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Abstract

We study the effects of different types of technological diversification on the per-

formance of regional economies. We focus on the relatedness and unconventionality

of technological capabilities as drivers of GDP and employment growth. Using eco-

nomic indicators from Eurostat regional statistics and patent records from the Euro-

pean Patent Office (EPO) PATSTAT and the OECD RegPat databases, we estimate

Panel Vector Autoregression models and generate Impulse Response Functions to as-

sess to what extent and with what persistence relatedness and unconventionality affect

growth. Our findings, which have implications for place-based innovation policies, reveal

that technological relatedness has short-term effects on employment growth and nega-

tive effects on GDP growth, whereas technological unconventionality has a long-lasting

positive impact on GDP growth and no effect on employment growth.

Keywords: Technological capabilities; Diversification; Relatedness; Uncon-

ventionality; Innovation; Regional development
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1 Introduction

Innovation is a path-dependent process of knowledge accumulation and recombination (Dosi, 1982;

Scotchmer, 1991). This Schumpeterian theme (Schumpeter et al., 1939) has been developed in

various strands of the literature, from the micro- (Fleming, 2001; Wuchty et al., 2007) to the

macro-level of analysis (Weitzman, 1998; Jones, 2009). The process of knowledge production is often

localised, as it is shaped by a variety of factors that are place-dependent, including the availability

of tacit knowledge and the institutional features of local markets and innovation systems (Antonelli

et al., 2003; Muller and Zenker, 2001). The resulting stock of knowledge, in turn, influences, the

development paths of local economies. Scholarly interest in the way in which the stock of knowledge

and its composition shape local growth dynamics can be traced back to the classic debate on the

role of specialisation and diversification in generating Marshallian vis-à-vis Jacobian externalities

(Beaudry and Schiffauerova, 2009). Renewed interest in this problem has recently emerged with the

growing emphasis on theoretical and analytical perspectives framed around the notion of economic

complexity (Arthur, 2021; Balland et al., 2022; Nomaler and Verspagen, 2022).

A diversified portfolio of technological capabilities can increase the probability of knowledge

recombination (Antonelli et al., 2022) and mitigate the risk linked to idiosyncratic shocks: on the

one hand, it allows for the discovery of new growth opportunities, and on the other, alleviates the

problem of lock-in effects due to product markets or production technologies that are more exposed

to external competition, or more vulnerable to exogenous paradigmatic and industry-wide change

(Grabher, 1993; Glaeser, 2005; Martin and Sunley, 2006; McCann, 2013; Pinheiro et al., 2022).

At least since Jacobs’ work on the rise and exploitation of economies of scope (Jacobs, 1970), the

study of agglomeration economies has highlighted the importance of diversification. However, local

economies can diversify to different extents and in very different directions, depending on existing

capabilities and resources. Knowledge inputs can present configurations that show higher or lower

degrees of complementarity and cognitive proximity. Related diversification has been identified as

a recurrent pattern – a ‘stylised fact’ – characterising not only technology, but a broader range of

economic aggregates, including traded products, firm outputs and skills (Li and Neffke, 2022).

With specific reference to technological capabilities, the literature has found a strong associa-

tion between relatedness and employment growth (Frenken et al., 2007; Content and Frenken, 2016;

Boschma, 2017; Bathelt and Storper, 2022; Rocchetta et al., 2022). However, the role of recombi-

natorial novelty has been much more difficult to establish because of measurement problems that
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can be attributed to the use of a priori classifications of knowledge inputs that fail to capture the

more rare or more distant bundles of knowledge driving growth through unrelated diversification.

Recently, Berkes and Gaetani (2021) have used the notion of ‘unconventionality’ to identify the

presence of atypical combinations of technological knowledge. Atypical combinations are knowledge

combinations that have rarely been used before, or are entirely new, and blend together cognitive

inputs more distant from one another in a evolving knowledge space (Uzzi et al., 2013; Fontana

et al., 2020). Unconventional or atypical combinations of knowledge can become idiosyncratic

sources of competitive advantage. While they have the potential to push local economies towards

the technological frontier, they are also riskier and often more costly (Wang et al., 2017).

In this paper, we aim to explore what kind of technological diversification, i.e. recombining more

or less related knowledge vs. investing in more or less unconventional combinations of knowledge,

is able to improve a region’s economic performance. We apply the notion of coherence to capture

relatedness, and the notion of unconventionality to capture unrelated diversification. We then anal-

yse the effects of coherence and unconventionality on the performance of European regions. We

use data on regional economic performance at the NUTS II level from Eurostat regional statistics

and rely on patent data extracted from the European Patent Office (EPO) PATSTAT and OECD

RegPat databases as proxies for regional innovation. We then estimate Panel Vector Autoregression

models and generate Impulse Response Functions (IRF) capable of identifying the causal relation-

ship between different forms of technological diversification and regional growth. Moreover, IRF

allows us to estimate to what extent and with what persistence the two distinct types of techno-

logical diversification affect, on the one hand, gross domestic product (GDP) and, on the other,

employment growth. The evidence indicates that technological relatedness has a short-term effect

on employment growth and a negative effect on GDP growth. Technological unconventionality,

instead, has a long-lasting positive impact on GDP growth and no effect on employment growth.

The contribution of this paper is threefold. Firstly, we introduce a new indicator that allows us

to evaluate the relevance of unconventional recombination of knowledge in the regional knowledge

base. Secondly, we use an econometric approach that is superior in terms of identification strategy

relative to those that can be found in the literature on this topic, including instrumental variable

approaches, which may suffer from weak instrument problems and violate the exclusion restriction.

Finally, we provide a short- and long-term analysis of the role of different types of technological

diversification, uncovering heterogeneous effects on employment vs. output growth.

The paper is organised as follows. In Section 2 we review the relevant literature. In Section
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3 we illustrate the methodology. Section 4 contains a description of the dataset and variables.

In Section 5 we present the econometric results, which are followed by sensitivity analyses and

robustness checks. The final section of the paper draws the contribution to a close by briefly

discussing the limitations of the study and highlighting its policy implications.

2 Technological diversification and regional growth

Since Schumpeter’s seminal theory of economic development (Schumpeter et al., 1939), knowledge

recombination has been recognised as a key determinant of economic growth. Following this line of

inquiry, diversification in technological capabilities is a feature of regional economies that has been

explored at length in the innovation and economic geography literature of Schumpeterian descent

(Boschma and Martin, 2010). Firstly, having a diversified portfolio of technological knowledge

is important because this portfolio contains the potential components for recombination and for

the emergence of local cross-sectoral spillovers capable of fostering growth (Boschma and Frenken,

2010). Secondly, technological diversification can trigger industrial renewal by favouring the ac-

cumulation of new capabilities and the access to new product markets (Amoroso et al., 2022).

Thirdly, more diverse economies are likely to experience lower risks of a crisis or gradual decline

due to lock-in situations (Martin, 2012; Balland et al., 2015; Xiao et al., 2018).

The central argument is that the economic performance of regions is not only a function of

knowledge stocks, but also of the structure and composition of these stocks of intangibles (Tanner,

2016; Kogler et al., 2017). As a particular instantiation of knowledge, technology stocks appear in

different combinations that are more or less similar to one another from a cognitive viewpoint, and

more or less complementary to one another within and across sectors (Nooteboom, 2000; Nesta

and Saviotti, 2005; Neffke et al., 2011; Caragliu and Nijkamp, 2016; Castaldi et al., 2015; Content

and Frenken, 2016).

Moreover, in a dynamic framework, diversification does not occur at random across technology

fields. Pinheiro et al. (2022) provide recent evidence on the timing and frequency of diversification.

They build on the notion of path dependence in innovation and development (Dosi, 1982; Arthur,

1994), bounded rationality in economic decision-making (Simon, 1990) and absorptive capacity in

learning (Cohen, Levinthal, et al., 1990), to argue that diversifying into related fields is relatively

easier, overall less costly, and therefore more probable at any given point in time. Indeed this feature

of technological change mirrors the patterns of growth through related diversification found in the
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industry composition (Frenken and Boschma, 2007; Neffke et al., 2011) and trade mix (Hidalgo

et al., 2007; Hausmann et al., 2014) of countries and regions.

In terms of economic performance, local economies built on technologies or industries that are

more related to one another have been found to outperform those specialised in technologies and

industries with lower complementarity levels (Frenken et al., 2007; Kogler et al., 2013). Interest-

ingly, these effects seem to be more pronounced in the short run and during times of crisis. Diodato

and Weterings (2015) reports that the cognitive proximity between workers’ skills plays a positive

role against both general and sector-specific shocks. This finding is consistent with the view that

skill mobility and capability recombination are easier between related fields, where adjustments

and learning costs are lower. Several studies also found that higher levels of industrial and/or

technological relatedness make regional economies more resilient to crises, thus emphasising again

the greater efficiency of related diversification in the phases of the business cycle with stronger

financial constraints and market frictions (Holm and Østergaard, 2015; Rocchetta and Mina, 2019;

Rocchetta et al., 2022). If local economies develop technological capabilities that are more related,

they will be able to adapt more quickly to exogenous changes in market conditions, for example

through lower labour market frictions when workers migrate between sectors that require more

similar skills and lower re-training costs.

There are, of course, trade-offs between regional development strategies favouring more or less

related technological diversification. It can be argued that decreasing returns and even risks of

technological lock-in might set in if the region follows a knowledge components diversification

path based on ever-increasing complementarities in the pursuit of efficiency. In the long run, the

exploitation of related knowledge combinations can exhaust their potential as sources of innovation

because all possible variants have been already utilised (Fleming, 2001; Aharonson and Schilling,

2016). At some point, the advantages of a highly related set of technological capabilities can be

offset by the need for major transformations – to keep up with technological development – and

more diversified knowledge differentiating a regional innovation system from its competitors.

Entering into very different areas of specialisation relative to the technological capabilities

present in the region is difficult. In the history of economic development, there have been suc-

cessful instances of ‘leapfrogging’ (Soete, 1985; Brezis et al., 1993; Lee and Lim, 2001; Lee, 2013;

Lee and Malerba, 2017), but these have been relatively infrequent (Petralia et al., 2017; Pinheiro

et al., 2022). The reason is that diversifying into unrelated fields requires very high levels of tech-

nological capabilities (Xiao et al., 2018), availability of resources (Petralia et al., 2017), and often
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strategic assets only available to large multinational firms (Cortinovis et al., 2020).1 Moreover,

the different costs and opportunities to innovate stemming from the choice of what kind of knowl-

edge to recombine and where to locate new activities result in a highly heterogeneous geographical

distribution of technologies that reflect varying combinations of Marshallian (Marshall, 1890) and

Jacobian (Jacobs, 1970) externalities (Berkes and Gaetani, 2021).

In characterising the novelty of innovation, rather than its relatedness or unrelatedness to ex-

isting technological capabilities, Fleming (2001) addressed the role of uncertainty in recombinant

innovation processes. Scholars have long recognised the uncertainty of scientific and technological

progress (Nelson, 1959; Arrow, 1962; Rosenberg, 1998) and, in connecting this principle with the

Schumpeterian insight that innovation consists in new combinations of ideas (Schumpeter et al.,

1939), Fleming (2001) argued that, in theory, in any knowledge system, there are no restrictions

to what can be recombined and that what is perceived to ‘belong together’ by scientists and engi-

neers is the product of habit and social conventions. Moreover, this changes over time. Whereas

conventional combinations of ideas are more certain, unconventional combinations can have greater

value and more impact. A technological diversification trajectory based only on the recombination

of similar knowledge may lead regional economies to be locked into too-specialised technological or

industrial paths (Balland et al., 2019) because the technological frontier does not expand. Although

unrelated diversification is more risky and uncommon, it can allow regions to explore new techno-

logical frontiers and therefore gain new long-term competitive advantages (Pinheiro et al., 2022).

In the short term, however, the exploration of atypical knowledge combinations might cause per-

formance degradation because the search for novel solutions is more subject to failures (Aharonson

and Schilling, 2016).

The notion of unconventionality has already been used in the literature to characterise inventions

carried out in local economies (Berkes and Gaetani, 2021; Abbasiharofteh et al., 2023). However,

to the best of our knowledge, we incorporate for the first time this concept to analyse the extent

of unconventional recombinations in regional technological diversification trajectories. It is not

yet clear in the literature, indeed, to what extent the unconventionality of regional technological

recombinations favours the growth of local economies, bearing in mind the uncertainty associated

with combinations that are less tried and tested remains an open question.

Following this line of inquiry, in this paper we focus on identifying the effects of qualitatively

1For a discussion of the institutional contexts favouring unrelated diversification, even though the paper focuses
on traded products rather than technologies, see (Boschma and Capone, 2015).
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different types of technological diversification on regional growth. Specifically, we will consider

the effect of technological diversification on two indicators that depict complementary yet different

aspects of regional economic performance, i.e. employment and GDP growth. While the first depicts

how the job market is evolving, proxying consumer spending and poverty rates, GDP measures the

total economic output of a region, including all goods and services produced within its borders.

Despite the extensive literature existing on related diversification and its economic benefits,

the available empirical evidence is overwhelmingly descriptive. In trying to assess the causal ef-

fects of diversification, it has been difficult to address endogeneity concerns associated with the

path-dependent nature of technological diversification, and identification problems have remained

pervasive. Through the application of Panel Vector Autoregression models (PVAR) and impulse

response functions (IRF), we obtain reliable estimates of the effects of variations in two complemen-

tary yet opposing types of technological diversification trajectory on regional economic performance.

Moreover, we assess not only the size but also the persistence of these effects. Secondly, we pro-

vide novel and original evidence on the effects of technological unconventionality, in addition to

relatedness, on the performance of regional economies. Interestingly, as we shall see, relatedness

and unconventionality affect GDP and employment in different ways. To the best of our knowl-

edge, causal evidence of these mechanisms, which are highly relevant to the ongoing debate on

diversification, is still lacking.

3 Methodology

To design the econometric strategy, it is important to acknowledge that changes in the structure

of the stock of technological capabilities could have both immediate and delayed effects on the

economy. Moreover, shocks to the economy are likely to influence technology. Cross-sectional

analyses and short panel-based analyses are therefore likely to miss important dynamics and face

substantial challenges in terms of identifying causal effects. Panel Vector Autoregression (PVAR)

models allow for each variable in our system of equations to be influenced by its own past values

and those of the other variables.

Letting the subscripts r and t denote the region r and time t, respectively, we can write our

variables of interest as the vectorXrt = [TUrt TCrt Ert Grt]
′, where TUrt is technological unconven-

tionality, TCrt is technological relatedness (measured through the technological coherence index),

Ert is the rate of employment growth, and Grt is the rate of GDP growth (see Section 4.1 for more
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details). We use growth rates for employment and GDP as tests indicate that these variables are

non-stationary in levels.

Our reduced form model can be written as:

Xrt = α+

p
∑

i=1

βiXr,t−i + ϕr + ϵrt, (1)

where α is a vector of constants, βi is the matrix of coefficients for lag i, ϕr are regional fixed

effects and ϵrt are the residuals. To correct for the potential for dynamic panel bias (Nickell, 1981),

we apply the Helmert transformation (forward orthogonal deviation) and estimate the transformed

model using the generalised method of moments (Abrigo and Love, 2016). Lag length, p, is de-

termined by calculating moment model selection criteria proposed by Andrews and Lu (2001). In

our case, these section criteria suggest that the optimal lag length is one.2 Following Holtz-Eakin

et al. (1988), we use “GMM-style” instruments to improve efficiency by replacing missing values

for lagged instruments with zero.3 Standard errors are clustered at the regional level.

As in this paper we aim to trace the dynamic effects of changes in technological relatedness, and

technological unconventionality on GDP and employment growth, we generate Impulse Response

Functions (IRF). IRF show the dynamic impact of exogenous changes in one variable on each of

the other variables. In particular, it allows us to show how one standard deviation exogenous

shock to a variable affects all the other variables. For the purpose of this study, IRF estimates the

unbiased causal dynamic effect of changes in technological diversification indicators and GDP and

employment growth in terms of both magnitude and persistence. In our estimations, the shock

represents an unexpected positive increase in the variables included in our modelling exercise.

We present orthogonalised impulse response functions that illustrate the effects of one standard

deviation shocks. However, as the terms in ϵrt are correlated, the shocks in one variable will not

be independent of the shocks to the others. To identify causal effects, we impose a Cholesky de-

composition. This entails making assumptions about the order in which shocks propagate through

the system. Our ordering is based on the following logic. A shock in the extent to which techno-

logical components are combined in an unconventional manner (technological unconventionality)

represents a fundamental shock to the structure of the regional economy (Berkes and Gaetani,

2021). Thus, we allow such shocks to influence technological relatedness, employment, and eco-

nomic growth contemporaneously. Shocks to technological relatedness, which captures the extent

2Robustness checks in Appendix A show the main results with more lags.
3We use two lags as instruments, however, we test the results by introducing more lags (see Appendix A).
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of cognitive proximity across the technological elements that compose the regional knowledge base

(Nesta and Saviotti, 2005; Nesta and Saviotti, 2006), are assumed to only influence the degree

of technological unconventionality with a lag but can affect employment and growth contempo-

raneously. These first assumptions state that technological shocks can contemporaneously affect

employment and economic growth (Freeman et al., 1982; Grossman and Helpman, 1993). Shocks

to employment and economic growth are assumed to influence only both aspects of technological

capability with a lag. This assumption hinges on the idea that economic and employment growth

shocks do not immediately translate into new technological capabilities because the development

of new scientific and technological knowledge takes time (Nelson, 1959; Dosi, 1982). Finally, while

we allow for shocks to employment to influence GDP growth contemporaneously, the latter only

operates on the former with a delay. We make this assumption based on the existence of significant

labour market frictions in Europe. Although we believe that this set of identified assumptions is

plausible, in Appendix A we also present results for alternative orderings of the shocks. These

changes do not alter the findings and our conclusions. Confidence intervals are obtained from a

Monte Carlo simulation with 1000 draws.

4 Data and variables

We collect data on regional economic performance at the NUTS II level from Eurostat regional

statistics. Our data covers the period between 1980 and 2014. This information is combined

with patent data, used as a proxy for the innovative activities carried out in the region (Griliches,

1990; Hall et al., 2001), extracted from the PATSTAT database of the European Patent Office

(EPO) and the OECD RegPat database. We select only patents filed at the EPO and assign those

patents to NUTS II regions based on the inventors’ residential address and the patent priority

year, i.e. the earliest year in which a patent, or the patents in the same family, is filed at a

patent office.4 We then determine the technological diversification of a region in a given year by

considering the technology codes assigned to each patent with inventors in that area. Technology

codes classify technology hierarchically embedded in patented inventions and are useful for mapping

the technological capabilities of regions. Specifically, we use the Cooperative Patent Classification

(CPC) at the 4-digit level, obtaining 654 technology codes. The final sample includes 251 regions

4Patents with inventors in multiple regions are assigned equally to all the relevant regions. Moreover, we select
the priority year of patents to date regional innovation activities to be as close as possible to the year of invention.
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over 35 years.5 From the same databases, we also retrieve control variables used in the robustness

checks analysis, i.e. the number of patents and population level.

4.1 Main variables

The main variables of interest are: i) technological diversification indicators that capture the tech-

nological capabilities of regions and their ability to explore new domains at the innovation frontiers;

ii) regional economic performance indicators.

We consider two technological diversification indicators to capture distinct features of the re-

gional knowledge base. Both measures are based on the analysis of regional patent portfolios.

Technological Relatedness. First of all, we introduce an indicator of regional technological

relatedness, measured through the regional technological coherence index. This indicator, defined

by Nesta and Saviotti (2005), identifies the average cognitive proximity among the technologies

present in a region in a given period. Regions with high technological relatedness show a high

degree of homogeneity and proximity among their technologies in the knowledge space. The use

of patent portfolios to compute this indicator allows us to capture the technological frontier of a

region and detect how it evolves over time.

Based on patent portfolios and associated technology classes (4-digit CPC codes), we can detect

the technological capabilities of a NUTS II region. Specifically, we define a dummy variable Gjrt

that is equal to 1 if a region r at time t produces knowledge in the technology class j and 0 otherwise.

Thus, the total number of regions with patents in j will be Rjt =
∑

r Gjrt and R is the total number

of regions. Based on this indicator, we can also define the observed co-occurrence (i.e., occurrence

in the same region) of two technology classes j and k: Ojkt =
∑

r GjrtGkrt. In this setting, Ojkt

is the number of regions that have patents in both technologies j and k at time t. By assuming

that frequently co-occurring technology classes are associated with similar underlying technological

capabilities, we can define the coherence index τjkt (Teece et al., 1994) associated with each pair of

technology classes j and k at time t as their normalised co-occurrence. The normalisation is needed

due to the unbalanced distribution of technology classes across regions, and entails the scaling of

observed co-occurrences under the hypothesis that technological diversification is random:

τjkt =
Ojkt − µjkt

σjkt
, (2)

5Due to the presence of a few missing values in economic performance data, the total number of observations is
7,350.
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where µjkt is the expected number of co-occurrences given the size of the two technology classes

(i.e. the average of the counterfactual random sample Xjkt):

µjkt = E (Xjkt) =
RjtRkt

R
, (3)

and σjkt is its variance:

σjkt = µjkt

(

1−
Rjt

R

)(

R−Rkt

R− 1

)

. (4)

Once we have determined the coherence index of technology-code pairs, we can calculate the

weighted average relatedness WARjrt of technology j in a region r at time t:

WARjrt =

∑

k ̸=j τjktPkrt
∑

k ̸=j Pkrt

, (5)

where Pkrt is the number of patents associated with technology k in region r at time t. WARjrt rep-

resents the average relatedness of technology j, in a given region and year, to all other technologies

k patented in that region. The regional technological coherence Tech Coherencert is, therefore,

the average WARjrt of all technologies j patented in the region weighted by the share of patents

associated with the different technology classes:

Tech Coherencert =
∑

j

WARjrt

Pjrt

Prt

, (6)

where Prt is the total number of patents in region r at time t.

Technological Unconventionality. Our second indicator of technological diversification is the

regional technological unconventionality index. It captures how regions explore the frontiers of the

technological knowledge space by investing in atypical and unprecedented combinations of previous

knowledge. This index is orthogonal to technological relatedness, since it analyses the presence and

relevance of highly diversified technological capabilities instead of focusing on the “core” of these

capabilities (as in the coherence index). In principle, a region could have both high technological

relatedness and high technological unconventionality as a signal of its ability to combine a robust

knowledge base with the propensity to explore new avenues.

To measure technological unconventionality, we propose a generalisation at the regional level

of the atypical combination index introduced by Uzzi et al. (2013). Approaches based on the

detection of atypical combinations have already been used in the literature to detect unconventional
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innovations (Berkes and Gaetani, 2021; Kim et al., 2016; Abbasiharofteh et al., 2023).

The first step consists of computing a technological knowledge space that allows us to detect

atypical (distant) combinations of technological codes. This knowledge space evolves over time and

is based on the proximity between technology classes. Technological proximity TPjkt between two

technological classes j and k is similar to the coherence index τjk but, since our focus here is on

distant and unconventional combinations of knowledge, it is calculated considering the number of

occurrences NOjrt in each region r of the technological class j at time t and not simply the dummy

variable Gjr. In fact, a combination of knowledge could be atypical in a certain year and become

conventional in the following period. Therefore, it is important to consider the variation over time

of this index. Moreover, an aggregated variable, such as a dummy variable that signals the presence

of technology in a region, is not suited to detect highly atypical combinations and a more granular

variable (the number of occurrences) is needed.

From the number of occurrences NOjrt of each technological class in each region at time t, we

can compute the observed number of co-occurrences between two technology classes j and k as

NCOobs
jkt =

∑

r NOjrtNOkrt. Also in this case, the number of co-occurrences will depend on the

size of j and k, and we proceed with the index normalisation. Following Uzzi et al. (2013), we

create, for each year, a null model of the weighted bipartite network with regions and technology

classes as nodes. Edges connect regions with technology classes in which they patent, and edge

weights are equal to the number of occurrences of each technological class in each region. The null

model creates a randomised version of the weighted bipartite network that preserves node degrees,

i.e. the weighted number of technologies associated with each region and the weighted number

of regions in which each technology occurs. Then we can determine the expected number of co-

occurrences among technological classes if the technological capabilities were randomly assigned

to European regions by creating 100 different randomised bipartite networks and computing the

corresponding numbers of co-occurrences between technologies: NCOexp
jkt =

∑
100

b=1
NCOb

jkt

100
, where

NCOb
jkt is the number of co-occurrences between technologies j and k at time t in the randomised

bipartite network b. Finally, the technological proximity between j and k at time t is:

TPjkt =

arctan

(

NCOobs
jkt

NCO
exp

jkt

)

π
2

. (7)

The arc-tangent transformation and normalisation (π/2) allow us to obtain a more stationary

variable ranging between 0 (unconventional or atypical combinations) and 1 (conventional and
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typical combinations).

In the resulting technological knowledge space, technologies close to each other are those that

frequently co-occur in regions. By analysing the relevance in each region of atypical (distant)

technology pairs, we can instead compute the regional technological unconventionality:

Tech Unconventionalityrt = 1− 1stpercentile (Frt(TCjkt)) , (8)

where Frt(TCjkt) is the cumulative distribution of proximity among pairs of technology classes j

and k in the region r at time t. By selecting the 1st per centile of this distribution, we detect the

relevance of atypical combinations of technologies (that is, technologies with proximity close to 0)

in the region. To interpret the index as technological unconventionality, we then subtract to one

this per centile.6

Employment and GDP growth. As indicators of economic performance, we use employment

growth and GDP growth. For each region r at time t, we define:

Emp Growthrt =
Empr,t − Empr,t−1

Empr,t−1

, (9)

where Empr,t is the level of employment of region r at time t, as defined in the Eurostat database.

And:

GDP Growthrt =
GDPr,t −GDPr,t−1

GDPr,t−1

, (10)

where GDPr,t is the level of GDP of region r at time t.

4.2 Descriptive statistics

The final dataset contains 7,350 region-year observations7 and includes information about employ-

ment growth, GDP growth, technological coherence, technological unconventionality, number of

patents, and population.

6The choice of the 1st per centile of the distribution results from the need to detect atypical combinations in regions
of different sizes. Since very large regions or regions with a high number of patents have a considerable number of
technology pairs, a higher per centile of the distribution may not properly detect unconventional technological pairs.
However, we tested the robustness of our results by considering different per centiles of the distribution and our
conclusions hold.

7The number of observation in the econometric models is lower – 6,794 – due to the use of lagged variables in
PVAR and impulse response estimations.
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Summary statistics on these variables are shown in Table 1, while Figures 1 and 2 depict the

evolution of regional technological diversification over decades. As shown in the figures, the number

of regions with information on technological diversification and economic activities has increased

over time since we obtained data on the Balkans and eastern Europe for more recent years. The

average value of technological coherence is quite uniform across regions and has grown slightly over

time (on average), despite the entrance of areas with low technological relatedness. We observe

instead a slight decrease in the average value of technological unconventionality due to the entrance

of regions with a high degree of technological conventionality. Technologically conventional areas

are, indeed, concentrated in eastern Europe, the Balkan, and the Iberian peninsula. For both

dimensions of technological diversification, we detect a tendency to stabilise on more similar values

across European regions in the last decade of observation (2005–2014).

Table 1: Summary statistics

Mean Std Min Max Count

Emp Growth 0.01 0.02 -0.21 0.28 7350
GDP Growth 0.02 0.04 -0.64 0.63 7350
Tech Coherence 4.98 0.94 0.00 11.87 7350
Tech Unconv 0.76 0.08 0.12 0.98 7350
No Patents 242.65 436.55 1.00 3973.00 7350
Population (thousands) 1853.95 1497.34 113.12 12079.34 7350
Year 1998.74 9.59 1981 2014 7350
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Figure 1: Evolution of technological coherence of regions. Average values by decades.

(a) Tech Coherence 1981–1994 (b) Tech Coherence 1995–2004

(c) Tech Coherence 2005–2014
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Figure 2: Evolution of technological unconventionality of regions. Average values by decades.

(a) Tech Unconventionality 1981–1994 (b) Tech Unconventionality 1995–2004

(c) Tech Unconventionality 2005–2014
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5 Results

Table 2 presents the coefficients from our PVAR model and Figure 3 displays the associated orthog-

onalised impulse response functions. Each subgraph traces the effects of a time-zero one standard

deviation shock in the impulse variable. As noted in Section 4.1 above, the information criterion

indicated that our model should include one lag. Moreover, in the estimations we used the first

two untransformed lags of each variable as instruments.8

Table 2: Main results

(1) (2) (3) (4)
Tech Unconvt Tech Coherencet Emp Growtht GDP Growtht

Tech Unconvt−1 0.159∗∗∗ -0.988 0.000209 0.0302∗∗

(0.0450) (0.754) (0.00928) (0.0140)
Tech Coherencet−1 -0.0233∗∗∗ 0.515∗∗∗ 0.00178∗∗∗ -0.00167∗∗

(0.00250) (0.0425) (0.000576) (0.000736)
Emp Growtht−1 -0.0772 5.485∗∗∗ 0.239∗∗∗ -0.105∗∗∗

(0.0486) (0.661) (0.0400) (0.0258)
GDP Growtht−1 0.168∗∗∗ -5.009∗∗∗ 0.138∗∗∗ 0.511∗∗∗

(0.0397) (0.590) (0.0133) (0.0297)

Observations 6,794 6,794 6,794 6,794

Notes: 1-lag PVAR estimations of the following reduced form model: Xrt = α+
∑p

i=1
βiXr,t−i+ϕr +

ϵrt. The main variables are technological unconventionality, technological coherence (as a measure of
technological relatedness), employment growth and GDP growth at time t in region r. All regressions
include region-fixed effects. Standard errors are clustered at the regional level. ∗∗∗ p<0.01, ∗∗ p<0.05,
∗ p<0.1

The four subgraphs in the lower left quadrant of Figure 3 are of particular interest as they

depict the effects of technological diversification on employment and GDP growth over ten years.

The results in Figure 3 and Table 2 corroborate the findings of previous contributions on the

short-term effects of technological relatedness and employment growth (see, for example, Rocchetta

et al., 2022). Evidence presented in Figure 3 indicates that one standard deviation shock to tech-

nological relatedness increases the growth rate of employment by approximately 0.75 percentage

points. This effect falls to zero within 5 years. This result suggests that the ability of a regional

economy to create employment is stronger when its technological structure exhibits a higher de-

gree of cognitive proximity. Conversely, the effect of technological relatedness on GDP growth is

negative. A one standard deviation shock on technological relatedness reduces GDP growth by 0.3

percentage points in time zero. This negative effect is statistically significant and persists, though

8Our results are robust to 2nd order VAR and use more lags as instruments (see Appendix A).
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Figure 3: Impulse response: Main results

Notes: IRF shows the effect of a standard deviation shock of the impulse variable on one unit of the response variable
over 10 years. Error bars (in grey) are generated by Monte Carlo simulations using 1,000 draws.
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at a diminishing magnitude, for ten years. These results suggest that technological relatedness has

a positive short-term impact on employment growth, but a negative and persistent one on more

general indicators of regional economic performance.

When we move to the analysis of technological unconventionality and its effects, results pre-

sented in Figure 3 and Table 2 on the effect on GDP growth are in line with the idea that unconven-

tional combinations of knowledge give rise to more value and more impact. A shock to technological

unconventionality has an initial positive effect on GDP growth of 0.1 percentage points. Not only

is the impact of a different sign to that of technological relatedness, but the effect of this time-zero

shock is larger in subsequent periods and remains statistically significant and positive. We find no

evidence of a statistically significant influence of technological unconventionality on employment

growth. Thus, regional technological unconventionality has a long-term positive effect on GDP

growth but no impact on regional employment.

The subgraphs in the top right quadrant of Figure 3 show the effects of GDP and employment

on technological diversification. GDP has significant negative effects over a sustained period on

technological relatedness and positive effects on unconventionality. Employment fosters greater

levels of relatedness. The initial effects on unconventionality are statistically insignificant, but later

periods show a small negative effect. Finally, the bottom right quadrant of Figure 3 demonstrates

that one technological feature has a negative effect on the other. These effects persist over our ten

year horizon.

5.1 Heterogeneous effects

In this section, we explore heterogeneous effects across regions with different characteristics. First,

we split the sample according to whether the regions belong (or not) to the EU15 area (the compo-

sition of the European Union from 1995 to 2004)9 and Norway. Second, we identify the most and

least innovative regions by employing the average of the total number of patents whose inventors

are located in the region.

Regions in and outside EU15 Table 3 reports the coefficients of the PVAR model applied to

the subsets of regions of EU15 and Norway vs. the effects in the remaining countries, while Figure 4

presents the orthogonalised impulse response functions associated with those PVAR models. While

the complementary effects of technological diversification on employment and GDP growth in the

9EU15 includes the following countries: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland,
Italy, Luxembourg, the Netherlands, Portugal, Spain, Sweden, and the UK.
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short and long run are confirmed for regions in EU15 or Norway, the impact is negligible or null in

all the other regions. Our main results are therefore driven by regions belonging to EU15 countries

and Norway.

Specifically, in the EU15 and Norway regions, a standard deviation shock in technological

relatedness leads to an initial 0.05 per cent growth in employment and a decrease of 0.2 per cent

points GDP growth. In the subsequent period, one standard deviation shock in technological

relatedness increases employment growth by 0.15 per cent points. These results are in line with

the evidence presented in Table 2 and Figure 3. Following our previous findings, the effect of

technological unconventionality is significant only on GDP growth, and one standard deviation

shock results in an initial increase of 0.2 per cents points in GDP growth. In the following period,

the effect of one standard deviation shock of technological unconventionality increases GDP growth

by 0.4 per cent points.

Concerning Figure 4b and Table 3b, we can observe that in non-EU15 European regions, tech-

nological relatedness has an initial positive effect on employment growth of 0.09. This evidence

corroborates the idea that technologically coherent knowledge bases allow regions to produce in-

cremental new knowledge that improves employment performance. Figure 4b also highlights that

technological relatedness leads to an initial negative effect of 0.2 on GDP growth. In regions out-

side the EU15, we observe a negative effect of technological unconventionality on GDP growth. In

particular, Figure 4b highlights that a standard deviation shock in technological unconventionality

leads to a fall in GDP growth of around 0.7 per cent points. However, Figure 4b also indicates

that a standard deviation shock in technological unconventionality leads to an increase of 0.1 per

cent points in employment growth. It is possible that in regions with a less mature industrial

structure, unconventional technological combinations may lead to the emergence of new industries

and, therefore, the creation of new jobs.

20



Table 3: Effects of technological diversification in regions in and outside EU15 and Norway.

(a) Regions in EU15 and Norway.

(1) (2) (3) (4)
Tech Unconvt Tech Coherencet Emp Growtht GDP Growtht

Tech Unconvt−1 0.129∗∗ 1.163∗ 0.0148 0.0521∗∗∗

(0.0530) (0.662) (0.00943) (0.0166)
Tech Coherencet−1 -0.0288∗∗∗ 0.788∗∗∗ 0.00255∗∗∗ -0.00203∗∗

(0.00328) (0.0481) (0.000611) (0.000916)
Emp Growtht−1 -0.148∗∗∗ 2.350∗∗∗ 0.272*** 0.0589*

(0.0563) (0.822) (0.0528) (0.0304)
GDP Growtht−1 0.240∗∗∗ 0.536 0.139∗∗∗ 0.316∗∗∗

(0.0441) (0.444) (0.0140) (0.0322)

Observations 5,944 5,944 5,944 5,944

Notes: 1-lag PVAR estimations of the following reduced form model on EU15 and Norway regions:
Xrt = α+

∑p

i=1
βiXr,t−i+ϕr+ϵrt. The main variables are technological unconventionality, technological

coherence (as a measure of technological relatedness), employment growth and GDP growth at time t

in region r. All regressions include region-fixed effects. Standard errors are clustered at the regional
level and obtained by Monte Carlo simulations using 1,000 draws. ∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

(b) European regions not in EU15 or Norway.

(1) (2) (3) (4)
Tech Unconvt Tech Coherencet Emp Growtht GDP Growtht

Tech Unconvt−1 0.219∗∗∗ -1.349∗ 0.00899 0.0215
(0.0569) (0.730) (0.0154) (0.0184)

Tech Coherencet−1 -0.00767∗∗ 0.0476 0.000927 0.000398
(0.00340) (0.0555) (0.000852) (0.00119)

Emp Growtht−1 0.683∗∗∗ 2.391 0.199∗∗∗ -0.152∗∗∗

(0.118) (1.561) (0.0457) (0.0517)
GDP Growtht−1 -0.877∗∗∗ -3.294∗∗ 0.0561 0.676∗∗∗

(0.157) (1.309) (0.0369) (0.0590)

Observations 1,103 1,103 1,103 1,103

Notes: 1-lag PVAR estimations of the following reduced form model on regions that do not belong
to EU15: Xrt = α+

∑p

i=1
βiXr,t−i + ϕr + ϵrt. The main variables are technological unconventionality,

technological coherence (as a measure of technological relatedness), employment growth and GDP
growth at time t in region r. All regressions include region-fixed effects. Standard errors are clustered
at the regional level. ∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

21



Figure 4: Impulse response: Regions in and outside EU15 and Norway.

(a) Regions in EU15 and Norway.

(b) European regions not in EU15 and Norway.

Notes: IRF shows the effect of a standard deviation shock of the impulse variable on one unit of the response variable
over 10 years. Error bars (in grey) are generated by Monte Carlo simulations using 1,000 draws.
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More and less innovative regions As a second heterogeneity test, we split regions according

to their total number of patents and identify the most and least innovative regions. The most

innovative regions are those with more than 76 patents (average total number of patents across

regions) on average over the period 1980-2014.

Table 4 reports the PVAR results and Figure 5 shows the corresponding impulse response func-

tions. From Table 4a and Figure 5a, we can confirm the statistically significant (and positive)

effects of technological diversification on employment and GDP growth in the most innovative re-

gions, both in the short and long run. It is worth noticing that in this case the effect of technological

relatedness is also positive on GDP growth. For what concerns the less innovative regions (Table

4b and Figure 5b), instead, there is no effect of shocks in technological unconventionality. Although

these regions are relatively less technically advanced, we can still observe an effect of technological

relatedness on employment growth.
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Table 4: Effects of technological diversification in the most and less innovative regions.

(a) The most innovative regions.

(1) (2) (3) (4)
Tech Unconvt Tech Coherencet Emp Growtht GDP Growtht

Tech Unconvt−1 0.354∗∗∗ 4.936∗∗∗ 0.0274∗ 0.296∗∗∗

(0.0360) (0.327) (0.0151) (0.0256)
Tech Coherencet−1 -0.0253∗∗∗ 1.119∗∗∗ 0.00421∗∗∗ 0.0129∗∗∗

(0.00217) (0.0207) (0.000912) (0.00147)
Emp Growtht−1 -0.239∗∗∗ 3.585∗∗∗ 0.175∗∗∗ -0.0846∗

(0.0289) (0.382) (0.0312) (0.0489)
GDP Growtht−1 0.207∗∗∗ -1.750∗∗∗ 0.139∗∗∗ 0.213∗∗∗

(0.0207) (0.194) (0.0132) (0.0475)

Observations 4,175 4,175 4,175 4,175

Notes: 1-lag PVAR estimations of the following reduced form model on the most innovative regions:
Xrt = α+

∑p

i=1
βiXr,t−i+ϕr+ϵrt. The main variables are technological unconventionality, technological

coherence (as a measure of technological relatedness), employment growth and GDP growth at time t

in region r. All regressions include region-fixed effects. Standard errors are clustered at the regional
level. ∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

(b) The less innovative regions.

(1) (2) (3) (4)
Tech Unconvt Tech Coherencet Emp Growtht GDP Growtht

Tech Unconvt−1 0.0971∗∗ -1.248∗ 0.00318 0.0222
(0.0455) (0.686) (0.0107) (0.0164)

Tech Coherencet−1 -0.00907∗∗∗ 0.192∗∗∗ 0.00125∗ 2.94e-05
(0.00281) (0.0439) (0.000637) (0.000851)

Emp Growtht−1 0.283∗∗∗ 6.376∗∗∗ 0.205∗∗∗ -0.0863∗∗∗

(0.0770) (1.173) (0.0668) (0.0335)
GDP Growtht−1 -0.506∗∗∗ -10.93∗∗∗ 0.184∗∗∗ 0.655∗∗∗

(0.0910) (1.348) (0.0238) (0.0396)

Observations 2,619 2,619 2,619 2,619

Notes: 1-lag PVAR estimations of the following reduced form model on less innovative regions: Xrt =
α +

∑p

i=1
βiXr,t−i + ϕr + ϵrt. The main variables are technological unconventionality, technological

coherence (as a measure of technological relatedness), employment growth and GDP growth at time t

in region r. All regressions include region-fixed effects. Standard errors are clustered at the regional
level and obtained by Monte Carlo simulations using 1,000 draws. ∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1
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Figure 5: Impulse response: The most and less innovative regions

(a) The most innovative regions.

(b) The less innovative regions.

Notes: IRF shows the effect of a standard deviation shock of the impulse variable on one unit of the response variable
over 10 years. Results refer to the subsample of less innovative regions. Error bars (in grey) are generated by Monte
Carlo simulations using 1,000 draws.
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5.2 Robustness checks

We test the robustness of our results by adding exogenous controls (population level) at the regional

level in Table A1 and Figure A1. In Table A2 and Figure A2, instead, we examine whether our

results are driven by the number of lags in the “GMM-style” instrument. Specifically, we estimate

our main model using three “GMM-style” instruments instead of two.

We also assess the robustness of the results for lag selection in our PVAR model. To check

whether our results are driven by the selection of the lag length, we estimate our PVAR model

using two lags. We present the results in Table A3 and Figure A3. Finally, we show in Table

A4 and Figure A4 and Table A5 and Figure A5 our estimations using two alternative Cholesky

decomposition orderings.

All these additional results and figures, presented in Appendix A, confirm that technological

relatedness has a short-term effect on employment growth and a negative effect on GDP growth.

Technological unconventionality, instead, has a longer-lasting positive impact on GDP growth and

no effect, or negligible effects, on employment growth. This evidence corroborates our main results,

suggesting a complementary impact of technological relatedness and technological unconventionality

both in terms of the persistence of the effect and the economic output variable affected by the

different types of technological diversification patterns.

6 Conclusions

This study explores what kind of regional technological diversification – in terms of recombining

more or less similar knowledge in more or less conventional ways – is conducive to superior eco-

nomic performance in the short and long run. We began our contribution by reflecting on what

type of knowledge diversification patterns may be associated with regional competitive advan-

tages. On the one hand, we considered the relatedness of technological capabilities in a region,

and on the other, the presence of rare knowledge configurations as an indicator of technological

unconventionality. These indicators reflect two crucial and complementary aspects of technologi-

cal diversification. Local economies may build their technological portfolios by exploiting existing

technologies or branching into related ones and, at the same time, be prepared to catch new tech-

nological opportunities by exploring unprecedented and rare combinations of technological inputs.

While recombining more related technologies ensures easier adaptation to changes in market con-

ditions, unconventional recombinations help regions to move towards new technological frontiers.
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An increase in technological relatedness induce a positive effect on employment in the short run

and negative effects in the long run. Conversely, an increase in technological unconventionality

positively affects output growth in the long run.

In addition to its novel empirical findings, the paper also makes theoretical and methodologi-

cal contributions. We elaborated on the direction and the short- vs. long-term effects of different

forms of technological diversification on regions’ economic performance. We adopted a methodolog-

ical framework that allowed for the identification of causal effects of technological diversification,

thus addressing in a novel way the pervasive endogeneity problems that make causal claims very

difficult in the existing innovation and economic geography literature. Thirdly, and differently

from the prior art on regional technological diversification, we used a new measure of technological

unconventionality to complement the more established indicator of technological relatedness in a

performance framework.

The study has, of course, limitations. More needs to be done to unpack the role of technological

capabilities in shaping employment and GDP growth in regions with different levels of economic,

industrial and technological development. Furthermore, future studies should consider the effect of

different profiles of technological capabilities within and across sectors and how these could increase

competitive gaps between top-performing and laggard regions.

These findings have relevant implications for the design of appropriate regional development

policy instruments. Our results confirm that effective regional development strategies should be

characterised by a careful assessment of the structure of the regional knowledge base. Importantly,

however, diversification strategies have different, and more or less persistent, effects on GDP and

employment. The identification of technological capabilities is essential to devise the most appro-

priate incentive schemes. If a region has to improve its employment growth performance, it can

design innovation policies that promote the recombination of related pieces of knowledge. The

exploitation of related knowledge components through recombinant search allows local economies

to create new technological knowledge that is related to the existing components of the technolog-

ical space. This smoother evolution of the technological space favours the short-term adaptation

of the region’s economic actors. Conversely, if a region targets GDP growth, it may promote the

recombination of knowledge that is more distant from existing technological capabilities. The explo-

ration of unconventional recombinations favours the long-term competitive advantages of regional

economies. Identifying which technological diversification choices can affect the desired macroe-

conomic outcome is key to designing an appropriate place-based policy mix, and overcoming the
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potential limits of Smart Specialisation strategies. Exploiting already existing local technological

knowledge is important to maintain satisfactory performance in the job market, but it is also fun-

damental to explore unconventional combinations to generate long-term growth potential. With

specific reference to Smart Specialisation strategies, our study points to key differences in impacts

depending on whether we consider the short or the long term. It will be important to take into

account the possibility that short-term effects of place-based policies based on relatedness could

be positive, but not particularly persistent. On the other hand, it is possible that investments in

unconventional knowledge combinations might succeed in the long run, but might fail to produce

positive effects on employment. Therefore, it will be important to assess whether output growth

induced by place-based policies will translate into higher wages, or will further contribute to the

decline in the labour share of output that has characterised modern macroeconomic trends, in

association with growing income inequalities.
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A Additional results

Table A1: Main results with additional controls.

(1) (2) (3) (4)
Tech Unconvt Tech Coherencet Emp Growtht GDP Growtht

Tech Unconvt−1 0.183*** -1.293* 0.00173 0.0288**
(0.0461) (0.736) (0.00942) (0.0135)

Tech Coherencet−1 -0.0220*** 0.518*** 0.00191*** -0.000356
(0.00253) (0.0474) (0.000611) (0.000760)

Emp Growtht−1 -0.0906* 4.335*** 0.250*** -0.103***
(0.0540) (0.674) (0.0393) (0.0264)

GDP Growtht−1 0.162*** -3.074*** 0.114*** 0.441***
(0.0404) (0.549) (0.0131) (0.0319)

Population 4.50e-06 -3.37e-05 -2.86e-06 -2.00e-05***
(1.16e-05) (9.25e-05) (2.91e-06) (4.94e-06)

Observations 6,794 6,794 6,794 6,794

Notes: 1-lag PVAR estimations of the following reduced form model: Xrt = α+
∑p

i=1
βiXr,t−i+ϕr +

ϵrt. The main variables are technological unconventionality, technological coherence (as a measure of
technological relatedness), employment growth and GDP growth at time t in region r. All regressions
include region-fixed effects and control variables (population level). Standard errors are clustered at
the regional level. ∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1
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Figure A1: Impulse response: Main results with additional controls.

Notes: IRF shows the effect of a standard deviation shock of the impulse variable on one unit of the response variable
over 10 years. Error bars (in grey) are generated by Monte Carlo simulations using 1,000 draws.
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Table A2: Main results with three lags as instruments.

(1) (2) (3) (4)
Tech Unconvt Tech Coherencet Emp Growtht GDP Growtht

Tech Unconvt−1 0.211∗∗∗ -2.290∗∗∗ 0.00660 0.0598∗∗∗

(0.0453) (0.717) (0.00974) (0.0146)
Tech Coherencet−1 -0.0215∗∗∗ 0.359∗∗∗ 0.00150∗∗∗ 0.000327

(0.00243) (0.0439) (0.000572) (0.000782)
Emp Growtht−1 -0.0835∗ 20.52∗∗∗ 0.295∗∗∗ -0.162∗∗∗

(0.0453) (1.920) (0.0446) (0.0299)
GDP Growtht−1 0.143∗∗∗ -15.19∗∗∗ 0.0949∗∗∗ 0.555∗∗∗

(0.0381) (1.241) (0.0131) (0.0312)

Observations 6,794 6,794 6,794 6,794

Notes: 1-lag PVAR estimations of the following reduced form model: Xrt = α+
∑p

i=1
βiXr,t−i+ϕr +

ϵrt. The main variables are technological unconventionality, technological coherence (as a measure of
technological relatedness), employment growth and GDP growth at time t in region r. All regressions
include region-fixed effects. Standard errors are clustered at the regional level and obtained by Monte
Carlo simulations using 1,000 draws. ∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

Table A3: Main results with second order VAR.

(1) (2) (3) (4)
Tech Unconvt Tech Coherencet Emp Growtht GDP Growtht

Tech Unconvt−1 0.0443 0.241 0.000667 0.0414∗∗

(0.0527) (0.872) (0.0121) (0.0171)
Tech Unconvt−2 0.0263 -0.565 0.00381 0.0320∗∗∗

(0.0376) (0.617) (0.00990) (0.0105)
Tech Coherencet−1 -0.0200∗∗∗ 0.400∗∗∗ 0.00174∗∗ 0.00242∗∗

(0.00424) (0.0635) (0.000782) (0.00113)
Tech Coherencet−2 -0.0139∗∗∗ 0.239∗∗∗ -0.000272 -0.00305∗∗∗

(0.00197) (0.0443) (0.000570) (0.000625)
Emp Growtht−1 0.128∗∗ 0.232 0.183∗∗∗ -0.0674∗∗

(0.0508) (0.792) (0.0619) (0.0283)
Emp Growtht−2 -0.0264 2.843∗∗∗ 0.0315 -0.0886∗∗∗

(0.0461) (0.779) (0.0339) (0.0277)
GDP Growtht−1 -0.0481 -0.683 0.138∗∗∗ 0.256∗∗∗

(0.0399) (0.471) (0.0171) (0.0277)
GDP Growtht−2 0.0226 -0.530 0.0491∗∗∗ 0.268∗∗∗

(0.0317) (0.367) (0.0153) (0.0320)

Observations 6,510 6,510 6,510 6,510

Notes: 1-lag PVAR estimations of the following reduced form model: Xrt = α+
∑p

i=1
βiXr,t−i+ϕr +

ϵrt. The main variables are technological unconventionality, technological coherence (as a measure of
technological relatedness), employment growth and GDP growth at time t in region r. All regressions
include region-fixed effects. Standard errors are clustered at the regional level. ∗∗∗ p<0.01, ∗∗ p<0.05,
∗ p<0.1
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Figure A2: Impulse response: Main results with three lags as instruments.

Notes: IRF shows the effect of a standard deviation shock of the impulse variable on one unit of the response variable
over 10 years. Error bars (in grey) are generated by Monte Carlo simulations using 1,000 draws.
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Figure A3: Impulse response: Main results with second-order VAR.

Notes: IRF shows the effect of a standard deviation shock of the impulse variable on one unit of the response variable
over 10 years. Error bars (in grey) are generated by Monte Carlo simulations using 1,000 draws.
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Table A4: Main results with an alternative Cholesky decomposition (1).

(1) (2) (3) (4)
Tech Coherencet Tech Unconvt Emp Growtht GDP Growtht

Tech Coherencet−1 0.515∗∗∗ -0.0234∗∗∗ 0.00175∗∗∗ -0.00165∗∗

(0.0425) (0.00250) (0.000585) (0.000735)
Tech Unconvt−1 -0.992 0.159∗∗∗ 0.000570 0.0303∗∗

(0.754) (0.0450) (0.00931) (0.0140)
Emp Growtht−1 5.471∗∗∗ -0.0730 0.239∗∗∗ -0.110∗∗∗

(0.671) (0.0493) (0.0388) (0.0261)
GDP Growtht−1 -4.955∗∗∗ 0.165∗∗∗ 0.134∗∗∗ 0.515∗∗∗

(0.591) (0.0401) (0.0132) (0.0300)

Observations 6,794 6,794 6,794 6,794

Notes: 1-lag PVAR estimations of the following reduced form model: Xrt = α+
∑p

i=1
βiXr,t−i+ϕr +

ϵrt. Main variables are technological coherence (as a measure of technological relatedness), technological
unconventionality, employment growth and GDP growth at time t in region r. All regressions include
region-fixed effects. Standard errors are clustered at the regional level. ∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

Table A5: Main results with an alternative Cholesky decomposition (2).

(1) (2) (3) (4)
Tech Unconvt Tech Coherencet GDP Growtht Emp Growtht

Tech Unconvt−1 0.159∗∗∗ -0.992 0.0303∗∗ 0.000570
(0.0450) (0.754) (0.0140) (0.00931)

Tech Coherencet−1 -0.0234∗∗∗ 0.515∗∗∗ -0.00165∗∗ 0.00175∗∗∗

(0.00250) (0.0425) (0.000735) (0.000585)
GDP Growtht−1 0.165∗∗∗ -4.955∗∗∗ 0.515∗∗∗ 0.134∗∗∗

(0.0401) (0.591) (0.0300) (0.0132)
Emp Growtht−1 -0.0730 5.471∗∗∗ -0.110∗∗∗ 0.239∗∗∗

(0.0493) (0.671) (0.0261) (0.0388)

Observations 6,794 6,794 6,794 6,794

Notes: 1-lag PVAR estimations of the following reduced form model: Xrt = α+
∑p

i=1
βiXr,t−i+ϕr +

ϵrt. The main variables are technological unconventionality, technological coherence (as a measure of
technological relatedness), GDP growth and employment growth at time t in region r. All regressions
include region-fixed effects. Standard errors are clustered at the regional level. ∗∗∗ p<0.01, ∗∗ p<0.05,
∗ p<0.1
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Figure A4: Impulse response: Main results with an alternative Cholesky decomposition (1).

Notes: IRF shows the effect of a standard deviation shock of the impulse variable on one unit of the response variable
over 10 years. Error bars (in grey) are generated by Monte Carlo simulations using 1,000 draws.
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Figure A5: Impulse response: Main results with an alternative Cholesky decomposition (2).

Notes: IRF showing the effect of a standard deviation shock of the impulse variable on one unit of the response
variable over 10 years. Error bars (in gray) are generated by Monte Carlo simulations using 1,000 draws.
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