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Abstract

The Banking Euro Area Stress Test (BEAST) is a large-scale semi-structural model
developed to analyse the euro area banking system from a macroprudential perspective.
The model combines the dynamics of approximately 90 of the largest euro area banks with
those of individual euro area economies. It reflects the heterogeneity of banks by replicat-
ing the structure of their balance sheets and profit and loss accounts. Additionally, it allows
banks to adjust their assets, funding mix, pricing decisions, management buffers, and profit
distribution along with individual bank conditions, including their capital and liquidity re-
quirements, and other supervisory limits. The responses of banks impact credit supply con-
ditions and have feedback effects on the macroeconomic environment. Stochastic solutions
of the model provide a solid foundation for investigating multiple scenarios, deriving at-risk
measures, and estimating model uncertainty. The model is regularly utilised to assess the
resilience of the euro area banking sector, including in the biennial ECB macroprudential
stress tests, as well as to analyse the effects of regulatory, macroprudential, and monetary
policy changes.

Keywords: macro stress test, macroprudential policy, banking sector deleveraging, real
economy-financial sector feedback loop

JEL Classification: E37, E58, G21, G28
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Non-technical summary
Macroprudential policy assessment and stress testing play vital roles in supporting the ECB’s
macroprudential mandate. This paper introduces the Banking Euro Area Stress Test (BEAST),
a semi-structural macro-micro model designed to fulfil tasks derived from this mandate. The
BEAST model incorporates a macroeconomic block with cross-country spillovers, a compre-
hensive representation of the banking sector, and dynamic interdependencies between the real
economy and the banking sector. It captures the diverse behaviour of approximately 90 individ-
ual euro area banks, subject to system-wide and bank-specific capital requirements, buffers, and
liquidity standards, and influenced by both conventional and unconventional monetary policy.

The BEAST model serves as a "workhorse model," a versatile tool for macroprudential
stress testing, scenario analysis, and policy impact assessment with implications for financial
stability. As the ECB’s primary tool for macroprudential stress testing, the model features an
advanced micro-macro design, simultaneous feedback loops, and high flexibility. It allows for
conducting top-down stress tests with dynamic balance sheet adjustments, considering amplifi-
cation mechanisms such as the interplay between solvency and funding costs and the potential
disruptive effects of stress in the banking system on the real economy. Its detailed specification
of supervisory, macroprudential, and monetary policy measures, along with their transmission
channels within banks and the broader economic system, enables effective support for a banking
sector-targeted policy assessment.

The model’s regular and versatile applications have led to the development of a sophisti-
cated infrastructure, facilitating seamless model updates and its application at short notice. The
updates concern the latest macrofinancial and bank-level data, as well as forward-looking as-
pects such as the future economic outlook based on ECB staff’s macroeconomic projections
and expected policy paths. The semi-structural design of the model accommodates the dynamic
absorption of many more qualitative and supervisory information sources.

The model has supported multiple methodological innovations in bank stress testing and
policy assessment. It has allowed for exploring the use of parametric and bootstrapped stochas-
tic shocks to inject and assess macrofinancial uncertainty, examining the evolution of at-risk
measures, redefining scenario designs to ensure consistency with desired narratives, and ex-
ploring parameter uncertainty and its impact on model results in policy exercises.

Although the infant version of the model and its core mechanisms were documented in
Budnik et al. [2020], this paper presents a snapshot of a mature model fully integrated into
the policy process. Over four years of development, the model has been expanded with new
blocks, evolving and maturing through its support of various analytical projects. New equations
have been added, and earlier fine-tuned and further empirically validated. This paper marks the
completion of the model and serves as a testament to the capabilities and limitations of semi-
structural models in the realm of financial stability. It also aims to inspire further exploration
of risk and policy assessment techniques that strike a balance between computational intensity
and economic relevance.
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1 Introduction

The string of bank failures during the global financial crisis (GFC) resulted in deep scepticism
about bank-reported capital adequacy and prompted supervisors to look for new ways to reliably
assess and set targets for bank solvency (Schuermann [2014]). The crisis exposed the limitations
of the so-called microprudential supervision, where supervisors focused primarily on individual
institutions to ensure that they are safe, sound, and resilient to adverse shocks. However, system-
wide financial risks could grow unchecked. Since the GFC, regulators have been expanding
their toolkit to achieve a more holistic approach to financial supervision, commonly known as a
macroprudential perspective (IMF [2022]). The ultimate objective of macroprudential policy is
to ensure financial stability1. Following this ambition, the new Basel III regulatory framework
introduced new capital and liquidity standards coupled with an arsenal of new macroprudential
tools. Furthermore, supervisory bodies adopted stress testing and internal risk management
tools previously used by banks, to analyse institutions’ complex balance sheets, uncover their
vulnerabilities, and respond promptly to their capital and liquidity needs (Bookstaber et al.
[2013]).2

Macroprudential policy assessment and stress testing are two crucial analytical building
blocks that support the macroprudential mandate of the ECB. The EU regulatory framework has
been revised to incorporate a macroprudential perspective, with the ECB (and central banks in
general) receiving a new mandate.3 Moreover, the recent ECB’s strategy review (ECB [2022])
recognises the importance of effective macroprudential policy for the smooth conduct of mon-
etary policy and states that “there is a clear conceptual case for the ECB to take financial sta-
bility considerations into account in its monetary policy deliberations”. This paper describes a
semi-structural macro-micro Bank Euro Area Stress Test (BEAST) model developed to support
the ECB’s macroprudential mandate. The BEAST is a widely used “workhorse model” used
in macroprudential stress testing, scenario analysis, and impact assessments of policies that
influence financial stability. It incorporates a macroeconomic block including cross-country
spillovers via trade linkages, a detailed representation of around 90 individual euro area banks
(covering roughly 70% of the euro area banking sector), and dynamic interdependencies be-
tween the real economy and the banking sector. Banks are subject to system-wide and bank-
specific capital requirements and buffers, liquidity standards, and can be impacted by conven-
tional and unconventional monetary policy measures. The model’s macro-financial and be-

1Financial stability is defined as a condition in which the financial system as a whole is capable of withstanding
shocks and the unravelling of financial imbalances. This includes making the entire financial system more resilient
and limiting the build-up of vulnerabilities, in order to mitigate systemic risk and ensure that financial services
continue to be provided effectively to the real economy (ECB [2022a]).

2Supervisory stress testing broadly refers to exercises designed and executed by supervisory authorities. For
a history and comparison of supervisory stress testing in different jurisdictions, see, for example, Baudino et al.
[2018] or Pliszka [2021].

3Effective from 1 January 2014, the SSM Regulation includes a broad set of macroprudential instruments
and grants the ECB the power to use macroprudential instruments in addition to the national regulation, if nec-
essary, to address macroprudential risks in the SSM countries. In addition to CRR/CRD IV, referring to Direc-
tive 2013/36/EU and Regulation (EU) N° 575/2013, the SSM Regulation refers to Council Regulation (EU) No.
1024/2013 of 15 October 2013 conferring specific tasks on the European Central Bank concerning policies re-
lating to the prudential supervision of credit institutions (OJ L 287, 29.10.2013, p. 63). In particular, Article 5
of the SSM Regulation provides that the ECB may, if deemed necessary, apply higher requirements for capital
buffers than those applied by the national competent authorities or national designated authorities of participating
Member States. These capital buffers are to be held by credit institutions at the relevant level in addition to own
funds requirements. The ECB may also apply more stringent measures aimed at addressing macroprudential risks
at the level of credit institutions subject to the procedures set out in Regulation (EU) No 575/2013 and Directive
2013/36/EU in the cases specifically set out in relevant Union law.
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havioural equations are estimated with the use of macroeconomic and bank-level data, and all
the equations are solved simultaneously to efficiently incorporate the desired feedback loops. In
this manner, the BEAST model significantly enhances the methodological toolkit of the ECB,
allowing it to conduct sophisticated analyses of the banking sector without direct involvement
from financial institutions.

The model employs a semi-structural approach that combines data-driven and structural el-
ements. Most macrofinancial and bank responses are estimated with transaction-, bank-, or
country-level data. This concerns bank loan adjustments in terms of price and volumes or fund-
ing costs. Other predominantly data-driven elements include multiple calibrated parameters
reflecting the structures of bank balance sheets and profit and loss accounts. Theoretical foun-
dations inform all empirical specifications of behavioural equations, thereby ensuring robust
long-term properties of the model. It anchors mechanisms governing banks’ liability structure
adjustments or profit distribution restrictions. Other structural elements are the explicit incorpo-
ration of regulatory limits (such as for the Maximum Distributable Amount (MDA)), accounting
rules, and the aggregation of the impact on individual banks’ into economy-wide outcomes.

The model provides projections for various categories relevant to financial stability consid-
erations. This concerns lending to the non-financial private sector, different bank liability com-
ponents, loan loss provisioning, bank solvency, and maturity mismatches. For all categories,
it combines the ability to preserve the heterogeneity of individual banks with an aggregate and
temporal perspective.

The model is well suited to support regulatory and prudential policy assessments, consid-
ering their intricate interactions with each other and other policies. It captures a wide range of
micro- and macroprudential capital- and liquidity-based instruments, as well as conventional
and unconventional monetary policy. Moreover, the policy impact assessment benefits from the
comprehensive treatment of intrabank and interbank transmission channels and the incorpora-
tion of macrofinancial feedback loops.

The construction of the model was kicked-started in the context of the preparations for the
2018 macroprudential stress test (Budnik et al. [2019]). Since 2016, the ECB has prepared what
was initially called a "top-down macroprudential extension" of the supervisory bank stress test
to quantify second-round effects not directly observed from the use of the static balance sheet
bottom-up stress test coordinated by the European Banking Authority (EBA) and the Single
Supervisory Mechanism (SSM).45 The macroprudential stress test aimed to evaluate bank re-
actions, acknowledge that they can act as shock amplifiers, and remedy other shortcomings of
the EBA/SSM exercise that might limit its realism, such as methodologically imposed caps and
floors. Its less emphasised ambition was to increase the independence from the bottom-up ap-
proaches, which could also provide banks with substantial leeway for strategic under-reporting
of vulnerabilities,6, are often deemed too resource intensive, require a strenuous effort of both
banks and supervisors, and lack the flexibility for running the analysis in an ad hoc manner
(de Guindos [2019], Kok et al. [2021]). Since 2018, the BEAST model has succeeded its prede-
cessor, the Stress Test Analytics for Macroprudential Purposes in the euro area STAMPe (Dees
et al. [2017]) as the main tool for macroprudential and top-down stress testing.7

4For a motivation and exposition, see Dees et al. [2016].
5Bottom-up stress tests are performed by banks as part of a system-wide exercise, where supervisory authorities

provide banks with common scenarios and assumptions (Baudino et al. [2018]). The EBA/SSM EU-wide stress
testing exercise has been conducted biennially since 2009 in a constrained bottom-up manner.

6For empirical evidence of the “gaming” behaviour of banks participating in the stress test, see Philippon et al.
[2017], Niepmann and Stebunovs [2018] or Quagliariello [2019].

7Top-down stress tests are performed by supervisory authorities directly using their own stress test frameworks
including data, scenarios, assumptions and models (Baudino et al. [2018]).
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The BEAST model has gradually evolved into a workhorse model applied to a wide range
of financial stability issues. Since its birth, the model has consistently supported risk assess-
ment. The risk assessment works covered identifying vulnerabilities to different macroeco-
nomic shocks, such as in the euro area macroprudential stress test of the banking sector at the
start of the coronavirus pandemic8, climate stress testing and bank interest rate risk sensitiv-
ity analysis (Budnik et al. [2022d]). Furthermore, it has supported multiple policy evaluation
projects, including the impact evaluation of the Basel III finalisation reforms (Budnik et al.
[2021b]), the ECB guidance on non-performing loans (Budnik et al. [2022c]), and tracking the
evolution of macroprudential policy stance over time (Budnik et al. [2022a]). The model has
also been used for the calibration of macroprudential buffers and the identification of optimal
macroprudential policy responses (Budnik et al. [2022b]), to support ECB communication (En-
ria [2020]), and to understand the interaction between macroprudential and monetary policy.

To place the BEAST model in the literature, it is important to note that it represents a brand-
new approach to stress testing. Its predecessor, the Stress-Test Analytics for Macroprudential
Purposes in the euro area (STAMPC) model (Dees et al. [2017]), belongs to the family of so-
called modular approaches. The STAMPC model is a rich platform of interconnected models
that leverages the infrastructures built for providing benchmark risk parameters in regular EU-
wide stress tests. It operates as a hybrid environment, utilising the results of the supervisory
stress test with constant bank balance sheets as input, and assessing the amplification mecha-
nism by sequentially applying different models. However, such an approach inherently suffers
from inconsistency and a limited ability to describe the amplification mechanisms. Other large-
scale models used by supervisory institutions, such as FLARE (Federal Reserve Board of the
USA) (Correia et al. [2022]), MFRAF (Bank of Canada) (Fique [2017]), DELFI (De Neder-
landsche Bank) (Berben et al. [2018]), or Arnie (Bank of Austria) (Feldkricher et al. [2013]),
also rely on a modular design and share similar weaknesses.

The BEAST diverges from the fragmented piecemeal or suite-of-models approach. The
BEAST model combines behavioural assumptions, the mapping of economic conditions into
bank risk parameters, and accounting identities, and solves them as a simultaneous system.
This approach strives to encapsulate all relevant elements of an amplification mechanism in
each solution, thus preserving internal consistency of feedback mechanisms, and resembling
the proposal of Krznar and Matheson [2017].9

The BEAST introduces various methodological innovations in the realm of bank stress test-
ing and policy assessment. For example, it experiments with parametric and bootstrapped
stochastic shocks to inject and assess macrofinancial uncertainty or learn about the evolution
of at-risk measures. The latter can then inform about the resilience-building benefits of policy
measures. The stochastic simulations of the model, facilitated by its semi-structural design,
allow for a new approach to scenario design, where the relevant scenario is sourced from a
family of statistically plausible scenarios and remains consistent with the desired narrative. Ad-
ditionally, the BEAST model can evaluate the uncertainty of the parameters and map it to the
uncertainty of the model results in policy exercises.

This paper describes a mature model that is fully phased-in into the policy process. Budnik
et al. [2020] documented the infant version of the model, providing a snapshot of its design and
mechanisms around a year from its inception. Since its last publication, the model has been

8For more details on the top-down macroprudential stress test, see the ECB’s report Macroprudential stress test
of the euro area banking system amid the coronavirus (COVID-19) pandemic.

9Alternative approaches, such as agent-based network models that can specifically address interconnectedness
and spill-overs (see e.g. Grzegorz [2018] or Laliotis et al. [2019]), or DSGE models with financial frictions (see
e.g. Foroni et al. [2022]) offer other possibilities but come with their own challenges in terms of calibration and
incorporating non-linear behaviour.
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enriched with new blocks, including detailed modelling of bank liabilities, funding costs, and
liquidity management, endogenous risk weights, and new mechanisms such as the feedback
loop between solvency and funding costs, endogenous write-offs, and the interplay between
management buffers and dividend payouts. The model has undergone a comprehensive vali-
dation using both qualitative and quantitative criteria. It has also evolved and matured through
its involvement in analytical projects, leading to the incorporation of new supervisory tools
(e.g. loan moratoria or NPL coverage expectations) and policies (e.g. public guarantees, profit
distribution restrictions, or ECB unconventional monetary policy measures). Many of its equa-
tions have been further fine-tuned and empirically validated.10 The growing experience with
the model and the increase in the numerical efficiency of its solution have expanded its use to
stochastic applications.

Regular applications of the model led to the development of a rich model infrastructure.
The infrastructure consists of many modules that facilitate model updates with new informa-
tion, support model adaptations, ensure its stability, e.g. via regular backups, minimise the time
needed to derive, and help analysing model outcomes. Its relevant role is to update the dynamic
absorption and the model with various sources of available information, including the most re-
cent realisation of macroeconomic data and detailed information on bank balance sheets and
profit and loss accounts obtained from supervisory reporting sources. The model also accom-
modates forward-looking information, such as macroeconomic projections of ECB staff (ECB
[2022c]), and information about already announced macroprudential and supervisory policies.
Accordingly, the information from ECB and non-ECB sources can be automatically uploaded,
integrated, and validated.

The paper marks the end of the conceptual development of the model and serves as testament
to the capabilities and limitations of semi-structural models in the field of financial stability. The
construction of a semi-structural model with individual banks has demonstrated that such large
frameworks can be effectively created and utilised within a policy institution, and numerical
challenges can be overcome. Additionally, it has highlighted the unique advantages of these
models, including their ability to capture the heterogeneity of the system, exploit rich informa-
tion, and provide narratives despite their size. The implementation of the BEAST model in the
financial stability sphere has demonstrated its ability to address numerous questions in the field
and serve as an anchor for policy discussions over time and across analyses. Furthermore, the
phased implementation of the BEAST model demonstrated advantages in developing a policy
model in conjunction with its regular policy implementation. However, the creation of models
of this type and size requires a significant investment of resources.

The model has provided new evidence regarding the relevance and mechanisms of the real
economy - banking sector and funding-solvency feedback loops. Amplification can arise from
the combination of bank heterogeneity, regulatory and accounting constraints, and the result-
ing asymmetries in bank responses that are more likely to emerge under stressed economic or
financial conditions. It can contribute to the deepening of recessions and financial strains, as
illustrated by an additional reduction in GDP by 2.6% under very severe economic conditions
and by 1. 6% under severe economic conditions, in 3-year stress test scenarios. The asymme-
tries of bank responses can also be reflected in the propagation of large-scale monetary policy
shocks.

This paper is structured as follows. Chapter 2 provides a high-level overview of the model.

10The macro-micro workstream of the Working Group on Stress Testing (WGST) has played an important role
in this process, as it has discussed and developed the model as one of its core toolboxes. In doing so, the WGST
followed its ECB Financial Stability Committee’s (FSC) mandate to operationalise methodologies and academic
research on risk analysis as well as counterfactual risk assessment and policy impact assessment.
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Chapter 3 describes the modelling approach used for the macroeconomy, while Chapter 4 delves
into the assumptions used to model banks’ behaviour, their balance sheets, and profit and loss
accounts. Chapter 5 discusses the feedback loop between the banking sector and the real econ-
omy. Chapter 6 presents different approaches to solving the model, including stochastic sim-
ulations and their applications. Chapter 7 documents the most important model properties and
selected validation analysis. Chapter 8 presents past and current applications of the model in
the policy domain. Finally, Chapter 9 concludes the paper. Several annexes at the end of the
paper provide estimation details for the model’s empirical equations.

2 Overview
The model incorporates the representation of 19 individual euro area economies within the
macro block, as well as over 90 of the largest euro area banks within the bank-level block,
represented on a consolidated level. These economies are interconnected, with cross-border
trade spillovers, as depicted in Figure 1. Banks are influenced by economic conditions not
only in the country where they are headquartered but also in other countries to which they have
exposures or from which they collect funding. Economic conditions can impact various aspects
such as the quality of bank assets, credit demand, funding costs, or availability. Simultaneously,
the lending decisions of banks, when aggregated on a country level, have an influence on the
macroeconomic outlook of that country.

Accordingly, the model incorporates two types of cross-border spillovers: trade spillovers,
which directly link the economies, and financial spillovers, which result from the international
activities of numerous European banks.

Macro block

Country1 Country2 .... Country19

Bank-level block

B B B B .... B B

... ... ... ... .... ... ...

B B B B .... B B

C
re

di
t s

up
pl

y
E

conom
ic

conditions

Notes: Country1 −Country1 represent individual euro area economies, B represents an individual bank. Straight arrows connecting
countries highlight the presence of cross-border trade spillovers. Banks headquartered in a country are positioned below the country
label. The straight arrows connecting countries and individual banks indicate the two-way interactions between banks and economies,
where these banks have exposures or source funding. The two curved arrows on the sides of the figure represent the direction of the two
components of the interactions between banks and economies.

Figure 1: Basic model structure

Each economy is represented by a set of macrofinancial variables, including GDP, inflation,
house prices, and government bond yields. The dynamics of economies are modelled in a
simplified manner using equations derived from country-level Vector Autoregression (VAR), as
discussed in chapter 3. These equations are further augmented with additional equations that
capture trade spillovers and the effects of a common monetary policy environment.

The bank’s assets consist of holdings in both the banking and trading books, including
interest-bearing securities that may be classified in either book (see Table 1). In the banking
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book, the model specifically tracks loan exposures to different sectors, such as the non-financial
corporate sector (NFC), household loans backed by real estate (HHHP), and household credit
for consumption purposes (HHCC). It also considers exposures to sovereigns (SOV ), the fi-
nancial sector (FIN), and central banks (CB). The bank’s exposures to the non-financial pri-
vate sector can exhibit significantly different dynamics depending on the geographical location.
However, for other exposures in both the banking and trading books, banks have the ability
to adjust the amounts of asset holdings without changing their geographical composition (see
Chapter 4).

On the liability side, a bank’s balance sheet comprises equity, sight and term deposits from
corporates (NFC) and households (HH), secured funding through repos, issued collateralised
debt securities, and unsecured wholesale funding including inter-bank liabilities and debt securi-
ties. Banks have the ability to adjust private sector deposits separately for different geographical
regions, while the geographical composition of other liabilities remains constant (see Chapter
4.2).

Assets Liabilities
Loans NFC Capital
Loans HHHP
Loans HHCC Sight deposits HH
Loans FIN Sight deposits NFC
Loans CB Term deposits
Loans OTHER Deposits CB

Deposits SOV
Equity exposures Repo
Securitized portfolio Debt securities (secured)

Debt securities (unsecured)
Securities SOV
Securities NFC Wholesale funding (unsecured)
Securities FIN
Trading assets

Table 1: Schematic illustration of bank’s balance sheet

Bank net profits take into account impairments resulting from credit risk, net interest in-
come, asset revaluation, and net trading and fee-commission income. Within the model, the
flows between the three IFRS9 asset impairment stages – performing, with increased credit risk
since initial recognition, and credit-impaired – are monitored for each distinct banking book
portfolio (see Section 4.1.3). Changes in asset quality are reflected in the corresponding loan
loss provisions, which, when aggregated, are included in the profit and loss statement. A com-
prehensive description of the impairment stages and loan loss provisioning can be found in
Sections 4.1.3 and 4.1.4.

Banks are subject to capital and liquidity regulation. Each banking book portfolio has its
assigned risk weight based on an internal model-based approach (IRB) or a standardised ap-
proach (STA) (see Section 4.1.7.1). Total risk-weighted amounts are obtained by combining the
amounts of credit risk exposure in the banking book with capital charges associated with mar-
ket and operational risk (see Section 4.1.7.5 and 4.1.7.6). These risk-weighted amounts serve
as the denominator for calculating the Common Equity Tier 1 (CET1) capital ratio (see Section
4.3.1). The actual CET1 capital ratio can then be compared to the bank’s individual capital
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targets. Additionally, banks are required to adhere to liquidity requirements that ensure their
ability to meet debt obligations as they mature (see Section 4.3). The model incorporates two
regulatory limits: the liquidity coverage ratio (LCR) and the net stable funding ratio (NSFR),
which were introduced under Basel III.

Banks respond to macroeconomic and market conditions, as well as regulatory require-
ments, by adjusting their balance sheets. They make changes to their lending by modifying
loan volumes (Section 4.1.2) and interest rates (Section 4.1.5). They also adjust the composi-
tion and structure of their liabilities (Section 4.2.3) and determine dividend payouts (Section
4.4.5). The difference between the actual and target CET1 ratio plays a role in guiding banks’
behavioral responses, influencing decisions regarding profit distribution and lending. Addition-
ally, the deviation from liquidity coverage ratio (LCR) and net stable funding ratio (NSFR)
requirements affects the composition of bank wholesale funding.

In closing the model, bank lending decisions have an impact on the real economy. This
impact is achieved through two alternative feedback loops. The first feedback loop involves the
aggregation of non-linear bank credit supply elements at the country level, which is interpreted
as excessive deleveraging. This aggregated response is subsequently transformed into a credit
supply shock that directly influences the real economy. The visualization of this mechanism can
be observed in Figure 11. The second feedback loop functions by superseding the dynamics of
country-level lending volumes and interest rates with their aggregated bank-level counterparts.
Section 5 elaborates in greater detail on both feedback loops.

2.1 Zooming into selected model mechanisms
Banks in the BEAST operate in a monopolistic competition in lending markets, while acting
as price-takers in funding markets. This framework is inspired by the Monti-Klein banking
industry model (see Klein [1971] and Monti [1972]). In line with this model, banks face a
downward-sloping demand curve for lending and adjust loan price and volumes accordingly.
They have the ability to discriminate between different lending markets in which they operate.

2.1.1 Bank lending

Bank lending volumes and pricing are determined by the interplay of loan demand and supply
factors. Loan demand primarily depends on macro-financial variables, including the business
cycle, GDP, unemployment, inflation dynamics, and market interest rates. On the other hand,
the supply of loans is influenced by the specific circumstances of each individual bank, such as
its solvency, leverage, profitability, asset quality, and funding costs.

A significant factor that influences bank loan volumes is the surplus or shortfall in the CET1
ratio relative to its regulatory target. The regulatory target represents the cumulative capital
requirements and buffers imposed by the supervisory authority (refer to Section 4.3). In Figure
2, banks with a surplus of capital (located to the right of the vertical line) tend to lend more
to the non-financial private sector compared to banks with a shortfall (located to the left of the
vertical line). Moreover, corporate lending volumes are generally more sensitive to a bank’s
solvency position compared to household lending volumes.

There is an important non-linearity in bank responses to a capital shortfall as compared to
surplus. This non-linearity is reflected in the different slopes of loan growth observed to the left
and right of the vertical line, and it is supported by empirical evidence.11 When a bank faces
a CET1 capital shortfall, it tends to significantly reduce its lending to the non-financial private

11This non-linear adjustment emerges in the empirical regressions of loan supply as reported in Appendix C.2.

ECB Working Paper Series No 2855 9



sector, particularly to corporates. This adjustment is particularly pronounced for higher-risk
corporate loans, which carry higher risk weights and consume more capital. Additionally, these
loans often have shorter maturities, making them a more straightforward target for deleveraging
purposes. 12

Notes: 0X-axis reports the value of the difference between the bank actual CET1 capital ratio and its regulatory target. Banks to the right
of point 0 report CET1 ratio surplus, and those to the left, CET1 ratio shortfall. 0Y -axis reports the (stylised) marginal impact of bank
solvency position on its loan growth.

Figure 2: Bank solvency and loan supply

Banks that experience a capital shortage may still demonstrate a tendency to increase their
lending to the least risky segments of the market, including financial institutions and sovereigns.
Interestingly, the marginal impact of being below the regulatory CET1 target is even greater
than that of being above the target by the same absolute magnitude. This empirically observed
behavior among European banks can be justified by their intention to restore profitability by
engaging in lending activities in low-risk markets, where loans are associated with close to zero
risk weights.13

Bank adjustments of loan volumes and interest rates are summarised in Figure 3, which
illustrates the various channels through which macrofinancial conditions impact bank lending.
These conditions can directly influence credit demand or indirectly affect asset quality. In ad-
dition, banks face changing funding costs that are influenced by their own economic situation
and evolving market conditions. Banks closely monitor these conditions along with regulatory
requirements, including regulatory CET1 and leverage ratios.14 Banks adjust their loan supply

12The size of a bank’s management buffer indirectly affects its lending decisions. Banks that maintain robust
management buffers above regulatory capital thresholds and refrain from using them to pay dividends effectively
reduce the risk of experiencing a regulatory capital shortfall and having to deleverage in the face of unexpected
future shocks.

13Additionally, the model incorporates the consideration of relative risk weights in bank lending to different
market segments. This additional factor complements the impact of CET1 capital shortfall or surplus on sector-
specific lending, and enables the model to capture significant changes in risk weights imposed by the regulator.
For more information, please refer to Section 4 and the corresponding Appendix.

14The deviation of a bank’s actual leverage ratio from its regulatory target has a positive and linear impact on

ECB Working Paper Series No 2855 10



Economic conditions

Asset
quality

Funding
costs

Credit
demand

Credit
supply

Bank lending reactions

Volume
adjustments

Interest rate
adjustments

Non-linear
response

Linear
response

Regulatory
constraints
Capital ratio
requirements
and buffers

+

Leverage
requirements

Figure 3: Schematic illustration of model dynamics focusing on bank lending

and interest rates accordingly, with the former response involving a non-linear reaction to a
CET1 capital shortfall realisation and changes in asset quality (see Chapter 4.1.2). The lend-
ing response of banks, or specifically the non-linear component of their loan supply response,
directly influences loan supply at the country level.

2.1.2 Capital accumulation

Banks can most directly adjust their capitalisation through profit retention. Profit retention poli-
cies implemented by profitable banks serve as the primary safeguard against declining capital
and leverage ratios. In the model, banks are assumed to be unable to recapitalise or issue new
shares. Therefore, profit retention policies represent the fastest overall mechanism for preserv-
ing healthy capitalisation in profitable banks, while the effects of other mechanisms, therein
bank deleveraging, unfold over a longer time frame.

Profit retention is based on a straightforward rule: a bank distributes profits as long as it
can maintain its internal target capital ratio. This internal target is determined by a combina-
tion of regulatory requirements, buffers, and bank management decisions. Bank management
buffers are contingent on the bank’s business model and balance sheet characteristics. For in-
stance, banks that rely heavily on wholesale funding may opt for a higher management buffer
to mitigate related risks effectively.

Figure 4 provides an overview of how banks manage their payouts based on their hypothet-
ical CET1 ratio with full profit retention. Banks that have excess capital above their internal
target will pay out the full amount of excess capital or a corresponding share of their previous
period profits. Banks that are below their internal capital target, but still meet all their capital
requirements and Combined Buffers, will cease to payout CET1 dividends. However, banks
that do not meet their internal capital target but remain safely above their Pillar II Guidance
level will not engage in deleveraging, while those closer to the Combined Buffers will begin to
deleverage.

both loan volumes and interest rates, in contrast to the non-linear response of the former observed for the CET1
ratio.
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When banks reach the Maximum Distributable Amount (MDA) limits, their discretion in
payouts is overridden by regulatory rules. The MDA limit comes into effect when banks utilise
their Combined Buffers. Under these circumstances, banks are obligated to continue paying
all scheduled variable remuneration, minority interests, and fixed-schedule dividends to their
Additional Tier 1 (AT1) capital. However, if banks completely deplete their Combined Buffers,
they will stop paying variable remuneration, minority interests, and fixed-schedule dividends to
AT1 capital. Additionally, they will halt the issuance of any new loans. Finally, when the CET1
ratio reaches the threshold of 5.125%, AT1 capital is transformed into CET1 capital.

Notes: Hypothetical CET1 capital corresponds with the level of capital with full retention of profits.

Figure 4: Behavioral reactions to the level of capital relative to thresholds

2.1.3 Bank funding

Banks finance their assets through a combination of their own funds and debt funding. The
structure of banks’ debt funding depends on their historical and current decisions regarding
retained earnings and their liquidity management policy. Additionally, the average funding costs
incurred by banks are influenced by their internal risk profile, which affects the risk margins
applied to wholesale funding in the market.

When a bank needs to finance newly issued assets or replace maturing liabilities, it requires
fresh funding. The composition of this new funding follows a pecking order, as shown in Figure
5. The funding gap between assets, own funds, and debt funding typically arises after certain
liabilities mature or when there is an expansion of assets. It can also occur following a negative
shock to the bank’s own funds. Initially, the gap is filled by retail, sovereign, and central bank
funding, which are relatively low-cost sources of funding but have limited availability. If these
sources are not sufficient, banks turn to the wholesale market. Although wholesale funding is
unlimited, it comes at a higher cost.

In the wholesale market, a bank can choose to secure funding by posting collateral, access-
ing funds close to the risk-free rate, or it can issue unsecured debt, which carries an additional
credit spread. The final composition of wholesale funding is influenced by the availability of
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collateral and the requirement for the bank to maintain liquidity ratios such as the Liquidity
Coverage Ratio (LCR) and the Net Stable Funding Ratio (NFCR) at all times.

Notes: Institutional funding sums up sovereigns and central bank deposits.

Figure 5: Funding adjustments

Banks are exposed to the risk of a funding-solvency feedback loop due to their dependence
on wholesale funding. If a bank’s solvency deteriorates, it leads to a higher credit spread on
unsecured wholesale funding. This decline in solvency can also result in an increased reliance
on wholesale funding overall. The combination of higher marginal costs and composition effect
contributes to a higher average cost of funding. This, in turn, increases interest expenses and
reduces bank profitability. When profitability is insufficient, it limits the bank’s ability to retain
earnings and may even further deplete its existing capital, intensifying the negative feedback
loop.

To mitigate the negative spiral, banks can increase their use of secured funding. They can
collateralise high-quality liquid assets or pools of loans to generate short-term repos or long-
term covered bonds and asset-backed securities, respectively, both of which incur no credit
spread. Consequently, by maintaining a stock of collateralizable assets, banks can partially
shield themselves from the adverse effects of the funding-solvency feedback loop.

A solvency-funding costs feedback loop is most likely to emerge in adverse macroeconomic
conditions. In such circumstances, the supply of stable private deposits tends to be constrained,
while the likelihood of capital depletion rises. Consequently, there is an increased demand for
wholesale funding. Simultaneously, risk margins in wholesale markets are typically elevated.
The combination of these factors creates challenges for banks in obtaining affordable funding
and sows seeds for risk amplification.
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3 Macroeconomy
The macroeconomic block includes the representation of individual economies within the euro
area15 and the international environment of the rest of the world. Each of these euro area
countries can be subject to different macrofinancial shocks, and countries are interconnected
through trade linkages.

3.1 Representation of a single euro area economy

The dynamics of an individual euro area economy is captured by equations derived from a
structural vector autoregressive model (SVAR).16 Each country, denoted as C, is characterised
by the following:

YC
t = aC
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where YC
t is a vector of 10 country-specific endogenous variables, including real GDP, HICP,

unemployment rate, the spread between 10-year government bond yield and 3-month EURI-
BOR, import volume, export price, residential property price, bank loan volumes and lending
rate for the non-financial private sector, and equity price index (see Table 2). Vectors MC

t and
MEA

t are related to the monetary policy framework, each including the EURIBOR 3-month
rate, ST N, and a measure of unconventional monetary policy denoted as UMP. The specific
country indexing of Mt in the equations is explained in Section 3.3.1. Vectors XC

t represent
country-specific measures of foreign demand and competitors’ export prices, and ZC

t includes
an additional set of variables, including dummies related to the episode of the COVID-19 pan-
demic and the index of energy prices and its L lags.17 The number of lags, L, is set at 2, and
t represents the time period. The vectors ν consist of reduced-form residuals, assumed to be
independent and identically distributed with a mean of zero and a covariance matrix Σ. Vectors
a and matrices A, B, E, and F contain the estimated coefficients of the model.

The structural representation of the reduced-form residuals at the country level is as follows:

ν
C
t = DC

ε
C
t with ε

C
t ∼N (0, 1) (3)

15As of 2022, the euro area consists of Belgium, Germany, Ireland, Spain, France, Italy, Luxembourg, the
Netherlands, Austria, Portugal, Finland, Greece, Slovenia, Cyprus, Malta, Slovakia, Estonia, Latvia, and Lithuania.

16A simplified approach to modelling macroeconomies was a deliberate choice during the setup of the model.
The new model was intended to focus on representing the dynamics of a heterogeneous banking sector, rather
than attempting to directly compete with or replicate the existing semi-structural and structural macroeconomic
models within the institution. However, it remained essential to ensure that each country represented in the model
included a comprehensive range of macrofinancial variables that had a significant ex ante impact on the banking
sector, including their interactions. Furthermore, it was important for the country representation to effectively
capture the time dynamics of macrofinancial variables and reflect the feedback loop between the banking sector
and the real economy. The VAR-type specification was found to meet all these criteria.

17For a detailed explanation of the methodology used to address the impact of the COVID-19 episode, refer to
Appendix ??.
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Variable name Variable transformation Definition

Yt YER log difference Real GDP (level, constant prices, SACA)
HIC log difference Harmonised Index of Consumer Prices (quarterly average)
URX level Unemployment rate (percent)
IHX log difference Residential property price (new and existing dwellings)
SPR level Spread between the long-term (10-year benchmark government bond yield) and the short-term interest rate
ESX log difference Equity price (index level, quarterly average)
MTR log difference Import volume
XTD log difference Export price
BLR level Bank loan rate (weighted average of NFC and HH rates, new business coverage)
CPN log difference Bank loan volume (sum of NFC and HH loan volume, outstanding amount at the end of period)

Mt STN level Short-term interest rate (Euribor)
UMP log difference Consolidated Eurosystem’s total assets, excluding intra-Eurosystem assets and liabilities

Xt FDR log difference Foreign demand
CXD log difference Competitors’ export price

Zt EPR log difference Country-specific fossil energy price index
DU level COVID-19 pandemic Dummies

Notes: [a] The fossil energy price index is a weighted average of gas, oil, and solid fossil fuel. The weights for gas, oil, and solid fossil
fuel are proportional to the specific countries reliance of gas, oil and solid fossil fuel to fossil energy according to the International Energy
Agency (IEA).

Table 2: Definition of macroeconomic variables

where DC is the matrix that provides the mapping between the vector of reduced-form residuals
νC

t and the orthogonal structural shocks εC
t .

The structural representation identifies and constrains nine shocks through a combination of
sign and zero restrictions, as outlined in Table 3. The three remaining structural shocks are left
unrestricted.

Credit Credit Monetary Unconventional Stock Yield Resident. Aggregate Aggregate
Supply Demand Policy Monetary Policy Price Price Demand Supply

Real GDP 0 0 + + 0 + +
HICP 0 0 + 0 0 0 0 + -
Unemp. rate 0 0
Short-term rate 0 0 - 0 0 0 +
Interest rate spread 0 0 - + 0
Import volume 0 0
Export price 0 0
Residential prop. price 0 0 +
Bank lending rate - +
Bank loan volume + +
Equity price index 0 0 + +
Eurosystem’s assets 0 0 0 + 0 0

Table 3: Summary of identifying restrictions in SVAR

Identifying a credit supply shock follows the approach of Barnett and Thomas [2013] and
Hristov et al. [2012]. It is based on the assumption that an innovation in credit supply leads to
an opposite movement in lending volumes and rates. A shock specified in this way is consis-
tent with a decrease in bank capital (Gerali et al. [2010]), a deterioration in bank asset quality
(Gertler and Karadi [2011]), or an increase in investor risk aversion that is not directly linked
to credit defaults (Gilchrist et al. [2009]). Conversely, an exogenous increase in credit demand
is expected to cause bank lending volumes and rates to move in the same direction. These sign
restrictions are complemented by a set of zero restrictions on the impact of credit supply and
demand shocks on other variables in the system.18

18The high saturation of credit supply and demand shocks with zero restrictions is directly related to the subse-
quent use of the SVAR-based equations in the specification of the feedback loop between the banking sector and
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We distinguish between two types of monetary policy shocks. An expansionary standard
monetary policy shock causes an immediate decrease in the short-term interest rate and an in-
crease in the equity price index. An expansionary unconventional monetary policy shock is
characterised by an immediate increase in the Eurosystem’s total assets and a reduction in the
spread between bond yields and the EURIBOR 3M rate. The effects of the shock of expan-
sionary standard monetary policy on output and inflation follow the findings of Christiano et al.
[1996] and Uhlig [2005], where it is expected to have a positive impact on output and inflation.
For the unconventional monetary policy shock, we impose impact restrictions based on studies
by Boeckx et al. [2017], Hesse et al. [2018], and Hristov et al. [2020].19

A positive stock price shock is characterised by an immediate increase in the equity price
index without contemporaneous spillover effects on other variables. Zero impact restrictions
are imposed on the Eurosystem’s total assets, interest rate spreads, real GDP growth, and in-
flation. The impact restrictions on a positive bond yield shock are inspired by the concept of a
shock to the excess bond premium as considered by Gilchrist and Zakrajšek [2012]. These re-
strictions include a positive change in the interest rate spread and the Eurosystem’s total assets,
no contemporaneous reaction of inflation, and the response of stock prices to this shock is left
unrestricted. The identification of a residential property price shock follows Buch et al. [2014].

A standard set of restrictions, as described in Hristov et al. [2012], is applied to differentiate
between aggregate demand and aggregate supply shocks. A positive aggregate demand shock is
characterised by the parallel movement of inflation and GDP, both increasing, and also triggers
an increase in short-term interest rates. On the other hand, an aggregate supply shock leads to
inflation and GDP moving in opposite directions.

The forecast error variance decomposition supports a strong impact on credit supply shocks
on lending interest rates and volumes (compare table 21 in Appendix ??). Notably, it reveals a
strong influence of these shocks on residential house prices. Additionally, credit supply shocks
have substantial impacts on real GDP, inflation, and equity prices. Monetary policy shocks
demonstrate relatively weak impacts on macrofinancial variables. Residential property and ag-
gregate demand shocks play a substantial role in driving fluctuations in different dimensions of
the economy, including economic activity and market prices.

3.2 Rest of the world
The rest of the world comprises 18 international economies that have the strongest financial
links to the euro area. The selection of these countries is based on an analysis of asset expo-
sures of euro area banks to non-euro area counterparts. Specifically, the model includes all non
euro area European Union economies as of 2020, such as Bulgaria, Czech Republic, Denmark,
Croatia, Hungary, Poland, Romania, Sweden, as well as two European Free Trade Association

the real economy. The restrictions ensure that only loan volumes and interest rates are contemporaneously affected
by credit supply and demand shocks. Consequently, the introduction of the feedback loop by augmenting the
credit supply shock (as discussed in Section 5.2) or replacing SVAR-derived equations with aggregate measures of
bank-level lending volumes and interest rates (as described in Section 5.2) does not require changes in the remain-
ing equations representing a national economy. These adjustments can be made without altering the structure of
the other equations that capture the dynamics of the economy. Despite these considerations, the restrictiveness of
zero-impact restrictions has been tested against alternative approaches. It has been found that loosing restrictions,
such as allowing for contemporaneous impacts of credit-related shocks on stock prices, did not have a significant
impact on the responses of the SVAR model to credit-related structural shocks.

19We impose a positive sign restriction on impact on output for the unconventional monetary policy shock.
While for the conventional monetary policy shock this restriction is needed for the shock identification, for the
unconventional monetary policy shock it was imposed only as a feature to allow for a more intuitive shape of the
impulse response function.
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(EFTA) economies, Switzerland and Norway. Furthermore, other regions included in the model
are Brazil, China, Japan, Mexico, Russia, Sweden, Turkey, the United Kingdom, and the United
States.

Each country in the rest of the world segment is represented by equations of a reduced-form
VAR:

ỸC
t = ãC

Ỹ +∑
L

ÃC
LỸC

t−L + ν̃
C
t (4)

with representing a KC-dimensional white noise process characterised by a time-invariant pos-
itive definite covariance matrix. Vector Ỹ comprises KC variables, including real GDP, import
volumes, and export prices for each country. Depending on data availability, other variables
such as inflation, unemployment rate, equity prices, and residential property prices are added to
the specification (see Annex B.2 for details).

3.3 Linking individual economies
The use of VAR-type equations in the model deviates from a closed-form VAR representation.
The first deviation pertains to the modelling of common euro area monetary policy and the
second to the modelling of cross-border spillovers.

3.3.1 Common euro area monetary policy

The common euro area monetary policy is accounted for by imposing the condition of a single
euro area short-term interest rate and a measure of unconventional monetary policy. The dy-
namic formula for the short-term interest rate of the euro area, denoted as ST NEA, is derived
by aggregating the predictions from country-specific equations in 2, ST NC, using nominal GDP
weights. Additionally, ST NEA is subject to a floor level of -1.5%.20

ST NEA
t = max

(
−1.5%, ∑

C
wC×STNC

t

)
(5)

where wC represent the individual country nominal GDP share in the euro area nominal GDP
(in 2021).

Unconventional monetary policy is approximated by the consolidated balance sheet of the
Eurosystem, which has been directly impacted by the ECB’s asset purchase programme (APP)
and the pandemic emergency purchase programme (PEPP).21 The consolidated balance sheet
of the Eurosystem, denoted UMPEA, is defined in a way similar to the short-term interest rate,
taking into account the weighted average of country-specific equations in 2 UMPC:

UMPEA
t = ∑

C
wC×UMPC

t (6)

20Setting a floor on the short-term interest rate significantly below zero is supported by the analysis conducted
in Altavilla et al. [2021], which demonstrates that the risk-neutral density of the EONIA (Euro Overnight Index
Average) forward curve extends significantly below zero following the implementation of negative interest rate
policies.

21It will also include targeted longer-term refinancing operations (TLTROs).
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with country weights defined as wC.

3.3.2 Cross-border spillovers

The dynamics of individual euro area economies are influenced by cross-country trade spillovers
through foreign demand and competitors’ export prices contained in Xt . The foreign demand
variable reflects the import volumes of a country’s trading partners, while the foreign price
variable captures the export prices of other countries, as shown in Figure 6. In both cases, the
foreign demand and price variables are weighted by the counterparty’s export/import shares.22

Figure 6: Cross-country trade spill overs

The foreign demand of a euro area country C is determined by calculating the weighted sum
of the changes in import volumes from its trading partners within the euro area and from the
rest of the world:

FDRC
t = ∑

T∈{EA\C,RoW}
wT

FDR×MT RT
t (7)

where wT
FDR represent the share of exports from country C to country T in the total exports of

country C.
The competitor prices of country C are calculated by taking the weighted sum of the changes

in export prices of all its trading partners from which it imports:

CXDC
t = ∑

T∈{EA\,RoW}
wT

CXD×XT DT
t (8)

where wC
CXD represent the share of imports from country T in the total imports of country C.

The trade interactions between euro area countries are bidirectional. On the contrary, the
trade interactions between the euro area and other countries of the world are unidirectional. A

22The methodology for introducing trade spillovers in the model is inspired by the Stress Test Elasticities utilised
in the EBA/SSM stress test exercises since 2011. All trade shares are assumed to remain constant throughout the
simulation horizon.
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shock affecting one euro area economy propagates to other economies within the euro area,
and their response is transmitted back to the source economy, creating a feedback loop among
euro area countries. Shocks originating from the rest of the world can affect multiple euro area
countries simultaneously. However, the response of euro area economies does not feed back
into the dynamics of third countries.

3.4 Yield curve
Banks hold a variety of financial instruments with different maturities in their banking and
trading books. Information on EURIBOR 3M and 10-year yields LT N = ST N +SPR for euro
area countries, the euro area as a whole and the United States (discussed in Sections 3.1 and 3.2)
is projected onto the full yield curve using a three-factor representation as proposed by Nelson
and Siegel [1987].

The yields of country-specific bonds YieldC
t with a maturity of τ are derived as follows:
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(9)

where λC
t is the exponential rate of decay, βC

1,t , βC
2,t , and βC

3,t can be interpreted as the level, the
slope, and the curvature, respectively (see Diebold and Li [2002]).

To ensure full identification of each yield curve, the model assumes that the level and slope
of the curve are influenced by changes in EURIBOR 3M and 10-year yields, while the curva-
tures and discount rates remain fixed. The exponential decay rate and curvature of the yield
curves are determined based on estimated values derived from the most recent quarterly data
(see Annex B.3 for details).

4 Banking system
The banking block contains the representation of around 90 individual banks. Each bank is
pictured by its balance sheet, profit and loss accounts, and a set of equations that describe its
behavioural reactions. The model places most emphasis on modelling banking book assets, the
evolution of credit risk and interest income, with less sophisticated modelling of banks’ trading
books and market risk.

The timing of the bank adjustment mechanisms is illustrated in Figure 7. Each period starts
with changes in asset quality. A share of performing loans defaults and a share of defaulted
loans is cured. Following changes in asset quality, banks adjust interest rates on loans along
with the original provisions in lending contracts, and update flexible interest rate contracts along
with the prevailing interest rates in the money market. Analogous interest rate updates apply
to banks’ debt funding instruments. A proportion of performing loans and liabilities maturing
in the period is then removed from banks’ balance sheet. Finally, banks can decide to write off
some of their new or legacy defaulted exposures.

In the next step, banks decide on the issuance and pricing of new loans balancing out credit
demand considerations and their financial situation. Subsequently, they adjust their loan-loss
provisions taking into account the updated stock of performing and defaulted assets. They
also adjust holdings of other assets, therein assets held for trading. This closes the cycle of
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adjustments on the asset side of banks. In the following, banks can update the risk weights and
other capital charges to better reflect changes in the economic environment and arrive at the
estimate of their risk weighted amounts.

Banks’ liability volumes and structure are adapted once their asset holdings are known.
Banks first collect new private sector deposits, and later close the remaining funding gap with
financial and sovereign sector deposits and last with central bank and wholesale funding. At
this stage, both sides of banks’ balance sheets are known, and banks realise their profits. A
share of profits is paid out in the form of dividends, and the remaining amounts are added to
capital holdings. Adjustments of own funds close the period and the next period starts with the
update of asset quality.

t t +1
Change in asset

quality

Write-offs of
defaulted assets

Maturing of assets
and liabilities

Repricing of
remaining assets and

liabilities

Issuing and pricing
of new loans

Loans-loss provisions

Realisation of revaluation
losses and adjustment

of other assets

Updating capital
charges

Adjustment of liabilities

Profit realisation
and dividend
distribution

Change in asset
quality

Figure 7: Timing of bank adjustments

This section is divided into four parts. The first part discusses bank assets and capital
charges. The second part looks at the evolution of own funds and bank liabilities. The third
part introduces capital and liquidity requirements and measures of bank compliance. The last
part explains the dynamics of profit and loss accounts and the distribution of profits.

4.1 Bank assets
4.1.1 Structure of banks’ asset side

Banks hold assets in a banking or trading book. Assets in the banking book are recorded at
historical cost and are expected to be held to maturity. Trading book assets are mostly valued at
mark-to-market.

Loans to the non-financial private sector make up the largest share of banking book assets.
They sum up to the average of 63.1% of the total euro area banks’ banking book assets.23 They
are further broken down into loans to euro area non-financial corporates NFC, loans to euro
area households for housing purposes HHHP, loans to euro area households for consumption
HHCC and loans to the rest of the world non-financial private sector (RoW ). Loans to the euro
area non-financial private sector are further broken down by the country of exposure and are
referred to as bank sector country loan portfolios.

Other loans in the banking book include loans to the sovereign sector SOV , loans to the
financial sector FIN and to the central bank CB. The three types of exposure are modelled
at the bank level, without an additional country breakdown, and are referred to as bank-sector
loan portfolios.24 The banking book also includes relatively small bank sector portfolios of

23As reported in 2020Q4 by all banks participating in the 2021 EU-wide stress test exercise.
24Although loans to financial and public sector are modelled in aggregate, their geographical composition is

acknowledged by linking bank-level variables to macro-financial developments in countries of exposure weighted
by the share of each country exposure in the total bank-sector amount. See, e.g., Section 4.1.2.
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equity EQ, derivatives DERIV , securitised portfolios SEC and other holdings OT HER, jointly
corresponding to 6.7% of the banking book.

For each asset portfolio in the banking book, the model calculates the evolution of the vol-
umes (Section 4.1.2) and quality of assets (Section 4.1.3), loan-loss provisions (Section 4.1.4)
and credit risk weights (Section 4.1.7).

The model projects effective interest rates (Section 4.1.5) for all assets bearing interest.
Types of interest-bearing assets are most of the time synonymous with banking book portfolios,
with the exception of security holdings that can be classified either in the banking or trading
book.25 Security holdings are aggregated in three bank sector portfolios of financial SFIN,
non-financial corporates SNFC, and government and central bank counterparties SGOV . The
latter category constitutes the largest, 65.9%, share of the euro area banks’ security holdings.

Assets in banks’ trading books are classified along with their accounting classes. They
include trading assets reported through amortised costs or fair value ACFV PL, assets reported
through fair value and other comprehensive income FVOCI and trading assets reported through
other comprehensive income or profit and loss FVOCIPL. Additional items in the trading book
are net assets (combining assets and liabilities) with a trading intend T I, hedging instruments
EH and HEDGES, and non-trading assets NONT . The dynamics of trading assets is related to
changes in the size of the banking book and revaluation gains or losses (Section 4.1.6).

Different types of bank asset exposure are summarised in Table 4.

Abbreviation Description Accounting book Granularity Decomposition

Banking book

NFC Loans: Non-financial corporates Banking book Sector-Country-Bank 16.3
HHCC Loans: Household consumption and other Loans Banking book Sector-Country-Bank 8.6
HHHP Loans: Household mortgages Banking book Sector-Country-Bank 20.4
RoW Loans: Rest of the world non-financial private sector Banking book Sector-Bank 17.8
SOV Loans: Government, public sector entities Banking book Sector-Bank 13
CB Loans: Central banks Banking book Sector-Bank 13.9
FIN Loans: Credit institutions and other financial corporations Banking book Sector-Bank 5.6
OTHER Loans: Other loan exposures Banking book Sector-Bank 3.9
EQ Other: Equity exposures Banking book Sector-Bank 0.4
SEC Other: Securitized portfolios Banking book Sector-Bank 2.4
DERIV Other: Derivatives Banking book Sector-Bank -

Security holdings

SFIN Securities: Financial institutions Banking or trading book Sector-Bank 28.1
SNFC Securities: Non-financial corporates Banking or trading book Sector-Bank 6.0
SGOV Securities: Central banks and governments Banking or trading book Sector-Bank 65.9

Trading book

ACFVPL Trading assets: Amortised costs or fair value via P&L Trading book Sector-Bank 71.5
FVOCI Trading assets: Fair value via other comprehensive income Trading book Sector-Bank 12.8
FVOCIPL Trading assets: Fair value via other comprehensive income or P&L Trading book Sector-Bank 15.7
TI Net assets: Held with trading intent Trading book Sector-Bank -
EH Net assets: Economic hedges Trading book Sector-Bank -
HEDGES Net assets: Hedging instruments Trading book Sector-Bank -
NONT Net assets: Non trading mandatory or optional at FVPL Trading book Sector-Bank -
LACFVPL Liabilities: via amortised costs or fair value via P&L Trading book Sector-Bank -

Notes: The share of individual asset classes is calculated relative to the size of the banking book excluding derivatives DERIV , the total
interest-bearing securities, and the trading book excluding net assets T I,EH,HEDGES,NONT and liabilities LACFV PL, respectively.
P&L stands for profit and loss accounts, and FVPL for fair value through profit and loss. Securities under FVOCI and FVOCIPL which
are reported at fair value and the changes in their value between accounting periods are included in other comprehensive income are
otherwise referred to as available-for-sale securities.

Table 4: Asset sectors

25The distinction of interest rate bearing assets follows the convention of the EU-wide stress test reporting
standards.
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4.1.2 Loan volume dynamics and new loans

Bank lending volumes are influenced by changes in both loan demand and loan supply. The
growth rate of the loan volumes,26 TotalLoans_gr, for sectors S∈ {NFC,HHCC,HHHP,RoW,
FIN,SOV,CB}, can be decomposed into the impacts of loan demand, LoanDemand, which in-
cludes macroeconomic conditions in the country of exposure and captures the inertia in lending
volumes, and loan supply, LoanSupply, which represents the willingness of banks to extend
lending.

TotalLoans_grS,C
i,t = LoanDemandS,C

i,t +LoanSupplyS,C
i,t (10)

where the country superscript C is relevant for S ∈ {NFC,HHCC,HHHP} and can be with-
drawn for S ∈ {FIN,SOV,CB,RoW}.

The marginal impact of the loan demand and loan supply components of the loan vol-
ume dynamics is identified separately due to data challenges. Impacts are derived from the
estimated loan demand and supply equations, which are estimated separately for sectors S ∈
{NFC,HHCC,HHHP,FIN,SOV}. The coefficients for the volumes of loans to central banks
CB are borrowed from the corresponding estimates for sovereign exposures.

The loan demand equation is a function of country-specific macrofinancial variables such
as GDP growth quarter-on-quarter Y ERgr, quarterly inflation rate HICgr, change in unemploy-
ment rate ∆URX and short-term rate ST N and the spread between long- and short-term rate
SPREAD that are included with up to two lags p = 2. Additionally, the equation includes the
change in the effective rate of country-specific bank sector lending ∆EIRAssetNew and the past
growth rate of loan volumes TotalLoans_gr. Sector-specific coefficients β S are estimated in a
two-step estimation approach explained in more detail in the Appendix C.1.

LoanDemandS,C
i,t = ∑

p
(β S

1,p ∆log(TotalLoans_grS,C
i,t−p)+β

S
2,p Y ERgrC

t−p

+β
S
3,p HICgrC

t−p +β
S
4,p ∆URXC

t−p +β
S
5,p ∆ST NEA

t−p

+β
S
6,p SPRt−p +β

S
7,p ∆EIRAssetNewS,C

i,t−p)

(11)

Measurements of economic activity Y ERgr and HICgr enter equation (11) with a positive
sign. Changes in market and bank interest rates reduce loan demand.

The loan supply equation is divided into a linear component LoanSupplyLin and a non-
linear component LoanSupplyNonLin. The two components are estimated jointly (see Ap-
pendix C.2) but on occasions play a different role in the model (see Section 5.3 describing the
alternative feedback loop mechanisms).

LoanSupplyS
i,t = LoanSupplyLinS

i,t +LoanSupplyNonLinS
i,t (12)

An important driver of loan supply dynamics is bank capitalisation. It is captured by
the surplus or shortfall of CET1 capital over the regulatory requirements of the CET1 ratio
CET 1SurShort f all, and the Tier1 leverage ratio relative to its regulatory target value LEV RSur
Short f all.27 The coefficients on CET 1SurShort f all and LEV RSurShort f all are allowed to
differ for Type = 0 banks, including most of the banks in the sample, and Type = 1 banks,
grouping banks that due to the nature of their business model (special lenders) or ownership

26Bank lending does not distinguish between new credit lines and drawing from existing credit lines with a bank.
This distinction is not present in either of the datasets regularly used to inform the model.

27See Section 4.3 for the exact definitions of the two bank capitalisation variables.
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structure (state owned) exhibit significantly lower elasticities of lending to bank capitalisa-
tion.28 Further, the effect of CET 1SurShort f all is different for domestic (indicator variable
Home = 1) and foreign exposures (Home = 0), capturing a potential home bias. Last, the spec-
ification allows for the non-linearity of the relationship between bank capitalisation and lending
by introducing the interaction variable CET 1SurShort f all× I(CET 1SurShort f all < 0).

Other supply-side drivers of loan volumes include profitability, funding costs, asset quality,
and relative sector-specific risk weights. Bank profitability is measured with ROA on an annual
basis. Funding costs are captured by the average costs of all liabilities of a bank EIRLiab.
Asset quality is measured with the granular country sector bank (sector bank for FIN and
SOV ) net NPL ratio netNPLR, which accounts for provisions made already for defaulted ex-
posures. The effect of the net NPL ratio differs in cases where the (gross) NPL ratio increased
(∆4NPLR > 0) in the last year and in cases where it decreased (∆4NPLR < 0). This is another
source of non-linearity in bank adjustments of loan volumes. Finally, the relative risk weight is
defined as the sector-country-specific risk weight relative to the average risk weight of a bank
RRW S,C = RW S,C/RW . The relative risk weight is interacted with a capital shortfall realisa-
tion to accommodate the non-linearity in the substitution of loans between high- and lower-risk
weight sectors that can emerge when banks fall below their regulatory capital target.

LoanSupplyLinS,C
i,t = β

S
1 CET 1SurShort f alli,t× I(Typei = 0)× I(HomeForeignS,C

i = 0)

+β
S
2 CET 1SurShort f alli,t× I(Typei = 0)× I(HomeS,C

i = 1)

+β
S
3 CET 1SurShort f alli,t× I(Typei = 1)× I(HomeS,C

i = 0)

+β
S
4 CET 1SurShort f alli,t× I(Typei = 1)× I(HomeS,C

i = 1)

+β
S
5 LEV RSurShort f alli,t× I(Typei = 0)

+β
S
6 LEV RSurShort f alli,t× I(Typei = 1)

+β
S
7 netNPLRS,C

i,t × I(∆4NPLRS,C
i,t < 0)

+β
S
8 ROAi,t +β

S
9 EIRLiabi,t

+β
S
10 RRW S,C

i,t
(13)

LoanSupplyNonLinS,C
i,t = β

S
11 CET 1SurShort f alli,t× I(CET 1SurShort f alli,t < 0)

+β
S
12 netNPLRS,C

i,t × I(∆4NPLRS,C
i,t > 0)

+β
S
13 RRW S,C

i,t × I(CET 1SurShort f alli,t ≥ 0)

(14)

Along with the convention taken in this paper, the coefficients β represent any estimated model
parameter in the banking block and are indexed independently in each equation, with β0 casually
representing a constant term (therein, also sector- or bank-specific) and β indexed from 1 above
the marginal effect of different explanatory variables.

Banks cut their loan growth by 0.94% for NFC and 0.55% for the HHHP and HHCC sectors
with a capital ratio shortfall of 1 pp CET1 capital ratio shortfall (see equation (C.2)). Banks in
trouble tend to lower the most exposures with higher risk weights, mainly loans to NFCs, to a
lesser extent loans to households, and substitute them with exposures with lowest risk weights,

28More information on the bank sample can be found in Appendix A, Table 18.
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such as loans to sovereigns and the financial sector. Moreover, banks cut their loan supply more
in response to increases in net NPL ratios, when their share of defaulted exposures is on an
upward path.

The dynamics of loan volumes to the non-financial private sector of the rest of the world
RoW is derived using coefficient estimates for S ∈ {NFC,HHHP,HHCC}. The coefficients
sourced from the equations (11), (13), and (14) are transformed into the corresponding coeffi-
cients RoW using the exposure shares of the bank i shareRoW to the sectors S ∈ {NFC,HHHP,
HHCC} in all countries outside the euro area:

β
RoW
i = ∑

S
shareRoW S

i β
S

(15)

Furthermore, macrofinancial variables VarRoW ∈ {Y ERgr,HICgr,URX ,LT N,ST N} enter-
ing the RoW loan growth equation also take into account the bank-specific exposure shares to
the non-financial private sector in individual countries outside the euro area C ∈ RoW :

VarRoW
i,t = ∑

C∈RoWi

shareRoWC,i VarC
i,t (16)

The loan volume growth equations introduce a degree of substitutability of loans between
banks. The most direct channel is the discrepancy of loan volume dynamics between banks in
trouble, due to their profitability, capitalisation, or NPLs, and banks successfully circumventing
these. Over time, the differences in the growth rate of loan volumes between banks cumulate
into changes in their market shares in relevant loan segments. Another channel is the pricing of
loans. Other things being equal, banks offering lower interest rates attract higher loan demand.
At the same time, banks offering lower interest on loans tend to be banks with curtailed funding
costs, and therefore banks that are soundly capitalised (see Section 4.1.5). Finally, there are
adjustments for the entire economy. A dropout of a bank from a market segment in a country
affects the country’s economic activity. This in turn permeates the loan demand of other banks.

The different factors that influence the lending dynamics in the model are summarised in
Figure 8. The macrofinancial environment, economic growth, changes in interest rates, and
consumer price inflation directly affect the demand for loans in all economic sectors S. The
macroeconomic conditions impact, as well, bank loan supply by ultimately affecting asset qual-
ity and funding costs, and then banks’ profitability and solvency. Especially loan supply adjust-
ments can be highly heterogeneous for banks with sound and troubled solvency levels, with the
latter expected to react in a non-linear fashion with strong deleveraging.

The new lending NewLoans is derived as:

NewLoansS,C
i,t = (1− Insolventi,t−1)×max(0,TotalLoansS,C

i,t−1×TotalLoans_grS,C
i,t

+Out f lowsS,C
i,t )

(17)

where TotalLoans is the total amount of bank loans to a sector at the end of the reference
period. Out f lows is the amount of loans due in the reference period. Insolvent is a discreet
variable taking the value of 1 if the bank does not meet the minimum capital requirements and
0 otherwise (see equation (203)).29

29Accordingly, banks can deleverage only by limiting the issuance of new loans. Approaches to incorporate
other mechanisms, such as sales of existing assets, failed due to the poor quality of the corresponding supervisory
data.
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Figure 8: Conceptual representation of the lending evolution

Bank exposures to sectors S ∈ {OT HER,EQ} follow a simplified dynamics that grows
proportionally to the nominal GDP of the domestic country of a bank Ci:

ExpS
i,t = ExpS

i,t−1×
(

Y ERgrCi
t +HICgrCi

t +1
)

(18)

Finally, bank exposures to the remaining sectors S ∈ {SEC,DERIV} remain constant over
time:

ExpS
i,t = ExpS

i,t−1 (19)

The total assets in the banking book TotalExposure include all country-specific exposures
to the non-financial private sectors and those broken down by sector only S ∈ {NFC,HHCC,
HHHP,RoW,SOV,FIN,CB}, along with the remaining sectors SOT H ∈ {OT HER,EQ,SEC} :

TotalExposurei,t = ∑
S

∑
C

TotalLoansS,C
i,t + ∑

SOT H

ExpSOT H

i,t (20)

where the sum operation and the superscript C apply only to S ∈ {NFC,HHCC,HHHP}. The
same consideration applies to all analogous sum operations throughout the paper.

The total assets of a bank TA are then scaled by the growth of the assets in the banking
book:30

TAi,t = TAi,t−1×
TotalExposurei,t

TotalExposurei,t−1
(21)

4.1.3 Evolution of asset quality in the banking book

The assessment of asset quality in the banking book aligns with the IRFS9 accounting stan-
dards. Following the IFRS9 framework for the classification and measurement of financial

30The total assets include additional items not specifically covered by the banks submissions for the EU-wide
stress test templates and cannot be derived only by summing up assets tracked in the model.
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instruments and the provisioning of loan losses based on the expected credit loss (ECL) frame-
work, financial assets are categorized into three stages of credit impairment. The stages of
credit impairment comprise stage 1 (S1), with the corresponding asset volume denoted as
NonDe f ExpS1, with a stable risk profile, stage 2 (S2), NonDe f ExpS2, with a significant
increase in credit risk, and stage 3 (S3), De f Exp, where the corresponding assets are credit-
impaired. The variable TotalLoans from equation (17) representing exposures in sector S ∈
{NFC,HHHP,HHCC,FIN,SOV,CB,RoW} and for a specific country C, can be decomposed
as follows:

TotalLoansS,C
i,t = NonDe f ExpS,C

i,t +De f ExpS,C
i,t−1 (22)

and further as:

NonDe f ExpS,C
i,t = NonDe f ExpS1S,C

i,t +NonDe f ExpS2S,C
i,t−1 (23)

The dynamics of asset credit quality are governed by a transition probability matrix. The
transition rate matrix T R for sector S and country C comprises diagonal elements representing
the probability of staying within the original credit impairment stage. Conversely, the off-
diagonal elements of the matrix denote the probabilities of transitioning to other stages. T R
provided below exemplifies a stochastic matrix, and thus, the sum of elements in each row must
equal one:

T RS,C
i,t =

T R11S,C
i,t T R12S,C

i,t T R13S,C
i,t

T R21S,C
i,t T R22S,C

i,t T R23S,C
i,t

T R31S,C
i,t T R32S,C

i,t T R33S,C
i,t

 (24)

Performing exposures evolve along with the new loans issuance,31 shifts in asset quality
and expiration of maturing loans. The estimation of loan outflow is deduced from the inverse of
the portfolio’s average annual duration AvgDuration, which is assumed to be constant over the
simulation horizon and adjusted to align with quarterly time steps by multiplying it by a factor of
0.25. Furthermore, the model assumes that only performing exposures can mature. Therefore,
the outflow of maturing loans in period t is adjusted for exposures that are transitioning to stage
3, determined by the transition rates T R23 and T R13:

NonDe f ExpS1S,C
i,t = (1−0.25× (AvgDurationS,C

i )−1)× (

(1−T R12S,C
i,t −T R13S,C

i,t )×NonDe f ExpS1S,C
i,t−1

+T R21S,C
i,t ×NonDe f ExpS2S,C

i,t−1 +T R31S,C
i,t ×De f ExpS,C

i,t−1)

+NewLoansS,C
i,t

(25)

NonDe f ExpS2S,C
i,t = (1−0.25× (AvgDurationS,C

i )−1)× (

(1−T R21S,C
i,t −T R23S,C

i,t )×NonDe f ExpS2S,C
i,t−1

+T R12S,C
i,t ×NonDe f ExpS1S,C

i,t−1 +T R32S,C
i,t ×De f ExpS,C

i,t−1)

(26)

31New loans are always classified as S1 at the origination.
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Consequently, the outflows in equation (17) amount to:

Out f lowsS,C
i,t = 0.25× (AvgDurationS,C

i )−1× (

(1−T R13S,C
i,t )×NonDe f ExpS1S,C

i,t−1

+(1−T R23S,C
i,t )×NonDe f ExpS2S,C

i,t−1

+(1−T R31S,C
i,t −T R32S,C

i,t )×De f ExpS,C
i,t−1)+WriO f f S,C

i,t

(27)

Defaulted exposures increase with the inflows of newly defaulted assets and decrease with
the cure rates T R31 and T R32 and the write-off rate WriO f f S,C

i,t :

De f ExpS,C
i,t = (1−T R31S,C

i,t −T R32S,C
i,t −WriO f f S,C

i,t )×De f ExpS,C
i,t−1

+T R13S,C
i,t ×NonDe f ExpS1S,C

i,t−1 +T R23S,C
i,t ×NonDe f ExpS2S,C

i,t−1

(28)

Consequently, the gross NPL ratio in equation (13), denoted as NPLR, is defined as the
share of defaulted exposures De f Exp relative to the total outstanding amount:

NPLRS,C
i,t =

De f ExpS,C
i,t

TotalLoansS,C
i,t

(29)

Transition rates are projected in a logit space to ensure that each element of the transition
probability matrix remains between 0 and 132. The empirical specification of transition rates
for sectors S ∈ {NFC,HHHP,HHCC,FIN,SOV} employs a seemingly unrelated regression
model (SUR) (more details can be found in Appendix D.1.1). For K = {13,12,21,23,31,32},
a transition rate T R[K] equals:

T R[K]S,Ci,t = invlogit
(

β
S
0 +∑

K
β

S,K
1 logit(T R[K]S,Ci,t−1)

+β
S
2 ExpRelS,C

t−1 +β
S
3 Y ERgrC

t−1 +β
S
4 MT RgrC

t−1 +β
S
5 IHXgrC

t−1

+β
S
6 HICgrC

t−1 +β
S
7 XT DgrC

t−1 +β
S
8 ESXgrC

t−4 +β
S
9 ∆URXC

t−2

+β
S
10 LT NC

t−1 +β
S
11 ST NC

t−1 +β
S
12 SPRC

t−1

) (30)

Transition rates generally depend on the lags of all non-diagonal elements of the matrix T R
and a set of macrofinancial variables. Among the latter, there are country-level real GDP growth
Y ERgr, HICP inflation rate HICgr, growth rates of imports of goods and services MT Rgr, of
residential property prices IHXgr, of prices of exports of goods and services XT Dgr, and of
equity index ESXgr, unemployment rate URX , long-term LT N and short-term ST N interest
rates and interest rate spread SPR. Additionally, all equations include the relative amount of
exposures in the relevant impairment stage ExpRel:33

32Logit function is defined as logit(p) = ln(p/(1− p)). Therefore, the inverse logit function is defined as
invlogit(p) = 1/(1+ exp(−p)).

33 The relative amounts of exposures in the individual impairment stages capture empirical patterns observed
in the data. For example, a higher percentage of S3 exposures cure to S1 or S2 when the relative amount of S3
exposures increases. On the flip side, a higher percentage of S2 exposures tends to remain in S2 when the relative
amount of S2 exposures increases.
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ExpRelS,C
i,t =


NonDe f ExpS1RelS,C

i,t =
NonDe f ExpS1S,C

i,t

TotalLoansS,C
i,t

if K = {13,12}

NonDe f ExpS2RelS,C
i,t =

NonDe f ExpS2S,C
i,t

TotalLoansS,C
i,t

if K = {21,23}

De f ExpRelS,C
i,t =

De f ExpS,C
i,t

TotalLoansS,C
i,t

if K = {31,32}

(31)

The probability of default PDpit is defined as a weighted average of the default transition
rates T R13 and T R23:

PDpitS,C
i,t =

T R13S,C
i,t ×NonDe f ExpS1S,C

i +T R23S,C
i,t ×NonDe f ExpS2S,C

i

NonDe f ExpS1S,C
i,t +NonDe f ExpS2S,C

i,t

(32)

The evolution of defaulted exposures is furthermore influenced by write-offs. Write-offs
take place each quarter after the realisation of new defaults, but before the building up of loan
loss provisions. Every period, banks write off the share WriO f f r of their defaulted exposures:

WriO f f S,C
i,t =WriO f f rS,C

i,t ×De f ExpS,C
i,t−1 (33)

where WriO f f is the quarterly value of write-offs. The projection of WriO f f r follows from a
tobit function, which accounts for its non-linear nature:

WriO f f rS,C
i,t = Φ

(WriO f f rLinS,C
i,t

σ

)
×

[
WriO f f rLinS,C

i,t +σ ∗
φ(

WriO f f rLinS,C
i,t

σ
)

Φ(
WriO f f rLinS,C

i,t
σ

)

]
(34)

where Φ(·) is the standard normal cumulative distribution function, φ(·) is the standard normal
density function, σ is the estimated standard error of the tobit regression, and WriO f f rLin is
the underlying linear function (more details can be found in Appendix C.3) of the following
form:

WriO f f rLinS,C
i,t = β

S
0 +β

S
1 NPLRS,C

i,t−1 +β
S
2 NPLR1Y S,C

i,t−1 +β
S
3 ProvCovDe f RS,C

i,t−1

β
S
4 ColCovDe f RS,C

i,t−1 +β
S
5 ROAi,t−1 +β

S
6 NPLR1Y S,C

i,t−1×ProvCovDe f RS,C
i,t−1

β
S
7 ProvCovDe f RS,C

i,t−1×ROAi,t−1 +β
S
8 ProvCovDe f RS,C

i,t−1×NPLRS,C
i,t−1

β
S
9 ColCovDe f RS,C

i,t−1×ROAi,t−1

(35)

where NPLR1Y is the share of exposures that had defaulted at least one year earlier. ProvCovDe f R
is coverage of defaulted exposure with provisions defined as:

ProvCovDe f RS,C
i,t =

ProvStockDe f S,C
i,t

De f ExpS,C
i,t

(36)

Banks tend to write off defaulted exposures when defaulted loans have a relatively high
coverage with loan loss provisions and they are long past due. They also write off a higher
share of defaulted loans when the overall NPL burden on their balance sheet is larger, but their
profitability remains robust.

The estimated regression coefficients for the sector SOV are used to project the transition and
write-off rates for the sector CB. For the sector RoW transition and write-off rates, the regression
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coefficients are derived as a linear combination of coefficients for S ∈ {NFC,HHHP,HHCC}
with bank-specific weights similar to those of equation (15). The macrofinancial variables in
RoW transition rate and write-off rate equations are derived as a weighted average of the vari-
ables in the rest of the world countries following the same approach as in equation (16).

The total write-offs TotWriO f f are later deduced from the profits of continuing opera-
tions:34

TotWriO f fi,t = ∑
S

∑
C

WriO f f RS,C
i,t ×De f ExpS,C

i,t (37)

The model attributes simplified asset quality dynamics to exposures to sectors SOT H ∈
{OT HER,EQ,SEC}. For these sectors, the model distinguishes only between performing and
defaulted exposures, and the share of each is assumed to be constant:

NonDe f ExpS
i,t = NonDe f ExpS

i,t−1
ExpS

i,t

ExpS
i,t−1

(38)

De f ExpS
i,t = De f ExpS

i,t−1
ExpS

i,t

ExpS
i,t−1

(39)

On aggregate, for S ∈ {NFC,HHHP,HHCC,FIN,SOV,CB,RoW}, the total stock of non-
defaulted exposures amounts to:

NonDe f Expi,t = ∑
S

∑
C

(
NonDe f ExpS1S,C

i,t +NonDe f ExpS2S,C
i,t

)
+ ∑

SOT H

NonDe f ExpS
i,t

(40)

and of defaulted exposures amounts to:

De f Expi,t = ∑
S

∑
C

De f ExpS,C
i,t + ∑

SOT H

De f ExpS
i,t (41)

4.1.4 Loan-loss provisioning

Banks create loan loss provisions for performing and non-performing exposures according to
IFRS9 accounting standards, where the lifetime expected credit loss (ECL) is the present value
of the expected loss incurred if the borrower defaults at any time before the loan maturity.35

1-year ECL is recognised for loans in stage 1 and the lifetime ECL is recognised for loans in
stages 2 and 3.

For exposures classified as stage 1, loan loss provisions ProvStockNonDe f S1 are calculated
according to the 1-year ahead transition probability to stage 3, T R1Y 13, and the corresponding
forward-looking LGD value, LGD1Y 13:

34Total write offs can be also corrected for the collateral recovery rate, which in selected model simulations is
assumed to equal 20% for secured exposures, and 0% for unsecured exposures. Data on collateral recovery rates
for euro area banks are scarce, and the calibration is based on an ad hoc data collection by the SSM involving
high-NPL banks.

35The model also incorporates the SSM’s NPL coverage expectations for defaulted equations which overwrite
the IRFS9 provisioning rules in this section for defaulted assets. A detailed description of the two alternative
implementations of the NPL coverage expectations can be found in Budnik et al. [2022c].
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ProvStockNonDe f S1S,C
i,t = NonDe f ExpS1S,C

i,t ×T R1Y 13S,C
i,t ×LGD1Y 13S,C

i,t (42)

The loan loss provisions for stage 2 exposures, ProvStockNonDe f S2, are composed of two
parts. The first part is calculated for exposures that stay in stage 2 between quarters t−1 and t
and accounts for a loss according to the lifetime loss rate LR2X . The second part corresponds
to assets that migrate to stage 2 from stage 1 or 3 and accounts for a loss according to the loss
rate LR12:

ProvStockNonDe f S2S,C
i,t = (1−0.25× (AvgDurationS,C

i )−1)

× (1−T R23S,C
i,t −T R21S,C

i,t )×LR2XS,C
i,t ×NonDe f ExpS2S,C

i,t−1

+T R12S,C
i,t ×LR12S,C

i,t ×NonDe f ExpS1S,C
i,t−1

+T R32S,C
i,t ×LR12S,C

i,t ×De f ExpS,C
i,t−1

(43)

The loan loss provisions for defaulted exposures, ProvStockDe f , are split similarly into
two parts, depending on the stage from which an exposure migrated to stage 3. The expo-
sure in default already in t − 1 can cure or be written off. Correspondigly, in the absence
of the supervisory coverage expectations, loans that are written off are assumed to have had
earlier been provisioned on the average level of the defaulted portfolio. The remaining part
(1−T R31S,C

i,t −T R32S,C
i,t −WriO f f rS,C

i,t ) remains in default and accounts for a loss according to
the lifetime loss rate LR33.

An additional conservative assumption in the model is that the provisioning coverage ratio
for the existing defaulted exposures staying in stage 3 is not allowed to drop between two
consecutive periods. That is, if LR33 is lower in time t than in t − 1 a bank would need to
account for this difference, which is proportional to ProvStockDe f − LR33×De f Exp. The
second component of ProvStockDe f is the provision created for exposures that migrated to
stage 3 from stage 1 or stage 2. The first represents a loss according to the parameter of loss
given default LGD13, while the latter is provisioned according to the parameter LGD23.

ProvStockDe f S,C
i,t = (1−T R31S,C

i,t −T R32S,C
i,t −WriO f f rS,C

i,t )×LR33S,C
i,t ×De f ExpS,C

i,t−1

+(1−T R31S,C
i,t −T R32S,C

i,t −WriO f f rS,C
i,t )

× I(ProvStockDe f S,C
i,t−1 > LR33S,C

i,t ×De f ExpS,C
i,t−1)

× (ProvStockDe f S,C
i,t−1−LR33S,C

i,t ×De f ExpS,C
i,t−1)

+T R13S,C
i,t ×LGD13S,C

i,t ×NonDe f ExpS1S,C
i,t−1

+T R23S,C
i,t ×LGD23S,C

i,t ×NonDe f ExpS2S,C
i,t−1

(44)

The aggregation of loan loss provisions per bank takes the stock of provisions for non-
defaulted and defaulted exposures for S ∈ {NFC,HHHP,HHCC,FIN,SOV,CB,RoW}:

ProvStockNonDe fi,t = ∑
S

∑
C
(ProvStockNonDe f S1S,C

i,t +ProvStockNonDe f S2S,C
i,t ) (45)

ProvStockDe fi,t = ∑
S

∑
C

ProvStockDe f S,C
i,t (46)
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Provisions for equity EQ and other OT HER sectors are assumed to evolve in constant pro-
portions to the corresponding bank exposures:

ProvStockS,C
i,t = ProvStockS,C

i,t−1

ExpS
i,t

ExpS
i,t−1

(47)

Then, the total volume loan loss provisions is given by:

ProvStocki,t = ProvStockNonDe fi,t +ProvStockDe fi,t

+ProvStockOT HER
i,t +ProvStockEQ

i,t +ProvStockIFRS9Ad j
i,t

(48)

where a bank-specific IFRS9 adjustment term IFRS9Ad j stays constant over time.36

4.1.4.1 IFRS9 loss parameters

LGD represents the share of expected loss on exposures that transition from a performing
stage (i.e., stage 1 or stage 2) to a non-performing stage, i.e., to stage 3. The loan loss provi-
sioning model differentiates between LGD13, which is the loss given default on exposures that
migrate from stage 1 to stage 3, and LGD23, which is the loss given default for exposures that
migrate from stage 2 to stage 3.

Analogically to the transition rates (see Section 4.1.3), the parameters LGD are projected
in the logit space to ensure the estimations remain between 0 and 1. Parameters LGD13 and
LGD23 are modelled jointly in a seemingly unrelated regression (SUR) framework, though
separately for each sector S ∈ {NFC,HHHP,HHCC,FIN,SOV} (for details, see Appendix
D.1.2). For K = {13,23}, a loss given default LGD[K] equals:

LGD[K]S,Ci,t = invlogit
(

β
S
0 +∑

K
β

S,K
1 logit(LGD[K]S,Ci,t−1)+β

S
2 ExpRelS,C

t−1 +β
S
3 logit(CureRateLT S,C

t−1 )

+β
S
4 Y ERgrC

t−1 +β
S
5 MT RgrC

t−1 +β
S
6 IHXgrC

t−1 +β
S
7 HICgrC

t−1 +β
S
8 XT DgrC

t−1

+β
S
9 ESXgrC

t−4 +β
S
10 ∆URXC

t−1 +β
S
11 LT NC

t−1 +β
S
12 ST NEA

t−1 +β
S
13 SPRC

t−1

)
(49)

Each LGD depends on the lags of both LGDs in the system and a set of macroeconomic
variables, including country-level real GDP growth Y ERgr, HICP inflation rate HICgr, growth
rates of imports of goods and services MT Rgr, of residential property IHXgr, the prices of
exports of goods and services XT Dgr, and the equity index ESXgr, unemployment rate URX ,
long-term LT N and short-term ST N interest rates and interest rate spread SPR

In addition, the specification accounts for the relative amount of exposures in the individ-
ual stages of impairment (see equation (4.1.5.3)) and the lifetime cure rates, CureRateLT . The
parameter CureRateLT approximates the component of LGD that relates to the estimated cumu-
lative proportion of defaulted exposures that cure through zero loss repayment during a workout
period. The lifetime cure rate is the average expected share of cures during the lifetime of an ex-
posure updated by the transition probabilities T R31 and T R32 and averaged by the expectation
adjustment parameter βCure

EXP = 0.8:

36It is sourced from the EU-wide stress test submissions.
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CureRateLT S,C
i,t = β

Cure
EXPCureRateLT S,C

i,t−1 +(1−β
Cure
EXP )

× (1− (1−T R31S,C
i,t −T R32S,C

i,t )4×AvgDurationS,C
i

(50)

Parameters LGD13 and LGD23 are aggregated to the point in time LGDPiT , which is an
average loss on newly defaulted exposure:

LGDPiT S,C
i,t = (T R13S,C

i,t ×NonDe f ExpS1S,C
i,t ×LGD13S,C

i,t

+T R23S,C
i,t ×NonDe f ExpS2S,C

i,t ×LGD23S,C
i,t )

/(T R13S,C
i,t ×NonDe f ExpS1S,C

i,t +T R23S,C
i,t ×NonDe f ExpS2S,C

i,t )

(51)

Loss rates LR represent the expected lifetime loss on exposures in stage 2 and stage 3. The
IRFS9 loan loss provisioning rules distinguish three lifetime loss rates: the expected loss rate
for exposures that migrate from stage 1 to stage 2 LR12, the expected loss rate for exposures that
migrate from stage 2 to any other stage LR2X , and the lifetime expected loss rate for exposures
that remain in stage 3 LR33.

The three loss rate parameters are projected in logit space and in a seemingly unrelated
regression (SUR) framework (see Appendix D.1.2). SUR regressions are considered separately
for each sector S ∈ {NFC,HHHP,HHCC,FIN,SOV}. For K = {12,2X ,33}, a loss rate LR[K]
equals:

LR[K]S,Ci,t = invlogit
(

β
S
0 +∑

K
β

S,K
1 logit(LR[K]S,Ci,t−1)+β

S
2 ExpRelS,C

t−1 +β
S
3 logit(LGDPiT S,C

t−1 )

+∑
L

β
S,L
4 logit(T R[L]S,Ci,t−1)+β

S
5 Y ERgrC

t−1 +β
S
6 MT RgrC

t−1 +β
S
7 IHXgrC

t−1 +β
S
8 HICgrC

t−1

+β
S
9 XT DgrC

t−1 +β
S
10 ESXgrC

t−4 +β
S
11 ∆URXC

t−1 +β
S
12 LT NC

t−1 +β
S
13 ST NEA

t−1 +β
S
14 SPRC

t−1

)
(52)

where L = {13,12,21,23,31,32}. Therefore, each LR depends on the lags of all LRs in the
system and the same set of macroeconomic variables as LGDs in equation (49). The specifi-
cation also considers the relative amount of exposures in the individual impairment stages, the
point-in-time LGDpit and transition rates.37

The estimated regression coefficients for the sector SOV are also used to project LGDs
and LRs for the sector CB. For the sector ROW the regression coefficients and macrofinancial
variables are derived as a linear combination of sector-specific coefficients and country variables
from the rest of the world, correspondingly, as in equations (15) and (16).

The 1-year ahead transition probability to stage 3 T R1Y 13, which is applied in the projec-
tions of ProvStockNonDe f S1 in equation (42), is a naive one-period ahead forecast of annu-
alised T R13 assuming a simple scheme of banks’ adaptive expectations. T R1Y 13 becomes a
function of T R13 in the current and previous period with an adaptive expectation parameter
βEXP = 0.5:

37LGDPiT and transition rates are a natural choice as LRs represent lifetime expected loss expressed as per-
centage of the current exposure and thus intuitively should be affected by the likelihood of transiting up or down
between the impairment stages or by the loss rates associated with default events.
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T R1Y 13S,C
i,t = 1− (1− (1+βEXP)T R13S,C

i,t −βEXP T R13S,C
i,t−1)

4 (53)

Analogically, we also derive LGD1Y 13, which is the corresponding forward-looking loss
given default parameter for exposures in stage 1 based on the values of LGD13 in the current
and previous period:

LGD1Y 13S,C
i,t = (1+βEXP)LGD13S,C

i,t −βEXP LGD13S,C
i,t−1 (54)

4.1.5 Pricing of loans

4.1.5.1 Pricing of new loans

The pricing of new loans to the non-financial private sector takes into account bank funding
costs and differs for short- and long-term maturity loans D = {Short,Long}. Effective interest
rate margins EIRmargin for S ∈ {NFC,HHCC,HHHP,RoW} are defined as the spread be-
tween the respective lending rate EIRAssetNew and the average bank funding costs EIRLiab
both expressed in quarterly terms:38

EIRmarginS,C
i,t = EIRAssetNewS,C

i,t −EIRLiabi,t (55)

And further:

∆EIRmarginS,C
i,t = ∑

D
ShareS,C,D

i × (β S,D
1 ∆EIRmarginS,C

i,t−1

+β
S,D
2 ∆ST NEA

i,t−1 +β
S,D
3 ∆LT NC

i,t−1

+β
S,D
4 ∆Y ERgrC

i,t−1 +β
S,D
5 ∆HICgrC

i,t−1

+β
S,D
6 CET 1SurShort f alli,t−1 +β

S,D
7 ∆LevRaTi,t−1)

(56)

where ShareS,C,D is a bank-specific share of loans in each maturity bucket D.
The estimated equations for S ∈ {NFC,HHCC,HHHP} link the interest rates on new bank

loans to short- ST N and long-term LT N market rates and general macroeconomic conditions in
the country of exposure C. The latter account for fluctuations in loan demand and credit risk
within the business cycle and include GDP growth Y ERgr, inflation HICgr and the unemploy-
ment rate URX . Additionally, the pricing equation includes the solvency distance to regulatory
requirements CET 1SurShort f all as defined in equation (201) and the change in the banks’
leverage ratio LevRaT . A positive estimated coefficient on banks’ leverage ratio captures the
cost of equity effect on bank lending. A detailed description of the estimation methodology and
results can be found in the Appendix C.4.

The share of loans in a maturity bucket is approximated according to a Gamma(k,x,θ)
distribution with k = 1, θ = AvgDuration, and x that denotes the threshold value distinguishing

38Banks use an average funding cost to price loans rather than an internal transfer price that might vary but
sector. This choice is related to the inaccessibility of historical information on bank internal transfer prices that
prevented empirical identification of accordingly derived loan interest rate equations.
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between short- and long-term loans any sector.39 The share of loans in a portfolio with average
maturity θ which mature not earlier than after x years, but before y years is then provided by
the function:

F(x,y,θ) = e−
x
θ − e−

y
θ , where 0≤ x≤ y (57)

The maturity cut-off values to distinguish between short- and long-term maturity loans are
one year for NFC and household consumption HHCC loans and 5 years for household mort-
gages HHHP:

ShareS,C,D
i =


F(0,1,AvgDurationS,C

i ) if D = Short,S = {NFC,HHCC}
F(0,5,AvgDurationS,C

i ) if D = Short,S = HHHP
1−F(0,1,AvgDurationS,C

i ) if D = Long,S = {NFC,HHCC}
1−F(0,5,AvgDurationS,C

i ) otherwise

(58)

The new lending margins for banks’ RoW exposures are obtained by averaging the coef-
ficients estimated for sectors S ∈ {NFC,HHCC,HHHP} with weights proportional to their
shares in RoW exposures. Additionally, the macrofinancial variables in equation (56) are sub-
stituted with their weighted average counterparts RoW as in equation (16).

Banks are price-takers for new loans to sovereign SOV and financial loans FIN. Sovereign
and financial exposures are divided into domestic exposures, with their share of ShareS,Home and
foreign exposures, with their share of 1−ShareS,Home. The interest rates on these exposures are
then linked to the domestic country C’s (YieldC) and the euro area yield curves (YieldEA) taking
into account the average maturity of loans.

EIRAssetNewS
i,t = EIRAssetNewS

i,t−1 +0.25

× (ShareS,Home
i ×∆YieldC

t (AvgDurationS
i )

+(1−ShareS,Home
i )×∆YieldEA

t (AvgDurationS
i ))

(59)

Banks are also price-takers for central bank loans CB, for which interest rates are directly
linked to the euro area yield curve:

EIRAssetNewCB
i,t = EIRAssetNewCB

i,t−1 +0.25×∆YieldEA
t (AvgDurationCB

i,t ) (60)

Interests on newly acquired debt securities issued by non-financial corporations SNFC and
sovereigns SGOV are derived from bank and sector-specific yield curves YieldS:

EIRAssetNewS
i,t = EIRAssetNewS

i,t−1 +0.25×∆YieldS
i,t (61)

The annualized yields on bank security holdings are decomposed into a credit spread and the
risk-free market interest rate in the euro area for the relevant maturity. The latter is approximated
by the euro area yield curve YieldEA:

39This distribution has sensible properties (positive support, strong positive skew) and a computationally effi-
cient cumulative density function in 1− e−x/θ .
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YieldS
i,t =CreditSpreadS

i,t +YieldEA
t (AvgDurationS

i ) (62)

The credit spread expresses the risk of counterparty default40 and follows a log-multiplicative
specification that captures the empirical non-linearity in risk margins. A change in risk factors
has a larger impact on risk margins when these are already elevated and ensures that the yields
on bonds never decrease below the risk-free rate.

CreditSpreadS
i,t = eLinSpreadS

i,t (63)

LinSpread for SNFC and SGOV is related to macrofinancial variables of the country of
exposure that include real GDP Y ER, inflation HICgr, stock market growth ESX , and the spread
SPR between long- and short-term rates in the country of exposure C (see Appendix C.6). For
corporate debt securities, the linear component of the risk margin also depends on the maturity
of the assets held.

The linear component of the credit spread on newly acquired sovereign bonds LinSpreadSGOV

that aggregates information on market conditions in all countries in the euro area is described
by:

LinSpreadSGOV
i,t = β1 LinSpreadSGOV

i,t−1

+∑
C

ShareSGOV,C
i ×

(
β2 Y ERgrC

t +β3 ESXgrC
t

+β4 ∆SPRC
t

)
+β5 ∆ST NEA

t

(64)

where ShareSGOV,C is the share of sovereign country bonds C in all sovereign bonds acquired
by a bank. While, the linear component of the credit spread on newly acquired corporate bonds
LinSpreadSNFC is described by:

LinSpreadSNFC
i,t = β1 log(AvgDurationSNFC

i,t )

+∑
C

ShareSNFC,C
i ×

(
β2 Y ERgrC

t +β3 Y ERgrC
t−1 +β4 Y ERgrC

t−2

+β5 ESXgrC
t +β6 ESXgrC

t−1 +β7 ∆URXC
t

+β8 log(AvgDurationSNFC
i,t−1 )×∆LT NC

t−1

) (65)

where ShareSNFC,C is the share of corporate country bonds C in all corporate bonds acquired by
a bank.

The interest rates on securities issued by financial companies SFIN are based on the as-
sumption of a common financial market for this type of securities in the euro area. The interest
rate formula takes into account the bank-specific share of securities issued by counterparts in
the euro area ShareSFIN,EA and those issued outside the euro area 1−ShareSFIN,EA. For the for-
mer, changes in interest rates on securities are approximated by changes in the euro area yield
curve, and for the latter by changes in the US yield curve (see Section 3.4).

40Other factors such as tax or liquidity effects that can contribute to the credit spread but are not included in the
model. For a discussion of the validity of focusing on default risk, see C.9.
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EIRAssetNewSFIN
i,t = EIRAssetNewSFIN

i,t−1 +0.25

× (ShareSFIN,EA
i ×∆YieldEA

t (AvgDurationSFIN
i )

+(1−ShareSFIN,EA
i )×∆YieldUS

t (AvgDurationSFIN
i ))

(66)

4.1.5.2 Pricing of existing, maturing and non-performing loans

The interest rates for existing and performing assets that carry interest EIRAssetExist are up-
dated taking into account the issuance of new loans in the previous quarter and considering the
share of floating interest rate loans ShareFloat. For the latter, the model assumes a direct pass-
through of changes in the EURIBOR 3-month rate ST NEA. For S∈{NFC,HHCC,HHHP,RoW,
SOV,FIN,CB,OT HER,DERIV,SNFC,SGOV,SFIN} the interest rate on the maturing and per-
forming assets is equal to:

EIRAssetExistS,C
i,t = (EIRAssetNewS,C

i,t−1×VolAssetNewS,C
i,t−1

+EIRAssetExistS,C
i,t−1×VolAssetExistS,C

i,t−1)/

(VolAssetNewS,C
i,t−1 +VolAssetExistS,C

i,t−1)

+0.25× (Re f DurationS,C
i )−1 ShareFloatS,C

i ∆ST NEA
t

(67)

where VolAssetNew are the period average volumes of new and VolAssetExist of existing and
performing assets bearing interest. Re f Duration is the average annualized duration of the ref-
erence rate.

The interest rates for maturing assets EIRAssetMat are updated with the change in EIRAssetExist
and assume a gradual convergence of interest rates between maturing and existing assets which
depends on the average duration of the portfolio AvgDuration:

EIRAssetMatS,C
i,t = EIRAssetMatS,C

i,t−1 +∆EIRAssetExistS,C
i,t

−0.25× (AvgDurationS,C
i )−1 (EIRAssetMatS,C

i,t−1−EIRAssetExistS,C
i,t−1)

(68)

The effective interest rate on non-performing interest bearing assets EIRAssetNPE is as-
sumed to remain constant for all sectors:

EIRAssetNPES,C
i,t = EIRAssetNPES,C

i,t−1 (69)

4.1.5.3 The period average volumes of new, existing and maturing interest-bearing assets

The total period average assets VolAssetTotal for S ∈ {NFC,HHCC,HHHP,RoW,
SOV,FIN,CB} are projected along with the dynamics of the corresponding banking book assets
TotalLoans outlined in Section 4.1.2:

VolAssetTotalS,C
i,t =VolAssetTotalS,C

i,t−1×
TotalLoansS,C

i,t

TotalLoansS,C
i,t−1

(70)
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The dynamics of the volumes of bank security holdings for S ∈ {SNFC,SGOV,SFIN} fol-
lows instead:

VolAssetTotalS,C
i,t = (1−0.25× (AvgDurationS,C

i )−1)

× (VolAssetTotalS,C
i,t−1−VolNPES,C

i,t−1)+VolNPES,C
i,t−1

+(1− Insolventi,t−1)×max(0,VolAssetTotal_grS
i,t×VolAssetTotalS,C

i,t−1

+0.25× (AvgDurationS,C
i )−1× (VolAssetTotalS,C

i,t−1−VolNPES,C
i,t−1))

(71)

where VolNPE is the volume of non-performing securities and VolAssetTotal_gr is derived by
combining the corresponding considerations of security demand VolAssetDemand and supply
VolAssetSupply:

VolAssetTotal_grS
i,t =VolAssetDemandS

i,t +VolAssetSupplyS
i,t (72)

The demand for debt securities VolAssetDemand is derived applying the estimated param-
eters and the same explanatory variables as in equation (73). This reflects the assumption that
the credit needs of a debt security issuing counterpart are proportionately reflected in their bank
loan take-up and market debt issuance:41

VolAssetDemandS
i,t = ∑

p
(β S′

1,p ∆log(VolAssetTotalS
i,t−p)

+β
S′
2,p Y ERgrC

t−p +β
S′
3,p HICgrC

t−p

+β
S′
4,p URXC

t−p +β
S′
5,p LT NC

t−p

+β
S′
6,p ST NEA

t−p +β
S′
7,p EIRAssetNewS

i,t−p)

(73)

where p = 2 and:

S′ =


NFC if S = SNFC
SOV if S = SGOV
FIN if S = SFIN

The motivation of banks to hold debt securities compared to loans on their balance sheet
could differ. Accordingly, the credit supply function for the debt security holdings of banks
is estimated separately from that of loan supply (more information can be found in Appendix
C.5):

VolAssetSupplyS,C
i,t = β

S
1 CET 1SurShort f alli,t

+β
S
2 CET 1SurShort f alli,t× I(Typei = 1)

+β
S
3 LEV RSurShort f alli,t

+β
S
4 LEV RSurShort f alli,t× I(Typei = 1)

+β
S
5 netNPLRi,t +β

S
5 ROAi,t +β

S
6 EIRLiabWhsli,t

(74)

41This assumption allows circumventing the the lack of granular counter-party level security data that would
allow estimating the corresponding demand equations directly.
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Compared to the analogous specification of bank loan supply in equations (13) and (14) the
supply function of bank debt security holdings excludes the relative risk weights and non-linear
adjustments, replaces the bank and sector-specific net NPL rate with its bank-level counter-
part netNPLR and the average debt funding costs with the average wholesale funding costs
EIRLiabWhsl.

Last, the model simplifies the dynamics for other OT HER interest-bearing assets linking
them directly to the nominal GDP growth in a country where the banks are headquartered:

VolAssetTotalOT HER
i,t =VolAssetTotalOT HER

i,t−1 ×
(

Y ERgrC
t +HICgrC

t +1
)

(75)

and that of the derivatives holdings DERIV that remain constant over time:

VolAssetTotalDERIV
i,t =VolAssetTotalDERIV

i,t−1 (76)

The total average volumes of the interest-bearing assets of a bank VolAssetTotal sum up the
volumes of assets for S ∈ {NFC,HHCC,HHHP,RoW,SOV,FIN,CB,SNFC,
SGOV,SFIN,OT HER}, but exclude derivative holdings:

VolAssetTotali,t = ∑
S

∑
C

VolTotalAssetS,C
i,t (77)

The total period average volumes of interest-bearing assets for S ∈ {NFC,HHCC,
HHHP,RoW,SOV,FIN,CB,SNFC,SGOV,SFIN} are broken down into:

VolAssetTotalS,C
i,t =VolAssetNewS,C

i,t +VolAssetExistS,C
i,t +VolAssetMatS,C

i,t +VolNPES,C
i,t (78)

where VolAssetMat are the average volumes of the maturing assets during the period and
VolNPE the average volumes of non-performing assets.

The new lending volumes are denoted by VolAssetNew and defined by the overall lending
growth net of maturing volumes:

VolAssetNewS,C
i,t = (1−PomAssetS,C

i ) (∆VolAssetTotalS,C
i,t

+VolAssetMatS,C
i,t (PomAssetS,C

i )−1)
(79)

where PomAsset stands for the point of maturity. The point of maturity informs about the time
point in a year when the average loan matures and serves as a measure of asset turnover.

The existing volumes VolAssetExist are then defined by:

VolAssetExistS,C
i,t = (1−0.25× (AvgDurationS,C

i )−1)× (VolAssetTotalS,C
i,t−1

−VolNPES,C
i,t )

(80)

where the volumes of non-performing exposures VolNPE are deducted from existing assets
since only performing exposures can mature.

The law of motion for maturing assets is given by:
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VolAssetMatS,C
i,t = PomAssetS,C

i ×0.25× (AvgDurationS,C
i )−1

× (VolAssetTotalS,C
i,t−1−VolNPES,C

i,t )
(81)

The average volumes of non-performing assets VolNPE for S ∈ {NFC,HHCC,HHHP,
RoW,SOV,FIN,CB} are projected in line with the corresponding stock of non-performing loans
in the banking book De f Exp outlined in equation (28):

VolNPES,C
i,t =VolAssetTotalS,C

i,t−1

× (
VolNPES,C

i,t−1

VolAssetTotalS,C
i,t−2

+∆
De f ExpS,C

i,t

TotalLoansS,C
i,t

)
(82)

The average volumes of non-performing security holdings for S = {SNFC,SGOV,SFIN}
follow the simplified dynamics with the constant share of non-performing exposures:

VolNPES
i,t =VolAssetTotalS

i,t×
VolNPES

i,t−1

VolAssetTotalS
i,t−1

(83)

Furthermore, the volumes of performing assets VolPE for any S ∈ {NFC,HHCC,
HHHP,RoW,SOV,FIN,CB,SNFC,SGOV,SFIN} can be derived as:

VolPeS,C
i,t =VolAssetTotalS,C

i,t −VolNPeS,C
i,t (84)

4.1.5.4 Interest income

Interest income is calculated by applying the IRFS9 standards. For performing loans (in
stage 1 and 2) the interest revenue is calculated on the gross carrying amount, while for non-
performing loans (in stage 3) it is calculated on the net carrying amount. The net carrying
amount involves the estimate of loan loss provisions for defaulted assets VolProvNPE, which
for sectors S = {NFC,HHCC,HHHP,RoW,SOV,FIN,CB} are projected along with the dy-
namics of ProvStockDe f described in equation (47):

VolProvNPES,C
i,t =VolNPES,C

i,t × (

VolProvNPES,C
i,t−1

VolNPES,C
i,t−1

+∆
ProvStockDe f S,C

i,t

De f ExpS,C
i,t

)
(85)

For sectors S = {SNFC,SGOV,SFIN} the loan loss provisions for defaulted assets assume
the constant coverage ratio for such exposures over time:

VolProvNPES
i,t =VolNPES

i,t×
VolProvNPES

i,t−1

VolNPES
i,t−1

(86)
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The total interest income of a bank TotalIntInc amounts to:

TotalIntInci,t = ∑
S

∑
C
(VolAssetExistS,C

i,t ×EIRAssetExistS,C
i,t

+VolAssetMatS,C
i,t ×EIRAssetMatS,C

i,t

+VolAssetNewS,C
i,t ×EIRAssetNewS,C

i,t

+(VolNPES,C
i,t −VolProvNPES,C

i,t )×EIRAssetNPES,C
i,t )

+ IntIncDERIV
i,t + IntIncOT HER

i,t

(87)

The modelling of interest income for sectors S = {DERIV,OT HER} follows simplified for-
mulas without the breakdown into interest income from new, existing, maturing, and defaulted
exposures. Interest income on OT HER interest-bearing assets is linked to the nominal GDP in
a home country of a bank, and that of DERIV stays constant over time:

IntIncOT HER
i,t = IntIncOT HER

i,t−1 ×
(

Y ERgrC
t +HICgrC

t −1
)

(88)

IntIncDERIV
i,t = IntIncDERIV

i,t−1 (89)

4.1.6 Trading book assets

Banks’ trading books evolve with buying and selling of assets and the revaluation gains and
losses resulting from market price corrections. Banks buy or sell assets so that their expo-
sures in the trading book are approximately in a constant proportion with respect to the total
assets in the banking book TotalExposure from equation (20). This assumption reflects the
stability of banks’ business model over time. Changes in the mark-to-market value of trad-
ing book assets are captured by revaluation rates, RevalRate. The trading assets MRAsset for
S ∈ {ACFV PL,FVOCI,FVOCIPL} evolve along with:

MRAssetS
i,t = MRAssetS

i,t−1× (RevalRateS
i,t +1)

+(1− Insolventi,t−1)× (
TotalExposurei,t

TotalExposurei,t−1
−1)

(90)

Net trading assets MRNetAsset for S ∈ {T I,EH,NONT,HEDGES}:

MRNetAssetS
i,t = MRNetAssetS

i,t−1× (RevalRateS
i,t +1)

+(1− Insolventi,t−1)× (
TotalExposurei,t

TotalExposurei,t−1
−1)

(91)

And finally trading liabilities MRLiabACFV PL42:

MRLiabLACFV PL
i,t = MRLiabLACFV PL

i,t−1 × (RevalRateLACFV PL
i,t +1)

+(1− Insolventi,t−1)× (
TotalExposurei,t

TotalExposurei,t−1
−1)

(92)

42The model follows the EBA methodology by including here financial liabilities under IFRS9 measured at
ACFVPL including among others financial guarantee contracts, commitments to provide a loan at a below-market
interest rate and contingent consideration.
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Consequently, the full gains and losses Reval are as follows:

RevalS
i,t = MRAssetS

i,t−1×RevalRateS
i,t (93)

RevalS
i,t = MRNetAssetS

i,t−1×RevalRateS
i,t (94)

Changes related to mark-to-market gains and losses for each asset, net asset, and liability
category are limited to two risk factors: the yield curve and equity prices.43 Furthermore,
revaluation gains and losses are based only on the delta sensitivity of the trading portfolio to
market prices.44

Revaluation gains or losses for all sectors S ∈ {ACFV PL,FVOCI,FVOCIPL,
T I,EH,NONT,HEDGES,LACFV PL} evolve along with:

RevalRateS
i,t = max(RevalSovSpreadS

i,t +RevalEquityS
i,t ,−1) (95)

where the revaluation rate of RevalSovSpread is derived from changes in the yield curve, and
RevalEquity is derived from changes in the prices of the shares. The overall gains or losses on
each asset, net asset, and liability class are capped at 100%.

Revaluation gains and losses related to changes in the yield curve take into account the
changes in the yield curves of all individual countries in the euro area and the United States at
maturity points τ = {0.25Y,1Y,3Y,5Y,10Y,15Y}.45 The resulting RevalSovSpread follows the
formula:

RevalSovSpreadS
i,t = ∑

C∈{EA,US}
∑
M

SovSpreadDeltaM,S,C
i ×10000×∆YieldC

t (τ) (96)

Elasticities SovSpreadDelta refer to the estimated sensitivity of an asset, net asset or liability
class to a 1bp increase in a credit spread (the multiplication by 10000 in the formula is intro-
duced accordingly). They are constant over a simulation horizon, but regularly updated with
quarterly supervisory information that complements banks’ submissions in EBA/SSM stress
tests.46

The gains and losses related to changes in equity prices, ESXgrC, are derived applying
banks’ equity risk deltas, i.e. elasticities with respect to a 1pp change in equity prices in country
C, EquityDelta:

RevalEquityS
i,t = ∑

C∈{EA,US}
EquityDeltaS,C

i ×100× (eESXgrC
t −1) (97)

43The modelling of revaluation gains and losses has so far been limited to variables most relevant for the pass-
though of monetary policy. Other risk categories such as commodity, including energy instruments and foreign
exchange risk, are not captured.

44It excludes other first sensitives such as sensitivity to volatility (vega) or passage of time (theta), and higher
order sensitivities, such as the rate of change in the delta (gamma).

45For simplicity, there is no distinction make between changes in nominal yields related to changes in credit
spreads and risk-free interest rates. Changes in yields are fully attributed to the evolution of credit spreads.

46Bank deltas are additive and take account of the composition of trading book instruments, such that assuming
a constant portfolio structure they can be summed up without additional exposure weighting. They are capture-all
multipliers which take full account of the use of derivatives or other instruments and techniques to hedge banks’
positions, e.g., interest rate swaps.
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Additional impacts of market risk factors for banks come from changes in credit valuation
adjustment CVARes and liquidity and model uncertainty reserves LiqRes. Credit valuation ad-
justment changes in response to movements in counterparty credit spreads, derivative prices,
and securities financing transactions.

Reserves for credit valuation adjustments are aggregated at the bank level, while for liq-
uidity and model uncertainty, they are considered separately for assets held for trading HFT ,
mandatory or optional at fair value through profit or loss FV PL, and through other comprehen-
sive income FVOCI. In the absence of exogenous shocks cCVARes, CVARes remains constant
over time:

CVAResi,t =CVAResi,t−1× cCVAResi,t (98)

Analogously, liquidity and model uncertainty reserves for S ∈ {HFT,FV PL,FVOCI} follow:

LiqResS
i,t = LiqResS

i,t−1× cLiqResS
i,t (99)

The value of the total trading book of a bank is derived by summing up assets, net assets,
and liabilities in the relevant classes:

MRAsseti,t = ∑
S

MRAssetS
i,t +∑

S
MRNetAssetS

i,t +MRLiabLACFV PL
i,t (100)

4.1.7 Risk Weighted Amounts

For the purpose of calculating bank solvency ratios, banks in the model calculate risk-weighted
assets (RWA). These are made up of capital charges for credit, market, and operational risk.
The methodology of calculating risk weighted amounts is based on Basel III.47 This section
first details the methodology for calculating credit risk weights and then for calculating market
and operational risk capital charges.

4.1.7.1 Capital charges for credit risk

The total capital charge for credit risk is derived as a sum of risk weighted bank sector
country or bank sector level exposures in sectors S = {NFC,HHCC,HHHP,
ROW,SOV,FIN,CB and other sectors SOT H = {EQ,OT HER,SEC}:

CRREAi,t = ∑
S

∑
C
(CRREA_NDS,C

i,t +CRREA_DS,C
i,t )

+ ∑
SOT H

CRREAS,
i,t

(101)

47Additionally, the model enables a calculation of RWA under the revised Basel III framework which increases
the sensitivity of risk weights under the standardised approach and limits the scope to which the internal modelling
approach can be applied. Furthermore, it also introduces the output floor, which requires that the RWA under the
IRB approach be at least 72 5% of the RWA under the standardised approach.
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The corresponding risk-weighted assets for non-defaulted CRREA_ND and defaulted expo-
sures CRREA_D for sectors S = {NFC,HHCC,HHHP,RoW,SOV,
FIN,CB} are calculated as:

CRREA_NDS,C
i,t = 12.5×CRRW_NDS,C

i,t ×NonDe f Exp_REAS,C
i,t

CRREA_DS,C
i,t = 12.5×CRRW_DS,C

i,t ×De f Exp_REAS,C
i,t

(102)

where 12.5 is the reciprocal of the minimum capital ratio of 8% as prescribed by the Basel II
capital adequacy rules. NonDe f Exp_REA and De f Exp_REA correspond to performing and
non-performing exposures at default amount (EAD) respectively. CRRW_ND and CRRW_D
stands for the average portfolio-specific effective risk weight on performing and non-performing
exposures.

EAD amounts for S= {NFC,HHCC,HHHP,RoW,SOV,FIN,CB}move in line with TotalLoans
as described in Section 4.1.2, taking into account the asset quality evolution as described in Sec-
tion 4.1.3:

NonDe f Exp_REAS,C
i,t = (NonDe f Exp_REAS,C

i,t−1 +De f Exp_REAS,C
i,t−1)

TotalLoansS,C
i,t

TotalLoansS,C
i,t−1

−De f Exp_REAS,C
i,t

(103)

De f Exp_REAS,C
i,t =

(
De f Exp_REAS,C

i,t−1

NonDe f Exp_REAS,C
i,t−1 +De f Exp_REAS,C

i,t−1

+∆
De f ExpS,C

i,t

TotalLoansS,C
i,t

)
(

NonDe f Exp_REAS,C
i,t−1 +De f Exp_REAS,C

i,t−1

)
×

TotalLoansS,C
i,t

TotalLoansS,C
i,t−1

(104)

For the remaining sectors S = {OT HER,EQ,SEC} in the banking book, the model scales
their risk weighted exposure amount by the corresponding exposure growth, without explicitly
modelling their underlying effective risk weights.

CRREAS
i,t =CRREAS

i,t
ExpS

i,t

ExpS
i,t−1

(105)

Banks can choose between three methodologies to calculate capital charges for credit risk.
The standardised approach (STA) is the simplest of the approaches and is based on predefined
risk weights that are linked to credit ratings assigned by external rating institutions or have a
fixed level for unrated exposures.48 The internal rating-based (IRB) approach establishes a more
granular link between capital charges and individual asset risk than the standardised approach.
Under the internal rating-based approach, there is an additional distinction between Foundation
IRB (F-IRB) and Advanced IRB (A-IRB).

48The STA has been introduced already in Basel I standards. The revision of the STA approach under Basel
II aimed to increase the risk sensitivity of the approach by introducing a wider differentiation of risk weights
while avoiding excessive complexity. Although Basel II increased the sensitivity of STA risk weights to economic
conditions, asset migrations under the STA approach tend to be still lower compared to the IRB approach.

ECB Working Paper Series No 2855 43



Abbreviation Methodological approach Estimated bank parameters
STA Standardized approach -
F-IRB Internal rating based approach - Foundation PDreg
A-IRB Internal rating based approach - Advanced PDreg, LGDreg, EAD, MAT

Table 5: Methodological approaches for credit risk capital requirements

The model accommodates the application of three methodologies by defining the effec-
tive risk weights CRRW_ND and CRRW_D as a weighted average of the risk weights calcu-
lated along with each of the methodologies. The share of exposures in each portfolio S =
{NFC,HHCC,HHHP,RoW,SOV,FIN,CB} that are under the standardised methodology is de-
noted by sMethodSTA, and the IRB methodologies jointly by sMethodIRB = 1− sMethodSTA.
The respective exposure shares for sMethodM where M ∈ {STA, IRB} are assumed to stay con-
stant throughout the simulation horizon:

CRRW_NDS,C
i,t = ∑

M
sMethodM,S,C

i ×CRRW_NDM,S,C
i,t

CRRW_DS,C
i,t = ∑

M
sMethodM,S,C

i ×CRRW_DM,S,C
i,t

(106)

The exposures under IRB approaches will be further broken down in the share under the
A-IRB methodology denoted by sMethodAIRB, and the share under the F-IRB sMethodFIRB,
where sMethodAIRB + sMethodFIRB = 1. Accordingly:

sMethodSTA,S,C
i + sMethodIRB,S,C

i × sMethodAIRB,S,C
i +

sMethodIRB,S,C
i × sMethodFIRB,S,C

i = 1
(107)

4.1.7.2 Capital charges for credit risk non-defaulted exposures

The effective risk weights for non-defaulted exposures under the standardized approach
STA for the sectors S = {HHCC,HHHP,SOV,CB,RoW} are assumed to remain constant over
time:49

CRRW_NDSTA,S,C
i,t =CRRW_NDSTA,S,C

i,t−1 (108)

The STA risk weights for the non-financial corporate sector NFC are derived separately
for the exposures of small and medium enterprises SME and non-SME exposures NSME and
then weighted with the respective shares of the exposures to the segments SME and non-SMEs
sShareSTA,SME and sShareSTA,NSME (with sShareSTA,SME + sShareSTA,NSME = 1).

CRRW_NDSTA,NFC,C
i,t = ∑

B
sShareSTA,B

i ×CRRW_NDB,STA,NFC,C
i,t−1 (109)

49Treating the risk weights to sovereigns and central banks constant relates to Article 114 of CRR stating that
banks exposure to member states’ central government and domestic central banks shall be assigned a risk weight
of 0% irrespective of economic situation. For the rest of the world exposures, the constancy of risk weights is a
simplifying assumption.
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The risk weights are assumed to remain within a corridor derived directly from the regu-
lation, with lower STANFC

Low = 0.2, and upper STANFC
High = 1.5 limits. Additionally, for the SME

sector, the model takes into account the effective supporting factor SFSME applicable to each
bank exposure, which amounts to:

SFSME,C
i,t =

{
1− (1−0.7619)×Share15SME,C

i until the end 2020
0.85− (0.85−0.7619)×Share25SME,C

i from 2021 onwards
(110)

The parameters Share15SME,C and Share25SME,C correspond to the share of corporate loans in
the portfolios of individual banks with a value below 1.5 million and a value below 2.5 million,
respectively. Changes in the supporting factor in 2021 relate to the introduction of CRR2.

Consequently, the applicable effective limits for L ∈ {Low,High} in the corporate risk
weights are equal:

STAB,NFC
L =

{
STANFC

L ×SFSME,C
i,t if B = SMESTANFC

L if B = NSME (111)

The risk weights for the corporate segments B = {SME,NSME} meet the following:

CRRW_NDB,STA,NFC,C
i,t = 0.08×


STAB,NFC

Low if Ξ
B,STA,NFC,C
i,t ≤ STANFC

B,Low

STAB,NFC
High if Ξ

B,STA,NFC,C
i,t ≥ STANFC

B,High

Ξ
B,STA,NFC,C
i,t otherwise

(112)

and otherwise the evolution of risk weights is linked to macroeconomic conditions:

Ξ
B,STA,NFC,C
i,t = 12.5×CRRW_NDB,STA,NFC,C

i,t−1 +

(STAB,NFC
High −STAB,NFC

Low )×

∆Φ

(
β

B
0 +β

B
1

̂CRRW_NDB,STA,NFC,C
i,t−1 +

β
B
2 Y ERgrC

i,t−1 +β
B
3 IHXgrC

t−1

+β
B
4 SPRC

t−1 +β
B
5 ∆ST NEA

t−1

+β
B
6 PDpitNFC,C

i,t +β
B
7 log(TAi,t0)

(113)

where Φ(·) is the standard normal cumulative distribution function. TA0 are total bank assets
in the last historical period available, serve here as a proxy for the bank’s expertise in risk
management, and enter with a negative sign. Finally:

̂CRRW_NDB,STA,NFC,C
i,t =

12.5×CRRW_NDB,STA,NFC,C
i,t −STAB,NFC

Low

STAB,NFC
High −STAB,NFC

Low

(114)

̂CRRW_ND is a transformed risk weight that remains in the [0,1] interval.
The risk weights for the financial sector are assumed to also remain within a corridor derived

from the regulation and STAFIN
Low = 0 and STAFIN

High = 1.5. Furthermore:

CRRW_NDSTA,FIN
i,t = 0.08×


STAFIN

Low if Ξ
STA,FIN
i,t ≤ STAFIN

Low

STAFIN
High if Ξ

STA,FIN
i,t ≥ STAFIN

High

Ξ
STA,FIN
i,t otherwise

(115)
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Within the limits prescribed by the regulation, the standardised risk weights for financial
exposures FIN follow a logit specification.

Ξ
STA,FIN
i,t =12.5×CRRW_NDSTA,FIN

i,t−1 +(STAFIN
High−STAFIN

Low)×

∆invlogit
(

β0 +β1 logit( ̂CRRW_ND
STA,FIN
i,t−1 )

+β2 Y ERgrC
t−1 +β3 IHXgrC

t−1

+β4 SPRC
t−1 +β5 ∆ST NEA

t−1

+β6 ∆PDpitFIN
i,t +β7 ProvCovNonDe f RFIN

i,t

+β8 log(TAi,0)

(116)

where as for NFC exposures, ̂CRRW_NDSTA,FIN is defined as:

̂CRRW_NDSTA,FIN
i,t =

12.5×CRRW_NDSTA,FIN
i,t −STAFIN

Low

STAFIN
High−STAFIN

Low
(117)

The standardised risk weights for the financial sector depend on changes in macrofinancial
environment, therein interest rates, point-in-time probability of default PDpit for financial ex-
posures, and the coverage ratio of non-defaulted exposures with provisions ProvCovNonDe f R:

ProvCovNonDe f RFIN
i,t =

(ProvStockNonDe f S1FIN
i,t +ProvStockNonDe f S2FIN

i,t )

NonDe f ExpFIN
i,t

(118)

See Appendix D.2.5 for more information on the estimation of the standardised risk weights
for NFC and FIN sectors.

The risk weights for non-defaulted exposures under the internal rating based approaches for
sectors S = {NFC,HHCC,HHHP,RoW,SOV,FIN,CB} are functions of the regulatory proba-
bility of default PDreg and loss given default LGDreg_ND. More precisely:

CRRW_NDIRB,S,C
i,t = SFS,C

i,t ×LGDreg_NDS,C
i,t × (F(PDregS,C

i,t )︸ ︷︷ ︸
Basel III formula

+RWWedgeS,C
i,t (119)

where CRRW_NDIRB is an effective IRB risk weight, F(PDreg) and RWWedge are both func-
tions of PDreg. SF is defined as:

SFS,C
i,t = 1.06×


1− sShareIRB,SME + sShareIRB,SME × 1−(1−0.7619)×Share15SME,C

i

0.85−(0.85−0.7619)×Share25SME,C
i

if S=NFC and from 2021 onwards
1 otherwise

(120)

Namely, it equals an IRB scaling factor from Basel III standards for all risk weights, but for
those for corporate exposures. There, it accounts for changes in the SME supporting factor
in 2021, recognising that IRB risk weights for corporate exposures are modelled assuming the
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constancy of CRR, in contrast to the CRR2, regime (see equation (110)). sShareIRB,SME is share
of SME lending of corporate IRB exposures of a bank.

F(PDreg) is a product of a default threshold Ω(PDreg) and the maturity adjustment term
MAT (PDreg):

F(PDregS,C
i,t ) = Ω

(
PDregS,C

i,t

)
×MAT

(
PDregS,C

i,t

)
(121)

The default threshold Ω(PDreg) is derived under the assumption that systematic and id-
iosyncratic risk factors follow a normal distribution.50 It is derived from PDreg by applying
the inverse normal distribution function G(.) and taking into account the degree of the systemic
risk exposure of the obligor captured by the sector-specific asset correlation term RS.

Ω

(
PDregS,C

i,t

)
= N

((( 1

1−RS,C
i,t

)0.5
×G(PDregS,C

i,t )+
( RS,C

i,t

1−RS,C
i,t

)0.5
×G(0.999)

)
−PDregS,C

i,t

)
(122)

where N(.) is the standard normal distribution function. The sector-specific asset correlation
coefficient RS is defined by the regulation (see BCBS [2005]) as:

RS,C
i,t = α

S
1 × (

1− exp−γS×PDregS,C
i,t

1− exp−γS )+α
S
2 × (1− 1− exp−γS×PDregS,C

i,t

1− exp−γS )

+ sShareIRB,REV,C
i ×0.04× (S = HHCC)− sShareIRB,SME,C

i ×0.04× (S = NFC)

(123)

The asset correlation term for each household consumption loan portfolio HHCC is adjusted
for the share of revolving loans sShareIRB,REV within the portfolio. Analogously, the asset
correlation term for the NFC sector takes into account the share of SME lending sShareIRB,SME .
The household real estate exposures HHHP receive a fixed asset correlation coefficient R =
0.15. Other sector-specific input parameters are sourced from BCBS [2019] and summarised in
Table 6.

Sector αS
1 αS

2 γS

NFC 0.12 0.24 50
HHCC 0.03 0.16 35
SOV 0.12 0.24 50
FIN 1.25 0.24 50

Table 6: Input parameters for credit risk asset correlation

The maturity-dependent term MAT of the Basel capital requirement formula is a function
of the regulatory probability of default, and it is given by:

MAT
(

PDregS,C
i,t

)
=

1+(MS,C
i,t −2.5)×b(PDregS,C

i,t )

1−1.5×b(PDregS,C
i,t ))

(124)

50The Basel formula for capital requirements follows from the work of Merton [1974] and Vasicek [2015] which
enabled the application of an Asymptotic Single Risk Factor (ASRF) model for credit portfolio losses.
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where M stands for the effective sector-specific maturity and the maturity adjustment term b()
is given by b(PDregS,C

i,t ) = (0.11852− 0.05478× log(PDregS,C
i,t ))2 for S = {NFC,SOV,FIN}

and set to b = 0 for retail loans HHCC and HHHP (see BCBS [2019]).
The dynamic evolution of PDreg follows a simple autoregressive process and for sectors

S = {NFC,HHCC,HHHP,SOV,FIN,CB depends on its past changes and the point in time
probability of default PDpit defined equation (32):

PDregS,C
i,t = max

(
0,min

(
1,

PDregS,C
i,t−1 +β

S
1

(
PDregS,C

i,t−1−PDregS,C
i,t−2

)
β

S
2

(
− (1−PDpitS,C

t )4 +(1−PDpitS,C
t−1)

4
))) (125)

where the formula indicates that PDreg is an annual concept, whereas PDpit is a quarterly
quantity. See Appendix D.2.1 for estimation details.

The regulatory LGD for the IRB methodologies LGDreg_NDIRB is obtained by applying
the weighted average of AIRB and FIRB for LGDs using the exposure share of each of the
methodologies M = {FIRB,AIRB} in the general exposures under IRB:

LGDreg_NDIRB,S,C
i,t = ∑M sMethodM,S,C

i ×LGDreg_NDM,S,C
i,t (126)

Under the F-IRB approach, the regulatory loss given default LGDreg_ND is stated by the
regulator and remains constant for all sectors S∈{NFC,HHCC,HHHP,RoW,SOV, FIN,CB}:51

LGDreg_NDFIRB,S,C
i,t = LGDreg_NDFIRB,S,C

i,t−1 (127)

In the A-IRB approach instead, banks are free to apply their own methodology when cal-
culating LGDreg_ND. This choice is reflected in the following estimated formula for sectors
S = {NFC,HHCC,HHHP,SOV,FIN,CB}:

LGDreg_NDAIRB,S,C
i,t = LGDreg_NDAIRB,S,C

i,t−1 +0.25×∆ ̂LGDreg_ND
AIRB,S,C
i,t (128)

̂LGDreg_ND
AIRB,S,C
i,t = logistic

(
β

S
0 +β

S
1 LGDreg_NDAIRB,S,C

i,t−1 +β
S
2 LGDpitS,C

i,t−1

+β
S
3 Y ERgrC

t−1 +β
S
4 IHXgrC

t−1

+β
S
5 URXC

t−1 +β
S
6 LT NC

t−1

) (129)

where point in time LGDpit is defined in equation (51). See Appendix D.2.2 for estimation
details.

For aggregated non-euro area exposures RoW , a simplifying assumption is taken and PDreg
and LGDreg_NDAIRB stay constant:

51The prescribed loss-given default values corresponds to 45% for senior claims on corporates, sovereigns and
financials secured by collateral and 75% in absence of collateral (see Basel framework CRE32).
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PDRegRoW
i,t = PDRegRoW

i,t−1

LGDreg_NDAIRB,RoW
i,t = LGDreg_NDAIRB,RoW

i,t−1

(130)

The Basel IRB risk weight function is concave. Figure 9 plots the projected risk weight as
a function of PDreg. This concavity implies that when the formula is applied on aggregated
values PDreg of individual exposures, it results in a wedge between the risk weight calculated
this way and the correct risk weight, which would apply the formula on each individual exposure
and aggregate the result. To account for this fact, the model introduces an estimated risk weight
add-on RWWedge in equation (119).

Notes: The plotted line illustrates how estimated PDs map into regulatory risk weights for corporate sector loans with turnover larger than
C50 million, assuming a standard value for loss given default (45%) and effective maturity (2.5 years). The red lines in the plot illustrate
individual portfolio level probability of defaults (PDs), while the green line represents the aggregated PD combining the two portfolios.
The resulting difference between the actual risk weight for the aggregated portfolio and the one obtained by the linear combination of the
input parameters is mapped into RWWedge.

Figure 9: Schematic illustration IRB risk weight function

The definition of RWWedge refers to the local curvature of the risk weight function and uses
the first derivative of F(PDreg):

F ′(PDregS,C
i,t ) = Ω

′
(

PDregS,C
i,t

)
×MAT

(
PDregS,C

i,t

)
+Ω

(
PDregS,C

i,t

)
×MAT ′

(
PDregS,C

i,t

) (131)

The correction term RWWedge is then projected based on the estimated regression coeffi-
cients:

RWWedgeS,C
i,t = β

S
1 F ′(PDregS,C

i,t )+RWAddonS,C
i (132)

where RWAddon (a constant of the corresponding regression at the sector level) translates into
a constant add-on. For the estimation methodology and sector-specific estimates, see Appendix
D.2.4.
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4.1.7.3 Capital charges for credit risk defaulted exposures

The methodology of the standardised approach simplifies the dynamics of capital charges
for defaulted exposures and prescribes constant risk weights for all sectors
S = NFC,HHCC,HHHP,RoW,SOV,FIN,CB}:

CRRW_DSTA,S,C
i,t =CRRW_DSTA,S,C

i (133)

The evolution of capital charges for defaulted exposures for IRB approaches CRRW_DIRB,S,C

follows:

CRRW_DIRB,S,C
i,t = sMethodAIRB,S,C

i ×max(0,LGDreg_DAIRB,S,C
i,t −ELBEAIRB,S,C

i,t ) (134)

which recognises that the risk weights on the defaulted exposures under FIRB are equal to zero,
that is, CRRW_DFIRB = 0. LGDreg_DAIRB,S,C stands for the bank estimate of the loss given
default using the A-IRB methodology, and ELBEAIRB,S,C is the expected loss best estimate.
The loss given default for AIRB exposures is projected for S = {NFC,HHCC,HHHP,SOV,
FIN,CB}on the basis of the estimated equation. LGDreg_D is linked to the growth rate of
GDP Y ERgr, stock markets ESXgr and real estate prices IHXgr, as well as the short ST N and
long-term interest rate LT N for the country of exposure. :

LGDreg_DAIRB,S,C
i,t = LGDreg_DAIRB,S,C

i,t−1 +∆ ̂LGDreg_D
AIRB,S,C
i,t /4 (135)

̂LGDreg_D
AIRB,S,C
i,t = logistic

(
β

S
0 +β

S
1 logit

(
LGDreg_DAIRB,S,C

i,t−1

)
+β

S
2 LGDreg_NDAIRB,S,C

i,t−1

+β
S
3 Y ERgrC

t−1 +β
S
4 IHXgrC

t−1

+β
S
5 ∆URXC

t−1 +β
S
6 SPRC

t−1

) (136)

The expected loss best estimate ELBE depends on the same set of explanatory variables as
LGDreg:

ELBEAIRB,S,C
i,t = ELBEAIRB,S,C

i,t−1 +∆ÊLBE
AIRB,S,C
i,t /4 (137)

ÊLBE
AIRB,S,C
i,t = logistic

(
β

S
0 +β

S
1 logit

(
ELBEAIRB,S,C

i,t−1

)
+β

S
2 LGDpitS,C

i,t−1

+β
S
3 Y ERgrC

t−1 +β
S
4 IHXgrC

t−1

+β
S
5 ∆URXC

t−1 +β
S
6 SPRC

t−1

) (138)
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See Appendix D.2.3 for estimation details for both AIRB parameters. For the RoW sector, both
regulatory parameters are assumed to remain constant over time:

LGDreg_DAIRB,RoW
i,t = LGDreg_DAIRB,RoW

i,t−1

ELBEAIRB,RoW
i,t = ELBEAIRB,RoW

i,t−1

(139)

4.1.7.4 Expected regulatory IRB losses

In IRB approaches, banks are asked to calculate the potential shortfalls between the total
eligible provisions and the expected regulatory losses (see Section 4.2.2). Banks total expected
regulatory losses under IRB ELREGIRB are defined by the weighted sum of expected losses for
defaulted and non-defaulted IRB exposures for S= {NFC,HHCC,HHHP,RoW,SOV,FIN,CB}:

ELREGIRB
i,t = ∑

S
∑
C
(NonDe f Exp_REAS,C

i,t ×PDreg_IRBS,C
i,t ×LGDreg_NDS,C

i,t

+De f Exp_REAS,C
i,t ×LGDreg_DS,C

i,t )× sMethodIRB,S,C
i

(140)

4.1.7.5 Capital charges for market risk

The market risk capital charges are composed of standardised method STAMRREA and
internal model method IMMRREA risk exposure amount, All Price Risk component APR and
Credit Valuation Adjustments CVA:

MRREAi,t = STAMRREAi,t + IMMRREAi,t +APRi,t +CVAi,t (141)

The model applies a simplified formula to calculate market risk charges by setting them
proportional to total trading book exposures MRAsset as defined in equation (100):

STAMRREAi,t = STAMRREAi,t−1×
MRAsseti,t

MRAsseti,t−1

IMMRREAi,t = IMMRREAi,t−1×
MRAsseti,t

MRAsseti,t−1

APRi,t = APRi,t−1×
MRAsseti,t

MRAsseti,t−1

CVAi,t =CVAi,t−1×
MRAsseti,t

MRAsseti,t−1

(142)

4.1.7.6 Capital charges for operational risk

A simplified methodology is also applied for the operational risk capital charges. Here, capi-
tal charges OPREA consist of charges calculated along with the basic indicator and standardised
approach BIASTAOR and the operational risk advanced approach AMAOR.
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OPREAi,t = BIASTAORi,t +AMAORi,t (143)

The model assumes that operational risk is proportional to banks’ total assets, and the two
operational risk charges are scaled accordingly by the assets of the banks TA:

BIASTAORi,t = BIASTAORi,t−1×
TAi,t

TAi,t−1

AMAORi,t = AMAORi,t−1×
TAi,t

TAi,t−1

(144)

4.1.7.7 Total risk weighted amount

The total risk weighted amount of banks sums up the credit risk weighted amount CRREA,
the market risk weighted amount MRREA and the operational risk weighted amount OPREA.
Other risk weighted amounts OtherREA not classified in any of these categories are assumed to
remain constant.

TotREAi,t = MRREAi,t +CRREAi,t +OPRREAi,t +OtherREAi,t (145)

4.2 Bank liabilities and own funds
4.2.1 Structure of bank liabilities and own funds

To raise funding for income-generating assets and activities, a bank accumulates its own funds
and issues debt. In the model, the own funds comprise Common Equity Tier 1 CET 1T R (tran-
sitional value), additional Tier 1 AT 1CAP, and Tier 2 T 2CAP capital. Together, capital instru-
ments make up 7.5% of the total liabilities of the banks and their own funds (see Table 7).

The largest type of bank liabilities are retail deposits. Retail deposits, composed of sight
deposits to households HHS and non-financial corporations NFCS, term deposits DEPT and
deposits to the rest of the world RoW (including sight and term deposition of non-financial
private sector counterparts in the non-euro area) and sum up to 51.1 % of total liabilities and
own funds on average. The retail deposits to the non-financial private sector in the euro area are
additionally broken down by the source country.

Another type of debt financing is institutional funding, which comprises funding by central
banks NCB and governments SOV . These collectively amount to 9% of the total liabilities and
own funds. The fourth source of funding is the wholesale debt, which can be further broken
down into secured SEC and unsecured funding UNSEC. Secured wholesale funding makes up
9.1% of total liabilities and own funds on average and consists of short-term repurchase agree-
ments SECST and collaterized debt securities issued by banks SECLT . Unsecured funding
accounts for 20.9% of total liabilities and own funds and consists of sight FINS and term FIN
deposits from financial corporations, bonds, other securities, or hybrid instruments OT HSEC.
Finally, the last funding type distinguished in the model are derivatives DERIV and other lia-
bilities OT HER.
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In order to describe bank funding and liquidity management, debt instruments are classi-
fied as slow and fast moving. Slow-moving funding sources are in short supply, and banks
cannot influence their supply, especially in the short term. The slowest moving category is
sight SIGHT , term T ERM, and deposits from the rest of the world RoW . Fast-moving funding
sources generally are in abundant supply, though they also have higher costs. These include
institutional deposits INST and wholesale funding SEC and UNSEC. Banks’ liquidity manage-
ment focuses on steering their LCR and NSFR, which they achieve by adjusting the duration
and collateralization of issued wholesale funding.

Abbreviation Description Group Granularity Share of liabilities

Own Funds

CET1TR Common Equity Tier 1 capital (net of deductions and after transitional adj.) CAP Bank 6.0
AT1CAP Additional Tier 1 capital (net of deductions and after transitional adj.) CAP Bank 0.5
T2CAP Tier 2 capital instruments CAP Bank 1.0

Retail deposits

NFCS Deposits (excl. repo): Non-financial corporations - sight SIGHT Sector-Country-Bank 10.2
HHS Deposits (excl. repo): Households - sight SIGHT Sector-Country-Bank 21.7
TERM Deposits (excl. repo): Non-financial corporations, households, term T ERM Sector-Country-Bank 8.4
RoW Deposits (excl. repo): Rest of the world - sight and term RoW Sector-Bank 10.8

Institutional

NCB Deposits (excl. repo): Central banks INST Sector-Bank 7.8
SOV Deposits (excl. repo): General governments INST Sector-Bank 1.2

Wholesale

SECST Deposits: Repo SEC Sector-Bank 4.2
SECLT Debt securities issued: ABS and covered bonds WHSL Sector-Bank 4.9
FINS Deposits (excl. repo): Credit Institutions and other fin. corps. - sight NSEC Sector-Bank 6.1
FIN Deposits (excl. repo): Credit Institutions and other fin. corps. - term NSEC Sector-Bank 5.2
OTHUNSEC Debt securities issued: Other securities and hybrid contracts NSEC Sector-Bank 9.6

Other

DERIV Derivatives OT HER Sector-Bank -
OTHER Other liabilities OT HER Sector-Bank 2.3

Notes: The share for individual liability classes is calculated by excluding derivatives DERIV . ABS stands for asset-backed securities.

Table 7: Liability sectors

4.2.2 Evolution of bank capital

The model considers the capital of CET1 CET 1T R net of deductions and after applying transi-
tional adjustments:

CET 1T Ri,t =CiCETi,t +AOCIi,t +DBPFAi,t +DTAi,t + IRBS fi,t× (IRBS fi,t < 0)
+CET 1Othi,t +RetEarni,t

(146)

where CiCET are capital instruments eligible as CET1, AOCI is accumulated other compre-
hensive income, DBPFA are defined benefit pension fund assets net of associated liabilities,
DTA are deferred tax assets, RetEarn are retained earnings or accumulated losses (discussed
in Section 4.4.5), and CET 1Oth are other capital instruments.52 The shortfall between the to-

52CET 1Oth sums up other reserves, funds for general banking risk, minority interest given recognition in CET1
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tal eligible provisions and the expected regulatory losses IRBS f 53 is fully deducted, without
considering tax effects from CET1 capital.

Along with the assumption that banks cannot issue new equity, capital instruments eligible
as CET1 CiCET remain most of the time constant over the simulation horizon. They change
only after additional Tier 1 AT 1CAP or Tier 2 T 2CAP capital conversions aimed at absorbing
capital losses. The conversion takes place at trigger points of 5.125% for AT 1CAP and 4.5% for
T 2CAP relative to the total risk weighted amounts (for the definition of TotREA see equation
(145)) adjusted due to the transitional arrangements of IFRS 9 TAIFRSREA:

CiCETi,t =CiCETi,t +(5.125%−CET 1REAi,t−1 > 0)×
min(((5.125%−CET 1REAi,t−1)× (ToT REAi,t−1 +TAIFRSREAi,t−1)),

AT 1CAPi,t−1)+(4.5%−CET 1REAi,t−1 > 0)×
min(((4.5%−CET 1REAi,t−1)× (ToT REAi,t−1 +TAIFRSREAi,t−1)),

T 2CAPi,t−1))

(147)

The accumulated other comprehensive income AOCI evolves along with the revaluation
gains or losses RevalFVOCI and changes in the liquidity reserves LiqResFVOCI for trad-
ing assets that mandatorily enter other comprehensive income. It also accounts for a share
ShareOCIFV PL of revaluation losses on assets that voluntarily enter other comprehensive income
RevalFVOCIPL and a share ShareOCIPLCF of revaluation gains or losses for the hedging instru-
ments RevalHedges (see Section 4.1.6 for their definitions).

AOCIi,t = AOCIi,t−1 +AOCIOtheri,t+

(RevalFVOCI
i,t +ShareOCIFV PL

i ×RevalFVOCIPL
i,t +ShareOCIPLCF

i ×RevalHedges
i,t

−∆LiqResFVOCI
i,t )×0.7

(148)

where AOCIOthere tracks other residual items of AOCI and is assumed to remain constant over
time (the same as both shares Share).

The annual change in defined benefit pension fund assets net of associated liabilities DBPFA
and deferred tax assets DTA is conservatively assumed to stay constant so that banks do not
accumulate additional deferred tax assets in case of losses:

DTAi,t = DTAi,t−1 (149)

The shortfall between the total eligible provisions and the expected regulatory losses IRBS f
is equal to the following:

IRBS fi,t =−(ELREGIRB
i,t −ProvStockIRB

i,t − IRBSF_AddVali,t) (150)

where banks regulatory expected losses ELREGIRB are defined in equation (140), and ProvStockIRB

corresponds to bank IRB-specific stock of provisions:

capital, additional deductions of CET1 capital due to Article 3 CRR, intangible assets (including goodwill), recip-
rocal cross holdings, excess deduction from AT1 items over AT1 Capital, deductions related to assets which can
alternatively be subject to a 1.25% risk weight, holdings of CET1 capital instruments of financial sector entities
(non-significant investment), additional deductions of CET1 capital due to Article 3 CRR, CET1 capital elements
or deductions - other, transitional adjustments and CET1 instruments of financial sector entities (significant invest-
ment).

53As defined in Basel III paragraph 73
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ProvStockIRB
i,t = ∑

S
∑
C

sMethodIRB,S,C
i ×

(
ProvStockNonDe f S1S,C

i,t

+ProvStockNonDe f S2S,C
i,t +ProvStockDe f S,C

i,t

)
+ sMethodIRB,OT HER

i ×ProvStockOT HER
i

+ sMethodIRB,EQ
i ×ProvStockEQ

i

(151)

where S = {NFC,HHCC,HHHP,RoW,SOV,FIN,CB}, and IRBSF_AddVal accounts for an
exogenous and constant adjustment factor for defaulted and non-defaulted IRB exposures.

Additional Tier 1 capital AT 1CAP summarises other instruments eligible for inclusion in
Tier 1 but not for common equity, such as contingent convertibles or hybrid securities. The
formula accounts for the conversion of AT1 instruments into equity following a trigger event:

AT 1CAPi,t = AT 1CAPi,t−1− I(5.125%−CET 1REAi,t−1 > 0)×
min((5.125%−CET 1REAi,t−1)× (ToT REAi,t−1 +TAIFRSREAi,t−1),

AT 1CAPi,t−1)

(152)

Tier 2 capital instruments such as revaluation reserves, hybrid instruments, and subordinated
term debt. Additionally, the CRR further prescribes that excess credit risk provisions for IRB
banks IRBS fi,t < 0 be added to Tier 2 instruments:54

T 2CAPi,t = T 2CAPi,t−1 +min(IRBSFi,t ,0.6%×ToT REAi,t)× (IRBSFi,t > 0)
−min(IRBSFi,t−1,0.6%×ToT REAi,t−1)× ((IRBS fi,t−1 > 0)
− (4.5%−CET 1REAi,t−1 > 0)×min(((4.5%−CET 1REAi,t−1)

× (ToT REAi,t−1 +TAIFRSREAi,t−1)),T 2CAPi,t−1))

(153)

4.2.3 Evolution of bank liabilities

The evolution of bank liabilities depends on the size of bank assets, the supply and costs of
different funding instruments, and liquidity considerations. The bulk of assets will typically
be funded by non-maturing debt carried over from last quarter and own funds. The remaining
funding gap is covered by debt issuance. Banks tap different debt funding sources sequentially,
according to a pecking order principle. First, they turn to slower-moving debt instruments, and
last, they issue debt in wholesale markets. The order of reaching for different funding sources is
informed by the relative costs of funding (starting from cheaper instruments, and progressing to
more expensive funding), its stability (starting from most stable and moving toward less stable
funding) and last by legal considerations.55 Banks adjust the duration and collateralization of
wholesale funding in response to relative prices for different types of wholesale funding, the
supply of unencumbered assets, and regulatory compliance with the liquidity coverage ratio
LCR and the net stable funding ratio NSFR.

54See Article 62(d) of the CRR.
55Although the pecking order describing funding choices of non-financial firms has also been used by Myers

and Majluf [1984], the two terms are not equivalent. Myers and Majluf [1984] considers funding choices in the
presence of information asymmetries between internal funds (retained earnings), debt, and equity issuance. Here,
the same term describes banks’ choices between different types of debt.
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4.2.3.1 The funding gap and pecking order

The funding gap FundingGap is defined as the amount of new debt a bank needs to raise
to finance its operations. It amounts to the difference between the funding needs and the fund-
ing available to a bank at the beginning of the period, including the own funds CET 1T R and
AT 1CAP and the non-matured or withdrawn debt instruments:

FundingGapi,t =VolAssetTotali,t +VolNPEi,t−AssetOverhangi

−CET 1T Ri,t−1−AT 1CAPi,t−1

−∑
S

∑
C
(1−ShareMaturingS,C

i,t )VolLiabTotalS,C
i,t−1

−∑
S
(1−ShareMaturingS

i,t)VolLiabTotalS
i,t−1

(154)

where S ∈ {NFCS,HHS,T ERM,RoW,NCB,SOV,SECST,SECLT,FINS,FIN,
OT HUNSEC,OT HER}. ShareMaturing stands for the proportion of maturing or withdrawn
liabilities in the reference quarter. AssetOverhang is a constant parameter that takes into ac-
count the inconsistency between asset and liability volumes in the data submitted by banks in
EBA/SSM stress test exercises.56

For retail sight deposits of households HHS and corporates NFCS, the gross quarterly with-
drawal rate is set at 10%. This rate lies between the stressed outflow rate assumed by the regu-
lator for the calculation of LCR (see Section 4.3.3.1) and the business-as-usual outflow rate as-
sumed for the calculation of NSFR (see Section 4.3.3.2). For term deposits T ERM, the propor-
tion of maturing debt follows a distribution Gamma(k,θ) with k = 1 and θ = AvgDurationLiab,
analogously to the assumptions followed for bank loans (see Section 4.1.5 and equation (57)).

ShareMaturingS,C
i,t =

{
10%, if S ∈ {HHS,NFCS}
F(0,0.25,AvgDurationLiabS,C

i ) if S = T ERM
(155)

For non-retail sectors, the share of maturing debt is calculated as follows:

ShareMaturingS
i,t =



50% if S = SECST
UnsecuredOut f lowi,t

VolLiabTotalS
i,t

if S = FINS

F(0,0.25,AvgDurationLiabS
i,t) if S ∈ {RoW,NCB,SOV,

SECLT,FIN,OT HUNSEC}
0 if S = OT HER

(156)

Half of all repos SECST are assumed to be renewed quarter-by-quarter. For financial sight
deposits FINS, the outflows of unsecured financial sight deposits are calculated in Section
4.3.3.1.57 All other non-retail debt matures depending on its duration. For OT HER funding,
the model takes a simplified assumption of no-outflow.

56The item can include assets and liabilities that are not interest-bearing, such as property and equipment, intan-
gibles or cash assets. The excess funding is then carried over into the next period as spare cash. A negative funding
gap can rarely arise in the data.

57These are calculated for a stressed scenario over a 30-day period, which we assume to be an adequate proxy
for average, business-as-usual outflows over a quarter.
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A bank closes its funding gap starting with sight deposits from the private sector SIGHT
that include the HHS and NFCS segments. Euro area sight deposits are favourably priced and
more stable than institutional or wholesale funding due to deposit insurance [Farag et al., 2013].
Furthermore, banks may not be able58 to refuse the acceptance of sight deposits. Thereafter,
if the gap is still open, banks take advantage of euro area retail term deposits T ERM, and
then of retail deposits from non-euro area countries RoW . Unless private sector deposits are
sufficient to fully cover the funding gap, banks resort to central bank NCB and government
SOV funding jointly summarised in category INST . Finally, if the funding gap persists even if
all preferred funding sources have been exhausted, the outstanding funding needs are saturated
in the wholesale market, which offers an unlimited supply of funding though at costs sensitive
to market and bank-specific conditions.59 In the wholesale market, banks will first exhaust their
ability to issue secured funding SEC, and then only draw on unsecured funding UNSEC.

Let FundingGapG be the residual funding gap after a bank tapped all available funding
prior to category G in pecking order. FundingSupplyG stands for the inflow of funding from
categories in G, that is, the aggregated supply of funding from sectors S and countries C
contained in category G. The sequential closing of the funding gap along the pecking order
G ∈ {SIGHT,T ERM,RoW, INST,SEC,UNSEC} occurs as follows:

FundingGapSIGHT
i,t = max(FundingGapi,t ,0)

FundingGapT ERM
i,t = max(FundingGapSIGHT

i,t −FundingSupplySIGHT
i,t ,0)

FundingGapRoW
i,t = max(FundingGapT ERM

i,t −FundingSupplyT ERM
i,t ,0)

FundingGapINST
i,t = max(FundingGapRoW

i,t −FundingSupplyRoW
i,t ,0)

FundingGapSEC
i,t = max(FundingGapSEC

i,t −FundingSupplySEC
i,t ,0)

FundingGapUNSEC
i,t = 0

(157)

4.2.3.2 Sight and term deposits

The funding supply FundingSupply for G ∈ {SIGHT,T ERM,RoW, INST} is equal to:

FundingSupplyG
i,t = ∑

S∈G
∑C

(
VolLiabTotalS,C

i,t−1× In f lowRateS,C
i,t

)
(158)

and the gross inflow rate In f lowRate for different deposits S ∈G is calculated as the sum of net
inflows VolLiabTotal_gr and the replacement of maturing debt ShareMaturing:

In f lowRateS,C
i,t = max

(
VolLiabTotal_grS,C

i,t +ShareMaturingS,C
i,t ,0

)
(159)

The growth rate VolLiabTotal_gr of retail funding is estimated separately for household
HHS and non-financial corporate NFCS sight deposits, and term deposits T ERM. The dy-
namic behaviour in each of these sectors S ∈ {HHS,NFCS,T ERM} is governed by local eco-
nomic conditions and interest rates on new deposits EIRLiabNew. Details of the estimation are
provided in Appendix C.7.

58EU residents have the right to a bank account.
59The assumption of unlimited access to unsecured funding is maintained also for stressed periods. However,

the price of unsecured funding under such conditions is expected to reflect a sharp increase in credit risk and a
shortage of funding supply.
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VolLiabTotal_grS,C
i,t = β

S
1 ∆log(VolLiabTotali,t−1)+∑

p
β

S
2,p Y ERgrC

t−p +β
S
4 HICgrC

t−1

+β
S
5 ∆URXC

t−1 +∑
p

β
S
6,p ∆EIRLiabNewS,C

i,t−p

+β
S
7 (EIRLiabNewS,C

i,t−1−ST NEA
t−1)

(160)

The growth rate of deposits coming from countries outside the euro area is calculated by
weighting the sector-specific parameters from equation (160) with the share of sectors S ∈
{HHS,NFCS,DEPT} in the overall bank deposits from RoW , analogously to equation (15).
Macrofinancial variables entering the RoW deposit growth equation also take into account the
bank-specific exposure shares to the non-financial private sector in individual countries outside
the euro area as in equation (16).

The funding from sovereigns or central banks follows the nominal GDP in the domestic
economy of a bank Ci. Therefore, for S ∈ {SOV,NCB}:

VolLiabTotal_grS
i,t = Y ERgrCi

t +HICgrCi
t (161)

A bank draws funding from any source G only to the extent necessary to close a resid-
ual gap FundingGapG. Actual funding volumes drawn by a bank from source G make up a
monotonously decreasing share∈ [0,1] of available FundingSupplyG, denoted as FundingDemandG

and defined as:

FundingDemandG
i,t =

min(FundingGapG
i,t ,FundingSupplyG

i,t)

FundingSupplyG
i,t

(162)

Bank liability volumes amount to the non-matured stock of liabilities plus a gross realised
funding inflow. Therefore, for all S ∈ G, where G ∈ {SIGHT,T ERM,RoW, INST}:

VolLiabTotalS,C
i,t =VolLiabTotalS,C

i,t−1

(
1−ShareMaturingS,C

i,t

+(1− Insolventi,t−1)×FundingDemandG
i,t× In f lowRateS,C

i,t

)
(163)

4.2.3.3 Wholesale funding

The use of wholesale funding FundingSupply for G ∈ {SEC,UNSEC} is the simple sum
of instruments VolLiabIssued in each market segment:

FundingSupplyG
i,t = ∑

S∈G
VolLiabIssuedS

i,t
(164)

The composition of wholesale funding is influenced by considerations of maturity mis-
match. A bank has access to secured and unsecured funding, and the mix of wholesale funding
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is governed by three estimated shares: the desired share of secured wholesale funding in all
wholesale funding γSEC

WHSL, the share of long-term secured funding in all secured funding, and
the share of long-term unsecured funding in all unsecured funding.

A bank can collateralise sovereign bonds to generate repos SECST , or pools of loans to
generate ABS or covered bonds SECLT . The desired share of secured funding in wholesale
funding, γSEC

WHSL ∈ (0,1), is estimated logistically (for estimation details, see Appendix C.11):

γ
SEC
WHSL = invlogit

(
β0+4 β1 (EIRLiabNewFINS

i,t −EIRLiabNewSECST
i,t )

+4 β2 (EIRLiabNewUNSEC
i,t −EIRLiabNewSECLT

i,t )

+β3 log(max(LCRi,t−1−T LCRi,t−1,0)
) (165)

The desired share of secured funding depends positively on the current risk premium on
short-term EIRLiabNewFINS−EIRLiabNewSECST and long-term
EIRLiabNewUNSEC−EIRLiabNewSECLT unsecured funding. The collateralization of whole-
sale funding reduces the stock of unencumbered high-quality liquid assets and negatively affects
the LCR’s numerator. Accordingly, the higher the excess liquidity coverage, i.e., the difference
between the bank’s LCR and the corresponding regulatory requirement T LCR, the greater the
availability of collateral for repo operations and the likelihood that a bank seeks secured fund-
ing.

The share of long-term funding in secured funding γLT
SEC determines the proportion of ABS

and covered bonds SECLT in bank funding. It depends on the relative prices of repos and
long-term secured bonds EIRLiabNewSECST−EIRLiabNewSECLT , the excess net stable funding
NSFR beyond the regulatory requirement T NSFR as the duration of debt funding affects the
numerator of NSFR, the amount of encumberable government bonds EncumbL1SecBu f f er
(which can generate repos) and loans EncumbLoanBu f f er (which can generate ABS or covered
bonds).

γ
LT
SEC,i,t = invlogit

(
β0+4β1 (EIRLiabNewSECLT

i,t −EIRLiabNewSECST
i,t )

+β2 log(max(NSFRi,t−1−T NSFRi,t−1,0)

+β3 EncumbL1SecBu f f eri,t +β4 EncumbLoanBu f f eri,t

) (166)

The share of term deposits FIN and securities UNSEC in unsecured funding, γLT
UNSEC, de-

pends on the relative price of short-term and long-term unsecured funding EIRLiabNewFINS−
EIRLiabNewUNSEC, and the excess stable funding (NSFR−T NSFR) available to a bank.

γ
LT
UNSEC,i,t = invlogit

(
β0+4 β1 (EIRLiabNewUNSEC

i,t −EIRLiabNewFINS
i,t )

+β2 log(max(NSFRi,t−1−T NSFRi,t−1,0)
) (167)

The volumes of new repos VolLiabIssuedSECST and covered bonds or ABS VolLiabIssuedSECLT

are capped by the available collateral stock. For new repos these, the stock of available collat-
eral is provided by the volume of unencumbered sovereign bonds UnencumbL1SecBRepo, and
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for covered bonds or ABS, the volume of encumberable retail loans UnencumbLoansBABS (for
their definitions, see Section 4.3.3.3), both less the corresponding haircut Haircut:

VolLiabIssuedSECST
i,t = min

(
(1−HaircutSGOV )×UnencumbL1SecBRepoi,t

γ
SEC
WHSL,i,t× (1− γ

LT
SEC,i,t)×FundingGapSEC

i,t

)
VolLiabIssuedSECLT

i,t = min
(
(1−HaircutLOANS)×UnencumbLoansBABSi,t

γ
SEC
WHSL,i,t× γ

LT
SEC,i,t×FundingGapSEC

i,t

)
(168)

For repos, HaircutSGOV is set at 10%. For the issuance of covered bonds or ABS, the haircut
HaircutLOANS is higher and amounts to 25%.

The residual funding demand FundingGapSEC after the issuance of secured debt is covered
by unsecured debt and allocated according to γLT

UNSEC:

VolLiabIssuedFINS
i,t =FundingGapSEC

i,t × (1− γ
LT
UNSEC,i,t)

VolLiabIssuedFIN
i,t =FundingGapSEC

i,t × γ
LT
UNSEC,i,t×ShareFIN

VolLiabIssuedOT HUNSEC
i,t =FundingGapSEC

i,t × γ
LT
UNSEC,i,t× (1−ShareFIN

i )

(169)

The split between financial term deposits FIN and other securities and hybrid contracts
OT HUNSEC for unsecured funding is constant and is captured by the calibrated parameter
ShareFIN derived from historical data.

The total volume of wholesale debt for S ∈ {SECST,SECLT,FINS,FIN,
UNSEC,OT HUNSEC}:

VolLiabTotalS
i,t =(1−ShareMaturingS

i,t)×VolLiabTotalS
i,t−1

+(1− Insolventi,t−1)×VolLiabIssuedS
i,t

(170)

where a bank loses its access to wholesale funding in case of its insolvency.

4.2.4 Total funding volumes

The model simplifies the dynamics for other OT HER liabilities linking them directly to the
nominal GDP growth in a country where the banks are headquartered:

VolLiabTotalOT HER
i,t =VolLiabTotalOT HER

i,t−1 ×
(

Y ERgrC
t +HICgrC

t +1
)

(171)

while derivatives DERIV are assumed to remain constant over time:

VolLiabTotalDERIV
i,t =VolLiabTotalDERIV

i,t−1 (172)

The total funding volumes VolLiabTotal sum up liabilities for S∈{HHS,NFCS,DEPT,RoW,
NCB,SOV,SECLT,SECST,FINS,FIN,OT HUNSEC,OT HER}:

VolLiabTotali,t = ∑
S

∑
C

VolLiabTotalS,C
i,t (173)
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4.2.5 Costs of debt financing

4.2.5.1 Interest rates on new deposits

The interest rates on new retail sight deposits EIRLiabNew for S ∈ {HHS,NFCS} depend
on general macrofinancial conditions. Additionally, the pass through of market interest rates
ST N in bank deposit rates becomes weaker near the zero-lower bound, which is accommodated
with the interaction term between ST N and a non-linear function f (.) of EIRLiabNew. The
empirical specification of deposit pricing also accounts for the competitiveness in retail sight
deposits, including the convergence term between the individual bank deposit rates and the
average deposit rate EIRLiabNew in the relevant market. For estimation details, see Appendix
C.8).

∆EIRLiabNewS,C
i,t =β

S
1 ∆EIRLiabNewS,C

i,t−1 +β
S
2 ∆EIRLiabNewS,C

i,t−2

+β
S
3 Y ERgrC

t−1 +β4 Y ERgrC
t−2

+β
S
5 HICgrC

t−1 +β6 HICgrC
t−2

+β
S
7 ∆(LT NC

t−1−LT NDE
t−1)+β

S
8 ∆(LT NC

t−2−LT NDE
t−2)

+β
S
9 ∆ST NEA

t−1× f (EIRLiabNewS,C
i,t−1)

+β
S
10 (EIRLiabNewS,C

i,t−1−EIRLiabNewS,C
i,t−1)

(174)

where f (x) = ( 2
1+e−25max(x,0) −1).

Term deposits DEPT depend on a similar set of factors, although the 3-month EURIBOR
enters the empirical equation as a two-year moving average.

∆EIRLiabNewDEPT,C
i,t =β1 ∆EIRLiabNewDEPT,C

i,t−1 +β2 ∆EIRLiabNewDEPT,C
i,t−2

+β3 Y ERgrC
t−1 +β4 Y ERgrC

t−2

+β5 HICgrC
t−1 +β6 HICgrC

t−2

+β7 ∆(LT NC
t−1−LT NDE

t−1)+β8 ∆(LT NC
t−2−LT NDE

t−2)

+β9 0.125 ∆8ST NEA
t

(175)

Interest rates on new rest of the world deposits RoW are derived by aggregating the spec-
ifications for sight and term deposits, weighted by the shares of the corresponding deposits in
banks’ non-euro area deposits. Additionally, the macrofinancial variables in equations (174)
and (175) are substituted with their weighted-average RoW counterparts as in equation (16).

Interest rates on sovereign SOV and central bank deposits NCB are linked to the domestic
yield curve. Letting Ci be the home country of a bank:

∆EIRLiabNewS
i,t = 0.25×∆YieldC

t (AvgDurationLiabS
i ) (176)

4.2.5.2 Costs of newly issued wholesale funding

Interest rates on secured funding S ∈ {SECST,SECLT} track changes in the euro area yield
curve YieldEA, which approximates a risk-free rate:
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∆EIRLiabNewS
i,t = 0.25×∆YieldEA

t (AvgDurationLiabS
i ) (177)

Interests in the unsecured wholesale market are linked to bank-specific yield curves Yieldi
taking into account bank-specific funding maturity on newly issued debt NewDurationLiab.
For S ∈ {FINS,FIN,UNSEC}:

EIRLiabNewS
i,t = EIRLiabNewS

i,t−1 +0.25×∆Yieldi,t(NewDurationLiabS
i,t) (178)

A bank-specific funding yield curve follows a similar specification to the annualized yields
on bank security holdings introduced in equations (62) and (63). It is broken down into the
idiosyncratic risk of default of a bank CreditSpread and a risk-free interest rate supplied by the
euro area yield curve:

Yieldi,t(NewDurationLiabS
i,t) = e

ˆLinSpreadi,t(NewDurationLiabS
i,t)

+YieldEA
t (NewDurationLiabS

i,t)
(179)

The linear function LinSpreadi,t(.) depends on macroeconomic factors and bank-specific
factors, including the bank leverage ratio LevRatTa, net NPL ratio netNPLR, and the size of
the bank’s balance sheet approximated with bank total assets TA, in addition to dummies for
subsidiary banks SUBS and state-owned banks LABA, which jointly capture the idiosyncratic
determinants of bank default risk. Macroeconomic factors follow developments in the domestic
economy of banks Ci.

LinSpreadi,t(τ) =β0 +β1 SUBSi +β2 LABAi

+β3 LevRatTAi,t +β4 netNPLRi,t +β5 TAi,t +β6 Y ERgrCi
t

+log(τ)× (β7 LevRatTai,t +β8 netNPLRi,t +β9 TAi,t +β10 LT NCi
t )

(180)

The parameters β3−−β6 capture the effect of the variables on the level of the yield curve. A
positive coefficient estimate translates into an upward shift of the overall yield curve follow-
ing an increase in the relevant variable. The parameters β7−−β10 capture the impact of the
variables on the slope of the yield curve. A positive coefficient estimate means that a positive
change in the corresponding variables shifts the yield curve upward relatively strongly at the
long end, causing the yield curve to steepen. See Appendix C.9 for more information on the
estimates.

The risk margin at low to medium maturities is more responsive to changes in the leverage
and NPL ratio, whereas for long maturities it reacts more strongly to changes in the size of the
balance sheet and country-level risks approximated by LT N.

4.2.5.3 Maturity at issuance for unsecured wholesale funding

The maturity at issuance NewDurationLiab of financial sight deposits FINS is set below or
at one quarter:

NewDurationLiabFINS
i,t = 0.25 (181)
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The maturity at issuance of financial term deposits FIN and securities OT HUNSEC is pro-
jected based on an empirical equation linking it to the expected bank-specific yield curve. Along
with the specification discussed in more detail in Appendix C.10, a bank adapts the maturity
along with the following:

NewDurationLiabS
i,t = β0 +β1LinSpreadi,t−1(1)+β2

∂LinSpreadi,t−1(τ)

∂ log(τ)
(182)

where both terms LinSpread(1) and ∂LinSpread(τ)
∂ log(τ) are derived from the bank-specific yield curve

in equation (180). LinSpread(1) stands for the level of the yield curve when log(τ) = 0:

LinSpreadi,t(1) =β0 +β1 SUBSi +β2 LABAi

+β3 LevRatTai,t +β4 netNPLRi,t +β5 TAi,t +β6 Y ERgrC
t

(183)

and:

∂LinSpreadi,t(τ)

∂ log(τ)
= β7 LevRatTai,t +β8 netNPLRi,t +β9 TAi,t +β10 LT NC

t (184)

Consequently, for S ∈ {FINS,FIN,OT HUNSEC} the average duration of liabilities
AvgDurationLiab becomes time-varying and equals:

AvgDurationLiabS
i,t = (NewDurationLiabS

i,t−1×VolLiabNewS
i,t−1

+AvgDurationLiabS,C
i,t−1×VolLiabExistS,C

i,t−1)/

(VolLiabNewS,C
i,t−1 +VolLiabExistS,C

i,t−1)

(185)

where VolLiabNew are the average volumes for the period of new and VolLiabExist of existing
liabilities.

4.2.5.4 Interests on existing and maturing liabilities

For all sectors of debt funding S ∈ {HHS,NFCS,DEPT,RoW,NCB,SOV,SECLT,SECST,
FINS,FIN,OT HUNSEC}, the interest rates on existing and maturing liabilities evolve simi-
larly to the interest rates on existing and maturing assets in Section 4.1.5.2. For existing deposits
and wholesale funding, the interest rates EIRLiabExist are the same:

EIRLiabExistS,C
i,t = (EIRLiabNewS,C

i,t−1×VolLiabNewS,C
i,t−1

+EIRLiabExistS,C
i,t−1×VolLiabExistS,C

i,t−1)/

(VolLiabNewS,C
i,t−1 +VolLiabExistS,C

i,t−1)

+0.25 (Re f DurationLiabS,C
i )−1 ShareFloatLiabS,C

i ∆ST NEA
t

(186)

where ShareFloatLiab is the share of floating interest rate liabilities and Re f DurationLiab is
the average annualized duration of the reference rate.

The interest rates for maturing liabilities EIRLiabMat evolve along with:
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EIRLiabMatS,C
i,t = EIRLiabMatS,C

i,t−1 +∆EIRLiabExistS,C
i,t

−0.25 (AvgDurationLiabS,C
i,t )−1 (EIRLiabMatS,C

i,t−1−EIRLiabExistS,C
i,t−1)

(187)

and AvgDurationLiab is a constant parameter for all sectors excluding S ∈ {FINS,FIN,
OT HUNSEC}.

4.2.5.5 The period average volumes of new, existing and maturing liabilities

The average period volumes of the new VolLiabNew, existing VolLiabExist and maturing
VolLiabMat liabilities are described analogously to the period average asset volumes in Section
4.1.5.3. The new liability volumes are defined by:

VolLiabNewS,C
i,t = (1−PomLiabS,C

i ) (∆VolLiabTotalS,C
i,t

+VolLiabMatS,C
i,t (PomLiabS,C

i )−1)
(188)

where PomLiab stands for the point of maturity.
The existing volumes are equal:

VolLiabExistS,C
i,t = (1−0.25(AvgDurationLiabS,C

i,t )−1)×VolLiabTotalS,C
i,t−1 (189)

Finally, the law of motion for maturing assets is given by:

VolLiabMatS,C
i,t = PomLiabS,C

i ×0.25× (AvgDurationLiabS,C
i )−1×VolLiabTotalS,C

i,t−1 (190)

4.2.5.6 Interest expenses

The total interest expenses TotalIntExp sum up the interest expenses of new, existing and
maturing liabilities for S∈{HHS,NFCS,DEPT,RoW,NCB,SOV,SECLT,SECST,FINS,FIN,
OT HUNSEC}:

TotalIntExpi,t = ∑
S

∑
C
(VolLiabExistS,C

i,t ×EIRLiabExistS,C
i,t

+VolLiabMatS,C
i,t ×EIRLiabMatS,C

i,t

+VolLiabNewS,C
i,t ×EIRLiabNewS,C

i,t )+ IntExpOT HER
i,t + IntExpDERIV

i,t

(191)

The modelling of interest expenses for sectors S = {DERIV,OT HER} follows simplified
formulas:

IntExpOT HER
i,t = IntExpOT HER

i,t−1 ×
(

Y ERgrC
t +HICgrC

t −1
)

(192)

IntExpDERIV
i,t = IntExpDERIV

i,t−1 (193)
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4.3 Capital and liquidity requirements
4.3.1 Bank solvency and leverage

The core solvency metric in the model is the Common Equity Tier 1 ratio on a transitional basis
CET 1REA. The nominator of the ratio is the capital of the Common Equity Tier 1 defined
in the equation (146). The denominator is the total risk weighted amount TotREA defined
in equation (145) and a constant term representing the transitional arrangements for the risk
exposure amounts TAIFRSREA.

CET 1REAi,t =
CET 1T Ri,t

TotREAi,t +TAIFRSREAi,t
(194)

Bank solvency is considered on a consolidated basis only. Accordingly, bank decisions
that rely on bank solvency, such as lending, do not factor in the individual standing of banks’
branches and subsidiaries.

The Additional Tier 1 capital ratio AT 1CAPR, net of deductions and after transitional ad-
justments, is given by:

AT 1CAPRi,t =
AT 1CAPi,t

TotREAi,t +TAIFRSREAi,t
(195)

where AT 1CAP is defined in equation (152).
Finally, the Tier 2 capital ratio T 2CAPR is equal to:

T 2CAPRi,t =
T 2CAPi,t

TotREAi,t +TAIFRSREAi,t
(196)

and its nominator T 2CAP is defined in equation (153).
Another metric to assess leverage in bank activity is the transitional Tier 1 leverage ratio

LevRatTa. It measures banks’ Tier 1 capital stock against its total leverage ratio exposures
LevRatExp:

LevRatTai,t =
CET 1T Ri,t +AT 1CAPi,t

LevRatExpi,t
(197)

where LevRatExp is calculated on a transitional basis and scaled by the growth of the exposure
of banks TotalExposure:

LevRatExpi,t = LevRatExpi,t−1×
TotalExposurei,t

TotalExposurei,t−1
(198)

4.3.2 Capital and leverage requirements

The CET1 requirements are composed of the uniform Pillar I requirements (4.5%), Pillar I
combined buffer requirement COMB, bank-specific Pillar II requirements P2R and Pillar II
guidance P2G:
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TCET 1REAi,t = 4.5%+P2Ri,t +COMBi,t +P2Gi,t (199)

The combined buffer requirement COMB is defined as the sum of the conservation buffer
CCB, the bank-specific countercyclical capital buffer CCY B, and the systemic risk buffers. The
latter include the systemic risk buffer that applies to domestic exposures only SY SCAPDOMB,
and the maximum of buffers applicable for global systemically important institutions GSIIB,
buffers for other systemically important institutions OSIIB and systemic risk buffer SY SCAPB
that applies to general exposures of banks SY SCAPB, respectively.

COMBi,t = sSRBi,t +SY SCAPDOMBi,t +max(max(GSIIBi,t ,OSIIBi,t),SY SCAPBi,t) (200)

The surplus or shortfall of capital relative to the bank-specific regulatory requirements is
given by CET 1SurShort f all:

CET 1SurShort f alli,t =CET 1REAi,t−TCET 1REAi,t−AT 1T 2SHORTi,t (201)

The CET1 capital surplus or shortfall CET 1REA− TCET 1REA is augmented with potential
shortfalls in the capital of Tier 1 and Tier 2, AT 1T 2SHORT , in the event that these are binding.

The Tier 1 capital requirements are higher than the CET1 capital requirements by 0.035+
P2RAT 1, where P2RAT 1 represents the Pillar II requirements that can be met by the AT1 cap-
ital. The requirements for own funds are higher than those for Tier 1 capital by 0.02+P2RT 2
with P2RT 2 being the Pillar II requirements for Tier 2 capital instruments. Consequently:

AT 1T 2SHORTi,t = max(0,3.5%+P2RAT 1−AT 1CAPRi,t

−min(2.0%+P2RT 2i,t ,T 2CAPRi,t))
(202)

Finally, a bank that does not meet the minimum capital requirement of 4.5% should not
grant new loans and lose access to funding. This is governed by the variable Insolvent defined
as60:

Insolventi,t = (CET 1REAi,t < 4.5%) (203)

An additional regulatory requirement is 3% the Basel III leverage ratio requirement for the
Tier 1 leverage ratio LevRatTa. The corresponding shortfall is defined by:

LEV RSurShort f alli,t = LevRatTai,t−T LevRatTai,t (204)

where T LevRatTa is higher for global systemically important banks GSIIB according to the
Basel III finalisation package:

T LevRatTai,t = 3%+0.5×GSIIBi,t (205)
60In practise, the specification of this variable differs between simulations performed with different aims in

mind. For instance, for simulations where the bail-in regime is to be emphasised, we introduce time dependency
in the variable and expand it to include the information on the available AT1 and Tier 2 capital available to a bank.
The specification presented in this paper serves as a simple benchmark solution.
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4.3.3 Liquidity

The model tracks two liquidity metrics, the Liquidity Coverage Ratio (LCR) and the Net Sta-
ble Funding Ratio (NSFR). Jointly, they provide a representation of the firm’s liquidity situa-
tion in the very short term (< 30 days) and short-to-medium term (< 1 year) respectively, and
correspond with regulatory requirements introduced in Basel III. The components of the two
regulatory requirements are summarised in Table 8.

Regulatory Ratio
Numerator and
Denominator

Component
Model
Name

Nominal
Amount

Weighted
Amount

Liquidity
Coverage Ratio
(LCR)

High Quality
Liquid Assets
(HQLA)

Level 1 assets excl. EHQCB
L1

92% 92%
Extremely high quality covered bonds (EHQCB) 3% 3%
Level 2A assets L2A 2% 2%
Level 2B assets L2B 2% 2%

Outflows

Unsecured transactions and deposits
RetailOutflow,

87% 83%
UnsecOutflow

Secured lending and capital market-driven transactions
ResOutflow

11% 6%
Collateral swaps - 7%
Other sources 2% 4%

Inflows

Unsecured transactions and deposits
RetailInflow,

36% 48%
UnsecInflow

Secured lending and capital market-driven transactions

ResInflow

44% 15%
Collateral swaps - 16%
Group or institutional protection 16% 16%
Foreign exchange transactions 5% 6%

Net Stable
Funding Ratio
(NSFR)

Available Stable
Funding

Capital items and instruments ASFCAP 8% 12%
Retail Deposits ASFDEP 34% 41%
Financial customers and central banks

ASFST ,
22% 19%

Non-financial customers
ASFLT 11% 9%

Operational deposits 6% 5%
Undetermined counterparty

ResASF
12% 12%

Other 7% 2%

Required Stable
Funding

Loans
RSFNFIN ,

50% 74%
RSFNPL

Central bank assets RSFUNENC, 17% 1%
Liquid assets RSFENC, 11% 6%
Securities other than liquid assets RSFFIN 4% 7%
Off-balance sheet items

ResRSF
10% 1%

Other 10% 11%

Table 8: Components of LCR and NSFR

4.3.3.1 LCR

The LCR measures available high-quality liquid assets, HQLA, against stressed net outflows
over the next 30 days, NetOut f low.

LCRi,t =
HQLAi,t

NetOut f lowi,t
(206)

HQLA are defined in Basel III standards as assets that can be converted into cash immedi-
ately, with little or no loss of value. HQLA assets are subdivided into unencumbered Level 1,
L1, and Level 2 Assets, L2. Level 1 assets L1 enter HQLA without a haircut. Level 2 assets
are subject to a haircut, depending on asset class, quality, and market liquidity in a stressed
scenario.
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HQLAi,t = max(0,L1i,t +L2i,t +ResLiquidi,t) (207)

A residual item ResidualLiquid captures elements of HQLA that evade the model definition of
unencumbered L1 and L2 assets.61 For most banks, HQLA is predominantly made up of Level
1 assets L1 (see Table 8).

Level 1 assets consist of cash and performing reserves held at central banks VolPeCB (see
the definition in equation (84)), extremely high quality covered bonds EHQCB,62 and unen-
cumbered high quality63 government bonds UnencumbL1SecARepo (see Section 4.3.3.3):

L1i,t =VolPeCB
i,t +EHQCBi,t +UnencumbL1SecARepoi,t (208)

Since EHQCB are issued only by credit institutions, it is assumed that their volumes move in
a par with the volumes of all non-defaulted securities issued by financial institutions VolPeSFIN :

EHQCBi,t = EHQCBi,t−1×
VolPeSFIN

i,t

VolPeSFIN
i,t

(209)

Level 2 assets aggregate assets with a haircut of 15%, L2A,64 and assets with a haircut of
either 25 or 50%, L2B.65 Both enter the definition of HQLA after the application of a prescribed
haircut and only insofar as they are not encumbered. Since both L2A and L2B contain assets
which can be issued by financial or non-financial corporates, they are linked to the volumes of
performing financial and non-financial corporate securities held on banks’ balance sheet.66

L2i,t = L2Ai,t +L2Bi,t (210)

L2Ai,t = L2Ai,t−1×
VolPeSFIN

i,t +VolPeSNFC
i,t

VolPeSFIN
i,t−1 +VolPeSNFC

i,t−1
(211)

L2Bi,t = L2Bi,t−1×
VolPeSFIN

i,t +VolPeSNFC
i,t

VolPeSFIN
i,t−1 +VolPeSNFC

i,t−1
(212)

The residual item ResidualLiquid is assumed to grow with the volume of performing gov-
ernment bonds:

ResLiquidi,t = ResLiquidi,t−1×
VolPeSGOV

i,t

VolPeSGOV
i,t−1

(213)

The LCR denominator, NetOut f low, corresponds to the level of gross liquidity outflows
UnexGrossOut f low netted against the level of gross cash inflows GrossIn f low:

61More precisely, the residual item includes L1 assets which are not accounted for by equation (208).
62EHQCB are exceptionally liquid covered bonds issued by EU credit institutions. For more detail, see Com-

mission Delegated Regulation 2015/61 Article 10(f)
63ECAI: > AA-
64Mostly liquid sovereign bonds not qualifying for L1 (ECAI between A+ and AA-) and liquid non-financial

corporate bonds (with ECAI ≥ AA-)
65Liquid, high-quality (ECAI: > AA-) RMBS consisting of full-recourse mortgages with an LTV < 80% qualify

for the 25% haircut. Liquid non-financial corporate debt securities that do not qualify for the 25% haircut, but with
ECAI ≥ BBB-, and non-financial common equity shares receive the 50% haircut.

66Technically, L2A may also include government bonds with a risk weight larger than 20%. However, these tend
to have marginal positions on the bank balance sheets.
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NetOut f lowi,t = max(0,UnexGrossOut f lowi,t

−min(0.75×UnexGrossOut f lowi,t ,GrossIn f lowi,t)
(214)

Up to 75% of UnexGrossOut f low may be netted away by GrossIn f low due to loans maturing
within the 30-day period. Then:

UnexGrossOut f lowi,t = (1−ShareExempti)×GrossOut f lowi,t (215)

with a constant parameter ShareExempt67 representing a bank-specific share of funding ex-
empted from the outflow calculation.

GrossOut f low represents total funding outflows from retail deposits, RetailOut f low, and
unsecured wholesale funding, UnsecOut f low:

GrossOut f lowi,t = RetailOut f lowi,t +UnsecOut f lowi,t +ResOut f lowi,t (216)

A catch-all residual item ResOut f low captures all outflows from other funding sources. Most
of the time, these are outflows from standing facilities (e.g. credit lines), secured funding, and
outflows resulting from derivatives.68

The stressed outflows from the retail deposits RetailOut f low depend on the composition
of sight deposits captured by the bank-specific parameter that measures the outflow rate of the
retail deposit RetailOutR:

RetailOut f lowi,t = RetailOut f lowRi×∑
C

(
VolLiabTotalHHS,C

i,t +VolLiabTotalNFCS,C
i,t

)
(217)

The outflow rate of the retail deposit RetailOutR assumes that a share of retail deposits
ShareRetail that are publicly insured or guaranteed INS runs at 5%. Regular retail deposits not
covered by deposit insurance UNINS receive a runoff rate of 10%. Additionally, national super-
visors have the discretion to ask for higher run-off rates for high-value or easily withdrawable
deposits (e.g., Internet deposits). The resulting jurisdiction-dependent shares of these deposits
are sourced from COREP reporting and are subdivided into two categories H15 with a runoff
rate of 15% and H20 with a runoff rate of 20%.69

ShareOut f lowi =0.05×ShareRetailINS
i +0.1×ShareRetailUNINS

i

+0.15×ShareRetailH15
i +0.2×ShareRetailH20

i
(218)

Unsecured outflows UnsecOut f low recognise that empirically the majority of unsecured
outflows relate to deposits of financial institutions and are tied to the outflow rate UnsecOut f lowR:

UnsecOut f lowi,t =UnsecOut f lowRi×VolLiabTotalFINS
i,t (219)

67Sourced from COREP reporting.
68These outflow categories are less important, making up around 10%, 5% and 1% of weighted outflows respec-

tively, justifying grouping those under a residual category.
69See LCR 40.7-18 for more information on the composition of liquidity outflow buckets.
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The outflow rate UnsecOut f lowR assumes that the share of unsecured funding ShareOper
that facilitates an activity carried out by the depositing bank by providing access to payment
systems, clearing services or performing other operational purposes is eligible for a runoff rate
stressed 25%. The remaining undsecured funding is assumed to be withdrawn within a 30 day
stressed scenario.

UnsecOut f lowRi = 0.25×ShareOperi +1−ShareOperi (220)

Finally, the residual element ResidualOut f low captures the remaining, generally less em-
pirically relevant, elements of stressed outflows and is projected using total liability volumes
VolLiabTotal defined in equation (173).

ResOut f lowi,t = ResidualOut f lowi,t−1×
VolLiabTotali,t

VolLiabTotali,t−1
(221)

GrossIn f low is composed of inflows due to retail loans RetailIn f low, inflows from unse-
cured loans to financial corporations UnsecIn f low, and a residual item ResIn f low:

GrossIn f lowi,t = RetailIn f lowi,t +UnsecIn f lowi,t +ResIn f lowi,t (222)

Retail inflows are calculated taking into account that half of all loans to the non-financial
private sector are assumed by the regulator to be extended and the other half to be paid back
at the latest contractually agreed time of maturity. RetailIn f low is calculated applying the
Gamma(k,x,θ) function introduced in equation (57) to performing loans to sectors S ∈ {NFC,
HHCC,HHHP,RoW}:

RetailIn f lowi,t = 0.5×∑
S

∑
C

VolPeS,C
i,t ×F(0,0.083,AvgDurationS,C

i ) (223)

where fraction 0.083 is for the annualized maturity below 1 month. And, for the inflows from
loans to financial corporations UnsecIn f low:

UnsecIn f lowi,t =VolPeFIN
i,t ×F(0,0.083,AvgDurationFIN

i ) (224)

And finally, the residual item ResIn f low if projected along with the simplified formula:

ResIn f lowi,t = ResIn f lowi,t−1×
TAi,t

TAi,t−1
(225)

4.3.3.2 NSFR

The net stable funding ratio NSFR measures the ability to make debt repayments up to the
medium term. To this end, the volume of assets that are illiquid over a one-year horizon, that
is, the amount of required stable funding RSF , is expected to be matched by available stable
funding, that is, funding that does not mature or is withdrawn within a year ASF :

NSFRi,t =
ASFi,t

RSFi,t
(226)

Assets entering the definition of ASF are reversely weighted according to their liquidity
within the year. A factor of 0 indicates that an asset can be fully liquidated within one year, and
therefore requires no stable funding. A factor of 1 indicates a fully illiquid asset that requires a
matching amount of stable funding. ASF consists of five components:

ECB Working Paper Series No 2855 70



ASFi,t = ASFCAP
i,t +ASFDEP

i,t +ASFST
i,t +ASFLT

i,t +ResASFi,t (227)

Capital ASFCAP contributes fully to stable funding:

ASFCAP
i,t = T 1Capi,t +T 2Capi,t (228)

The ASF arising from retail deposits ASFDEP is a weighted aggregate of sight deposits and
term deposits maturing in less than one year. The latter are assumed to be renewed at a rate of
90%:

ASFDEP
i,t =(0.95×ShareASF5i +0.9×ShareASF10i)

×∑
C

(
VolLiabTotalHHS,C

i,t +VolLiabTotalNFCS,C
i,t

)
+0.9×∑

C
VolLiabTotalDEPT,C

i,t ×F(0,1,AvgDurationLiabDEPT,C
i )

+0.9×VolLiabTotalRoW
i,t )×F(0,1,AvgDurationLiabRoW

i )

(229)

ShareASF5 and ShareASF10 are the percentage of sight deposits assumed by the regulator to
run off at 5 and 10% respectively. Sight deposits assumed to run off at 5% include insured
deposits INS and deposits exempted from outflow calculations ShareExempt.

ShareASF5i = ShareRetailINS
i +ShareExempti (230)

The deposits assumed to run off at 10% consist of uninsured deposits UNINS, and deposits
that receive a 15% runoff H15 or a 20% runoff H20 in the LCR outflow calculation:

ShareASF10i = ShareRetailUNINS
i +ShareRetailH15

i +ShareRetailH20
i (231)

Non-retail debt for sectors S∈ {NCB,SECST,SECLT,FIN,OT HUNSEC}maturing within
one year but not earlier than six months contributes to total ASF at a rate 50%. Operational
financial sight deposits also receive a rate 50%. Exempted from this rule is the sovereign debt
SOV , which contributes to ASF at a rate of 50%, even if it matures earlier than six months.

ASFST
i,t = 0.5×

(
VolLiabTotalFINS

i,t ×ShareOperi

+VolLiabTotalSOV
i,t ×F(0,1,AvgDurationLiabSOV

i )

+∑
S

VolLiabTotalS
i,t×F(0.5,1,AvgDurationLiabS

i,t)

) (232)

All other long-term debt maturing in more than one year, including the share of retail term
deposits and funding volumes from S ∈ {NCB,SOV,RoW,FIN,FINS,OT HUNSEC,SECST,
SECLT}, contribute to ASF without reduction:

ASFLT
i,t =∑

C
VolLiabTotalDEPT,C

i,t ×F(1,∞,AvgDurationLiabDEPT
i )

+∑
S

VolLiabTotalS
i,t×F(1,∞,AvgDurationLiabS

i,t)
(233)
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The residual component grows proportionally to the bank’s balance sheet:

ResASFi,t = ResASFi,t−1×
TAi,t

TAi,t−1
(234)

The amount of required stable funding RSF sums up the weighted volumes of unencum-
bered UNENC and encumbered ENC securities, performing financial FIN and non-financial
NFIN assets, and non-performing assets NPL:

RSFi,t = RSFUNENC
i,t +RSFENC

i,t +RSFFIN
i,t +RSFNFIN

i,t +RSFNPL
i,t +ResRSFi,t (235)

Assets enter the RSF with weights proportional to their illiquidity. The weight of 0 is assigned
to assets that can be transformed into cash in one year and 1 to assets that cannot be liquidated
in one year.

The required stable funding from unencumbered securities RSFUNENC is defined by the
regulator as:

RSFUNENC
i,t = 0.05×UnencumbL1SecARepoi,t +0.15×L2Ai,t +0.5×L2Bi,t (236)

The contribution of encumbered securities RSFENC to the required stable funding is based
on the estimate of the volume of encumbered assets. The latter is calculated indirectly, using the
volumes of secured funding generated by encumbered assets, whereby government bonds are
used as collateral in the creation of short-term secured debt VolLiabTotalSECST and loans in the
creation of long-term secured funding VolLiabTotalSECLT (see Section 4.2.3.3).Both volumes
are divided by one minus the haircut applied.

RSFENC
i,t =

VolLiabTotalSECST
i,t

1−HaircutSGOV ×
(

0.05×F(0,0.5,AvgDurationLiabSECST
i,t )

+0.5×F(0.5,1,AvgDurationLiabSECST
i,t )

+F(1,∞,AvgDurationLiabSECST
i,t )

)
+

VolLiabTotalSECLT
i,t

1−HaircutLOANS ×
(

0.5×F(0,1,AvgDurationLiabSECLT
i,t )

+F(1,∞,AvgDurationLiabSECLT
i,t )

)
(237)

For the required stable funding for financial assets RSFFIN , the regulator distinguishes be-
tween money deposited at another financial institution for operational purposes, with its share
of ShareOperi, versus non-operational assets. For operational deposits, the regulator assumes
that half of all outstanding performing positions can be retrieved within the next year. For
non-operational financial assets, a gradation is made based on remaining maturity.

RSFFIN
i,t =VolPeFIN

i,t ×
(

ShareOperi×0.5

+(1−ShareOperi)×
(

0.15×F(0,0.5,AvgDurationFIN
i )

+0.5×F(0.5,1,AvgDurationFIN
i )+F(1,∞,AvgDurationFIN

i )

)) (238)
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The required stable funding for performing non-financial assets RSFNFIN depends on the
residual maturity of the asset and the credit risk weight assigned to it by the regulator. The
distribution of individual risk weights in a portfolio is assumed to follow a Gamma distribution.
Consequently, the share of assets assigned a risk weight above x but below y is approximately
equal to F(x,y,NonDe fCRRW ) where NonDe fCRRW is the average risk weight for performing
exposures as defined in Section 4.1.7.2. For assets that mature later than in one year, the share
of assets below 35% risk weights receives a 65% factor, whereas the share of assets above the
35% threshold receives a 85% factor.

RSFNFPS
i,t = RSFHHHP

i,t +RSFHHCC
i,t +RSFNFC

i,t +RSFSOV
i,t +RSFRoW

i,t (239)

where:

RSFS
i,t =∑

C
VolPeS,C

i,t ×
(

0.5×F(0,1,AvgDurationS,C
i )

+F(1,∞,AvgDurationS,C
i )×

(
0.65×F(0%,35%,NonDe fCRRW S,C

i,t )

+0.85×F(35%,∞,NonDe fCRRW S,C
i,t )

)) (240)

Non-performing exposures to the non-financial private sector S ∈ {HHHP,HHCC,NFC,
SOV,FIN,RoW} must be fully funded by stable sources of debt:

RSFNPL
i,t = ∑

S
∑
C

VolN peS,C
i,t (241)

Finally, a residual item ResidualRSF changes along with the size of total assets:

ResidualRSFi,t = ResidualRSFi,t−1×
TAi,t

TAi,t−1
(242)

4.3.3.3 Encumbrance

The encumbrance of sovereign bonds and retail loans affects the composition of wholesale
funding decisions and the regulatory ratios of LCR and NFSR. The quantity EncumbL1Sec rep-
resents all encumberable Level 1 securities, the majority of which are non-defaulted sovereign
bonds, be they encumbered or unencumbered:

EncumbL1Seci,t =VolPeSGOV
i,t +ExcessSGOV

i,t (243)

where ExcessSGOV captures inconsistencies in reporting of sovereign bond holdings between the
supervisory reporting and the EBA / SSM stress test templates. It is projected with a simplified
formula:

ExcessSGOV
i,t = ExcessSGOV

i,t−1 ×
VolPeSGOV

i,t

VolPeSGOV
i,t−1

(244)

The volume of unencumbered sovereign bonds before the issuance of repos
UnencumbL1SecBRepo is equal to the level of unencumbered sovereign bonds after the is-
suance of repos UnencumbL1SecARepo at the end of the previous period, plus the volume of
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newly acquired government bonds and the collateral released with maturing repos which are not
renewed. The share of the latter is given by ShareMaturingSECST as defined in equation (156).

Following the issuance of repos, the net issued volume of repos is then deducted from
UnencumbL1SecBRepo to produce UnencumbL1SecARepo, a period-end measure for unen-
cumbered sovereign bonds.

UnencumbL1SecARepoi,t = max
(

0,UnencumbL1SecBRepoi,t

−
VolLiabTotalSECST

i,t − (1−ShareMaturingSECST )×VolLiabTotalSECST
i,t−1

1−HaircutSGOV

) (246)

Similarly, for encumberable retail loans UnencumbLoansBe f ore, the volume of unencum-
bered loans before the issuance of asset-backed securities and covered bonds
UnencumbLoansBABS is equal to:

UnencumbLoansBABSi,t = max
(

0,UnencumbLoansAABSi,t−1

+
ShareMaturingSECLT

i,t

1−HaircutLOANS ×VolLiabTotalSECLT
i,t−1

) (247)

where the unencumbered loans after the issuance of asset-backed securities and
UnencumbLoansAABS:

UnencumbLoansAABSi,t = max
(

0,UnencumbLoansBABSi,t

−
VolLiabTotalSECLT

i,t − (1−ShareMaturingSECLT
i,t )×VolLiabTotalSECLT

i,t−1

1−HaircutLOANS

) (248)

Lastly, buffers that express the number of quarters a bank could fund its excess funding
needs only by encumbering securities
EncumbL1SecBu f f er and retail loans EncumbLoanBu f f er are calculated as:

EncumbL1SecBu f f eri,t =
1−HaircutSGOV ×UnencumbL1SecBRepoi,t

WholesaleGapi,t
(249)

EncumbLoanBu f f eri,t =
1−HaircutLOANS×UnencumbLoansBABSi,t

WholesaleGapi,t
(250)

where WholesaleGap is a trailing average of volumes funded on the wholesale markets:

WholesaleGapi,t = 0.25×
3

∑
k=0

FundingDemandWHSL
i,t−k (251)
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4.3.3.4 Liquidity requirements

Both the liquidity coverage ratio LCR and the net stable funding ratio NSFR are subject to
regulatory thresholds. The LCR requirement was phased in between October 2015 and January
2019, with the threshold value gradually increasing from 60% to 100%.

T LCR = 100% (252)

The NSFR requirement of 100% became mandatory in June 2021.

T NSFR = 100% (253)

4.3.4 Bank resolvability

In order to ensure the effectiveness of resolution tools, banks are required to maintain a mini-
mum amount of their own funds and liabilities considered to be eligible for bail-in. This target
amount constitutes the minimum requirement for own funds and eligible liabilities MREL. It is
calculated as:

MRELi,t =

{
T LACi,t for G-SIIs
maxMRELCapExpi,t ,MRELLevExpi,t ,MRELTAExpi,t otherwise.

(254)

where:

T LACi,t = (0.18+COMBi,t)× (TotREAi,t +TAIFRSREAi,t) (255)

MRELCapExpi,t =

(
(1+Ad jFi,t)× (0.08+P2Ri,t)+Ad jFi,t× (CCyBi,t−COMBi,t)

+COMBi,t

)
× (TotREAi,t +TAIFRSREAi,t)

(256)

MRELLevExpi,t = (1+Ad jFi,t)×T LevRaTai,t×LevRatExpi,t (257)

MRELTAExpi,t = 0.08×TAi,t (258)

Hence, for global systemically important institutions (G-SIIs) a floor for the MREL target is set
in line with TLAC requirements. Ad jF represents an adjustment factor introduced by the Single
Resolution Board guidelines on MREL with the objective of lowering the target for banks to
pursue a transfer resolution strategy70. In the model Ad jF is set according to the size of the
banks’ assets:

Ad jFi,t =


0.75 if less than 15 billions of assets
0.8 if assets between 15 and 35 billions
0.85 if assets between 35 and 50 billions
1 if more than 50 billions of assets

(259)

70Single Resolution Board (2021), Minimum Requirement for Own Funds and Eligible Liabilities: SRB Policy
Under the Banking Package, May 2021, https://www.srb.europa.eu/system/files/media/document/
mrel_policy_may_2021_final_web_0.pdf
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The amount of liabilities considered eligible for resolution purposes is composed of CET1
capital71, AT1 capital AT 1CAP, Tier 2 capital T 2CAP, senior non-preferred debt SeniorNPD,
and senior unsecured debt SeniorUD:

MRELLiabi,t = (CET 1REAi,t−P2Gi,t−P2RAT 1i,t)

×(TotREAi,t +TAIFRSREAi,t)

+AT 1CAPi,t +T 2CAPi,t +SeniorNPDi,t +SeniorUDi,t

(260)

where:

SeniorNPDi,t = ShareNPDi×TotREAi,t (261)

SeniorNPD represents the bank-specific issued amount of non-preferred senior debt, with
ShareNPD being a constant parameter sourced from FINREP.

Also, the bank-specific issued amount of senior unsecured debt that covers MREL require-
ments:

SeniorUDi,t = 0.333×
(

VolLiabTotalUNSEC
i,t − (4×VolLiabMatUNSEC

i,t

−ShareSubUDi×TotREAi,t)

) (262)

It is assumed that one third of the total volume of unsecured liabilities is eligible for MREL pur-
poses, after having subtracted from this amount maturing liabilities and subordinated unsecured
debt. ShareSubUD is a constant parameter sourced from FINREP.

The extent to which each bank complies with MREL requirements can be expressed as:

MRELShort f alli,t = MRELLiabi,t−MRELi,t (263)

4.4 Profit and loss
The profit and loss (P&L) model equations summarise income and expense flows of a bank.
Table 9 provides an overview of the main sources of bank income and expenses, while Figure
28 reports the breakdown of total operating income and expenses for the banks in the euro area
between 2017 and 2021.

Net interest income NII has made up approximately 55% of the total income of banks on
average between 2018 and 2022. Net trading income NT I, with an average share of 6% of the
total income of the banks, is another important income source, especially for large banks in the
euro area. The third largest income source for banks in the euro area is net fee and commission
income NFCI. Although it is a relatively stable source of income, it has also been negatively
correlated with NII in recent years (Kok et al. [2019]). The remaining income items, grouped
under other operating income OthOpInc, play a lesser role in the bank’s profit and loss accounts.

The lion’s share of bank expenditures is bank operating expenses OpExpense that have cov-
ered on average almost 76% of total operating expenses between 2017 and 2021. These include
administrative expenses and depreciation. Credit risk losses ImpFA come second and have

71Excluding the capital used to cover P2G buffers.

ECB Working Paper Series No 2855 76



Income Expenditure
Abbreviation Description Abbreviation Description
NII Net interest income ImpFa Credit risk losses
NT I Net-trading income OpExpense Operating expenses
NFCI Net-fee-comission income GainsOpr Operational risk losses
OthOpInc Other operating income CCR Counterparty credit risk losses

OthOpExp Other operating expenses

Table 9: Structure of income and expense flows

(a) Income (b) Expenses
Notes: The plot illustrates the annual income and expense flows of 89 systemically important banks included in the BEAST based on
supervisory reporting information.

Figure 10: Break-down of bank income and expense flows

made up 14% of bank operating expenses on average over the five years. The third most mate-
rial category of expenses is operational risk losses GainsOpr. The remaining costs categories,
therein the counterparty credit risk CCR and items grouped under other operating expenses
OthOpExp, play, on average and in aggregate, an even more marginal role.

This section discusses P&L accounts and next moves to how retained earnings at the end
of each period are derived taking into account banks’ profit distribution function, management
buffers, and regulatory requirements.

4.4.1 Income sources

The total operating income TotOpInc sums up the net interest income NII, the net trading
income NT I, the net fee and commission income NFCI and other operating income OthOpInc.

TotOpInci,t = NIIi,t +NT Ii,t +NFCIi,t +OthOpInci,t (264)

The residual term OthOpInc aggregates the following subitems: non-trading income NonT I,
gains and losses from hedge accounting HAI,dividend income DivInc, gains or losses on
(de-)recognition of financial GainsNFV and non-financial GainsDer f NFV assets not measured
at fair value, expenses on share capital repayable on demand ExpShare, and gains and losses
from exchange differences Exc.72

72OthOpInC = NonT I +HAI +DivInc+GainsNFV +GainsDer f NFV +ExpShare+Exc
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The net interest income of the bank NII is equal to the total interest income TotalIntInc
(Section 4.1.5) minus the total interest expenses TotalIntExp (Section 4.2.5):

NIIi,t = TotalIntInci,t−TotalIntExpi,t (265)

Net trading income NT I consists of client revenues ClientRev, changes in liquidity
∆LiqResHFT and credit valuation adjustments ∆CVARes reserves, gains, or losses from revalu-
ation of net assets held with trading intent RevalT I and economic hedges RevalEH (all of which
are defined in Section 4.1.6 with the exception of client revenues).

NT Ii,t =ClientRevi,t−∆LiqResHFT
i,t −∆CVAResi,t

+RevalT I
i,t +RevalEH

i,t
(266)

Client revenues are derived from the empirical equation of the ratio of client revenues to total
assets TA. This ratio evolves along with changes in stock market growth ESXgr and the spread
between bank lending rates BLR and the 3-month EURIBOR ST N in the domestic country of a
bank Ci (see Appendix D.4 for more information).

ClientRevi,t = (β1
ClientRevi,t−1

TAi,t−1
+β2 ∆ESXgrCi

t−1

+β3 ∆(BLRCi
t−1−ST NEA

t−1))×TAi,t

(267)

The net fee and commission income NFCI to total assets TA is empirically linked to the
growth rate of the GDP of the domestic country Y ERgr, the dynamics of the stock market
ESXgr, and the change in long-term LT N and short-term ST N interest rates. Additionally,
the specification allows for potential substitution effects between NII and NFCI that can be
observed in a low interest rate environment (more information on the estimates can be found in
Appendix D.3).

NFCIi,t = NFCIi,t−1 +∆(β1
NFCIi,t−1

TAi,t−1
+β2 Y ERgrC

i,t

+β3 ∆LT NC
i,t +β4 ∆ST NEA

i,t +β5 ESXgrC
i,t +β6

NIIi,t−1

TAi,t−1
)×TAi,t)

(268)

Furthermore, it is assumed that the fee and commission expenses FCE change proportion-
ally to the size of the balance sheet.

FCEi,t = FCEi,t−1×
TAi,t

TAi,t−1
(269)

From the above it follows that fee and commission income FCI:

FCIi,t = NFCIi,t−1−FCEi,t (270)

Other operating income OthOpInC is assumed to remain in a constant proportion to the total
asset of the banks TA:

OthOpInci,t = OthOpInci,t−1×
TAi,t

TAi,t−1
(271)
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4.4.2 Expenditures

Bank expenses consist of changes in loan loss provisions for the banking book ImpFA, operating
expenses OpExpense, operational risk gains or losses GainsOpr, counterparty credit risk losses
CCR, and other operating expenses OthOpExp:

TotOpExpi,t = ImpFAi,t−OpExpensei,t +GainsOpri,t +CCRi,t

+OthOpExpi,t
(272)

The residual cost item OthOpExp is summing up provisions or reversal of provisions Prov,
other income and expenses from continuing operations OthIncCon, impairment on non-financial
assets ImpNonFinAssets, negative goodwill NeggD and P&L from investments in subsidiaries
SharePr f .73

Credit risk losses ImpFA result from changes in loan loss provisioning ∆ProvStock (see
equation (48)) combined with impairments from securitised portfolios TotalImpLossesSEC:

ImpFAi,t =−(∆ProvStocki,t +TotalImpLossesSEC
i,t ) (273)

where impairments from securitised portfolios remain constant over time:

TotalImpLossesSEC
i,t = TotalImpLossesSEC

i,t−1 (274)

For banks operating expenses OpExpense, the model allows for a degree of economies of
scale with estimates consistent with a slightly increasing cost efficiency per asset unit. The
operating expenses equation takes account of the general economic conditions approximated
by annual nominal GDP growth Y ER in the domestic economy and includes an error correction
term relative to the average market cost efficiency (see Appendix D.5 for more information).

OpExpensei,t = exp
(

log(OpExpensei,t−4)+β1 ∆4log(OpExpensei,t−1)

+β2 ∆4TAi,t−1 +β3 ∆4log(Y ERCi
t−1×HICc,t−1)

+β4 (
OpExpensei,t−1

TAi,t−1
− ∑i OpExpensei,t−1

∑i TAi,t−1
)
) (275)

The final item on the banks cost side is operational risk losses and provisioning. Here, the
model treats the operational risk due to conduct GainsOpr_Conduct and other operational risks
GainsOpr_OOR separately:

GainsOpri,t = GainsOprConducti,t +GainsOprOORi,t (276)

where the dynamics of both operational risk due to conduct GainsOprConduct and other oper-
ational risks GainsOprOOR reflects the assumption of constant operational risk efficiency per
unit of assets:

GainsOprConducti,t = GainsOprConducti,t−1×
TAi,t

TAi,t−1
(277)

73OthOpExp = Prov+OthIncCon+ ImpNonFinAssets+NeggD+SharePr f
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GainsOprOORi,t = GainsOprOORi,t−1×
TAi,t

TAi,t−1
(278)

The counterparty credit losses CCR remain constant over time:

CCRi,t =CCRi,t−1 (279)

Finally, other operating expenses OthOpExp are constant as a share of total assets TA:

OthOpExpi,t = OthOpExpi,t−1×
TAi,t

TAi,t−1
(280)

4.4.3 Profit

Bank profit before tax Pro f BTCOUNADJ is calculated by subtracting total operating expenses
TotOpExp and write-offs TotWrO f f (see equation (37)) from total operating income TotOpInc:

Pro f BTCOUNADJ
i,t = TotOpInci,t +TotOpExpi,t−TotWrO f fi,t (281)

where this excludes adjustments coming from the impact of binding maximum distributable
amounts (MDA). In effect, some expenditures74 are already booked in TotOpExp without re-
gard for breaches in MDA.

In case of breaches of the maximum distributable amounts (MDA) thresholds some expen-
ditures75 can be deferred and profits are adjusted up with the adjustment factor PreAd jPreTax
(see Section 4.4.4). The realised profit is after tax Pro f ATCO is then calculated applying the
30% tax rate:

Pro f ATCOi,t = 0.7× (Pro f BTCOUNADJ
i,t +Pr jAd jPreTaxi,t) (282)

4.4.4 Maximum Distributable Amount

The Maximum Distributable Amount (MDA) limit is calculated by contrasting the bank’s cap-
ital position with regulatory buffers. The bindingness of the limit for a bank is encoded in the
variable MDAFactor.

MDAFactori,t =



100%, if CET 1RNUSEi,t ≥COMBi,t

60%, if CET 1RNUSEi,t ∈ [0.75COMBi,t , COMBi,t ]

40%, if CET 1RNUSEi,t ∈ [0.5COMBi,t , 0.75COMBi,t ]

20%, if CET 1RNUSEi,t ∈ [0.25COMBi,t , 0.5COMBi,t ]

0%, if CET 1RNUSEi,t < 0.25COMBi,t

(283)

As long as the bank’s capital ratio above own funds requirements CET 1RNUSE meets or ex-
ceeds the combined buffer requirements COMB, i.e. MDAFactor = 100%, the bank can dis-
tribute all profits. Otherwise, the MDA factor decreases proportionally to the gap between
CET 1RNUSE and COMB and the bank can distribute only a fraction of the profits.

74For instance, variable remuneration and pension benefits REMPENBEN or dividends paid out to AT1 Capital,
which usually occur on a fixed schedule but can be deferred in case of business or regulatory need.

75For instance, variable remuneration and pension benefits REMPENBEN or dividends paid out to AT1 capital.
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The bank’s capital ratio above the own funds requirements CET 1RNUSE equals:

CET 1RNUSEi,t =CET 1RBDistDivi,t−4.5%−P2Ri,t−AT 1T 2SHORTi,t (284)

where the capital shortfall AT 1T 2SHORT has been introduced in equation (202) and
CET 1RBDistDiv amounts to the hypothetical ratio of CET1 capital in which no profit is dis-
tributed:

CET 1RBDistDivi,t =
CET 1BDistDivi,t

TotREAi,t +TAIFRSREAi,t
(285)

and:

CET 1BDistDivi,t =CiCETi,t +AOCIi,t +DBPFAi,t +DTAi,t +min(0, IRBS fi,t)

+CET 1Othi,t +RetEarni,t−1 +0.7×Pro f BTCOUNADJ
i,t

(286)

The minimum capital conservation ratio MCCR contrasts the leverage ratio with the tar-
get leverage ratio. This quantity also has an associated factor, MCCRFactor, which restricts
payouts.

MCCRFactor =



1, if LevRatTai,t−1 ≥ T LevRatTai,t

0.6, if LevRatTai,t−1 ∈ [0.75T LevRatTai,t , T LevRatTai,t ]

0.4, if LevRatTai,t−1 ∈ [0.5T LevRatTai,t , 0.75T LevRatTai,t ]

0.2, if LevRatTai,t−1 ∈ [0.25T LevRatTai,t , 0.5T LevRatTai,t ]

0, if LevRatTai,t−1 < 0.25T LevRatTai,t

(287)

The resulting maximum distributable amount calculated before tax MDAPreTax is equal to:

MDAPreTaxi,t = max(0,Pro f BTCOUNADJ
i,t )×min(MDAFactori,t ,MCCRFactori,t) (288)

4.4.5 Dividends & retained earnings

The maximum distributable amount MDAPreTax can be paid in the form of dividends on CET1
shares, payments on fixed-schedule AT1 capital, and variable remuneration or pension benefits.
Variable remuneration and pension benefitsRemPenBen, because they are tax-deductible, are
assumed to be paid preferentially. The target amount of remuneration and pension benefits
grows proportionally to the bank’s balance sheet:

RemPenBeni,t = RemPenBeni,t−1×
TAi,t

TAi,t−1
(289)

Variable remuneration or pension benefits are paid up to the maximum distributable amount
MDAPreTax, and amounts exceeding MDAPreTax are added back to the profit before tax, as
Pr jAd jPreTax (see equation (4.4.3)):

Pr jAd jPreTaxi,t = max(0,RemPenBeni,t−MDAPreTaxi,t) (290)

And, the remaining MDA space MDAPostTax amounts to:
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MDAPostTaxi,t = 0.7× (MDAPreTaxi,t−RemPenBeni,t +Pr jAd jPreTaxi,t) (291)

Items that are not deductible include, in preference order, profits attributable to minority in-
terests Attr2MinInt, dividends on AT1 shares DivAT 1 and dividends on CET1 shares DivCET 1.
Minority interests are assumed to constitute a constant share ShareMinorityInterest or bank
profits (with bank-level parameters calibrated from FINREP data):

Attr2MinInti,t = max(0,ShareMinorityInteresti×Pro f ATCOi,t) (292)

Payments on AT1 capital (such as preferred stock or hybrid instruments) DivAT 1 are mod-
elled to grow with the size of AT1 capital:

DivAT 1i,t = DivAT 1i,t−1×
AT 1CAPi,t

AT 1CAPi,t−1
(293)

Profits before dividends on CET1 capital Pro f BDiv amount to:

Pro f BDivi,t = Pro f ATCOi,t−Attr2MinInti,t−DivAT 1Desired
i,t (294)

The desired level of CET1 payments depends on the actual versus the target bank capital. A
management buffer ManBu f expresses an internal capital target above regulatory requirements
and buffers (see Appendix C.12 for estimation details).

ManBu fi,t = exp
(

β0 +β1 log(TAi,t)+β2
FCIi,t

TAi
+β3 netNPLRi,t

+β4 CovbonRatioi×
VolLiabTotalSECLT

i,t

VolLiabTotali,t
+β5 (1−CovbonRatioi)×

VolLiabTotalSECLT
i,t

VolLiabTotali,t

+β6
VolLiabTotalNFPS

i,t

VolLiabTotali,t
+β7

VolLiabTotalSOV
i,t

VolLiabTotali,t
+β8

VolLiabTotalWHSL
i,t

VolLiabTotali,t

)
(295)

where CovbonRatio is the share of covered bonds within secured long-term funding instru-
ments. The specification of the management buffer links banks’ internal capital targets to the
characteristics of their balance sheet. For example, a bank that relies more heavily on wholesale
funding will prefer a higher level of capitalisation, which can help mitigate the risk of triggering
the funding-solvency feedback outlined in Section 2.1.3.

The log-linear specification hypothesises that absolute changes in the level of the manage-
ment buffer depend on the existing level of the management buffer. For example, changing the
internal capital target from 1% to 2% is likely a more drastic change in the banks’ policy than
going from 11% to 12%.

The management buffer is added to the regulatory capital requirements and buffers to yield
the desired level of CET1 capital TCET 1T R.

TCET 1T Ri,t = (TCET 1REAi,t +ManBu fi,t)× (TotREAi,t +TAIFRSREAi,t) (296)

Whenever possible, a bank will retain profits before the CET1 dividends Pro f BDiv to match
the desired level of capital, and all profits exceeding the necessary amount will be paid to CET1
shareholders as DivCET 1.
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DivCET 1i,t = max(0,min(Pro f BDivAnn
i,t +CET 1T Ri,t−1−TCET 1T Ri,t ,Pro f BDivAnn

i,t )) (297)

where Pro f BDivAnn denotes the quarterly annualized profit of a bank. This quantity maps the
stylised fact that dividends are commonly paid out annually.

Pro f BDivAnn
i,t = 1/4

3

∑
k=0

Pro f BDivi,t−k (298)

The payouts including dividends on CET1 shares must comply with the remaining MDA
space MDAPostTax. Non-tax-deductible payouts to shareholders cancelled due to MDA re-
strictions are included in an adjustment item Pr jAd jPostTax:

Pr jAd jPostTaxi,t = max(0,Attr2MinInti,t +DivCET 1i,t +DivAT 1i,t −MDAPostTaxi,t) (299)

Profit retained Pro f OwnDiv is then equal to:

Pro f OwnDivi,t = Pro f BDivi,t−DivCET 1i,t +Pr jAd jPostTaxi,t (300)

and adds to the stock of retained earnings RetEarn:

RetEarni,t = RetEarni,t−1 +Pro f OwnDivi,t (301)

5 Closing the model
The model ties the dynamics of euro area economies with the aggregated banking sector lending
activity. The model entails two optional real-financial sector feedback loop mechanisms. The
first mechanism, referred to as feedback loop 1 hereafter, focuses on excessive bank deleverag-
ing equated with the non-linear response of bank lending likely to emerge in adverse economic
conditions. This excessive deleveraging is translated into additional credit supply shocks and
feeds back to the real economy. The second mechanism, called feedback loop 2, introduces
aggregated bank-level lending volumes and interest rates directly into the economic module.76

5.1 Aggregating bank-level lending information
The outstanding bank loans to the non-financial private sector S ∈ {NFC,HHHP,HHCC} in a
country in the euro area C can be derived by summing up the information about individual bank
loan exposures to the country C defined in equation (22):

TotalLoansC
t = ∑

i
∑
S

TotalLoansS,C
i,t (302)

76Both approaches preserve the role and interplay between loan demand and supply factors. However, feedback
loop 1 puts more emphasis on the propagation mechanisms ingrained in the estimated VAR-type macrofinancial
equations, while feedback loop 2, gives relatively more prominence to the propagation mechanisms resulting from
the estimated bank-level equations.
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Analogously, one can define a country-level measure of interest rates on new lending to the
non-financial private sector by aggregating bank-specific lending rates to country C defined in
equation (56):

EIRAssetNewC
t =

∑i ∑S

(
VolAssetNewS,C

i,t ×EIRAssetNewS,C
i,t

)
∑i ∑S VolAssetNewS,C

i,t

(303)

Additionally, in order to introduce the feedback loop 1, we define a country-level measure
of excessive deleveraging. It is derived by aggregating the non-linear loan supply responses
as in equation (14) under an additional assumption that banks can deleverage only by limiting
the issuance of new loans. The latter is ensured by imposing the limit that negative non-linear
loan supply adjustments are not larger than the amount of maturing and written off loans in
Out f lows:

LoanSupplyNonLinC
t = ∑

i
∑
S

max
(

TotalLoansS,C
i,t−1×LoanSupplyNonLinS,C

i,t ,−Out f lowsS,C
i,t

)
(304)

5.2 Feedback loop involving the interpretation of loan supply shocks -
feedback loop 1

The workings of the first real economy - financial sector feedback loop relies on the transforma-
tion of banks’ non-linear credit supply response into an additional structural credit supply shock
in the macroeconomic block. The aggregated non-linear response of banks LoanSupplyNonLinC

is first translated into percentage of outstanding loans:

LoanSupplyInnovC
t =

LoanSupplyNonLinC
t

TotalLoansC
t−1

(305)

LoanSupplyInnovC equal to 1% would speak about 1% reduction in country-level bank lending
due to the non-linear loan supply response of banks. The reduction in credit supply is then
translated into a credit supply shock that is appropriate for such a magnitude of the aggregate
credit response LoanSupplyInnovC immediately after shock realisation. Let εC

1,t be the first
element of the vector of structural residuals in equation (3) that (along with Table 3) corresponds
to a structural credit supply shock. Let dC

1 be the first diagonal element of the matrix DC. A
credit supply shock triggering a response of lending volumes of exactly LoanSupplyInnovC

magnitude would then equal:77

ε̃
C
1,t =

1
dC

1
×LoansupplyInnovC

t (306)

77In actual applications, we replace LoansupplyInnovC
t in equation (306) with the deviation of innovations from

their 4-quarter moving average i.e. LoansupplyInnovC
t −LoansupplyInnovC

t
4q

which additionally the some state-
dependency present in lending equation formulas.
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This additional credit supply component can be added to other credit supply shocks present
in the model solution.78

The additional shock is implemented in the macroeconomic block of the model by modify-
ing νC

t in equation (3) into:

ν
C
t → ν

C
t +DC

ε̃
C
t (307)

where ε̃C
t is a vector with only one non-zero element ordered first ε̃C

1,t .
The feedback loop based on a measure of excessive deleveraging builds on a specific inter-

pretation of the model equations. Euro area economies are represented by linear vector autore-
gression equations, including the description of country-level aggregate of bank lending. Such
representation should well map the evolution of lending supply and demand factors in normal
times, though may fail to capture non-linearities such as excessive deleveraging in crisis times.
These non-linearities, if present in the sample, would be reflected in historical credit supply
shocks. Furthermore, one can postulate the correspondence between the linear structure of the
lending equations in the macroeconomic block and the linear elements of the bank-level loan
volume equations. The latter includes loan demand factors and the linear part of the loan supply
equation. Consequently, the non-linear part of the bank-level lending equations can be mapped
into exogenous credit supply adjustments.

The main mechanism of the real economy-financial sector feedback loop is illustrated in
Figure 11. At first, selected macroeconomic shocks affect the real economy. These shocks can
occasionally lead to a deterioration in economic conditions reflected in lower output, increase in
inflation, or deterioration in asset valuations. The resulting economic conditions influence the
riskiness and quality of bank assets, as well as the costs of funding, and finally banks’ overall
profitability. In response, banks will endeavour to restore their profitability and solvency by
adjusting the supply of loans, increasing lending margins, and adjusting the distribution of
profits. Thereby, the degree of the credit supply responses depends mainly on banks’ individual
capitalisation level. If minimum capital requirements are violated or banks are exposed to a
surge in credit defaults, the supply response may exceed the one expected in normal times when
banks’ solvency targets are not strained. This excessive credit shortage translates into a further
adverse credit supply shock that adds to the set of structural shocks in the next quarter.

5.3 Feedback loop integrating bank lending behaviour into the macroe-
conomic block - feedback loop 2

The alternative real economy - banking sector feedback loop mechanism substitutes the bank
volumes and lending rates in the macroeconomic block with their aggregated individual bank-
level counterparts. Vector YC

t in equations (1) and (2) includes a measure of loan volumes CPNC

and interest rates on new lending to the non-financial private sector BLRC. These are replaced
on the right-hand side of equations with:

CPNC
t → TotalLoansC

t

BLRC
t → EIRAssetNewC

t
(308)

78Most of the applications involving the feedback loop 1 are preceded with the decomposition of an existing
macro-financial scenario into structural shocks, assuming absence of credit supply shocks. In such cases, the
only credit supply shocks present in model simulations are provided by equation (306). See Section 6.1 for the
discussion of the scenario decomposition and Section 8.1 for an example of the application and interpretation of
the feedback loop.
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Figure 11: Schematic illustration of the real economy-financial sector feedback loop

and the equations that have CPNC or BLRC on their right-hand side are removed from the
system.

This allows both positive and negative reactions of banks to be captured and translated into
the financial conditions in each country. For example, if banks increase loan supply in response
to favourable changes in the regulatory environment, this has a positive impact on country-level
lending conditions and indirectly on all other macro-financial variables in the macroeconomic
block.

6 Solving the model and scenario analysis
The model equations are all stacked together in one system and solved simultaneously and se-
quentially for each period of the forecast horizon. In order to obtain the solution efficiently, the
model is split into recursive and non-recursive blocks of equations. To this end, we use the graph
representation of the model with variables as vertices (nodes) and equations that form edges.79

The full graph representing the model is condensed into sets of strongly connected components
(SCCs) and topologically sorted. Since the condensed graph becomes an acyclic graph, the

79Since each equation has only one endogenous left-hand side variable, each graph node corresponds both to a
variable and to an equation. Accordingly, the tail ends of the incoming edges point to the dependent variables on
the right-hand side of that equation.
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model can be simulated by solving the SCCs one after another in topologically sorted order.
Consecutive SCCs form simple recursive blocks. The remaining components, each of which
consists of more than one node and represents a system with simultaneous equations, form non-
recursive blocks. The non-recursive blocks are solved numerically with a quasi-Newton trust
region algorithm.80

It is convenient to adopt a simplifying notation, where all model equations are denoted by
M , all model parameters by P , and all predetermined variables at simulation time by X .
Predetermined variables can include the values of endogenous and exogenous variables up to
the current period t. Furthermore, let us denote the values of some fixed variables, endogenous
or exogenous, incl. shocks, for t +1 and the following periods, by C . A single model solution
M (P?,X ?) assumes particular values of parameters P? and exogenous variables X ?. Some
applications of the model involve the assessment of model outcomes that are conditional on
pre-specified paths of selected variables, including their values in future periods. Therefore, for
such “conditional simulations”, we seek X which provides the endogenous variable outcomes
consistent with conditions C , that is, X |C . Furthermore, we often refer to the sequences of
structural or reduced-form shocks from the macro-financial and banking block entering X ? as
single scenarios.

The BEAST model can be solved in a deterministic or stochastic way. Stochastic simu-
lations can be described as repetitively taking a random,81 Monte Carlo (MC) sampled, set
of parameters P and/or set of exogenous variables X , drawn from estimated (or calibrated)
distributions, and then solving the model M for all endogenous variables. Stochastic sam-
pling is repeated independently82 for each simulation. By increasing the number of stochastic
simulations, our results asymptotically approach the underlying probability distributions of en-
dogenous variables.

Stochastic simulations are applied to assess forecast uncertainty, derive at-risk measures,
and design relevant macrofinancial scenarios. Parameter uncertainty can be evaluated by repet-
itive simulations of M (P,X ?) using different combinations of P . The uncertainty related
to structural or reduced-form shocks in empirical equations, called scenario uncertainty, can be
evaluated by repetitive simulations of M (P?,X ) using different combinations of X .83 Both
parameter and scenario uncertainty can be broken down into uncertainty originating from the
macroeconomic block and uncertainty stemming from the banking sector block (see Table 10).

80For a description of trust region methods, see Chapter 4 in Nocedal and Wright [2006]. Each non-recursive
block (system of simultaneous equations) may comprise many non-linear, non-differentiable (or other not well-
behaved) functions, so we use numerical methods that do not depend on the analytical form of the Jacobian or
Hessian matrix. The solver minimises the differences (residuals) between the left-hand side (LHS) and right-hand
side (RHS) of every equation, until these residuals are approximately zero. The previous period’s solution is used
as an initial guess. The number of iterations is directly proportional to the number of residuals. Therefore, to
reduce iterations, we use manually selected pivotal variables. Pivotal variables form the (desirably smallest) set
of feedback variables that can be used to break all closed cycles within the non-recursive block. In the literature,
this is called a minimal essential set or a minimum feedback vertex set and can be defined as the subset V (G)⊆V
belonging to the digraph G = (V,E), whose removal induces an acyclic graph. See, e.g. Guardassi (1971) and
Cheung and Kuh (1974). Then, only the equations for the pivotal variables need to be expressed as LHS-RHS
differences, reducing the number of residuals that need to be minimised. Theoretically, there may be more than
one solution. We are able to evaluate the validity of a solution by inserting it into the original equations and then
calculating the norm of the residuals vector, which should be approximately zero for a valid solution.

81Applying Matlab’s SIMD-oriented fast Mersenne twister pseudorandom number generator dsfmt19937.
82As stochastic simulations are independent of each other, we make can use of CPU parallel processes (e.g. a

pool of parallel workers) or a GPU to speed up the computation process.
83The assessment of parameter and scenario uncertainty applies mostly to model equations which have been

identified empirically. Assessing this source of uncertainty has been perceived as a priority, while with time it can
be expanded to calibrated parts of the model.
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Macroeconomic block Banking block

Parameter
uncertainty

Parameter draws from the Parameter draws from the
posterior parameter distribution multivariate normal parameter
of an estimated Bayesian distributions of estimated
structural panel VAR model bank-level panel regressions

Scenario
uncertainty

Sequences of VAR shocks: Sequences of bank-level shocks:
• structural or reduced-form • drawn jointly for all banks but
• drawn jointly for the euro area and independently for each bank-level
independently the rest of the world equation
countries • sampled from estimated distributions
• sampled from estimated distributions (parametric), via bootstrapping or
(parametric) or via bootstrapping from calibrated distributions

Table 10: Parameter versus scenario Uncertainty: an overview

This chapter proceeds as follows. First, it discusses the conditioning of model outcomes on
a particular scenario, which, for simplicity, is discussed for the case of single parameter and
exogenous variable values, i.e. M (P?,X ?|C ?). Then, it moves to the discussion of the
parameter uncertainty, i.e. M (P,X ?) or M (P,X ?|C ?), which can be used to measure
confidence bands around projected values of endogenous variables. Later, it discusses scenario
uncertainty, M (P?,X ) or M (P?,X |C ?). Lastly, it discusses two applications of stochastic
simulations employing both parameter and scenario uncertainty, M (P,X ) or M (P,X |C ?),
namely deriving at-risk type measures and performing scenario selection.

6.1 A single macrofinancial scenario
The model is often applied to analyse the impact of a pre-specified economic scenario, or the
impact of policies conditional on such a scenario. In such cases, we are provided with future
paths of at least some of the macrofinancial variables. This calls for an out-of-sample forecast
where we impose conditional paths C ? for one or more endogenous macroeconomic variables
entering the macroeconomic block (see Section 3).

Our approach to simulations conditional on pre-specified scenarios consists of two steps.
First, considering only the macroeconomic block VAR equations, we derive a set of structural
shocks which can replicate the postulated behaviour of macrofinancial variables. This step
is often referred to as scenario decomposition. Second, the derived series of shocks enter X ?

together with other predetermined variables and the complete model is simulated. This two-step
method allows the derived values of selected endogenous variables to very closely replicate the
postulated conditions, and at the same time the model preserves its endogenous mechanisms.
The relevant simplification is the use of only VAR equations from the macroeconomic block
while performing the scenario decomposition in the first step. This simplification is justified
by its numerical viability84 but has the implication that the conditions C ? might be replicated
only approximately by M (P?,X ?|C ?). The difference in macro-financial variables from

84The inversion of all model equations, involving many non-linearities, would impose very high computational
demands.
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M (P?,X ?|C ?) and C ? can be later interpreted as the result of second-round effects between
the real economy and the banking sector.

The scenario decomposition closely follows the approach for computing the exact finite
sample distribution of conditional forecasts by Waggoner and Zha [1999]. The starting point is
the reduced-form specification of each country-level VAR introduced in Section 3.1:

YC
t = aC +

L

∑
l=1

AC
l YC

t−l +
L

∑
l=1

EC
l XC

t−l +DC
ε

C
t (309)

where YC
t = [YC

t ,MC
t ]
′ is a vector of endogenous variables, XC

t = [XC
t ,Z

C
t ]
′ is a vector of exoge-

nous variables, a is a vector of constants and A, E and D are coefficient matrices. L denotes lag
number and C is the country superscript. The exact mapping between the exposition in equation
(309) here and that in equation (1) from Section 3.1 can be found in Appendix B.

The n-step forecast of the endogenous variables in the system of equations (309) at time t
is:

YC
t+n︸︷︷︸

conditional forecast

= GC
n−1aC +

L

∑
l=1

HC
n,lY

C
t+1−l +

L

∑
l=1

KC
n,lX

C
t+1−l︸ ︷︷ ︸

unconditional forecast

+
n

∑
i=1

NC
n−iε

C
t+i︸ ︷︷ ︸

effect of shocks

(310)

The resulting matrices GC
n , HC

n,l , and KC
n,l are fully specified for each time point t + n and

can be expressed in terms of the original matrices AC
l and EC

l (Waggoner and Zha [1999]).85

Similarly, the matrix NC
n also depends only on the original parameter matrices AC

l and DC.
The first three terms on the right-hand side in equation (310) make up the dynamic fore-

cast in the absence of shocks, i.e. the unconditional deterministic forecast of the VAR, further
denoted as Zt+n:

ZC
t+n = GC

n−1aC +
L

∑
l=1

HC
n,lY

C
t+1−l +

L

∑
l=1

KC
n,lX

C
t+1−l (311)

The last term refers to the effect of the structural shocks via their respective impulse response
function (IRF) matrices. Rearranging the equation, the impact of the structural shocks can be
expressed as a difference of the conditional and unconditional forecasts:

n

∑
i=1

NC
n−iε

C
t+i = YC

t+n−ZC
t+n (312)

For convenience, z should denote all parameters such as coefficient matrices, constant terms,
and exogenous variables that affect the unconditional forecast and remove the country super-
script. Accordingly, the unconditional forecast Z at time t +n becomes a deterministic function
Zt+n(z).

n

∑
i=1

Nn−i︸︷︷︸
orthogonalized IRFs

εt+i = Y t+n︸︷︷︸
conditional forecast

− Zt+n(z)︸ ︷︷ ︸
unconditional forecast

(313)

85This notwithstanding, they will differ with each parameter draw of AC
l , EC

l and DC
l post estimation.
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Let R(z) be the stack matrix of the shock impulse responses, considering all n time points
from t + 1 to t + n, conditional on the information contained in Y and z. Then the system of
equations (313) for all n time points, and including intertemporal correlations, can be expressed
as:

R(z)ε = r(z), where: (314)

R(z) =


N0 0 . . . 0
N1 N0 . . . 0
...

... . . . ...
Nn−1 Nn−2 . . . N0

 ,ε =


εt+1
εt+2

...
εt+n

 ,r(z) =


Y t+1−Zt+1
Y t+2−Zt+2

...
Y t+n−Zt+n


Here r(z) are the differences to the conditional forecasts needed for the scenario to match, n

is the total number of time points in the forecast horizon, Nn = ∑
n
i=1 Nt−iAi, with the convention

that N0 = D and Ai = 0 for i > L. We search for relevant vectors of structural shocks ε that can
match the desired scenario. The elements of R(z) are themselves square matrices, each with the
same size and structure as D, in other words, their rows denote the equation in the original VAR
specification and their columns correspond to each structural shock. The elements in the upper
right are zero since the final values of r(z) at time t are not affected by future shocks at time
t + i, whereas shocks since time point 1 can affect future values of r(z).

This compact form allows us to represent multiple constraints across time points, endoge-
nous variables, and shocks. The rows of R(z) correspond to each time point with non-zero
shocks, and the columns correspond to the time points that will be affected by these shocks.
If conditions are imposed for all variables and time points, then R(z) is a square with side n,
which is the number of time points in the forecast horizon. Excluding one or more endoge-
nous variables at one or more time points, and thus making them unconditional with respect to
any scenario, amounts to dropping the corresponding rows in the system, i.e., from R(z) and
r(z). We can also limit the number of structural shocks used to obtain the scenario – effectively
limiting the values of the remaining structural shocks to zero – by dropping the corresponding
columns within the matrix elements comprising R(z) as well as from all vectors ε .

In the most general case, when q is the total number (sum for all time points) of imposed
conditions such that the scenario variables must match given values at some future time point,
and k is the total number (sum for all time points) of future structural shocks used in the scenario
decomposition, the size of R(z) is [q× k], the size of ε is [k×1], and the size of r(z) is [q×1].
For example, in a simulation with 24 time points in the simulation forecast horizon, where we
impose conditions on 10 of 12 endogenous variables for periods 1-4 and 9-20, and we use 11 of
12 possible shocks for shock decomposition, then q = 10×16 = 160, k = 11×16 = 171.86

The system has a viable solution, as long as the number of nonzero shocks is equal to or
greater than the number of scenario restrictions87. In other words, the number of columns must
be equal to or greater than the number of rows q ≤ k ≤ mn, because we need to have nonzero
singular values for each scenario variable restriction (m is the number of endogenous variables

86This applies for each country, as consider each of them in the panel VAR separately. Spillovers in this step are
assumed to be a predetermined exogenous variable.

87If the number of free shocks is equal to the number of restrictions (conditional variable points in the scenario).
This would be a non-stochastic outcome. Otherwise, there are infinitely many solutions, and the solution we choose
is the mean shock path, which is the solution that has the smallest Euclidean length among the set of all infinitely
possible vector linear combinations.
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i.e. length of vector Y , i.e. also maximum possible number of structural or reduced-form
shocks). Additionally, R(z) should be full rank and all singular values should not be too close
to zero.

From proposition (2) in Waggoner and Zha [1999], it follows that shocks from equation
(314)88 are distributed as follows:

p(ε|R(z)ε=r(z)) = N (RT (RRT )
−1

r, I−RT (RRT )
−1

R) (315)

We use a simplification of this formula, taken from Jarocinski [2010], which makes use of
the singular value decomposition (svd) of R(z) into three matrices U , S and V :

USV = svd(R)
ε|z = µ t +V2ξ t , where

µ t =V1S−1
1 UT r , and

ξ t ∼N (0, I(k−1)×(k−1))

(316)

A vector of structural shocks ε|z is decomposed into the scenario decomposition µt and
a term V2ξ t . Matrix V1 denotes the first q columns of V . V2 is composed of the last k− q
orthogonal vectors of V , i.e. the last k− q right singular vectors of R(z).89 Matrix S1 denotes
the first q columns of S. Any random sampling of V2ξ t equals zero after it is multiplied by R(z)
(impulse responses) and does not affect the scenario.

The scenario decomposition for the rest of the world employs a simpler approach. We fix
the values of conditional forecasts directly via reduced-form shocks, which are equal to the
difference from the unconditional projection. Following equation (4), where µ̃ is the difference
from the scenario and Σ̃C is the covariance matrix of reduced-form shocks, this becomes:

ỸC
t = ãC

Ỹ +
L

∑
l=1

ÃC
l ỸC

t−l + ν̃
C
t

ν̃
C
t = µ̃

C
t + ξ̃

C
t chol(ΣC)

ξ̃
C
t ∼N (0, 1)

(317)

6.2 Parameter uncertainty
Parameter uncertainty refers to the uncertainty regarding the values of coefficients in the model
equations. This type of uncertainty can arise due to measurement errors, sampling errors, vari-
ability, and limited availability of historical data. In the BEAST model, it is treated separately
for the parameters entering the macro-financial block on the one hand and the banking block on
the other.

The uncertainty of parameters in macrofinancial equations is captured by repetitively draw-
ing parameters of the vector autoregression (see Section 3.1) from their joint posterior distribu-
tion derived in a Bayesian framework (see Appendix ??).90 A different parameter set will lead

88Assuming i.i.d. Gaussian shocks
89If the number of shocks is equal to the number of restrictions (conditional variable points in the scenario),

there is only one solution, and V2 is an empty matrix.
90The parameter uncertainty of the macro-financial block allows to evaluate the uncertainty related to propaga-

tion of different structural and reduced-form shocks, therein of credit supply shocks and the functioning of the real
economy - banking sector feedback loop.
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to a different variance-covariance matrix for the structural shocks in the macrofinancial block
and to a different set of shocks for scenario decomposition.

Bank-level equations are estimated using frequentist methods, most of the time in a fixed
effects panel framework, such as:

yi,t = Xi,tβ +αi + εi,t (318)

where yi,t is the dependent bank variable observed at time t for bank i, Xi,t is the vector 1× k
of the regressors (where k is the number of independent variables), β is the vector k×1 of the
model parameters, β0,i is the unobserved time-invariant individual effect, and εi,t is the error
term.

We assume that the Gauss-Markov theorem holds and that the residuals are normally dis-
tributed, that is, ε ∼ N (0,σ2I). Resultantly, the estimated parameter vector β̂ is normally
distributed, and we draw parameter coefficients in individual equations from:

β̂ ∼N (β ,σ2(X>X)−1) (319)

The uncertainty of the model parameters is considered independently for equations that
were estimated separately. Table 11 summarises the equations in the banking sector block for
which we evaluate the model uncertainty. In particular, these include equations most relevant
for the mapping of the real economy - banking sector feedback loop (lending volume and pric-
ing equations), solvency - funding costs feedback loop (unsecured funding costs) and profit
retention strategies of banks. Currently, the evaluation of parameter uncertainty does not in-
volve calibrated coefficients and model equations that map macrofinancial scenarios into bank
balance sheet parameters.91

Equation Reference Equations Estimates
Bank lending volumes (4.1.2) (11), (13) and 14 Table 29 and 32
Write-offs of defaulted exposures (4.1.3) (35) Table 34
Bank lending interest rates (4.1.5) (56) Table 36
Bank security holding volumes (4.1.5) (73) and (74) Table 29 and 38
Banks deposit volumes (4.2.3) (160) Table 42
Bank deposit interest rates (4.2.5) (174) and (175) Table 44
Unsecured wholesale funding cost (4.2.5) (180) Table 46
Management buffer (4.4.5) (295) Table 52

Table 11: List of bank-level equations with parameter uncertainty

The impact of parameter uncertainty on model results has been illustrated in the 2021 macro-
prudential stress test exercise (Budnik et al. [2021a]). Figure 12 cites these results by depicting
the evolution of the euro area CET1 ratio in the baseline and adverse scenarios. The shades
of blue represent different percentiles of the CET1 ratio distribution spanned by different pa-
rameter values. The uncertainty of estimates tends to increase with the length of the projection
horizon. The solvency rate distribution in the adverse scenario is more asymmetric, i.e. skewed
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(a) Baseline (b) Adverse
Notes: The shade of blue represent different quantiles of CET1 ratio in each reference quarter: the darkest shades of blue represent the
25th to the 75th percentiles, the lighter shades of blue represent the 10th to the 90th percentiles, and the lightest shades of blue represent
the 5th to the 95th percentiles. Source: Budnik et al. [2021a].

Figure 12: Euro area CET1 ratio projection in the macroprudential stress test 2021

toward lower CET1 ratios than in the baseline scenario.92

Figure 13 further illustrates the effect of the uncertainty of the parameters on the results at
the bank level. The distribution of each bank’s CET1 ratio in 2023 is represented by a dot in
a 2-dimensional space, with the skewness of the distribution on the x-axis and its kurtosis on
the y-axis. The skewness is measured by the Fisher’s moment coefficient and speaks about the
asymmetry of the distribution. It is zero when the distribution is symmetric (vertical orange
dashed line) and positive when the mean of a distribution is greater than its median, and the
probability of bank’s CET1 ratios being below the mean is higher than the probability of its
realisation below the median. The kurtosis measures the flatness of tails, i.e. the relative proba-
bility of extreme events. It is considered as the excess kurtosis compared to the kurtosis of the
normal distribution, which is equal to three and is marked by the horizontal grey dashed line.
Kurtosis higher than three means that the distribution has a fatter tail than a normal distribution,
implying a relatively higher probability of very positive or very negative realisations of CET1
ratios.

A significant share of bank-level CET1 ratio distributions are close to normal in the baseline
scenario, but they become predominantly negatively skewed and with fatter tails in the adverse
scenario. Under benign economic conditions, large banks have symmetric CET1 ratio distribu-
tions in most cases. Only some small and medium-sized banks have CET1 ratio distributions
that have a higher degree of skewness or fat tails. The adverse scenario is more likely to trigger
model non-linearities, such as the non-linear reaction to the distance from target capital ratios in
lending equations, the real economy – banking sector, or solvency – funding costs amplification
mechanisms, or activate regulatory limits (e.g. MDA restrictions, AT1 triggers). For large and
smaller banks alike, the left tails of the CET1 ratio distributions are more stretched compared
to their right tails, implying a higher mass of probability of less favorable CET1 outcomes. The

91This notwithstanding, we aim at acknowledging parameter uncertainty in all equations and gradually expand-
ing the areas where it is incorporated.

92Assessing model uncertainty in stress test exercises is most relevant when the distributions of main results
are flat (high variance) or exhibit strong asymmetry (significantly higher probability of favourable versus non-
favourable outcomes, or vice versa). For example, if the mean estimate of the system-wide CET1 ratio is soundly
above supervisory targets, but the probability mass below these targets is 40%, the assessment of the risks for the
whole system will be different from using the same mean estimate, while the probability mass below the targets is
10%.
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(a) Baseline (b) Adverse
Notes: CET1 ratio distributions have fat tails in both scenarios, and are negatively skewed with even heavier tails in the adverse scenario.
The orange and grey lines represent the skewness (= 0) and kurtosis (= 3) of the normal distribution. Banks in the lowest quartile as
measured by balance sheet size are classified as “small banks”, banks within the interquartile range are classified as “medium banks”, and
banks in the highest quartile are classified as “large banks”. Source: Budnik et al. [2021a].

Figure 13: Differences in the third and fourth moments of euro area banks CET1 ratio distri-
butions in 2023 in the macroprudential stress test 2021

distributions are also relatively flat, indicating that the probability of realisation is likely to be
very different from the mean estimate.

Figure 14 represents the distribution of the CET1 ratios for three different banks in the
adverse scenario and at the end of the time horizon. These are selected to differ in business
model and location and include (a) a large retail bank, (b) a large universal bank and (c) a small
local bank. The uncertainty of the parameters for the CET1 ratio is marked by a dashed line and
later broken down by model equations as in Table 11. The figure illustrates the heterogeneity
of the impact of parameter uncertainty on individual banks. Bank (b) is mostly affected by the
uncertainty in the funding cost equation, whereas bank (a) and (c) are mostly affected by the
uncertainty in the loan supply equation.

6.3 Scenario uncertainty

The model can be used to construct multiple stochastic scenarios. Each scenario consists of
a series of structural εC

t or reduced-form νC
t shocks entering the representations of the euro

area countries (see Section 3.1), and reduced-form shocks ν̃C
t entering the representations of

the rest of the world countries (see Section 3.2). Additionally, stochastic scenarios can integrate
stochastic generation of exogenous variables Xt

93 and bank-level reduced-form shocks et (see
Section 6.2).94 The overview of the main options for scenario generation, focusing mainly on
macrofinancial variables, is included in Table 12.

The first columns of Table 12 distinguish between stochastic scenarios generated around the
unconditional model forecasts, and stochastic scenarios taking into account a mean shift related
to the pre-specified scenario (see Section 6.1). In the latter case, stochastic scenarios are used to
build scenario uncertainty ranges around the known behaviour of macrofinancial variables. For

93For example, oil, gas and solid fossil fuel prices are generated from a multivariate constant conditional correla-
tion generalised autoregressive conditional heteroskedasticity (CCC-GARCH) model, following Bollerslev [1990].

94Bank-level shocks can be sampled from different empirical bank-level equations. Currently, bank-level shocks
are regularly sampled only for operational risk shocks based on the empirically fitted gamma distribution.
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(a) Bank one

(b) Bank two

(c) Bank three
Notes: Each distribution is the result of a simulation with parameter uncertainty in only one type of equations, plus macro uncertainty.
The golden line correspond to macro uncertainty only. The black line and shaded area correspond to parameter uncertainty in all types of
equations (see Table 11).

Figure 14: Distribution of CET1 ratio at the end of the time horizon for the adverse scenario of
the macroprudential stress test 2021 and for three representative banks

conditional simulations, the reduced-form residuals are decomposed into two elements µC
t and

εC
t . The µC

t is a deterministic component, which is shared between all stochastic simulations.
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Sampling type
Mean component

Unconditional Conditional Random component
Deterministic 0 µ 0

Parametric 0 µ Estimated distributions
Bootstrapping 0 µ Historical residuals

Table 12: Summary of sampling approaches for the macroeconomic block

νt = DC
ε

C
t → DC(µC

t + ε
C
t ) (320)

The last rows of Table 12 point out that scenario uncertainty can be explored by drawing
sequences of shocks in either of two ways:

• Involving the estimated (joint) posterior probability distributions of structural or reduced-
form shocks in the macrofinancial block, thereby relying on the parametric assumptions
present in the estimation process

• Bootstrapping from historical residuals for equations in the macrofinancial block

Different simulation options can be combined, offering additional flexibility in the use of
the model. For instance, the model can be solved in a deterministic setup and conditional on the
pre-specified scenario for the first simulation quarters and using stochastic parametric sampling
to construct an unconditional forecast thereafter.

6.3.1 Stochastic simulations with parametric assumptions

Estimation of SVAR equations representing single euro area economies from equation (1) is
performed under the assumption of i.i.d. normally distributed residuals (see Appendix ??).
Accordingly:

ν
C
t ∼N (0, Σ

C) with E
(
νtν
′
s
)
= 0 if t 6= s

ε
C
t ∼N (0, 1) with E

(
εtε
′
s
)
= 0 if t 6= s

(321)

where the estimates of ΣC (or DC) are available. Stochastic simulations employing the same
parametric assumptions boil down to the construction of the series of innovations (νt)t>t0 or
(εt)t>t0 from a well-described multivariate normal distribution.

6.3.2 Bootstrapping

An alternative sampling scheme for reduced-form residuals relies on bootstrapping. The main
advantages of bootstrapping are the absence of parametric assumptions on sampled residuals,
the possibility of generating heteroskedastic paths, and the relatively low computational cost. To
address the dependence structure of the observed data related to its time-series dimension, we
rely on the combination of the geometric block bootstrap (Lahiri [1999]) and the wild bootstrap
(Mammen [1993]).

The block bootstrap is used when the errors in a model are correlated. The block bootstrap
tries to replicate the correlation by resampling sequences (or blocks) of data. The geomet-
ric block bootstrap is an extension of the moving blocks where the block length l follows a
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geometric distribution and can therefore vary among blocks.95 The wild bootstrap allows pro-
ducing shocks which are larger than those in the historical data, thereby affecting the tails of the
shock distributions which may not be properly specified in shorter data samples (as a reminder,
our macro data begin in 2003 Q1). Adjusted shocks will have the same variance as original
bootstrapped errors, but their distribution will have fatter tails.

Let T be the size of the historical data sample. The vector νt , with t =∈ [1,T ], is the residuals
of all the equations representing the countries of the euro area considered together. As such, the
vector νt replicates the correlations between countries. The generation of a single bootstrapped
series for the horizon th can be described by the following algorithm:

1. Define the infinite series indexed by integer s = 0,1, ....,, ν̃s := νs mod (T ) for modulo T .
In this new series ν̃s the last historical observation νT is followed by the first historical
observation ν0.

2. Let i0, i1, ...i j, ..., im be drawn i.i.d. from a uniform distribution on the set {1,2, ...,T}.
They are indices of the starting points of blocks indexed by j. The number of blocks m
must be large enough so that the sum of all block lengths is greater than the horizon th.

3. Let l0, l1, ..., l j, ..., lm be drawn i.i.d. from a geometric distribution with the parameter p.
They represent the lengths of individual blocks j while the mean length of a block is 1/p.

4. Construct m blocks of innovation series ν̂1, ν̂2, ..., ν̂m such that:

ν̂
j

t = ν̃i j+t−1, with t = 1, ..., l j and j = 1, ...,m

5. Concatenate all the blocks to obtain the bootstrapped series ν̂t .

6. Multiply the innovation elementwise by a vector of a standard joint normal distribution.

ν
?
t = zt� ν̂t with zt ∼N (0,I).

The series ν̂t and ν?
t have the same variance, the bootstrap errors mimic the second-moment

structure of the original innovations but with fatter tails in the distribution.
The residuals for the VARs of the rest of the world (see equation (4)) are bootstrapped in the

same way, with a vector of residuals for third countries independent of the vector of residuals
for countries in the euro area.

The selection of the average block size l is based on the notion of spectral estimation through
flat top lag windows of Politis and White [2004]. They proposed estimators of the optimal
block size for the block bootstrap methods that are characterised by the fastest possible rate of
convergence, which is adaptive on the strength of the correlation of the time series as measured
by a correlogram. In our case, the optimal block size is 5.

6.3.3 Pruning

Simulations in a model with non-linear elements can lead to occasional instabilities and result
in explosive paths (Lan and Meyer-Gohde [2013], Kim et al. [2008], Fernández-Villaverde et al.
[2016]). Pruning removes these paths and ensures that the final distribution of the outcomes is

95Lahiri [1999] has shown that geometric block bootstrap has the property of higher-order accurate estimation
of the distribution of the sample mean.
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economically viable. However, by intention, pruning should not discard valuable information
from the tail of the distributions.

Pruning removes simulated paths that include variables with large jumps or spikes. The
rejected path corresponds to highly unrealistic values or jumps that are several orders of mag-
nitude away from the steady state and historical variations and emerge as a numerical outcome
resulting from the accumulation of non-linearities and specific shock values.

To identify numerically problematic paths, we first select a subset of variables projected by
nonlinear equations {X}, which are most likely to be a source of explosive behaviour. These
are mainly bank-level variables and each selected variable X is given a characteristic scale Xs
based on its historical value.

At each time step τ of a simulation we approximate the first derivative of each scaled vari-
able x = X/Xs at time τ and τ−1 by the backward difference quotient:96

dx
dt

∣∣∣
t=τ

≈ x(τ)− x(τ−1)

dx
dt

∣∣∣
t=τ−1

≈ x(τ−1)− x(τ−2)

The pruning algorithm independently monitors jumps and spikes in each time step τ . Jumps
are removed if the absolute value of the first derivative is greater than a threshold J:∣∣∣∣∣dx

dt

∣∣∣
t=τ

∣∣∣∣∣> J

The spikes are removed if the two consecutive absolute values of the first derivative are
higher than a threshold S (S << J):∣∣∣∣∣dx

dt

∣∣∣
t=τ

∣∣∣∣∣> S &

∣∣∣∣∣dx
dt

∣∣∣
t=τ−1

∣∣∣∣∣> S

If one of the two previous conditions is satisfied, the simulation is pruned (discarded), and
the model is run again with a new random shock sample. We only reject explosive behaviours
that correspond to highly unrealistic values, i.e., the values of the threshold parameters are high,
S∼ 100 and J ∼ 1000.

According to our definition, explosive paths occur in only 0.3% of the simulations and
regardless of the particular parameter draws. It is important to note that these discarded paths
do not represent potential extreme crises. Instead, they depict doomsday scenarios in which
multiple vicious or virtuous feedback loops within the model are activated simultaneously.

6.4 Stochastic simulations and at-risk measures

Random draws from the distributions of model parameters and shocks can build a full distri-
bution of plausible outcomes. Such a distribution may be created either as a fully unconditional
projection, or around a mean scenario path as in Section 6.1. Each simulation in M (P,X )
describes the unique evolution of country-level GDP, unemployment, domestic and bank-level
lending, bank-level CET1 ratios, which are consistent with past data and the structure of the
model. The results contain a large set of both “strong” and “weak” scenarios, for example,
some with highly positive and others highly negative GDP growth rates.

96The time step between τ and τ−1 is assumed to have a length of 1.
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An important way to utilise the full distribution of model outcomes is to analyse its tails.
The tails of GDP, CET1 ratio, or lending distributions can mark events that can pose a systemic
risk, e.g. economic recessions, while their shifts can speak about changes in resilience, e.g.
due to regulatory changes. Tails can be observed by looking at lower percentiles or expected
shortfall measures.

Figure 15 shows the mapping between the results of the stochastic simulations of the model
and the at-risk measures. On the left-hand side, there is a forward-looking assessment of the
evolution of the euro area GDP growth (derived with an illustrative cut-off date of 2Q 2022).
The distribution is right-skewed with the mean above the median with moderately fatter tails
than the normal distribution. On the right-hand side, there is a stylised exposition of the outcome
with the emphasis on the central tendency (mean) and two percentiles, the 10th and the 90th.
The lower percentile of the distribution can be interpreted as a measure of growth at risk. Similar
at-risk measures can be derived for any endogenous variable in the model.

(a) Actual fanchart (b) Stylised fanchart

Figure 15: Euro area GDP year-on-year

Figure 16 gives an example of the use of at-risk measures to track the evolution of risk fac-
tors for financial stability over time. Forward-looking assessment of GDP growth, inflation rate,
and CET1 ratio in the euro area that is included in the regular assessment of financial stability
aspects of monetary policy along with the revised ECB strategy from 2021. The assessment is
based on information available in 1Q, 2Q, and 3Q 2022 and relies on (unconditional) forecasts
taking into account scenario and parameter uncertainty. For each reference date, we look at
the moments of the distributions one quarter, two quarters, one year, two years, and three years
ahead. In addition, the results differentiate between two sampling methods: P characterises the
draws obtained by parametric sampling and B those that are sampled by bootstrapping. Figure
17 displays the corresponding kernel densities on the one-year and three-year horizons.

The distributions of the bootstrapped draws are more heterogeneous than the distributions
of the draws from simulations employing parametric assumptions. For both sampling methods,
the stability of the distributions increases with the projection horizon.

Medium term real GDP growth (first row in Figures 16-17 , 50th percentile) declined over
2022, as well as its at-risk measure (10th percentile). Consecutive projections accommodating
later data foresaw a sustained bleak outlook for real GDP growth on account of the economic
ramifications of the unfolding Russian - Ukrainian war and its impact on energy prices, as
combined with supply chain bottlenecks perpetuated by global transport disruptions and rigid
COVID-19 containment measures in China. Increasing scepticism about the future growth out-
look can also be seen in the shape of the distribution of the 1-year ahead real GDP projections,
which became more pronounced centred around zero in 2022 Q3 as compared to the two earlier
quarters.
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Notes: Data as of 2022Q1, 2022Q2, 2022Q3 (purple, green and yellow), simulations based on the parametric sampling method charac-
terised by P and dots while simulations from bootstrapping are indicated by B and the cross symbol. The selected quantiles are 10th, 50th

and 90th.y-axis adjusted across projection horizons for better visibility for the CET1 ratio.

Figure 16: Unconditional projections of at-risk real euro ara GDP, inflation (HICP) and CET1
ratio at different horizons
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Figure 17: Kernel densities of unconditional projections for real euro area GDP, inflation
(HICP) and CET1 ratio at different horizons
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The central and at-risk short-term forecast of inflation has been revised upwards (second
row) over 2022, the medium-term forecasts of inflation relatively stable. Revisions of the short-
term projections reflect gradual accommodation of the prolonged effect of pandemic shock on
inflation and of rising energy and food prices. Also, the distribution of 1-year ahead inflation
projections with data as of 2022 Q3 is more left-skewed than in the earlier quarters. This implies
that a larger share of the distribution is concentrated above 0% in 2022 Q3.

Up to 1 year ahead, projections of the euro area CET1 ratio were revised downward through-
out 2022. The gradual deterioration of the short-term solvency outlook over 2022 is related to an
increase in latent credit risk resulting from the uncertain economic outlook and increased fund-
ing costs. Over 2022, the distributions of 1- to 3-year-ahead forecasts have become stronger
concentrated around the mode, signalling increasing certainty of the deteriorating CET1 out-
look.

6.5 Narrative criteria and stochastic scenario selection
On occasion, we are interested in a macrofinancial scenario that exemplifies a particular eco-
nomic narrative. For stress test applications, this macrofinancial scenario should also represent a
tail event or a “severe but plausible scenario” BCBS [2009]). To these ends, we have developed
a novel approach in which a scenario is sourced from the full distribution of stochastic outcomes
along with the desired narrative, a process we refer to as narrative scenario generation.

The method exploits the results of Monte Carlo simulations, which preserve internal model
mechanisms and endogenous feedbacks. It combs through projected outcomes to identify sce-
narios that emphasise risks and vulnerabilities in the narrative.97 The selected macro-financial
scenarios follow the desired economic storyline and at the same time remain statistically valid
by preserving the correlations present in historical time series, that is, the scenario remains
plausible. In this way, the method combines the advantages of statistical (economic plausi-
bility) and hypothetical (flexibility of designing scenarios different from historical episodes)
scenario generation methods.98

The methodology places emphasis on a narrative, including risks identified by the scenario
designers, while at the same time staying consistent with the distributional properties of the
model being used (letting the model “speak”). Because the selected scenario is taken from
the actual simulated distribution of the model itself, rather than from an external source, it is
dynamically consistent. It is also intra-temporally consistent, i.e. within each time point all
variables are derived jointly. The designer can pinpoint the storyline and the desired severity
(adversity) by sorting all scenarios and without imposing exact values.

The approach follows four steps:

• Generating the full distribution of plausible scenarios

97The algorithm laid down in this chapter is universal and can be transferred to any model providing stochastic
scenarios.

98There are several alternative ways in which stress test scenarios are constructed. The historical approach sets
the level of stressed variables based on their past realisations (for example, during a specific past recession). The
hypothetical approach uses custom-made scenarios that reflect a "hypothetical adverse situation triggered by the
materialisation of risks to which the EU banking system is exposed" (ESRB [2021]). The probabilistic approach
relies on statistical inference from an estimated distribution of past values for variables or external shocks. Another
approach to selecting a relevant scenario is described by Pritsker [2017], who proposes dimension reduction tech-
niques to intelligently specify shocks corresponding to an increase in systemic risk. Finally, a reverse-engineered
scenario uses a series of shocks that will result in the desired values for the relevant variables. In this case, the
scenario designer would need to know the response function (e.g., loss function) of the agent being stress tested
(e.g., the bank), as in Glasserman et al. [2013] and Flood and Korenko [2015].
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• Mapping of the narrative into a set of criteria applied to endogenous or exogenous vari-
ables

• Sorting of simulations along with the criteria

• Selecting "best performing" scenarios

This algorithm, along with examples, is described in more detail in Appendix E.
The relevant step of the procedure is to map the desired economic narrative into a set of

criteria. These criteria take the form of simple functions applied to endogenous, exogenous
variables, both on macro- and bank-level, or their combinations, and at different time horizons.
By calibrating the appropriate set of criteria, it should be possible to replicate conditions that
correspond to a wide range of the state of affairs of the general economy.

In the next step, a multidimensional non-parametric sorting algorithm ranks all simulations
according to chosen criteria. The algorithm is based on ordinal sorting for scenario generation
as described by Sarychev [2014]. In practise, all simulations are sorted separately along with
each criterion. The final rank of each simulation is a weighted sum of its sorting position for
each individual criterion; thereby we can tailor features of the scenario by adjusting the weight
assigned to each criterion to signify its importance relative to the others.

Simulations right next to each other in the final sorting order (by weighted sums of ranks)
are expected to represent relatively similar outcomes and be consistent with the same narrative.
However, they can differ with regard to the exact evolution of the variables included in the
criteria, and especially other variables. To take into account the uncertainty of the scenario
and the model, we take a narrow strip of simulations in each such scenario equivalence class,99

and collapse them via a mean100 in a stylised representative scenario –– a scenario path.101 In
this way, we ensure that the results do not depend on a single timing and magnitude of shocks
to macroeconomic (or other shocked) variables. Scenario paths inherit the mean ranking of
simulations used for their creation.

The simulations with the lowest ranks best satisfy the desired narrative and hence they are
usually the most preferred. In some situations, especially with simpler criteria, it may be useful
to look at other parts of the sorting order (see Section 8.2 for an example of such an application).
For example, these can be the strips of simulations around those corresponding to the 1st , 5th,
or 10th quantiles in the final sorting order of simulations.

Figure 18 illustrates the selection of a scenario with a short-lasting stagflation. The criteria
applied to select this scenario pertain to the cumulative growth in GDP and inflation from 2022
Q3 until 2023 Q4. The example entails sorting the simulations along with the two criteria, i.e.
by the magnitude of drop in GDP and in prices. The three scenarios marked green on the surface
of the fan charts of four variables correspond to the means of simulation strips in 1st , 5th, or 10th

quantiles in the sorting order.

99If desired, individual simulations may belong to several distinct strips (scenario paths).
100We use the mean for most applications because of its property that the mean of a sum is the sum of the

means –– which preserves relationships between variables. Otherwise, it is possible to use the median or another
aggregating function instead.

101Moreover, even though they ranked close to each other, a few of the simulations within a strip can differ
sharply from the majority. Simulations that are too dissimilar may skew the results of a mean and thus the scenario
path. Since the purpose is to obtain similar simulations within each strip, we use a local outlier factors algorithm
based on the concept of a local density to check for and select outliers within the strip.
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Figure 18: Selection of a short-lived stagflation scenario represented by GDP, loans to NFCs,
unemployment rate and inflation (sorting by GDP and HICP)
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7 Model properties
This chapter looks at model properties, which are reflected in its applications, and zooms into
the process of developing a large model. The phase-in of the BEAST model in a policy process
involved an ongoing monitoring of various qualitative and quantitative criteria, which can be
grouped into criteria regarding the quality of policy advice derived from the model (policy
impact criteria), as well as operational, technical, and quantitative economic criteria. These
groups are presented in Figure 19.

Figure 19: Expectations and monitoring criteria for the BEAST model

The continuous monitoring of policy impact and operational criteria has led to the devel-
opment of an exceptionally versatile model, which is now witnessing a surge in demand for its
analytical capabilities. Among those, the emphasis has been put on: (i) agility, the model’s abil-
ity to analyse a wide range of topics with minimal intervention or modifications to its structure;
(ii) communicability, the model’s capacity to deliver analyses that can be intuitively under-
stood and effectively utilised by policy-makers; (iii) complementarity, the model’s ability to
assimilate and utilise information from internal and external databases and analyses; and (iv)
distinctiveness, the model’s capacity to provide insights that are not captured by other models
or analyses.

Section 8 provides a summary of various analyses that indirectly demonstrate the agility
and communicability of the model. The complementarity of the model has been enhanced
through a consciously adapted model structure and related infrastructure. The distinctiveness
of the model has been evidenced by instances in which its outcomes sharply contrasted with
other available analyses and proved accurate when validated by realisations of data or addi-
tional information. For example, it accurately predicted high lending growth and robust bank
profitability in 2021-2022, fending off more pessimistic expectations. Additionally, the model
correctly identified the positive impact of early interest rate increases on the banking system
as a whole and observed a substantial reduction in non-performing loans (NPLs) over the past
few years. The distinctiveness of the model is also evident in policy exercises, such as when
the BEAST model more accurately revealed the impact of sectoral capital buffers in national
banking systems characterised by a high degree of cross-border interdependencies.

The formulation and regular examination of operational criteria ensured that over time the
model has become more efficient in providing responses to policy questions and also more user-
friendly. These operational criteria include: (v) expandability, the ease with which the model
and the surrounding infrastructure can be extended to incorporate new features or enhance-
ments; (vi) efficiency, the ability to produce results in a timely and resource-efficient manner,
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including considerations of human resources; (vii) navigability, the ease with which a new user
can be trained to operate the model effectively and accurately interpret its results; and (viii)
dependency, measures taken to minimise the risk of disruptions that would hinder or restrict the
use of the model.

Currently, most analyses that do not require a new model extension or reestimation can
now be completed within a working week by one or two modelers. This represents significant
progress compared to the early stages, when new analyses often required tedious and resource-
intensive weeks of preparation, simulations, and post-simulation processing. The reestimation
of selected model equations or model extensions, both involving also multiple testing within
the overall framework and readjustments (see Section 7.5), have also become significantly more
efficient and take from one day up to two weeks and often require only one modeller, causing
no disruption to other workflows. The time needed to train a person to perform an independent
model analysis has been reduced to as little as one month in certain cases.

Qualitative criteria have been progressively complemented by quantitative criteria. These
include technical criteria such as (i) the speed of a single simulation run, (ii) the option to pro-
duce runs with stochastic simulations, and (iii) the ability to provide economically sound predic-
tions for all variables, e.g. ensuring that probability metrics are between zero and one, avoiding
unexplained jumps or explosive trends in the forecasts. These add to quantitative economic
criteria, including (iv) impulse response functions, (v) out-of-sample forecasting performance
for mean forecasts, (vi) forecasting performance for the tails of variable distributions, whereby
we looked at the results under different assumptions used in stochastic simulations, and finally
(vii) the ability to replicate the heterogeneity of bank performances observed in reality.

This chapter focuses mainly on the quantitative economic criteria. First, the chapter dis-
cusses the long-term properties of the model and its selected impulse response functions. Then,
it moves to illustrating the model ability to replicate the heterogeneity of the euro area banking
system. Finally, it looks at the forecast performance of the model. The closing section discusses
how the process of developing the model with thousands of equations and parameters has been
disciplined, and what was the role of regular assessment of model properties in this process.

7.1 Long-term properties

Long-run stability and convergence to a sensible steady state are crucial for the applications of
the model in any longer-run simulations, and therefore the analysis of its medium-run responses
to shocks. Both the macro- and banking blocks of the model are carefully specified to preserve
convergence to a stable long-term solution. In the macroeconomic block, it is achieved by
ensuring the stationary of transformed macro variables and estimating country dynamics with
the use of long-term priors. In the banking block, the main empirical equations are estimated
taking into account dynamic homogeneity. However, the ultimate check for long-term stability
of the model is its long-term solution in the absence of shocks.

Figure 20 shows the convergence of key macroeconomic and banking variables in the ab-
sence of shocks. GDP, inflation, and the short- and long-term rates are the weighted average
of the individual country values. The red dashed line is the weighted average of the individual
country long run prior while the black dashed line is the weighted average of the individual
country historical values from 2002-2019. CET1 ratio, return on assets, unsecured short-term
interbank funding are the aggregate values of the euro area banking sector.

GDP growth rate and the inflation rate converge to a level slightly higher than 2%, consistent
with expectations and stylised facts about the economy of the euro area. Short- and long-term
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Notes: Unconditional long-run simulation with GDP, HICP inflation, and loan growth to the non-financial private sector are presented in
annualised quarter-on-quarter percentage growth rate, and 3-month EURIBOR, 10-year government bond yields, CET1 ratio, return on
assets, unsecured short-term interbank funding rates are presented in percentage points.

Figure 20: Unconditional long run simulation

interest rates gradually return to levels close to the weighted average historical data.102 The
nominal lending growth to the non-financial private sector in the long run converges to around
4% annually. The aggregate CET1 ratio converges to a level of around 11%, that is, above the
overall capital requirements and buffers (including Pillar II guidance) for CET1 of 10.6% as
in 2022. This reflects the presence of voluntary management buffers in the steady-state. Bank
interest rates, funding costs, and long-term profitability are above the levels observed in 2020, in
line with the gradual convergence of market interest rates to their higher equilibrium levels.103

7.2 Impulse response function analysis

The impulse response function (IRF) analysis illustrates how a single structural shock is trans-
mitted through the model. Thus, IRFs are a suitable and important tool for identifying the
model propagation mechanisms. We focus on the propagation of three structural shocks: an
aggregate demand shock affecting all economies at the same time, a standard monetary policy
shock, which is reflected in an unexpected increase of 3-month EURIBOR, and an unconven-
tional monetary policy shock commensurate with an unexpected increase in the ECB balance
sheet. Structural shocks follow the identification discussed in Section 3.1.

For each type of shock, we compare IRFs derived under different assumptions to elicit
model non-linearities. We show the structural shocks for the two specifications of the feedback

102The starting point of the simulation is 2020 Q4 which has been strongly impacted by the developments related
to COVID-19 pandemic and is thus far away steady state to which the model converges.

103The model does not capture mergers or acquisitions of banks, which can be the source of higher profitability
of the banking sector over longer time horizons.
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loop described in Section 5. Second, we look at the transmission of both positive and negative
shocks and, last, we specify "small" and "large" shocks correspondingly as 1 and 3 standard
deviations. For 1 standard deviation shocks, we present the IRFs with parameter uncertainty,
while for the 3 standard deviations, we only present the mean to ensure readability of the figures.
In addition, the IRFs that capture the impact of negative shocks are multiplied by −1 so that
the response dynamics of positive and negative shocks is displayed in the same quadrant of the
Cartesian coordinate system and it becomes easier to interpret the difference in magnitude of
the responses. IRFs are derived from the starting point 1Q 2021.104

7.2.1 Aggregate demand shock

A positive one-standard deviation aggregate demand shock affecting all euro area countries at a
time leads to a persistent expansion of GDP and an increase in inflation. The GDP of the euro
area initially increases by close to 2.7 pp and consumer prices by 2.2 pp on an annualised basis
(two upper rows of Figure 21). It takes around 2.5 years for GDP and HICP growth rates to
converge to their baseline levels. There are no marked differences in model responses for the
two alternative specifications of the real economy - banking sector feedback loop.

A positive demand shock leads to an increase in the short- and long-term interest rates, by
around 0.5 and 0.6 pp correspondingly, likely reflecting the monetary policy reaction. The 10-
year government bond yields take about one and a half years to converge back to their baseline
levels.

The asymmetry between positive and negative shocks can be seen only for large (3 standard
deviation) shocks with a marginally stronger response of GDP and the 10-year bond yields a
positive as compared to negative aggregate demand shock.

A positive aggregate demand shock boosts loan demand and is reflected in a persistent
increase in bank lending volumes to the non-financial private sector. The volume of loans is
around 7.3% higher 4.5 years after the shock. An expansion in assets results in a moderate and
permanent decrease in the CET1 ratio by around -0.5 pp. For a negative one-standard deviation
aggregate demand shock, the changes in the CET1 ratio are of opposite sign (an increase) but
of the same magnitude. However, for a three standard deviation aggregate demand shock, the
CET1 response reflects model non-linearities. The CET1 impact of a three-standard deviation
positive shock is 3.5 times larger than the impact of a same-signed one-standard deviation shock.
Furthermore, the response of CET1 ratio to a positive three standard deviation shock is by 1 pp
greater than its reversed response to a large negative shock.

Higher market interest rates partially pass through the elevated costs of unsecured short-
term interbank funding. The price of unsecured short-term interbank funding increases by more
than 0.1 pp following a positive one standard deviation aggregate demand shock. Lending rates
adjust both to higher funding costs and stronger credit demand and go up by around 0.02 pp.

Profitability measured by return on assets is subtly but positively impacted by small positive
shocks, though it converges back to its baseline level in around a year following the shock.
Moreover, there are asymmetries in the impact of large positive and negative shocks. Large
negative shocks have a more persistent negative impact on bank profitability compared to large
positive shocks and their positive impact on bank profits.

104In a non-linear model, banks responses depend on the their initial situation e.g. initial capitalisation impacts
whether a shock is partially absorbed or even amplified.
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Notes: GDP and HICP inflation are presented in annualised quarter-on-quarter percentage growth rate, 3-month EURIBOR and 10-year
government bond yields in percent.

Figure 21: Impulse response functions of macroeconomic variables to a one-std. and a three-
std. aggregate demand shock

Notes: CET1 ratio, Return-on-Assets, interest rate on lending to the non-financial private sector and unsecured short-term interbank
funding rate are displayed in percent points, loan volumes to the non-financial private sector as percentage increase in the volume.

Figure 22: Impulse response functions of aggregated banking variables to a one-std. and a
three-std. aggregate demand shock
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7.2.2 Standard monetary policy shock

A one-standard deviation accommodating (standard) monetary policy shock is initially reflected
in a reduction of EURIBOR by close to -0.6 pp. It is followed by a slightly lower reduction in
10 year bond yields of around -0.5 pp. GDP and inflation move up on impact and smoothly
converge back to the original level.

For large shocks, which are more likely to push the monetary policy into a zero lower
bound territory, the effect of monetary policy tightening is proportionally stronger than that of
policy loosening. EURIBOR goes up by 1.9 for the policy tightening commensurate with three
standard deviation monetary policy shock, whereas it goes down by 1.8 pp in case of same scale
policy loosening. The same is the case for the 10-year government bond yields, with a 1.6 pp
increase and a -1.4 pp reduction, respectively.

Notes: GDP and HICP inflation are presented in annualised quarter-on-quarter percentage growth rate, 3-month EURIBOR and 10-year
government bond yields in percent. The red lines and areas illustrate a loosening of monetary policy, and the blue a tightening of monetary
policy.

Figure 23: Impulse response functions of macroeconomic variables to a one-std. and a three-
std. conventional monetary policy shock

Lower market interest rates lead to a reduction in unsecured short-term interbank funding
costs and facilitate the reduction in bank lending rates. The price of unsecured short-term
interbank funding goes down by over -0.15 pp following a positive standard monetary policy
shock, while lending rates by around -0.02 pp.

The response of loan volumes is slower, but positive. Loan volumes to the non-financial
private sector 5 years following a policy shock are 8.3% higher than in the absence of the
shock.

Finally, the response of bank profitability and the CET1 ratio was slightly positive and
lasting, reflecting the improved economic conditions.
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Notes: CET1 ratio, Return-on-Assets, interest rate on lending to the non-financial private sector and unsecured short-term interbank
funding rate are displayed in percent points, loan volumes to the non-financial private sector as percentage increase in the volume. The
red lines and areas illustrate a loosening of monetary policy, and the blue a tightening of monetary policy.

Figure 24: Impulse response functions of aggregated banking variables to a one-std. and a
three-std. conventional monetary policy shock

7.2.3 Unconventional monetary policy shock

Along with our identification scheme, an expansive unconventional monetary policy shock is
equivalent to an exogenous increase in the euro system balance sheet that leads to an immediate
flattening of the yield curve. The expansive unconventional monetary policy shock leads to
a contemporaneous increase in the balance sheet of the euro system by 7.7% and a higher
growth rate of the balance sheet for up to 7 years. The contemporaneous impact on the 10-year
government bond yields is -0.5 pp, with close to none impact of the shock on EURIBOR.

An unconventional accomodative monetary policy shock leads to an expansion of GDP and
has a negligible impact on inflation. As is the case for a standard monetary policy shock,
the response of GDP appears marginally stronger to a contractionary shock compared to an
accomodative large magnitude shock.

The unsecured short-term interbank funding and lending interest rate respond gradually and
relatively weakly. Unsecured funding costs go down by less than 1bp, while interest rates on
lending double the magnitude.

Bank profitability and loan volumes also increase marginally with time. CET1 ratio remains
relatively stable with the counterbalancing effects of asset expansion and improved profitability.

7.3 Heterogeneity of bank responses
One of the unique features of the BEAST is the combination of macroeconomic and bank-level
dynamics. The model preserves substantial bank heterogeneity, and this heterogeneity matters
for macrofinancial outcomes. Bank heterogeneity emerges in most of the model simulations,
including those underlying IRFs in the previous section. This section constructs yet another
example which emphasises the heterogeneity of the initial shock, along with the heterogeneity
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Notes: Euro system balance sheet, GDP and HICP inflation are presented in annualised quarter-on-quarter percentage growth rate, 3-
month EURIBOR, and 10-year government bond yields in percent. The red lines and areas illustrate a loosening of monetary policy, and
the blue a tightening of monetary policy.

Figure 25: Impulse response functions of macroeconomic variables to a one-std. and a three-
std. unconventional monetary policy shock

Notes: CET1 ratio, Return-on-Assets, interest rate on lending to the non-financial private sector, and unsecured short-term interbank
funding rate are displayed in percent points, loan volumes to the non-financial private sector as percentage increase in the volume. The
red lines and areas illustrate a loosening of monetary policy, and the blue a tightening of monetary policy.

Figure 26: Impulse response functions of aggregated banking variables to a one-std. and a
three-std. unconventional monetary policy shock
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of bank responses.
We consider a euro-area wide increase in CCyB buffers, by the same margin of 0.5, 1, 1.5

and 2 pp across jurisdictions. The impact on the bank-level CCyBs and the average bank-level
CCyB is lower than the change in the country-level CCyBs rate due to the fact that a share of
bank exposures is to non-euro-area jurisdictions. However, the change is proportional with a
factor of proportionality of around 0.7; for an increase of 1 pp in euro area CCyBs the actual
euro area regulatory target ratios increase by 0.7 pp (see Table 13).

An increase in CCyB leads to an increase in actual CET1 ratios and a moderate reduction
in lending to the non-financial private sector. For an increase of 0.5 pp, the average increase in
capital ratios over a 5-year horizon is 0.2 pp, while the reduction in lending to the non-financial
private sector amounts to a moderate 0.6% in cumulative terms over a 5-year horizon (or 0.1%
in annual terms). For an increase in CCyB of 2 pp, the average increase in capital ratios is 0.8
pp, and the reduction in lending 3.7% (0.7% annually). Importantly, the reduction in lending is
proportionally stronger in response to more aggressive CCyB policies. For an increase of 0.5
pp in CCyB, the lending volume drops by 1.3% per 1 pp increase in CCyB. On the contrary, for
an increase of 2 pp in CCyB, lending drop is amplified to 1.9% per 1 pp of increase in CCyB.

Target CET1 CET1 Lending to NFPS
CCyB increase by 0.5 pp 0.3 pp 0.2 pp -0.6%
CCyB increase by 1 pp 0.7 pp 0.4 pp -1.5%
CCyB increase by 1.5 pp 1 pp 0.6 pp -2.6%
CCyB increase by 2 pp 1.3 pp 0.8 pp -3.7%

Table 13: System-wide results from an increase in CCyB in all euro area countries

The non-linear response of system-level CET1 ratio and lending to CCyB policy arises
due to bank heterogeneity. The impact of CCyB changes on bank-level target capital ratios is
diverse, depending on their share of exposures to euro area jurisdictions. Irrespective of the
scale of an initial increase in CCyB, a share of banks is only marginally affected, and the higher
the increase, the flatter the distribution of changes in the target CET1 capital ratio, indicating an
increasing heterogeneity of impact (see Figure 27).

(a) CET1 ratio

Figure 27: Target regulatory CET1 ratio
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The distribution of the impact on actual capital ratios is skewed to the left, with a substantial
share of banks able to accommodate the policy change without substantial adjustments of their
capital ratios (see Figure 28, left-hand side). The greater the increase in CCyB, the greater the
share of banks that needs to substantially adapt their CET1 ratio, as reflected in the gradual flat-
tening of the distribution. This heterogeneous response is a combination of the heterogeneous
impact on target capital ratio, but foremost reflects different starting conditions (in terms of cap-
ital position but also profitability) of banks and their willingness to re-calibrate of management
buffers.

The response in terms of lending is clearly bimodal. A share of banks responds very weakly,
either being able to accommodate to changes in policy by adjusting their management buffer,
or absorbing the increase in CCyB by retaining a higher share of profits. However, there is
another, generally smaller group of banks that cuts lending substantially. These can be banks
either particularly strongly affected, or with weak capitalisation and profitability, or with the
balance sheet structure, which makes adjustment in lending easier, e.g. with a high share of
short-term loans. Importantly for clarifying the non-linearity observed on the aggregate level,
the stronger the change in CCyB policy, the higher the share of banks which adjust their lending
substantially.

(a) CET1 ratio (b) Loans to NFPS

Figure 28: CET1 ratio and lending volumes to the non-financial private sector (NFPS)

7.4 Forecasting performance
Many applications of the BEAST model are based on its ability to predict the evolution of
the banking sector under specific macrofinancial conditions. One way to assess the quality of
such predictions is to look at the forecast accuracy of the model. This section discusses the
performance of model point forecasts and preliminary outcomes for interval forecasts.

The forecast evaluation relies on several forecast settings. The first, "in-sample" forecast
looks at the predicted evolution of selected banking sector variables, namely the CET1 ratio, re-
turn on assets, ROA, and loans to the non-financial private sector, conditional on realised macro-
financial data. It speaks of the accuracy of the model in predicting banking sector information,
netting out the confounding impact of (potential) inaccuracy of macrofinancial forecasts.

Two other settings allow us to assess forecast performance in close to out-of-sample con-
ditions. They use the information available up to the reference date. The first setup takes on
board the available 2 and a half to 3 year ahead ECB projections of macro-financial conditions.
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This setup is closest to the most real life uses of the BEAST and shows how the model performs
in such conditions; however, model performance can be tainted by any forecast error present
already in macrofinancial ECB projections. The last setup includes model-specific forecasts of
all endogenous variables, therein macrofinancial aggregates. Specific configurations are listed
in Table 14, together with the main assumptions regarding the forward-looking banking regula-
tion, feedback loop options, and interpretation.

The results in this section should be read recognising that they are based on relatively few
observations and the period of evaluation has been plagued with numerous atypical events. The
first historical data point in the model is 4Q 2017, and at the time of completing this article,
the last is 3Q 2022. This results in less than 20 quarters of the available forecast evaluation
periods (Table 15). We look both at 1 and 2 quarter ahead forecasts to learn about the model
performance for a short-horizon window, and at 4 to 10 quarter ahead forecasts to learn about
the model ability to predict the medium-run evolution of variables. The period of forecast
evaluation includes sharp and largely unanticipated changes in economic activity, experiments
with new policies put foreword during the COVID-19 pandemics, the outbreak of the Russian-
Ukrainian war, and the phase-in of several new supervisory policies affecting the functioning of
the euro area banking sector, e.g., the ECB NPL guidance.

In-sample Out-of-sample BMPE Out-of-sample

How Macro-financial vari-
ables correspond with
actual data

Macro-financial conditions
anchored at ECB economic
projections

Model-specific forecasts of
macro-financial variables

Regulation Known a priori Information up to the reference
date

Information up to the reference
date

Feedback loop No banking sector real
economy feedback
loop

Feedback loop 1 or 2 Feedback loop 1 or 2

Interpretation How well the model
predicts banking sec-
tor aggregates given
the information about
the macro environ-
ment and changes in
regulation?

How well does the model perform
in real-life exercises?

How well does the model per-
form in conditions closest to out-
of-sample setup?

Table 14: Forecast types and model settings

Horizon 1Q 2Q 4Q 6Q 8Q 10Q Total

Observations 19 18 16 14 12 10 89

Table 15: Available observations per reference quarter

7.4.1 Point forecast metrics

We will rely on the two most common metrics to assess the model’s point-prediction accuracy.
For a point forecast ŷn+h of the variable yn+h, where n refers to the index of the reference quarter
(the time at which the model starts simulating) and h the forecast horizon, we will first look at
the root mean squared error (RMSE):
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RMSE(h) =

√
∑

N−h
n=0 (ŷn+h− yn+h)2

(N−h+1)
(322)

where N refers to the number of available reference quarters, and the statistic is calculated for
horizons h = {1,2,4,6,8,10}.

Although the RMSE is not interpretable directly, larger forecast errors will result in larger
RMSE statistics. RMSE can be better evaluated compared to a naive benchmark provided by
a random walk forecast of ŷn+h = yn (meaning that a naive forecast of any variable is equal to
its last observed value). Effectively, the h-step ahead RMSE of a particular setup Θ (in-sample,
out-of-sample BMPE, out-of-sample) of the BEAST is compared to the h-step ahead RMSE of
the naive forecast as follows:

rRMSE(h) =
RMSE(Θ,h)

RMSE(naive,h)
(323)

If lower than 1, the relative RMSE (rRMSE) metric stipulates that the forecast error of the
model is lower than that of a naive forecast.

The mean forecast error for the h-step ahead forecast error is:

ME(h) =
∑

N−h
n=0 (ŷn+h− yn+h)

(N−h+1)
(324)

The mean of forecast errors is used to determine if predictions are biased compared to the
true realisations, i.e., by how much, on average, a forecast deviates from the true realisation.

7.4.2 Point forecast error

The BEAST-based in-sample forecast of banking sector variables consistently outperforms their
naive forecasts. Figure 29 summarises the RMSE ratios for the CET1 ratio, ROA, and lend-
ing for the in-sample, conditional, and unconditional out-of-sample forecasts. The in-sample
rRMSE lower than 1 for all variables and most horizons. The model performs particularly
well on the medium-term horizon, along with the expected relative strength of semi-structural
models (see Kichian et al. [2010]).

The quality of the out-of-sample forecast is lower, as it reflects to a greater extent the fore-
casting problems in a highly dynamic environment. The forecast quality for ROA and loans to
the non-financial private sector remains good, and most of the time better than that of a naive
forecast (at least for the BMPE-based forecast). However, for the CET1 ratio, it deteriorates sig-
nificantly the longer the underlying forecast horizon. For the aggregate CET1 ratio, the model
does not perform systematically better than a simple random-walk forecast. Banks’ CET1 ratios
remained relatively stable during the evaluation period, which favours the naive forecasts.

The gap between the performance of the forecasts in- and out-of- sample evidences the
role of COVID-19 disruptions and policies. The forecasting performance of the model is high
as long as the forecast reflect full information about the magnitude of extraordinary shocks
and the final calibration of public guarantees or supervisory policies like the dividend payout
restrictions introduced during the pandemic. It degenerates in the absence of this information,
reflecting the high macroeconomic uncertainty of the COVID-19 episode.
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Figure 29: Root mean squared error of BEAST projections versus naive forecast: banking
variables

Figure 30: Mean forecast error of BEAST projections: banking variables

The mean forecast error statistics confirm the robust performance of BEAST in predicting
banking sector variables once macrofinancial conditions are known. The in-sample statistics
reveal a minimal negative bias present in the CET1 ratio and ROA forecasts, and a more sub-
stantial (around 1 pp) positive bias in forecasts of year-on-year lending volumes to the non-
financial private sector. The out-of-sample forecasts are again performing worse, especially
for the CET1 ratio. Out-of-sample forecasts of the CET1 ratio during and after the COVID-19
pandemics reflect that, as seen ex post, much of the deterioration of macrofinancial conditions
during the pandemic had no significant impact on the banking sector, due to decisive and timely
policy responses. This explains why the model predicts on average lower bank solvency.

7.4.3 Forecast interval metrics

The point forecast accuracy metrics are relatively easy to compute and understandable, and they
are typically able to guide further actions by the forecast user (Christoffersen [1998]). However,
since the BEAST model is also used to generate stochastic distributions of variables, one may be
interested in measuring the quality of its interval forecasts. However, it should be kept in mind
that the corresponding evaluation is even more negatively affected by the small and atypical
evaluation sample than the evaluation of point forecasts.

In order to assess the accuracy of the interval forecast, we compare the share of actual values
outside the forecast interval relative to their predicted share. For any variable yt , Ln+h|n+h−1(p)
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and Un+h|n+h−1(p) are, respectively, the lower and upper limits of the interval forecast at time
n+h made at time n+h−1 for coverage p. Let It be an indicator variable defined as:

In+h =

{
1 if yn+h ∈ [(Ln+h|n+h−1(p),Un+h|n+h−1(p))]
0 if yn+h 6∈ [(Ln+h|n+h−1(p),Un+h|n+h−1(p))]

(325)

In other words, It is 1 for any true realisation that lies within the interval and 0 if it lies outside
it.

Assuming that the model perfectly replicates the true distribution of the variables under con-
sideration, one would expect that a 95% confidence interval contains 95% of the realisations,
while a 5% confidence interval covers 5% of the realisations. On the contrary, a 50% forecast
interval that contains 90% of the realisations (more than it is expected to contain) is termed per-
missive, while a 50% forecast interval that contains 10% of the realisations (less than expected)
is termed conservative.

Figure 31 illustrates the construction of figures that summarise the properties of interval
forecasts. On the left side, there is a normally distributed true forecast density with mean 0
and standard deviation 0.5, and a normally distributed prediction forecast density with mean 0
and standard deviation 0.25. The yellow scatters represent stylised observations sampled from
the true forecast density. For p = 0.68 on the right side, the predicted 68% forecast interval
is narrower than the true 68% forecast interval. Collecting similar information for the entire
range of p results in a curve bent towards the lower right side of the plot. It shows that for any
coverage probability, the prediction forecast interval is more conservative, i.e. the actual share
of realisations in each interval is lower than the theoretical coverage probability.

Figure 31: Two-sided interval forecast assessment - illustration

7.4.3.1 Two-sided interval forecast assessment

Figures 32 and 33 summarise the assessment of interval forecast for the euro-area CET1
ratio and loans to the non-financial private sector, respectively. Out-of-sample forecasts are
derived around the ECB projection or unconditionally, using parametric sampling methods as
in Section 6.3.1. Each forecast horizon, h = {1,2,4,6,8,10}, is captured by a line. Because
the consequences of a small evaluation sample become even more pronounced in the interval
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assessment, the figures also include the average over every h−step ahead forecast performance,
denoted as full results.

For the CET1 ratio, the out-of-sample BEAST tends to produce conservative interval fore-
casts. The BEAST forecast intervals have smaller variance than the theoretical ones, given that
most of the individual quarter-forward intervals lie more closely towards the lower right of the
plots. More specifically, the full result shows that the spread of the forecast interval does not
evolve as quickly as the confidence level, meaning that at higher confidence levels, the forecast
interval will increasingly miss more realisations, which should have been included. On the con-
trary, the naive random walk forecast of the CET1 ratio (which has unlimited variance) would
be very permissive, nesting most of the actual realisations, but compromising forecast accuracy.

Analogously, for year-on-year lending growth, only around 40% of the true realisations
lie within the model’s forecast interval with 100% confidence level. In contrast, the random
walk forecast of the annual growth density with variance increasing over time is somewhat
counterintuitively performing very well capturing loan volume realisations.

Figure 32: Two-sided interval forecast assessment - CET1-ratio

These results change only slightly between the feedback loop specifications and conditional
versus unconditional out-of-sample forecasts. They substantiate that the model, as well as the
official ECB projections, struggled to accurately forecast the future macrofinancial dynamics in
very unstable times starting from the COVID-19 pandemics. However, the model point forecast
accuracy based on the known macrofinancial environment has remained robust.
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Figure 33: Two-sided interval forecast assessment - Lending growth (NFPS)

7.5 Modeling strategy

Building, updating or extending a large semi-structural model, with thousands of equations de-
rived separately but solved jointly, requires a systematic approach to model development. Such
a modelling and integration strategy is an essential element, which ensures the reliability and
overall robustness of the final model. It also ensures that the results of the model are repro-
ducible, that its properties are well understood, and that all parts of the model are meaningfully
interconnected.

The BEAST modelling strategy has been developed gradually and tested over time. Today, it
serves as a road map that outlines a sequence of well-defined steps used to incorporate or replace
various components of the model, including data updates and biannual re-calibrations related
to the availability of the EBA/SSM stress test results. Furthermore, since the development of
such a model is a collaborative endeavour involving multiple team members, a well-defined
modelling and integration strategy plays a crucial role in enhancing coherence and coordination
among the team. By providing a common framework and guidelines, it helps streamline efforts
and facilitates seamless integration of different, often developed in parallel, work elements.

The modelling and integration strategy is structured into four distinct but interconnected
stages, each serving a specific purpose in the model development process:

1. Outside model quality checks
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2. Stand-alone testing in a model block

3. Full model integration and checks

4. Economic evaluation

Figure 34: Modeling and integration strategy

The testing and evaluation processes are automated to a great extent, which reduces the
resource implications of the process. A dedicated platform has been developed to produce
statistics and comparisons involved in stages 2 through 4 and offer comprehensive summary
reports to model developers. Some elements of stage 1, especially biannual on-boarding of
new stress test data and quarterly on-boarding of supervisory reporting data, have also been
substantially automated.

7.5.1 Outside model quality checks

The outside model quality checks are specific to the planned model change. In practise, these
changes can concern:

• Starting point data updates

• Recalibration of existing parameters

• Updating or adding non-empirical formulas

• Updating or adding empirical equations

For data or calibrated parameters updates, quality checks would involve assessing the plausi-
bility of variable or parameter values, for example, by inspecting their distributions, seeking
outliers, contrasting them with the information in the related literature or available from ex-
perts. For new estimated equations, the first checks involve standard regression quality criteria,
such as in-sample data fit, tailored econometric diagnostics for e.g. panel regression estimates,
evaluating the dynamic properties of the equation (its long-run stability as implied by coeffi-
cient estimates) and its ability to replicate cross-sectional heterogeneity. For new empirical and
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non-empirical equations alike, the relevant aspect is their ex ante consistency with the economic
literature and the remaining model parts.

The crucial part of outside model quality checks is the ability of new equations, parameters,
or starting point data to deliver projections that match either or both of:

• The relevant bank submissions in the most recent EBA/SSM stress test in the baseline
and adverse scenarios105

• Actual data realisations

To this end, the candidate model element is used to project selected endogenous model variables
for a 3-year horizon conditional on the baseline and adverse scenarios of the last EBA/SSM
stress test. For example, the performance of the new candidate equation for the transition proba-
bility matrix in equation (30) would be compared with respect to its dynamic and cross-sectional
performance against bank submissions of transition rates (as in the first bullet) and additionally
against selected information on default rates from supervisory reporting or Anacredit (the sec-
ond bullet). The new candidate equation for e.g. lending volumes (equation (12)) or write-off
rates (equation (34)), whose projected variables not available in banks’ submissions, would be
tested against the most actual data on lending from the supervisory reporting, individual Bal-
ance Sheet Items statistics, and challenged on the basis of expert knowledge and supplementary
datasets such as Bank Lending Survey. The new data on the starting point for the lending vol-
umes would be used jointly with the existing lending equation (12) to build projections later
compared with the same actual lending data as would be the case for the new lending equation.

7.5.2 Stand-alone testing in a model block

In the second stage, the new elements are fully incorporated into the model structure and linked
to other model variables and mechanisms. However, the tests are run only with the use of the
most relevant model block. For instance, for transition and write-off rates, it is a loan-loss provi-
sioning module as in Section 4.1.4, for new lending starting point data or equations, it is a block
of loan volume dynamics and loan-loss provisioning jointly, that is, approximately equations in
Sections 4.1.2 and 4.1.4. All other model blocks would be exogenized i.e. effectively replaced
by stable projections or actual data of corresponding variables. Consequently, for banking sec-
tor changes the tests are run with known macrofinancial scenarios and bank-level variables not
directly affected by the model change, and for macroeconomic module changes, with known
and stable bank-level variables.

The role of this step is to understand the properties of the new model element in a real-life
setting but excluding feedback mechanisms. It also concerns the ability of the new model parts
to produce reasonable results. This step consists of checking:

• Solvability and the absence of numerical issues

• Reasonability and stability of the predictions of directly affected variables

• Reasonability and stability of the predictions of other and higher-level variables

The first criterion entails that the new, modified, or augmented model blocks must allow to
be solved for any scenario horizon and (if applicable) under varying assumptions regarding the

105When possible these checks are also extended to past EBA/SSM stress test submissions and scenarios.
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exact specification of the model block. The solvability can be disrupted due to numerical issues,
such as division by zero or by values very close to zero, as well as coding errors.

Reasonability and stability criteria involve checking whether the variables directly or indi-
rectly affected by the candidate model change remain in the relevant range, have stable dynam-
ics, and produce economically reasonable results in the horizon of 5-10 years. For example, for
transition and write-off rates, the projected variables must remain between zero and one and, at
best, within their historical ranges and show no long-term upward or downward bias. Modifi-
cation of transition and write-off rates equations should also guarantee stable dynamics of the
banking sector and bank-level loan loss provisions.

The economic viability of the projections of directly and indirectly affected variables is once
again assessed by exploring the last submissions to the EBA/SSM stress test for baseline and
adverse scenarios, along with the available information on the actual realisations of the variables
of interest.

7.5.3 Full model integration and checks

In the third stage, newly developed model parts are tested within the entire model structure.
This is an indispensable step as it aims to evaluate the model’s performance in a holistic and
interconnected setting. This step focuses foremost on technical and numerical aspects; therein:

• Solvability and the absence of numerical issues for different model settings in a determin-
istic setup

• Solvability and the absence of numerical issues for different model settings in a stochastic
setup with parameter and scenario uncertainty

• Reasonability of the predictions of core variables for different model settings in a deter-
ministic setup

The criteria validated in this stage are similar to those applied in the earlier step, with the
emphasis on testing the ability to run the model with its different options and in the horizon
of 5-10 years. These options concern the use of different model versions, such as including
or excluding the NPL coverage expectations, or different specification of the real economy
- banking sector feedback loop, with different stochastic settings, such as with and without
parameter uncertainty, applying parametric simulation or bootstrapping to scenario generation.
For stochastic options, we additionally observe the speed of the solution and the number of
simulations discarded either due to numerical issues or in the pruning process.

The reasonability of model predictions is tested mostly for macrofinancial variables, CET1
ratios, lending to the non-financial private sector, bank profitability and its main subcomponents,
risk weights, and risk weighted assets. We also compare how model predictions change between
different model settings, especially with and without the application of the real economy -
banking sector and solvency - funding costs feedback loops.

7.5.4 Economic evaluation

This stage involves comprehensive checks of simulations from the full model and comparing
them to the analogous simulations from the existing model without modification. This is the
ultimate check of the model properties after a change, allowing a comprehensive understanding
of its behaviour under real-life conditions. The criteria applied include the following:
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• Long-term properties for core model variables as in Section 7.1

• Impulse response functions to preselected structural shocks (aggregate demand, supply,
equity and real estate prices, government bond risk premium and two monetary policy
shocks) as in Section 7.2

• At-risk measures for core model variables as in Section 6.4

• Replicating past policy exercises (see Section 8 for selected examples)

The last criterion involves replicating and comparing the results of two to three policy exer-
cises. The exact selection of the policy exercises evolves over time (usually we return to most
recent ones) and is adapted to the character of model change (we return to exercises that re-
vealed related model weaknesses). However, at least one of the selected exercises must involve
stochastic simulations and one must bring to forefront bank heterogeneity, either because it is
at the core of the research question or because it has a substantial impact on the final results
and their interpretation. While replicating the past policy exercises, we investigate whether the
problem areas detected in the model were addressed appropriately and we evaluate qualitatively
the model’s forecasting performance.
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8 Applications
The initial motivation for developing the BEAST model has been macroprudential stress testing.
There was a need for a complementary approach to stress testing that could support the assess-
ment of macrofinancial risks and adhere to the new ECB mandate. From the very beginning,
BEAST marked a change in the macroprudential stress test philosophy. It included individ-
ual and heterogeneous banks but otherwise mimicked the logic of semi-structural models used
by many central banks for inflation forecasting. It has relied on the simultaneous solution of
economy-wide and bank-level equations, and as such it could capture the simultaneous nature of
feedback loops and facilitated the use of conditional simulations. The model was an important
ingredient that facilitated the shift toward a broader use of macroprudential stress test toolbox
in the bank to:

• Provide a complementary metrics of the resilience of the banking sector (risk assessment)

• Evaluate and increase awareness of potential coordination failures in the banking sector
and the economy (communication)

• Support the assessment of appropriateness and the calibration of macroprudential policy
measures (policy evaluation)

The model has been put to risk assessment applications for five consecutive years, with a
special role taken by the regular macroprudential stress test repeated in 2018, 2020 and 2021.
The results of the macroprudential stress test could be read separately, as the assessment of
system-wide resilience, or in tandem with the supervisory EU-wide stress test, as complemen-
tary metrics or additional validation.

In intermittent years, without an EU-wide stress test, the model served to provide a stan-
dalone risk assessment, often by employing the native scenario selection method (discussed
in Section 6.5). For instance, in 2022, following the invasion of Ukraine and the turbulence
in the energy markets, the model has been used to assess the impact on the banking sector of
the most recent macroeconomic projections (June 2022) and a scenario with even higher gas
prices, stronger interruption of trade links, and lower consumer and corporate confidence. Be-
yond that, the model has been well placed to provide topical risk assessments, such as the first
climate stress test in 2020 or the sensitivity analysis to interest rate risks in 2022.

The model results on occasions entered the ECB communication and supported its policy
stance. An example of such a model use is the communication by Enria [2020] encouraging
banks to use available buffers to expand, or prevent contraction of, lending at the onset of the
COVID-19 pandemics in 2020. The simulations of the model illustrated how buffer use and
the overcoming of coordination failures can ward off the emergence of adverse amplification
mechanisms in the banking sector and the economy.

Lastly, the model has been used extensively for analysing the impact assessment of regu-
latory, supervisory, or macroprudential policies applying various forms of ex ante cost benefit
analysis of capital-based policies. The most demanding model application concerned the im-
pact evaluation of the finalisation of Basel III reform. In contrast to the initial stage of Basel III
reform, which involved mostly an increase in capital requirements compared to risk-weighted
assets of banks, its finalisation is an intricate package aimed at increasing the comparability
of risk-weighting practises across banks. It introduces multiple adjustments of risk weights
on bank exposures and an occasionally binding output floor (a benchmark measure for risk-
weighted assets based on a standardised approach). The high level of detail of the model al-
lowed for a comprehensive and truthful evaluation of the package.
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Risk assessment

Macroprudential stress
test 2018

Prepared on the back of the 2018 EBA/SSM EU-wide stress test,
employing the dynamic balance sheet perspective and introducing
the real economy-banking sector feedback loop.

Published as Budnik
et al. [2019] and Budnik
[2019]

Baseline and adverse
scenario analysis 2019
in the Financial Stabil-
ity Review

A stand-alone scenario analysis 2019 employing September 2020
ECB staff projections as a baseline and native adverse scenario
selection method to reflect conjectural risks.

Published as ECB
[2019]

Macroprudential stress
test 2020

Prepared on the back of the 2020 SSM Vulnerability Analysis with
model enriched with the solvency-funding costs feedback loop,
taking account for COVID-19 mitigation policies and NPL cov-
erage expectations.

Published in Budnik
et al. [2021a]

Pilot macroprudential
climate stress test 2020

The first ECB approach to model the impact of climate transition
policies on the banking sector.

Published in ESRB
[2020], see also Budnik
et al. [2022b]

Macroprudential stress
test 2021

Prepared on the back of the 2021 EBA/SSM EU-wide stress test,
with the model featuring improved modelling of non-standard
monetary policy transmission mechanisms.

Published as Budnik
et al. [2021a], see
also Budnik and Groß
[2021]

Baseline and adverse
scenario analysis 2022

A stand-alone adverse scenario analysis employing June 2022
ECB staff projections and native scenario selection method to re-
flect risks stemming from the Russian invasion on Ukraine.

-

Regular assessment of
the macro at risk in sup-
port of monetary policy
process

Quarterly evaluation of the growth-at-risk and inflation-at-risk 1-3
year ahead forecasts to assess changes in financial stability.

-

Interest rate sensitivity
analysis 2022

Assessing the impact on the banking sector of the two interest rate
scenarios, implying a parallel shift of the euro area yield curve or
its steepening.

Budnik et al. [2022d]

Communication

SSM communication
on buffer use

Communication in support of the use of existing buffers by banks
employing and comparing counterfactuals with and without buffer
use.

Enria [2020], see also
Borsuk et al. [2020]

Policy assessment

Impact assessment of
Basel III finalisation
2019

Applying growth-at-risk perspective to assess costs and benefits of
the reforms.

Budnik et al. [2021b],
see also: EBA [2019]

Impact assessment of
Basel III finalisation
2021

Extending the costs and benefits assessment from 2019 to look at
different designs of Basel III reforms.

Budnik et al. [2021d],
see also: EBA [2021a]

Impact assessment of
COVID-19 mitiga-
tion measures for the
banking system

The impact of supervisory, macroprudential, public moratoria and
guarantee policies introduced in response to the COVID-19 pan-
demic in the banking sector and real economy in three scenarios
differing in the depth and duration of the recession.

Budnik et al. [2021c]

Impact assessment of
the NPL coverage ex-
pectations

The impact assessment of the SSM coverage expectations for new
and legacy NPLs on the banking sector and real economy.

Budnik et al. [2022c]

Exploring macropru-
dential policy space

The impact assessment of the releasability of capital conservation
buffer at the instance of a future deep recession.

ECB [2022b]

Measuring macropru-
dential policy stance

Evaluation of the evolution of macroprudential stance, i.e. the bal-
ance between financial stability risks and calibration of macropru-
dential instruments over time.

Budnik et al. [2022a]

Assessing costs and
benefits of capital
buffer policies

The cost and benefits assessment of different calibration of CCyB
and sectoral SyRB buffers in support of related policy discussions.

Examples in Budnik
et al. [2022b]

Table 17: Overview of Macroprudential stress test and related analysis

At least two novel approaches to assess the cost and benefits of capital regulation have
been developed within the BEAST setup. The costs of capital regulation have been always
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assessed by comparing the expected outcomes, e.g., growth rate of the EU or euro area economy,
following the introduction of the policy package with the expected outcomes in the absence of
the change. However, the approach to benefit measurement has been tailored to the case of
structural changes, where capital regulation can include automatic stabilisers but, as a rule, is
not subject to discretionary adjustments, and to the case of discretionary adjusted policies, such
as cyclically recalibrated buffers.

The benefits of the Basel III finalisation have been based on the growth-at-risk-based mea-
surement. They have been derived by comparing the lower percentile of the EU or euro area
economy, following the introduction of the policy package, with the corresponding percentile
in the absence of the change. The shift in the lower percentile of the growth distribution upward
signified higher economic resilience, i.e., lower likelihood of very deep recessions. The idea of
measuring the impact of policies on economic resilience by looking at the lower percentage of
growth distribution has also been used to measure the benefits of NPL policies or changes in
macroprudential stance.

An alternative approach to assess the benefits of capital regulation has been applied to re-
leasable buffers. Such buffers are built in good times to be released to support bank lending
in dire economic conditions. The benefits of building such buffers have been linked to the ex-
pected increase in output or lending during a stylised future economic recession that follows
after a buffer is built. The advantage of the approach is the ability to tune the economic reces-
sion scenario to the specificity of a buffer, e.g., emphasise the contraction in house prices when
assessing the impact of the release of a sectoral SyRB, or its extraordinary depth and correlation
across countries, for the possible release of the conservation buffer.

Importantly, model development has always been intertwined with model use, and policy
needs guide the choice of its development priorities. As such, model development has been a
cumulative process in which each new application benefited from model extensions or improve-
ments undertaken in support of its earlier use. For instance, the first application of the model
to the impact assessment of policies, namely Basel III finalisation, pushed its development to-
ward including more comprehensive representation of capital charges and liabilities, including
the introduction of the funding costs – solvency feedback loop. These changes entered the
macroprudential stress test in 2020, improving with exercise in 2018. The need to accommo-
date multiple policy adjustments during COVID-19 pandemic in the same stress test exercise
resulted in a better preparation of the model to answer questions of the monetary policy domain.

8.1 Macroprudential stress testing

The regular application of BEAST is the biennial ECB macroprudential stress test carried out on
the back of the EBA/SSM European Union (EU)-wide stress test106 of the banking sector. The
EU-wide stress test assesses the resilience of EU banks to a common set of adverse financial
and economic shocks with the aim of informing supervisory decisions and increasing market
discipline. It follows a constrained bottom-up approach which requires each participating bank
to (independently) estimate the evolution of a common set of risks (credit, market, counter-

106The stress test is run jointly by the European Banking Authority (EBA) and the ECB Banking Supervision
(SSM). The EBA develops the overall methodology of the stress test and designs its templates. The EBA stress
test focuses on the largest EU banks. The SSM stress test uses the EBA methodology and applies it to all banks
under its direct supervision, including those not covered by the EBA sample, with the necessary adjustments for
smaller banks to allow proportionate treatment. For more information, visit https://www.eba.europa.eu/
risk-analysis-and-data/eu-wide-stress-testing.
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party, and operational risk) under the common baseline and a hypothetical adverse scenario.107

To maximise the prudence of the exercise, the EBA/SSM stress test is carried out under the
assumption of a static balance sheet.

In the macroprudential stress test exercise, the focus has routinely been on analysing the
impact of the baseline and adverse scenario as used in the EBA/SSM EU-wide stress test (or in
the SSM Vulnerability Analysis in 2020), while loosening the constraints embedded in the latter.
It (i) relaxes the assumption of the constant balance sheet in order to study dynamic adjustments
of banks’ loans and liability structure, (ii) accounts for amplification mechanisms therein the
feedback loop between the real economy and the banking sector, and (iii) removes a number of
other assumptions such as zero write-offs or recovery rates, or various methodological caps and
floors. By relaxing these constraints, the results of the macroprudential stress test enhance our
understanding of how adverse conditions spread through the banking system and increase our
awareness of systemic risks that can arise in the case of adverse macroeconomic developments.
Furthermore, the macroprudential stress test assesses the resilience of the banking system as a
whole and with assumptions that can be read as more realistic than those in the EBA/SSM stress
test.

In the following, we review the three macroprudential stress test exercises based on the
BEAST model from 2018, 2020 and 2021.108 In addition, we discuss the evolution of the
macroprudential stress test over time and, using the example of the last 2021 macroprudential
stress test, we illustrate some systematic differences in the outcomes of a supervisory constant
balance sheet and a macroprudential stress test.

8.1.1 Complementary assessment of bank solvency

The ECB macroprudential stress test provides a complementary assessment of the evolution of
the supervisory main result, i.e., banks’ solvency. Figure 35 contrasts the transitional euro area
CET1 ratio from the macroprudential ("MST") and EBA/SSM ("EBA/SSM") stress tests for the
two scenarios ("Baseline" and "Adverse").109

There is no clear pattern of differences for baseline scenarios between the starting point
and end-horizon CET1 ratio in the supervisory and macroprudential stress test. However, these
stress test year-specific differences can reveal interesting information. The CET1 end-horizon
ratio is above the starting point for both 2018 stress test exercises, reflecting the prolonged
economic expansion in the 2018 baseline scenario, which translated into sound bank profitabil-
ity. The system-level CET1 capital ratio decreases sharply in the baseline scenario in the 2020
stress tests, this time reflecting a large drop in economic activity in the first year of the scenario.
This drop occurred on the back of measures imposed to counteract the spread of the COVID-19
pandemic and resulted in a pessimistic outlook of profitability. In the 2021 baseline scenario,
a prolonged economic expansion again translated into good bank profitability. However, the

107The baseline stress test scenario corresponds to the most likely evolution of macro-financial environment to
materialise, i.e., a forecast and is based on the latest Eurosystem staff macroeconomic projections. The adverse
stress test scenario embeds the materialisation of risks to which the European Union (EU) banking system is
assessed to be exposed at the time, reflecting the occurrence of a plausible, yet hypothetical low probability - tail -
event. It draws on the main risks of financial stability for the EU banking sector identified by the General Board of
the European Systemic Risk Board (ESRB).

108For more detailed description of the results please see Budnik et al. [2019] and Budnik [2019] for the macro-
prudential stress test 2018, and Budnik et al. [2021a] for macroprudential stress tests 2020 and 2021.

109Please note that the differences in solvency outcomes between supervisory and macroprudential stress tests
over time cannot be solely attributed to the differences in main assumptions and underlying macrofinancial scenar-
ios. In addition, they can be driven by a multitude of other factors related to the enhancements of the process or
model and changes in the size and structure of the bank sample.
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(a) MST 2018

(b) MST 2020 (c) MST 2021

Notes: The grey bars illustrate the system-wide CET1 capital ratio at the start of the stress test (i.e., the starting point). The blue and yellow
bars reflect the projected system-wide CET1 capital ratio of the EBA/SSM stress test and the macroprudential stress test, respectively.
The lighter-shaded blue and yellow bars depict the projected system-wide CET1 capital ratio under the baseline, while the darker-shaded
bars represent the results under the adverse scenario.

Figure 35: Banks’ solvency ratios across stress test exercises.

CET1 ratio at the end of the horizon in the 2021 macroprudential stress test is still lower than
at the starting point, consistently with high dividend payout rates after the release of profit
distribution restrictions. This change in the profit distribution policy has not been captured in
the EBA/SSM stress test, which explains the discrepancy in the CET1 ratio between the two
exercises.

In an adverse scenario, the system-wide CET1 ratio falls sharply (by around 3 percentage
points) with respect to the starting point in all exercises, and remains systematically higher in
macroprudential compared to supervisory stress test. Enabling banks to shrink their balance
sheets and change the composition of their lending in response to falling loan demand and dete-
riorating asset quality helps them preserve higher CET1 ratios. In the macroprudential exercise
of 2018, there is 0.8 percentage points positive difference between the system-wide CET1 ratio
in the macroprudential (11.2%) and the supervisory stress test (10.4%). In the 2020 stress tests,
this gap increases to 1.4 percentage points (10.2% versus 8.8%). In both macroprudential stress
tests, the relaxation of constant balance sheet assumption has a substantially stronger impact
on banks’ solvency compared to the presence of an amplification mechanism (when compared
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with the corresponding supervisory exercises). Only in 2021, the gap between CET1 results in
the two stress tests narrows to 0.2 percentage points. This happens on the back of a relatively
strong negative impact of the banking sector-real economy feedback loop on the CET1 ratio
in the macroprudential stress test, which is, however, counterbalanced with a larger positive
solvency impact of the remaining COVID-19 mitigation policies compared to the supervisory
exercise.

Figure 36: Capital depletion across stress test exercises

Despite higher CET1 capital ratios in adverse scenarios, the depletion of system-wide CET1
capital is greater in macroprudential compared to EBA/SSM stress tests. As shown in Figure
36, CET1 capital decreases by 21.7%, 28.5% and 27.1% compared to the starting point in the
adverse scenarios of the EBA/SSM stress tests, while banks lose more than 26%, 31.2% and
32.0% of their CET1 capital in macroprudential stress tests for 2018, 2020 and 2021, respec-
tively. Capital depletion represents a more relevant measure of stress test adversity compared to
the CET1 ratio in the presence of the dynamic balance sheet. The latter metrics are positively
affected by bank deleveraging and do not reflect the actual pressure on banks’ CET1 capital.

The macroprudential stress test also results in a different distribution of bank-level solvency
ratios compared to the EBA/SSM exercise.110 Figure 37 looks at the distribution of solvency
results of 2021 macroprudential and supervisory stress tests. In the baseline scenario, the me-
dian CET1 ratio moves from 16.3% in 2020 to 15.2% in 2023, a 1.1. percentage point decrease,
compared to a decrease of 0.5 percentage points in the EBA/SSM stress test. This shift is more
pronounced for larger banks with a above-median asset size as a starting point. There is also
a moderate increase in the variation of bank solvency ratios in the macroprudential stress test,
with the interquantile range increasing from 4.9% to 5.4% throughout the scenario horizon. On
the contrary, the interquantile range remains constant at 5% in the EBA/SSM stress test.111

Differences in the distribution of the bank-level CET1 ratios between stress tests are more
pronounced in the adverse scenario. Banks’ CET1 ratios generally decline, shifting the distri-
bution to the left. While in the EBA/SSM stress test the shape of the distribution of bank-level

110The following analysis recalls the main elements of the analysis published in Budnik et al. [2021a].
111The Kolmogorov-Smirnov test and Mann-Whitney U-test p-values for the null hypothesis that the CET1 ratios

of the supervisory and macroprudential stress test sample from the same distribution in the baseline scenario are
7.8% and 7.9%, respectively.
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(a) CET1 ratio: Baseline (b) CET1 ratio: Adverse

(c) CET1 capital change: Baseline (d) CET1 capital change: Adverse

Figure 37: System-wide CET1 ratio and CET1 capital depletion of the stress test 2021

Notes: For CET1 ratio kernel density functions with bandwith equal to 3% are considered. The red dashed line
represents CET1 ratio density at the end of year 2020. For CET1 capital change kernel density functions with
bandwith equal to 15% are considered.

solvency rates remains close to their distribution in the starting point, it flattens in the macropru-
dential stress test. The interquantile range under the macroprudential stress test changes from
4.9% to 6.9%, a 2 percentage point increase, while it stays at 5% in the EBA/SSM stress test.
The flattening of the distribution of the CET1 ratio at the bank level in the adverse scenario is
more pronounced for smaller banks, with a below median asset size at the starting point. The
observed increase in variability of the banks’ CET1 ratio compared to the supervisory exer-
cise can be attributed both to the dynamic balance sheet mechanism and the two amplification
mechanisms used in the 2021 macroprudential stress test result.112

The distributional shape of CET1 capital depletion experiences an even greater change in
the macroprudential stress test compared to the EBA/SSM counterpart. Figure 37 shows al-
most no difference in the distribution of individual bank-level capital depletion in the baseline
scenario,113 but the macroprudential stress test produces not only a flatter but also a more neg-

112For more results, see: Budnik et al. [2021a].
113The Kolmogorov-Smirnov test and Mann-Whitney U-test p-values for the null hypothesis that the values of

capital depletion in the supervisory and macroprudential stress test are from the same distribution in the baseline
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atively skewed distribution of capital depletion 114 in the adverse scenario. The interquantile
range measures 20.4 percentage points in the EBA/SSM stress test, compared to 34.6 percent-
age points in the macroprudential stress test. This implies that large losses in capital (70% or
higher) become more likely in the macroprudential stress test, particularly for larger banks, with
total assets above the median in the starting point.

The bank-level results of the macroprudential versus the constant balance sheet stress test
are generally positively correlated, but the former reveals vulnerabilities not captured by the
supervisory exercise.115 However, the end-point result in the EBA/SSM stress test can be better
predicted using the initial CET1 ratio only compared to the end-point results of its macropru-
dential counterpart. For the former, the starting point solvency ratios account for 96% and 86%
of the end point ratios in the baseline and adverse scenario, respectively. For the latter, the initial
CET1 ratios account for 92% and 70% of the respective end points. Moreover, in both stress
tests the ordering of banks’ solvency ratios can change throughout the projection horizon, most
noticeably in the adverse scenario. On average, banks tend to vary in their positional ranking to
a greater extent in the macroprudential stress test (baseline: 10 points, adverse: 18 points) than
in the EBA/SSM stress test (baseline: 8 points, adverse: 12 points).

8.1.2 Increasing the informativeness of baseline results

Stress tests traditionally emphasise the results in adverse scenarios, yet baseline scenarios, com-
monly incorporating the most likely future developments of an economy, can offer not less
interesting insights. However, in constant balance sheet approaches, the interpretation of the
baseline results is significantly hampered. The assumption of an unchanged asset size implies
that banks are not allowed to benefit from good economic conditions and seize profit opportu-
nities by expanding lending. The same assumption combined with zero cure rates leads to an
increase of non-performing assets as compared to overall assets even in most favourable sce-
narios. Such results should thus be interpreted with great care, which is always the case with
supervisory agencies, but less with the public not very familiar with the shortcomings of the
methodologies.

The macroprudential stress test, with its dynamic balance sheet perspective and more realis-
tic exposition of NPL management practises, offers economically sound insights in adverse and
baseline scenarios alike.

The euro area banks’ NPL ratio, measured as the share of non-performing assets among out-
standing loans to the non-financial private sector, generally decreases in the baseline scenario.
As shown in Figure 38a, the NPL ratio in the macroprudential stress test 2018, increased subtly
from 7.0% at the beginning of the exercise to 7.3% at the end of the projection horizon. In the
macroprudential stress tests 2020 and 2021, the NPL ratio of the euro area for banks’ exposures
to the non-financial private sector evidently decreased from 5.5% and 3.8% at the start of the
horizon to 4.4% and 3.3% at its end, respectively. Particularly in the 2020 exercise, the fiscal
and supervisory COVID-19 mitigation policies116 together with the NPL coverage expectations

scenario are 63% and 96%, and 11% and 22% in the adverse scenario, respectively.
114The Pearson correlation coefficient for capital depletion in the adverse scenario is equal to -0.18 and -0.45

under the supervisory and macroprudential stress tests, respectively.
115The correlation of bank-level capital ratios at the end of the projection horizon (the Spearsman’s rank co-

efficient) is 96% (74%) in the baseline scenario and 90% (68%) in the adverse scenario. The same correlation
(Spearsman’s rank coefficient) is less strong for bank-level capital depletion, with a baseline scenario correlation
equal to 23% (41%) and an adverse scenario correlation equal to 51% (33%).

116For more details regarding the supervisory, macroprudential and government policies introduced in 2020, their
introduction in the model as well as the assessment of their joint and individual impact on non-performing assets
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(a) NPL ratio (b) ROA

Figure 38: Profitability and NPL ratio across stress test exercises

limit the impact of the exceptionally negative economic outlook and allow a reduction in the
NPL ratio of banks in the baseline scenario.

The share of non-performing assets on banks’ balance sheet increases substantially in ad-
verse scenarios. This happens on the back of high inflow of new defaulted loans (present also
in constant balance sheet stress tests), lower write-offs and banks’ deleveraging.

Looking at bank profitability in a macroprudential stress test provides additional insight into
the health of banks. Figure 38b shows the outlook for profitability, measured by the return on
assets, in the baseline and adverse scenarios in the 2018-2021 exercises. In adverse scenarios,
profitability decreases in all macroprudential stress tests.

However, the profitability outlook in the baseline scenarios is more diverse between the
exercises. Bank profitability is projected to remain stable and positive in the baseline scenario
in the 2018 and 2021 macroprudential stress tests (0.5% and 0.24%, respectively), although
relatively low in historical terms. The negative profitability in the 2020 macroprudential stress
test is driven by the particularly negative macroeconomic outlook at the onset of the COVID-
19 pandemic. At the same time, the lending margins in all of these exercises improved only
marginally against the backdrop of the long-term low interest rate environment.

8.1.3 Additional information relevant for macroprudential purposes

Macroprudential stress test provides information about bank lending in different economic con-
ditions. As such, it can assess the ability of the banking system to support economic growth
over the scenario horizon.

Bank lending tends to expand in generally favourable baseline scenarios. The average an-
nual loan growth to the non-financial private sector in the baseline scenario accelerates com-
pared with the exercise’s starting point, however, to a varying degree across the three stress test
exercises (see Figure 39). Loans to the non-financial private sector were projected to grow by
8.8% cumulatively in the macruprudential stress test 2018. The strongest positive loan dynamic
was observed in the 2021 exercise, while cumulative loans grew only marginally in the 2020
exercise. The macroeconomic outlook and the lagged impact of COVID-19 mitigation policies
are prominent determinants of bank loans in both exercises. In particular, the positive outlook
on lending would be much more muted in the absence of national and supervisory COVID-19

and bank profitability see Budnik et al. [2021c].
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Figure 39: Lending across stress test exercises

mitigating policies.
In all adverse scenarios, bank lending contracts. At the end of the scenario horizon, it would

be expected that bank loan volumes have decreased by 11.3% and 10% in the 2018 and 2020
macroprudential stress tests, respectively. The modest drop of -2.5% in the macroprudential
stress test 2021 can be attributed to the outstanding COVID-19 mitigation policies, which had
a pronounced positive impact (close to 2pp in cumulative terms) on bank lending. A general
decline in lending in adverse scenarios is in line with the deterioration in the asset quality, prof-
itability, and capitalisation of banks’ assets. Loan supply tensions are also observed in adverse
scenarios in loan pricing. In adverse financial conditions, banks increase effective lending rates
to the non-financial private sector to accommodate higher own funding costs.

An equally important and unique feature of the macroprudential stress test is its assessment
of potential amplification effects in stress scenarios. Since 2020, the main results of the ECB
macroprudential stress test ingrain the real economy - banking sector feedback loop for both
baseline and adverse scenarios. This approach evolved over time, as in 2018, the main results
built on the original EBA/SSM scenarios, while the assessment of the potential role in the
adverse scenario was assessed separately. These reporting changes notwithstanding, in each of
macroprudential stress tests we compared the results with and without amplification to learn
about the relative role of the latter.

In favourable macrofinancial conditions the impact of the real economy - banking sector
feedback loop on macrofinancial outcomes remains contained. It can be read by looking at the
difference between cumulative GDP growth in the 3-year horizon in the EBA/SSM baseline
scenario of 2021 and the same scenario from the ECB macroprudential stress test that includes
the amplification effects in Figure 40a. The difference amounts to 0.3 percentage points of
the euro area GDP growth, or a mere 4% of the cumulative growth projected in the original
scenario.

The asymetric impact of the real economy - banking sector feedback loop across the busi-
ness and financial cycle becomes apparent when looking at the difference between original
adverse scenarios and adverse scenarios augmented with the amplification mechanism. The
amplification of scenario adversity in the adverse scenarios of 2018 and 2021 amounts to a 1.6
percentage point additional reduction in the euro area GDP over the 3-year horizon. In the
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(a) Baseline scenario (b) Adverse scenario

Figure 40: Feedback loop effect in macroprudential stress test exercises

baseline (or central scenario) of the 2020 macroprudential stress test (which still included the
adverse impact of the COVID-19 pandemic), it was 0.7 percentage point additional reduction
in the euro area GDP, and in the particularly severe adverse scenario of 2020, 2.6 percentage
points.

In the unfavourable scenarios 2020 and 2021 the original negative impact of the real econ-
omy - banking sector feedback loop is partially offset by the positive impact of COVID-19
mitigation policies. In the baseline scenario 2020 the positive impact of COVID-19 mitigat-
ing policies amounts to 0.6% of the euro area real GDP. In the adverse scenarios 2020 and
2021, the positive impact of these policies was higher, 1.2% and 1% correspondingly. The final
evaluation of the feedback-loop effect ,and its decomposition into the original impact and the
effect of COVID-19 mitigation policies, emphasised the role of COVID-19 mitigation policies
in containing the amplification through the banking sector.

8.1.4 Evolution of macroprudential stress testing over time

The BEAST model has continued to undergo important innovations aimed at further refinement
of macroprudential analysis and stress tests, in particular. The following section provides an
overview of the main changes of the model over time and through the lens of macroprudential
analysis (for a general overview, see Figure 41).

In its first application in the 2018 macroprudential stress test, the priority of BEAST was
to loosen two main methodological assumptions of the EBA/SSM stress test: constant balance
sheet, and no feedback between banks’ decisions and the real economy. The model has been
developed with the emphasis on bank lending adjustment. Each bank adapted to the dynam-
ics of loan demand in the domestic and other exposure markets, while its credit supply was
simultaneously dependent on idiosyncratic factors, such as its solvency, profitability, and asset
quality.

The second innovation concerned explicitly accounting for two-way linkages between banks
and the macrofinancial environment. The integrated and simultaneous model mechanisms al-
lowed the vulnerability of banks (i.e., banks suffering losses) to have negative repercussions
on the macroeconomy. This was modelled in a non-linear fashion as the banking sector - real
economy feedback loop in Section 5.2.

In addition, the macroprudential stress test 2018 lifted the caps and floors on different com-
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Figure 41: Macroprudential stress tests and model evolution

ponents of profit and loss, such as allowing for nonzero recovery rate for defaulted assets, which
since then have been modelled jointly with other IFRS 9 transition probabilities.

The 2020 macroprudential stress test included several important extensions. The main in-
novation concerned the introduction of the pecking order mechanism in the adjustment of bank
liabilities, in which banks turn to wholesale markets to close the funding gap arising from insuf-
ficient holdings of deposits from the non-financial sector and their own funds117. The extension
of the model created a solvency-funding cost feedback loop, strengthening the interlinkages
between the banking sector and the real economy in the model.

Other model extensions included the endogenous write-off decision for defaulted assets
(Budnik et al. [2021c]) and a more detailed setup on risk weights, largely facilitated by the
earlier application of the model to the impact assessment of the Basel III finalisation (Budnik
et al. [2021b]). The stress test also included a richer set of policies. First, the model has been
extended to map the workings of the NPL coverage expectations and later to capture the impact
of public moratoria and national guarantee schemes.

The 2021 macroprudential stress test benefited from refined modelling of monetary pol-
icy transmission mechanisms, now specifically accounting for non-standard monetary policy
measures. In addition, improved data availability fostered improvements in modelling of non-
performing loans (NPL), allowing better calibration of bank-specific targets for NPL coverage.
And finally, it evaluated for the first time the impact of parameter uncertainty on the main re-
sults.118

8.1.5 Break-down of mechanisms in the model

The following section aims to shed more light on how the two distinguishing characteristics of
the macroprudential stress test vis-à-vis the supervisory stress test - the dynamic balance sheet
and the presence of amplification mechanisms - impact the bank solvency outcomes.119 In the

117For more details please see Section 4.2
118For more details please see Section 6.2.
119The analysis was originally detailed in Budnik et al. [2021a].
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following, we leverage the ability of the model to add and remove different macroprudential
mechanisms in simulations.

(a) CET1 ratio (b) CET1 capital depletion

Figure 42: System-wide CET1 ratio and CET1 capital depletion of the stress test 2021

Figure 42a tracks the evolution of the transitional CET1 ratio in the euro area at the end of
the scenario horizon in the 2021 EBA/SSM (leftmost bar) and the 2021 macroprudential stress
test (rightmost bar). When banks are allowed to dynamically respond to favourable changes
in macrofinancial conditions by adjusting their assets, liabilities and interest rates120 in the
dynamic balance sheet approach, they expand their balance sheets and their CET1 ratio drops
by a 1.4 percentage point, compared with the constant balance sheet EBA/SSM stress test (light
blue bar of Figure 42a).

However, in the adverse scenario, falling loan demand and deterioration in profitability and
solvency prospects force banks to shrink their balance sheets. Cutting down and changing the
composition of assets translates into a 1 percentage point increase in the CET1 ratio compared
to the results of the 2021 EBA/SSM stress test.

Moving from the dynamic balance sheet stress test to the stress test that acknowledges the
presence of solvency - funding costs and banking sector - real economy feedback loops (the
light red bar in Figure 42a) does not markedly affect the CET1 ratios in the baseline scenario,
but impacts them significantly in the adverse scenario. While banks take action to safeguard
their solvency positions, they unintentionally trigger severe amplification mechanisms, which
further worsen their situation. The system-wide CET1 ratio in a stress test involving the am-
plification mechanisms triggered by endogenous responses from banks falls by an additional
1.8 percentage points (of which 0.1 percentage points are related to the solvency-funding costs
feedback loop) compared to a dynamic balance sheet stress test that ignores these feedback
loops and is 0.7 percentage points below the EBA/SSM stress test solvency level.

Finally, activation of COVID-19 mitigation policies (the blue bar in Figure 42a) leads to an
improvement in the solvency positions of banks. The impact of mitigation measures is more
pronounced in the adverse scenario, adding 0.9 percentage points to the CET1 ratio compared
to only 0.3 percentage points in the baseline scenario.

120Additionally, this model version incorporates a top-down assessment of credit risk including the model-
specific implementation of NPL coverage expectations, amounting to 0.2 percentage point increase compared
to the EBA/SSM stress test result.
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A higher system-wide CET1 capital depletion in the adverse scenario of the 2021 macropru-
dential stress test compared to the constant balance sheet stress test can be attributed primarily
to the amplification mechanisms present in the former stress test (see Figure 42b). The dynamic
versus constant balance sheet perspective on its own does not affect this measurement of capital
losses.

8.2 Policy impact assessment

The most recent applications of the model concern the assessment of the interaction between
the monetary policy stance and financial stability. This section elaborates on an example from
the end of 2021, where the discussion of the risk outlook centred around the consequences of
a phase-out from pandemic asset purchases (PEPP). In the context of financial stability risk
analysis, the main concern has been the interplay between the PEPP phase-out and potentially
exacerbated market fragmentation. An acute market fragmentation could increase the costs of
government debt financing in southern Europe and have a substantial impact on the banking
sector.

The interplay between the phase-out from PEPP and market fragmentation has been stud-
ied on the basis of two alternative counterfactual scenarios. The first assumed the evolution
of the ECB asset purchases along with market expectations, derived as a median of analysts’
expectations. The second assumed lower than expected asset purchase, equivalent to the 10th
percentile of market expectations (see Figure 43). The first scenario has been conditioned on the
macrofinancial environment as in the December 2021 macroeconomic projections of the ECB
(see Section 6.1) and the (market) expected path of asset purchases, while the second allowed
deviations from the projections along with the macrofinancial impact of the lower than expected
asset purchases.

Figure 43: Euro system monetary policy portfolio 2022-2024 market expectations (end of
2021)

For both policy options, we looked at the full distribution of possible outcomes taking into
account scenario uncertainty (see Section 6). The difference between the central paths of both
distributions informed us of the expected impact of the withdrawal from the asset purchase
programme.
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Figure 44 summarises the expected impact of the PEPP phase-out on the macroeconomy and
the banking sector. A gradual pullout from the asset purchase programme could be expected to
lead to a moderate reduction in euro area output growth (0.3 pp annually) and lending (0.4 pp
annually) in the three-year horizon. This would translate into a slightly below 0.6 pp reduction
in the CET1 ratio at the end of the horizon. There are modest differences in impact between
the vulnerable121 and the remaining countries in the euro area, whereby the former are slightly
more negatively affected.

Notes: Vulnerable countries: Cyprus, Greece, Italy, Malta, Lithuania, Latvia, Spain, Portugal, and Slovakia at the end of 2024; Other
countries: the euro area excluding countries classified as vulnerable.

Figure 44: Macrofinancial impact of lower than expected asset purchases

Next, we looked at the tails of the distribution conditional on the phase-out of asset pur-
chases to assess the related financial stability risks. To arrive at a scenario that emphasises
fragmentation risks, we sorted all scenarios in the distribution according to the two criteria: the
average increase in the euro area bond yields and the spread between the vulnerable and other
euro area countries (see Section 6.5). These criteria map the narrative of intensifying fragmen-
tation risks, while the fact that all sorted scenarios are drawn from the distribution conditional
on reduced PEPP policy paths emphasises the part of the narrative that speaks about the coexis-
tence of changes in PEPP and fragmentation. Figure 45 shows the average yield of euro bonds
(grey bars) and the yields of the bonds for the vulnerable (blue line) and other (yellow line)
countries sorted according to the two criteria. The middle percentiles reflect a moderate, around
50 bp, increase in the average bond yields compared to the reference scenario, and a contained,
around 20 bp, increase in the spread between the vulnerable and other countries. Moving to the
left, one observes the intensification of fragmentation risks, with a stronger response of bond
yields overall and higher spread.

We select a group of scenarios from the left tail of the distribution described on the two se-
lection criteria (around the lower 30 percentile). For these scenarios, we average the results for
other model variables of interest to derive information about the evolution of the main macrofi-
nancial aggregates, expressed as deviations from the reference scenario. Figure 46 summarises
this scenario with reference to the no policy change benchmark. There is a substantial reduction
in output growth (0.4 pp annually) and lending (0.5 pp annually) with sharper differences be-
tween vulnerable and other euro area countries (0.7pp versus 0.2pp for GDP, 0.7pp versus 0.4
for lending). Around 40% higher bank capital losses, though a similar impact on capital ratios,

121This group includes Cyprus, Greece, Italy, Malta, Lithuania, Latvia, Spain, Portugal and Slovakia.
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Notes: Euro area: the GDP-weighted average 10 year bond yields in the euro area at the end of 2024; Vulnerable: the GDP-weighted
average 10 year bond yields in Cyprus, Greece, Italy, Malta, Lithuania, Latvia, Spain, Portugal, and Slovakia at the end of 2024; Other:
the GDP-weighted average 10 year bond yields in the euro area excluding countries classified as Vulnerable at the end of 2024.

Figure 45: Sorting scenarios along with the criteria related to 10-year bond yields

consistent with stronger deleveraging in market fragmentation versus the benchmark scenario.
Along with expectations, while the expected impact of "tapering" on lending and the solvency
is moderate, it can become pronounced in and aggravate the macrofinancial effects of market
fragmentation.

Notes: Vulnerable countries: Cyprus, Greece, Italy, Malta, Lithuania, Latvia, Spain, Portugal, and Slovakia at the end of 2024; Other
countries: the euro area excluding countries classified as vulnerable.

Figure 46: Macrofinancial impact of lower than expected asset purchases in a fragmentation
scenario

9 Conclusion
The paper describes the final development stage of the Banking Euro Area Stress Test (BEAST)
model, laying out its structure, properties, and various analytical uses. The BEAST is the first
semi-structural model linking the representation of macroeconomies with that of individual
banks. A significant strength of the model is that it captures many aspects of bank heterogeneity.

ECB Working Paper Series No 2855 139



This includes not only the different structures of the bank balance sheets, but also the banks’
diverse reactions to economic conditions depending on their individual solvency situation, asset
quality, and profitability performance. Thanks to its construct, it can describe in detail the
propagation of macroeconomic conditions and different policies into the banking sector, and
later their interplay with the real economy-financial sector amplification. Another advantage
lies in its ability to solve for decisions of banks and the reactions of economies jointly, and
period-by-period, which offers an appropriate framework for modelling feedback loops.

The BEAST model represents the culmination of a dynamic developmental journey within
the realm of financial stability analysis. The origins of the model lie in macroprudential stress
tests, but it has slowly grown into a workhorse model for applications in the field of risk and
policy assessment, including the assessment of regulatory, macroprudential, and supervisory
policies of their interactions with monetary policy. In doing so, BEAST bridges the divide be-
tween granularity and systemic perspective, accentuating its unique narrative capabilities and
robust feedback mechanisms. It stands as a testament to the viability of constructing compre-
hensive models within policy institutions, surmounting numerical complexities.

Model applications and evaluations have revealed insightful dynamics within the intricate
interplay between the real economy and the banking sector. A standout contribution is the
macroprudential stress test, highlighting the model’s prowess in deciphering potential ampli-
fication effects during stress scenarios. In favourable macrofinancial contexts, the feedback
loop’s influence remains contained. However, as adversity escalates in adverse scenarios, the
amplification effect garners significance. In particular, during the 2018 and 2021 tests, an addi-
tional reduction of 1.6 pp in euro area GDP over a 3-year horizon surfaces, alongside a 2.6 pp
reduction in the 2020 stress test.

Coupling the evaluation of the feedback loop’s impact with prudential policies targeting
the banking sector yields other intriguing insights. With instances like COVID-19 mitigation
policies, these measures directly modify amplification effects, thereby influencing the feedback
loop’s magnitude. Consequently, the amplification of the adverse scenario is offset to some
extent by the positive impact of COVID-19 mitigation policies.

A recurring observation is the asymmetry in response to smaller versus larger and positive
versus negative shocks. Impulse response functions and stochastic simulations further empha-
sise the model’s prowess in decoding nonlinearities within macrofinancial dynamics. Nega-
tive aggregate demand shocks induce more significant shifts in lending and GDP. Tightening
monetary policy measures evoke a slightly more substantial impact than accommodative ones,
suggesting nuanced dynamics between policy tools and the feedback loop. Larger increases in
capital buffers generate proportionally stronger responses of lending volumes. Furthermore, the
response of the bank in terms of lending to broad-based capital policies is clearly bimodal. A
share of banks responds very weakly, either being able to accommodate to changes in policy
by adjusting their management buffers, or retaining a higher share of profits. A smaller group
of banks substantially cuts lending. Stochastic simulations depict a GDP distribution diverg-
ing from the normal pattern, marked by a right-skewed trend and moderately fatter tails. This
observation points toward potential systemic vulnerabilities under specific conditions.

One of the less obvious lessons from the BEAST experiment is that the model illustrates
well when very detailed bank-level heterogeneity is essential and when a more contained model
can offer equally sound insights. As such, BEAST inspires further explorations of risk and
policy assessment techniques that can balance the best computational intensity and economic
relevance.

In the realm of policy decisions, the model showcases its utility in the shaping of forward-
looking strategies. The model’s robust forecast accuracy is notable within well-informed macro-
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financial contexts, particularly on medium-term horizons, aligning well with the strengths of
semi-structural models. Despite encountering challenges in forecasting macroeconomic vari-
ables during unprecedented events such as the COVID-19 pandemic, the model’s performance
remains consistent with the complexities faced by official ECB projections during highly volatile
periods.

As each model, the BEAST has a number of shortcomings. It is a semi-structural model
which balances information from the theory and data. However, it is not meticulously micro-
founded and does not stipulate agents’ optimisation problems. The empirical identification of
equations is generally performed equation by equation (with different equations employing dif-
ferent datasets). It offers great flexibility and the ability to explore macroeconomic, bank-level
and transaction-level data, but does not ensure statistical scrutiny of a joint estimation of all
model equations. Other model limitations concern the focus on largest euro area banks only,
which at times may compromise model accuracy regarding banking systems with a large share
of smaller banks (e.g. Italy and Germany) or non-banking financial sector (e.g., the Nether-
lands). And lastly, the choice to concentrate on selected amplification mechanisms leaves aside
other relevant aspects, e.g. interconnectedness. However, the BEAST model will likely con-
tinue to be improved further with re-estimation of its equations, and the availability of new
datasets.

A very practical challenge of working with a non-linear model covering individual economies
and individual banks is its size and numerical complexity. A lot of effort has been put into devel-
oping numerical solutions allowing the most efficient representation of model equations, then
most efficient solutions, or organising the infrastructure and work processes in a way minimis-
ing operational risks and ensuring integrity of the model. This challenge, not fully reflected in
the paper, is something which may discourage the construction and use of similar models and
explain the popularity of hybrid approaches to e.g. macroprudential stress testing.
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A Data Sources

A.1 ECB statistical data warehouse (SDW)

The macroeconomic and financial time series are sourced from the official ECB statistical data
warehouse122 (SDW). The country-level time series sourced from this database include informa-
tion on economic growth, inflation, unemployment and trade, and financial information related
to interest and exchange rates and stock market developments. Most of the selected data are
available since 1999 in either daily (e.g. interest rates), monthly (e.g. inflation), or quarterly
(e.g. GDP) frequency.

The macroeconomic and financial time series are used to estimate the macroeconomic block
in the model as described in the Appendix B, and often serve as explanatory variables in many
of the bank-level models.

A.2 The macroeconomic projections of the Eurosystem/ECB staff ([B]MPE)

Forward-looking information on macroeconomic and financial time series is sourced from the
internal ECB database with the Eurosystem and ECB staff projections123 (BMPE). Macroeco-
nomic projections cover the outlook for the euro area and the wider global economy and are
published four times a year (in March, June, September, and December). The BMPE is con-
ducted twice a year and involves staff from both the euro area NCBs and the ECB. It provides
the short- and medium-term economic outlook for the euro area and for the individual euro
area countries. Like the BMPE, the MPE is conducted twice a year and delivers the short- and
medium-term economic outlook for the individual euro area countries and the euro area, the
latter being consistent with the country aggregation. It covers the same variables as the BMPE
but is produced mainly by ECB staff, with NCBs only contributing the short-term inflation
projections.

A.3 Data from EBA/SSM stress test exercise

The main source of information on the balance sheets and profit and loss accounts of banks in
the BEAST model is the EU-wide stress test templates defined and updated by the European
Banking Authority (EBA) and shared on the dedicated website124 prior to each biannual stress
test exercise. The templates collect information on the starting year and three year ahead con-
ditional projections (for baseline and adverse scenarios), on the banking and trading books of
banks, their profit and loss accounts, and capital structure. The banking and trading book is rep-
resented at the granular sector and country portfolio level. The data are available at an annual
frequency.

We used data from three consecutive EBA/SSM stress test exercises (2016, 2018 and 2021).
The 2016 dataset contains starting point data for 2015 and three years of projections from 2016
to 2018. The 2018 dataset contains starting point data for 2017 and three years of projections
for 2018 to 2020. Finally, the 2021 dataset contains starting point data for 2020 and three years
of projections for 2021-2023. The data are provided at the highest level of consolidation for 93,
91 and 89 banking groups for 2016, 2018 and 2021 exercises, respectively.

122https://sdw.ecb.europa.eu/
123https://www.ecb.europa.eu/pub/projections/html/index.en.html
124https://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing
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The data are used to inform the model about the structure of banks’ accounts, derive multiple
model parameters, and for model estimations as described in Appendices D.1, D.2 and D.4.

A.4 COREP/FINREP
Common Reporting (COREP) and Financial Reporting (FINREP) templates are part of the EBA
reporting framework,125 which allows for consistent and integrated reporting of regulatory data
that encompass enterprise risk and balance sheet information. COREP provides a standardised
reporting framework for reporting credit, market, operational, and solvency reports across the
EU. FINREP is based on International Accounting Standards (IAS) and International Financial
Reporting Standards (IFRS). It covers a range of areas, including consolidated balance sheets
(assets, liabilities, equities, and minority interest), and consolidated income statements.

The COREP/FINREP data are available from September 2014 at a quarterly frequency. The
data are reported by all supervised banks in the EU, however, we only select the data reported
by the systemically important (SI) institutions in our sample that are directly supervised by the
single supervisory mechanism (SSM) (see Table 18).

Supervisory information is used to calibrate selected model parameters and estimate bank
behavioural equations. The data feeds, for example, into the loan supply model (Appendix
C.2), model for write-offs (Appendix C.3), lending interest rate model (Appendix C.4), debt
security supply model (Appendix C.5), liquidity management (Appendix C.11), management
buffer (Section C.12) and operating expense model (Appendix D.5).

In addition to the above uses, the COREP/FINREP data is used to update the bank-level
information in the model (historical data) for quarters for which the information from the EU-
wide stress test templates is not available (see Section A.3). The latter information is available
only every two years, whereas multiple applications of the model benefit from taking into ac-
count the most up-to-date quarterly information. The main variables updated with information
from COREP and FINREP are the following:

• P&L variables: Templates F 02.00, F 46.00, C 17.01.a

• Capital variables: Templates C 01.00, C 02.00, C 03.00, C 16.00, C 24.00, C 04.00

• Non-performing loan ratios: Template F 18.00.a

• Liability volumes: Template F 08.01.a

• Loan volumes: Templates C 07.00.a, C 08.01.a, C 08.02, C 09.01.a, C 09.01.b, C 09.02

A.5 iBSI/iMIR
The Monetary Financial Institutions (MFI) statistics have been originally set up to monitor
monetary developments in the euro area and consists of two databases, the individual balance-
sheet statistics (iBSI) and individual interest rate statistics (iMIR) databases. It is compiled
by national central banks and the ECB for all euro area countries on a monthly basis. The
individual MFI statistics rest on common reporting standards for all euro area member states,
and the dataset has been continuously maintained from August 2007.

Currently, iBSI contains around 3000 banks for 150 balance sheet items and iMIR contains
information on 250 banks for 54 interest rate related items. On most occasions, we selected

125https://www.eba.europa.eu/risk-analysis-and-data/reporting-frameworks
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those who continuously provided information on variables of interest from August 2007 or
at least for 8 years. Originally MFI statistics include the institutions selected on the basis of
their residentship and includes resident headquarters, branches or subsidiaries of institutions
headquartered abroad but exclude foreign subsidiaries or branches of resident institutions. At
instances, we semi-consolidate MFI balance sheet and interest rate information, pooling credit
institutions that belonged to the same banking group. Note that the resulting semi-consolidated
data do not cover all entities entering a banking group, but only a subset of these entities which
are included in our MFI sample (sub-consolidation level). MFI statistics are used to estimate
bank behaviour models as described in the Appendices C.1, C.4, C.7, C.8.

A.6 S&P Capital IQ

S&P Capital IQ provides a variety of financial markets data from which we source information
on credit default swaps (CDS). CDS spreads are available globally for sovereigns, non-financial
corporates, and financial corporates, beginning from 2004. Spreads are available on daily fre-
quencies and for maturities between overnight and 30 years (most commonly, however, they are
available for integer-valued maturities between 1 and 10 years). Although a spread is available
daily for each maturity, only 10% of the spreads are actually observed in a CDS market transac-
tion. The rest are derived by Capital IQ from spreads actually observed at other maturities and
dates. Most of the spreads are quoted conventionally. CDS data are used to estimate interest
rates on debt security holdings and wholesale unsecured funding costs in Appendices C.6 and
C.9.

A.7 Short Term Exercise

The Short Term Exercise (STE) is an ad hoc data collection developed by the ECB within the
Single Supervisory Mechanism (SSM)126. The main focus of data collection is to supplement
the data otherwise available for the Supervisory Review and Evaluation Process (SREP). The
STE data collection covers all significantly important banks at their highest level of consoli-
dation and a selected subset of subsidiaries of these institutions. Most parts of the STE are
collected on an annual basis.

The elements of the STE used in the model relate to the collection of information on the
implementation of the supervisory coverage expectations. They are used to calibrate the param-
eters of the related model and derive the variables necessary for the replication of the mechanics
of the coverage expectations.

A.8 Capital requirement database

Information on bank-specific capital requirements from 2014 onwards is sourced either directly
from COREP or from the internal database of capital requirements including detailed informa-
tion on country-level (CCyB, SRB) and bank-level (OSII, GSII) macroprudential buffers, along
with Pillar 2 requirements and Guidance.

126More details on the short term exercise can be found in the SSM Supervisory Manual: https://www.
bankingsupervision.europa.eu/ecb/pub/pdf/ssm.supervisorymanual201803.en.pdf
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A.9 MacroPrudential Policies Evaluation Database (MaPPED)
The MacroPrudential Policies Evaluation Database (see MaPPED) provides information on
measures of macroprudential nature that have been implemented in European Union countries
from 1995 onwards. It documents the outcome of a large-scale exercise to collect and classify
such measures discussed in Budnik and Kleibl [2018]. This source allows us to construct longer
time series of capital buffers and requirements.

A.10 S&P SNL Sector Financials dataset
The S&P SNL Sector Financials dataset covers financial data for financial institutions around
the world. It specifically reports details on assets, deposits, loans, and regulatory capital ratios
and performance coverage on more than a thousand banking institutions. The dataset covers
all significantly important banks at their highest level of consolidation and reports figures on
annual frequency. We obtain information on bank leverage, Tier 1 and CET1 capital ratios to
backward-extend supervisory reporting information starting in 2014.

ECB Working Paper Series No 2855 154



Type-0 Banks Type-1 Banks

BAWAG Group AG The Bank of New York Mellon SA
Erste Group Bank AG Banque Degroof Petercam SA
Raiffeisenbankengruppe OÖ Verbund eGen Aareal Bank AG
Raiffeisen Bank International AG Deutsche Apotheker- und Ärztebank eG
Sberbank Europe AG DekaBank Deutsche Girozentrale
Volksbanken Verbund Münchener Hypothekenbank eG
Argenta Bank-en Verzekeringsgroep NV Deutsche Pfandbriefbank AG
AXA Bank Belgium SA J.P. Morgan Bank Luxembourg S.A.
Belfius Banque SA Volkswagen Bank GmbH
KBC Group NV RBC Investor Services Bank S.A.
Bank of Cyprus Holdings plc State Street Europe Holdings Germany
Hellenic Bank plc Bank of America Europe
RCB Bank LTD Banque Internationale à Luxembourg S.A.
COMMERZBANK AG Quintet Private Bank (Europe) S.A
Deutsche Bank AG RCI Banque SA
DZ BANK AG
HASPA Finanzholding
Erwerbsgesellschaft der S-Finanzgruppe
Landesbank Baden-Württemberg
Bayerische Landesbank
Landesbank Hessen-Thüringen Girozentrale
Banco Bilbao Vizcaya Argentaria, S.A.
Bankinter, S.A.
Banco de Crédito Social Cooperativo, S.A.
Ibercaja Banco, S.A.
Kutxabank, S.A.
Liberbank, S.A.
ABANCA Corporación Bancaria S.A.
Banco de Sabadell, S.A.
Banco Santander, S.A.
Unicaja Banco, S.A.
OP Osuuskunta
BNP Paribas S.A.
BPCE S.A
La Banque Postale
Crédit Agricole S.A.
Confédération Nationale du Crédit Mutuel
HSBC Continental Europe
Société générale S.A.
Alpha Bank AE
Eurobank Ergasias S.A.
National Bank of Greece S.A.
Piraeus Bank S.A.
AIB Group plc
Bank of Ireland Group plc
Citibank Holdings Ireland Limited
Ulster Bank Ireland d.a.c
Banco BPM S.p.A.
Banca Carige S.p.A.
Credito Emiliano Holding S.p.A.
Intesa Sanpaolo S.p.A.
Mediobanca S.p.A.
Banca Popolare di Sondrio, S.C. per Azioni
UniCredit S.p.A.
Bank of Valletta plc
HSBC Bank Malta p.l.c.
ABN AMRO Bank N.V.
ING Groep N.V.
Coöperatieve Rabobank U.A.
Banco Comercial Português, SA
Caixa Geral de Depósitos, SA
Biser Topco S.à.r.l.
Nova Ljubljanska Banka d.d. Ljubljana
Hamburg Commercial Bank AG
Nordea Bank Abp
Novo Banco, S.A.

Table 18: Bank sample (2021) and classification
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B Behavioural equations in the macroeconomic block

B.1 Structural panel VAR
The estimation of model parameters reported in Section 3.1 relies on the following VAR speci-
fication:
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where YC
t = [YC
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is a vector NY × 1 of NY endogenous variables. For each country
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is a vector of NY constants NY × 1 and AC
L is a NY ×NY matrix that group

the parameters of the variables in YC
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t in a conformable way. νC
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denotes a NY x1
vector of stacked reduced-form residuals which are i.i.d. N(0,ΣC). Lastly, L denotes lag number
and t is the time period, as in Section 3.1. The number of variables and time intervals that enter
the estimation is the same for all countries in the panel (a balance panel). Further in the text,
the country index C will be omitted when stating the dimension of the elements in the system.
The panel VAR for the euro area region is estimated on the basis of a five-block Gibbs sampler.
In this subsection, we describe the priors and provide a sketch of the sampling algorithm along
with the conditional posteriors.

Priors and Posterior Sampling

The estimation of VAR combines the adaptation of the hierarchical prior model of Gelman
[2006] to a panel framework by Jarocinski [2010] and the informative prior on the steady state
of Villani [2009]. This combined approach allows us to flexibly choose the degree of prior
cross-country parameter heterogeneity (if country basis, regional, or homogeneous), along with
the precise inclusion of information about the long-run dynamics. Given that we specify priors
for country-specific steady states (i.e. unconditional means), it is useful to rewrite the above
model in terms of deviations of the variables from their unconditional means. This leads to the
following two equivalent formulations for equation (326):
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where in our case dt = 1. ΨC
Y = E [YC

t ] is the vector NY × 1 of the unconditional means of the
endogenous variables, and ΨC

X = E [XC
t ] denotes the vector NX×1 of the unconditional means of

the exogenous variables. The latter is assumed known and thus not estimated within the model.
In the following, we outline the Gibbs sampler used to characterise the joint posterior distri-

bution of all parameters in the model. As will become clear below, the sampler cycles through
five parameter blocks. Depending on which block of parameters the Gibbs sampler samples
from, we resort to either of the equations (327) or (328) as needed.

Block 1: Drawing the VAR parameters for each country The first block involves the esti-
mation of the VAR parameters. To sample the dynamic coefficients, we write the model equa-
tion (327) in terms of vectorised matrices. This involves stacking the rows of YC

Ψt into a vector
T ×NY yC

Ψ
and stacking all variables on the right hand side into a T × (NY +NX)L matrix ZC

Ψ

with the row t given by
(

YC′
Ψt−1, . . . ,Y

C′
Ψt−L,X

C′
Ψt−1, . . . ,X

C′
Ψt−L

)
. In addition, we put all the VAR

coefficients in a matrix (NY +NX)L×NY Ã such that Ã = [A
′
,E
′
]
′
and αC = vec(Ã).

The model then becomes:

yC
Ψ =

(
INY ⊗ZC

Ψ

)
α

C +ν
C

Following Jarocinski [2010] the prior distribution for αC is normal, centred on a common mean
in all countries of the euro area:

α
C ∼N (α,Ωα)

and, for each country, the variance for the kth coefficient in αC in the nth equation is specified
as:

var(αC
k,n) = λ

(
σ̂2

n

σ̂2
k

)
(329)

Larger values of λ imply less informative priors, which translates into a smaller degree of
shrinkage of the coefficients toward the prior mean. The scaling factor λ is sampled from an
inverse Gamma distribution, see B.1.127

These assumptions lead to the following normal conditional posterior distribution:

α
C|YC

,XC
,α,λ ,ΨC

Y ,ΣC ∼N (αC,Ω
C
α)

Ω
C
α =

[
Ω
−1
α +Σ

−1
C ⊗

(
ZC

Ψ

′
ZC

Ψ

)]−1

α
C = Ω

C
α

[
Ω
−1
α α + vec

(
ZC

Ψ

′
YC

ΨΣ
−1
C

)]
Block 2: Drawing the unconditional means for each country Within this block, we make
use of the second formulation of the model in equation (328). Furthermore, we define WC

t ≡
YC

t −∑L AC
LYC

t−L−∑L EC
L XC

Ψt−L. Stacking in the usual way, we can thus bring the model in the
form stipulated in Villani [2009]:

127Note that this setup is different compared to Jarocinski [2010] since we specify a common covariance matrix
across all countries instead of scaling the country counterparts of σ̂2

i .
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WC = DΘ
C +ν

C

where ΘC
′
=
(
ΨC

Y ,A
C
1 ΨC

Y , . . . ,A
C
LΨC

Y
)
. As shown in Villani [2009] to avoid a bad performance of

the Gibbs sampler, a prior that is at minimum slightly informative is needed for the estimation
of the steady-state parameter ΨC

Y . Its prior distribution is given by

Ψ
C
Y ∼N (ΨC

Y ,Ω
C
Ψ)

The posterior then follows a multivariate normal distribution given by:

Ψ
C
Y |Y

C
,XC

,αC,ΣC ∼N (Ψ
C
Y ,Ω

C
ψ)

Ω
C
ψ =

[
Ω

C
ψ

−1
+U

′
(D
′
D⊗ΣC

−1)U
]−1

Ψ
C
Y = Ω

C
ψ

[
Ω

C
ψ

−1
Ψ

C
Y +U

′
vec(ΣC

−1WC′D)
]

where U
′
= (Iq, Iq⊗AC′

1 , . . . , Iq⊗AC′
L ) and q = 1 as we only include a constant in the model.

The long run priors across the euro area in Block B.1 reflect country level of development, size,
and perceived risk level. Table 19 provides an overview of the prior ranges as well as of the
rationale behind their calibration. The mean of the prior level of short-term interest rates ST N,
the growth rate of the ECB balance sheet UMP and those of inflation HIC, are set uniformly
across countries, reflecting the common monetary policy framework. Along with the same
argument, the variance of priors for short-term interest rates ST N and the growth rate of the
ECB balance sheet UMP are identical across countries. However, for the inflation rate HIC the
variance of the priors is set higher for smaller countries (allowing larger deviations from the
target inflation) and tighter for larger countries. The size of a country for the calibration of the
prior variance is measured by nominal GDP.

The long-term priors for all other price indices other than consumer prices are set uniformly
for all countries. The mean prior growth of house prices is set at the same level as the mean prior
consumer inflation. The mean growth of export prices is lower than the mean prior consumer
inflation and is lower (by 0.5 pp annually) than the mean prior consumer inflation reflecting the
assumption of slower medium-run growth of prices of tradable goods.

For the purpose of setting priors on GDP growth and later the growth rates of stock prices
ESX , import MT R and lending volumes CPN, the euro area countries are subdivided into two
groups broadly corresponding to their economic development and correlating with their time of
accession to the EU or the euro area. The developed countries or old member states include Aus-
tria, Belgium, Cyprus, Spain, Finland, France, Greece, Italy, Luxembourg, the Netherlands and
Portugal. The remaining countries include Estonia, Ireland, Lithuania, Latvia, Malta, Slove-
nia, and Slovakia. For the former countries, the average annual GDP growth is assumed to be
around 1.5% annually, while for the latter it is twice as large. The variance of the prior is set to
become tighter with a larger economy (as measured by nominal GDP). The mean prior growth
of stock prices and lending volumes is set consistently with the mean prior growth of nominal
GDP, while the mean prior growth of import prices reflects the faster growth in trade exchange
between countries compared to their GDP. It is set as the prior growth in GDP multiplied by
factor 1.6.

The setting of the remaining priors is informed by the data. The mean and variance of the
prior distributions for lending margins BLR are set uniformly between countries. The uniform
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mean of 2.5% annually is calibrated in the middle of the interval spanned by the long-term
average values of the sample for the country lending spreads of 1.5 to 4.5%. The mean prior for
the spread between LTN and STN, SPR, is predicted from a non-linear regression of the spread
on the public debt to GDP (and correcting for the margin between equilibrium and nominal
interest rate for less developed EA countries). Finally, the mean prior for the unemployment
rate URX is around the sample average unemployment rate. The variance of the SPR and
URX priors is set so that the ratio between the standard deviation and the mean of the prior
distributions for all countries remains the same.

Variable Ψ
C
Y Ω

C
Ψ

Rationale

Yt YER [0.004 - 0.008] [0.001- 0.006] Level of development
HIC [0.005] [0.001- 0.006] Inflation target of 2% annually
URX [0.040 - 0.150] [0.010- 0.038] Sample average mean unemployment rate (country specific)
IHX [0.005] [0.002] Dynamic homogeneity with consumer inflation
SPR [0.004 - 0.036] [0.0003 - 0.002] Predicted country-risk based on public debt to GDP level
ESX [0.009 - 0.012] [0.002 - 0.003] Dynamic homogeneity with nominal GDP
MTR [0.006 - 0.012] [0.003 - 0.006] Faster growth of foreign trade compared to GDP
XTD [0.004] [0.001] Slower price growth of tradable (compared to consumer) goods
BLR [0.059] [0.029] Sample average lending sperad (across countries)
CPN [0.009 - 0.012] [0.002 - 0.015] Dynamic homogeneity with nominal GDP

Mt STN [0.034] [0.003] Common monetary policy
UMP [0.004] [0.002] Common monetary policy

Notes: Min-max range of predefined prior values for EA country-specific variables.

Table 19: Prior ranges of the macro VAR

Block 3: Drawing the error covariance matrix for each country We sample from the
conditional posterior for ΣC via the Stochastic Search Variable Selection (SSVS) approach of
George et al. [2008]. The SSVS approach is a way to systematically impose restrictions on
either the VAR coefficients and error covariance matrices (or both) without having to compare
an unfeasible large number of different submodels. In our setup, the SSVS approach is only
applied to the elements of ΣC, for which the following decomposition is convenient:

ΣC
−1 = ΦCΦ

′
C

with ΦC being upper triangular. The SSVS approach in George et al. [2008] intuitively works as
follows. The diagonal elements of ΦC are assumed a priori to follow a Gamma distribution, en-
suring that the diagonal entries are strictly positive and, therefore, any sampled ΣC

−1 is positive
definite. For the remaining off-diagonal elements, the idea is to specify the prior for the column
elements as a mixture of two normal distributions. These are centred at a common mean of
zero, but one has a small prior variance while the other has a large prior variance. The data then
determine which of these distributions to draw from, thus selecting appropriate submodels for
the data. Our implementation is identical to George et al. [2008] with variables appropriately
adjusted to correspond to the system in equation (327).

Block 4: Drawing the common mean In contrast to the previous blocks, the common mean
α is sampled from the entire panel dataset. As in Jarocinski [2010] the prior for α is non-
informative:
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p(α) ∝ 1

resulting in the following normal conditional posterior distribution:

α|YC
,α1, . . . ,αC,λ ∼N (Mα ,Vα)

Mα =
1
C ∑

C
α

C

Vα =
1
C

Ωα

Block 5: Drawing the common prior covariance scaling factor Lastly, we sample the com-
mon covariance scaling factor λ . Following Jarocinski [2010] the prior is specified as:

p(λ ) ∝ λ
− 1

2

which corresponds to a non-informative prior on the standard deviation scaling factor
√

λ , re-
sulting in an inverse gamma conditional posterior distribution:

λ |YC
,α1, . . . ,αC,α ∼I G

(
s
2
,

v
2

)
s =CNy(Ny +Nx)L

v =
C

∑
c=1

(
(αC−α)′Ω̃

−1
α (αC−α)

)
where Ω̃α is implicitly defined by Ωα = λ Ω̃α (see equation (329)).

Selection of exogenous variables to control for COVID-19 and energy crisis episodes The
country-specific vector ZC

t includes two types of exogenous variables: dummy variables related
to the COVID-19 episode and the energy price index. The sequence of extreme observations in
the panel VAR in the period of the COVID-19 pandemic is treated by the inclusion of dummy
variables for periods where we identify extreme observations.128

First, we determine at a country-by-country level which periods require a distinctive treat-
ment based on the distribution of the reduced form errors. Concretely, the pre-treatment resid-
uals are evaluated on the basis of the χ2 distribution metrics:

χ
2C
t = ν

C′
t ΣC

−1
ν

C
t

where νC
t represents the reduced form residual in period t for country C and ΣC is the variance-

covariance matrix of the regression error for country C.129

128A range of methods have been put forward to deal with unprecedented fluctuations in key macroeconomic
variables when performing inference in VAR frameworks. For example, Lenza and Primiceri [2022] or Carriero
et al. [2021] capture these extreme observations by making adjustments in the stochastic volatility process of the
VAR residuals. Schorfheide and Song [2021] excludes the pandemic observations from the estimation sample. Our
approach resembles the latter.

129νC
t are assumed to be i.i.d. N(0,Σc), see equation (1).
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Then dummies are set if the measure χ2C
t exceeds the critical value of the χ2 distribution at

a level of significance of 1% with N degrees of freedom between 2020 Q2 – 2020 Q4.130 Table
20 displays the countries and periods for which dummies were introduced.

Periods AT BE CY DE EE ES FI FR GR IE IT LT LU LV MT NL PT SI SK

2020:Q2 x x x x x x x x x x x x x x x x x
2020:Q3 x x
2020:Q4 x

Table 20: Exogenous variables to control for COVID-19

The exogenous country-specific fossil energy price index EPRC
t is constructed as a weighted

average of natural gas GAS, oil OIL, and solid fossil fuel SFF .

EPRC
t = wC

GASGASt +wC
OILOILt +wC

SFFSFFt

with wC reflecting the share of natural gas, oil and solid fossil fuels in the country C mix of
fossil energy.

Structural Shock Identification

The identification of structural shocks is based on the methodology of Arias et al. [2018]. It
comprises both sign restrictions and zero restrictions. The restrictions are binding on impact
and up to the first quarter, respectively.

The structural shocks identified by the sign restriction summarised in table 3 and capture
the following share of the variable variation:

Credit Credit Monetary Unconventional Stock Yield Resident. Aggregate Aggregate
Supply Demand Policy Monetary Policy Price Price Demand Supply

Real GDP 13 6 1 1 4 12 16 10 8
HICP 18 7 1 1 1 2 4 16 15
Unemp. rate 4 1 5 6 5 12 18 11 9
Short-term rate 3 1 1 0 0 15 25 14 8
Interest rate spread 14 4 5 6 5 7 17 10 8
Import volume 16 6 3 4 4 10 16 10 7
Export price 17 7 5 6 6 9 12 10 5
Residential prop. prices 39 13 5 5 5 5 6 5 4
Bank lending rate 25 13 1 0 0 9 14 11 5
Bank loan volume 18 9 1 2 2 10 17 7 8
Equity price index 16 7 2 3 3 9 14 13 6
Eurosystem’s assets 2 1 2 2 2 14 22 12 8

Table 21: Forecast error variance decomposition for a 2 year horizon in percentage

Data Most of the euro area variables are sourced from SDW. Table 22 summarises the origi-
nal sources of the series. SPR entering the panel, VAR is computed as the difference ST N and
LT N. FDR is calculated as a weighted average of import volumes (originally sourced from Eu-
rostat and equivalent to the variable MT R) of countries to which the reference country exports.

130We also study the distribution of errors for 2021 Q1 but our measure didn’t point towards the inclusion of a
dummy variable for any of the countries.
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The weights are proportional to the share of exports to a country in the total export volumes
of the reference country. CXD is calculated as a weighted average of export prices (sourced
from Eurostat and equivalent to the variable XT D of the reference country’s trading partners.
The weights are proportional to the share of imports from a country in the total import import
volumes from the reference country. The index of the price of fossil fuels EPR is calculated as
a weighted mean of gas GAS, oil OIL and solid fuel SFF . For natural gas Dutch TTF Natural
Gas Forward Day Ahead prices, for oil brent spot prices are used, both sourced from Refini-
tiv. Solid fossil fuel price data is sourced from the Organisation for Economic Cooperation and
Development (OECD). The weights underlying each country’s energy index are proportional
to the country’s dependence on gas, oil, and solid fossil fuels on fossil energy according to the
International Energy Agency (IEA).

Variables AT BE CY DE ES FI FR GR IE IT LT LU LV MT NL PT SI SK
YER Eurostat
HIC Eurostat and EC

URX Eurostat

IHX ECB
Banque

Nationale
de Belgique

Eurostat
Verband

Deutscher
Pfandbriefbanken

Eurostat Eurostat Eurostat Eurostat Eurostat Eurostat Eurostat Eurostat
Central

Statistical
Bureau of Latvia

Central
Bank

of Malta
Eurostat Eurostat

Statistical
Office of the

Republic of Slovenia
Eurostat Eurostat

STN Refinitiv
LTN Refinitiv
ESX Datastream Datastream Datastream Datastream Refinitiv Datastream Refinitiv Datastream Datastream Datastream Datastream Datastream Datastream Bloomberg Finance Datastream Datastream Datastream Refinitiv

MTR Eurostat
XTD Eurostat
BLR NCBs and ECB (BSI statistics)
CPN NCBs and ECB (BSI statistics)
UMP ECB
FDR ECB
CXD ECB
OIL Refinitiv and ECB
GAS Refinitiv and ECB
SFF Hamburg Insitute of International Economics (HWWI)

Notes: NCBs refers to the National Central Banks of all EU Member States.

Table 22: Sources of Macroeconomic Variables

B.2 Rest of the world VARs

Methodology

In reference to equation (4), the VARs for 18 rest of the world economies are estimated for each
country separately, applying a maximum likelihood estimator. The specifications for Bulgaria
(BG), Czech Republic (CZ), Denmark (DK), Croatia (HR), Hungary (HU), Poland (PL), Roma-
nia (RO), Sweden (SE), Switzerland (CH), Norway (NO) Brazil (BR), China (CN), Japan (JP),
Mexico (MX), Russia (RU), Sweden (SE), Turkey (TK), United Kingdom (UK) and United
States (US) include varying number of endogenous variables depending on availability of his-
torical data and macrofinancial projections from the ECB. These are summarised in Table 23.

Variables BG BR CH CN CZ DK HR HU JP MX NO PL RO RU SE TK UK US

MTR x x x x x x x x x x x x x x x x x x
XTD x x x x x x x x x x x x x x x x x x
YER x x x x x x x x x x x x x x x x x x
URX x x x x x x x
HIC x x x x x x x x x x
STN x x x x
LTN x x
IHX x x x x
ESX x x x x

Table 23: Rest of the World macroeconomic variables

ECB Working Paper Series No 2855 162



Data

The data sample starts with 2002 Q2 and ends in 2020 Q4. The data for the non-euro area
European Union countries are sourced from Eurostat. For other countries, the data sources are
summarised in Table 24. The country-VAR variables are transformed similarly to the transfor-
mations applied to the corresponding variables in countries in the euro area as in Table 2.

Variables BR CH CN JP MX NO RU TK UK US

MTR
Instituto Brasileiro

de Geografia
e Estatística

State Secretariat
for Economic

Affairs

National Bureau
Statistics and

ECB calculations

Cabinet
Office

of Japan

Instituto Nacional
de Estadística Geografía

e Informática

Statistiska
Sentralbyra

Russia Federal
State Statistics

Service

Turkish
Statistical
Institute

Office for
National
Statistics

Bureau of
Economic
Analysis

XTD
Instituto Brasileiro

de Geografia
e Estatística

State Secretariat
for Economic

Affairs

National Bureau
Statistics and

ECB calculations

Cabinet
Office

of Japan

Instituto Nacional
de Estadística Geografía

e Informática

Statistiska
Sentralbyra

Russia Federal
State Statistics

Service

Turkish
Statistical
Institute

Office for
National
Statistics

Bureau of
Economic
Analysis

YER
Instituto Brasileiro

de Geografia
e Estatística

State Secretariat
for Economic

Affairs

National Bureau
Statistics and

ECB calculations

Cabinet
Office

of Japan

Instituto Nacional
de Estadística Geografía

e Informática

Statistiska
Sentralbyra

Russia Federal
State Statistics

Service

Turkish
Statistical
Institute

Office for
National
Statistics

Bureau of
Economic
Analysis

URX
Bureau of

Labor
Statistics

HIC
Ministry of Internal

Affairs and
Communications

Statistiska
Sentralbyra

Office for
National
Statistics

Bureau of
Labor

Statistics
STN Refinitiv x Refinitiv
LTN Refinitiv Refinitiv
IHX x
ESX x x

Table 24: Overview of Rest of the World variable sources

B.3 Yield curve
Methodology

The parametric three-factor yield curve model of Nelson and Siegel [1987] is estimated for 19
countries in the individual euro area, the euro area and the United States. Each yield curve
is assumed to be described by four parameters: level, slope, curvature, and decay rate. The
estimation focuses on the curvature factor and exponential decay rate, while the level and slope
parameter are pinned down by the level of the short- and long-term interest rates projected in
the macrofinancial block.

The two-step grid search procedure proposed by Nyholm [2008] is used to estimate the
curvature factor and exponential decay rate based on the historically last available data points.
First, the level, slope, and curvature are determined for a fixed exponential decay rate value
by applying a maximum likelihood approach. This step is repeated for a range of exponential
decay rate values. In a second step, we select an exponential decay rate that minimises the sum
of squared residuals between the estimated yield curve and the real yields.

Data

In order to estimate parameters related to the shape of the yield curve, we use maturities from
3 months up to 30 years. For example, in the case of the German sovereign yield curve, the
following maturities are used to estimate the exponential decay rate and the curvature: 3, 6-
month, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20 years. Table 25 summarises the maturities used for each
country. The data used refer to Q2 2022 and are sourced from Refinitiv.

Results

The results of the slope and the curvature estimation are summarised in Table 26. Figure 47
illustrates the estimation of the yield curve at six selected time points that exhibit a wide range
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Countries 1 Month 3 Month 6 Month 9 Month 1 Year 2 Years 3 Years 4 Years 5 Years 6 Years 7 Years 8 Years 9 Years 10 Years 15 Years 20 Years 25 Years 30 Years

AT x x x x x x x x x x x x x x
BE x x x x x x x x x x x x x x
CY x x
DE x x x x x x x x x x x x x x x x x
ES x x x x x x x x x x x x x x x
FI x x x x x x x x x x

FR x x x x x x x x x x x x x x x x x
GR x x x x x
IE x x x x x x x x
IT x x x x x x x x x x x x x x x x
LT x x x x
LV x x x x

MT x x x x x x x
NL x x x x x x x x x x x x x
PT x x x x x x x x x x x x x x x
SI x x x x

SK x x x x
EA x x x x x x x x x x x
US x x x x x x x x x x

Table 25: Maturities used for determining the curvature factor and the exponential decay rate.

of different economic situations – before a crisis, during a crisis, and in the course of a recovery.
As a result, the shape of the yield curve differs materially depending on the time point. The
Nelson-Siegel yield curve approximates the yield curve data reasonably well independently of
the exact shape of the curve. Compared to a simple linear approximation by a straight line
using only the 3 month and the 10 year rate, the benefits are particularly strong if the curvature
is large.

Variables AT BE CY DE ES FI FR GR IE IT LT LU LV MT NL PT SI SK EA US
Curvature 0.000 0.000 1.121 0.000 0.000 0.019 0.000 0.197 0.036 -0.037 0.000 1.121 18.833 0.000 -0.015 0.000 1.121 0.000 0.000 0.020

Exp. decay rate 0.495 0.365 0.548 0.760 0.420 0.275 0.425 0.110 0.170 1.170 0.975 0.548 0.015 0.395 1.260 0.385 0.548 0.345 0.485 1.260

Table 26: Yield curve parameters kept constant over time

Given that relatively little yield curve variation is attributed to the curvature factor, keep-
ing this parameter constant over time should represent a sensible approximation Diebold and
Rudebusch [2013] also indicated by Figure 47. The modified Nelson-Siegel approximation
(red line in Figure 47) , which assumes a constant curvature, approximates the yield curve
data better compared to a linear approximation and is only marginal worse compared original
Nelson-Siegel approximation.

Notes: The exponential decay rate is set to 0.305 and the curvature to -0.018 for the modified Nelson Siegel model. The maturity is
displayed on the x-axis and the yield is displayed on the y-axis in %.

Figure 47: German yield curve data at different time points, 3 factor Nelson-Siegel model,
Linear model and a modified Nelson Siegel model
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C Empirical models of bank behaviour

C.1 Loan demand

Methodology

Estimation of the bank loan demand function (see equation (11)) involves two steps. The first
step is to build a bank-level indicator that approximates the evolution of bank-specific loan
supply changes. The second step is to estimate sector-specific loan demand equations that
include the indicator derived in the first step as a control variable.

To enable a consistent identification of bank-level loan demand, it is necessary to take into
account changes in credit supply. Due to the lack of historical data on bank solvency or prof-
itability from 2008 (i.e., the starting point of the sample used to estimate loan demand equa-
tions), we derive a sector-specific structural loan supply shock using semi-consolidated infor-
mation on banks’ outstanding lending volumes from iBSI and lending rates on new lending
from iMIR. More precisely, for each ultimate parent bank, we estimate on the highest level of
consolidation an SVAR model as in Altavilla et al. [2016]:

Y S
i,t = ci +∑

p
Ai,pY S

i,t−p +∑
p

Bi,pXi,t−p + εi,t (330)

where Y S is a vector that includes the natural logarithm of lending volumes and the first differ-
ence in the average lending rate for new loans to sector S ∈ {NFC,HH,TOTAL} at time point
t for bank i. ci is a vector of bank-specific intercepts. Xi,t is a vector of exogenous variables that
includes the logarithm of exposure weighted real GDP and changes in short-term rates in the
euro area ST N. Ai,p is a bank-specific matrix of autoregressive coefficients, p is the number of
lags set p = 1, and εi,t is a vector of reduced–form residuals.

Relying on these banking group specific SVARs we identify credit supply shocks by using
the algorithm of Arias et al. [2018] and imposing sign restrictions as illustrated in Table 27:

Credit supply

Loan volumes –
Avg. interest rate +

Table 27: Summary of identifying restrictions

In a second step, the lending demand equations for each sector-country portfolio S = {NFC,
HHCC,HHHP,SOV,FIN} are estimated separately using a fixed-effect panel regression of
bank-level loan growth rates on the economic conditions in a country of exposure. Thereby
we postulate the following functional relationship for the quarterly growth rate of bank i loan
volumes to sector S in country C at time t denoted by TotalLoans_grS,C

i,t :

TotalLoans_grS,C
i,t = β

S
0,i +∑

p
(β S

1,p TotalLoans_grS,C
i,t− j +β

S
2,p Y ERgrC

t−p +β
S
3,p HICgrC

t−p

+β
S
4,p ∆URXC

t−p +β
S
5,p ∆ST NC

t−p +β
S
6,p SPRt−p

+β
S
7,p ∆EIRAssetNewS,C

i,t−p)+β
S
8 SupplyShockS

i,t +β
S
9 PGC

t + ε
S,C
i,t
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where EIRAssetNew corresponds to the effective lending rate. Macroeconomic control vari-
ables include the GDP growth rate Y ERgr, inflation HICgrC, unemployment rate URXC, 3-
month EURIBOR rate ST N and the spread between long- and short-term rates SPR, all in the
country of exposure C. A dummy variable PG controls the introduction of public loan guar-
antees during the outbreak of the COVID-19 pandemic and is equal to one if a guarantee pro-
gramme was initiated in the country C and the time point t. β stand for regression coefficients,
therein β0,i stands for fixed effects of the bank. To control for bank-specific supply factors,
the specification includes the cumulative supply shock index Supplyshock from equation (330)
accordingly:

SupplyshockS
i,t =


SupplyshockNFC

i,t if S = NFC
SupplyshockHH

i,t if S ∈ HHHP,HHCC
SupplyshockTOTAL

i,t if S ∈ SOV,FIN

The sets of regressors differ for the non-financial private sector S ∈ {NFC,HHCC,HHHP}
and the sovereign and financial sectors S ∈ {SOV,FIN}. For the first, information on bank
lending rates EIRAssetNew can be obtained from iMIR and captures the effect of price for each
bank. For the latter, this information is not available, and the regressions aim to capture the di-
rect transmission of short-term market rates ∆ST N and the spread between long- and short-term
rates SPR in sovereign and financial lending volumes. Furthermore, to smooth the effect of the
very large and sudden drop in economic activity during the first year of the COVID-19 pan-
demic, GDP growth rates are transformed into annual moving average growth rates (Y ERgr4q

t−1)
for non-financial private sectors S = {NFC,HHCC,HHHP}.

Regressions are estimated with standard errors clustered at the banking group level. To ex-
clude insignificant variables and their lags, a general to specific procedure is applied starting
from two lags p = 2 for all covariates. Panel specifications are estimated subject to dynamic
homogeneity restrictions (see Jensen [1994]) to ensure a stable long-term relationship between
nominal GDP and loan growth. This condition imposes that nominal credit growth equals nom-
inal GDP growth in the long run.

Data

The estimation of the loan demand regressions relies on a large unbalanced panel of quarterly
data including bank lending rates on new business from iMIR, outstanding amount of loans
from iBSI and macroeconomic variables for the country of exposure from the SDW (informa-
tion in Table 28 is provided in decimals). The stocks of outstanding loan volumes from iBSI
are transformed into indices of notional stocks taking into account revaluations of securities,
reclassifications, loan write-offs/write-downs, and net flows of loans securitized or otherwise
transferred.

The first stage of the analysis is based on semi-consolidated loan and interest rate infor-
mation, while the second stage uses individual reporting of banking group branches and sub-
sidiaries per country. Loan and interest rate data were seasonally and outlier adjusted using the
X-12-ARIMA algorithm Bureau [2011] separately for the data sets at the individual branch and
consolidated bank level.

The originally monthly iMIR/iBSI data are then transformed to quarterly time series by tak-
ing the last-month observations for the stock of loans and the three-month average of monthly
lending rates. Due to the very high volatility of bank lending volumes to the sovereign and fi-
nancial sectors, the corresponding variables are transformed into annual moving average growth
rates. The current historical sample covers bank-level data from 2007 Q4 until 2020 Q4.
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Variables Observations Mean Median Standard deviation
TotalLoans_gr NFC 5811 0.0035 0.0032 0.0384
TotalLoans_gr FIN 7216 0.0086 0.0058 0.2829
TotalLoans_gr HHHP 4348 0.0023 0.0015 0.0246
TotalLoans_gr HHCC 4485 -0.0027 -0.0019 0.0293
TotalLoans_gr SOV 2970 -0.0045 -0.0071 0.1005
∆EIRAssetNew NFC 5811 -0.0007 -0.0004 0.0035
∆EIRAssetNew HHCC 4485 -0.0007 -0.0006 0.0041
∆EIRAssetNew HHHP 4348 -0.0007 -0.0006 0.0024
Y ERgr 7228 0.0013 0.0030 0.0285
HICgr 7363 0.0027 0.0030 0.0044
∆ST N 7228 -0.0011 -0.0001 0.0035
SPR 7228 0.0203 0.0156 0.0228
∆URX 7228 0.0003 -0.0005 0.0054
SupplyShock TOTAL 7228 0.1303 0.0729 0.6949
SupplyShock NFC 4060 0.1591 0.1526 0.5011
SupplyShock HH 4485 0.0294 0.0156 0.4334

Table 28: Summary statistics: loan demand regressions

Figure 48 illustrates the median quarterly loan growth for non-financial corporations and
households (in the left panel) together with the respective shock indices of credit supply per
banking group (in the right panel). Lending dynamics differs between sectors. Lending volumes
to non-financial corporations is generally more volatile than lending volumes to households.
Credit supply indices mirror recent financial turmoils, such as the Lehman crisis in 2008 or the
European sovereign debt crisis. The indices reached their peak in 2012 and slowly moderated
in the expansionary period with stable financial markets from 2016 to 2020.

Figure 48: Lending volumes and loan supply shocks for NFC and household lending

Results

Table 29 summarises the estimates for all economic sectors. Table 30 outlines the estimates
for the impact of the public guarantee policy on NFC lending in each country. The dummies
are equal to one for the periods between Q1 and Q4 2020, in case a guarantee programme was
active. The policy dummies are significant for Spain, Portugal, Greece, Italy and Luxembourg.
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(1) (2) (3) (4) (5)
NFC HHHP HHCC SOV FIN

TotalLoans_grt−1 0.192∗∗ 0.645∗∗ 0.327∗∗ 0.768∗∗ 0.711∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
TotalLoans_grt−2 0.148∗∗ 0.226∗∗ 0.229∗∗

(0.000) (0.000) (0.000)
Y ERgr4q

t−1 0.660∗∗ 0.129∗∗ 0.443∗∗

(0.000) (0.000) (0.000)
Y ERgrt−1 0.0860∗∗ 0.141∗∗

(0.000) (0.000)
Y ERgrt−2 0.146∗∗ 0.148∗∗

(0.000) (0.000)
HICgrt−1 0.287∗∗ 0.0909∗∗ 0.226∗ 0.232∗∗ 0.289∗∗

(0.000) (0.007) (0.010) (0.000) (0.000)
HICgrt−2 0.373∗∗ 0.0377 0.217∗

(0.000) (0.224) (0.015)
∆ST Nt−1 -0.397+ 0.295

(0.083) (0.231)
SPRt−1 -0.0810+ -0.355∗∗

(0.055) (0.002)
∆URXt−1 0.603∗∗ 0.401

(0.003) (0.125)
∆EIRAssetNewt−1 -0.176 -0.366∗∗ -0.288∗∗

(0.111) (0.000) (0.000)
SupplyShockt -0.0095∗∗ 0.0012 -0.004∗∗ -0.0077∗∗ -0.00604∗

(0.000) (0.111) (0.007) (0.029)
Obs 5811 4348 4485 2973 7222
Banks 67 59 60 40 70
R2 0.078 0.539 0.165 0.607 0.500
p-values in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 29: Loan demand regressions: 2007 Q4 – 2020 Q4

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
AT BE DE ES PT FR GR IE IT LU NL

PG −
Dummy -0.0057 0.0013 -0.0008 0.0270∗∗ 0.0317∗∗ 0.0092 0.0256∗∗ -0.0005 0.0192∗ 0.0036∗∗ -0.0191

(0.391) (0.871) (0.884) (0.009) (0.000) (0.112) (0.000) (0.886) (0.012) (0.003) (0.090)

p-values in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 30: Public guarantee dummies for NFC model in 2020Q1-Q4

C.2 Loan supply

Methodology

To identify factors that influence banks’ lending supply (12), we rely on a pooled bank-level
regression inspired by Khwaja and Mian [2008]. A bank counterparty is a specific lending seg-
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ment such as a corporate sector in one of the jurisdictions.131 Using data for counterparties that
borrow from at least two banks, we can identify counterparty-time fixed effects related to the
evolution of the macroeconomic environment and loan demand factors. The salient assumptions
behind this methodology are that all entities within the same sector-counterparty class face the
same demand for loans and that loan demand is counterparty-specific.

The general regression specification is as follows:

TotalLoans_grS,C
i,t = β

S
1 CET 1SurShort f alli,t× I(Typei = 0)× I(HomeForeignS,C

i = 0)

+β
S
2 CET 1SurShort f alli,t× I(Typei = 0)× I(HomeS,C

i = 1)

+β
S
3 CET 1SurShort f alli,t× I(Typei = 1)× I(HomeS,C

i = 0)

+β
S
4 CET 1SurShort f alli,t× I(Typei = 1)× I(HomeS,C

i = 1)

+β
S
5 LEV RSurShort f alli,t× I(Typei = 0)

+β
S
6 LEV RSurShort f alli,t× I(Typei = 1)

+β
S
7 netNPLRS,C

i,t × I(∆4NPLRS,C
i,t < 0)

+β
S
8 ROAi,t +β

S
9 EIRLiabi,t

+β
S
10 RRW S,C

i,t

+β
S
11 CET 1SurShort f alli,t× I(CET 1SurShort f alli,t < 0)

+β
S
12 netNPLRS,C

i,t × I(∆4NPLRS,C
i,t > 0)

+β
S
13 RRW S,C

i,t × I(CET 1SurShort f alli,t < 0)+ ε
S,C
i,t

where TotalLoans_gr is the quarterly log change of sector S loans to the counterparty (coun-
try) C, CET 1SurShort f all is a measure of CET1 capital surplus or shortfall (see equation
(201) for its definition) 132 and leverage ratio shortfall LEV RSurShort f all compared to bank
specific leverage ratio targets (see equation (204)). netNPLR is sector-counterparty specific
share of non-performing loans net of provisioning, ROA is return on assets, RRW is the sector-
counterparty specific relative risk weight derived as the sector-country specific risk weight of
the counterparty relative to the average risk weight of a bank, RRW S,C

i,t = RW S,C
i,t /RWi,t . βC

0,t are
counterparty-time fixed effects.

In addition to the linear effect of capital surplus or shortfall, we are interested in three types
of non-linearities. First, a bank close to its regulatory requirements may be more likely to
substantially deleverage. To capture this effect, we interact CET 1SurShort f all and RRW with
a dummy variable equal to one if bank i experiences a capital shortage in time t denoted by
I(CET 1SurShort f all < 0). Second, when in trouble, banks may deleverage primarly on non-
domestic exposures. To pin down this home-bias effect, we interact CET 1SurShort f all with a
dummy variable Home that turns one for exposures to the domestic market I(Home) = 1 and
zero for foreign markets I(Home) = 0. Finally, we distinguish between the cases where the
share of bank NPLs increased in the last year and the cases where such a share decreased and
introduce the interactions with the corresponding dummies I(∆4NPLR > 0) and I(∆4NPLR >
0).

131Similar approach is used by Mésonnier and Monks [2015] in their study of the effect of the 2011 EBA capital
exercise.

132Several studies have shown an importance of the link between bank capital and lending activity (see for
example Gambacorta and Mistrulli [2004], Jonghe et al. [2016] and Aiyar et al. [2016]). A general finding of these
studies is that less-capitalised banks provide fewer funding sources for the real economy.
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An additional indicator variable Type allows one to distinguish banks with the special na-
ture of their business model (special lenders) or ownership structure (state-owned) (see Ta-
ble 5 for the classification of banks in the sample). The indicator Type is interacted with
CET 1SurShort f all and LEV RSurShort f all to acknowledge that empirically these banks ex-
hibit significantly lower elasticity of lending to their capitalisation changes.

The estimated equations are partitioned into LoanSupplyLin (see equation (13)) and Loan
Supply_NonLin (see equation (14)), where the latter contains interaction terms with dummies
related to capital shortfall and NPL changes. Furthermore, in BEAST, the fixed effects of
counterparty time are removed and effectively replaced by the loan demand equation.

Regressions are estimated separately for four sectors S ∈ {NFC,HH,SOV,FIN} where the
data for sectors HHHP and HHCC are combined to arrive at estimates for the overall household
sector. To identify the possibly different sensitivity of HHHP and HHCC lending to bank
solvency, the regression for HH includes additional interaction variables.

Data

The estimation relies on COREP / FINREP reporting (see A.4) for the period 2014–2020.
These data are supplemented with information on combined capital requirements of banks
from COREP, internal capital database, and MaPPED, from which we derive our measure of
CET 1SurShort f all (see equation (201)). All variables (ratios and growth rates) are reported in
decimals.

Variables Observations Mean Median Standard deviation
TotalLoans_gr NFC 12075 0.0129 0.0014 0.1477
TotalLoans_gr HH 4274 0.0038 0.0064 0.0361
TotalLoans_gr SOV 4841 -0.0027 0.0000 0.0835
TotalLoans_gr FIN 9189 0.0145 0.0020 0.2773
CET 1SurShort f all 12075 0.0401 0.0348 0.0346
ROA 11304 0.0043 0.0042 0.0103
LEV RSurShort f all 12075 0.0642 0.0539 0.0297
EIRLIAB 12075 0.0018 0.0017 0.0043
netNPLR 12075 0.0864 0.0183 0.2039
RRW_NFC 12075 1.8364 1.6829 1.0282
RRW_HH 4274 1.3160 1.1568 0.7216
RRW_SOV 4624 0.6180 0.1020 1.8647
RRW_FIN 9189 1.1034 0.7630 1.5371

Table 31: Summary statistics: loan supply regressions

Results

Table 32 presents the estimation results for the corporate, household, sovereign, and financial
sectors. The effect of a CET1 shortfall with respect to regulatory requirements leads to a strong
reduction in loan supply for corporate and consumer loans, while it has a positive effect on
sovereign and domestic mortgage loans. This provides empirical validation of a substitution
effect, where banks with the CET1 shortfall shift their lending from corporate and consumer
loans to sovereign and partially also to mortgage loans with relatively lower risk profile.
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Second, the lending effect of CET1 is amplified when a bank experiences a capital shortage.
As expected, this non-linearity is more pronounced for riskier corporate loans. Third, the effect
of capital surplus or shortfall is stronger for foreign exposures. Banks with capital shortages
first reduce their loan supply abroad, and only later in the domestic market. Lastly, the negative
effect of NPLs on lending is stronger for banks that recently experienced an increase in the
share of their NPLs.

C.3 Write-offs

Methodology

The write-off rate WriO f f r (see equation (34)) is modelled following a tobit specification,
which accounts for the non-linear nature of its dynamics:

WriO f f rS,C
i,t = Φ

(WriO f f rLinS,C
i,t

σ

)
×

[
WriO f f rLinS,C

i,t +σ ×
φ(

WriO f f rLinS,C
i,t

σ
)

Φ(
WriO f f rLinS,C

i,t
σ

)

]

where Φ(·) is the standard normal cumulative distribution function, φ(·) the standard normal
probability density function, σ is the standard error estimated from the tobit regression and
WriO f f rLin is the underlying linear projection, which evolves with the following equation:

WriO f f rLinS,C
i,t = β

S
0 +β

S
1 NPLRS,C

i,t−1 +β
S
2 NPLR1Y S,C

i,t−1 +β
S
3 ProvCovrS,C

i,t−1

β
S
4 ColCovrS,C

i,t−1 +β
S
5 ROAi,t−1 +β

S
6 NPLR1Y S,C

i,t−1×ProvCovrS,C
i,t−1

β
S
7 ProvCovrS,C

i,t−1×ROAi,t−1 +β
S
8 ProvCovrS,C

i,t−1×NPLRS,C
i,t−1

β
S
9 ColCovrS,C

i,t−1×ROAi,t−1 + ε
S,C
i,t

The write-off ratio will depend on the share of non-performing loans NPLR, share of de-
faulted exposure older than one year NPLR1Y , coverage of defaulted exposure with loan loss
provisions ProvCovr (see equation (36)), coverage of defaulted exposure with collateral ColCovr,
return-on-assets ROA, and lastly, the interaction terms between these variables.

In order to accommodate the relative scarcity of the time period for which we can collect
data on write-off rates, the regression is estimated jointly for all sectors S∈{NFC,HH,SOV,FIN}.
Sector-specific coefficients betaS are derived by interacting the observations with a set of four
sector dummies and following the general-to-specific methodology where both the significance
and the equality of the coefficients are tested at each step before arriving at the final empirical
specification. We also tested for the difference between the constant between the HHHP and
HHHC sectors by interacting the regression constant with the bank-specific share of HHHP
exposures in total HH exposures ShareHHHPi.

Data

The propensity for bank writeoff is estimated on the basis of quarterly data from supervisory
statistics (FINREP). Templates F 04.04.1 and F 12.00 provide information on banks’ write-offs
of defaulted loans since 2018 as well as the underlying provisioning. The estimation sample
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(1) (2) (3) (4)
NFC HH SOV FIN

CET 1SurShort f allt−1× I(Home = 0)× I(Type = 0) 0.146∗ 0.115 0.162∗

(0.030) (0.455) (0.015)
CET 1SurShort f allt−1× I(Home = 0)× I(Type = 1) 0.0246 0.0196 0.046

(0.746) (0.710) (0.164)
CET 1SurShort f allt−1× I(Home = 1)× I(Type = 0) 0.0997 0.166 -0.0845

(0.366) (0.493) (0.385)
CET 1SurShort f allt−1× I(Home = 1)× I(Type = 1) 0.0109 0.0462 -0.0442

(0.901) (0.689) (0.323)

CET 1SurShort f allt−1× I(Home = 0)× I(Type = 0) 0.113∗∗

×I(Sector = HHHP) (0.004)
CET 1SurShort f allt−1× I(Home = 0)× I(Type = 1) 0.0271
×I(Sector = HHHP) (0.817)
CET 1SurShort f allt−1× I(Home = 1)× I(Type = 0) 0.0762+

×I(Sector = HHHP) (0.100)
CET 1SurShort f allt−1× I(Home = 1)× I(Type = 1) 0.0233
×I(Sector = HHHP) (0.710)

CET 1SurShort f allt−1× I(Home = 0)× I(Type = 0) 0.171∗∗

×I(Sector = HHCC) (0.001)
CET 1SurShort f allt−1× I(Home = 0)× I(Type = 1) 0.0658
×I(Sector = HHCC) (0.642)
CET 1SurShort f allt−1× I(Home = 1)× I(Type = 0) 0.105∗

×I(Sector = HHCC) (0.028)
CET 1SurShort f allt−1× I(Home = 1)× I(Type = 1) -0.000448
×I(Sector = HHCC) (0.994)
CET 1SurShort f allt−1× (CET 1SurShort f allt−1 < 0) 0.936∗ 0.553∗∗ -0.35 -0.507+

(0.043) (0.000) (0.611) (0.067)

RRWt−1 -0.00234 -0.00251∗∗ -0.00221
(0.104) (0.008) (0.344)

RRWt−1×CET 1SurShort f allt−1 -0.00292 -0.0019
(0.547) (0.464)

netNPLRt−1× (∆4NPLRt−1 ≤ 0) -0.0486∗∗ -0.0258∗∗ -0.0527 -0.0269
(0.000) (0.000) (0.178) (0.275)

netNPLRt−1× (∆4NPLRt−1 > 0) -0.0667∗∗ -0.0290∗∗ -0.058 -0.0624
(0.000) (0.000) (0.250) (0.108)

ROAt−1 0.435∗∗ 0.0467 0.424 0.368∗

(0.005) (0.374) (0.005) (0.037)
LEV RSurShort f allt−1× I(Type = 0) 0.145∗∗ 0.0236 0.161 0.211∗∗

(0.008) (0.470) (0.855) (0.848)
LEV RSurShort f allt−1× I(Type = 1) 0.0284 0.00751 0.0309 0.0184

(0.764) (0.902) (0.855) (0.848)
EIRLiabt−1 -0.715∗ -0.188+ -0.197

(0.030) (0.063) (0.785)
Obs 12075 4274 9189 4841
Banks 110 93 114 115
R2(ad j.) 0.11 0.30 0.05 0.05
p-values in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 32: Loan supply regressions: 2014 Q1 –2020 Q4
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covers quarterly observations from 2018Q1 to 2020Q2.133 Table 33 provides information about
the sample, and all the ratios included are expressed in decimals.

Variables Observations Mean Median Standard deviation
WriOffr HH 505 0.0093 0.0008 0.0154
WriOffr NFC 598 0.0141 0.0059 0.0178
WriOffr SOV 155 0.0048 0.0000 0.0121
WriOffr FIN 369 0.0037 0.0000 0.0124
ROA 505 0.0042 0.0038 0.0044
ColCovr 505 0.5369 0.5791 0.1887
ProvCovr 505 0.1032 0.0838 0.0861

Table 33: Summary statistics: write-off rate regressions

Results

The estimations of the regression parameters are provided in Table 34. Banks with higher non-
performing loan ratios NPLR tend to write off a higher share of their defaulted exposures. The
write-off rate is reduced by the amount of collateral underlying the average sector loan. Fur-
thermore, higher bank profitability is associated with lower write-off rates. Regarding the inter-
action terms, the coefficient estimates indicate that banks write off a higher share of defaulted
loans when their overall NPL burden is larger and when defaulted loans have a relatively high
coverage with loan-loss provisions. The estimate for σ is positive and stands at 0.0006 com-
pared to a standard deviation of the dependent variable equal to 0.015 (see Table 33).

C.4 Lending interest rate
Methodology

The regression mapping the adjustments in bank interest rates on new loans EIRAssetNew aims
to account for the lending demand and supply factors simultaneously. The dependent variable
is an effective interest rate margin EIRmargin defined by the spread between the respective
lending rate EIRAssetNew for each sector-country portfolio and the overall funding costs per
bank EIRLiab (see equation (55)).134 The assumption that banks pursue a direct pass-through
of an increase in their funding costs ensures that bank funding distress feeds back into the
credit market, with possible spillover effects on financial conditions in the real economy.135

Further, it is assumed that bank pricing strategy differs for short- and long-term maturity loans
D = {Short,Long}. Short-term maturity buckets are defined by the cut-off duration of less than
2 years for loans to NFC and HHCC, and less than 5 years for mortgage lending to households
HHHP generally characterised by longer maturities.136

133By cutting the sample at the beginning of the COVID-19 pandemics, we circumvent potential problems esti-
mating the write-off rates during the COVID-19 pandemics.

134The modelling approach was revised compared to the version in Budnik et al. [2020].
135ECB [2017] demonstrates that cost of funding for banks and bank balance sheet characteristics are important

driving forces behind changes in pass-through mechanism from policy rates to bank lending rates, and as nominal
interest rates move closer to their effective lower bound, the likelihood of non-linear bank transmission channels
increases.

136The break-down of interest rates into short- and longer-term maturities is justified by findings by e.g. Mojon
et al. [2005] that banks interest rates with different maturities depend differently on changes in the yield curve and
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(1)
NPLRt−1 0.178∗∗∗

(0.009)
NPLR1Yt−1× I(Sector = FIN) -0.0221∗∗∗

(0.007)
ColCovrt−1 -0.0119∗∗

(0.009)
ProvCovrt−1× I(Sector = HHCC) 0.0350∗∗∗

(0.000)
ProvCovrt−1× I(Sector = NFC) 0.0375∗∗∗

(0.002)
ProvCovrt−1× I(Sector = SOV ) -0.0128∗

(0.096)
ROAt -0.787∗

(0.009)
NPLRt−1×ProvCovrt−1 -0.302∗∗

(0.009)
NPLR1Yt−1×ProvCovrt−1 0.0346∗∗∗

(0.009)
ColCovrt−1×ROAt−1 1.238∗

(0.009)
ProvCovrt−1×ROAt−1 2.409∗∗∗

(0.009)
const. -0.0058∗

(0.009)
const.× I(Sector = FIN) -0.0222∗∗∗

(0.000)
const.×ShareHHHP× I(Sector = HH) -0.0146∗

(0.068)
σ 0.0006∗∗∗

(0.009)
Obs 1627
R2 -0.157
p-values in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 34: Write-off regressions: 2018Q1 – 2020Q2
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The regression specification for the non-financial private sectors S= {NFC,HHCC,HHHP}
corresponding to equation (56) reads as follows:

∆EIRmarginD,S,C
i,t = β

S,D
1 ∆EIRmarginD,S,C

i,t−1

+β
S,D
2 ∆ST NEA

i,t−1 +β
S,D
3 ∆LT NC

i,t−1

+β
S,D
4 ∆Y ERgrC

i,t−1 +β
S,D
5 ∆HICgrC

i,t−1

+β
S,D
6 CET 1SurShort f alli,t−1 +β

S,D
7 ∆LevRaTai,t−1 + ε

D,S,C
i,t

The specification acknowledges that the pass-through of monetary policy stance, therein mar-
ket short- and long-term interest rates, to bank lending rates depends both on macrofinancial
factors (Gambacorta [2008], Memmel et al. [2018]) and bank specific characteristics (Holton
and Rodriguez d’Acri [2018]). Regressions are estimated in a standard OLS framework using
heteroskedasticity-consistent standard errors.

Data

The estimation framework for the lending rate model uses a large unbalanced panel of quarterly
data. Information on bank lending rates for new businesses is sourced from iMIR statistics.
Interest rate data were adjusted seasonally and for outliers using the X-12-ARIMA algorithm
Bureau [2011] where we generally assume that individual branch level information approxi-
mates the lending rates of the ultimate parent bank to sector S in the country C. The originally
monthly iMIR data are then transformed into quarterly time series by taking the average rate
within the quarter. Bank-specific information on solvency and leverage ratio is sourced from
COREP templates and the S&P SNL Sector Financials dataset. The latter data set is used to
backward extend the historical time series for bank capitalisation. Information on bank-specific
capital requirements is sourced from COREP, the internal capital database, and the MaPPED
database. The macroeconomic time series are sourced from the SDW. The current historical
sample covers bank-level data from 2007 Q4 to 2020 Q4, and Table 35 provides the summary
statistics for the included variables.

Results

Table 36 presents the estimation results for the segments of the corporate, household consump-
tion, and mortgage markets. The first three columns represent the estimates for short-term rates
Short, while the last three correspond to the longer maturities Long. Since the model is esti-
mated in the first differences, the autoregressive margin component enters with a negative sign
for all sectors except HHHP-Long.

It appears that the pass-through of changes in the short- and long-term market rates differs
substantially between the individual sectors and the maturity classes. The 3 month EURIBOR
pass-through rate is highest for short-term lending rates Short, and the long-term bond yield
pass-through is the highest for Long-maturity buckets. Although the impact of the leverage
ratio LevRaT is insignificant for most sectors, banks’ capital buffer or shortfall with respect to
their capital targets CET 1SurShort f all triggers additional adjustments in the lending rate, that
is, banks experiencing a shortfall in solvency further increase their lending rates, especially in
Long-maturity market segments.

macroeconomic conditions.
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Variables Observations Mean Median Standard deviation
EIRmargin NFC Long 3210 0.0099 0.0091 0.0181
EIRmargin HHHP Long 2925 0.0127 0.0128 0.0184
EIRmargin HHHC Long 4902 0.0296 0.0272 0.0305
EIRmargin NFC Short 4118 0.0070 0.0070 0.0168
EIRmargin HHHP Short 2664 0.0092 0.0088 0.0180
EIRmargin HHHC Short 5363 0.0195 0.0192 0.0273
CET 1SurShort f all 4459 0.0436 0.0429 0.0355
LevRaT 4459 0.0602 0.0586 0.0226
HICgr 4459 0.0024 0.0027 0.0041
Y ERgr 4459 0.0015 0.0038 0.0329
∆ST N 4459 -0.0005 -0.0001 0.0021
∆LT N 4459 -0.0010 -0.0010 0.0038

Table 35: Summary statistics: lending rates regressions

(1) (2) (3) (4) (5) (6)
NFC-S HHHP-S HHCC-S NFC-L HHHP-L HHCC-L

∆EIRmargint−1 -0.247∗∗ -0.107∗ -0.228∗∗ -0.272∗∗ 0.120∗∗ -0.0813∗

(0.000) (0.033) (0.000) (0.000) (0.004) (0.023)
∆ST Nt−1 0.237∗∗ -0.0355 0.0913 0.0730 -0.0909∗∗ -0.0798∗

(0.000) (0.406) (0.108) (0.252) (0.001) (0.018)
∆LT Nt−1 0.0828∗∗ 0.136∗∗ 0.0723∗∗ 0.191∗∗ 0.170∗∗ 0.126∗∗

(0.000) (0.000) (0.005) (0.001) (0.000) (0.000)
∆Y ERgrt−1 0.0036+ 0.0000 0.0031 0.0003 0.0011 0.0041∗

(0.069) (0.985) (0.203) (0.877) (0.384) (0.036)
∆HICgrt−1 0.0277+ -0.0287 0.00633 0.0313 -0.005 -0.0098

(0.050) (0.120) (0.743) (0.208) (0.727) (0.574)
∆LevRatTat−1 0.0056 0.0416 0.004 0.004 0.0086 0.0841+

(0.811) (0.174) (0.901) (0.943) (0.696) (0.091)
CET 1SurShort f allt−1 0.000746 -0.0026+ -0.0004 -0.0033∗ -0.003∗ -0.0033+

(0.523) (0.092) (0.829) (0.033) (0.014) (0.066)
Obs 4118 2664 3628 3210 2925 3288
R2(ad j.) .074 .025 .052 .082 .056 .017
p-values in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 36: Bank lending rate regressions: 2007 Q4 – 2020 Q4

C.5 Debt security holdings

Methodology

Banks adjust their holdings of debt securities from non-financial, financial corporates, and
sovereigns taking into account their solvency and liquidity conditions and analogously to how
they adapt their loan supply (Appendix C.2). The empirical specification of the bank propensity
to hold debt securities defined in equation (74) is specified as follows:
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∆VolAssetSupplyS,C
i,t = β

S,C
t +β

S
1 CET 1SurShort f alli,t

+β
S
2 CET 1SurShort f alli,t× I(Typei = 1)

+β
S
3 LEV RSurShort f alli,t

+β
S
4 LEV RSurShort f alli,t× I(Typei = 1)

+β
S
5 netNPLRi,t +β

S
5 ROAi,t +β

S
6 EIRLiabWhsli,t + ε

S,C
i,t

where ∆VolAssetSupply corresponds to the quarterly log change in the holdings of the bank debt
security of sector S∈{SNFC,SFIN,SGOV} in the counterparty (country) C. CET 1SurShort f all
and LEV RSurShort f all are analogously defined as in Section C.2, netNPLR corresponds to a
bank’s net NPL ratio, ROA to return on assets, and EIRLiabWhsl to bank’s overall wholesale
funding costs.

The estimation is based on a pooled bank-level regression inspired by Khwaja and Mian
[2008]. A bank counterparty here is a specific sector in one of the jurisdictions that issues
debt securities. By using data for sector-country exposures that concern at least two banks,
we can account for the variation in the evolution of the macroeconomic environment and the
demand for debt funding by including a set of counterparty time fixed effects β

S,C
t . . The salient

assumptions behind this methodology is that each counterparty-sector has a similar propensity
to issue a debt security and the supply of its debt instruments is not bank-specific, i.e., it is equal
across all banks that lend to a counterparty.

The regression further classifies the bank sample with an additional indicator variable Type,
where Type = 1 identifies banks that due to the nature of their business model (special lenders)
or ownership structure (state owned) exhibit significantly lower elasticities of lending to bank
capitalisation measures (see Table 5 for bank sample classification). The indicator Type is
interacted with CET 1SurShort f all and LEV RSurShort f all.

Data

The bank-level information about debt security holdings, profitability, solvency, leverage ratio,
and wholesale funding costs are sourced from supervisory statistics (FINREP/COREP). To be
precise, the information regarding banks security holdings to individual euro area countries
is sourced from template F 20.04. The estimation sample covers quarterly observations from
2016Q3 to 2020Q2 and for 117 banks. The summary statistic in Table 37 is reported in decimal
(growth) rates.

Variables Observations Mean Median Standard deviation
∆VolAssetSupply SGOV 12527 0.0068 -0.0003 0.1805
∆VolAssetSupply SFIN 11817 0.0107 -0.0005 0.1699
∆VolAssetSupply SNFC 5936 0.0122 0.0001 0.1975
ROA 5936 0.0040 0.0042 0.0108
CET 1SurShort f all 5936 0.0564 0.0401 0.0691
LEV RSurShort f all 5936 0.0612 0.0544 0.0248
EIRLiabWhsl 5936 0.0014 0.0009 0.0117

Table 37: Summary statistics: security holdings regressions
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Results

The estimation results outlined in Table 38 indicate that banks’ debt security holdings depend
positively on their leverage, except for state-owned or special lender bank debt security holdings
towards the NFC sector, and positively on their profitability. Furthermore, higher rates in the
wholesale funding market are associated with a reduction in their debt securities. In case a bank
experiences a CET1-ratio shortfall, i.e., the CET1 ratio falls below the regulatory requirements,
it reduces its debt security holdings for the non-financial and financial sector, while increasing
the holdings for more saver government debt securities.

(1) (2) (3)
SNFC SFIN SGOV

CET 1SurShort f allt−1 0.293∗∗∗ 0.0264 -0.00662
(0.001) (0.272) (0.779)

CET 1SurShort f allt−1× (Type = 1) -0.203∗∗

(0.010)
netNPLRt−1 0.197∗∗∗ 0.126∗∗∗ 0.0210

(0.000) (0.000) (0.389)
ROAt−1 0.472∗∗∗ 0.472∗∗∗ 0.472∗∗∗

(0.000) (0.000) (0.000)
LEV RSurShort f allt−1 0.161∗ 0.333∗∗∗ 0.364∗∗∗

(0.077) (0.000) (0.000)
LEV RSurShort f allt−1× I(Type = 1) -0.276∗∗∗ -0.276∗∗∗ -0.276∗∗∗

(0.000) (0.000) (0.000)
EIRLiabWhslt−1 -0.625∗∗∗ -0.146 -0.0359

(0.006) (0.430) (0.779)
Obs 30280 30280 30280
R2(ad j.) .03 .03 .03
p-values in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 38: Debt security supply regressions: 2016 Q3 – 2020 Q2

C.6 Debt security interest rates

Methodology

The interest rates on non-financial corporate SNFC and sovereign bonds SGOV securities held
by a bank depend on a risk-free component and a credit spread (see equation (62)). The speci-
fication of the credit spread is log-multiplicativewith a linear component LinSpreadt (see equa-
tion (63)). This linear function is estimated indirectly, using the logarithm of quarterly single-
name credit default swaps (CDS) of individual non-financial corporations (for sector SNFC) or
sovereigns (sector SGOV ).

For credit spreads on sovereign bonds, we apply the following specification for quarterly
frequency CDS spreads CDS of individual euro-area sovereigns C with maturities τ:
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log(CDSSGOV,C
t (τ)) = β1 log(CDSSGOV,C

t−1 (τ))

+β2 Y ERgrC
t +β3 ESXgrC

t

+β4 ∆SPRC
t +β5 ∆ST NEA

t + ε
C
τ,t

Credit spreads on sovereign bonds depend on a variety of macrofinancial indicators, therein
GDP growth rate Y ER, the stock market growth rate ESX and the spread SPR between long- and
short-term rates in the country of exposure C. The sovereign bond rate regression is estimated
using a feasible generalised least squares (FGLS) to account for autocorrelation. The maturities
τ and the countries C are pooled before regression, implying country- and maturity-independent
parameters β .

The linear function for the corporate risk spread component is mapped by regression:

log(CDSSNFC,C
t (τ)) = β1log(τ)

+β2 Y ERgrC
i,t +β3 Y ERgrC

i,t−1 +β4 Y ERgrC
i,t−2

+β5 ESXgrC
i,t +β6 ESXgrC

i,t−1 +β7 ∆URXC
i,t

+β8 log(τ)×∆LT NC
i,t−1 + ε

C
τ,t

The corporate bond interest rate regression is estimated in log levels, using a generalised
linear model (GLM) with log-link and poisson-distributed outcomes.

Data

Variables Observations Mean Median Standard deviation
CDS SGOV 7,534 1.13% 0.69% 1.21%
CDS SNFC 11,814 1.45 % 0.98 % 1.84 %
Y ERgr 23,100 0.0047 0.0058 0.0222
ESXgr 14,700 0.0122 0.0183 0.0934
∆URX 16,800 0.0001 -0.0007 0.0061
∆ST N 16,330 -0.0004 -0.0 0.0033
∆LT N 16,330 -0.0006 -0.0007 0.0065
∆SPR 16,330 -.0011 -.0003 .0067

Table 39: Summary statistics: security interest rates regressions

Sovereign bond CDS spreads of 23 euro-area sovereigns are aggregated up to a quarterly
frequency by averaging over all daily closing spreads within the quarter. For each quarter and
country, we observe CDS spreads for maturities {0.5,1,2, . . . ,10} years. For selected quarters
and country combinations, we can include maturities up to 30 years and shorter maturities up
to overnight in the sample. In total, 6,830 country-time-maturity data points are used in the
estimation of SGOV spreads observed over the period from 2012Q3 to 2018Q4.

CDS spreads for non-financial corporate bonds are calculated using daily CDS spreads of
166 euro area non-financial firms listed on S&P Capital IQ (formerly Credit Market Analysis)
between 2005Q2 and 2020Q3. These corporate titles are aggregated up to country level, yield-
ing average non-financial corporate CDS spreads in 12 countries. For 11 of these 12 countries,
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data are available from at least 2005Q2. For one country, data are available starting only from
2011Q3. For each available country-time combination, we include CDS spreads for maturities
in {1,2, . . . ,10} years. In total, 7,632 country-time-maturity data points are in the estimation
sample.

Results

Table 40 reports the results of the estimation. Sovereign CDS spreads depend positively on
changes in EURIBOR and on country-specific government bond yield spreads. The risk of
sovereign default decreases with increases in GDP and stock indices.

Non-financial corporate CDS are negatively correlated with GDP, stock market indices, and
positively with the level of unemployment. Additionally, the slope of the non-financial corpo-
rate yield curve depends on the firm’s home country’s 10 year sovereign bond rates.

log of CDS Spread (in %)
SGOV SNFC

log(CDSt−1) 0.128∗∗

(0.000)
Y ERgrt -0.138 -3.504∗∗

(0.160) (0.000)
Y ERgrt−1 1.747∗∗

(0.006)
Y ERgrt−2 -16.724∗∗

(0.000)
ESXgrt -0.244∗∗ -1.29∗∗

(0.000) (0.000)
ESXgrt−1 -2.308∗∗

(0.000)
∆URXt 3.209∗∗

(0.000)
∆ST Nt 27.09∗∗

(0.000)
∆SPRt 13.37∗∗

(0.000)
ln(τ) 0.321∗∗

(0.000)
ln(τ)×∆LT Nt 2.258∗∗

(0.000)
Issuers 23 166
Obs 6,830 7,632
p-values in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 40: Sovereign and non-financial corporate CDS spreads: 2005 Q2 – 2020 Q3
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C.7 Deposit supply model
Methodology

The deposit supply equations (160) are estimated using a fixed effect panel regression, with
bank-level deposit growth rates on the left side and the economic conditions in a deposit origina-
tion country on the right side. The model is estimated separately for the sectors S= {HHS,NFCS,DEPT}.
We postulate the following functional relationship for the quarterly deposit growth rate VolLiabTotal_gr
of bank i from the counterparty sector S in country C at time t:

VolLiabTotal_grS,C
i,t = β0,i +∑

p
(β S

1,p VolLiabTotal_grS,C
i,t− j +β

S
2,p Y ERgrC

t−p +β
S
4,p HICgrC

t−p

+β
S
4 ∆URXC

t−p +β
S
6,p ∆EIRLiabNewS,C

i,t−p

+β
S
7 DepSpreadS,C

i,t−p)+ ε
S,C
i,t

(331)

where EIRLiabNew corresponds to the bank i deposit rate offered, and DepSpread the spread
between the deposit rate and the 3-month EURIBOR for the respective sector-country-bank
combination DepSpread =EIRLiabNewS,C

i,t−1−ST Nt−1. Y ERgr represents the real GDP growth
in the country C, HICgr inflation rate in the country C, ∆URX the change in the unemployment
rate. The specification is estimated with bank fixed effects β0,i and clustered standard errors
at the level of the banking group. To exclude insignificant variables and their lags, we apply a
general to specific procedure starting from three lags p = 3 for all covariates. The regression
specifications are subject to dynamic homogeneity restrictions (see Jensen [1994]) to ensure a
stable long-term relationship between nominal GDP and deposit growth.

Data

Historical deposit volume and rate information is sourced from iBSI (volumes) and iMIR
(rates). They are seasonally adjusted using the X-12 ARIMA algorithm and converted from
the original monthly series to quarterly series by taking the last month stock of deposits and
the average deposit rate per quarter. The macroeconomic variables are sourced from the SDW.
Table 41 provides an overview of the summary statistics of the underlying sample in decimal
points. The sample includes the time span from 2008Q1 until 2019Q2.

Variables Observations Mean Median Standard deviation
VolLiabTotal_gr HHS 6389 0.0144 0.0176 0.0697
VolLiabTotal_gr NFCS 6294 0.0201 0.0186 0.1049
VolLiabTotal_gr DEPT 5942 -0.0222 -0.0177 0.1046
∆EIRLiabNew HHS 6114 -0.0003 -0.0001 0.0008
∆EIRLiabNew NFCS 6012 -0.0003 -0.0001 0.0010
∆EIRLiabNew DEPT 5808 -0.0008 -0.0004 0.0032
DepSpread DEPT 5808 0.0084 0.0064 0.0097
Y ERgr 7238 0.0023 0.0032 0.0126
HICgr 7238 0.0031 0.0033 0.0042
∆URX 7238 0.0001 -0.0010 0.0047

Table 41: Summary statistics: private deposit volume regressions
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Results

Table 42 shows the estimates for sectors S = {NFCS,HHS,DEPT}. The offered bank deposit
rates EirLiabNew have a relatively strong positive impact on the supply of term deposits, while
they have a less pronounced but still positive impact on short-term deposit volumes, especially
for the supply of sight deposits from households. The estimated autoregressive coefficients
indicate a relatively low inertia in deposit volumes, while the coefficients on GDP growth and
inflation suggest a strong positive business cycle component in the dynamics of private sector
deposits.

(1) (2) (3)
DEPT NFCS HHS

VolLiabTotal_grt−1 0.249∗∗ 0.0716∗∗ 0.163+

(0.000) (0.000) (0.078)
VolLiabTotal_grt−2 0.0940∗∗ 0.245∗∗ 0.223∗∗

(0.000) (0.010) (0.003)
Y ERgrt−1 0.230∗ 0.614∗∗ 0.216+

(0.010) (0.000) (0.052)
Y ERgrt−2 0.428∗∗ 0.315∗∗ 0.398∗∗

(0.000) (0.000) (0.000)
HICgrt−1 0.657∗∗ 0.928∗∗ 0.614∗∗

(0.000) (0.000) (0.000)
∆EIRLiabNewt−1 2.991∗∗

(0.000)
∆EIRLiabNewt−2 2.081∗∗

(0.000)
∆EIRLiabNewt−3 1.578

(0.128)
DepSpreadt−1 -0.193

(0.263)
∆URXt−1 0.937∗∗

(0.000)
const. -0.0041∗∗ 0.0025∗∗ 0.0023∗∗

(0.000) (0.000) (0.000)
Banks 144 159 158
Obs 5942 6294 6389
R2 0.130 0.001 0.069
p-values in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
Homogeneity constraint: nominal GDP growth = deposit growth

Table 42: Deposit supply regressions: 2008 Q1 – 2019 Q2

C.8 Deposit interest rates
Methodology

The empirical specifications of interest rates on sight and term deposits put special emphasis
on the pass-through of the short-term rate and the role of deposit market competition. For
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the sight deposit rates, the empirical counterparts of equation (174) estimated separately for
S = {NFCS,HHS} read as follows:

∆EIRLiabNewS,C
i,t =β

S
0,i +β

S
1 ∆EIRLiabNewS,C

i,t−1 +β
S
2 ∆EIRLiabNewS,C

i,t−2

+β
S
3 Y ERgrC

t−1 +β4 Y ERgrC
t−2

+β
S
5 HICgrC

t−1 +β6 HICgrC
t−2

+β
S
7 ∆SpreadLT NC

t−1 +β
S
8 ∆SpreadLT NC

t−2

+β
S
9 ST N_PT S,C

i,t−1 +β
S
10 EIRLiabConvS,C

i,t−1 + ε
S,C
i,t

The regression relies on an unconstrained panel setup with fixed bank effects β0,i and het-
eroskedastic robust standard errors. The specification includes an autoregressive term, the
change in GDP growth rate Y ERgr that approximates the business cycle conditions, and the
spread between the domestic 10-year government bond yield and the German bund (10Y) that
captures the sovereign risk:

SpreadLT NC
t = LT NC

t −LT NDE
t

The variable ST N_PT reflects the state-dependent pass-through of changes in the 3-month EU-
RIBOR ST N defined as:

ST N_PT S,C
i,t = ∆ST NC

i,t× f (EIRLiabNewS,C
i,t )

and:

f (EIRLiabNewi,t) =

(
2

1+ e−25×max(EIRLiabNewi,t ,0)
−1
)

The pass through of the 3-month EURIBOR on deposit rates reflects the limited ability of
banks to lower deposit rates as the latter approach zero (see Demiralp et al. [2019]). The last
term EIRLiabConv takes into account the competitive pressure in each market segment (S,C)

and measures the impact of the market average deposit rate EirLiabNewS,C on individual bank
pricing decisions.

EIRLiabConvS,C
i,t = EIRLiabNewS,C

i,t −EIRLiabNewS,C
i,t (332)

The dynamics of term deposit rates from equation (175) follows the specification:

∆EirLiabNewDEPT,C
i,t =β0,i +β1 ∆EirLiabNewS,C

i,t−l +β2 ∆EirLiabNewS,C
i,t−2+

β3 Y ERgrC
t−l +β4 Y ERgrC

t−2 +β5 HICgrC
t−l

β7 ∆SpreadLT NC
t−1 +β8 ∆SpreadLT NC

t−2

+β9 0.125×∆8ST NC
t + ε

C
i,t

The macroeconomic variables and risk spreads enter the regressions analogously as in the
regression of sight deposits. The specification assumes a slow (introducing a two-year moving
average of EURIBOR rather than its reference period value) but full long-term pass-through of
the short-term interest rate into deposit rates (imposing the dynamic homogeneity condition of
β1+β2+β9 = 1) and the pass-through is linear. The estimates are based on a constrained bank
fixed-effect regression model with robust heteroskedastic standard errors.
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Data

Regressions of bank deposit rates are estimated in a large unbalanced panel of quarterly bank
deposit rates data from iMIR. Deposit rates were adjusted seasonally and for outliers using
the X-12-ARIMA algorithm Bureau [2011] where we generally assume that information at the
individual branch level approximates the deposit rates of the ultimate parent bank to the sector
S in the country C. The originally monthly iMIR data are then transformed to quarterly time
series by taking the average deposit rates within each quarter. The macroeconomic time series
are sourced from SDW . The current historical sample covers bank-level data from 2007 Q4
until 2020 Q4. Table 43 provides the summary statistics of all variables in decimal points.

Variables Observations Mean Median Standard deviation
EIRLiabNew HHS 4979 0.0033 0.0012 0.0054
EIRLiabNew NFCS 4913 0.0036 0.0013 0.0061
EIRLiabNew DEPT 3465 0.0093 0.0055 0.0107
Y ERgr 6297 0.0012 0.0031 0.0251
HICgr 6297 0.0029 0.0032 0.0044
SpreadLT N 6297 0.0117 0.0031 0.0238
∆ST N 6297 -0.0009 -0.0001 0.0032

Table 43: Summary statistics: deposit rate regressions

Results

Table 44 presents the results of the estimation of sight deposit rates for the sector of households
HHS and companies NFCS. The spread between the domestic long-term rate and the Ger-
man BUND (SpreadLT N) impacts deposit rates positively while the pass-through of short-term
market rates is relatively stronger in corporate deposits. The market correction term DeprCor
enters significantly and negatively both sector regressions.

The coefficient estimates for term deposits (including deposits from households and non-
financial corporations) are shown in the last column of Table . The pass-through of the two-year
moving average short-term rate is estimated at 0.67, and the inflation rate enters the specification
statistically significant and positive.

C.9 Unsecured wholesale funding yield curve
Methodology

The bank-specific yield curve for unsecured wholesale funding combines, as in equation (179),
a risk-free yield curve and a bank-specific credit risk spread. The risk margin is specified log-
linearly with the log-difference of a credit spread equal to a linear function LinSpread (see
equation (63)). The latter function is estimated indirectly, using bank-specific credit default
swap (CDS) spreads.

The use of CDSs to model changes in funding costs relies on the argument of Duffie [1999],
Hull et al. [2004] that any deviation of the CDS from the credit spread should open up opportu-
nities for arbitrage. The close empirical relationship between CDSs and credit spreads has been
empirically evidenced, e.g. Blanco et al. [2004], Hull et al. [2004].137

137Some authors find credit spreads account not only for the risk of default, but also other drivers, such as liquidity
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(1) (2) (3)
HHS NFCS DEPT

∆EIRLiabNewt−1 0.133∗ 0.0736 0.203∗∗

(0.034) (0.173) (0.000)
∆EIRLiabNewt−2 0.123∗∗

(0.000)
Y ERgrt−l 0.00229∗∗ 0.00233∗∗ 0.00463∗∗

(0.001) (0.001) (0.000)
Y ERgrt−2 0.00216∗ 0.00231∗ 0.00458∗∗

(0.012) (0.025) (0.003)
HICgrt−1 0.0255∗∗

(0.008)
SpreadLT Nt−2 0.00821∗∗ 0.00598 0.0842∗∗

(0.009) (0.119) (0.000)
ST N_PTt−1 1.112∗∗ 1.528∗∗

(0.000) (0.000)
EIRLiabConvt−l -0.0995∗∗ -0.140∗∗

(0.000) (0.000)
0.125×∆8ST NC

t−1 0.674∗∗

(0.000)
Banks 126 129 137
Obs 4979 4913 4421
R2(within) 0.273 0.385 -
p-values in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
Constr.regression with homogeneity condition on long STN pass-through

Table 44: Retail deposit rate regressions: 2007 Q3 – 2020 Q4

The use of CDSs as opposed to the use of bond yields has a number of advantages. First,
CDS are traded at variable maturities on OTC markets by third parties. Therefore, they provide
information on the theoretical yield for all maturities independently of the maturities of bonds
actually issued by a firm. Second, CDS can be used to estimate theoretical risk margins even for
firms that are currently unable or unwilling to issue securities on wholesale markets. The actual
credit spreads observed in the unsecured wholesale funding market are subject to considerable
selection bias. Firms will tend to issue securities in the wholesale funding market when they
expect beneficial credit spreads. This implies that credit spreads for firms that did not select
into the wholesale funding market will likely be underestimated if calculated on the basis of the
observed bond yield data. CDS spreads, which are traded by third parties, are not beset by these
issues. Third, CDS markets tend to be more liquid than corporate bond markets, and data are
available in greater abundance and frequency. Last, the use of CDS data allows us to avoid a
number of other confounding factors inherent to the use of bond yields such as coupon effects
or residual maturity effects (see Annaert et al. [2013] for a comprehensive review).

Movements in the bank-specific yield curve at each maturity are specified log-linearly, using
a GLM model with log-link and poisson-distributed outcomes (see also equation (180)):

risk (Longstaff et al. [2005]) or tax considerations (Elton et al. [2001]). In our modelling approach, these factors
are omitted and market liquidity or tax effects are not considered.
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log(CDSi,t(τ)) =β0 +β1 SUBSi +β2 LABAi

+β3 LevRaTai,t +β4 netNPLRi,t +β5 TAi,t +β6 Y ERgrCi
t

+log(τ)× (β7 LevRaTai,t +β8 netNPLRi,t +β9 TAi,t +β10 LT NCi
t )+ εi,τ,t

(333)

where Ci denotes the country in which bank i is headquartered.
The log-linearized CDS spread of a bank depends on macroeconomic factors and bank-

specific factors. For the former, these are the GDP growth Y ER and the 10-year rate of sovereign
debt LT N of the bank’s country of origin. For the latter, we include the bank leverage ratio
LevRatTa, net NPL ratio netNPLR, and the size of the bank’s balance sheet approximated with
the total assets of the bank TA, arguing that each of these factors influences the (real and per-
ceived) risk of credit default involved in lending to the bank, thereby driving CDS spreads.
Furthermore, the idiosyncratic risk margins of subsidiary banks and state-owned banks are cap-
tured by dummies SUBS and LABA, respectively.

Data

CDS risk margins are estimated using daily CDS spreads of 112 euro area banks sourced from
S&P Capital IQ data (formerly Credit Market Analysis). The sample covers the period from
2003 to 2020, and contains 52,998 daily CDS quotes, of which 15,822 quotes for 52 euro-area
bank CDS are used in the final regression. For the bank-maturity-days without a completed
trade, a spread is inferred from bid-ask and recently completed trades at close maturities. Such
an inference takes place in 91.6% of bank-maturity-days observations. Since independent vari-
ables include bank and country-level variables available only at a quarterly frequency, these
CDS spreads are aggregated accordingly by averaging over all days within a quarter.138

For each bank, spreads are observed along the entire yield curve, so that the data constitute
a (unbalanced) three-dimensional panel across banks, maturity, and quarters. For each quarter
and country, we observe CDS spreads for {0.5,1,2, . . . ,10} years to maturity. For selected
quarters and country combinations, there exist CDS spreads with maturities up to 30 years and
shorter maturities up to overnight. 5Y CDS are traded most frequently, making up just under
half of all maturities traded across all banks and quarters. 3Y, 7Y and 10Y CDS each contribute
around 15% of all deals. Maturities below one year constitute most of the remaining 5% of
observed maturities.

Variables Observations Mean Median Standard deviation
SUBS 21489 0.0361 0.0000 0.1866
LABA 28074 0.0952 0.0000 0.2935
netNPLR 19028 0.0884 0.0395 0.1137
TA 27644 546730 210744 714139
LevRaTa 27442 0.0565 0.0538 0.0203
Y ERgr 50489 0.0007 0.0034 0.0295
LTN 50461 0.0238 0.0177 0.0272

Table 45: Summary statistics: unsecured wholesale funding costs

138Since we aggregate the data up to bank-maturity-quarters, inclusion or exclusion of inferred spreads does not
significantly affect our estimation results.
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Results

Table 46 summarises the estimation results. Most variables enter the regression of the default
risk with the expected signs. An increase in the leverage ratio and a reduction in the non-
performing loan ratio (net of provisions) decrease the perceived default risk of a bank. Both
have a more pronounced effect on the short end of the bank’s unsecured yield curve, and their
effect attenuates with increasing tenor of issued debt. Larger banks generally have lower CDS
spreads and this effect is again most pronounced for the short-end of the yield curve. Subsidiary
institutions and Landesbanken both have lower CDS spreads than their non-subsidiary or non-
landesbank counterparts.

Higher levels of GDP growth reduce risk spreads along the entire yield curve. Increases
in country-specific sovereign bond yields LT N increase bank-specific risk spreads in the long
term.

log of CDS Spread (in %)
SUBS -0.512∗

(0.026)
LABA -1.015∗∗

(0.000)
LevRaTat -20.93∗∗

(0.000)
netNPLRt 6.735∗∗

(0.000)
TAt -0.0000∗∗

(0.000)
∆Y ERt -1.279∗

(0.045)
∆Y ERt−1 -4.229∗∗

(0.000)
log(τ) -0.0741

(0.305)
log(τ)×LevRaTat 3.900∗∗

(0.000)
log(τ)×netNPLRt -1.002∗∗

(0.000)
log(τ)×TAt 0.0000∗

(0.021)
log(τ)×LT Nt 1.881∗

(0.027)
const. 1.569∗∗

(0.000)
Banks 52
Obs 15822
p-values in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 46: Bank CDS spreads regressions: 2003 Q4 – 2020 Q3
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C.10 Unsecured wholesale funding maturity

Methodology

The maturity-at-issuance of financial term deposits FIN and securities UNSEC defined in equa-
tion (182) is projected based on the shape of the idiosyncratic yield curve facing the bank. To
this end, the level and slope of the linear component LinSpread of the yield curve are regressed
with respect to the maturity of corporate bonds issued by financial institutions in the euro area.

The specification of NewDurationLiab for FIN and UNSEC is estimated on the level and
slope of the predicted yield curve. In this way, a bank can react to changes in the shape of its
yield curve by issuing shorter or longer-term debt.

NewDurationLiabS
i,t = β0 +β1 log(CDSi,t−1(τ = 1))+β2

∂ log(CDSi,t−1(τ))

∂ log(τ)
+ ε

S
i,t

Data

The duration model is estimated using bond issuance data from 24 euro area banks sourced
from S&P Capital IQ data (formerly Credit Market Analysis). The sample covers the period
2015Q1 to 2017Q4 and contains 590 single-name bonds issued by banks in that period. For each
individual bank, the data are aggregated by calculating a quarterly average duration of bonds
issued by the bank, weighted by the volume of each bond. The intercept and slope of the log-
linearized yield curve are calculated by evaluating the relevant parts of equation (333) for each
bank-quarter combination. In particular, the intercept term log(CDS(τ = 1)) is calculated as the
sum of components independent of τ , and the slope term ∂ log(CDS(τ)

∂ log(τ) is the sum of components
corresponding to coefficients β7−β10 that multiplies log(τ).

Variables Observations Mean Median Standard deviation
NewDurationLiab 290 7.6874 6.8740 5.4300
log(CDS(τ = 1)) 290 -3.1502 -3.5452 1.4398
∂ log(CDS(τ)

∂ log(τ) 290 0.1771 0.1794 0.0487

Table 47: Summary statistics: Unsecured wholesale duration model

Results

The empirical results summarised in Table 48 show that banks increase their funding maturities
when log-linearized CDS spreads increase along the entire yield curve. Similarly, when the
slope of the yield curve increases, maturities-at-issuance also become longer.

C.11 Liquidity management

Methodology

Three equations introduced in Section 4.2.3.3 characterise a bank funding mix across the four
categories of wholesale funding. The first regression maps the proportion of secured funding

ECB Working Paper Series No 2855 188



NewDurationLiabS
i,t

log(CDSi,t−1(τ = 1)) 1.099∗∗

(0.000)
∂ log(CDSi,t−1(τ))

∂ log(τ) 4.964
(0.307)

const. 10.74∗∗

(0.000)
Banks 24
Obs 290
p-values in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 48: Duration of newly issued financial bonds: 2015 Q1 – 2017 Q4

(secured short-term debt, that is, repos, SECST and secured long-term debt, that is, ABS or
covered bonds SECLT , jointly) within wholesale funding:

logit(γSEC
WHSL,i,t) = β0+4β1 SpreadSTi,t +4β2 SpreadLTi,t

+β3 log(max(LCRi,t−1−T LCR,0))+ εi,t

where:
SpreadSTi,t = EirLiabNewFINS

i,t −EirLiabNewSECST
i,t

SpreadLTi,t = EirLiabNewUNSEC
i,t −EirLiabNewSECLT

i,t

denote the spread between the cost of unsecured and secured funding at the short maturity
end,and the spread between the cost of unsecured and secured funding at the long maturity end,
respectively. LCR denotes the liquidity coverage ratio of a bank and T LCR is the regulatory
minimum liquidity coverage ratio.

The second equation expresses the proportion of long-term debt in secured debt:

logit(γLT
SEC,i,t) = β0+4β1SpreadSECi,t

+β2log(NSFRi,t−1−T NSFR)
+β3EncumberableGovBu f f eri,t

+β4EncumberableLoanBu f f eri,t + εi,t

where:
SpreadSECi,t = EirLiabNewSECLT

i,t −EirLiabNewSECST
i,t

denotes the spread between the cost of long-term and short-term secured funding, EncumberableGovBu f f er
the volume of unencumbered sovereign bonds relative to the demand of a bank for wholesale
funding over one year, and EncumberableLoanBu f f er the volume of unencumbered loans eli-
gible for use as collateral in the creation of asset-backed securities relative to a bank’s demand
for wholesale funding over one year, NSFRthe net stable funding ratio of a bank, and T NSFR
stands for the regulatory minimum net stable funding ratio.

The third and final equation explains the proportion of long-term debt in unsecured debt:
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logit(γLT
UNSEC,i,t) = β0+4β1SpreadUNSECi,t

+β2log(NSFRi,t−1−T NSFR)+ εi,t
(334)

where:
SpreadUNSECi,t = EirLiabNewUNSEC

i,t −EirLiabNewFINS
i,t

denotes the spread between the cost of long-term and short-term unsecured funding.
The three equations are estimated separately using a pooled logistic regression.

Data

The volumes of overall (encumbered and unencumbered) sovereign bond holdings and loans
are sourced from FINREP templates 04 and 05. Data from COREP 72 on high-quality liquid
assets are then used to find the degree of encumberance for sovereign bonds and loans. The
level of LCR is taken from COREP 76, and NSFR from COREP 84 (where the information on
NSFR is available only from 2021Q2 onwards). Relative prices within the available categories
of wholesale funding are taken from COREP 69. Data are available for 82 banks in the euro
area from 2016Q3 to 2021Q4.

Regressions are estimated only for banks that use two types of funding corresponding to the
relevant binary decision. In the regression of γSEC

WHSL, we use information on 70 banks that issue
both secured and unsecured funding (12 banks that do not issue secured funding are excluded
from the estimation).139 In the regression of γLT

SEC, we use data on 23 banks that issue repos and
ABS or covered bonds (we exclude 47 banks that issue no ABS or covered bonds).140 In the
regression of γLT

UNSEC we use the full sample of 82 banks.

Variables Observations Mean Median Standard deviation
γ SEC WHSL 1,723 0.2990 0.1479 0.3382
γ LT SEC 1,230 0.0689 0.0000 0.2159
γ LT UNSEC 1,701 0.1454 0.0265 0.2569
SpreadST (in bps) 1,723 30.0297 23.5299 46.6995
SpreadLT (in bps) 1,723 34.7975 10.0000 81.3459
SpreadSEC (in bps) 1,723 30.0297 23.5299 46.6995
SpreadUNSEC (in bps) 1,723 19.0526 4.9517 95.0155
log(NSFR−T NSFR) 239 -1.0402 -1.0536 0.6071
log(LCR−T LCR) 1,723 -0.1475 -0.2662 0.8253
log(EncumberableGovBu f f er) 1,723 -0.6188 -0.6362 1.5943
log(EncumberableLoanBu f f er) 1,278 1.4338 1.7940 1.7974

Table 49: Summary statistics: liquidity management regressions

Results

Table 50 presents the results of the estimation. Bank propensity to issue secured rather than
unsecured debt increases with the premium a bank pays to attract financial sight deposits as
opposed to repos and, to a smaller and statistically less significant degree, with the premium on

139In the model their share of secured funding for the excluded banks is always 0%.
140The share of long-term secured funding for these banks is set to 0% in the model.
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unsecured versus secured funding. Additionally, the larger bank’s excess short-term liquidity
coverage, the more likely the bank is to issue secured funding.

The proportion of long-term funding within secured funding depends on the available pool
of encumberable assets that are needed to create the different types of secured funding. If the
available stock of encumberable government bonds increases, the share of long-term secured
funding decreases in favour of more repos. On the other hand, if the volume of encumberable
loans increases, the proportion of these long-term securities also increases. Furthermore, the
higher the NSFR, the more likely a bank is to issue short-term funding. Lastly, the higher the
maturity premium, the more likely a bank is to issue long-term funding.

The proportion of long-term funding within unsecured funding is empirically linked to the
net stable funding ratio. The larger the excess stable funding beyond regulatory requirements,
the more likely the bank will be to fund itself at shorter maturities. The effect of the maturity
premium is statistically insignificant.

(1) (2) (3)
γSEC

WHSL γLT
SEC γLT

UNSEC
SpreadSTt 0.004∗∗

(0.001)
SpreadLTt 0.0001

(0.855)
SpreadSECt 0.027+

(0.082)
SpreadUNSECt -0.003

(0.341)
log(LCRt−1−T LCR) 0.195∗∗

(0.006)
log(NSFRt−1−T NSFR) -1.823 -0.662∗

(0.124) (0.043)
EncumberableGovBu f f ert -1.925∗∗

(0.005)
EncumberableLoanBu f f ert 2.173∗

(0.010)
const. -0.724∗∗ -11.997∗∗ -2.491∗∗

(0.000) (0.001) (0.000)
Banks 70 23 82
Obs 1,339 49 237
p-values in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 50: Liquidity management regressions: 2016 Q3 – 2021 Q4

C.12 Management buffer

Methodology

The management buffer from equation (295) represents an internal target for the CET1 ratio in
addition to regulatory requirements and buffers. The empirical equation reads as follows:
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log(ManBu fi,t) =β0 +β1 log(TAi,t)+β2
FCIi,t

TAi
+β3 netNPLRi,t

+β4 CovbonRatioi×
VolLiabTotalSECLT

i,t

VolLiabTotali,t
+β5 (1−CovbonRatioi)×

VolLiabTotalSECLT
i,t

VolLiabTotali,t

+β6
VolLiabTotalNFPS

i,t

VolLiabTotali,t
+β7

VolLiabTotalSOV
i,t

VolLiabTotali,t
+β8

VolLiabTotalWHSL
i,t

VolLiabTotali,t
+ εi,t

where TA represents total bank assets, FCI
TA is a ratio of gross fee and commission income to

total assets, netNPLR is an NPL ratio net of loan loss provisions. Furthermore, the struc-
ture of bank funding is mapped by the proportion of funding sourced from the issuance of
covered bonds CovbonRatio×VolLiabTotalSECLT , other long-term secured funding such as
asset-backed securities (1−CovbonRatio)×VolLiabTotalSECLT , funding from the retail sector
VolLiabTotalNFPS, sovereigns VolLiabTotalSOV , and the unsecured wholesale market VolLiabTotalWHSL

in total bank debt funding VolLiabTotal.
The equation is specified log-linearly, and estimated in a pooled OLS setting.

Data

We do not have information on actual bank management buffers. For this reason, we need
to construct a proxy quantity by observing the capital surplus of banks paying out positive
dividends. If a bank pays out dividends strictly larger than zero, but strictly smaller than their
distributable profit (a condition we term unrestricted), we assume that the next period’s capital
surplus reflects an internal capital target.141 142

The calculation of proxy management buffers is performed based on end-of-year data sourced
from COREP/FINREP. For the construction of capital ratios in excess of requirements, we use
COREP 03.00 (on capital adequacy); for the construction of unrestricted dividend payments,
we use FINREP 02.00 and 46.00 (on profit and loss and changes in equity, respectively).

The sample includes 119 banks, starts in 2014 and ends in 2020. The analysed observations
include 670 bank-year points, 294 observations of management buffers (for these banks and
periods where the dividend payouts appear unrestricted).

The left-hand side variables in the regression of management buffers are sourced from FIN-
REP 01.01 (on balance sheet’s asset side), FINREP 01.02 and 08.01a for the composition and
breakdown of liabilities, FINREP 12.01a for changes in credit loss allowances, and FINREP
18.00a for information on non-performing exposures. We focus on year-end observation only
which matches the frequency of the management buffer proxy.

Results

Table 52 presents the results of the estimation. Management buffers are generally lower for large
banks. A larger share of lending to sovereigns, central banks NCB and to the non-financial pri-
vate sector NFPS reduces the management buffer compared to reference banks with a relatively

141A weakness of this approach is that the only guiding motive for the setting of dividends is meeting an internal
capital target, which in reality is not always the case. For example, a firm might want to smooth out dividend
payments over the years.

142The calculation excludes custodian and state-owned banks. The capitalisation of these banks is often far
above regulatory requirements and buffers. The guiding motive behind these surpluses is likely not a specific
management buffer, but an idiosyncratic, internally (or externally) mandated balance sheet structure that leads to
large risk-weighted capital ratios.
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Variables Observations Mean Median Standard deviation
ManBu f 653 0.0752 0.0505 0.1045
VolAssetTotalNCB

VolAssetTotal 666 0.0811 0.0691 0.0712
VolAssetTotalNFPS

VolAssetTotal 666 0.5183 0.5779 0.2589
VolLiabTotalWHSL

VolLiabTotal 666 0.2491 0.1784 0.2299
(1−CovbonRatio)VolLiabTotalSECLT

VolLiabTotal 666 0.0047 0.0000 0.0131
CovbonRatioVolLiabTotalSECLT

VolLiabTotal 666 0.0581 0.0169 0.1366
netNPLR 670 0.0445 0.0150 0.0779
FCI
TA 670 0.0115 0.0073 0.0399

log(TA) 670 10.9684 10.9806 1.5139

Table 51: Summary statistics: management buffer regressions

high share of lending to private financial institutions. Furthermore, a higher NPL ratio increases
internal capital buffers.

On the liability side, a larger share of unsecured wholesale funding compared to retail fund-
ing increases the management buffer. Analogously, a larger share of covered bonds tends to
increase the management buffers,143 whereas a larger share of asset-backed securities tends to
decrease it. Finally, a larger share of fee and commission income decreases the target capital
buffers.

143It is possibly a consequence of double recourse against the collateral and the bank issuing the covered bond.
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log (ManBuf) (in %)
VolAssetTotalNCB

t
VolAssetTotalt

-1.386
(0.192)

VolAssetTotalNFPS
t

VolAssetTotalt
-0.199
(0.661)

VolLiabTotalWHSL
t

VolLiabTotalt
0.733+

(0.070)

CovbonRatioVolLiabTotalSECLT
t

VolLiabTotalt
0.404

(0.811)

(1−CovbonRatio)VolLiabTotalSECLT
t

VolLiabTotalt
-6.468+

(0.092)
netNPLRt 0.419

(0.739)
FCIt
TAt

-22.82+

(0.079)
log(TAt) -0.247∗∗

(0.000)
const. 0.0503

(0.947)
Banks 119
Obs 294
p-values in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 52: Management buffer regressions: 2014 Q1 – 2020 Q4
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D Empirical models of the pass-through of economic condi-
tions into bank parameters

D.1 IFRS 9 risk parameters

The assessment of credit risk impairments depends on the projection of the transitions among
the three stages of IFRS 9 impairment (see Section 4.1.3) and the calculation of the expected
credit loss (ECL) (see Section 4.1.4). To achieve this, we estimate two sets of essential IFRS
9 credit risk parameters. The first set includes transition rates (TRs) (see Section D.1.1), while
the second set involves loss-given default (LGD) and loss rate (LRs) parameters (see Appendix
D.1.2).

D.1.1 Transition rates

The transition rate matrix is a stochastic matrix comprising nine elements that governs the flows
of exposures among the individual impairment stages (S1, S2 and S3). However, due to the
constraint that the sum of elements in each row of the matrix equals one, we only model the six
transition rates that lie outside of the main diagonal. These are the transition rates of S1 to S2
T R12, from S1 to S3 T R13, from S2 to S1 T R21, from S2 to S3 T R23, from S3 to S1 T R31,
and from S3 to S2 T R32.

Methodology

Transition rates are independently estimated for five sectors: non-financial corporations (NFC),
households - house purchases (HHHP), households - consumer credit (HHCC), financial cor-
porations (FIN), and sovereigns (SOV ). The estimates of transition rate regressions are based
on the banks’ own projections of transition rates for stress test scenarios from the EBA/SSM
stress test exercises in 2018 and 2021. This identification scheme follows the approach outlined
by Niepmann and Stebunovs [2018] and allows circumventing the unavailability of longer time
series data for variables under the IRFS9 standard, which only came into force in 2019. A po-
tential limitation of this approach is that the projected transition rates may not fully represent
the true sensitivity of their portfolio risks to actual macro-financial scenarios. However, the
quality assurance process and the utilisation of data from the two subsequent EBA/SSM stress
test exercises should have addressed any known systematic biases.

The four transition rates {T R12,T R13,T R21,T R23} are jointly estimated as a system of
equations following the logit-transformed weighted seemingly unrelated regression (SUR) ap-
proach with weighting of observations. This regression model implicitly acknowledges the
potential correlation among the error terms of the four transition rates, providing a robust es-
timation for each sector’s transition probabilities.144 For K ∈ {12,13,21,23}, the system of
equations takes the following form:

144The estimation procedure is handled using the sureg function in Stata.

ECB Working Paper Series No 2855 195



logit(T R12S,C
i,t ) = β

12,S
0 +∑

K
β

12,S,K
1 logit(T R[K]S,Ci,t−1)+β

12,S
2 ExpRel12,S,C

t−1

+Xtβ
12,S
Xβ
12,S
Xβ
12,S
X +ΩΩΩβ

12,S
Ω

β
12,S
Ω

β
12,S
Ω

+ ε
12,S,C
i,t

logit(T R13S,C
i,t ) = β

13,S
0 +∑

K
β

13,S,K
1 logit(T R[K]S,Ci,t−1)+β

13,S
2 ExpRel13,S,C

t−1

+Xtβ
13,S
Xβ
13,S
Xβ
13,S
X +ΩΩΩβ

13,S
Ω

β
13,S
Ω

β
13,S
Ω

+ ε
13,S,C
i,t

logit(T R21S,C
i,t ) = β

21,S
0 +∑

K
β

21,S,K
1 logit(T R[K]S,Ci,t−1)+β

21,S
2 ExpRel21,S,C

t−1

+Xtβ
21,S
Xβ
21,S
Xβ
21,S
X +ΩΩΩβ

21,S
Ω

β
21,S
Ω

β
21,S
Ω

+ ε
21,S,C
i,t

logit(T R23S,C
i,t ) = β

23,S
0 +∑

K
β

23,S,K
1 logit(T R[K]S,Ci,t−1)+β

23,S
2 ExpRel23,S,C

t−1

+Xtβ
23,S
Xβ
23,S
Xβ
23,S
X +ΩΩΩβ

23,S
Ω

β
23,S
Ω

β
23,S
Ω

+ ε
23,S,C
i,t

where transition rates are indexed by bank i, sector S and country C, and t refers to quarters.
Variables ε represent the error terms, which are assumed to be independent between observa-
tions, but may exhibit cross-equation correlations for individual observations. The variables
ExpRel are defined as in equation (31). The model is estimated in logit space, ensuring that
the projected transition rates remain bounded between 0 and 1. Moreover, the observations are
weighted by the volume of non-defaulted exposures at the individual portfolio level to ensure
the highest possible representativeness of the coefficient estimates.

Each transition rate is a function of the lagged values of (potentially) all transition rates
and a set of lagged values of macrofinancial variables at the country level grouped in a vector
Xt. The selected macrofinancial variables include quarterly growth rates of real GDP (Y ERgr),
imports of goods and services (MT Rgr), residential property prices (IHXgr), HICP price level
(HICgr), prices of exports of goods and services (XT Dgr), and equity index (ESXgr), as well
as variables in levels: unemployment rate (URX), long-term interest rate (LT N), short-term
interest rate (ST N), and spread between long- and short-term interest rates (SPR).

In particular, we get:

Xtβ
K,S

β
K,S

β
K,S =∑

p
(β K,S

p,3 Y ERgrC
t−p +β

K,S
p,4 MT RgrC

t−p +β
K,S
p,5 IHXgrC

t−p +β
K,S
p,6 HICgrC

t−p

+β
K,S
p,7 XT DgrC

t−p +β
K,S
p,8 ESXgrC

t−p +β
K,S
p,9 ∆URXC

t−p +β
K,S
p,10LT NC

t−p

+β
K,S
p,11ST NC

t−p +β
K,S
p,12SPRC

t−p)

Suitable macrofinancial variables, along with their optimal lags, are carefully selected through
a hybrid approach combining statistical learning model selection techniques, including the least
absolute shrinkage and selection operator (lasso) and Bayesian Model Averaging (BMA), as
well as expert judgement. The ultimately selected macrofinancial variables, as well as their
optimal lags, can be observed in the tables provided within the results subsection of this chap-
ter.145

Finally, we include a set of dummy variables ΩΩΩ that control for each:

• Vintage of the stress test data: 1 binary variable, taking value of 1 for the EBA/SSM stress
test exercises in 2021 (and 0 for the EBA/SSM stress test exercise in 2018);

145The lasso technique aids in identifying the most relevant variables and their respective lags by applying reg-
ularisation, while BMA facilitates the evaluation and comparison of multiple potential models. Expert judgment
complements the automated selection process by incorporating domain knowledge and insights. In practise, Stata
is used for the statistical part, taking advantage of its lasso and bma functions.
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• Scenario type: 1 binary variable, taking value of 1 for adverse scenarios (and 0 for base-
line scenarios).

In particular, we get:

ΩΩΩβ
K,S
Ω

β
K,S
Ω

β
K,S
Ω

= β
K,S
13 ω

vintage +β
K,S
14 ω

scenario (335)

Please note that the coefficient estimates for dummy variables are not included in the tables
within the results subsection of this chapter.

The transition rates {T R31,T R32} (i.e. cure rates) are estimated using separate SUR sys-
tems for each sector:
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(336)

for K ∈ {31,32}.
The general specification of the model and the explanatory macrofinancial variables align

with the approach to estimating {TR12, TR13, TR21, TR23} systems. This concerns the logit
transformation, the relative amount of exposures ExpRel, as well as the dummy control vari-
ables from ΩΩΩ. The observations are weighted by the volume of defaulted exposures at the
individual portfolio level.

Data

The EBA/SSM stress test methodology requires banks to provide their annual projections of
four transition rates {TR12, TR13, TR21, TR23} for both baseline and adverse stress test sce-
narios. Transition rates {TR31, TR32} are calculated based on the information reported by
the banks for the purpose of the LGD calculation. This information provides the proportion of
S3 exposures that cure through repayments with zero losses in all years until maturity. These
bank-specific lifetime cure rates are then transformed into annual cure rates, accounting for the
average maturity of the portfolio.146 Subsequently, the annual projections of transition rates are
converted into quarterly values, forming a transition probability matrix, assuming the constancy
of the matrix across all four quarters of each year.

Similarly to the transition rates, the information on exposure volumes in the individual
stages is sourced from the EBA/SSM stress test templates. For the purpose of estimation, the
data for the baseline and adverse scenarios of the bank submissions in 2018 and 2021 are pooled
together, separately for each economic sector and for {TR12, TR13, TR21, TR23} and {TR31,
TR32} systems. The summary statistics for the transition rates are reported in Table 53.

Historical macroeconomic and financial data are sourced from the SDW. The macroeco-
nomic and financial data for the projection periods of the 2018 and 2021 stress tests are obtained
from the macrofinancial scenarios used in the respective stress testing exercises. Summary

146The maturity structure was cross-checked with the average maturity of defaulted exposures as reported in
COREP. This cross-check aimed to rule out substantial differences in the maturity between performing and non-
performing exposures for some banks.

ECB Working Paper Series No 2855 197



statistics for both macrofinancial variables and the relative amount of exposures in individual
stages are reported in Table 54.

Variables Observations Mean Median Standard deviation
T R12 NFC 11358 0.0197 0.0130 0.0261
T R12 HHHP 9668 0.0146 0.0091 0.0349
T R12 HHCC 10046 0.0176 0.0132 0.0212
T R12 FIN 4066 0.0106 0.0022 0.0314
T R12 SOV 4010 0.0036 0.0006 0.0111
T R13 NFC 11986 0.0026 0.0015 0.0032
T R13 HHHP 9732 0.0023 0.0012 0.0034
T R13 HHCC 10432 0.0038 0.0025 0.0053
T R13 FIN 4454 0.0015 0.0005 0.0039
T R13 SOV 4482 0.0003 0.0001 0.0006
T R21 NFC 10832 0.0557 0.0351 0.0703
T R21 HHHP 9110 0.0722 0.0605 0.0755
T R21 HHCC 9692 0.0686 0.0548 0.0710
T R21 FIN 3878 0.0411 0.0165 0.0638
T R21 SOV 3756 0.0340 0.0121 0.0531
T R23 NFC 11536 0.0158 0.0103 0.0210
T R23 HHHP 9636 0.0241 0.0156 0.0302
T R23 HHCC 10146 0.0281 0.0189 0.0358
T R23 FIN 4080 0.0092 0.0031 0.0163
T R23 SOV 4116 0.0065 0.0012 0.0161
T R31 NFC 4770 0.0181 0.0089 0.0429
T R31 HHHP 4862 0.0127 0.0045 0.0347
T R31 HHCC 4634 0.0227 0.0062 0.0597
T R31 FIN 1612 0.0415 0.0074 0.0745
T R31 SOV 1638 0.0283 0.0018 0.1110
T R32 NFC 4744 0.0176 0.0092 0.0297
T R32 HHHP 4774 0.0130 0.0054 0.0283
T R32 HHCC 4568 0.0255 0.0077 0.0641
T R32 FIN 1568 0.0321 0.0052 0.0677
T R32 SOV 1614 0.0115 0.0013 0.0381

Table 53: Summary statistics: Transition rates model - transition rates

Results

Tables 55 - 59 present the transition rates model estimation results for five sectors. In general,
the autoregressive component is statistically significant and relatively high (above 0.85, but
below 1) between sectors. However, explicit dependency among the individual transition rates
is found to be significant only in a handful of cases.

Regarding macrofinancial variables, an increase in real GDP growth rates (Y ERgr), resi-
dential property prices (IHXgr), prices of exports of goods and services (XT Dgr), and equity
index (ESXgr) leads to a decrease in migrations to lower asset quality stages (i.e. TR12, TR13,
and TR23) and an increase in migrations to higher asset quality stages (i.e. TR21, TR31, and
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Variables Observations Mean Median Standard deviation
Y ERgr 69046 0.0015 0.0038 0.0308
MT Rgr 69046 0.0037 0.0083 0.0558
IHXgr 69046 0.0015 0.0066 0.0208
HICgr 69046 0.0027 0.0030 0.0032
XT Dgr 69046 0.0024 0.0031 0.0112
ESXgr 69046 0.0050 0.0108 0.0816
URX 72680 0.0857 0.0771 0.0434
LT N 72680 0.0079 0.0059 0.0128
ST N 72680 -0.0027 -0.0033 0.0032
SPR 72680 0.0107 0.0089 0.0112
NonDe f ExpS1Rel NFC 18920 0.6145 0.7592 0.3520
NonDe f ExpS1Rel HHHP 15880 0.6436 0.8275 0.3646
NonDe f ExpS1Rel HHCC 16880 0.5871 0.7387 0.3565
NonDe f ExpS1Rel FIN 6960 0.7140 0.9310 0.3923
NonDe f ExpS1Rel SOV 6960 0.7510 0.9686 0.3941
NonDe f ExpS2Rel NFC 18920 0.1177 0.0840 0.1424
NonDe f ExpS2Rel HHHP 15880 0.0939 0.0616 0.1308
NonDe f ExpS2Rel HHCC 16880 0.1096 0.0694 0.1501
NonDe f ExpS2Rel FIN 6960 0.0684 0.0079 0.1474
NonDe f ExpS2Rel SOV 6960 0.0439 0.0048 0.1204
De f ExpRel NFC 18920 0.0678 0.0264 0.1178
De f ExpRel HHHP 15880 0.0625 0.0224 0.1255
De f ExpRel HHCC 16880 0.1033 0.0512 0.2167
De f ExpRel FIN 6960 0.0176 0.0015 0.0694
De f ExpRel SOV 6960 0.0050 0.0006 0.0130

Table 54: Summary statistics: Transition rates model - explanatory variables

TR32). On the contrary, an increase in imports of goods and services (MT Rgr), HICP infla-
tion (HICgr), unemployment rate (URX), and interest rate spread (SPR) leads to an increase in
migrations to lower stages and a decrease in migrations to higher stages.

The impact of the relative amount of exposures in a particular stage on the respective transi-
tion rates is generally more significant for the S2 and S3 exposures. The signs of the coefficients
are typically negative for S2 (and also S1) exposures, but positive for S3 exposures. This means
that when the relative amount of S2 exposures increases, a higher percentage of S2 exposures
remains in S2. On the contrary, when the relative amount of S3 exposures increases, a higher
percentage of S3 exposures tends to cure and move to S1 or S2.

D.1.2 LGD and LR Parameters

Loss given default (LGD) parameters refer to projected losses associated with possible default
events (i.e. transition to S3). The model employs two LGD parameters and three loss rate (LR)
parameters. Specifically, the two LGD parameters are as follows: the percentage loss associated
with exposures that transition from S1 to S3 (LGD13) and the percentage loss associated with
exposures that transition from S2 to S3 (LGD23).

Loss rate (LR) parameters refer to the expected credit losses due to default (S3) events
expected over the lifetime of exposures. In total, we model three LR parameters: lifetime
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NFC
(1) (2) (3) (4) (5) (6)

TR12 TR13 TR21 TR23 TR31 TR32

logit(T R12t−1) 0.9099∗∗ 0.0655∗∗

(0.000) (0.000)
logit(T R13t−1) 0.9483∗∗

(0.000)
logit(T R21t−1) 0.0388∗∗ 0.8959∗∗ 0.0054∗∗

(0.000) (0.000) (0.000)
logit(T R23t−1) 0.9203∗∗

(0.000)
logit(T R31t−1) 0.9735∗∗

(0.000)
logit(T R32t−1) 0.9723∗∗

(0.000)
Y ERgrt−1 -1.0070+ -0.7982∗∗ 5.3353∗∗ 16.9986∗∗ 15.9992∗∗

(0.081) (0.000) (0.000) (0.000) (0.000)
HICgrt−1 10.6752∗∗ -6.6612∗∗ 5.3642∗∗ -5.9042∗∗

(0.000) (0.000) (0.000) (0.000)
ESXgrt−4 -0.4341∗∗ 0.1651∗∗

(0.000) (0.000)
∆URXt−2 4.3143∗∗ 1.7812∗∗ -3.8325∗∗ 2.3150∗∗ -16.3984∗∗ -15.6757∗∗

(0.003) (0.002) (0.009) (0.000) (0.000) (0.000)
SPRt−1 1.4867∗∗ 1.4497∗∗

(0.000) (0.000)
ExpRelt−1 -0.2240∗∗ -0.3036∗∗ 0.0608+ 0.0482

(0.003) (0.000) (0.090) (0.202)
const. -0.4030∗∗ -0.3523∗∗ -0.0551+ -0.3596∗∗ -0.3383∗∗ -0.3186∗∗

(0.000) (0.000) (0.080) (0.000) (0.000) (0.000)
Obs 9487 9487 9487 9487 4338 4338
Banks 89 89 89 89 89 89
R2 0.8457 0.9315 0.8401 0.9332 0.9756 0.9736
p-values in parentheses; ∆ stands for differences
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 55: Transition rates regressions for NFC: 2018 - 2021 stress test submissions

expected loss rate of the exposures that begin the quarter in S1 and end it in S2 (LR12), lifetime
expected loss rate for all exposures that begin and end the quarter in S2, regardless of the stage
they end up eventually during their lifetime (LR2X), and lifetime expected loss associated with
all exposures that are in S3 at the beginning of each quarter (LR33).

Methodology

The methodology of estimating LGDs and LRs is akin to the methodology used for the transition
rates, as introduced in Appendix D.1.1. The parameters are again estimated independently for
five sectors: non-financial corporations (NFC), households - house purchase (HHHP), house-
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HHHP
(1) (2) (3) (4) (5) (6)

TR12 TR13 TR21 TR23 TR31 TR32

logit(T R12t−1) 0.9321∗∗ 0.0886∗∗

(0.000) (0.000)
logit(T R13t−1) 0.9269∗∗

(0.000)
logit(T R21t−1) 0.0576∗∗ 0.8842∗∗ -0.0049∗

(0.000) (0.000) (0.020)
logit(T R23t−1) -0.0536∗∗ 0.9256∗∗

(0.000) (0.000)
logit(T R31t−1) 0.9521∗∗

(0.000)
logit(T R32t−1) 0.9510∗∗

(0.000)
Y ERgrt−1 -0.6435 -2.9237∗∗ 4.1039∗∗ 0.6345∗ 0.6163∗

(0.183) (0.000) (0.000) (0.015) (0.019)
HICgrt−1 7.4814∗∗ 5.4440∗∗

(0.000) (0.000)
ESXgrt−4 -0.4933∗∗ 0.1265+ 0.1760∗

(0.000) (0.088) (0.019)
∆URXt−2 6.1125∗∗ -1.8280 0.6947 -6.5560∗∗ -6.4115∗∗

(0.000) (0.117) (0.186) (0.000) (0.000)
SPRt−1 0.7717+ 1.0080∗∗

(0.082) (0.000)
ExpRelt−1 -0.2437∗∗ -1.1151∗∗ -0.5388∗∗ 0.0990∗∗ 0.0821∗∗

(0.000) (0.000) (0.000) (0.000) (0.003)
const. -0.2295∗∗ -0.3131∗∗ -0.0652+ -0.3285∗∗ -0.4421∗∗ -0.4459∗∗

(0.000) (0.000) (0.097) (0.000) (0.000) (0.000)
Obs 7646 7646 7646 7646 4356 4356
Banks 89 89 89 89 89 89
R2 0.8904 0.9210 0.8686 0.9056 0.9564 0.9569
p-values in parentheses; ∆ stands for differences
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 56: Transition rates regressions for HHHP: 2018 - 2021 stress test submissions

holds - consumer credit (HHCC), financial corporations (FIN) and sovereigns (SOV).147

The loss given default parameters and loss rates are estimated separately as two systems
of equations following again the logit-transformed weighted seemingly unrelated regression
(SUR) implemented in Stata.148 This approach implicitly acknowledges that the error terms of

147Parameter estimates for the sovereign sector are utilized to project LGDs and LRs for the central banks (CB)
sector. Additionally, the regression coefficients for LGDs and LRs in the rest of the world (ROW) sector are derived
as a linear combination of NFC, HHHP and HHCC sector coefficients. This derivation is based on bank-specific
weights, which map the share of these sectors to exposures in countries outside the euro area.

148In theory, a loss rate parameter can be expressed as a complex forward-looking function involving future transi-
tion rates, LGDs, exposure amounts and interest rates until the exposure’s maturity. However, such forward-looking
calculations are not supported by the construction of the BEAST model. Therefore, a reduced-form representation
and modelling of the LRs are adopted.
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HHCC
(1) (2) (3) (4) (5) (6)

TR12 TR13 TR21 TR23 TR31 TR32

logit(T R12t−1) 0.9247∗∗ 0.0466∗∗

(0.000) (0.000)
logit(T R13t−1) 0.9196∗∗

(0.000)
logit(T R21t−1) 0.0435∗∗ 0.9110∗∗ 0.0126∗∗

(0.000) (0.000) (0.000)
logit(T R23t−1) 0.9370∗∗

(0.000)
logit(T R31t−1) 0.9854∗∗

(0.000)
logit(T R32t−1) 0.9813∗∗

(0.000)
Y ERgrt−1 -0.7890∗ -1.9064∗∗ 1.6837∗∗

(0.036) (0.000) (0.000)
HICgrt−1 2.2002 3.3747∗∗ -5.4073∗∗ 12.5982∗∗ -3.4481∗∗

(0.235) (0.002) (0.000) (0.000) (0.000)
ESXgrt−4 -0.2795∗∗ 0.0368+ 0.0666∗∗

(0.000) (0.093) (0.000)
∆URXt−2 4.8455∗∗ -1.7971+ 2.1468∗∗ -1.1908∗

(0.000) (0.074) (0.000) (0.010)
SPRt−1 2.1567∗∗ 1.0363∗∗

(0.000) (0.000)
ExpRelt−1 -0.6586∗∗ -0.3461∗∗ 0.0910∗∗ 0.0334

(0.000) (0.000) (0.000) (0.202)
const. -0.2478∗∗ -0.5179∗∗ 0.0322 -0.2493∗∗ -0.1561∗∗ -0.1625∗∗

(0.000) (0.000) (0.126) (0.000) (0.000) (0.000)
Obs 8428 8428 8428 8428 4166 4166
Banks 89 89 89 89 89 89
R2 0.8861 0.9155 0.9051 0.9350 0.9850 0.9837
p-values in parentheses; ∆ stands for differences
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 57: Transition rates regressions for HHCC: 2018 - 2021 stress test submissions

the variables within each system can be correlated. The two SUR systems are as follows:
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for K ∈ {13,23}. And:
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for K ∈ {12,2X ,33} and L ∈ {12,13,21,23,31,32}. {LGD13,LGD23} are the projected loss
given default parameters and {LR12,LR2X ,LR33} the projected loss rates parameters by bank
i for sector S in country C and t refer to quarters. Each modelled risk parameter depends on the
lags of (potentially) all other risk parameters in the system and a set of macrofinancial variables
XtXtXt , which are identical to the transition rate regressions in Appendix D.1.1. The selection of
suitable macrofinancial variables and their optimal lags is again determined by a combination
of lasso, BMA and expert judgment.

In the LGD equations, we also consider lifetime cure rates CureRateLT , which represent
the component of LGD corresponding to the estimated cumulative proportion of S3 exposures
that cure through repayment with zero loss during a workout period (see equation (50)). In
LR equations, we include transition rates (T R) and point-in-time LGDs (LGDpit) (see equation
(51)). Transition rates and point-in-time LGDs are natural choices for loss rates regressors, as
LRs represent the expected lifetime loss expressed as a percentage of current exposure. As such,
LRs should be influenced by the information contained in the transition rates matrix (i.e., the
likelihood of going up or down between the impairment stages) and by the loss rates associated
with default (S3) events. Note that lifetime cure rates, transition rates, and point-in-time LGDs
are logit-transformed before entering the regression.

As with the transition rate model, we also incorporate the relative amount of S1 exposures in
the given sector of each bank NonDe f ExpS1Rel in the LGD13 and LR12 equations, the relative
amount of S2 exposures in the given sector of each bank NonDe f ExpS2Rel in the LGD23 and
LR2X equations, and the relative amount of S3 exposures in the given sector of each bank
De f ExpRel for the LR33 equation (see equation (31)). Furthermore, we again control for the
vintage and scenario of the stress test in each system by a set of dummies in Ω to account for
possible variations in different scenarios and stress test exercises.

Data

Similarly to the transition rates, the estimation of the LGD and LR equations is based on the data
submitted by the banks in the EBA stress test exercises conducted in 2018 and 2021. As part of
the EBA stress test methodology, banks are required to provide their projections of two LGDs
{LGD13, LGD23} and three LRs {LR12, LR2X, LR33} for each scenario. Bank projections
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are annual in nature, so they need to be subsequently transformed into quarterly values for the
purpose of the model, assuming the constancy of the values in the four quarters of each year.

In addition, in this case, the data for both the baseline and the adverse scenarios are pooled
together for each sector. Summary statistics for LGDs and LRs are reported in Table 60.

The historical macroeconomic and financial data are again sourced from the SDW, while
the macroeconomic and financial data corresponding to the projection periods of 2018 and 2021
stress tests are obtained from the macrofinancial scenarios used in those respective stress testing
exercises. Information on exposures and point-in-time cure rates and LGDs is sourced from the
EBA stress test templates. The summary statistics for both macrofinancial variables and the
relative amount of exposures in the individual stages are identical to those of the transition rates
model and can be reviewed in Table 54.

Results

Tables 61 - 65 present the estimation results for the LGD and LR models in the corporate (NFC),
households - house purchase (HHHP), households - consumer credit (HHCC), financial (FIN),
and sovereign (SOV ) sectors, respectively.

Regarding LGD estimations, the autoregressive component is statistically significant and
relatively high (above 0.7, but below 1) among sectors. However, the explicit dependencies
between LGDs within the systems are not significant. The LGD parameters also show a negative
relationship with point-in-time cure rates, which is intuitive since an increase in S3 exposures
that cure through repayments should lead to a decrease in the corresponding LGDs.

Regarding macrofinancial variables, an increase in real GDP growth rates (Y ERgr), residen-
tial property prices (IHXgr), export prices of goods and services (XT Dgr), and the equity index
(ESXgr) causes a decrease in LGD. On the other hand, an increase in HICP inflation (HICgr),
unemployment rate (URX), and interest rate spread (SPR) causes an increase in LGDs.

The impact of the relative amount of exposures in a particular stage on the respective LGDs
is significant only for the sector SOV . The sign of the coefficients is positive for S1 exposures
and negative for S2 exposures.

Moving on to the LR estimations, we observe a pattern similar to the LGD estimations.
The autoregressive component remains statistically significant and relatively high (above 0.7,
but below 1) in all sectors. However, there are statistically significant explicit dependencies
among the LRs within the systems in several cases. Additionally, the LR parameters demon-
strate dependencies on transition rates and LGDs, which is also intuitive as discussed earlier
in this section. An increase in the transition rates governing migrations to lower stages (i.e.
TR12, TR13, and TR23) or an increase in the point-in-time LGDs results in an increase in the
corresponding LRs. Conversely, an increase in transition rates governing migrations to higher
stages (i.e. TR21, TR31 and TR32) leads to a decrease in the corresponding LRs.

Regarding macrofinancial variables, an increase in real GDP growth rates (Y ERgr), residen-
tial property prices (IHXgr), prices of exports of goods and services (XT Dgr), and equity index
(ESXgr) results in a decrease in LR. On the contrary, an increase in HICP inflation (HICgr),
unemployment rate (URX), and interest rate spread (SPR) leads to an increase in LRs.

The impact of the relative amount of exposures in a particular stage on the respective LRs
is significant in multiple equations. The coefficients typically exhibit a negative sign for S2
exposures and a positive sign for S1 and S3 exposures.
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FIN
(1) (2) (3) (4) (5) (6)

TR12 TR13 TR21 TR23 TR31 TR32

logit(T R12t−1) 0.8778∗∗

(0.000)
logit(T R13t−1) 0.9162∗∗

(0.000)
logit(T R21t−1) 0.8720∗∗

(0.000)
logit(T R23t−1) 0.0431∗∗ 0.9172∗∗

(0.000) (0.000)
logit(T R31t−1) 0.9959∗∗

(0.000)
logit(T R32t−1) 0.9947∗∗

(0.000)
Y ERgrt−1 -2.3692∗∗ -3.5818∗∗ 8.2511∗∗ 9.1910∗∗

(0.000) (0.000) (0.000) (0.000)
IHXgrt−1 -1.5141∗∗

(0.000)
HICgrt−1 12.0717∗ 4.6684+ -21.5972∗∗

(0.021) (0.050) (0.000)
ESXgrt−4 -0.5956∗∗

(0.000)
∆URXt−2 6.1616 5.5034∗∗ -5.0058∗∗ -5.0044∗∗

(0.129) (0.009) (0.006) (0.005)
SPRt−1 7.2012∗∗ 8.9651∗∗ -5.5323∗∗ 3.4626∗∗

(0.000) (0.000) (0.008) (0.002)
ExpRelt−1 -0.6666∗∗ -0.1654∗

(0.000) (0.010)
const. -0.3695∗∗ -0.7417∗∗ -0.0801 -0.4789∗∗ -0.1107∗∗ -0.1280∗∗

(0.002) (0.000) (0.311) (0.000) (0.000) (0.000)
Obs 3219 3219 3219 3219 1384 1384
Banks 89 89 89 89 89 89
R2 0.8582 0.9019 0.8244 0.8719 0.9943 0.9940
p-values in parentheses; ∆ stands for differences
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 58: Transition rates regressions for FIN: 2018 - 2021 stress test submissions
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SOV
(1) (2) (3) (4) (5) (6)

TR12 TR13 TR21 TR23 TR31 TR32

logit(T R12t−1) 0.9438∗∗

(0.000)
logit(T R13t−1) 0.8462∗∗

(0.000)
logit(T R21t−1) 0.9847∗∗

(0.000)
logit(T R23t−1) 0.9167∗∗

(0.000)
logit(T R31t−1) 0.9546∗∗

(0.000)
logit(T R32t−1) 0.9459∗∗

(0.000)
Y ERgrt−1 9.3490∗∗ 21.9710∗∗ 18.4586∗∗

(0.000) (0.000) (0.000)
MT Rgrt−1 1.0686∗∗ -2.0082∗∗ 1.1277∗∗ -4.4296∗∗ -4.1786∗∗

(0.004) (0.000) (0.006) (0.000) (0.001)
IHXgrt−1 -2.4643∗∗

(0.000)
HICgrt−1 25.8994∗∗

(0.000)
XT Dgrt−1 -3.9326∗∗ -1.3926 14.6783∗∗ 14.7214∗∗

(0.000) (0.331) (0.000) (0.000)
ESXgrt−4 -0.3501∗∗

(0.002)
∆URXt−2 -13.9672∗∗ -23.2588∗∗ -26.5668∗∗

(0.000) (0.000) (0.000)
SPRt−1 1.4088 8.6894∗∗ 3.9969∗∗

(0.175) (0.000) (0.000)
ExpRelt−1 -0.3157∗ -0.6479∗ 0.1013 1.4261+

(0.026) (0.000) (0.868) (0.062)
const. -0.6053∗∗ -1.5078∗∗ -0.1454 -0.7012∗∗ -0.5442∗∗ -0.6127∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Obs 3184 3184 3184 3184 1470 1470
Banks 89 89 89 89 89 89
R2 0.9157 0.8824 0.9613 0.8900 0.9369 0.9226
p-values in parentheses; ∆ stands for differences
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 59: Transition rates regressions for SOV : 2018 - 2021 stress test submissions
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Variables Observations Mean Median Standard deviation
LGD13 NFC 12268 0.2958 0.2860 0.1367
LGD13 HHHP 10268 0.1521 0.1258 0.1268
LGD13 HHCC 10760 0.3491 0.3242 0.2052
LGD13 FIN 4600 0.3457 0.3625 0.1662
LGD13 SOV 4582 0.3376 0.3938 0.1147
LGD23 NFC 11544 0.2763 0.2680 0.1413
LGD23 HHHP 9792 0.1488 0.1233 0.1218
LGD23 HHCC 10302 0.3421 0.3210 0.1954
LGD23 FIN 4118 0.3406 0.3544 0.1741
LGD23 SOV 4092 0.3276 0.3914 0.1404
LR12 NFC 11545 0.0323 0.0207 0.0413
LR12 HHHP 9886 0.0296 0.0151 0.0409
LR12 HHCC 10252 0.0643 0.0339 0.0867
LR12 FIN 4076 0.0236 0.0079 0.0521
LR12 SOV 4073 0.0241 0.0083 0.0425
LR2X NFC 11566 0.0376 0.0240 0.0482
LR2X HHHP 9794 0.0315 0.0180 0.0408
LR2X HHCC 10262 0.0634 0.0400 0.0769
LR2X FIN 4087 0.0278 0.0090 0.0613
LR2X SOV 4070 0.0240 0.0078 0.0408
LR33 NFC 11966 0.4353 0.4420 0.2137
LR33 HHHP 9474 0.2435 0.2233 0.1706
LR33 HHCC 10554 0.5108 0.5380 0.2359
LR33 FIN 4406 0.3537 0.3750 0.2193
LR33 SOV 4532 0.3321 0.3864 0.1694
CureRateLT NFC 5138 0.1134 0.0702 0.1367
CureRateLT HHHP 5113 0.0909 0.0396 0.1404
CureRateLT HHCC 4880 0.1276 0.0559 0.1926
CureRateLT FIN 1754 0.1713 0.0461 0.2380
CureRateLT SOV 1754 0.0974 0.0150 0.1830
LGDpit NFC 12268 0.2931 0.2805 0.1332
LGDpit HHHP 10296 0.1557 0.1280 0.1246
LGDpit HHCC 10816 0.3467 0.3287 0.1973
LGDpit FIN 4620 0.3434 0.3613 0.1595
LGDpit SOV 4602 0.3375 0.3943 0.1159

Table 60: Summary statistics: LGDs and LR regressions
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NFC
(1) (2) (3) (4) (5)

LGD13 LGD23 LR12 LR2X LR33

logit(LGD13t−1) 0.9615∗∗

(0.000)
logit(LGD23t−1) 0.9648∗∗

(0.000)
logit(LR12t−1) 0.9167∗∗

(0.000)
logit(LR2Xt−1) 0.0625∗∗ 0.9358∗∗

(0.000) (0.000)
logit(LR33t−1) 0.0237∗∗ 0.0059∗ 0.9713∗∗

(0.001) (0.049) (0.000)
logit(T R12t−1) 0.0257∗∗ 0.0123∗∗

(0.000) (0.000)
logit(T R23t−1) 0.0210∗∗

(0.000)
logit(T R32t−1) -0.0041∗∗

(0.000)
logit(CureRateLTt−1) -0.0010∗ -0.0032∗∗

(0.013) (0.000)
logit(LGDpitt−1) 0.0148∗∗ 0.0126∗∗

(0.000) (0.000)
Y ERgrt−1 -0.6777∗∗ -0.4728∗ -3.4074∗∗ -1.1062∗∗ -0.4537∗

(0.000) (0.013) (0.000) (0.000) (0.026)
IHXgrt−1 -0.1777∗ -0.2410∗∗

(0.033) (0.006)
ESXgrt−1 -0.1018∗∗ -0.1206∗∗ -0.1776∗∗ -0.2198∗∗ -0.1077∗∗

(0.000) (0.000) (0.001) (0.000) (0.000)
∆URXt−2 1.2472∗∗

(0.000)
SPRt−1 1.0745∗∗ 0.5259∗∗

(0.000) (0.002)
RelExpt−1 0.0725∗∗ -0.0881∗∗ -0.1795∗∗ 0.0743∗∗

(0.000) (0.000) (0.000) (0.000)
const. -0.1044∗∗ -0.0335∗∗ 0.0186 -0.0766∗∗ -0.0065

(0.000) (0.000) (0.512) (0.000) (0.224)
Obs 4705 4705 4122 4122 4122
Banks 89 89 89 89 89
R2 0.9729 0.9726 0.9200 0.9765 0.9739
p-values in parentheses; ∆ stands for differences
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 61: LGDs and LR regressions for NFC: 2018 - 2021 stress test submissions
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HHHP
(1) (2) (3) (4) (5)

LGD13 LGD23 LR12 LR2X LR33

logit(LGD13t−1) 0.9931∗∗

(0.000)
logit(LGD23t−1) 0.9874∗∗

(0.000)
logit(LR12t−1) 0.9233∗∗

(0.000)
logit(LR2Xt−1) 0.0333∗∗ 0.9491∗∗

(0.000) (0.000)
logit(LR33t−1) 0.0149∗∗ 0.9629∗∗

(0.003) (0.000)
logit(T R12t−1) 0.0158∗∗ 0.0152∗∗

(0.000) (0.000)
logit(T R21t−1) -0.0165∗∗

(0.000)
logit(T R23t−1) 0.0320∗∗

(0.000)
logit(T R31t−1) -0.0075∗∗ -0.0026∗∗

(0.000) (0.002)
logit(CureRateLTt−1) -0.0012∗∗ -0.0012∗∗

(0.000) (0.000)
logit(LGDpitt−1) 0.0135∗∗

(0.000)
Y ERgrt−1 -0.6497∗∗ -0.9753∗∗ -1.0881∗∗ -0.3202

(0.000) (0.000) (0.000) (0.139)
IHXgrt−1 -0.1376∗ -0.3523∗ -0.2418+ -0.6066∗∗

(0.010) (0.044) (0.094) (0.000)
HICgrt−1 2.7773∗∗ 3.9676∗∗ 7.1189∗∗ 4.4239∗∗ 2.5550∗∗

(0.000) (0.000) (0.000) (0.000) (0.001)
ESXgrt−1 -0.1629∗∗ -0.1744∗∗ -0.2826∗∗ -0.2775∗∗ -0.1422∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
SPRt−1 1.2008∗∗ 1.0689∗∗

(0.004) (0.000)
ExpRelt−1 0.0936∗∗ -0.0763+

(0.002) (0.065)
const. -0.0412∗∗ -0.0514∗∗ -0.2672∗∗ -0.0948∗∗ -0.0489∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Obs 4571 4571 3744 3744 3744
Banks 89 89 89 89 89
R2 0.9879 0.9832 0.9616 0.9739 0.9790
p-values in parentheses; ∆ stands for differences
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 62: LGDs and LR model for HHHP regressions: 2018 - 2021 stress test submissions
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HHCC
(1) (2) (3) (4) (5)

LGD13 LGD23 LR12 LR2X LR33

logit(LGD13t−1) 0.9889∗∗

(0.000)
logit(LGD23t−1) 0.9773∗∗

(0.000)
logit(LR12t−1) 0.9625∗∗

(0.000)
logit(LR2Xt−1) 0.0225∗∗ 0.9944∗∗

(0.000) (0.000)
logit(LR33t−1) 0.0215∗∗ 0.0120∗∗ 0.9857∗∗

(0.000) (0.000) (0.000)
logit(T R12t−1) 0.0205∗∗

(0.000)
logit(T R23t−1) 0.0197∗∗

(0.000)
logit(T R32t−1) -0.0022∗∗

(0.004)
logit(CureRateLTt−1) -0.0016∗∗ -0.0015∗∗

(0.000) (0.000)
logit(LGDpitt−1) 0.0079∗

(0.015)
Y ERgrt−1 -0.7992∗∗ -0.5315∗∗ -1.1455∗∗ -0.4133+

(0.000) (0.006) (0.000) (0.067)
IHXgrt−1 -0.2282∗∗ -0.4001∗∗ -0.5045∗∗ -0.8884∗∗

(0.000) (0.000) (0.000) (0.000)
HICgrt−1 1.0608∗ 2.4487∗∗ 6.6014∗∗ 6.0769∗∗ 1.8655∗∗

(0.032) (0.000) (0.000) (0.000) (0.008)
ESXgrt−1 -0.1636∗∗ -0.1178∗∗ -0.2022∗∗ -0.1793∗∗ -0.1185∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
∆URXt−2 4.5967∗∗ 3.8617∗∗ 1.5711∗∗

(0.000) (0.000) (0.014)
SPRt−1 0.7390∗∗ 0.8966∗∗

(0.000) (0.000)
ExpRelt−1 0.0702∗∗ -0.2407∗∗

(0.000) (0.000)
const. 0.0053 -0.0157∗∗ -0.0611∗∗ 0.0808∗∗ -0.0061

(0.110) (0.001) (0.007) (0.000) (0.172)
Obs 4314 4314 3968 3968 3968
Banks 89 89 89 89 89
R2 0.9916 0.9822 0.9785 0.9804 0.9789
p-values in parentheses; ∆ stands for differences
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 63: LGDs and LR for HHCC regressions: 2018 - 2021 stress test submissions
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FIN
(1) (2) (3) (4) (5)

LGD13 LGD23 LR12 LR2X LR33

logit(LGD13t−1) 0.7926∗∗

(0.000)
logit(LGD23t−1) 0.8462∗∗

(0.000)
logit(LR12t−1) 0.8847∗∗

(0.000)
logit(LR2Xt−1) 0.0216∗ 0.9447∗∗

(0.043) (0.000)
logit(LR33t−1) 0.7098∗∗

(0.000)
logit(T R12t−1) 0.0468∗∗

(0.000)
logit(T R21t−1) -0.0334∗∗

(0.000)
logit(T R23t−1) 0.0301∗∗

(0.001)
logit(T R32t−1) -0.0055+ -0.0423∗∗

(0.086) (0.000)
logit(CureRateLTt−1) -0.0067∗∗

(0.000)
logit(LGDpitt−1) 0.2456∗∗

(0.000)
Y ERgrt−1 -0.4681 -3.3304∗∗

(0.239) (0.001)
ESXgrt−1 -0.0889∗∗ -0.0910 -0.4618∗∗ -0.3904∗∗ -0.2778∗

(0.000) (0.140) (0.000) (0.000) (0.040)
∆URXt−2 1.4771 1.5657

(0.304) (0.665)
SPRt−1 5.9176∗∗ 3.7516∗∗ 15.2530∗∗

(0.000) (0.017) (0.000)
ExpRelt−1 0.5530∗∗ -0.1470∗

(0.000) (0.038)
const. -0.3078 0.0867 -0.9892∗∗ -0.0685 -0.5240∗∗

(0.000) (0.000) (0.000) (0.113) (0.000)
Obs 1586 1586 1236 1236 1236
Banks 89 89 89 89 89
R2 0.9124 0.8987 0.9455 0.9597 0.9116
p-values in parentheses; ∆ stands for differences
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 64: LGDs and LR for FIN regressions: 2018 - 2021 stress test submissions
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SOV
(1) (2) (3) (4) (5)

LGD13 LGD23 LR12 LR2X LR33

logit(LGD13t−1) 0.7374∗∗

(0.000)
logit(LGD23t−1) 0.7450∗∗

(0.000)
logit(LR12t−1) 0.9391∗∗

(0.000)
logit(LR2Xt−1) 0.9519∗∗

(0.000)
logit(LR33t−1) 0.7966∗∗

(0.000)
logit(T R12t−1) 0.0253∗∗

(0.000)
logit(T R23t−1) 0.0451∗∗ 0.0380∗∗

(0.000) (0.000)
logit(T R32t−1) -0.0047

(0.125)
logit(CureRateLTt−1) -0.0058∗∗ -0.0024∗

(0.000) (0.035)
logit(LGDpitt−1) 0.0667∗∗ 0.0605∗∗

(0.002) (0.008)
Y ERgrt−1 -0.7436 -2.9937∗ -1.8048

(0.179) (0.015) (0.120)
HICgrt−1 10.3433∗

(0.021)
XT Dgrt−1 -5.3179∗∗ -8.1593∗∗

(0.000) (0.000)
∆URXt−2 1.7935∗ 5.5560∗∗ 3.9826+ 9.0420∗∗

(0.049) (0.000) (0.080) (0.001)
SPRt−1 2.1074∗

(0.024)
ExpRelt−1 0.1918∗∗ -0.1742∗ -0.4757∗∗ 2.2807∗∗

(0.000) (0.029) (0.001) (0.004)
const. -0.3890∗∗ -0.1669∗∗ 0.6352∗∗ -0.0363 -0.0449

(0.000) (0.000) (0.000) (0.525) (0.252)
Obs 1602 1602 1387 1387 1387
Banks 89 89 89 89 89
R2 0.8765 0.8369 0.9349 0.9598 0.9070
p-values in parentheses; ∆ stands for differences
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 65: LGDs and LR for SOV regressions: 2018 - 2021 stress test submissions
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D.2 Models for credit risk capital charges
This section delves into the modelling of credit risk weights for exposures measured using both
internal ratings-based (IRB) and standardised (STA) approaches. In the industry, there is a wide
range of practises regarding the estimation of parameters for credit risk weights. However, most
banks use internal granular datasets, which include information at the obligor level, including
borrower characteristics, individual loan sizes, breakdown of exposures between secured and
unsecured portions, collateral amounts, potential recoveries, paid and unpaid fees, expected
discount rates, and more. In our case, however, the modelling decisions are predominantly
driven by limited data availability, necessitating a heavy reliance on conditional projections of
regulatory risk parameters from the previous EU-wide stress test exercises, as provided by the
participating banks.

D.2.1 Regulatory PD (PDreg)

The regulatory parameters for PD and LGD are stipulated by the CRR and are used to calcu-
late the risk weights, as demonstrated in equation (125). Unlike PD and LGD for credit risk
impairments, which capture prevailing trends in the business cycle, regulatory parameters en-
compass a conservative long-term average concept that also accounts for potential "downturn"
conditions. These parameters are designed to be less responsive to economic fluctuations, thus
helping to mitigate unwarranted cyclicality in capital requirements.149

Methodology

In our approach, we operate under the simple assumption that regulatory PDs would move in
tandem with projected point-in-time PDs PDpit. Consequently, we employ a standard linear
model where we regress the changes in PDreg against its lagged values and the changes in
PDpit. The model incorporates additional variables to control for factors such as bank β0,i,
country βC

0 , year β0,t , scenario, and vintage of the stress test in ΩΩΩ. The regressions are estimated
separately for five exposure sectors S ∈ {HHCC,HHHP,NFC,FIN,SOV}.

∆PDregS,C
i,t = β

S
0,i +β

S,C
0 +β

S
0,t +β

S,C
1 ∆PDregS,C

i,t−1 +β
S,C
2 ∆PDpitS,C

t +ΩΩΩβ
S
Ω

β
S
Ωβ
S
Ω + ε

S,C
i,t

where ε is the error term and ΩΩΩ consists of:

• Vintage of the stress test data: 2 binary variables, taking value of 1 for the EBA/SSM
stress test exercises in 2021 (and 0 otherwise) and taking value of 1 for the EBA/SSM
stress test exercises in 2018 (and zero otherwise);

• Scenario type: 1 binary variable, taking value of 1 for adverse scenarios and and 0 for
baseline scenarios

.

Data

We use annual data provided by banks through the EBA stress test exercises in 2016, 2018 and
2021. The values for PDreg are directly extracted from the bank submissions, while the values
for PDpit are calculated as described in equation (32) (i.e., essentially a weighted average of

149See EBA Stress Test Methodological Note, par 85, (EBA [2021b]).
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T R13 and T R23, which are also sourced from the EBA stress test templates; for summary
statistics, see Appendix D.1.1). The data for all three vintages (2016, 2018 and 2021) and both
scenarios (baseline and adverse) are pooled together for each sector. The summary statistics for
PDreg and PDpit can be found in Table 66.

Variables Observations Mean Median Standard Deviation
PDreg HHCC 2144 0.0251 0.0194 0.0243
PDreg HHHP 2136 0.0155 0.0108 0.0172
PDreg NFC 2680 0.0146 0.0099 0.0187
PDreg FIN 4564 0.0039 0.0016 0.0119
PDreg SOV 2172 0.0016 0.0003 0.0131
PDpit HHCC 2142 0.0210 0.0162 0.0211
PDpit HHHP 2110 0.0131 0.0094 0.0158
PDpit NFC 2680 0.0128 0.0095 0.0126
PDpit FIN 4546 0.0035 0.0013 0.0089
PDpit SOV 2172 0.0011 0.0002 0.0024
∆PDpit (all sectors) 10770 0.0006 0.0000 0.0078
∆PDreg (all sectors) 10806 0.0002 0.0000 0.0027

Table 66: Summary statistics: point-in-time PD and regulatory PD

Results

Estimation results are presented in Table 67. The coefficient β1, which can be interpreted as
inertia, exceeds β2, denoting the impact originating from observed variations in risk that are
proxied by the increase or decrease in PDpit. Since PDreg is expected to remain relatively
stable throughout the projected horizons. A point-in-time default probability shift from 0 to 1
in the HHCC sector would lead to an increase in the corresponding regulatory probability of
approximately β2(1+ β1) = 0.22× (1+ 0.29) = 28%. In our simulations, changes in PDreg
seldom surpass about 1% within projection spans of 2-3 years, which is generally aligned with
available data.

(1) (2) (3) (4) (5)
HHCC HHHP NFC FIN SOV

∆PDregt−1 0.2921∗∗ 0.1689∗∗ 0.2689∗∗ 0.2719∗∗ 0.0374∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
∆PDpitt 0.2194∗∗ 0.1130∗∗ 0.0478∗∗ 0.0208∗∗ 0.0092

(0.000) (0.000) (0.000) (0.000) (0.486)
Obs 1068 1056 1340 2,268 1,485
Banks 49 53 58 50 36
R2(ad j.) 0.4959 0.3893 0.2583 0.4924 0.4350
p-values in parentheses; ∆ stands for differences
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 67: Regulatory PD regressions: 2018 - 2021 stress test templates
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D.2.2 Regulatory LGD for non-defaulted exposures (LGDreg_ND)

Regulatory parameters for the endogenous calculation of risk weights are estimated indepen-
dently for the two categories of exposures: non-defaulted and defaulted. The coefficients de-
rived for LGDreg_ND, as described below, are applied in equation (129).

Methodology

We employ a fractional logistic regression model150 to ensure that the dependent variable re-
mains within the interval [0,1]. This choice of specifications enables us to account for varying
elasticities at different levels of LGDreg. The coefficients are estimated within a panel setting,
individually for each of five sectors S ∈ {HHCC,HHHP,NFC,FIN,SOV}, using the bank sec-
tor country portfolios as the cross-sectional dimension (retaining the country dimension also for
the FIN and SOV sectors).

The estimated model takes the following form:

logit(LGDreg_NDAIRB,S,C
i,t ) =β

S
0 +β

S,C
0 +β

S
1 LGDreg_NDAIRB,S,C

i,t−1 +β
S
2 LGDpitS,C

i,t−1

+β
S
3 Y ERgrC

t−1 +β
S
4 IHXgrC

t−1 +β
S
5 URXC

t−1

+β
S
6 LT NC

t−1 +β
S
7 (LT N2)Ct−1 +ΩΩΩβ

S
Ω

β
S
Ωβ
S
Ω + ε

S,C
i,t

Data

We utilise template data provided by banks for EU-wide stress test exercises conducted in 2016,
2018 and 2021. The value of LGDpit is calculated as the weighted average of LGD_13 and
LGD_23 (see equation (51)) from the CSV_CR_SCEN template. On the other hand, the param-
eters LGDreg are extracted from the CSV_CR_REA template. To accommodate differences in
reporting standards between template submissions in different stress test years, including the
adoption of IFRS 9, we make necessary adjustments. For the 2021 stress test data, we specif-
ically adjusted all variables related to the corporate sector by excluding exposures covered by
public guarantees, which we model separately.

Each of the three EU-wide stress test vintages has four time points (historical starting point
and annual projections for three years) for both the baseline and adverse scenario. Thus, the
framework allows us to capture the considerable variability of LGDreg_ND, LGDreg_D, and
ELBE under different economic conditions. The summary statistics for the relevant risk param-
eters are reported in Table 68.

Results

In all sectors, there exists a positive relationship between LGDreg_ND and the levels of unem-
ployment and the yields of government bonds. On the contrary, there is a negative relationship
with the growth rates of GDP and house prices. The autoregressive coefficient consistently
maintains a positive and highly statistically significant value in nearly all the specifications
tested. The only exception is the regression for the corporate sector, where it keeps the expected
positive sign, but lacks statistical significance. Detailed estimates of sector-specific regression
parameters can be found in Table 69.

150Using a fractional probit model yields very similar results.
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Variables Observations Mean Median Standard Deviation
LGDreg_ND HHCC 2280 0.3455 0.3493 0.1844
LGDreg_ND HHHP 2514 0.1478 0.1381 0.0975
LGDreg_ND NFC 2626 0.2240 0.2625 0.1706
LGDreg_ND FIN 3696 0.2100 0.2065 0.1702
LGDreg_ND SOV 2488 0.1723 0.1000 0.1827
LGDpit HHCC 2142 0.3378 0.3298 0.1900
LGDpit HHHP 2110 0.1349 0.1122 0.1044
LGDpit NFC 2608 0.2768 0.2700 0.1178
LGDpit FIN 3662 0.2973 0.2893 0.1662
LGDpit SOV 2300 0.3195 0.4000 0.1450
∆LGDreg_ND (all sectors) 10194 0.0019 0.0000 0.0226
∆LGDpit (all sectors) 9612 0.0155 0.0000 0.0821

Table 68: Summary statistics: Regulatory LGD and ELBE

(1) (2) (3) (4) (5)
HHCC HHHP NFC FIN SOV

LGDreg_NDt−1 0.4312+ 0.8040∗∗ 0.3001∗ 0.1327
(0.081) (0.006) (0.045) (0.103)

LGDpitt−1 0.1141∗∗ 0.0941 0.1905∗∗ 0.0829 0.0972∗

(0.000) (0.296) (0.000) (0.141) (0.036)
Y ERgrt−1 -0.0759+ -0.1147∗∗ -0.0718∗∗

(0.061) (0.004) (0.000)
IHXgrt−1 -0.1303∗∗

(0.000)
URXt−1 0.8007∗∗ 0.9813∗∗ 1.2225∗∗

(0.000) (0.000) (0.000)
LT Nt−1 -5.7912∗

(0.028)
LT N2

t−1 154.0511∗∗

(0.002)
const. -0.8608∗∗ -1.8625∗∗ -0.9637∗∗ -1.1829∗∗ -2.0799∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Bnk-Ctr-Sec-Scen Control YES YES YES YES YES
Obs 1590 1568 1844 1688 304
Pseudo-R2 0.0967 0.0456 0.0448 0.0834 0.2120
p-values in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 69: Regulatory loss given default for non-defaulted exposures: 2018 - 2021 stress test
templates
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D.2.3 Regulatory LGD for defaulted exposures (LGDreg_D) and Expected Loss Best Es-
timate (ELBE)

Methodology

The coefficients estimated for LGDreg_D and ELBE are used in equations (136) and (138),
respectively. The regression specifications for LGDreg_D and ELBE - regulatory parameters
governing the computation of risk weights for defaulted exposures - follow a slightly distinct
yet interrelated approach compared to that for non-defaulted exposures.

First, both LGDreg_D and ELBE are jointly estimated within a seemingly unrelated OLS
regression (SUR) framework. This approach can accommodate contemporaneous correlations
of error terms, as we anticipate that both parameters will be similarly influenced by macroeco-
nomic conditions.

Then, in the equation for LGDreg_D, we incorporate LGDreg_ND to acknowledge the ex-
pectation that the risk weights for bank exposures, whether in default or not, would exhibit
coherent movements. On the contrary, ELBE is regressed directly on LGDpit.

The equations are estimated separately for the five distinct sectors S∈{HHCC,HHHP,NFC,
FIN,SOV} is considered separately and we transform the main variable of interest in each equa-
tion with the logit function.

logit(LGDreg_DAIRB,S,C
i,t ) = β

LGD,S
0 +β

LGD,S,C
0 β

LGD,S
1 logit(LGDreg_DAIRB,S,C

i,t−1 )

+β
LGD,S
2 LGDreg_NDAIRB,S,C

i,t−1

+β
LGD,S
3 Y ERgrC

t−1 +β
LGD,S
4 IHXgrC

t−1

+β
LGD,S
5 URXC

t−1 +β
LGD,S
6 SPRC

t−1

+ΩΩΩβ
S,LGD
Ω

β
S,LGD
Ω

β
S,LGD
Ω

+ ε
LGD,S,C
i,t

logit(ELBEAIRB,S,C
i,t ) = β

ELBE,S
0 +β

ELBE,S,C
0 +β

S
1 logit(ELBEAIRB,S,C

i,t−1 )

+β
ELBE,S
2 LGDpitS,C

i,t−1

+β
ELBE,S
3 Y ERgrC

t−1 +β
ELBE,S
4 IHXgrC

t−1

+β
ELBE,S
5 URXC

t−1 +β
ELBE,S
6 ∆URXC

t−1 +β
ELBE,S
7 SPRC

t−1

+ΩΩΩβ
S,ELBE
Ω

β
S,ELBE
Ω

β
S,ELBE
Ω

+ ε
ELBE,S,C
i,t

Data

The data collection process for LGDreg_D follows the same procedure as outlined for LGDreg_ND
(see Appendix D.2.2 above). The parameters for LGDreg and ELBE are extracted from the
CSV_CR_REA template. The summary statistics for the relevant risk parameters are reported
in Table 68 and Table 70 jointly.

Results

The estimated sector-specific regression parameters for LGDregD and ELBE are presented in
Table 71 and Table 72, respectively. The notably high R2 values can be attributed to the incor-
poration of the autoregressive term.
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Variables Observations Mean Median Standard Deviation
LGDreg_D HHCC 2278 0.4860 0.5012 0.2450
LGDreg_D HHHP 2512 0.2187 0.1972 0.1742
LGDreg_D NFC 2578 0.2850 0.3038 0.2395
LGDreg_D FIN 3238 0.2401 0.2143 0.2379
LGDreg_D SOV 2170 0.1670 0.0708 0.2006
ELBE HHCC 2240 0.4674 0.4852 0.2459
ELBE HHHP 2480 0.1942 0.1673 0.1653
ELBE NFC 2564 0.2719 0.2901 0.2350
ELBE FIN 2110 0.1891 0.0842 0.2334
ELBE SOV 1401 0.1627 0.0016 0.2149

Table 70: Summary statistics: Regulatory LGD for defaulted exposures and ELBE

In general, adverse economic conditions such as negative GDP growth, a decrease in house
prices, an increase in unemployment, or a steepening of the yield curve are associated with an
increase in LGDreg. In most cases, the signs of the estimated coefficients are as anticipated
and exhibit high statistical significance. A notable exception is the counterintuitive coefficient
for house prices that positively affect ELBE in the HHCC sector. This anomaly could be at-
tributed to the notably strong positive correlation (0.7155) between GDP and house prices in
the estimation sample data.

(1) (2) (3) (4) (5)
HHCC HHHP NFC FIN SOV

logit(LGDreg_Dt−1) 0.1393∗∗ 0.1477∗∗ 0.0455∗∗ 0.2467∗∗ 0.5568∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
LGDreg_NDt−1 2.2395∗∗ 1.8839∗∗ 3.5760∗∗ 0.7838 6.0467∗∗

(0.000) (0.000) (0.000) (0.284) (0.000)
Y ERgrt−1 -0.9632∗ -0.1408 -4.3421∗

(0.039) (0.757) (0.019)
IHXgrt−1 -0.4083∗ -0.2185 -0.3169∗

(0.024) (0.293) (0.046)
URXt−1 5.6019∗

(0.032)
SPRt−1 11.8986+ 5.6355 27.5837∗∗

(0.053) (0.613) (0.005)
const. -0.6239∗∗ -0.7116∗∗ -1.9396∗∗ -1.6514∗∗ -1.9003∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Bnk-Ctr-Sec-Scen Control YES YES YES YES YES
Obs 1680 1554 1892 1492 1019
R2 0.9965 0.9756 0.9987 0.9976 0.9918
RMSE 0.1560 0.1658 0.1453 0.2019 0.3703
p-values in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 71: Regulatory loss given default for defaulted exposures regressions: 2018 - 2021 stress
test templates
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(1) (2) (3) (4) (5)
HHCC HHHP NFC FIN SOV

logit(ELBEt−1) 0.0198+ 0.0997∗∗ 0.0322∗∗ 0.0847∗∗ 0.7156∗∗

(0.079) (0.000) (0.000) (0.000) (0.000)
LGDpitt−1 0.3597 0.4525∗∗ 0.4906∗ 2.1165∗∗

(0.247) (0.000) (0.025) (0.000)
Y ERgrt−1 -1.7210∗∗ -4.8713

(0.000) (0.162)
IHXgrt−1 0.8130∗∗ -0.2052 -0.3944∗∗

(0.001) (0.461) (0.002)
URXt−1 0.6637

(0.604)
∆URXt−1 1.6297+ 2.0463

(0.083) (0.659)
const. -0.3258 -0.7152∗∗ -1.6026∗∗ -2.1208∗∗ -0.6079∗∗

(0.121) (0.000) (0.000) (0.000) (0.000)
Bnk-Ctr-Sec-Scen Control YES YES YES YES YES
Obs 1680 1554 1892 1492 1019
R2 0.9919 0.9705 0.9991 0.9952 0.9729
RMSE 0.2460 0.2221 0.1170 0.2849 0.7043
p-values in parentheses; ∆ stands for differences
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 72: Expected loss best estimate (ELBE) regressions: 2018 - 2021 stress test templates
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D.2.4 Wedge in risk weight calculation (RWWedge)

The risk weight wedge within the model serves the purpose of mitigating potential discrepancies
resulting from aggregation of individually risk-weighted exposures (see Section 4.1.7.2). This
correction term for the effective risk weight is derived by regressing the difference between the
implied effective risk weight using the IRB formula with the aggregated value of PDreg and
the actual portfolio risk weight projected by the banks in their stress test submissions. This
regression uses the curvature of the risk weight function F ′(PDreg) as an explanatory variable
and determines a constant add-on per sector, denoted as RWAddonS,C.

Methodology

To estimate the coefficient β
S,C
1 in equation (132), we employ a weighted least squares regres-

sion for each combination sector-country. The natural logarithm of the non-defaulted exposures
in the corresponding portfolio subject to IRB treatment NonDe f Exp_REAS,C

i,t serves as analytic
weights, being inversely proportional to the variance of the observations. The constant term is
omitted from the regression.

RWWedgeS,C
i,t = β

S,C
1 F ′(PDregS,C

i,t )+ ε
S,C
i,t

To further reduce the discrepancy between the estimated and reported risk weights at the
beginning of the simulations, we calculate a constant additive parameter RWAddon. This add-
on is calculated after the estimation of β1 and for the starting time point t = 0 of the last available
EU-wide stress test.

RWAddonS,C
i = β

S,C
1 F ′(PDregS,C

i,0 )−RWWedgeS,C
i,0 (339)

Data

The RWWedge is estimated using data from EU-wide stress test templates in 2018 and 2021.
In instances when the wedge seems to be positive, it has been adjusted to zero. The summary
statistics are reported in Table 73.

Variables Observations Mean Median Standard Deviation
RWWedge 7021 -0.0441 -0.0374 0.0377
F ′(PDreg) 7021 9.7639 5.7029 13.2517

Table 73: Summary statistics: risk weight wedge

D.2.5 Risk weights for exposures under the Standardised Approach (STA)

Standardised risk weights are estimated for two sectors: FIN and NFC. Within the sector NFC
we further split exposures into two subtypes: small and medium enterprises SME and other
non-financial corporate entities NSME (see equation (113)).
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Methodology

The standardised risk weights for the two subsegments of sector NFC entering equation (113)

are estimated using a fractional probit model for transformed risk weights ̂CRRW_ND
B,STA,NFC

defined as in equation (114). The transformed risk weight equations are estimated separately
for the subsectors SME and NSME:

̂CRRW_ND
B,STA,NFC,C
i,t = probit

(
β

B
0 +β

B
1

̂CRRW_ND
B,STA,NFC,C
i,t−1

+β
B
2 Y ERgrC

t−1 +β
B
3 IHXgrC

t−1

+β
B
4 SPRC

t−1 +β
B
5 ∆ST NC

t−1

+β
B
6 PDpitNFC,C

i,t +β
B
7 log(TAi,t)

+β
B
8

̂fCRRW_ND
B,STA,NFC,C
i,0 + ε

B,STA,NFC,C
i,t

)
(340)

The term ̂fCRRW_ND
B,STA,NFC,C
i,0 accounts for the starting point conditions. It is derived

after the estimation of equation (340) with β B
1 and β B

9 set to zero and estimated separately in
cross-sectional regressions for years 2015, 2017 and 2020. These estimates are then used to
build predicted values which are inserted into the final regressions so that the predictions built
on the 2015 data are used co-jointly with the observations based on 2016 EBA/SSM stress test
data, and the following predictions with 2018 and 2021 EBA/SSM stress test data, respectively.

The estimation of standardised risk weights for the FIN sector is based on logit transformed

risk weights ̂CRRW_ND
STA,FIN

(see equation (117)) with OLS estimator. To control for time
trends, dummies are included for each year, scenario, and stress test vintage. The equation takes
the following form:

logit( ̂CRRW_ND
STA,FIN
i,t ) = β0 +β1logit( ̂CRRW_ND

STA,FIN
i,t−1 )

+β2Y ERgrC
t−1 +β3IHXgrC

t−1

+β4SPRC
t−1 +β∆ST NC

t−1

+β6∆PDpitFIN
i,t +β7ProvCovNonDe f RFIN

i,t

+β8log(TAi,t)

+ΩΩΩβββ Ω + εi,t

Data

The estimation employs annual data collected from EU-wide EBA / SSM stress test templates
from 2016, 2018 and 2021 using the same approach as for LGDreg_ND (see Appendix D.2.2).
Descriptive statistics can be found in Table 74 where standardised risk weights are expressed as
before multiplication by 12.5.

Results

The estimates of sector-specific regression parameters for CRRW_NDSTA are presented in Table
75. Overall, standardised risk weights are expected to increase if GDP growth slows down, if
house prices decrease, if probabilities of default rise, if the coverage of exposures with loan-loss
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Variables Observations Mean Median Standard Deviation
CRRW_ND NFC SME 2633 0.0709 0.0711 0.0110
CRRW_ND NFC NSME 3614 0.0756 0.0790 0.0215
CRRW_ND FIN 6243 0.0255 0.0192 0.0202

Table 74: Summary statistics: standardised risk weights

provisions is thin, or if short-term interest rates go up. The total assets of the bank TA have a
negative coefficient sign.

(1) (2) (3)
(frac. probit) (frac. probit) (OLS)
NFC SME NFC NSME FIN

̂CRRW_ND 2.6455∗∗ 2.9253∗∗

(0.000) (0.000)
logit( ̂CRRW_ND) 7.3454∗∗

(0.000)
log(TAt) 0.0036∗∗ -0.0054∗∗ -0.0129

(0.001) (0.000) (0.214)
ProvRatiot -2.8242∗∗

(0.007)
PDpitt 0.2180+

(0.059)
∆PDpitt 6.6818∗∗

(0.000)
Y ERgrt−1 -0.0484 -0.3062+

(0.748) (0.099)
IHXgrt−1 -0.0668 -0.0389 -0.7750

(0.218) (0.530) (0.137)
SPRt−1 -0.4442∗ 5.0856∗∗

(0.022) (0.006)
∆ST Nt−1 3.2356+

(0.051)
̂fCRRW_ND0 0.1178∗∗ -0.1828∗∗

(0.009) (0.000)
const. -1.3730∗∗ -1.3843∗∗ -3.1200∗∗

(0.000) (0.000) (0.000)
Year-Scen-ST Control NO NO YES
Obs 1950 2631 2392
R2(ad j.) 0.0284 0.0576 0.6993
RMSE 0.7633
p-values in parentheses; ∆ stands for differences
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 75: Standardised risk weights regressions: 2016 – 2018 stress test templates
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D.3 Net fee and commission income

Methodology

The empirical specification of net fee and commission income (NFCI) employs NFCI divided
by the overall size of the bank’s assets. The use of NFC to asset ratio accounts for the large
heterogeneity across banks in non-interest income size, which to a degree relates to bank size.
The methodology follows closely Kok et al. [2019].

NFCIi,t

TAi,t
= β0,1 +β1

NFCIi,t−1

TAi,t−1
+β2∆Y ERgrCi

i,t

+β3∆LT NCi
i,t +β4∆ST NCi

i,t +β5ESXgrCi
i,t +β6

NIIi,t−1

TAi,t−1
+ εi,t

NFCI is related to changes in the market environment, especially the prices of equity ESXgr
and fixed income assets LT N. Additionally, the NFCI to asset ratio is regressed on its autore-
gressive component, real GDP growth Y ERgr, the change in short-term rates ST N and the
unemployment rate URX . For macroeconomic variables, the model takes the domestic country
Ci of the bank i approximating the macroeconomic conditions underlying most of the customer
activity of banks. The specification additionally includes banks’ net interest income over total
assets NII/TA that captures potential substitution effects present in a low interest rate environ-
ment from NII towards a more fee- and commission-based business model.

The model is estimated using fixed bank effects and applying the Arellano-Bond dynamic
panel estimator (Arellano and Bond [1991]).

Data

The regression employs annual data on banks from Bloomberg and SNL, in order to ensure
that time series cover a long time span. The macroeconomic variables are sourced from SDW.
The unbalanced sample covers 59 large euro area banks and their income flows over 17 years
starting in 2003. The summary statistic for the variables included in the estimation can be found
in Table 76.

Variables Observations Mean Median Standard deviation
NFCI/TA 713 0.0060 0.0054 0.0055
Y ERgr 713 0.0065 0.0135 0.0321
ESXgr 713 -0.0001 0.0632 0.2415
∆ST N 713 -0.0019 -0.0009 0.0099
∆LT N 713 -0.0028 -0.0026 0.0209
URX 713 0.0975 0.0820 0.0581
NII/TA 713 0.0149 0.0133 0.0079

Table 76: Summary statistics: NFCI regression

Figure 49 illustrates the individual ratios NFCI/TA and NII/TA in the median, mean, and
interquartile range for individual banks in the historical sample, highlighting the dynamics and
its importance over time.
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Figure 49: NFCI and NII over total assets across banks

Results

The estimation results are summarised in Table 77. The autoregressive coefficient is positive,
relatively high (approximately 80%) and statistically significant. The NFCI ratio is positively
related to GDP Y ERgr, stock market growth ESXgr and increases in short-term rates ∆ST N.
The interest income to asset ratio enters the regression with a negative sign, validating the
hypothesis that banks substitute between (low) NII toward (higher) net fee- and commission
income.

(1)
NFCI/TA

NFCIt−1/TAt−1 0.794∗∗∗

(0.000)
Y ERgrt 0.0038∗∗

(0.024)
ESXgrt 0.0005∗∗

(0.014)
∆ST Nt 0.0117∗∗

(0.022)
∆LT Nt 0.0021

(0.343)
URXt -0.0013

(0.369)
NIIt−1/TAt−1 -0.0469∗∗∗

(0.008)
Obs 713
Banks 59
R2 0.949
p-values in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 77: NFCI regression: 2003 - 2020
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D.4 Client revenues
Methodology

Bank client revenues (see Section 4.4.1) to the total asset ratios are assumed to depend on the
conditions in the stock market and follow the following simplified dynamics:

ClientRevi,t

TAi,t
= β1

ClientRevi,t−1

TAi,t−1
+β2∆ESXgrCi

t−1

+β3∆(BLRCi
t −ST NEA

t ))+ εi,t

The equation is estimated using a generalised least squares (GLS) estimator with a panel-
specific AR1 autocorrelation structure.

Data

Data on bank client revenues from 2013Q1 until 2019Q4 are sourced from dedicated bank
submissions during the EU-wide stress test in 2018. In the latter context, banks were requested
to submit their historical client revenue incomes on a quarterly frequency over the last 4 years.
The total asset figures are sourced from public data sources (Bloomberg), while the information
on macrofinancial variables such as stock market growth and bank lending rate spread is sourced
from balance sheet items (BSI) statistics available on SDW. The sample includes 31 euro area
banks.

Variables Observations Mean Median Standard deviation
ClientRev/TA 406 0.0002 0.0002 0.0002
ESXgr 406 52.3779 32.2778 64.1340
BLR−ST N 406 -0.0006 -0.0006 0.0009

Table 78: Summary statistics: client revenue regression

Results

The estimated coefficients of the bank client revenue equations are provided in Table 79. An
autoregressive term with a coefficient of more than 0.9 indicates a high inertia for bank client
revenues over total assets. The growth of the stock market (ESXgr) in the domestic country C
of a bank and the bank lending spreads have a significant and positive impact on the revenues
of the banks’ clients.

D.5 Operating expenses
Methodology

The annual growth of bank i’ operating expenses (see Section 4.4.2) is modelled along with the
specification:

∆4log(OpExpensei,t) = β0,i +β1∆4log(OpExpensei,t−1)+β2∆4log(TAi,t−1)

+β3∆4log(Y ERCi
t−1×HICCi

t−1)+β4RelCostE f f iciencyi,t−1 + εi,t
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(1)
ClientRev

ClientRev/TAt−1 0.923∗∗

(0.000)
ESXgrt−1 0.0000∗∗

(0.001)
BLRt−1−ST Nt−1 0.0041

(0.274)
Banks 31
Obs 406
R2 0.899
p-values in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 79: Client revenue regression: 2013 Q1 –2019 Q4

It depends on its past values (autoregressive term), total asset growth TA, nominal GDP
growth Y ER×HIC in the domestic country Ci of bank i and bank cost efficiency compared to
its peers RelCostE f f iciency which is defined as:

RelCostE f f iciencyi,t =
OpExpensei,t

TAi,t
− ∑i OpExpensei,t

∑i TAi,t

By not imposing additional restrictions on regression coefficients, the specification allows
for a degree of economies-of-scale model rather than a constant cost efficiency per asset unit.
Regression is estimated using bank fixed effects β0,i and applying the Arellano-Bond dynamic
panel estimator (Arellano and Bond [1991]).

Data

The underlying data for the operating expense model are sourced from quarterly supervisory in-
formation, precisely the FINREP templates F01.01 and F02.00. The macroeconomic time series
are sourced from the SDW. The estimation sample covers 88 banks and quarterly observations
between 2016Q1 and 2020Q4 for which the summary statistics is provided in Table 80.

Variables Observations Mean Median Standard
deviation

∆4log(OpExpense) 1,407 -0.0361 0.0020 0.1929
∆4log(TA) 1,407 0.0172 0.0208 0.0845
∆4log(Y ER×HIC) 1,407 0.0177 0.0314 0.0492
RelCostE f f iciency 1407 0.0004 0.0003 0.0018

Table 80: Summary statistics: operating expenses regression

Results

The results of the estimation are summarised in Table 81. Expectantly, total asset growth leads
to higher operating expenses. There is also a substantial degree of inertia in operating expenses
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with the autoregressive coefficient estimated at 0.56. Banks’s operating costs evolve along with
the business cycle, which can be at least partially attributed to procyclical salary adjustments.
The error correction term that captures the difference between bank i cost efficiency and market
average cost efficiency enters negatively and statistically significantly.

(1)
(OpExpense)

∆4log(OpExpenset−1) 0.561∗∗∗

(0.000)
∆4log(TAt−1) 0.241∗∗∗

(0.004)
log(Y ERt−1×HICt−1) 0.187∗∗

(0.049)
RelCostE f f iciencyt−1 -29.08∗

(0.085)
Banks 88
Obs 1407
R2 0.279
Model (AB)
p-values in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 81: Operating expenses regressions: 2016 Q1 - 2020 Q4

ECB Working Paper Series No 2855 227



E Scenario selection: algorithm and examples

E.1 Algorithm to rank and select simulations
To illustrate the scenario selection algorithm, we consider in detail the example described in
Section 6.5. For illustration purposes, we choose only two simple criteria – one to impose a
condition on the path of GDP, and one to impose a condition on the path of inflation – in order
to create a scenario that resembles a short period of stagflation.

Step 1: Generate the distribution of plausible outcomes

The examples are based on a large set of 90,000 stochastic simulations, using parametric sam-
pling of macroeconomic shocks without imposing any conditional values.

Step 2: Define the sorting criteria

The mapping of a desired narrative to quantitative criteria can be illustrated in Table 82. Each
criterion c (a single row in the table) is equivalent to mapping some identified risk (or narrative
interpretation) into a specific function Fc that can be applied to the values of a variable at given
time points. It requires specifying: a variable to consider, time periods of interest, a function to
be applied, a quantile to aim for, a distance measure151 and a weight for the relative importance
assigned to the criterion.

In this example, we look at the cumulative growth in GDP and inflation from the current
moment (2021 Q1) until 8 quarters later (2023 Q4) and aim for the largest drop in both GDP
and inflation.

# Variable Time point(s) Function F Quantile Q Distance measure Weight W
1 Euro area GDP Y ER [ 1, 8 ] ∆(log(x)) 0 (min) manhattan 1
2 Euro area HICP HIC [ 1, 8 ] ∆(log(x)) 0 (min) manhattan 1

Table 82: Mapping of narrative criteria into sorting Functions

Step 3: Sorting simulations along with the criteria

Sorting of numerous stochastic simulations along with different variables and their transforma-
tions and at different time points poses the challenge of comparing items with different magni-
tudes. To avoid it, we use ordinal sorting.

The steps of the scenario sorting algorithm are as follows:

1. For each criterion c (row in the criteria table):

1.1. For each individual simulation Yt = M (P,X ) from the full simulation set, apply
the function F to the values of the selected variable at the designated time point(s).
The outcome can be denoted as Vc = Fc(Yt).

1.2. Calculate the selected quantile of the functional value(s) Targetc = Qc(Vc).

151For instance, a manhattan distance measure refers simply to the sum of absolute deviations to the selected
quantile. A Euclidean distance would be equal to the sum of squared deviations.
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1.3. For each separate simulation, apply the distance measure from the value in the se-
lected quantile Distc = D(Vc−Targetc).152

1.4. Sort all scenarios by the resulting value in order to obtain their rank UnweightedRankc =
sort(Distc).

1.5. Multiply the rank by the weight of the specified criterion Rankc =UnweightedRankc×
Wc.

2. Repeat for all criteria.

3. Sum up the ranks of each simulation for all criteria Rank = ∑c Rankc.

4. Sort all scenarios by Rank to obtain the ordering O = sort(Rank).

To demonstrate the sorting algorithm, we go over the same process with three examples.
First, in Example 1, we use only a criterion for GDP from Table 82. Afterwards, in Example 2,
we consider only inflation. Finally, in Example 3, we consider both variables together, noting
that the correlation for the projected values of these two variables in the simulations is relatively
low (see Table 83).

YER URX TotalLoans HIC
Gross domestic product, level, chained YER
Unemployment rate URX -0.4679
Loans to NFCs, outstanding amounts TotalLoans 0.5517 0.0732
HICP index HIC -0.1898 0.2532 0.2965

Table 83: Pairwise linear (Pearson) correlations for select variables

Taking a look at the same quantity (total cumulative change in GDP and inflation until 2023
Q4), in Figure 50, each column corresponds to Examples 1-3 from above. When simulations
are sorted by only one variable, as in columns one and two, the values of the other variable do
not exhibit monotonicity. When sorted by both criteria, the simulations in the final sorting order
do exhibit a general trend for GDP and inflation, as see in column 3.

Step 4: Selecting and/or aggregating "best performing" scenarios

The steps of the scenario selection algorithm are as follows:
For each quantile (from 0 to 100):

1. Get the index of the ranked simulations, corresponding to the given quantile153

Each simulation now corresponds to index s in ordering O, i.e. Os

2. Select a certain number N of individual simulations (the number of simulations to con-
sider together, which we call a "band" or a "family" of simulations)

152If Vc is a vector, i.e. for each simulation we have only a single values, the application of the distance measure
does not matter because that would be equivalent to just sorting by the value itself.

153Note that this is different from the target quantile for the values of each criterion. Also note that the scenario
designer may consider all quantiles, or alternatively focus on only one quantile corresponding to some tail measure;
in this way, one can add a measure of severity/adversity without imposing exact values a priori.
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Figure 50: Simulation outcomes after sorting by both GDP and HICP

3. Take the N/2 simulations ranked higher and lower around the given quantile (a sim-
ulation can belong to more than one bands, i.e. bands can overlap), i.e. simulations
Os−N/2...Os +N/2

4. Use a Local Outlier Factor algorithm (see Annex E.2) to check for outliers within these
N simulations

5. Take the mean (or median) of the remaining simulations with each band M =mean(Os−N/2,
...,Os+N/2), which we call a "path".

The general distribution of simulations can now be classified by “sorted quantile paths”.
In each of the three examples, we show three possible scenario paths – those corresponding

to the lowest 1st percentile, 5th percentile, and 10th percentile, after the final sorting.

In Example 1, the scenarios corresponding to the 1th, 5th and 10th percentile after sorting are
plotted as green lines, superimposed on the fan chart of all unconditional projections in Figure
52. It can be seen that on average, as part of the scenario, large drops in GDP are associated with
reduced domestic bank loans to non-financial corporations and higher unemployment rates.

In Example 2, simulations with the highest deflation do not necessarily occur with the high-
est decrease or increase in GDP in Figure 53. Therefore, in Example 3, we consider both criteria
together to generate a scenario that fits a narrative for stagflation. Consequently, in Figure 18,
there is some trade-off in the sorting order, in the sense that the final outcome will contain some
drop in both GDP and inflation, but not as large as when the criteria were used independently.

The final scenarios correspond to the mean of a strip of simulations in sorting order. Indi-
vidual simulations are generally more varied. To show this, the individual members that make
up the quantile scenario 1th (lowest green line) are plotted in blue in Figure 54.
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Figure 51: Example 3: Simulation outcomes after sorting by both GDP and HICP

E.2 Algorithm to compute the Local Outlier Factors
The local outlier factor (LOF) Breunig et al. [2000] is based on the concept of local density.
The algorithm follows the following steps:

1. Specify the subset of V variables from simulations which will be compared.

2. For each variable xv from the subset x1, ...,x|V |:

2.1. Calculate the euclidean distance,

dv(x(i),x( j)) =

√
∑
t
(x(i)v − x( j)

v )2
t .

for each pair of simulations i and j.
2.2. For each simulation i,

2.2.1. Define k nearest neighbours (k closest paths) for variable v. The set of nearest
neighbours will be denoted as Nv(i). The number of nearest neighbours k =
|Nv(i)| is calibrated according to Breunig et al. [2000], between 10 and 20.

2.2.2. Compute the maximum distance between simulation i and its neighbours (for
variable v) i.e.,

Dv(i) = max j∈Nv(i)(dv(x(i),x( j))),

to obtain its local density measure. Define the local reachability density of a
path as:

lrdv(i) =
1

∑ j∈Nv(i)Dv( j)/|Nv(i)|
.
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Figure 52: Example 1: Simulation results after sorting by GDP

2.2.3. Calculate the LOF score:

LOFv(i) =
∑ j∈Nv(i) lrdv( j)
|Nv(i)|lrdv(i)

.

3. Evaluate LOF scores for all variables xv and paths i (from the matrix of LOF scores of
size variables×simulations). A LOF score around 1 indicates a region of similar density,
the path is similar to its neighbours, i.e. not an outlier. A LOF score larger than 1 value
indicates a lower density than its neighbours, i.e.:

• LOF < 1⇒ Inlier

• LOF = 1⇒ Average density

• LOF > 1⇒ Outlier

4. Discard simulation i if at least one variable path is an strong outlier i.e. LOF > T where
T is an additional threshold.

The algorithm ensures removal of any paths that violate the threshold value for any of the
variables. The choice of threshold value depends on the data and the objectives. T = 5 has been
applied in most of our scenario selection applications.

The algorithm has a quadratic algorithmic complexity (high), making it computationally
demanding to apply it to large simulations (> 105 paths). We improve the execution speed by
using an expectation maximisation algorithm as in Goldstein [2012], where the local outlier fac-
tor is computed incrementally and thus faster. The algorithm first divides the data into random
samples. Then, the k-nearest-neighbour search is performed only for a sub-sample of the data.
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Figure 53: Example 2: Simulation outcomes after sorting by HICP

The LOF values calculated on this sub-sample of data are used to determine which data points
have LOF higher than 1 and only these will be evaluated further within in a larger sample to
find more accurate neighbours.
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Figure 54: Simulation outcomes after sorting by both GDP and HICP
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F Forecast assessment

The annex documents additional forecast quality statistics for the annual GDP growth rate of
the euro area and the HICP inflation rate along with the description in Section 7.4.

F.1 Point forecast metrics

Figure 55: Root mean squared error of BEAST projection and naive forecast: macroeconomic
variables

Figure 56: Mean forecast error of BEAST projections: macroeconomic variables
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F.2 Interval forecast metrics

Figure 57: Two-sided interval forecast assessment: euro area GDP growth
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Figure 58: Two-sided interval forecast assessment: euro area HICP inflation
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