, as in the full model. This

setting simplifies our analysis by making our dynamic model autonomous, i.e. independent of time.

10The model outlined here can also be formulated using Bayesian updating. In this case, one can think of firms
aiming to infer the policy-maker’s commitment level by observing the implemented tax, which is subject to noise, as
described by: τt = cτ̄ + (1− c)τ̄(1− πt) + ϵτt . Initially, firms hold heterogeneous priors, denoted by F0 = N(ĉ0, σc0 ),
where ĉ0 represents the prior mean estimate of c and σc0 the spread of the prior. These priors are then updated

based on the following process: Ft = N

 1
1

σ2
c0

+
∑t

s=1
1

σ2
cs

(
ĉ0
σ2
c0

+
∑t

s=1
ĉs
σ2
cs

)
,

(
1

1
σ2
c0

+
∑t

s=1
1

σ2
cs

)−1
, where ĉs =

τs−τ̄s(1−πs)
τsπs

and σcs =
στ
ϵ

τsπs
.

11In sections 5 and 6 we will remove these assumptions and run numerical simulations for the full calibrated model.
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At the same time, however, it allows us to obtain more general results compared to the case of a

tax target growing over time according to a specific function.

Assumption 2. We set δ = 1; η = 0; ϵb = 1; and ϵs = 0.

To simplify the derivation of analytical results, we assume full capital depreciation, i.e. δ = 1.

While this assumption affects the dynamics of the model, it does not modify steady states, as these

are independent of the rate of capital depreciation. We set the memory parameter η = 0, thereby

assuming agents to fully update the fitness measure of beliefs with the newly available information.

Finally, we set ϵs = 0 and ϵb = 1, so to characterise the two beliefs types to their extreme version

(i.e. believers entirely believe in policy announcements; sceptics don’t believe in them at all). i.e.

sceptics will expect the tax rate τ never to move from its initial level τ0, while believers will expect

it to be equal to the announced rate τ̄ .

Assumption 3. We impose τ0 < θl−θh
θh

; τ̄ > τ0
1−aτ0

; and τ0 < 1
a .

The first condition on τ0 implies that the starting tax rate does not cover for the percentage

cost difference between low- and high-carbon technologies. The second and third conditions assume

sceptics’ prediction errors to be positive, i.e. sceptics tend to underestimate actual climate policy,

independently of c and k.12

Under these assumptions, the dynamics of the low-carbon capital share is given by

κt+1 = (χb − χs)nt+1 + χs ≡ f(κt), (12)

where χb and χs are independent of time because the tax target is now a constant (see Assumption

1). The share of believers nt+1 depends on the carbon intensity of capital stock κt as follows:

nt+1 =

[
1 + exp

(
−β

{
2τ̄

[
c+

1− c

1 + a(1− κt)τ̄

]
− τ0 − τ̄

})]−1

. (13)

Since n ∈ [0, 1] and χb > χs, f(κ) is bounded between the low-carbon investment shares of the

two populations, χs and χb, both of which are bounded between 0 and 1. Combining equations 12

and 13, we can derive the following proposition:

Proposition 1. The system has either one stable steady state or an odd number of steady states;

in the latter case those with an odd index are stable and the others are unstable.

Proof. Proof of proposition 1 is provided in Appendix B.1.

We start by evaluating f(κ) in three illustrative cases wherein the model shows a unique stable

steady state. First, we assume a fully committed policy-maker (c = 1), implying that the tax

12Note that, by construction, believers’ prediction errors are either zero or negative.
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actually implemented equals the tax target in every t, independently of κ. In this case, f(κ) =

(χb − χs) [1 + exp (−β (τ̄ − τ0))]
−1

+ χs. Second, we set β = 0, that is, firms choose their belief

type at random. This leads to n = 0.5 and thus κ = 1
2 (χb + χs) at every point of time. Third,

we assume γ = 0, i.e. believers and sceptics split their investment equally between high- and low-

carbon technologies, i.e. χb = χs = 0.5 at each point of time. The resulting equilibrium level of the

low-carbon capital share is f(κ) = 0.5.

In the more general case where the policy-maker is not fully committed (c < 1) and both belief

and investment responsiveness are not equal to zero (β > 0 and γ > 0), the system may present

multiple steady states. To explore them, we consider two settings that exhaustively describe agents’

behavioural attitudes: (i) a benchmark case, where belief and investment responsiveness are infinite,

i.e. β = γ = +∞; and (ii) a scenario characterised by boundedly rational decisions, with finite β

and γ. The first scenario proxies what we shall call a neoclassical limit case – mirroring the label

used in Brock and Hommes (1997) – wherein all agents choose the superior belief type and the

cheapest technology at each time step, even if by a small margin. In contrast, the second scenario

includes behavioural frictions inversely proportional to β and γ (see more details in Appendix A).

3.1 Steady states in the neoclassical limit

In the neoclassical limit scenario (β = γ = ∞) the policy-maker can induce, via its announcements

and level of commitment, three different types of systems, characterised by: i) a unique high-

carbon steady-state; ii) a unique low-carbon steady state; or iii) multiple steady states with varying

basins of attraction. The two lines depicted in Figure 1 illustrate the thresholds on the tax target

(black line) and on the commitment level (blue line) delimiting the parameter spaces in which low-

and high-carbon steady states exist. Such conditions of existence are outlined in the following

proposition.

Proposition 2. Under the assumption that β = γ = ∞,

(i) The low-carbon steady state κ∗
l = 1 exists if

τ̄ >
θl − θh
θh

≡ τ̄∗; (14)

(ii) The high-carbon steady state κ∗
h = 0 exists if

τ̄ < τ̄∗ or c <
1

2
− µ1 ≡ c∗ (15)

where µ1 = τ̄−τ0(1+aτ̄)
2aτ̄2 > 0.

Proof. Proof of proposition 2 is provided in Appendix B.2.
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Figure 1: Existence of low- and high-carbon steady states depending on commitment c and tax
target τ̄ in the neoclassical limit case.

Condition (14) states that the low-carbon steady state exists if the announced tax target is

higher than the percentage cost difference between low- and high-carbon production costs (τ̄∗, i.e.

the black line in Figure 1). The high-carbon steady state, instead, exists if either the announced

tax target does not cover for the above mentioned cost difference τ̄∗, or if the policy-maker’s

commitment is sufficiently low (condition (15)). More specifically, the commitment threshold c∗

(blue line in Figure 1) is composed of two terms. The first one, 1/2, is the upper bound of c∗ and

corresponds to a commitment equally split between meeting policy targets and reducing transition

risks. The second term (µ1) is decreasing in both the initial tax rate τ0 and in the vulnerability

to transition risks a. An increase in these two variables thus moves up the commitment threshold,

expanding the parameter space where the high-carbon steady state exists. As evident in Figure 1,

the effect of the announced tax target τ̄ is instead non-linear, decreasing up to a value τ̄ = 2τ0
1−aτ0

and increasing afterwards.13 Since the turning point takes place for very low values of τ̄ , we can

state that, for sufficiently high and reasonable values of announced carbon prices, an increase in

ambition increases the likelihood of a high-carbon steady state emerging.

By combining the conditions outlined in Proposition 2, we obtain the different long-term states

of the model shown in Figure 1. A full decarbonisation of the economy (top-right quadrant) can

be achieved by announcing a tax able to compensate for the relative backwardness of low-carbon

technologies and by being sufficiently committed to such target. This happens because, with infinite

investment responsiveness, even the smallest expected cost difference in favour of low-carbon capital

13To have c∗ increasing in τ̄ , τ0 < 1
a
also needs to be verified, which is always the case in our numerical examples.
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leads believers to fully invest in the clean technology (χb = 1). Moreover, under infinite belief

responsiveness and a sufficiently high commitment, the policy-maker is able to convince every firm

of its credibility (n = 1). Together, investment and belief dynamics determine the uniqueness of

the low-carbon steady state.

To the contrary, an excessively low carbon tax target (τ < τ∗) generates a unique and stable

high-carbon steady state (top- and bottom-left quadrants). Intuitively, in absence of behavioural

frictions, if the carbon tax is insufficient to cover the cost advantage of the high-carbon technology,

all firms will avoid investing in the inferior technology, leaving κ∗ = 0 to be the only possible

equilibrium level of low-carbon capital.

Finally, when the announced tax target is sufficiently high but the policy-maker is weakly

committed to the decarbonisation process, the system exhibits multiple equilibria (bottom-right

quadrant). While announcing ambitious policy targets stimulates believers’ clean investment share

χb, not meeting such targets hampers the policy-maker’s credibility (decrease in n) and therefore

the decarbonisation process. This results in the emergence of multiple equilibria, generating what

we label as a high-carbon credibility trap for the economic system.

3.2 Steady states under behavioural frictions

We now move to the analysis of the scenario characterised by behavioural frictions and hence

by heterogeneity in investment decisions. In such a context, the system never achieves a full

decarbonisation (κ = 1) as, even under the most favourable conditions for low-carbon technologies,

a small but positive amount of capital investments will flow to high-carbon capital. The low-carbon

steady state under behavioural frictions can thus be defined as κ∗
l = 1−λl, where λl represents the

distance between the low-carbon steady state and full decarbonisation. Similarly, the high-carbon

steady state will not be equal to zero, as a minor proportion of firms will always invest in low-

carbon capital or believe in the policy-maker. We hence define κ∗
h = χs + λh, where λh indicates

the distance between the high-carbon steady state and sceptics’ clean investment share. Similarly to

the neoclassical limit case, we prove the following proposition illustrating the conditions of existence

of the low- and high-carbon steady states.

Proposition 3. Under the assumption that β and γ are finite,

(i) A low-carbon steady state κ∗
l = 1− λl exists if a positive real number λ̃l exists such that

τ̄ >
θl − θh
θh

+ ντl ≡ τ̄∗∗ and c >
1

2
− µ2 + νcl ≡ c∗∗ (16)

where

λ̃l = λl + εl, with εl a small positive number and λ̃l ∈ (0, 1
2 ),
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ντl = − ln
(

λ̃l

1−λ̃l

)
ρ{γθl(1 + ρ)

[
1− (1 + ρ)−(R+1)

]
}−1

νcl = − ln
(

χb−1+λ̃l

1−λ̃l−χs

)
(2τ̄β)−1

(
1 + 1

aλ̃lτ̄

)
, and

µ2 = τ̄−τ0(1+aλ̃lτ̄)

2aλ̃lτ̄2
> 0.

(ii) A high-carbon steady state κ∗
h = χs + λh exists if a positive real number λ̃h exists such that

c <
1

2
− µ3 + νch ≡ c∗∗∗ (17)

where

λ̃h = λh + εh, with εh a small positive number and λ̃h ∈ (0, χb − χs),

νch = − ln
(

χb−χs−λ̃h

λ̃h

)
(2τ̄β)−1

{
1 + 1

a[1−(χs+λ̃h)]τ̄

}
, and

µ3 = τ̄−τ0{1+a[1−(χs+λ̃h)]τ̄)}
2a[1−(χs+λ̃h)]τ̄2

> 0

Proof. Proof of proposition 3 is provided in Appendix B.3.

Differently from the neoclassical limit scenario, the existence of the low-carbon steady state is

now subject to two simultaneous conditions (16). The first condition is that the policy target needs

to be sufficiently large (i.e. τ̄ > τ̄∗∗, or to the right of the black line in Figure 2). This condition,

which guarantees that believers invest mostly in the low-carbon asset, corresponds to its analogue in

the neoclassical limit case (14), but the tax threshold under behavioural frictions (τ∗∗) now has an

additional term, ντl. The presence of this ‘behavioural premium’ means that a tax target covering

only the technology cost differential would now be insufficient to convince investors to decarbonise.

The term ντl is positive and decreasing in γ, ρ, R, θh and λl. In other words, the threshold that the

announced carbon price τ̄ needs to satisfy to allow for the existence of a low-carbon steady state

becomes lower if the investment responsiveness γ increases, moving closer to the neoclassical limit

without behavioural frictions. The threshold becomes instead harder to satisfy, the more myopic

agents are in their investment choices (short planning horizon R and high discount rate ρ); the

closer is the desired low-carbon steady state to full decarbonisation (low λl); and, similarly to the

neoclassical limit case, the lower are high-carbon technology costs (low θh).
14

The second condition for the existence of the low-carbon steady state in (16) is that the policy-

maker’s commitment needs to be sufficiently high (i.e. c > c∗∗, or above the green line in Figure 2);

this condition ensures that most firms believe in policy targets. Similarly to c∗ in (15), the threshold

c∗∗ has an upper bound at 1
2 . The second term, µ2, is equivalent to the term µ1 in (15), although

14The constraint that λ̃l < 0.5 implies that the desired long-term capital structure is one where low-carbon capital
is more abundant than high-carbon capital (i.e. κ∗ > 0.5). For values of λ̃l > 0.5, where the equilibrium clean capital
share can be below 50%, there is an additional constraint to be satisfied (τ0 < (θl − θh)/θh − ντl). Moreover, under
λ̃l > 0.5, the effect of γ, ρ, R, and θh, on the tax target threshold changes sign. The effect of λ̃l on the tax target
threshold, instead, remains negative.
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Figure 2: Existence of low- and high-carbon steady states depending on commitment c and tax
target τ̄ in the behavioural frictions case.

augmented by a term λ̃l, while the third term νcl can be interpreted as an additional ‘behavioural

premium’ on commitment levels. For sufficiently small values of λ̃l (λ̃l < 1 − χb+χs

2 ), higher

behavioural frictions (i.e. a lower β) increase the necessary commitment threshold, diminishing

the area of existence of the low-carbon steady state. Likewise, lower clean investment shares for

both sceptics (χs) and believers (χb) increase the commitment threshold c∗∗. The overall effect of

the other parameters is instead harder to establish as they might have contrasting effects on the

commitment thresholds.

The existence of the high-carbon steady state is determined only by condition (17) on commit-

ment. In particular, the policy-maker’s commitment must be below the threshold value c∗∗∗ (blue

line in Figure 2), which, again, has an upper bound at 1
2 and two other terms, µ3 and a behavioural

premium νch. For small values of λ̃h ( λ̃h < χb−χs

2 ), the threshold c∗∗∗ increases for higher values

of belief responsiveness β (i.e. lower behavioural frictions), vulnerability to transition risks a and

tax target τ̄ , expanding the area of existence of the high-carbon steady state and thus increasing

the likelihood of the high-carbon trap. The other parameters have instead ambiguous effects.

By combining the conditions presented in Proposition 3, we can characterise how the policy-

maker’s behaviour influences the long-term behaviour of the model under behavioural frictions, as

illustrated in Figure 2. Some portions of the space are qualitatively similar to the ones identified

in the neoclassical limit case (Figure 1): an ambitious and highly committed policy-maker drives

the economy towards decarbonisation (upper-right quadrant); lack of ambition and commitment

causes instead the transition to fail (lower-left quadrant); ambitious policy targets announced by

16



an uncommitted policy-maker generate multiple steady states (mid-right quadrant). However, the

presence of behavioural frictions leads to the emergence of two additional long-run behaviours. First,

a committed policy-maker consistently meeting a non-ambitious tax target entails the existence of

one or multiple mid-carbon steady states (upper-left quadrant). In this area, the equilibrium

low-carbon capital share is lower than 1 − λl but higher than χs + λh, suggesting less carbon-

intensive steady states than those in the same quadrant of Figure 1. The reason is that, although

under low tax targets high-carbon capital is cheaper than low-carbon capital, a portion of firms

decide to invest in the more expensive low-carbon technology, due to particular environment-friendly

preferences or to limited awareness of technology cost differences. Therefore, under a non ambitious

but highly committed policy-maker, the presence of behavioural frictions is actually positive for the

low-carbon transition. Second, non credible but ambitious tax announcements (bottom right corner)

have worse effects on the low-carbon transition under behavioural frictions than in the neoclassical

limit benchmark case. In fact, in the presence of behavioural frictions, the high-carbon sector

never disappears entirely. As a result, transition risks remain positive and become considerable if

policy targets are too ambitious, driving the actual policy away from targets, losing credibility and

preventing the low-carbon steady state to exist.

3.3 High-carbon trap drivers

Figure 3 offers more details on the role of key parameters (γ, β, τ̄ and c) in determining the number

and nature of the system steady states. We develop a numerical example based on our wider model

calibration (see section 4), where we assume weak mitigation commitment by the policy-maker

(i.e. c = 0.3). The blue solid lines represent stable steady states, while the black dashed lines are

unstable intermediate steady states. The vertical red lines correspond to the critical value where

the bifurcation occurs.

Figure 3a illustrates the impact of investment responsiveness γ on the position of steady states

κ∗. For low values of γ, the model exhibits a unique stable equilibrium steeply increasing in the

investment responsiveness. As γ passes the threshold indicated by the vertical red line (γ ≈ 0.12

in this numerical example), a new stable high-carbon equilibrium emerges, together with an inter-

mediate unstable one. That is, if investors are sufficiently responsive to expected cost differentials,

the system could fall into either of the two steady states, depending on the initial conditions. If

the economy is already sufficiently decarbonised (high κ), then the policy announcement can push

low-carbon investment strongly enough to ensure a full transition before the policy-maker can lose

its credibility due to weak commitment. Otherwise, despite a potential initial spur in low-carbon

investments, the loss of credibility of the policy-maker eventually leads to a failure of the decarbon-

isation process. The relative sizes of the steady states’ basins of attraction also move, in favour of

the high-carbon one, as investment responsiveness γ increases.
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(a) Investment responsiveness (γ) (b) Belief responsiveness (β)

(c) Tax target (τ̄) (d) Commitment level (c)

Figure 3: Bifurcation diagrams. Default parameter values are τ̄ = 6, c = 0.3, γ = 1 and β = 1.

Figure 3b focuses on the impact of belief responsiveness β on long-term steady states of κ∗. It

shows that for low values of belief responsiveness, the steady state is unique and decreasing in β, as

a higher belief responsiveness leads weak commitment to be more punished by firms. As β passes

a certain threshold (β ≈ 0.75), two additional steady states emerge, one of which is low-carbon

and stable. We thus confirm the importance of belief responsiveness in determining the nature of

the system steady states, already pointed out in section 3.2 where higher β moves the green line

in Figure 2 down and the blue line up, expanding the area where the low- and high-carbon steady

states coexist. Further, in the area to the right of the critical value β∗ in Figure 3b, an increase in

belief responsiveness widens the low-carbon basin of attraction, but also leads to worse high-carbon

steady states and better low-carbon steady states, i.e. low-carbon steady states closer to κ∗ = 1.

Figure 3c shows the evolution of the long-term steady states as the tax target varies. As τ̄

grows, the unique steady state κ∗ increases and the system approaches full decarbonisation. Under

the current calibration, the nonlinear behaviour of κ∗ with respect to the tax target is due to the

fulfilment of conditions (16). When τ̄ > τ̄∗∗ all believers fully invest in low-carbon capital but

the overall share of believers grows slowly, as policy intensity is not sufficient to satisfy the second

condition in (16); this corresponds to the first slowdown in Figure 3c. The second steep increase in

κ∗ is due to the fulfilment of such second condition in (16), which boosts the switch of sceptic firms

18



to believers, making κ∗ more sensitive to the policy strength. Finally, as the announced tax target

passes the critical value indicated by the vertical red line (τ̄ ≈ 4 in our numerical example), two

additional steady states emerge, one stable and one unstable. The resulting long-term low-capital

share thus fundamentally depends on the basins of attraction of such steady states.

Finally, Figure 3d illustrates the bifurcation diagram of c. When c is lower than a critical value

(c ≈ 0.36), two additional steady states emerge through a fold bifurcation. Once this threshold is

passed by c, the two lower steady states disappear and κ∗
l remains the unique fixed point. The

critical value of c fundamentally depends on the tax target level, as shown in Propositions 2 and 3.

In this respect, an additional key feature of the equilibrium conditions, both in the neoclassical limit

and behavioural frictions scenarios, is that for τ̄ → ∞, the threshold of c tends to 1
2 , meaning that for

very ambitious policy objectives, the policy-maker must strictly prefer meeting them than reducing

transition risks, in order to avoid the emergence of a bad equilibrium. Therefore, announcing a

sufficiently high tax target is needed in order to achieve the low-carbon transition, but being too

ambitious in policy objectives increases the required commitment to those objectives. In other

words, ambitious climate policies must be credible, or a high-carbon trap might emerge, potentially

leading the low-carbon capital share to lower levels than under a less ambitious tax target.

3.4 A safe threshold for the carbon price announcements

From the policy-maker’s perspective, the conditions for ensuring the existence (and uniqueness)

of the low-carbon steady state and avoiding the high-carbon trap might be hard to estimate and,

therefore, to apply. In addition, if we consider commitment as an intrinsic characteristic of the

policy-maker, the only policy choice concerns the appropriate target tax schedule, given a specific

c. Hence, we present an additional, simpler rule identifying a sufficient condition for the uniqueness

of the equilibrium.

Proposition 4. Under behavioural frictions, a unique low-carbon steady state exists if conditions

(16) are met and:

τ̄ <
1

β(1− c)
. (18)

Proof. Proof of proposition 4 is shown in Appendix B.4.

Proposition 4 identifies a sufficient condition: it states that the lower the policy-maker’s com-

mitment and the higher firms’ belief responsiveness β, the less ambitious the policy announcement

can be to guarantee the uniqueness of the low-carbon steady state.15 The tax target implied in

Proposition 4 can be interpreted as a safe threshold, below which the equilibrium is unique and able

to generate a smooth transition, provided that it satisfies condition 16. The policy-maker could

15The same condition can be interpreted as an additional minimum commitment threshold, besides c∗∗ in condition
(16). This reads, given a certain announced tax rate, as follows: c > 1− 1

τ̄β
.
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therefore consider setting a tax slightly below the safe threshold to achieve full decarbonisation

without risking the high-carbon credibility trap.

4 Calibration

We now remove the simplifying assumptions of the reduced version of the model used in section 3

and we calibrate and initialise the full model to European data. We use quarterly time steps, inves-

tigating the period 2020-2100 (with a total span of 320 time periods). Our baseline configuration

is presented in Table 1. For all parameter values we deem as uncertain, we provide a sensitivity

analysis in Appendix C.

4.1 Production

We study the transition to low-carbon capital in a growing economy where the growth rate of

output, gY , is kept constant and equal to 0.5% (quarterly), corresponding to a yearly growth rate

of approximately 2% (cfr. Lera and Sornette, 2017; van der Ploeg and Rezai, 2020; Gomme and

Rupert, 2007). The quarterly depreciation rate, δ, is calibrated at 1.77%, consistent with Gomme

et al. (2011) and corresponding to an annual depreciation of approximately 7.27% per period.

Firms’ planning horizon, R, is set to 30 years, i.e. 120 quarters, corresponding to the average

technical lifetimes of power plants (IEA, 2020c).16 The yearly discount rate is set to 7%, as in IEA

(2020c), corresponding to a quarterly discount rate ρ of approximately 1.7%. The implied quarterly

discount factor D is 0.98.

We rely on data from the power sector to define the initial share of low-carbon capital κ0, which

is set to 0.2. In particular, we consider EU solar and wind installed electrical capacity in 2020

weighted by their capacity factors, i.e. 22289.32 and 64291.05 MW, respectively (Eurostat, 2021;

IRENA, 2021).17. The total installed capacity adjusted by capacity factors includes, besides wind

and solar, also combustible fuels, hydro, nuclear and other sources (geothermal and bioenergy-fired

power), and amounts to 422142.91 MW (Eurostat, 2021).18 Hence, the share of solar and wind

capacity over total capacity approximately equals 20%. Under slightly different assumptions about

16Farfan and Breyer (2017) show that an average power plant technical lifetime of about 40 years for coal, 34
years for gas and 34 years for oil-fired power plants. Concerning renewable energy technologies, Tran and Smith
(2018) considers lifetime for solar and wind plant ranging between 15 and 35 years.

17Solar and wind installed capacity amount to 138443 and 176985 MW, respectively (Eurostat, 2021) These values
are then adjusted by solar and wind global weighted-average capacity factors, i.e. 16.1% and 36.3% (IRENA, 2021).
The wind capacity factor corresponds to the average of onshore (36%) and offshore (40%) capacity factors weighted
by their shares of EU wind installed capacity in 2020.

18The source-specific installed capacity are the following. The combustible fuels installed capacity is 388223 MW,
while their average capacity factor is estimated at 47,9%, i.e. the average between the 2021 US capacity factor of
coal (49.3%) and natural gas (45.76%), weighted by their shares (EIA, 2021). Hydro and nuclear installed capacity
equal 150771 MW and 106008 MW, with a capacity factor of 46% and 80.3%, respectively. Other sources such as
geothermal and bioenergy-fired power amount to 2171 MW with a capacity factor of 76.5%.
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Table 1: Parameters and initial values in the central scenario

Parameter Symbol Quarterly
value

Source

Production
Output growth rate gY 0.5% Gomme and Rupert (2007); Lera and Sornette (2017)

Depreciation rate δ 1.77% Gomme et al. (2011)

Initial low-carbon capital share κ0 0.2 Eurostat (2021); IRENA (2021)

Low- to high-carbon production cost θl
θh

1.36 IEA (2020c)

Beliefs and investment decisions
Investment responsiveness γ 1 Indirectly calibrated

Planning horizon R 120 Farfan and Breyer (2017); Tran and Smith (2018)

Discount rate ρ 1.7% IEA (2020c)

Initial fitness measure differential Ub,0−Us,0 0.85 Refinitiv (2019)
Initial shares of belief types nb,0; ns,0 0.3; 0.7 Refinitiv (2019)
Belief responsiveness β 1 Ellen and Zwinkels (2010)
Belief-specific discount on targets ϵb; ϵs 1; 0 Sensitivity analysis
Memory parameter η 0.5 Hommes and Lustenhouwer (2019)

Policy
Initial tax rate τ0 0.15 EEA (2021a,b)
Announced tax growth rate ḡτ 0.016 BEIS (2021); France Stratégie (2019); Riahi et al.

(2017)
Transition risk index parameter a 1 Indirectly calibrated

the energy sources to include, the years to consider and the likes, we obtain values for the initial

low-carbon capital share ranging between 0.15 and 0.21. We thus run a sensitivity analysis on κ0,

and present the results in Appendix C.

The ratio of low- to high-carbon capital costs, θl
θh
, is initialised to 1.36. This quantity proxies

the relative convenience of capital investment in high-carbon technologies (see also Acemoglu et al.,

2012; Lamperti et al., 2020; van der Ploeg and Rezai, 2020). We calibrate it by computing the

average power generation costs of high-carbon (coal and gas) and low-carbon technologies (solar

PV, wind onshore and wind offshore), excluding nuclear plants, in the EU countries at the end

of 2019. In particular, we consider the average levelised cost of electricity (LCOE) for high- and

low-carbon sources, which is, respectively, 80.6 and 109.6$/MWh,19 indicating that high-carbon

technologies exhibit a 36% advantage in cost-competitiveness.

4.2 Beliefs and investment decisions

Investment responsiveness, γ (cfr. equation 7), is indirectly calibrated to a value that allows the

low-carbon transition - as proxied by the low-carbon share of total capital stock approaching 100% -

19Data are taken from the the Levelised Cost of Electricity Calculator of the International Energy Agency (IEA,
2020b). As we are interested in LCOEs under no carbon price, we first set the carbon price to zero and then compute
the average LCOE for EU27. The geographic coverage of the calculator varies across technologies. Hence, not all
European countries are included and the ones included vary across energy sources.
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to occur by year 2100 in the benchmark scenario, i.e. with full commitment to climate objectives.20

After running a battery of experiments, we set it to 1 and provide a sensitivity analysis in Appendix

C. Our choice is motivated by the willingness to use a benchmark scenario wherein the transition

to low-carbon investments gradually happens. From a quantitative perspective, γ = 1 implies

that, given the initial backwardness of low-carbon technologies and assuming no climate policy, the

share of low-carbon investment is lower than 1%. Further, this choice allows capturing some of the

observed inertia in investment rebalancing processes (see also Waisman et al., 2012; Bilias et al.,

2010; Vogt-Schilb et al., 2012).

We initialise the difference between beliefs’ fitness measures to Ub,0 − Us,0 = 0.85, so that the

resulting initial share of believers equals n0 = 0.3, corresponding to the proportion of participants

to the 2019 Refinitiv Carbon Market Survey (Refinitiv, 2019) expressing trust in the policy-maker’s

announced strategy regarding the Market Stability Reserve of the EU Emission Trading Scheme.21

Estimates of the intensity of choice governing switching mechanisms between various expectation

rules (β, see equation 4) have been at the core of intense debate. Though high values of such

parameter predict strong responsiveness of economic agents towards more accurate expectations,

several studies conclude in favour of relatively low values or even not significantly different from zero

for β, especially when underlying data comes from financial markets (Boswijk et al., 2007; Kukacka

and Barunik, 2017; Lamperti, 2018). For example, Chiarella et al. (2014) empirically assesses

heterogeneous expectations in asset pricing, using a maximum likelihood approach on S&P500 data

to estimate a structural model and finds the estimates between 0 and 1. Further, Ellen and Zwinkels

(2010) estimates an oil price dynamics model with fundamentalist and chartist expectation rules

and reports values for the intensity of choice around 1. However, it is important to stress that the

calibration of the intensity of choice depends on the unit of measurement of the fitness measure and

therefore is model specific. Hence, we select a value of 1, which is close to the majority of estimates

available in the relevant literature (see also Hommes, 2021), but experiment with an ample range

of alternative values in sections 5 and 6.

Following Hommes and Lustenhouwer (2019), we set the memory parameter, η, to 0.5, allowing

agents to significantly update their evaluation of the heuristics when new information arises, but

also to put considerable weight on the past.

Finally, our benchmark calibration assumes believers to fully trust the policy-maker’s announce-

ment, i.e. ϵb = 1, and sceptics to discount the announced tax growth entirely, i.e. ϵs = 0 and

Es(gτ ) = 0 ∀t. This is the extreme case of sceptics expecting no carbon price increase at all. We

perform extensive analyses on this parameter, whose exact value is - a priori - extremely difficult

20For additional information about indirect calibration of simulation models please see Fagiolo et al. (2019).
21Participants were asked whether they believed the permits’ intake of the Market Stability Reserve (MSR) in

case of excess allowances to be reduced at 12%, as planned at the time, or kept at the same level, i.e. 24%. Around
69% of respondents predicted the MSR intake rate to remain stable, with only 31% expecting the announced policy
to actually be implemented. Although in this specific case the policy-maker announced a less stringent policy to be
implemented in the future, we interpret this result as a proxy for the general trust in policy-makers’ stated plans.
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to identify without dedicated experiments.

4.3 Policy

The path of the announced climate policy is fully determined by the couple {τ0, ḡτ}, which is

composed by the initial tax rate imposed upon high-carbon capital and its announced growth rate.

These two policy parameters are calibrated following distinct strategies. In order to set the

initial tax τ0, we convert the carbon price per ton of CO2 to a tax on production costs. In 2020, the

average allowance price in the EU-ETS was approximately 28$/tCO2 (EEA, 2021a), increasing to

45$/tCO2 in 2021. With respect to electricity generation, data on the EU emission intensity in 2020

range between 0.0002 tCO2/KWh (IEA, 2020a) and 0.0003 tCO2/KWh (EEA, 2021b). Hence, the

carbon cost per kWh of electricity generated from fossil fuels varies between 0.006 and 0.014 $,
corresponding to a tax between 7.4-17% on the high-carbon average LCOE (0.0806 $/KWh). We

thus set τ0 = 0.1522 and perform a sensitivity analysis across the above mentioned range of values

in Appendix C, showing that the transition dynamics are qualitatively similar across such values.

The tax growth rate ḡτ is calibrated to 0.016 (equivalent to 1.6% quarterly and 6.6% annually)

such that the projected carbon prices are aligned with those resulting from IPCC scenarios and those

employed by the British and French governments. BEIS (2021) estimates the 2050 carbon ‘value’ to

be within the range of 189-568£/tCO2e, with a central value of 378£/tCO2e, while France Stratégie

(2019) proposes a shadow price of carbon between 600 and 900e/tCO2e for 2050. Under our model

configuration, the carbon price reaches a value of approximately 314.34$/tCO2 at the middle of

the century. This calibration is also reasonably close to the average growth rate of the carbon

price from mitigation pathway scenarios to 2100 taken from ENGAGE, an inter-model comparison

project involving sixteen Integrated Assessment Models (IAMs) to design cost-effective pathways

meeting the objectives of the Paris Agreement.23 The average quarterly growth rate of the carbon

price in the scenarios compatible with a 2°C temperature constrain is approximately between 2.4%

and 2.9% (9.95 and 12.11% annually), depending on whether temperature overshoot is allowed.24

The carbon price growth rates suggested by cost-efficient IAMs can be considered unrealistically

high and driven by the implicit acceptance of a second-best scenario where the policy-maker will

not accept large immediate price jumps in the short-term Gollier (2022). In the context of our

model, what the optimal price is however less relevant, as we are primarily interested in capturing

the actual ‘political’ projections communicated to the public opinion, however they are chosen.

Vulnerability to transition risks a (see equation 10) is set to 1, such that the transition risk

22Under the assumption of 0.00025 tCO2/KWh emission intensity, this initial tax corresponds to an initial carbon
price approximately equal to 48.36$/tCO2.

23All data about the scenarios we use can be retrieved at https://data.ene.iiasa.ac.at/engage/#/workspaces;
see Riahi et al. (2021).

24More precisely, our set of scenarios assumes the pursue of Nationally Determined Contributions (NDC) until
2030, followed by the imposition a carbon budget between 1000 and 2000 GtCO2 IPCC (see also 2021).
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index (i) is a smooth, increasing and concave function of the low-carbon share of capital and the

tax target; (ii) is relatively low in 2020 (π0 ≈ 0.11); and (iii) would need a sharp increase of current

policy stringency to rise above its mid-point value (π0 ≈ 0.5 for τ̄ ≈ 1.2, equivalent to a carbon

price of 386.88 $/tCO2), proxying a European economy relatively insensible to small variations

of carbon prices (Metcalf and Stock, 2020) but potentially vulnerable to large shocks (Känzig,

2021).2526Appendix C illustrates how the low-carbon capital share and the believers’ share vary

with a.

Finally, being a particularly key but ineffable value to calibrate, we explore the implications of

the policy-maker’s commitment level c (see equation 11) across its whole range of potential values

[0, 1]. However, we set two reference values for the parameter in sections 5 and 6: c = 1 represents

our fully-committed policy-maker; c = 0.3, a value below the threshold causing the emergence of

multiple steady states (see Figure 3), represents instead our weakly-committed policy-maker.

5 The transition dynamics under full commitment

By simulating the calibrated model from 2020 to the end of the century, we first study how the

economic system behaves when the policy-maker does not deviate from its climate policy targets

(c = 1 ∀ t). The full commitment scenario, whereby announced objectives are always achieved,

provides a benchmark against which we are able to assess the transition dynamics under different

parameter configurations. In what follows, we first illustrate the evolution over time of a set of

key variables and then move to studying how the transition dynamics responds to varying degrees

of behavioural frictions and opinion polarisation. We will later explore the case of low climate

mitigation commitment in section 6.

5.1 The transition path

Figure 4 presents the evolution of a selection of key variables up to 2100. In this scenario, the carbon

tax effectively imposed grows exponentially at the announced growth rate ḡτ (Figure 4a). As the

policy-maker consistently meets its policy targets, the share of firms believing in the announced

carbon price trajectory progressively increases (Figure 4b). The speed at which the policy-maker

gains credibility depends both on the belief responsiveness, as measured by β, and on the relative

accuracy of the two expectation rules (equation 4). Since the tax target grows gradually, the

difference between believers’ and sceptics’ prediction accuracy is initially small. Therefore, at first

firms are unable to precisely assess the policy-maker’s credibility and the increase in the share of

25The impact of the parameter a on the implemented tax is given by ∂τ
∂a

=
−(1−c)τ̄2(1−κ)

(1+a(1−κ)τ̄)2
.

26As shown in Känzig (2021), the carbon policy surprise series employed is characterised by quite large variations
in the carbon price, indicating large policy shocks.
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(a) Tax announced (τ̄) (b) Share of believers (n)

(c) Low-carbon investment share (χ) (d) Low-carbon share of capital (κ)

Figure 4: Evolution over time of selected variables under full commitment (c = 1).

believers is relatively slow. The shift later accelerates when it becomes clearer that believers are

consistently correct in their expectations.

As illustrated in equation (8), the evolution of the aggregate clean investment share χ is deter-

mined by both the belief dynamics and the technology choices of each belief type χj (Figure 4c).

While sceptics expect no tax increase and thus have a constant low-carbon investment share close

to zero, believers progressively expand their clean investment share χb, which converges close to 1

around 2030. The resulting aggregate investment increases quite fast in the first decade, mainly

thanks to believers rapidly increasing their clean investment share. After 2030, the aggregate clean

investment share keeps growing, although at a lower rate, thanks to the increase of the share of

believers in the population. It eventually reaches a value close to one around 2070.

Low-carbon investment drives the dynamics of the clean capital share κ, as in equation (9).

Figure 4d illustrates its evolution through the century: with a policy-maker fully committed to

climate objectives, more than 60% of capital is low-carbon by 2060 and the transition is fully

achieved by the end of the century.27

27Note that, as detailed in section 3, under finite belief and investment intensities of choice, an infinitesimal
portion of high-carbon capital continues to exist even in the low-carbon steady state.
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(a) 2050 (b) 2080

Figure 5: Low-carbon capital share κ as a function of belief responsiveness β and investment
responsiveness γ, under c = 1, in (a) 2050 and (b) 2080. All other parameters at their default value
(Table 1).

5.2 Behavioural frictions and opinion polarisation

The transition pathway does not depend solely on policy targets and policy-maker’s behaviour, but

also on how firms respond to them. Even under full commitment, the transition might be hampered

if firms fail to internalise long-term policy objectives and/or are reluctant to modify their investment

choices. In what follows, we present snapshots of the clean capital share κ at selected years under

different behavioural configurations.

Figure 5 shows clean capital share κ in 2050 (panel (a)) and 2080 (panel (b)) for various degrees

of belief and investment responsiveness (β and γ, respectively), which, as discussed in section 2, can

be thought of as inversely related to behavioural frictions. A fully committed policy-maker is able

to eventually achieve (almost) full decarbonisation under most behavioural configurations, except

when firms are entirely unresponsive to its policy choices (i.e. if β and/or γ equal zero). Excluding

these corner parameter values, the speed of transition greatly varies depending on behavioural

frictions. A lower responsiveness of firms to prediction errors (lower β) is undesirable, as it hampers

clean investment and delays decarbonisation. The impact of investment responsiveness, instead, is

mixed. Ceteris paribus, when firms are more responsive to expected cost differences (higher γ), the

biases of both believers and sceptics (towards clean and dirty choices, respectively) are amplified,

leading them to allocate a higher investment share to their preferred technology. As a result, the

impact of investment responsiveness on the transition pace varies with belief dynamics. In the first

decades, an increase in γ first accelerates the transition, because of the positive impact on believers’

clean investment, but later, as γ crosses a certain threshold, it disproportionately lowers sceptics’
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(a) 2050 (b) 2080

Figure 6: Low-carbon capital share κ as a function of sceptics’ discounting of the tax target growth
rate ϵs and belief responsiveness β, under c = 1, in (a) 2050 and (b) 2080. All other parameters at
their default value (Table 1).

clean investment, hampering the transition. Over time, however, for sufficiently high values of belief

responsiveness, sceptics rapidly disappear from the population and higher investment responsiveness

does not slow down the transition.

Figure 6 explores how the clean capital share varies with belief responsiveness and opinion

polarisation. As mentioned in section 2.1, assuming a fixed ϵb, we can use the degree of trust of

sceptics in the announced tax target growth rate, ϵs ∈ [0, 1], as our proxy for opinion polarisation.

Through the entire transition, the absence of opinion polarisation (ϵs = ϵb = 1) leads to the

highest low-carbon capital shares – above 87% in 2050 and close to 100% in 2080, regardless of β.

When all firms believe in policy announcements, the transition dynamics depends solely on the tax

schedule targeted by the policy-maker and belief responsiveness has no impact whatsoever. For low

values of β, the low-carbon share of capital increases monotonously in ϵs: as firms are split almost

equally between the two expectation rules, the more these converge towards believing the policy

announcements, the higher the low-carbon share of capital reached in a certain period.

For higher values of β, opinion polarisation has a slightly non-monotonous impact on the tran-

sition dynamics. In particular, as belief responsiveness crosses a certain threshold, a very high

polarisation between beliefs (i.e. ϵs = 0), leads to a faster low-carbon transition than intermediate

values of ϵs. The reason lies in the belief switching mechanism. When sceptics expect the tax to be

constant over time (ϵs = 0) but the policy-maker is fully committed to its policy targets, sceptics’

predictions end up being inaccurate soon. Thus, their prediction errors lead firms to switch to the

believer expectation rule. Also, the higher β the sooner this belief switch occurs, as firms react

rapidly to prediction errors. On the other hand, sceptics mildly discounting the tax target growth
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(a) 2050 (b) 2080

Figure 7: Low-carbon capital share κ as a function of sceptics’ discounting of the tax target growth
rate ϵs and investment responsiveness γ, under c = 1, in (a) 2050 and (b) 2080. All other parameters
at their default value (Table 1).

rate (values of ϵs closer to 1), lead sceptics’ prediction errors to be not large enough to induce a

rapid switch in beliefs, especially in the first part of the simulation, when the tax target is still

low. Over time, this non-monotonicity is reduced because, eventually, sceptics disappear from the

population of firms, leading to high values of clean capital share κ.

Finally, keeping belief responsiveness fixed at its default calibration (β = 1), we confirm the

non-monotonous impact of investment responsiveness and opinion polarisation on the pace of decar-

bonisation (Figure 7). More specifically, we find that, when firms are highly responsive to expected

cost differences (high γ), decreasing opinion polarisation (varying ϵs from zero to approximately 0.4)

slightly decreases the transition speed. This non-monotonicity is hardly visible because it results

from two balancing forces of roughly equal force. On the one hand, decreasing opinion polarisation

under full commitment slows down the disappearance of sceptics from the population of firms. On

the other hand, a higher ϵs diminishes the sceptics’ bias towards high-carbon technologies. As ϵs

passes a certain threshold, especially in 2050, the second effect strongly grows in importance, speed-

ing up the transition. Further in time ( panel (b)), if the policy-maker is committed to its policy

targets, investment responsiveness and opinion polarisation, while still having a non monotonous

impact, do not significantly hamper the transition.

6 The credible commitment problem

We now investigate transition patterns with varying policy-maker’s mitigation commitment levels,

as measured by parameter c ∈ [0, 1]. When the policy-maker is not fully committed to meeting
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(a) Tax announced (τ̄) (b) Tax (τ)

(c) Share of believers (n) (d) Low-carbon investment share (χ)

(e) Low-carbon share of capital (κ) (f) Transition risk index (π)

Figure 8: Evolution over time of selected variables under various levels of commitment (c).

its previously announced policy targets (c < 1), it might partly deviate from them in response

to the perceived transition risks, as in equation (11). As shown in section 3, this departure from

policy targets lies behind the emergence of multiple equilibria and might lead the economy into a

high-carbon trap. In what follows, we illustrate the transition paths towards the various steady

states of the model and the role played by behavioural frictions and opinion polarisation in the

transition dynamics under weak commitment.

6.1 The transition path

Figure 8 presents the evolution over time of a set of key variables. Panel (a) shows the tax target

schedule, which is independent of commitment c. The tax actually implemented, instead, is flatter

for lower levels of commitment (panel (b)), because of the policy-maker’s attempt to reduce higher
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(a) 2050 (b) 2080

Figure 9: Low-carbon capital share κ as a function of the tax target growth rate ḡτ and commitment
c, in (a) 2050 and (b) 2080. All other parameters at their default value (Table 1).

transition risks. As a result of mild policy stringency and default on its pledges, the non-committed

policy-maker pays a cost in terms of credibility loss, reflected in the slower increase of believers’

share n (panel (c)). This ultimately leads the low-carbon transition to slow down or, for low enough

values of c, to fail entirely (panel (e)). In this case the system goes back to a dynamics characterised

by a majority of sceptics (n ≈ 0) and low clean investment and capital shares (χ ≈ 0; κ ≈ 0).

The transition failure emerges only quite late in time: at first, even a weakly committed policy-

maker cannot depart too much from policy targets, as these are initially mild and the associated

transition risks low. In the first periods, therefore, the policy-maker’s credibility is at worst more

or less constant. As the tax target and transition risks grow over time, firms recognise the weakly

committed policy-maker and eventually lose trust in its announcements, up to the point where low-

carbon investment is significantly reduced. As this tipping point is reached, the transition dynamics

reverses and κ converges to the sceptics’ clean investment share, χs.

Furthermore, transition risks end up being significantly larger under weak rather than stronger

commitment levels, because the high-carbon share of the economy affected by the tax is larger.

Hence, the weakly committed policy-maker cannot really escape transition risks, but only postpone

(and amplify) them to the future. The result is a higher cost of policy action, which further reduces

policy-makers’ options, up to the point where the low-carbon transition fails.

Figure 9 shows how the low credibility trap illustrated in section 3 emerges over time under

an ambitious but uncommitted policy-maker. For several decades the low-carbon capital share is

increasing in the tax target but is almost independent from the policy-maker’s commitment, as

transition risks are perceived to be mild and even the weakly committed policy-maker does not

depart excessively from the announced targets (panel (a)). However, unmet ambitious objectives
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(a) 2050 (b) 2080

Figure 10: Low-carbon capital share κ as a function of belief responsiveness β and investment
responsiveness γ, under c = 0.3, in (a) 2050 and (b) 2080. All other parameters at their default
value (Table 1).

ultimately generate a credibility loss, leading to an increase in the population of sceptics and a

decrease in the low-carbon capital share, ultimately causing a transition failure (panel (b)).

6.2 Behavioural frictions and opinion polarisation

The policy-maker’s behaviour is a key determinant of the transition success or failure. However,

as already shown in section 5.2, firms’ response to policy choices is equally important for rapidly

achieving decarbonisation. In what follows, we explore the impact of behavioural factors on the

transition dynamics, under weak commitment (c = 0.3).

Figure 10 shows snapshots of the clean capital share κ at different points of time for various levels

of belief and investment responsiveness. In 2050, the low-carbon capital share presents a similar

relationship with β and γ to that under full commitment (Figure 5), although at lower levels of κ.

The picture is instead different a few decades later (panel (b)). Indeed, belief responsiveness has

a non monotonous effect on the clean capital share. Values of β slightly larger than 0 hamper the

transition as firms realise the government is not keeping its word. As β crosses a certain threshold,

the transition, especially in the early decades, is faster and involves lower transition risks faced by

the policy-maker, who can thus implement a tax sufficiently close to the target.

Figure 11 illustrates how κ evolves under various levels of belief responsiveness β and opinion

polarisation, proxied by ϵs. For sufficiently high values of belief responsiveness, strong opinion

polarisation (i.e. low ϵs) accelerates the transition, especially in the early decades, with respect to

milder polarisation. While the same effect takes place under full commitment (Figure 6), under
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(a) 2050 (b) 2080

Figure 11: Low-carbon capital share κ as a function of sceptics’ discounting of the tax target growth
rate ϵs and belief responsiveness β, under c = 0.3, in (a) 2050 and (b) 2080. All other parameters
at their default value (Table 1).

weak policy-maker’s commitment the non-monotonicity is much more pronounced. The reason is

that, for low values of commitment c, a certain degree of scepticism produces even more accurate tax

predictions than under full commitment, causing a delay in the disappearance of sceptics from the

population of firms. Eventually, for high values of β, sceptics are proved wrong and the transition

takes place, as illustrated in panel (b). For low belief responsiveness and high opinion polarisation,

instead, the negative feedback loop between policy-maker’s weak credibility and firms’ investment

choices emerges, pushing the economy into a high-carbon trap.
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(a) 2050 (b) 2080

Figure 12: Low-carbon capital share κ as a function of sceptics’ discounting of the tax target
growth rate ϵs and investment responsiveness γ, under c = 0.3, in (a) 2050 and (b) 2080. All other
parameters at their default value (Table 1).

Finally, Figure 12 shows the impact of investment responsiveness γ and opinion polarisation

ϵs on the speed of decarbonisation. While in 2050 the figure is very similar to that under full

commitment (see Figure 7), in 2080, under high investment responsiveness γ and high opinion

polarisation (i.e. small ϵs), the weakly committed policy-maker forces the economy into a high-

carbon trap. The reason is that both these behavioural factors increase sceptics’ bias towards

high-carbon technologies, depressing sceptics’ low-carbon investment share, up to the point where

the policy-maker fails to decarbonise the economy.

7 Conclusions

In this paper, we model and analyse the dynamic interaction between heterogeneous expectations,

investment decisions and climate mitigation policy-making. We develop a novel modelling approach

rooted in discrete choice theory, able to account for dynamic beliefs and policy uncertainty. We

obtain four key results. First, a ‘high-carbon credibility trap’ - i.e. the convergence to a carbon-

intensive steady state when an alternative low-carbon equilibrium is also present - might emerge

when an ambitious plan is announced by a weakly committed policy-maker. This can trap the

economic system in a vicious circle of carbon-intensive investment, increasing transition risks and

policy-maker’s credibility, eventually leading to a transition failure. Second, the presence of be-

havioural frictions - either in capital investment choices or in the assessment of the policy-maker’s

credibility - creates heterogeneous expectations and affects the conditions of existence of long-run

system equilibria, making it harder to achieve full decarbonisation. However, higher responsiveness
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to the performance of belief/investment strategies makes firms’ behaviour more volatile, increasing

the likelihood to fall into a high-carbon trap. Third, even when the economic system is directed to-

wards a low-carbon equilibrium (e.g. under a fully committed policy-maker), behavioural frictions

affect the rapidity of the decarbonisation process in non-linear manners. Finally, belief polarisa-

tion can also have non-linear implications on decarbonisation, with higher belief polarisation being

beneficial for the transition under certain circumstances.

Our work can benefit from a number of additional refinements. Our numerical model suffers

from the scarce availability of systematic data concerning transition-related beliefs and expectations,

making it hard to calibrate behavioural parameters (primarily γ and β). Consequently, the exact

timing of our transition dynamics should mainly be interpreted in a qualitative manner, rather

than a precise forecast. The complexity of the modelling framework could also be expanded, or

directed towards additional research questions. For instance, we rely on an exogenous growth path

to better focus on the investment allocation choice, but the transition dynamics is likely to have

wider macroeconomic implications, suggesting additional insights could be obtained by making

growth dynamics endogenous. Our commitment level c, now an intrinsic and immutable feature of

a policy-maker, could also be made endogenous and variable in time, possibly jumping following

electoral cycles. Another possible direction of research is to study financial, rather than capital,

investment decisions, which would require incorporating a financial sector in the model. Finally,

we abstract here from premature decommissioning, loss of capacity utilisation and costly capital

reconversion (‘stranding’), although including these dimensions, both in reality and in expectations,

is likely to have implications on the overall transition dynamics (see for instance Cahen-Fourot et al.,

2022; Campiglio et al., 2022)

Despite these limitations, our results offer several key insights for policy-making. We have

shown how the direction and heterogeneity of expectations of future climate mitigation policies

can significantly affect the dynamics of the climate policies themselves. It is thus absolutely key

for the policy-maker to (i) be aware of what these expectations are and their distribution; and

(ii) be able to orient them as desired. As mentioned above, the current availability of data on

transition-related expectations, their drivers and their dynamic behaviour is very scarce. Public

institutions should contribute to running surveys, experiments and empirical analysis that could, in

combination, provide a more solid calibration basis in the future. The ability to orient expectations

comes instead from credibility, itself a function of the past track-record in sticking to announced

plans. In the context of climate policies, many jurisdictions have shown worrying signs of being

unable to maintain their course for sufficiently extended periods of time. A wide societal debate

on the most appropriate institutional configuration to achieve long-termist and credible policies is

urgently needed. Finally, our results warn policy-makers of the risks of having both too little and

too much ambitions in their policy announcements, as excessively ambitious plans combined with

less than full commitment to respect them might backfire and produce worse outcomes than a less
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ambitious policy announcement.
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Appendices

Appendix A Microfoundation of logit model

We use a logit model to characterise firms’ belief switching and investment choices. This model is

based on a discrete choice framework McFadden (1974), which can be microfounded with the random

utility framework Train (2009). According to this framework, agents attempt to maximise their

utility, which depends on factors common to everyone and explicitly modelled and on idiosyncratic

factors treated as random. These idiosyncratic factors can be interpreted as behavioural frictions

that impede agents’ ability to maximise their utility, leading to heterogeneous choices across agents.

In what follows, we show how the random utility model leads to the aggregate belief and investment

choices we employ in this paper.

Let us start from the belief switching process, where firm f faces two alternatives j ∈ {b, s},
each of which is characterised by a certain random utility Z∗

fj . The utility deriving from each

alternative is decomposed into a part labelled Vj that is common to all firms, and an idiosyncratic

part ϵ∗fj that is treated as random:

Z∗
fj = Vj + ϵ∗fj ∀f, j (19)

where the common factor Vj = −β∗Uj is a function of the fitness measure Uj (see equation (3))

and β∗ is the effect of Uj on Vj .

The logit model is obtained by assuming that each ϵ∗fj is independently, identically distributed

Gumbel with variance σ2 π2

6 , where σ is a scale parameter Train (2009). The Gumbel distribution

is very similar to a normal, except that it is characterised by slightly fatter tails, thus allowing for

slightly more aberrant behaviour than the normal.

By scaling the random utility by 1
σ , the ordering of alternatives is unchanged and the probability

of firm f choosing believers’ expectation rule is given by the following cumulative density function:

Pfb = 1− Pfs = Prob(−βUb + ϵfb > −βUs + ϵfs), (20)

where β = β∗

σ and ϵfj =
ϵ∗fj

σ . The parameter σ thus scales the coefficient β∗ to reflect the variance

of the idiosyncratic portion of utility. In fact, β indicates the effect of the common variable on the

utility relative to the variance of the idiosyncratic factors. A larger variance of the latter factors

leads to smaller values of β, even if the common factors have the same effect on utility.

Equation (20) is equivalent to:

Pfb = Prob(ϵfs − ϵfb < βUs − βUb), (21)
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Since the difference between two Gumbel variables is distributed logistic, then we can express

Pfb, as well as the share of believers n, as follows:

n = Pfb =
1

1 + exp(−β(Us − Ub))
. (22)

Based on expectation rule j, firm f chooses its investment allocation between low- and high-

carbon technologies. Both technologies i ∈ {l, h} provide a certain random utility to firm f :

Y ∗
fji = Wji + ϵ∗fji (23)

where Wji = γ∗Ej(Θi) is the factor common to all firms with belief type j and is a function of

expected production costs of technology i. ϵ∗fji is the factor idiosyncratic to firm f and is assumed

iid Gumbel with variance σ2 π2

6 . Similarly to the belief choice, we scale the random utility by 1
σ

and obtain the probability of firm f with belief j choosing technology l:

Pfjl = Prob(ϵfjh − ϵfjl < γEj(Θh)− γEj(Θl)), (24)

where ϵfji =
ϵ∗fji

σ and γ = γ∗

σ . Under the assumption that the idiosyncratic factors are iid Gumbel,

equation (24) corresponds to:

χj = Pfjl =
1

1 + exp(γ(Ej(Θh)− Ej(Θl)))
. (25)

Appendix B Proofs and derivation of analytical results

B.1 Proof of Proposition 1

Proof. Let us note that f(κ) is continuous in [0, 1] and f(κ) ∈ [0, 1] ∀κ. Furthermore, the first

derivative f ′(κ) of the function is given by

f ′(κ) = − 2 a τ̄2 β eβ [τ0−τ̄ (c+ c−1
a τ̄ (κ−1)−1 )] eβ [τ̄−τ̄ (c+ c−1

a τ̄ (κ−1)−1 )] X̃j (c− 1){
eβ [τ0−τ̄ (c+ c−1

a τ̄ (κ−1)−1 )] eβ [τ̄−τ̄ (c+ c−1
a τ̄ (κ−1)−1 )] + 1

}2

(a τ̄ − a τ̄ κ+ 1)
2
, (26)

where X̃j ≡ χb − χs.

For c ̸= 1 and β ̸= 0, f ′(κ) > 0 ∀κ ∈ [0, 1]. It follows that there is at least one stable

equilibrium28. Moreover, notice that, for finite β and γ, f(0) =
[

1
1+exp(−β(2τt−τ0−τ̄))

]
(χb − χs) +

χs ∈ (0, 1) and f(1) =
[

1
1+exp(−β(τ̄−τ0))

]
(χb − χs) + χs ∈ (0, 1), which implies that the map starts

28As mentioned in section 3, for c = 1 and β = 0, the model features unique steady states.
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(a) (b)

Figure A1: Dynamics of the low-carbon share of capital κ for different levels of (a) the tax target
τ̄ and (b) belief responsiveness β, under c = 0.3.

above the 45 degree line and ends below the 45 degree line. Therefore, generally an overall odd

number of steady states exists, excluding those cases where f is tangent to the 45 degree line.

Figure A1 offers a graphical depiction of the dynamics of the low-carbon share of capital for

different values of τ̄ and β, under weak commitment (c = 0.3). In both figures, depending on the

parameters, we observe the emergence of up to three steady states, identified by the points in which

the curves intersect the 45-degrees line. By Proposition 1, the intermediate steady state is unstable

while the others are stable. Specifically, figure A1a illustrates that for announced policies that are

not too ambitious (e.g. τ̄ < 4), the equilibrium κ∗ is positive, unique and it increases with the

tax target. However, if the policy-maker announces a excessively high tax, two new fixed points

emerge. The intermediate steady state defines the boundaries of the basins of attraction of the

high- and the low-carbon equilibria. Hence, whenever the intermediate steady state is closer to the

low-carbon one, for a policy-maker it is relatively more difficult to obtain a successful low-carbon

transition. Figure A1b shows that for low values of belief responsiveness β, the steady state is

unique and decreasing in β. As the belief responsiveness crosses a certain threshold (β ¿ 0.75), the

steady states become three, where the high- and low-carbon ones are stable and the intermediate

one is unstable.

B.2 Proof of Proposition 2

Proof. Under β = γ = ∞, plugging κt = 1 into equation (13), leads to

nt+1 =
1

1 + exp(−β(τ̄ − τ0))
. (27)
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Since τ̄ > τ0 by assumption, it follows that for κt = 1, nt+1 = 1 and therefore κt+1 = χb. The

believers’ low-carbon investment share χb can be expressed as29

χb =
1

1 + exp
(
−γ 1−DR+1

1−D [θh(1 + τ̄)− θl)]
) . (28)

In order for χb to equal 1, under γ = ∞, the announced tax target τ̄ must make the low-carbon

technology more convenient than the high-carbon one (τ̄ > θl−θh
θh

). If this condition is satisfied, the

low-carbon steady state κ∗
l = 1 exists.

With respect to the high-carbon steady state, let us first note that, under the assumption that

τ0 < θl−θh
θh

and under infinite γ, sceptics do not invest at all in the low-carbon technology (χs = 0).

Also, from equation (12) it follows that κ = 0 is a steady state if, for κt = 0, nt+1 = 0 or χb = 0.

Concerning the former case (nt+1 = 0) let us plug κt = 0 into equation (13):

nt+1 =
1

1 + exp
(
−β
[
2τ̄
(
c+ 1−c

1+aτ̄

)
− τ0 − τ̄

]) , (29)

which, under infinite β, equals zero if

c <
1

2
− τ̄ − τ0(1 + aτ̄)

2aτ̄2
. (30)

Concerning the latter case, χb = 0 if τ̄ < θl−θh
θh

.

B.3 Proof of Proposition 3

Proof. Concerning the low-carbon steady state, we assume that κt = 1 − λ̃l, where λ̃l = λl + εl,

with εl a sufficiently small positive number, and we impose that κt+1 > 1 − λ̃l, meaning that κ is

converging to a stable steady state κ∗
l = 1− λl. Hence:

κt+1 =
χb − χs

1 + exp
(
−β
{
2τ̄
[
c+

(
1−c

1+aλ̃lτ̄

)]}) + χs > 1− λ̃l, (31)

which implies

β

{
2τ̄

[
c+

(
1− c

1 + aλ̃lτ̄

)]}
> − ln

(
χb − 1 + λ̃l

1− λ̃l − χs

)
(32)

29After the sum of expected future production costs (equation (6)) in the absence of expected climate policy has

been rearranged as θi
1−DR+1

1−D
and simplified.
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and

c >
1

2
− τ̄ − τ0(1 + aλ̃lτ̄)

2aλ̃lτ̄2
− ln

(
χb − 1 + λ̃l

1− λ̃l − χs

)
(2τ̄β)−1

(
1 +

1

aλ̃lτ̄

)
. (33)

In order for equation (33) to be well defined, we impose

χb > 1− λ̃l,

χs < 1− λ̃l.
(34)

The former condition is satisfied if

τ̄ >
θl − θh
θh

−
ln
(

λ̃l

1−λ̃l

)
1−DR+1

1−D γθh
, (35)

where D ≡ 1
1+ρ . The second condition is satisfied if

τ0 <
θl − θh
θh

−
ln
(

λ̃l

1−λ̃l

)
1−DR+1

1−D γθh
. (36)

Since we assume that τ0 < θl−θh
θh

, if λ̃l < 0.5, then condition 36 is always verified. If, instead,

λ̃l > 0.5, this is an additional constraint.

Concerning the high-carbon steady state, we assume that κt = χs + λ̃h, where λ̃h = λh + εh,

with εh a sufficiently small positive number, and we impose that κt+1 < χs + λ̃h, meaning that κ

is converging to a stable steady state κ∗
h = χs + λh. Hence:

κt+1 =
χb − χs

1 + exp
(
−β
[
2τ̄
(
c+ 1−c

1+a(1−χs−λ̃h)τ̄

)]) + χs < χs + λ̃h (37)

which implies

c <
1

2
+

τ̄ − τ0{1 + a[1− (χs + λ̃h)]τ̄)}
2a[1− (χs + λ̃h)]τ̄2

−
ln
(

χb−χs−λ̃h

λ̃h

)
2τ̄β

{
1 +

1

a[1− (χs + λ̃h)]τ̄

}
. (38)

In order for equation (38) to be well defined, we impose λ̃h < χb − χs.
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B.4 Proof of Proposition 4

Proof. The second derivative of f(κ) is:

f ′′(κ) = −
x̃ eβ̃

[
(a τ̄ − τ̄ β + τ̄ β c− a τ̄ κt + 1) + eβ̃ (a τ̄ + τ̄ β − τ̄ β c− a τ̄ κt + 1)

]
(eβ̃ + 1)

3
(a τ̄ − a τ̄ κt + 1)

4
, (39)

where x̃ ≡ (χb − χs) (c− 1) 4 a2 τ̄3 β < 0 and β̃ ≡ β (τ0 − 2τt + τ̄). Although we cannot find

analytically the inflection points of κ where f ′′(κ) = 0, we observe that, for β ̸= 0 and c ̸= 1, if

c > 1 − 1
τ̄β , then (a τ̄ − τ̄ β + τ̄ β c− a τ̄ κt + 1) > 0 and f ′′(κ) > 0 for all κ ∈ [0, 1] and the fixed

point is unique. If c < 1− 1
τ̄β , one or more fixed points may exist.

Appendix C Sensitivity analysis

49



T
a
b
le

A
1
:
S
en
si
ti
v
it
y
a
n
a
ly
si
s

F
u
ll
co

m
m
it
m
en

t
(c

=
1
)

P
o
o
r
co

m
m
it
m
en

t
(c

=
0
.3
)

P
a
ra
m
et
er

κ
in

2
0
5
0

κ
in

2
1
0
0

n
in

2
0
5
0

n
in

2
1
0
0

κ
in

2
0
5
0

κ
in

2
1
0
0

n
in

2
0
5
0

n
in

2
1
0
0

P
ro
d
u
ct
io
n

O
u
tp

u
t
g
ro
w
th

ra
te

g
Y

0
.0
0
3

0
.5
6
6
8

0
.9
8
4
2

0
.6
9
2
3

1
.0
0
0
0

0
.5
2
1
2

0
.1
5
6
1

0
.5
9
5
3

0
.0
0
0
4

0
.0
0
5

0
.5
7
7
4

0
.9
8
8
2

0
.6
9
2
3

1
.0
0
0
0

0
.5
3
0
2

0
.1
3
9
2

0
.5
9
6
7

0
.0
0
0
4

0
.0
0
7

0
.5
8
6
4

0
.9
9
1
2

0
.6
9
2
3

1
.0
0
0
0

0
.5
3
7
9

0
.1
2
3
9

0
.5
9
7
8

0
.0
0
0
4

0
.0
0
9

0
.5
9
4
2

0
.9
9
3
3

0
.6
9
2
3

1
.0
0
0
0

0
.5
4
4
3

0
.1
1
0
1

0
.5
9
8
8

0
.0
0
0
4

0
.0
1
1

0
.6
0
0
8

0
.9
9
4
9

0
.6
9
2
3

1
.0
0
0
0

0
.5
4
9
8

0
.0
9
7
9

0
.5
9
9
6

0
.0
0
0
4

D
ep

re
ci
a
ti
o
n
ra
te

δ

0
.0
0
6

0
.4
7
3
2

0
.9
1
7
2

0
.6
9
2
3

1
.0
0
0
0

0
.4
3
9
7

0
.2
6
2
4

0
.5
8
4
0

0
.0
0
0
5

0
.0
1

0
.5
2
0
6

0
.9
5
8
8

0
.6
9
2
3

1
.0
0
0
0

0
.4
8
1
2

0
.2
1
7
6

0
.5
8
9
6

0
.0
0
0
5

0
.0
1
4

0
.5
5
3
8

0
.9
7
8
4

0
.6
9
2
3

1
.0
0
0
0

0
.5
1
0
0

0
.1
7
5
4

0
.5
9
3
7

0
.0
0
0
4

0
.0
1
8

0
.5
7
7
4

0
.9
8
8
2

0
.6
9
2
3

1
.0
0
0
0

0
.5
3
0
2

0
.1
3
9
2

0
.5
9
6
7

0
.0
0
0
4

0
.0
2
2

0
.5
9
4
6

0
.9
9
3
4

0
.6
9
2
3

1
.0
0
0
0

0
.5
4
4
7

0
.1
0
9
4

0
.5
9
8
8

0
.0
0
0
4

In
it
ia
l
lo
w
-c
a
rb

o
n
ca

p
it
a
l
sh

a
re

κ
0

0
.1

0
.5
7
0
9

0
.9
8
8
2

0
.6
9
2
3

1
.0
0
0
0

0
.5
2
2
8

0
.1
3
8
5

0
.5
9
5
6

0
.0
0
0
4

0
.2

0
.5
7
7
4

0
.9
8
8
2

0
.6
9
2
3

1
.0
0
0
0

0
.5
3
0
2

0
.1
3
9
2

0
.5
9
6
7

0
.0
0
0
4

0
.3

0
.5
8
3
9

0
.9
8
8
3

0
.6
9
2
3

1
.0
0
0
0

0
.5
3
7
7

0
.1
3
9
8

0
.5
9
7
8

0
.0
0
0
4

0
.4

0
.5
9
0
4

0
.9
8
8
4

0
.6
9
2
3

1
.0
0
0
0

0
.5
4
5
1

0
.1
4
0
4

0
.5
9
8
9

0
.0
0
0
4

0
.5

0
.5
9
6
9

0
.9
8
8
4

0
.6
9
2
3

1
.0
0
0
0

0
.5
5
2
5

0
.1
4
1
0

0
.6
0
0
1

0
.0
0
0
4

L
o
w
-
to

h
ig
h
-c
a
rb

o
n
p
ro
d
u
ct
io
n
co

st
s

θ
l

θ
h

1
0
.9
4
7
0

0
.9
9
9
5

0
.6
9
2
3

1
.0
0
0
0

0
.9
4
7
0

0
.9
9
9
5

0
.6
7
8
0

1
.0
0
0
0

1
.1

0
.9
2
1
2

0
.9
9
8
7

0
.6
9
2
3

1
.0
0
0
0

0
.9
2
0
3

0
.9
9
8
6

0
.6
7
1
3

1
.0
0
0
0

1
.2

0
.6
0
6
6

0
.9
8
9
1

0
.6
9
2
3

1
.0
0
0
0

0
.5
6
5
1

0
.2
1
5
8

0
.6
0
1
9

0
.0
0
0
5

1
.3

0
.5
8
1
2

0
.9
8
8
3

0
.6
9
2
3

1
.0
0
0
0

0
.5
3
4
5

0
.1
3
9
9

0
.5
9
7
3

0
.0
0
0
4

1
.4

0
.5
7
1
9

0
.9
8
8
2

0
.6
9
2
3

1
.0
0
0
0

0
.5
2
4
1

0
.1
3
8
6

0
.5
9
5
7

0
.0
0
0
4

1
.5

0
.5
5
5
2

0
.9
8
8
0

0
.6
9
2
3

1
.0
0
0
0

0
.5
0
5
6

0
.1
3
7
2

0
.5
9
3
0

0
.0
0
0
4

In
v
es
tm

en
t
re
sp

o
n
si
v
en

es
s
γ

50



T
a
b
le

A
1
:
S
en
si
ti
v
it
y
a
n
a
ly
si
s

F
u
ll
co

m
m
it
m
en

t
(c

=
1
)

P
o
o
r
co

m
m
it
m
en

t
(c

=
0
.3
)

P
a
ra
m
et
er

κ
in

2
0
5
0

κ
in

2
1
0
0

n
in

2
0
5
0

n
in

2
1
0
0

κ
in

2
0
5
0

κ
in

2
1
0
0

n
in

2
0
5
0

n
in

2
1
0
0

0
0
.4
8
0
5

0
.4
9
9
8

0
.6
9
2
3

1
.0
0
0
0

0
.4
8
0
5

0
.4
9
9
8

0
.5
8
9
7

0
.0
0
1
1

1
0
.5
7
7
4

0
.9
8
8
2

0
.6
9
2
3

1
.0
0
0
0

0
.5
3
0
2

0
.1
3
9
2

0
.5
9
6
7

0
.0
0
0
4

2
0
.5
7
8
1

0
.9
8
8
3

0
.6
9
2
3

1
.0
0
0
0

0
.5
3
1
1

0
.1
3
9
2

0
.5
9
6
8

0
.0
0
0
4

3
0
.5
7
8
3

0
.9
8
8
3

0
.6
9
2
3

1
.0
0
0
0

0
.5
3
1
2

0
.1
3
9
2

0
.5
9
6
8

0
.0
0
0
4

4
0
.5
7
8
3

0
.9
8
8
3

0
.6
9
2
3

1
.0
0
0
0

0
.5
3
1
2

0
.1
3
9
2

0
.5
9
6
8

0
.0
0
0
4

P
la
n
n
in
g
h
o
ri
zo

n
R

8
0

0
.5
6
3
4

0
.9
8
8
1

0
.6
9
2
3

1
.0
0
0
0

0
.5
1
4
7

0
.1
3
8
0

0
.5
9
4
3

0
.0
0
0
4

1
0
0

0
.5
7
1
6

0
.9
8
8
2

0
.6
9
2
3

1
.0
0
0
0

0
.5
2
3
7

0
.1
3
8
6

0
.5
9
5
7

0
.0
0
0
4

1
2
0

0
.5
7
7
4

0
.9
8
8
2

0
.6
9
2
3

1
.0
0
0
0

0
.5
3
0
2

0
.1
3
9
2

0
.5
9
6
7

0
.0
0
0
4

1
4
0

0
.5
8
0
5

0
.9
8
8
3

0
.6
9
2
3

1
.0
0
0
0

0
.5
3
3
7

0
.1
3
9
4

0
.5
9
7
2

0
.0
0
0
4

1
6
0

0
.5
8
1
3

0
.9
8
8
3

0
.6
9
2
3

1
.0
0
0
0

0
.5
3
4
6

0
.1
3
9
5

0
.5
9
7
3

0
.0
0
0
4

D
is
co

u
n
t
ra
te

ρ

0
.0
1

0
.5
8
1
1

0
.9
8
8
3

0
.6
9
2
3

1
.0
0
0
0

0
.5
3
4
4

0
.1
3
9
5

0
.5
9
7
3

0
.0
0
0
4

0
.0
2

0
.5
7
4
7

0
.9
8
8
2

0
.6
9
2
3

1
.0
0
0
0

0
.5
2
7
3

0
.1
3
8
9

0
.5
9
6
2

0
.0
0
0
4

0
.0
3

0
.5
6
4
8

0
.9
8
8
1

0
.6
9
2
3

1
.0
0
0
0

0
.5
1
6
2

0
.1
3
8
9

0
.5
9
4
6

0
.0
0
0
4

0
.0
4

0
.5
5
5
8

0
.9
8
8
1

0
.6
9
2
3

1
.0
0
0
0

0
.5
0
6
4

0
.1
4
1
8

0
.5
9
3
1

0
.0
0
0
4

E
xp
ec
ta
ti
o
n
s

B
el
ie
f
re
sp

o
n
si
v
en

es
s
β

0
0
.4
7
5
5

0
.4
9
9
8

0
.5
0
0
0

0
.5
0
0
0

0
.4
7
5
5

0
.4
9
9
8

0
.5
0
0
0

0
.5
0
0
0

1
0
.5
7
7
4

0
.9
8
8
2

0
.6
9
2
3

1
.0
0
0
0

0
.5
3
0
2

0
.1
3
9
2

0
.5
9
6
7

0
.0
0
0
4

2
0
.6
6
4
4

0
.9
9
5
1

0
.8
3
5
1

1
.0
0
0
0

0
.5
8
7
7

0
.9
8
6
5

0
.7
0
1
6

1
.0
0
0
0

3
0
.7
3
0
6

0
.9
9
6
9

0
.9
1
9
3

1
.0
0
0
0

0
.6
4
4
2

0
.9
9
4
2

0
.8
0
1
7

1
.0
0
0
0

4
0
.7
7
8
0

0
.9
9
7
7

0
.9
6
2
5

1
.0
0
0
0

0
.6
9
5
3

0
.9
9
6
2

0
.8
8
2
1

1
.0
0
0
0

M
em

o
ry

p
a
ra
m
et
er

η

0
0
.5
7
9
5

0
.9
8
8
5

0
.6
9
5
6

1
.0
0
0
0

0
.5
3
1
4

0
.1
3
5
1

0
.5
9
8
0

0
.0
0
0
4

0
.2

0
.5
7
9
0

0
.9
8
8
4

0
.6
9
4
7

1
.0
0
0
0

0
.5
3
1
1

0
.1
3
6
1

0
.5
9
7
7

0
.0
0
0
4

0
.4

0
.5
7
8
1

0
.9
8
8
3

0
.6
9
3
4

1
.0
0
0
0

0
.5
3
0
6

0
.1
3
7
8

0
.5
9
7
1

0
.0
0
0
4

51



T
a
b
le

A
1
:
S
en
si
ti
v
it
y
a
n
a
ly
si
s

F
u
ll
co

m
m
it
m
en

t
(c

=
1
)

P
o
o
r
co

m
m
it
m
en

t
(c

=
0
.3
)

P
a
ra
m
et
er

κ
in

2
0
5
0

κ
in

2
1
0
0

n
in

2
0
5
0

n
in

2
1
0
0

κ
in

2
0
5
0

κ
in

2
1
0
0

n
in

2
0
5
0

n
in

2
1
0
0

0
.6

0
.5
7
6
3

0
.9
8
8
1

0
.6
9
0
8

1
.0
0
0
0

0
.5
2
9
7

0
.1
4
1
2

0
.5
9
6
0

0
.0
0
0
4

0
.8

0
.5
7
1
0

0
.9
8
7
5

0
.6
8
3
2

1
.0
0
0
0

0
.5
2
6
6

0
.1
5
1
1

0
.5
9
2
6

0
.0
0
0
6

1
0
.2
9
0
0

0
.2
9
9
4

0
.2
9
9
4

0
.2
9
9
4

0
.2
9
0
0

0
.2
9
9
4

0
.2
9
9
4

0
.2
9
9
4

P
o
li
cy

In
it
ia
l
ta
x
ra
te

τ 0

0
.0
5

0
.3
6
0
6

0
.9
4
5
4

0
.5
6
7
2

0
.9
9
9
5

0
.3
5
2
3

0
.5
9
4
0

0
.5
4
8
1

0
.3
8
1
3

0
.1
5

0
.5
7
7
4

0
.9
8
8
2

0
.6
9
2
3

1
.0
0
0
0

0
.5
3
0
2

0
.1
3
9
2

0
.5
9
6
7

0
.0
0
0
4

0
.2
5

0
.6
4
2
7

0
.9
9
3
9

0
.7
9
4
4

1
.0
0
0
0

0
.5
3
9
3

0
.0
6
0
5

0
.5
9
8
2

0
.0
0
0
0

0
.3
5

0
.7
8
7
4

0
.9
9
7
3

0
.8
6
9
0

1
.0
0
0
0

0
.7
0
7
0

0
.4
2
2
5

0
.6
5
5
4

0
.0
0
0
0

T
a
x
ta
rg
et

g
ro
w
th

ra
te

ḡ
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Appendix D Transition risk index function: graphical rep-

resentation and robustness

First, let us provide a graphical representation of the transition risk index function (see figure A2).

(a) a = 1 (b) a = 5

Figure A2: Transition risk index π as a function of κ and τ̄ , for two distinct levels of a.

Second, we present the transition path of the model under the assumption of a logistic transition risk index

function, defined as

πt =
1

1 + exp (−a[(1− κt)τ̄t − π0])
, (40)

where π0 is the inflection point of the function and is calibrated here to 1. As shown in figure A3, the dynamics of

the model are qualitatively similar to the baseline version of the model.
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(a) Tax announced (τ̄) (b) Tax (τ)

(c) Share of believers (n) (d) Low-carbon investment share (χ)

(e) Low-carbon share of capital (κ) (f) Transition risk index (π)

Figure A3: Evolution over time of selected variables under various levels of commitment (c), as-
suming a logistic transition risk index function.
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