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Abstract

Central clearing counterparties (CCPs) were established to mitigate default losses result-
ing from counterparty risk in derivatives markets. In a parsimonious model, we show that
clearing benefits are distributed unevenly across market participants. Loss sharing rules
determine who wins or loses from clearing. Current rules disproportionately benefit mar-
ket participants with flat portfolios. Instead, those with directional portfolios are relatively
worse off, consistent with their reluctance to voluntarily use central clearing. Alternative
loss sharing rules can address cross-sectional disparities in clearing benefits. However, we
show that CCPs may favor current rules to maximize fee income, with externalities on clear-
ing participation.

JEL classification: G18, G23, G28, G12.
Keywords: Central Clearing, Counterparty Risk, Loss Sharing, OTC markets, Derivatives.
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Non-technical summary

Derivatives markets boast a gross market value outstanding of nearly $20 trillion worldwide.
Derivatives are mostly traded over the counter and, therefore, counterparty risk is one of the
most important risks in derivatives markets. When counterparties fail to fulfill their obliga-
tions, default losses arise, such as during the 2007-08 financial crisis. In response to the crisis,
regulators worldwide have advocated for the central clearing of OTC derivative transactions
through central clearing counterparties, known as CCPs.

The main tasks of CCPs are to reduce the total amount of default losses through netting and
margin requirements and to allocate the remaining losses to non-defaulted clearing members
through loss sharing. As a result, loss sharing rules do not only determine the distribution
of counterparty risk in derivatives markets. They may also have significant effects on market
participants’ incentives to use central clearing, with consequences for risk sharing, and are
important for understanding the costs of clearing mandates.

Motivated by the significance of counterparty risk and central clearing for financial stabil-
ity, this paper provides an in-depth examination of the impact of loss sharing rules on coun-
terparty risk. We propose a parsimonious model, which we use to compare both the aggregate
and entity-specific counterparty risk between a market with central clearing and an uncleared
market. Importantly, we focus on environments with heterogeneous market participants. For
example, in core-periphery networks some entities (akin to dealers in practice) trade with many
counterparties while maintaining flat portfolios, whereas other entities (akin to end-users in
practice) exhibit a directional portfolio with a small number of counterparties.

There are four main insights. First, the net-to-gross ratio, which represents portfolio di-
rectionality, is the key determinant of aggregate clearing benefits. Second, the current market
practice of proportionally sharing a CCP’s default losses based on entities’ net portfolio risk
favors entities with a less directional portfolio, resulting in greater clearing benefits for them.
At the same time, entities with more directional portfolios are worse off and may even increase
their counterparty risk by using central clearing. Third, an alternative loss sharing rule, which
is based on a weighted average of net and gross portfolio risk, balances clearing benefits across
different market participants, ensuring that all entities benefit equally from clearing. Finally,
even though this alternative loss sharing rule mitigates disincentives to use central clearing, it
does not necessarily maximize the profit a CCP can generate from fees. Instead, we demon-
strate that a CCP might prefer to attract only entities with a flat portfolio because these exhibit
a higher willingness to pay for clearing.

These results have important implications for policymakers. They emphasize the role of
loss sharing rules in the allocation of counterparty risk in derivatives markets, and point to
potential externalities of loss sharing rules on clearing incentives when loss sharing rules are
chosen by profit-maximizing clearinghouses.
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1 Introduction

Whether we choose to bolster the tools for CCP resilience, CCP recovery or CCP resolution,
we will need to be aware of potential trade-offs in the way losses are allocated, and remember
that there may be no ideal approach.1

Default losses occur when counterparties fail to fulfill their obligations, e.g., when they de-
fault. Counterparty risk, which refers to the risk of default losses, is one of the most important
risks in over-the-counter (OTC) derivatives markets and has been identified as a significant fac-
tor in the 2007-08 financial crisis. To mitigate this risk, regulators worldwide have advocated
for the central clearing of OTC derivative transactions through central clearing counterpar-
ties, known as CCPs (G20, 2009).2 The main tasks of CCPs are to reduce the total amount of
default losses through netting and margin requirements and to allocate the remaining losses
to non-defaulted clearing members through loss sharing. Thus, loss sharing rules determine
how the potential benefits of central clearing for counterparty risk are divided among clearing
members. As a result, loss sharing rules may impact clearing participation, with important
consequences for risk sharing. Motivated by the importance of counterparty risk and central
clearing for financial stability, this paper provides an in-depth examination of the impact of
loss sharing rules on counterparty risk in markets with heterogeneous market participants.

We investigate the role of loss sharing rules from the perspective of counterparty risk, which
is measured by expected default losses. Default losses have significant economic implications.
For instance, in September 2018, the default of a single trader at the Swedish clearinghouse Nas-
daq Clearing AB resulted in EUR 107 million to be shared among surviving clearing members
(Faruqui et al., 2018). More generally, counterparty risk is an important determinant of clear-
ing participation (FSB, 2018; Bellia et al., 2023; Vuillemey, 2020) and affects derivatives prices
(Boissel et al., 2017; Cenedese et al., 2020). Using a parsimonious model, we compare both the
aggregate and entity-specific counterparty risk between a market with central clearing and an
uncleared market. Importantly, we focus on environments with heterogeneous market par-
ticipants. For example, in core-periphery networks some entities (akin to dealers in practice)
trade with many counterparties while maintaining flat portfolios, whereas other entities (akin
to end-users in practice) exhibit a directional portfolio with a small number of counterparties.
Our results shed light on disparities in clearing benefits between such market participants.
We provide comparative statics for the impact of changes in the characteristics of the market,

1Remarks by Benoît Cœuré, then member of the Executive Board of the European Central Bank, at the Federal
Reserve Bank of Chicago 2015 Symposium on Central Clearing. Available at https://www.ecb.europa.eu/press/
key/date/2015/html/sp150411.en.html.

2OTC derivatives markets are very large, with a worldwide gross market value outstanding of $18 trillion
in 2017 (source: BIS OTC derivatives statistics 2022:H1). Before the 2007-08 financial crisis, the derivatives market
architecture was dominated by bilateral trades (FSB, 2017). The G20 initiative in 2009 was followed by the Dodd-
Frank Wall Street Reform and Consumer Protection Act (DFA) in 2010 and the European Market Infrastructure
Regulation (EMIR) in 2012, with the mandatory central clearing of certain OTC derivatives as a key element. More
recently, a central clearing mandate has also been suggested for other asset classes, such as US treasuries (Duffie,
2020; Fleming and Keane, 2021).
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derivatives contracts, portfolios, and margin costs as well as in the loss sharing rule on clearing
benefits. Finally, we endogenize the loss sharing rule in a model with a profit-maximizing CCP.

There are four main insights. First, the net-to-gross ratio, which represents portfolio direc-
tionality, is the key determinant of clearing benefits, both in aggregate as well as for individual
entities. Second, the current market practice of proportionally sharing a CCP’s default losses
based entirely on net portfolio risk favors entities with a less directional portfolio, resulting in
greater clearing benefits for them. At the same time, entities with more directional portfolios
are worse off and may even increase their counterparty risk compared to an uncleared market.
Third, an alternative loss sharing rule, which is based on a weighted average of both net and
gross portfolio risk, balances clearing benefits across different market participants, ensuring
that all entities benefit equally from clearing. Finally, even though this alternative loss sharing
rule mitigates disincentives to use central clearing, it does not necessarily maximize the profit
a CCP can generate from fees. Instead, we demonstrate that a CCP might prefer to attract only
entities with a flat portfolio because these exhibit a higher willingness to pay for clearing.

Despite the increasing importance of central clearing in derivatives markets, with a gross
market value of $8.2 trillion in interest rate and $104 billion in foreign exchange contract posi-
tions at CCPs (source: BIS OTC derivatives statistics 2022:H1), research on loss sharing in clear-
inghouses is still scarce. We extend the existing literature by investigating heterogeneity in
clearing benefits among market participants and the role of loss sharing rules. Our results
have significant implications for policymakers. First, heterogeneity in expected default losses
is crucial from a financial stability perspective because assigning default losses to systemically
important entities can lead to amplification of initial losses. Second, loss sharing rules influence
the incentives of market participants to use central clearing, with significant consequences for
risk sharing in derivatives markets. Third, due to their impact on default losses, loss sharing
rules may affect derivative prices, with a potential feedback effect on hedging costs for the real
economy. Lastly, as clearing regulation continues to be refined, it is essential to understand the
incentives of agents in the political process.

We commence our analysis by extending Duffie and Zhu (2011)’s model of counterparty
risk exposure to incorporate heterogeneity in market participants’ derivative portfolios. Coun-
terparty risk exposures reflect the expected default losses in case all counterparties default.
Hence, it serves as a measure for netting efficiency. Our results demonstrate that portfolio
directionality, given by the net-to-gross ratio, is the primary driver of clearing benefits. The
smaller the directionality, the larger is the scope for netting through the CCP (so-called multilat-
eral netting) and, thus, the more beneficial is central clearing. Instead, entities with a sufficiently
directional portfolio do not experience a reduction in counterparty risk exposure through cen-
tral clearing: in exchange for fewer bilateral netting benefits (across derivative classes with
individual counterparties) they receive limited multilateral netting benefits.

This intuition carries over to the impact of central clearing on expected aggregate default
losses. Moreover, margin requirements are important. The stricter the margin requirement
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for cleared relative to uncleared positions, the greater the reduction in expected default losses
through central clearing. We show that central clearing reduces expected aggregate default
losses only when either it is accompanied by a stricter margin requirement or at least one mar-
ket participant has multilateral netting opportunities.

We then shift our focus to individual market participants. This is where the loss sharing rule
becomes relevant as it determines the allocation of the CCP’s default losses that remain after
multilateral netting and the use of a defaulted entity’s collateral. We begin by considering loss
sharing proportional to net portfolio risk, which closely aligns with current market practice.
In this case, entities with lower portfolio directionality benefit more from central clearing. We
conduct comparative statics and analyze the impact of central clearing on expected default
losses in markets with homogeneous market participants as well as in core-periphery networks.
Specifically, we demonstrate that central clearing can be beneficial in aggregate and for entities
with a flat portfolio (“core entities”) but, at the same time, harmful for entities with a directional
portfolio (“peripheral entities”).

These results are consistent with the reluctance of end-users to participate in loss sharing
in practice. End-users largely either do not use central clearing (if it is not mandatory) or min-
imize their exposure to loss sharing by using client clearing.3 Based on anecdotal evidence
from the industry and regulators, an important driver of this reluctance is loss sharing. In fact,
end-users emphasize that they bear disproportionately large costs of loss sharing (Novick et al.,
2018), which is consistent with our model. Our results provide an explanation for the reluctance
of end-users to use loss sharing and central clearing by showing that market participants with
a directional portfolio, such as end-users, benefit the least from or might even be hurt by loss
sharing rules used in practice. While there are also other determinants of end-users’ clearing
decision (such as fixed costs to satisfy membership requirements), our analysis reveals one im-
portant determinant of clearing costs and participation, which is important for understanding
both dynamics in derivatives markets and the potential costs of clearing mandates.

Loss sharing rules are neither mandated by regulation to be entirely net-based nor is an
entirely net-based loss sharing rule necessarily optimal. We investigate the design of the loss
sharing rule and consider loss sharing, more generally, to be proportional to a weighted average
of net and gross portfolio risk. Gross portfolio risk reflects a market participant’s total transac-
tion volume and, for this reason, has been highlighted as an important dimension to take into
account when allocating default losses (Cont, 2015).4 We show that the impact of increasing
the weight of gross relative to net risk in the loss sharing rule depends on entities’ portfolio
directionality. Whereas a larger weight of gross risk increases the clearing benefit for entities

3CCP membership requirements do not generally prohibit end-users from becoming clearing members. Instead,
regulation requires non-discriminatory access to clearing. Nonetheless, only very few financial institutions other
than banks and broker-dealers (e.g., insurers, investment or pension funds, or non-financial companies) are clearing
members (BIS, 2018).

4Rules based on gross risk are not uncommon. For example, the Basel III leverage ratio is based on derivatives’
gross notional amount (see https://www.bis.org/publ/bcbs270.htm).

ECB Working Paper Series No 2873 5

https://www.bis.org/publ/bcbs270.htm


with directional portfolios, it reduces that for entities with flat portfolios. Thus, initial dispar-
ities in clearing benefits between market participants shrink. We show that in core-periphery
networks there exists a unique weight of gross risk such that the associated loss sharing rule
exactly balances clearing benefits between core and peripheral entities.

Importantly, changes in the loss sharing rule do not affect the aggregate clearing benefit,
which is determined by netting and margin requirements, but only impact the distribution of
remaining default losses among clearing members. Thus, our analysis illustrates and distin-
guishes three roles of multilateral netting. First, multilateral netting reduces exposure to the
CCP and, thereby margin requirements. Second, it reduces overall default risk and, thus, de-
termines the benefit of central clearing for aggregate default losses. Third, netting may impact
how clearing benefits are split among individual clearing members, depending on the loss
sharing rule.

Our results show that taking gross risk into account can remove differences in clearing ben-
efits between different entities and, thereby, maximize clearing participation. Why are loss
sharing rules, instead, based entirely on net risk in practice? We highlight the market power of
for-profit CCPs as one potential explanation. Post-crisis financial regulation requires loss shar-
ing but does not prescribe a specific loss sharing rule, which, instead, is chosen by the CCP.
At the same time, the market for central clearing is highly concentrated and dominated by few
for-profit clearinghouses.5 Motivated by this observation, the CCP in our model maximizes its
total fee income by setting both the loss sharing rule and fees. Fees are volume-based, whereas
loss sharing rules discriminate depending on clearing members’ portfolio risk, consistent with
market practice and regulation. Central clearing is voluntary in the model and, thus, the opti-
mal clearing rule must be consistent with clearing members’ incentives to use central clearing
in the sense that the fee does not exceed the benefit of central clearing.

Two possible optimal clearing rules emerge. Either the CCP maximizes clearing participa-
tion by attracting all entities in the market or it maximizes clearing members’ willingness to
pay by attracting only entities with a flat portfolio. In the first case, the optimal loss sharing
rule offers the same clearing benefit to all entities by taking gross risk into account. In the
second case and using a refinement based on small perturbations in clearing participation, the
optimal loss sharing rule is proportional to net risk because it maximizes the willingness to pay
for central clearing of entities with a flat portfolio and, thus, enables the CCP to request a larger
fee. We show that the CCP prefers this second rule, curtailing clearing participation, if overall
central clearing benefits are relatively small, e.g., if there are few opportunities for multilateral
netting through the CCP. In this case, it is optimal for the CCP to not attract peripheral entities
in order to be able to charge a larger fee from remaining clearing members. Hence, our analysis
reveals the incentives for the CCP to use net-based loss sharing rules to maximize fee income
from entities with a flat portfolio.

5For instance, in the USD and EUR interest rate and credit risk derivatives markets, four clearinghouses (LCH,
CME, Eurex, and ICE) account for nearly 100% of cleared transactions, and all of them are for-profit organizations.
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In addition, other considerations may shape the choice of loss sharing rules. On one hand,
net-based loss sharing rewards low portfolio directionality and, thereby, may incentivize mar-
ket participants to reduce directional risk and provide liquidity. On the other hand, penalizing
portfolio directionality implies an increase in hedging costs for end-users. Trading off these
effects provides an important avenue for future research.

Regulators aim to enlarge clearing participation (G20, 2009; FSB, 2018). Broad adoption of
central clearing may be desirable to boost risk sharing and transparency in derivatives markets
(Acharya and Bisin, 2014), and mitigate information frictions (Vuillemey, 2020) and counter-
party risk (Bernstein et al., 2019). Our analysis suggests that CCPs’ incentives may not fully
align with this goal. Instead, it may be optimal for a CCP to not maximize clearing partici-
pation in order to extract larger fees from dealers. Therefore, an important avenue for future
research is to investigate the implications of loss sharing rule choice on social welfare and the
extent to which regulatory policies can mitigate potential externalities.

In an extension of our model, we show that our baseline results are robust to including a
small cost of collateral. In this case, the beneficial effect of collateral on default losses dom-
inates. In contrast, if collateral is sufficiently costly, a larger margin requirement for cleared
positions reduces clearing benefits.

Our analysis focuses on the risk of default losses and, therefore, does not incorporate other
potential benefits or costs of central clearing, such as its impact on capital requirements, market
transparency, or market liquidity. Throughout the paper, we consider expected default losses
as a function of positions, which we treat as exogenous. We note that our results have poten-
tially important implications for derivatives trading behavior, which suggests an interesting
avenue of future research beyond the scope this paper. We discuss these implications and re-
lated equilibrium trade-offs and policy implications.

2 Literature Review

We contribute to a growing literature on central clearing and its role in derivatives markets.
Previous studies have examined loss sharing and its interaction with CCP collateral and fee
policies (Capponi et al., 2017; Capponi and Cheng, 2018; Huang, 2019) and with risk manage-
ment incentives (Biais et al., 2012, 2016; Antinolfi et al., 2022; Wang et al., 2022).6 In Kuong
and Maurin (2022)’s model, the tension between loss sharing and risk management incentives
motivates the CCP’s ownership structure and default waterfall design. Wang et al. (2022) show
that pre-funded default fund contributions are economically more efficient to align risk man-
agement incentives than initial margins if covering losses ex-post is costly. In these models,
market participants typically trade one contract and differ only in the direction of trade, i.e.,

6Huang and Zhu (2021) examine the design of default auctions. Menkveld (2017) and Huang et al. (2020) take
a CCP’s perspective and identify extreme price movements as well as portfolio concentration as important risks to
CCP stability. Menkveld and Vuillemey (2021) provide an overview of the literature on central clearing.
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whether they are sellers or buyers. We complement previous studies by focusing on hetero-
geneity in market participants’ portfolio directionality. Thus, market participants may trade
(partly) offsetting contracts, such as dealers in practice (Getmansky et al., 2016). We are, to the
best of our knowledge, the first to investigate the distributional effects of loss sharing on mar-
ket participants with different portfolio directionality. Moreover, we complement the previous
literature by investigating the role of different loss sharing rules and a profit-maximizing CCP’s
incentives when choosing the loss sharing rule.

Duffie and Zhu (2011), Cont and Kokholm (2014), and Lewandowska (2015) study the im-
pact of multilateral versus bilateral netting on counterparty risk exposure. Their main result is
that a sufficiently large number of clearing members guarantees that central clearing reduces
counterparty risk. Ghamami and Glasserman (2017) study the capital and collateral costs of
central clearing and conclude that margin costs likely dominate potential clearing benefits in
practice. Their result is contrasted by the FSB (2018)’s assessment that central clearing reforms
create an overall incentive to clear.

Our framework builds on the model of Duffie and Zhu (2011) and considers mainly two
important extensions. First, whereas Duffie and Zhu (2011) take an ex-ante perspective from
which derivatives positions are random, we consider loss sharing as a function of a (fixed) set
of derivatives portfolios. This allows us to explicitly distinguish between entities with differ-
ent portfolios. We show that it is not a large number of counterparties per se but, instead, a
low portfolio directionality that creates clearing benefits (which is more likely to realize when
entities trade randomly with more counterparties in Duffie and Zhu (2011)’s model). Second,
whereas Duffie and Zhu (2011) focus on the case that all counterparties—including the CCP—
default, we more generally allow any number of market participants to default. Thus, a given
entity is exposed to the risk of loss sharing contributions even when clearing members which
are not the entity’s counterparties default. We show that this is important to take into account
in order to reveal the role of loss sharing and loss sharing rules.

Empirical evidence on the impact of central clearing on derivative markets has been grow-
ing only recently, fueled by the increasing availability of granular data. Recent examples are
Loon and Zhong (2014), Duffie et al. (2015), Bellia et al. (2023), and Du et al. (2022) for single-
name CDS, Menkveld et al. (2015) for equity, Mancini et al. (2016) and Boissel et al. (2017) for
interbank repo, and Cenedese et al. (2020) and Dalla Fontana et al. (2019) for IRS markets. The
results by Bellia et al. (2023) show that contracts with risky counterparties and large netting
benefits are more likely to be cleared than uncleared, suggesting that counterparty risk and
netting are indeed highly relevant for clearing participation. This result is consistent with the
historical evidence documented by Vuillemey (2020), who shows that the global coffee crisis in
1880-81 motivated a group of coffee traders to create a CCP specifically to mitigate counterparty
risk.
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3 Model

In this section, we describe our model. Default losses result from replacement costs, which
are changes in contract values during the settlement period, i.e., the time until liquidation or
settlement after a counterparty’s default (see Figure 1).7 Without loss of generality, we consider
a one-period model. At time t = 0, derivative contracts are written (or, equivalently, contracts
are marked to market by the exchange of variation margin) and, subsequently, counterparties
might default. At time t = 1, contracts are settled.

[Place Figure 1 about here]

Derivative positions are sorted into K ≥ 2 derivative classes. This classification can result
for different reasons, for example from grouping derivatives by contract type or underlying,
such as interest rate, credit, commodities, or equities.

There are N ≥ 3 market participants (or, equivalently, entities), indexed i = 1, ..., N, which
trade in all derivative classes K. The binary random variable Di indicates the event that entity
i defaults (Di = 1) or survives (Di = 0). The probability of default is equal to P(Di = 1) = π ∈
(0, 1). Defaults are mutually independent. A defaulted entity does not honor any obligations
arising from derivative contracts to its counterparties (including the CCP). However, liabilities
from surviving entities (or the CCP) toward a defaulted entity must be paid.

We denote by vij ∈ R the position of entity i with j in class k.8 We allow positions to differ
across counterparties but not across derivative classes.9

The absolute size |vij| is the trade volume and sign(vij) the direction. By symmetry, vij =

−vji, and it is vii = 0. We define by Ni = {j : vij ̸= 0} the set and by Ni = |Ni| the number
of i’s counterparties. By definition, vij = 0 if j /∈ Ni. Each entity trades at least with one other
counterparty, Ni > 0.

During the settlement period, entity i’s net profit with j in derivative class k is given by
Xk

ij = vijrk, where rk is the return in class-k during the settlement period. rk is the same for
all entities, i.e., all entities trade the same class-k contract (or portfolio). Thus, profits across
entities within each derivative class only differ by positions vij.10

7The length of the settlement period depends on the liquidity of contracts and typically ranges from 2 to 5
days (Arnsdorf, 2012). For example, initial margins for OTC foreign exchange and IRS trades is based on a 5-day
settlement period at CME (see their CPMI-IOSCO Quantitative Disclosures for 2019Q3).

8We treat positions as exogenous and focus on the impact of central clearing on default losses as a function of
positions. We note that our results have implications for trading behavior, which suggests an interesting avenue of
future research beyond the scope this paper.

9The assumption that networks are similar across derivative classes is broadly consistent with empirical evi-
dence. For example, Abad et al. (2016) document that the network of gross notional links between counterparties
in the European interest rate swap market resembles those of the European CDS and foreign exchange derivatives
markets. Nonetheless, the specific positions of single entities may differ in practice across derivative classes. It is
possible to extent our model to incorporate such heterogeneity in networks across positions, however, we do not
expect that it would qualitatively affect our results.

10In a previous version of the paper, we have additionally considered risk that is idiosyncratic to entities, which
does not qualitatively affect the results.
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Contract returns are normally distributed with zero mean, E[rk] = 0. Symmetry substan-
tially reduces the dimension of our model and improves its tractability.11 We consider a single-
factor model for contract returns:

rk = βM + σεk. (1)

εk ∼ N (0, 1) is idiosyncratic risk, i.e., for k ̸= m, εk and εm are independently distributed, and
εk and M are independently distributed for all k. The systematic risk factor M ∼ N (0, σ2

M)

serves as a latent variable that reflects macroeconomic conditions (e.g., the S&P 500 stock mar-
ket index), and β is the systematic risk exposure of derivative contracts. For simplicity and
tractability, we assume identical distributional properties across entities and derivative classes.

Remark 1 (Difference to Duffie and Zhu, 2011). Equation (1) implies that contract returns are corre-
lated across entities within derivative classes, e.g., because all entities trade the same contract (portfolio).
This nonzero correlation is an important difference to the model of Duffie and Zhu (2011), in which they
assume uncorrelated contract returns, namely that cor(Xk

ij, Xk
mn) = 0 for {i, j} ̸= {m, n}. The rea-

son is a difference in perspectives. Duffie and Zhu (2011) consider positions to be unknown and, thus,
cor(Xk

ij, Xk
mn) = 0 reflects that positions of entity pairs (i, j) and (m, n) are independently distributed.

Instead, we consider deterministic positions vij to reveal how differences in positions affect the impact of
central clearing.

Market participants exchange collateral (i.e., initial margin) with each other and with the
CCP. We assume that collateral is based on portfolio risk but not on default risk, which im-
proves the model’s tractability, is consistent with common market practice, and does not quali-
tatively affect heterogeneity in clearing benefits across market participants because we assume
that market participants exhibit the same default risk.12

For uncleared positions, we parametrize the collateral posted by i to j as a Value-at-Risk
of i’s bilateral portfolio profit, namely CK

ij = VaRαuc

(
∑K

k=1 Xk
ij

)
, where αuc ∈ [0.5, 1) is the

confidence level.13 αuc = 0.5 corresponds to an environment without collateral. The larger
αuc, the more protected is j against a default of i. Analogously, the collateral posted by i to

11Due to the small time horizon of the settlement period, the risk-free rate and risk premium are negligible. Indi-
vidual contracts may exhibit skewed and fat-tailed distributions. However, the assumption of normally distributed
returns may be appropriate for diversified portfolios. It allows us to work with closed-form analytical solutions
and we do not expect that it affects the main results qualitatively.

12According to practitioners, because of due diligence by CCPs (e.g., reflected in membership requirements) and
counterparties, it is typically not considered necessary to link collateral requirements to default risk. Nonetheless, it
would be straightforward to model a collateral level α that varies with default risk, e.g., by defining α = α∗ + g(π)
with a baseline confidence level α∗ and an increasing function g(π) such that α ∈ [0.5, 1). We do not expect that
this alternative modeling of α would qualitatively change the key insights from our analysis. Most importantly, it
would not qualitatively change the results on cross-sectional differences in clearing benefits because all entities are
assumed to have the same probability of default.

13Using a Value-at-Risk approach is common industry practice (ISDA, 2013) and consistent with regulation (BIS,
2019). For example, CME sets initial margins at the 99% VaR for futures and options and at the 99.7% VaR for
interest rate swaps (see CME’s CPMI-IOSCO Quantitative Disclosures 2019Q3).
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the CCP is given by the Value-at-Risk of i’s portfolio profit with the CCP, namely CCCP
i =

VaRαCCP

(
∑N

j=1 XK
ij

)
, where αCCP ∈ [0.5, 1) is the confidence level.

4 Counterparty Risk Exposure

We start our analysis by investigating netting efficiency through the lens of counterparty risk
exposure before collateral (i.e., with αCCP = αuc = 0.5) in the spirit of Duffie and Zhu (2011),
which reflects expected default losses conditional on the default of counterparties and the CCP.
We first define portfolio directionality:

Definition 1. The gross position of entity i in a given derivative class k is given by

Gi = ∑
j∈Ni

∣∣vij
∣∣ . (2)

The net-to-gross-ratio, defined by

ηi =

∣∣∣∑j∈Ni
vij

∣∣∣
Gi

, (3)

is a measure for the directionality of entity i’s portfolio. ηi corresponds to the average net position per
$1 traded, and ranges from zero (flat) to one (directional). Both gross position and net-to-gross ratio are
independent of trading direction, i.e., whether a portfolio is net long or short.

The following lemma decomposes portfolio risk into an entity’s gross position, directional-
ity, and contract volatility.

Lemma 1 (Portfolio risk). The standard deviation of entity i’s portfolio in a given derivative class is
given by

σ̄i =Giηi

√
β2σ2

M + σ2. (4)

First, we consider an uncleared market. We assume that all entity pairs have bilateral (close-
out) netting agreements with each other. Netting agreements aggregate outstanding positions
into one single claim (Bergman et al., 2004) and are common market practice (Mengle, 2010).
Bilateral netting offsets gains and losses of different derivative trades across different derivative
classes (e.g., IRS and CDS) with a single counterparty. Thus, a counterparty j’s default results
in default losses for entity i only if i makes a net profit. If all derivative classes are uncleared,
then the total counterparty risk exposure of entity i is given by

E
[

EK
i

]
= E

[
∑

j∈Ni

max

(
K

∑
k=1

Xk
ij, 0

)]
= φ(0)Gi f (K), (5)
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where f (K) =
√

β2σ2
MK2 + σ2K.

Second, we introduce central clearing. Following Duffie and Zhu (2011), we examine the
case that one derivative class is centrally cleared while others remain uncleared. This enables
netting across counterparties in the cleared derivative class, i.e., multilateral netting. As a re-
sult, exposure to the CCP in derivative class K is determined by the net portfolio profit across
counterparties:

E
[

ECCP
i

]
= E

[
max

(
∑

j∈Ni

XK
ij , 0

)]
= ηi φ(0)Gi f (1). (6)

We examine the impact of centrally clearing derivative class K on entity i’s counterparty risk
exposure relative to an uncleared market, which we define by

∆Ei =
E[EK−1

i + ECCP
i ]− E[EK

i ]

E[Ei
K]

. (7)

If ∆Ei < 0, central clearing reduces counterparty risk exposure. Central clearing is more benefi-
cial if ∆Ei is smaller, which means that it achieves a larger reduction (or, equivalently, smaller
increase) in counterparty risk exposure.

Proposition 1 (Impact of central clearing on counterparty risk exposure). The impact of central
clearing on entity i’s counterparty risk exposure is equal to

∆Ei =
f (K − 1) + ηi f (1)

f (K)
− 1, (8)

where f (K) =
√

β2σ2
MK2 + σ2K. The larger the portfolio directionality ηi, the less beneficial is central

clearing for counterparty risk exposure, ∂∆Ei
∂ηi

> 0.

Proposition 1 shows that ∆Ei is driven by two components: directionality and risk. The
larger an entity i’s portfolio directionality ηi, the less beneficial is central clearing, i.e., the larger
is ∆Ei (see Internet Appendix B for additional results). The reason is that multilateral netting
opportunities decrease with larger portfolio directionality.

5 Default Losses

Counterparty risk exposure examined in the previous section reflects expected default losses
in case all counterparties and the CCP default. In the following, we extend the analysis to
consider default losses more generally. Crucially, we also consider contributions to loss sharing
at the CCP in case only some clearing members default. The amount of such contributions
critically depends on how the CCP allocates losses among surviving clearing members, i.e., its
loss sharing rule.
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5.1 Aggregate Default Loss

We start by considering the expected aggregate default loss, which is the sum of expected
default losses for cleared and uncleared positions across all market participants. Default losses
for uncleared positions of entity i arise from a counterparty j’s default if the bilateral portfolio
profit exceeds the collateral CK

ji posted by j to i. The CCP suffers default losses only in case
at least one clearing member j defaults and the net liability of j toward the CCP exceeds the
collateral CCCP

j posted by j. In the following, we provide formal definitions of default losses.

Definition 2 (Default loss). The CCP’s total default losses is defined as

DLCCP =
N

∑
j=1

Dj max

 ∑
g∈Nj

XK
gj − CCCP

j , 0

 (9)

and the total uncleared default losses of entity i in derivative classes 1 to K is defined as

DLK
i = ∑

j∈Ni

Dj max

(
K

∑
k=1

Xk
ij − CK

ji , 0

)
. (10)

Moreover, we define the function ξ(α), which reflects the distribution of losses in excess of
collateral. The larger the confidence level of the collateral requirement α, the smaller is ξ(α)

(see Lemma IA.1 in the Internet Appendix).

Definition 3 (Collateral-weighted loss distribution). We define the function
ξ(α) = (1 − α)Φ−1(1 − α) + φ(Φ−1(α)) for α ∈ [0.5, 1).

The following proposition provides an analytical formula for the expected default losses of
uncleared derivative positions.

Proposition 2. The expected default loss of entity i’s uncleared positions in derivative classes 1 to K is
equal to

E[DLK
i ] = πGiξ(αuc)

√
β2σ2

MK2 + σ2K. (11)

A measure for the aggregate counterparty risk when class-K derivatives are centrally cleared
is given by the expected default losses aggregated across uncleared and cleared derivative
classes, which is given by

ADL = E

[
DLCCP +

N

∑
i=1

DLK−1
i

]
. (12)

We examine the effect of centrally clearing derivative class K relative to an uncleared market
in the following proposition.
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Proposition 3 (Impact of central clearing on the aggregate default loss). The expected aggregate
default loss with central clearing is equal to

ADL = π
N

∑
i=1

Gi (ξ(αCCP)ηi f (1) + ξ(αuc) f (K − 1)) , (13)

where f (K) =
√

β2σ2
MK2 + σ2K. The impact of central clearing on the expected aggregate default loss

is equal to

∆ADL =
ADL − ∑N

i=1 DLK
i

∑N
i=1 DLK

i
=

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

ηagg +
f (K − 1)

f (K)
− 1, (14)

where ηagg =
∑N

i=1|∑j∈Ni
vij|

∑N
i=1 Gi

is the average net-to-gross ratio. ∆ADL < 0 holds only if

ηagg <
ξ(αuc)

ξ(αCCP)
. (15)

Proposition 3 provides an analytical expression for the expected aggregate default loss if
class K is centrally cleared and for the impact of central clearing on the expected aggregate
default loss. The latter is driven by the average net-to-gross ratio, ηagg, which is a measure
for the average net position per $1 traded in class K. It reflects average portfolio directional-
ity. Intuitively, larger directionality lowers multilateral netting efficiency and, thereby, clearing
benefits. Similarly, a lower collateral requirement for cleared relative to uncleared positions
reduces clearing benefits. We illustrate these comparative statics in Figure 2.

[Place Figure 2 about here]

Proposition 3 also provides a necessary condition for central clearing to be overall bene-
ficial, i.e., to reduce the expected aggregate default loss, which is that the average portfolio
directionality is sufficiently small. We further specify this condition in the following corollary.

Corollary 1. Central clearing reduces the expected aggregate default loss, ∆ADL < 0, only if at least
one of the following conditions holds:

• αuc < αCCP

• ηagg < 1.

The latter condition is equivalent to mini∈{1,...,N} ηi < 1.

In Corollary 1, we show that central clearing is overall beneficial only if there are either
tighter collateral requirements for cleared than uncleared positions (αuc < αCCP) or at least
one entity exhibits an imperfectly directional portfolio (ηi < 1) or both. Thus, if collateral
requirements for cleared are not more strict than for uncleared positions, central clearing is
beneficial in aggregate only if at least one market participant does not have a fully directional
portfolio, which is common in practice, e.g., for dealers.
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5.2 Loss Sharing

The CCP’s default loss, DLCCP, is offset by loss sharing contributions made by surviving (i.e.,
non-defaulting) clearing members.14 Contributions are made, first, out of the pre-funded de-
fault fund and, second, through cash calls or other recovery tools.15 Because default funds
must be replenished by clearing members within a short time window after defaults (typi-
cally within one month; see Internet Appendix A for an example), from the perspective of our
model, loss sharing through the default fund has a similar impact on realized default losses as
cash calls. Therefore, we do not distinguish between different implementations of loss sharing
but, instead, focus on the total amount of losses allocated to a specific clearing member, i.e., the
sum of pre-funded contributions used and any additional contributions.

A clearing member’s loss sharing contribution is a share of the CCP’s total default loss as
determined by the loss sharing rule. We consider rules that are based on net as well as gross
portfolio risk.16 It is important to note that changing the loss sharing rule does neither change
aggregate default losses nor aggregate multilateral netting benefits nor the amount of required
collateral, holding clearing participation fixed. Instead, in our model, the loss sharing rule
solely determines how realized losses are distributed among surviving clearing members.

Definition 4 (Loss sharing rule and contribution). A loss sharing rule w ∈ [0, 1]N determines the
share of the CCP’s default loss allocated to each clearing member, such that member i conditional on its
survival contributes the share

wi

∑N
g=1(1 − Dg)wg

. (16)

We consider loss sharing rules of the following form:

wi(δ) = δΣ̄i + (1 − δ)σ̄i, (17)

where σ̄i is the net risk and Σ̄i the gross risk of i’s portfolio:

Σ̄i = ∑
j∈Ni

√
var

(
XK

ij

)
= Gi

√
β2σ2

M + σ2. (18)

The larger δ, the larger is the weight of gross relative to net portfolio risk in loss sharing. It is wi(δ) > 0
for all δ > 0.

14Before allocating losses to surviving members, default losses are (partly) absorbed by a share of the CCP’s
capital, its skin-in-the-game (SITG). Since CCPs’ SITG is small in practice, typically below 20% of pre-funded default
fund contributions (ESRB, 2021), we do not explicitly consider SITG in the model.

15 Pre-funded default fund contributions are 4% of initial margin for cleared OTC IRS at LCH and 7% for cleared
CDS at ICE Clear Credit in 2021 (Source: CPMI-IOSCO Quantitative Disclosures 2021Q1), which are the largest
CCPs for USD- and Euro-denominated IRS and CDS, respectively. For a detailed discussion of CCPs’ default wa-
terfall see Elliott (2013), Cont (2015), Duffie (2015), or Armakolla and Laurent (2017).

16In practice, loss sharing proportionally to gross risk may be implemented by aggregating the gross flow of
cleared transactions instead of the existing (net) stock of outstanding exposures.
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Clearing member i’s loss sharing contribution equals the CCP’s total default loss times i’s loss shar-
ing share in case i survives, and zero otherwise:

LSCi(δ) =


wi(δ)

∑N
j=1(1−Dj)wj(δ)

DLCCP, if Di = 0

0, if Di = 1.
(19)

To assess the impact of central clearing on an entity i’s expected default loss, we compute
the change in expected default losses with central clearing of derivative class K relative to an
uncleared market, as given by

∆DLi =
E[(1 − Di)DLK−1

i + LSCi]

E[(1 − Di)DLK
i ]

− 1. (20)

Analogously to loss sharing contributions, we assume that the uncleared default loss equals
zero if i defaults because limited liability protects entity i in states with negative entity. If
∆DLi < 0, central clearing is beneficial since it reduces entity i’s expected default loss com-
pared to an uncleared market. In the following, we investigate the determinants of ∆DLi. Our
focus on ∆DLi is motivated by the role of counterparty risk as a key determinant for clearing
participation (Bellia et al., 2023; FSB, 2018; Vuillemey, 2020). In Section 6, we formalize this role
in a model with endogenous clearing participation.

Equation (19) illustrates that loss sharing contributions do not only depend on an entity’s
own portfolio but also on that of other clearing members. Because the share of losses borne by
entity i is inversely proportional to the number of surviving clearing members, ∑N

j=1(1 − Dj),
there is, in general, no analytical expression for E[LSCi]. The following proposition simplifies
Equation (19) by taking the expectation with respect to the CCP’s default loss and clearing
member i’s default indicator.17

Proposition 4 (Expected loss sharing contribution and the impact of central clearing). With the
loss sharing rule w(δ), clearing member i’s expected loss sharing contribution is equal to

E[LSCi(δ)] = (1 − π)ξ(αCCP)wi(δ)E

[
∑N

j=1,j ̸=i Djσ̄j

wi(δ) + ∑N
j=1,j ̸=i(1 − Dj)wj(δ)

]
. (21)

The impact of central clearing on i’s expected default loss is given by

∆DLi =
f (K − 1)

f (K)
+

wi(δ) f (1)
Gi f (K)

ξ(αCCP)

ξ(αuc)

1
π

E

[
∑N

j=1,j ̸=i DjGjηj

wi(δ) + ∑N
j=1,j ̸=i(1 − Dj)wj(δ)

]
− 1. (22)

Because the CCP is not able to raise funding from defaulted clearing members, a defaulted
clearing member’s loss contribution is equal to zero. As a result, total loss sharing contributions

17Throughout our analysis, we focus on expected default losses. In addition, central clearing also affects the
distributional properties of default losses more generally and, thus, may interact with entities’ risk preferences.
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exactly offset the CCP’s total default loss if, and only if, at least one clearing member survives,
while the CCP must resort to other resources (e.g., from shareholders or a possible government
bailout) in the case that all clearing members default.18

Corollary 2 (Aggregate loss sharing contributions). Conditional on at least one clearing member
surviving, aggregate loss sharing contributions are equal to the CCP’s total default loss.

Unconditionally expected total loss sharing contributions are equal to the CCP’s total expected de-
fault loss scaled by the survival probability of N − 1 clearing members:

E

[
N

∑
i=1

LSCi(δ)

]
= (1 − πN−1)E

[
DLCCP

]
. (23)

5.3 Loss Sharing Based on Net Risk

We start by assuming that losses are allocated proportionally to net portfolio risk, using the
loss sharing rule w(0), and relax this assumption in Section 5.4. Because a clearing member’s
net portfolio risk is proportional to the collateral (initial margin) posted to the CCP in our
model, this loss sharing rule is equivalent to allocating losses proportionally to initial margin,
which resembles current market practice (see Internet Appendix A for an example). In states
in which all surviving members have zero net risk, i.e., if ∑N

j=1(1 − Dj)σ̄j = 0 in Equation (19),
we make the technical assumption that losses are shared proportionally to the gross risk of an
entity i’s cleared portfolio, whereas the impact of gross risk on loss sharing is infinitesimally
small in other states. Thus, we define the net-based loss sharing rule as w(0) = σ̄i + δ̃Σ̄i with
infinitesimally small δ̃ > 0. In the market environments we consider below, the limit when δ̃

approaches 0 is well-defined, in which case we consider limδ̃↘0 E[LSCi(0)].
The following proposition characterizes the impact of central clearing, ∆DLi, with net-

based loss sharing and derives several comparative statistics.

Proposition 5 (Loss sharing based on net risk). The impact of central clearing on the expected default
loss of entity i is equal to

∆DLi =
f (K − 1)

f (K)
+ (δ̃ + ηi)

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1
π

E

[
∑N

j=1,j ̸=i DjGjηj

(δ̃ + ηi)Gi + ∑N
j=1,j ̸=i(1 − Dj)(δ̃ + ηj)Gj

]
− 1, (24)

where f (K) =
√

β2σ2
MK2 + σ2K. ∆DLi is

(a) decreasing with the collateral requirement for cleared contracts, ∂∆DLi
∂αCCP

< 0, and increasing with the
collateral requirement for uncleared contracts, ∂∆DLi

∂αuc
> 0,

18This assumption allows us to focus on loss sharing instead of the (relatively unlikely) case that the entire CCP
fails. Alternatively to assuming that losses are compensated using outside resources in the case that all clearing
members default, it would be straightforward to include this additional default loss in the analysis. In this case, an
entity i’s expected default loss in the cleared derivative class K would be equal to E[LSCi] + πN Giηiξ(αCCP) f (1).
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(b) increasing with the number of derivative classes, ∂∆DLi
∂K > 0, if, and only if, αCCP > c, where c > 0

is a constant,

(c) decreasing with the systematic risk exposure, ∂∆DLi
∂β < 0.

In Proposition 5, we show that ∆DLi is increasing with tighter collateral requirements for
uncleared contracts, αuc, and decreasing with tighter collateral requirements for cleared con-
tracts, αCCP. Intuitively, the safer central clearing is relative to uncleared contracts, the larger is
the relative benefit of central clearing, i.e., the smaller is ∆DLi.19 A larger number of derivative
classes K has two effects. On one hand, it increases bilateral netting efficiency for uncleared
contracts. On the other hand, it increases the total risk of uncleared contracts. If central clear-
ing is relatively safe, i.e., if αCCP is large, the former effect dominates and increasing bilateral
netting efficiency makes central clearing relatively less beneficial, i.e., increases ∆DLi. Instead,
if central clearing associates with sufficiently large risk, the latter effect dominates and increas-
ing the total risk of uncleared contracts makes central clearing relatively more beneficial, i.e.,
reduces ∆DLi. Finally, we show that systematic risk exposure β increases central clearing ben-
efits, i.e., reduces ∆DLi. The reason is that higher systematic risk impairs bilateral but not
multilateral netting efficiency.

The following proposition characterizes the impact of directionality on central clearing ben-
efits.

Proposition 6 (Loss sharing based on net risk: directionality). Assume that at least three entities
have a portfolio that is not perfectly flat. Consider two entities h, g ∈ {1, ..., N}, h ̸= g, with Gh ≥ Gg.
Then there exists ε < 0 such that the following holds: if entity h exhibits a lower portfolio directionality
than g, ηh < ηg, and either ηh = 0 or ηg < ηh + ε, then the impact of central clearing on the expected
default loss is smaller for h than for g,

∆DLh < ∆DLg. (25)

The impact of portfolio directionality on central clearing benefits is ex ante not obvious
because a specific entity’s portfolio cannot be viewed in isolation: changing entity i’s portfolio
directionality also implies changing the CCP’s portfolio. On one hand, lower directionality
implies a smaller contribution to loss sharing, holding the CCP’s default loss fixed. On the other
hand, it affects the CCP’s default loss. Both effects interact with the entity’s portfolio size, i.e.,
gross position. In Proposition 6, we compare two entities with different directionality, ηh and
ηg. We show that the first effect dominates if gross positions do not positively correlate with
directionality. In this case, central clearing is more beneficial (i.e., ∆DLi smaller) for entities
with a marginally lower directionality.

19While in our main analysis we ignore collateral costs, in Internet Appendix C, we show that the results extend
to the case with costly collateral.
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Exploring other comparative statics, e.g., with respect to the probability of default, is chal-
lenging because a closed-form expression for ∆DLi is, in general, not readily available. We
address this challenge by considering two specific classes of networks in the following.

First, we study the class of homogeneous networks, which we define as networks in which
all entities exhibit the same total gross position and portfolio directionality. This class is very
broad. It includes markets with only one counterparty per entity as well as complete networks
in which all entities trade with each other, e.g., an interdealer market (Getmansky et al., 2016).

Assumption 1 (Homogeneous network). In a homogeneous network, market participants have the
same gross positions, Gi ≡ G > 0, and directionality, ηi ≡ η > 0, for all i = 1, ..., N.

The following proposition investigates clearing benefits in homogeneous networks.

Proposition 7 (Loss sharing based on net risk in homogeneous networks). Consider a homoge-
neous network as in Assumption 1. Then, the impact of central clearing with loss sharing based on net
risk on the expected default loss of entity i with δ̃ = 0 is equal to

∆DLi =
f (K − 1)

f (K)
+ η

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1 − πN−1

1 − π
− 1, (26)

where f (K) =
√

β2σ2
MK2 + σ2K. ∆DLi is

(a) increasing with directionality, ∂∆DLi
∂η > 0,

(b) increasing with the number of derivative classes, ∂∆DLi
∂K > 0, if, and only if, η < c, where c > 0 is a

constant,

(c) increasing with the probability of default, ∂∆DLi
∂π > 0.

In Proposition 7, we derive a closed-form expression for the impact of central clearing in
homogeneous networks. In such networks, all surviving clearing members bear the same share
of the CCP’s default losses and the expected loss sharing contribution is solely driven by net-
ting efficiency and default dynamics. As a result, the impact of central clearing on an entity’s
expected default loss is equal to its impact on the expected aggregate default loss adjusted by
using aggregate loss sharing contributions (as in Corollary 2) and setting defaulted entities’
uncleared default losses to zero (as in Equation 20).

Portfolio directionality reduces the benefit of central clearing, i.e., increases ∆DLi, by re-
ducing multilateral netting efficiency. We also provide a complementary characterization of
the role of K. A larger number of (uncleared) derivative classes K makes central clearing rel-
atively less beneficial if directionality is sufficiently small since, in this case, larger bilateral
netting efficiency undermines relative clearing benefits. Finally, we show that an increase in
the probability of default π reduces clearing benefits. Intuitively, a larger probability of default
increases the risk that fewer clearing members survive and, thereby, increases the expected
share of losses an individual survivor has to bear.
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Second, we add heterogeneity across clearing members. For this purpose, we consider core-
periphery networks, which can be found in many OTC markets in practice (Getmansky et al.,
2016; Di Maggio et al., 2017; Li and Schürhoff, 2019). The network’s core can be interpreted as
an interdealer market, where dealers trade with each other, whereas core-periphery links may
reflect dealer intermediation between end-users.

Assumption 2 (Core-periphery network). A core-periphery network with N ∈ {3n : n ∈ N uneven}
exhibits the following properties:

(1) Nper = {1, ..., N
3 , 2N

3 + 1, ..., N} are peripheral entities and Ncore = {N
3 + 1, ..., 2N

3 } are core enti-
ties.

(2) Peripheral entities trade with only one entity in the core, such that, for all i = 1, .., N
3 and j =

2N
3 − i + 1, vij = Gper if i is even, and vij = −Gper if i is uneven; and for all i = N

3 + 1, ..., 2N
3 and

j = 4N
3 − i + 1, vij = Gper if i is uneven, and vij = −Gper if i is even, Gper ̸= 0.

(3) Each core entity trades with two peripheral entities with gross position Gper each and with all other
entities in the core with unit gross position each, such that its portfolio is flat, ηi = 0 if i ∈ Ncore.
Thus, a core entity’s total gross position equals Gcore =

N−3
3 + 2Gper.

(4) For all j ≥ i, vij = 0 if not specified otherwise. For all i, j, it is vij = −vji.

To illustrate Assumption 2, we depict an exemplary core-periphery network with N = 15
and G = Gper:

-G
G

-G
G

-G
G 1 -1 1 -1 -G

-G -1 1 -1 1 G
G 1 -1 1 -1 -G

-G -1 1 -1 1 G
G 1 -1 1 -1 -G

G
-G

G
-G

G



(27)

The core in Equation (27) is marked in gray, namely rows and columns 6-10, which correspond
to entities in the core. The remaining rows (and columns) 1-5 and 11-15 correspond to entities
in the periphery. No two entities in the periphery trade with each other, each entity in the
periphery trades with one entity in the core, and all entities in the core trade with each other.
Peripheral entities exhibit a purely directional and core entities a perfectly flat portfolio.
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The following proposition investigates clearing benefits in the case of core-periphery net-
works.

Proposition 8 (Loss sharing based on net risk in core-periphery networks). Consider a core-
periphery network as in Assumption 2. Then, the impact of central clearing with loss sharing based on
net risk as δ̃ approaches 0 on the expected default loss of a peripheral entity g ∈ Nper is equal to

∆DLg =
f (K − 1)

f (K)
+

1 − π2N/3−1

1 − π

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

− 1, (28)

and for a core entity h ∈ Ncore it is equal to

∆DLh =
f (K − 1)

f (K)
+ π2N/3−1 6Gper

(N − 3) + 6Gper

1 − πN/3

1 − π

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

− 1, (29)

where f (K) =
√

β2σ2
MK2 + σ2K.

For peripheral entities, central clearing is not beneficial, i.e., ∆DLg > 0, if, and only if,

1 − π2N/3−1

1 − π
− ξ(αuc)

ξ(αCCP)

f (K)− f (K − 1)
f (1)

> 0. (30)

Holding all other parameters fixed,

(a) if αCCP ≤ αuc, there exists N̂ < ∞ such that ∆DLg > 0 for all N > N̂,

(b) there exists K̂ < ∞ such that ∆DLg > 0 for all K > K̂,

(c) there exists α̂uc < 1 such that ∆DLg > 0 for all αuc > α̂uc.

For core entities h ∈ Ncore, central clearing is

• beneficial, i.e., ∆DLh < 0, if N > N̂ for N̂ < ∞,

• and strictly more beneficial than for peripheral entities g ∈ Nper, ∆DLh < ∆DLg.

In Proposition 8, we first derive a closed-form expression for the impact of central clearing
on the expected default loss of core and peripheral entities in Equations (28) and (29). Core
entities’ flat portfolio prevents them from contributing to loss sharing in states in which at least
one peripheral entity survives. Thus, core entities’ expected loss sharing contribution is driven
by the probability that all peripheral entities default, π2N/3, in which case each surviving core
entity makes the same loss sharing contribution. In contrast, if peripheral entities survive, they
bear all losses with an equal share and, thus, the impact of central clearing on their expected
default loss in Equation (29) resembles that in a homogeneous network in Equation (26).

Second, we derive conditions under which peripheral entities are hurt by central clearing,
i.e., ∆DLg > 0. This is the case if the number of clearing members is sufficiently large, boosting
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the CCP’s expected default loss, if the number of (uncleared) derivative classes is sufficiently
large, raising bilateral netting benefits, or if the collateral requirement for uncleared contracts
is sufficiently large, boosting the safety of uncleared positions.

Finally, we compare peripheral to core entities. In contrast to peripheral entities, core en-
tities benefit from central clearing if the number of clearing members is sufficiently large, re-
ducing the likelihood that they need to contribute to loss sharing. Importantly, core entities
unambiguously benefit more from central clearing than peripheral entities. The reason is that
net-based loss sharing allocates more default losses to peripheral than to core entities relative
to their respective expected uncleared default loss.

Importantly, central clearing can be beneficial overall (∆ADL < 0) and for core entities
(∆DLh < 0), but harmful for peripheral entities (∆DLg > 0). We illustrate this insight and
comparative statics in the following example.

Example 1. Consider a core-periphery network. Central clearing with loss sharing based on net risk
reduces the expected default loss in aggregate but not that of peripheral entities for the following param-
eters: Gper = 1, π = 0.05, N = 21, K = 10, αuc = αCCP = 0.99, σ = σM = 1, β = 0.3.

Figure 3 illustrates comparative statics varying either the number of market participants, N, or the
systematic risk exposure, β, while holding all other parameters constant to those above. Figure 3 (a)
shows that larger N reduces ∆ADL. Intuitively, a larger market enables more risk sharing and, thus,
central clearing reduces the expected aggregate default loss by more. In other words, central clearing be-
comes more beneficial overall. However, the impact of central clearing on an individual entity’s expected
default loss is largely unaffected by N. This is intuitive from the closed-form expressions in Proposition
8. A larger expected number of defaulters roughly balances a larger expected number of survivors.

Figure 3 (b) shows that a larger systematic risk exposure β reduces ∆ADL as well as each entity’s
∆DL. This result is in line with Proposition 5, which shows that larger β reduces bilateral netting
efficiency and, thereby, makes central clearing relatively more beneficial. This effect is particularly pro-
nounced for peripheral entities because they make larger loss sharing contributions.

[Place Figure 3 about here]

5.4 Loss Sharing Based on Net and Gross Risk

In the following, we relax the assumption of net-based loss sharing and consider loss sharing
rules that take gross risk into account, i.e., w(δ) with δ > 0. It is important to note that, despite
taking gross risk into account, the share of the CCP’s default losses allocated to a clearing mem-
ber i is increasing with net portfolio risk (and, thus, everything else equal, with directionality)
for any loss sharing rule w(δ) with δ < 1.

Proposition 9 (Loss sharing based on net and gross risk). Consider loss sharing rules based on
net and gross risk, i.e., with δ ∈ (0, 1).
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(a) Assume that ηj = η ∈ [0, 1] for all j = 1, ..., N. Then, for any i ∈ {1, ..., N}, it is ∂∆DLi
∂δ = 0.

(b) Consider an entity with a flat portfolio, ηi = 0. Assume that there exist at least two fellow clearing
members a and b, a ̸= b, with portfolio directionality ηa > 0 and ηb > 0. Then,

∂∆DLi

∂δ
> 0.

(c) Consider an entity with a fully directional portfolio, ηi = 1. Assume that there exist at least two
fellow clearing members a and b, a ̸= b, with portfolio directionality ηa < 1 and ηb > 0. Then,

∂∆DLi

∂δ
< 0.

In Proposition 9, we investigate how changing the loss sharing rule affects clearing benefits.
We show that, if all entities exhibit the same portfolio directionality, then an individual entity’s
clearing benefit is independent of the loss sharing rule. The reason is that, in this case, all
possible rules are equivalent to allocating losses proportionally to gross risk.

Moreover, we zoom in on entities with the most extreme portfolio directionality. Entities
with a flat portfolio, such as core entities in a core-periphery network, lose from a larger weight
of gross risk in loss sharing; instead, entities with a directional portfolio, such as peripheral
entities, benefit. Figure 4 illustrates this result for an exemplary core-periphery network. In
this example, with loss sharing based on net risk (i.e., with δ = 0) only core but not peripheral
entities benefit from central clearing. Increasing the weight of gross risk in loss sharing aligns
the impact of central clearing across entities such that everyone strictly benefits from central
clearing.

[Place Figure 4 about here]

The following proposition sheds light on the special case of gross-based loss sharing (δ = 1).

Proposition 10 (Loss sharing based on gross risk). Consider two entities g, h, g ̸= h, and assume
that loss sharing is proportional to gross portfolio risk, δ = 1. Then, the difference in the impact of
central clearing between the two entities is equal to

∆DLg − ∆DLh (31)

=
ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1
π

(
E

[
∑N

j=1 DjGjηj

∑N
j=1(1 − Dj)Gj

| Dg = 0

]
− E

[
∑N

j=1 DjGjηj

∑N
j=1(1 − Dj)Gj

| Dh = 0

])
.

(a) Conditional on Dg = Dh, the impact of central clearing is the same across entities:

∆DLg|Dg=Dh
= ∆DLh|Dg=Dh

. (32)
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(b) If ηg = ηh, then

Gh > Gg ⇒ ∆DLh < ∆DLg. (33)

(c) If Gg = Gh, then

ηh > ηg ⇔ ∆DLh < ∆DLg. (34)

(d) If h ∈ Ncore and g ∈ Nper in a core-periphery network, then there exists π̂ > 0 such that for all
π ∈ (0, π̂) it is

∆DLg < ∆DLh. (35)

When allocating losses exclusively based on gross risk (δ = 1), there is no difference in the
impact of central clearing between surviving clearing members. The reason is that gross-based
loss sharing aligns loss sharing contributions with the expected default loss of uncleared posi-
tions, which is proportional to gross (but not net) risk. Nonetheless, unconditionally expected
default losses differ across clearing members when the CCP’s risk depends on the identity
of defaulting clearing members. Then, central clearing is more beneficial for riskier entities
because their survival reduces the CCP’s risk compared to the survival of less risky entities.
Intuitively, riskier entities benefit more from risk pooling than less risky entities. Proposition
10 formalizes this intuition.

In particular, we show that, if the probability of default is not too large, then the clearing
benefit with gross-based loss sharing is larger for peripheral than core entities. This result
implies that, if the probability of default is not too large, there exists a loss sharing rule w(δ̂)

that perfectly smooths clearing benefits across core and peripheral entities:

Corollary 3. Consider a core-periphery network and let g ∈ Nper and h ∈ Ncore. If π is sufficiently
small, there exists δ̂ ∈ (0, 1) such that ∆DLg = ∆DLh for the loss sharing rule w(δ̂) and that ∆DLg >

∆DLh if, and only if, δ < δ̂.

6 The CCP’s Objective

In the previous section, we vary loss sharing rules along one important dimension, the degree
to which they consider net relative to gross risk, and their impact on clearing benefits. What
forces shape a CCP’s decision to use a particular loss sharing rule? Answering this question is
crucial for understanding the potential externalities associated with loss sharing rules. In the
following, we provide one potential answer by exploring the incentives of a profit-maximizing
CCP with market power, motivated by the observation that most CCPs are for-profit institu-
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tions and the market for central clearing is extremely concentrated in practice.20

We consider a market in which central clearing is voluntary.21 The CCP sets a per-volume
fee F and the loss sharing rule w before entities decide whether or not to clear. The CCP’s objec-
tive is to maximize its total fee income. Providing multilateral netting benefits enables the CCP
to charge positive fees from clearing members. Our analysis highlights an important difference
between fees and loss sharing rules. Whereas loss sharing rules can be adjusted to discriminate
between clearing members, the clearing fee F is paid per unit of notional cleared, as in Capponi
and Cheng (2018) and Huang (2019).22 For example, as of September 2023, LCH SwapClear
charges $0.9 per million notional for short-term interest rate swaps independently of clearing
member characteristics (https://www.lch.com/services/swapclear/fees). Because the fee is uni-
form across clearing members, the optimal fee is determined by the clearing member with the
lowest willingness to pay. Instead, regulation requires clearing members’ loss sharing contri-
butions to be “proportional to the exposures of each clearing member” (EMIR Article 42(2)),
which allows for discrimination across clearing members. We show that the CCP optimally
uses the loss sharing rule to maximize the minimum willingness to pay, which then determines
the optimal fee.

Loss sharing rules are defined as in Definition 4. Thus, choosing w is equivalent to choosing
the weight of gross risk in loss sharing, δ. Without loss of generality, fees are paid upon a
clearing member’s survival. Entities use central clearing (i.e., become clearing members) if the
sum of expected total fees and the expected default loss with central clearing does not exceed
the expected default loss without central clearing. The optimal clearing rule (F∗, δ∗) maximizes

20The CCPs LCH, CME, Eurex, and ICE jointly account for nearly 100% of cleared USD and EUR interest rate
and credit risk derivatives (see https://www.clarusft.com/2021-ccp-volumes-and-market-share-in-ird/ and https:
//www.clarusft.com/2021-ccp-volumes-and-share-in-crd/) and are owned by publicly listed companies (Huang,
2019). The high concentration in the market for central clearing is consistent with the presence of significant network
externalities (Menkveld and Vuillemey, 2021).

21In markets with mandatory clearing, competition between CCPs may explain why traders are not fully captive.
22F is uniform across clearing members since regulation restricts CCPs’ ability to discriminate across clearing

members (e.g., see EMIR Article 7(1) and Capponi and Cheng (2018) for an in-depth discussion). In our model, we
focus on the trade-off between clearing fee, loss sharing rule, and clearing participation, and, for tractability, do not
consider other dimensions that affect the optimal rule (e.g., a potential impact of fees on default risk).
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the CCP’s expected total fee income subject to entities’ participation constraints:

max
F,δ

∑
i∈Ω

E

[
(1 − Di) ∑

j∈Ni∩Ω

∣∣vij
∣∣ F

]
(36)

s.t. E

[
(1 − Di) ∑

j∈Ni

DLK
ij

]
≥ E

[
(1 − Di) ∑

j∈Ni∩Ω

∣∣vij
∣∣ F

]
+ E[LSCi(δ, Ω)]

+ E

(1 − Di)

 ∑
j∈Ni∩Ω

DLK−1
ij + ∑

j∈Ni\Ω
DLK

ij

 ∀i ∈ Ω, (37)

E

(1 − Dg) ∑
j∈Ng

DLK
gj

 < E

(1 − Dg) ∑
j∈Ng∩Ω

∣∣vgj
∣∣ F

+ E[LSCg(δ, Ω)]

+ E

(1 − Dg)

 ∑
j∈Ng∩Ω

DLK−1
gj + ∑

j∈Ng\Ω
DLK

gj

 ∀g /∈ Ω, (38)

where DLK
ij = Dj max

(
∑K

k=1 Xk
ij − CK

ji , 0
)

are the uncleared default losses of i on positions with
counterparty j in derivative classes 1 to K, analogously to Equation (10). Ω ⊆ {1, ..., N} is
the set of clearing members implied by F, δ, and the participation constraints (37) and (38).23

The participation constraint (37) ensures that clearing members (weakly) benefit from central
clearing, and the participation constraint (38) ensures that non-clearing members do not benefit
from central clearing. The expected loss sharing contribution depends on both Ω and δ and,
analogously to Proposition 4, is equal to

E[LSCi(δ, Ω)] = (1 − π)ξ(αCCP)wi(δ)E

[
∑j∈Ω\{i} Djσ̄j

wi(δ) + ∑j∈Ω\{i}(1 − Dj)wj(δ)

]
. (39)

Given the set of clearing members Ω and the loss sharing rule δ, the optimal fee set by
the CCP equals the minimum willingness to pay across clearing members, characterized in the
following lemma.

Lemma 2 (Optimal fee). For an optimal clearing rule (F∗, δ∗), defined as the solution to (36) subject
to (37) and (38), the optimal fee is equal to

F∗ = π f (K)ξ(αuc)min
i∈Ω

(−∆DLi(δ
∗, Ω)) , (40)

where ∆DLi(δ, Ω) is the impact of central clearing on i’s expected default losses considering only the set

23In general, given (δ, F), Ω is not necessarily unique. For the class of core-periphery networks that we consider
below, we show that Ω is uniquely determined by (δ, F).
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Ω of market participants, analogously to Equation (20),

∆DLi(δ, Ω) =
E
[
(1 − Di)∑j∈Ni∩Ω DLK−1

ij + LSCi(δ, Ω)
]

E
[
(1 − Di)∑j∈Ni∩Ω DLK

ij

] − 1. (41)

Lemma 2 first provides a characterization of market participants’ participation constraints
that links participation constraints to central clearing benefits. Second, we show that the optimal
fee is determined by the clearing member with the lowest willingness to pay, i.e., with the
lowest central clearing benefit, mini(−∆DLi), within the cleared segment of the market.

For the remaining analysis, we focus on core-periphery networks. The following proposi-
tion characterizes optimal clearing rules.

Proposition 11 (Optimal clearing rule). Consider a core-periphery network. Assume that π is suffi-
ciently small, such that Corollary 3 applies. Then, the optimal clearing rule is one of the following:

(A) All entities use central clearing, Ω = {1, ..., N}, the loss sharing rule balances the impact of central
clearing across entities, δ∗ = δ̂, and the fee is equal to

F∗
A = −πξ(αuc) f (K)∆DL1(Ω). (42)

(B) Only core entities use central clearing, Ω = Ncore, the loss sharing rule is indeterminate, and the
fee is equal to

F∗
B = πξ(αuc)( f (K)− f (K − 1)). (43)

In core-periphery networks, there are two types of entities, core and peripheral entities.
Because peripheral entities trade only with core entities, the set of clearing members always
includes core entities.24 Proposition 11 shows that the optimal clearing rule is such that either
only core entities or all entities use central clearing. We also derive the associated optimal loss
sharing rule and fee. If all entities use central clearing, then the CCP seeks to balance clear-
ing benefits across clearing members. The reason is that −∆DL and, hence, clearing members’
marginal willingness to pay is an increasing function of δ for peripheral entities, and decreas-
ing for core entities (Proposition 9). Because the market participant with the lowest clearing
benefit determines the optimal fee (Lemma 2), any deviation from δ̂ (which balances ∆DL, see
Corollary 3) reduces the optimal fee. In contrast, if only core entities use central clearing, the
optimal fee dissuades peripheral entities from central clearing and, therefore, any loss sharing
rule is optimal.

In the following proposition, we compare the two clearing rules from Proposition 11 and
provide a sufficient condition for clearing rule (B) to dominate (A).

24We assume that the parameters are such that mini∈Ncore (−DLi(0,Ncore)) > 0, which implies that central clear-
ing is beneficial at least for core entities when only these use central clearing.
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Proposition 12 (Curtailing clearing participation). In the setting of Proposition 11, clearing rule
(B) strictly dominates (A) if

( f (K)− f (K − 1)) ξ(αuc) < max

{
2N − 3

4N
,

δ̂

2

}
f (1)ξ(αCCP). (44)

In this case, it is optimal for the CCP to dissuade peripheral entities from using central clearing. There
exist K̂ < ∞ and α̂uc < 1 such that Inequality (44) holds if K > K̂ or αuc > α̂uc.

Clearing rule (A) in Proposition 11 maximizes clearing participation but associates with a
smaller per-volume fee than rule (B). Thus, when setting the clearing rule, the CCP faces a
trade-off between larger clearing volume and larger per-volume fee, which gives rise to In-
equality (44). The left hand side of (44) reflects entities’ willingness to pay for multilateral
netting and, thus, resembles the optimal fee F∗

B in Equation (43). The right hand side reflects
the additional expected default losses when clearing peripheral entities’ positions. If the lat-
ter exceeds the former, clearing benefits are relatively small and the CCP prefers to reduce the
number of clearing members in exchange for a smaller expected default loss. In particular, it
is less profitable for the CCP to attract peripheral entities when the bilateral netting efficiency
is high (large K) and, thus, multilateral netting through the CCP is relatively less beneficial, or
when the collateral requirement for cleared contracts is small relative to that for uncleared con-
tracts (small αCCP or large αuc), or when balancing clearing benefits across core and peripheral
entities requires a large weight on gross risk (large δ̂). In these cases, the CCP maximizes its
total fee income by dissuading peripheral entities from central clearing, using clearing rule (B).

The large per-volume fee in clearing rule (B) disincentivizes peripheral entities from using
central clearing. Conditional on this fee, any loss sharing rule will result in the same total fee
income to the CCP because remaining clearing members share the same net and gross risk. To
resolve the indeterminacy of the optimal loss sharing rule, in the following proposition, we use
a selection criterion based on small perturbations.

Proposition 13 (Robust optimal clearing rule). If clearing rule (B) in Proposition 11 is strictly
preferred over (A), then only net-based loss sharing is robust to small perturbations in the following
sense:

There exists a sequence (nℓ)ℓ∈N that converges to 0 and associates with the following sequence of
core-periphery networks:

• Each peripheral entity has the perturbed position G̃ℓ
per = Gper + nℓ.

• Peripheral entities always centrally clear nℓ, independently of the clearing rule, and centrally clear
Gper if, and only if, the participation constraint is satisfied.

• Core entities use central clearing if, and only if, the participation constraint is satisfied.

Denote by (F∗,ℓ, δ∗,ℓ) an optimal clearing rule for the ℓ-th perturbation. Then, (F∗, δ∗) is a robust
optimal clearing rule for the original core-periphery network if F∗,ℓ → F∗ and δ∗,ℓ → δ∗ for ℓ → ∞.
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When attracting only core dealers by using clearing rule (B), an important consideration
for the CCP is to not violate core entities’ incentives to use central clearing even when there
are small fluctuations in cleared positions. For this reason, to define the robust loss sharing
rule, we consider small perturbations in the behavior of peripheral entities which trigger the
clearing of (some) directional positions. In each perturbation, a small (perturbed) fraction of
peripheral entities’ portfolio is centrally cleared independently of the clearing rule. For a given
perturbation ℓ, there exists an optimal clearing rule (F∗,ℓ, δ∗,ℓ). The robust clearing rule, as
defined in Proposition 13, is the limit of these optimal clearing rules when the size of perturba-
tions converges to zero. Therefore, the refinement considers the limit when peripheral entities
become fully price-sensitive.25

Proposition 13 shows that a net-based loss sharing rule is more robust than other rules to-
ward small perturbations in the clearing member base. If a small mass of peripheral entities use
central clearing regardless of clearing rules (e.g., because they are forced to centrally clear some
of their positions), only the net-based loss sharing rule maximizes core entities’ willingness to
pay and, thereby, the CCP’s total fee income. In this case, the CCP uses the loss sharing rule to
allocate benefits of central clearing to core entities. In other words, the CCP strategically uses
net-based loss sharing to maximize its fee income.

Remark 2 (The role of margin requirements). Our analysis focuses on fees and loss sharing rules as
the key ingredients of clearing rules. In addition, CCPs in practice also choose (at least to some extent)
margin requirements. Proposition 11 provides intuition about this choice in the absence of collateral
costs. If rule (A) is optimal, it is optimal for the CCP to maximize margin requirements to increase
clearing benefits and, thereby, clearing members’ willingness to pay. However, if collateral is costly,
the optimal margin requirement trades off higher safety against higher collateral costs, analogously to
Proposition IA.1 in the Internet Appendix.

Instead, if clearing rule (B) is optimal, multilateral netting entirely removes any default risk for
the CCP because all clearing members exhibit a flat portfolio. As a result, clearing margins for cleared
positions are equal to zero independently of the confidence level of margins.

7 Discussion

Counterparty risk is an important determinant of clearing and derivatives market equilibria
(Boissel et al., 2017; Bellia et al., 2023; Bernstein et al., 2019; Cenedese et al., 2020; Vuillemey,
2020) and financial stability. Therefore, and in light of post-crisis regulation that mandates
central clearing for certain derivatives, it is important to understand how and through which
channels loss sharing affects the level and distribution of counterparty risk. Our results make
several empirical predictions and have important policy implications, which we discuss in the
following.

25Selecting the optimal clearing rule based on small disturbances in agents’ actions is reminiscent of well-known
approaches to address equilibrium multiplicity in game theory, e.g., in Azevedo and Gottlieb (2017) or Selten (1975).
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First, we observe that, in practice, market participants are on average reluctant to centrally
clear derivatives in the absence of a clearing mandate. For instance, only 28% of CDS trades
and less than 1% of foreign exchange derivatives were voluntarily cleared in December 2016
(Wooldridge, 2017). Considering expected default losses, we show that central clearing is in-
deed not necessarily beneficial for (all) market participants compared to an uncleared market.
In contrast, loss sharing exposes market participants to risk which can disincentivize them from
using central clearing. The comparative statics in our model provide guidance on how clearing
benefits interact with market characteristics. We show that clearing benefits are larger when
portfolio net-to-gross risk is small or returns are more exposed to systematic risk or market
participants are active in fewer derivative classes (in the presence of strict margin requirements
for cleared contracts).

Second, clearing participation in practice varies significantly across different types of mar-
ket participants. Clearing members are predominantly dealers and large banks, while only a
small number of end-users (such as investment funds and non-financial firms) participate in
central clearing (BIS, 2018). For example, the European insurance company Allianz reports in-
terest rate swap positions of more than EUR 2 billion notional outstanding at end-2020, while
it is not a clearing member of any of the authorized European central clearinghouses for inter-
est rate swaps.26 The reason is not obvious. End-users are not prohibited from being clearing
members.27 Anecdotal evidence we collected from regulators and the industry suggests that
expected loss sharing contributions are an important driver for end-users’ reluctance to use
central clearing. For example, large end-users, such as the asset manager Blackrock, emphasize
that variation margin gains haircutting, a default management tool that exposes both dealers
and clients to loss sharing, “unfairly penalizes end-users, who in general hold directional posi-
tions, vs. CMs [clearing members] or dealers, who generally manage to a flat market position”
(Novick et al., 2018). If central clearing is voluntary, entities might choose not to clear their
positions in order to avoid loss sharing. If central clearing is mandatory, entities may choose to
use client clearing, which is typically associated with less exposure to loss sharing than being a
direct clearing member. For instance, in the European interest rate swap market with manda-
tory central clearing, most non-G16 banks, insurance companies, and pension funds choose to
use client clearing over being a direct clearing member (Fiedor et al., 2017).28

26Sources: https://www.allianz.com/en/investor_relations/results-reports/annual-reports.html and the mem-
bership lists of LCH, Eurex, Nasdaq, KDPW, and CME Clearing Europe as of April 2021.

27Instead, regulation forces CCPs to provide non-discriminatory access to clearing and to use membership re-
quirements only to manage the CCP’s risk (e.g., see EMIR Article 37). For example, the membership criteria of
LCH include minimum levels of capital and experienced staff, but they do not restrict access for particular types of
financial institutions (https://www.lch.com/membership/ltd-membership).

28Consistent with the rationale that client clearing is used to reduce exposure to loss sharing in the presence
of clearing mandates, in OTC derivatives markets without clearing mandates, client clearing is less common. For
example, less than 5% of initial margin for OTC foreign exchange derivatives and less than 10% of initial margin
for OTC CDS at the London-based clearinghouse LCH attributes to client clearing activities (Source: LCH LTD
and SA CPMI-IOSCO Quantitative Disclosures 2020Q4). We do not explicitly incorporate client clearing in our
model because its implementation varies across CCPs and jurisdictions (Braithwaite, 2016). Depending on clearing
members’ market power and portfolio, clients may also be charged for the loss sharing contributions that members
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The reluctance of end-users to participate in loss sharing is consistent with our result that
net-based loss sharing, as common in practice, disadvantages end-users relative to dealers. Be-
ing a clearing member may also have other disadvantages for end-users, such as fixed costs
associated with the CCP’s operational requirements. Our analysis suggests that expected loss
sharing contributions can significantly add to such clearing costs for end-users. In contrast to
end-users, dealers in our model receive the largest benefits from central clearing, which is con-
sistent with the price discount they offer on centrally cleared relative to uncleared transactions
(Cenedese et al., 2020).

Third, although we show that loss sharing that takes both net and gross portfolio risk into
account can lead to a more balanced distribution of clearing benefits across market participants,
loss sharing is based entirely on net risk in practice (see Appendix A).29 Consistent with this
observation, we show that a profit-maximizing CCP may face weak incentives to deviate from
net-based loss sharing because it allows to extract larger fees from dealers. In this case, the
CCP’s choice of the fee and loss sharing rule has externalities on clearing participation. Such
externalities are important since large clearing participation may be socially desirable because
it facilitates trade by increasing the scope for risk sharing and mitigating counterparty risk and
financial frictions (Acharya and Bisin, 2014; Bernstein et al., 2019; Vuillemey, 2020).

There are other potential determinants of loss sharing rules that are beyond the scope of
our model. First, whereas we assume entities’ probability of default to be exogenous, loss
sharing may increase default probabilities and, thereby, contribute to systemic risk. Because
dealers are often systematically important (Billio et al., 2012), it can be socially optimal to over-
proportionally reduce dealers’ expected default losses using net-based loss sharing. Second,
whereas we take derivative positions and default probabilities as exogenous, in practice loss
sharing rules may impact trading and, through trading, entities’ default probability. Because
net-based loss sharing penalizes portfolio directionality, it may dis-incentivize entities to hold
directional derivatives positions. Instead, gross-based loss sharing penalizes large derivatives
portfolio size. The overall impact on social welfare is ambiguous. On one hand, penalizing
portfolio directionality may mitigate moral hazard, reducing externalities on other clearing
members and overall default losses, and facilitate liquidity provision. On the other hand, it may
increase hedging costs for end-users and incentivize entities to build up very large positions,
which can create significant liquidity costs (Cont, 2015).30 Whereas it is ultimately an empirical
question which forces dominate, these trade-offs highlight that it is not obvious ex-ante that a
net-based loss sharing rule maximizes welfare. Hence, an important avenue for future research
is to investigate the implications of loss sharing rule choice on social welfare and the extent to

make on clients’ behalf.
29It is important to note that, for the main part of the paper, we define clearing benefits based on expected default

losses. In addition to this dimension, multilateral netting through central clearing also over-proportionately benefits
entities with a flat portfolio by reducing their margin requirements. This effect is independent of loss sharing rules.

30In canonical models, end-users buy derivatives to protect themselves against risks outside of derivatives mar-
kets (Biais et al., 2012, 2016). In this case, they forego hedging benefits when choosing a portfolio that is less direc-
tional than the one that provides full insurance.
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which regulatory policies can mitigate potential externalities.

8 Conclusion

The recent global financial crisis 2007-08 exposed vulnerabilities in the derivatives market ar-
chitecture, which was dominated by uncleared trades. The introduction of mandatory central
clearing has clearly increased transparency in derivatives markets; however, was it success-
ful in reducing counterparty risks in derivatives markets, as well, and, if so, have all market
participants benefited?

To address these questions, we present a theoretical analysis of the impact of central clearing
on default losses in derivatives markets. We focus on loss sharing in central clearinghouses,
namely the allocation of losses caused by the default of some clearing members to surviving
clearing members. We show that the effect of loss sharing on entities’ expected default losses,
relative to an uncleared market, can differ substantially across market participants and is highly
sensitive toward the directionality in market participants’ derivatives portfolios, loss sharing
rules, and market characteristics.

In particular, our results show that market participants with flat portfolios, e.g., dealers, dis-
proportionately benefit from loss sharing compared to an uncleared market—at the expense of
entities with directional portfolios, e.g., end-users. Because clearing participation is affected by
market participants’ objective to reduce counterparty risk (FSB, 2018; Bellia et al., 2023; Vuille-
mey, 2020), our result is consistent with the reluctance of end-users to participate in loss sharing
in practice. The result emerges due to sharing of default losses among surviving clearing mem-
bers proportionally to their net portfolio risk. While this is current standard practice, we con-
trast this rule with alternative loss sharing rules that take gross risk into account. We show that
such alternative rules can remove heterogeneity across market participants in clearing benefits.

Finally, we ask why, nevertheless, net-based loss sharing prevails in practice. We show that
a profit-maximizing CCP might prefer dissuading end-users from central clearing in order to
maximize the fee volume it can extract from dealers, rather than to maximize the number of
clearing members. In this case, choosing a net-based loss sharing rule is optimal for the CCP.
Our results emphasize loss sharing rules as a crucial determinant of clearing participation and,
thereby, have important policy implications for the optimal design and regulation of central
clearinghouses.
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Figures

Figure 1: Timeline of the model.
Losses due to counterparty default occur between time t = 0, the most recent date where contracts have been marked to market
and counterparties might default, and time t = 1, at which time the portfolio is settled.
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Figure 2: Impact of central clearing on the expected aggregate default loss.
The figure depicts the impact of central clearing on the expected aggregate default loss, as implied by Proposition
3. We fix the parameters to K = 10, αuc = 0.99, σ = σM = 1, β = 0.3, and vary ηagg on the x-axis for different values
of αCCP, namely small (αCCP = 0.98), moderate (αCCP = 0.99), and large (αCCP = 0.995).
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(a) Varying N.
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(b) Varying β.

Figure 3: Impact of central clearing on expected default losses in a core-periphery network.
The figures depict the impact of central clearing on the expected aggregate default loss, as implied by Proposition 3
as well as for peripheral and core entities as implied by Proposition 8. We fix the parameters to Gper = 1, π = 0.05,
N = 21, K = 10, αuc = αCCP = 0.99, σ = σM = 1, β = 0.3, and vary N in figure (a) and β in figure (b).
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Figure 4: Impact of central clearing on expected default losses with varying loss sharing rules.
The figures depicts an exemplary core-periphery network as defined in Assumption 2. We vary the weight of gross
risk δ in the loss sharing rule w(δ) on the x-axis. Larger δ corresponds to a larger weight of gross relative to net risk
in loss sharing.
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A Loss Sharing Rules in Practice

We investigate the Default Rules of LCH Limited Rates Service, one of the largest clearing-
houses worldwide, as of September 2022 (available at https://www.lch.com/resources/rulebooks/
lch-limited). Using the terminology of default rules (we report the relevant excerpts of the rule
book below), a clearing member i’s default fund contribution is approximately equal to

Contributioni ≈ Non-Tolerance Contributioni (45)

= Non-Tolerance Amount × Non-Tolerance Weighti (46)

= Service Fund Amount × Uncovered Stress Lossi

∑j Uncovered Stress Lossj
(47)

≈ Total Uncovered Stress Loss ×
Stress Lossi − Margini

∑j Stress Lossj − Marginj
(48)

≈ ∑ VaRi ×
VaRi

∑ VaRi
(49)

= VaRi = −σ̄iΦ−1(αstress), (50)

where, in the first step, we ignore an additional (“tolerance”) contribution that is related to tem-
porary forbearance of initial margin.IA.1 In the final two steps, we assume that the stress testing
approach (which determines stress losses) resembles a Value-at-Risk approach with confidence
level αstress and is additive (as in the case of a Normal distribution), in which case the contribu-
tion is equal to entity i’s portfolio Value-at-Risk.

According to default rule 21 (b), loss sharing contributions are proportional to default fund
contributions, which implies that entity i’s allocated share of default losses equals

σ̄iΦ−1(αstress)

∑j(1 − Dj)σ̄jΦ−1(αstress)
=

σ̄i

∑j(1 − Dj)σ̄j
, (51)

which is equivalent to loss sharing based on net portfolio risk.
Finally, Swapclear’s Default Fund Supplement rule S1 (a) implies that the default fund must

be replenished within 30 days after default events.

In the following, we provide the relevant excerpts from the LCH Limited Default Rules (as
of September 2022):
From Schedule 6 Rates Service Default Fund Supplement - Part A Rates Service Default Fund
Supplement - Swapclear S1, p.127 ff.:

(b) the “SwapClear Tolerance Weight” of an SCM [...] shall be calculated by dividing (x) the
average SwapClear Tolerance Utilisation of the relevant SCM during the 20 business day

IA.1Rule SC2 (i) on page 113 states: The “SwapClear Tolerance” which shall be the aggregate amount of temporary initial
margin forbearance provided by the Clearing House to SwapClear Clearing Members to enable registration of SwapClear
Contracts.
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period preceding the relevant SwapClear Determination Date [...] by (y) the total of such
average SwapClear Tolerance Utilisations of all Non-Defaulting SCMs [...]

(c) the value of the “SwapClear Tolerance Contribution Amount” of: (x) an SCM [...] shall
be calculated by multiplying the SwapClear Tolerance Amount by the SCM’s SwapClear
Tolerance Weight [...]

(d) the “SwapClear Non-Tolerance Amount” shall be the value of that portion of the Rates
Service Fund Amount - SwapClear after deducting the SwapClear Tolerance Amount

(e) the value of the “SwapClear Non-Tolerance Contribution Amount” for a given SCM
[...] shall be calculated by multiplying the SwapClear Non-Tolerance Amount by the SCM’s
SwapClear Non-Tolerance Weight

(f) the “SwapClear Non-Tolerance Weight” of an SCM shall be calculated by dividing (i)
the Uncovered Stress Loss [...] by (ii) the total Uncovered Stress Loss [...]. An SCM’s “Un-
covered Stress Loss,” [...] shall be determined by the Clearing House [...] by, inter alia,
deducting the amount of eligible margin held by the Clearing House with respect to the rel-
evant SwapClear Contracts [...] from the stress loss [...]

(g) the “SwapClear Contribution” of: (x) an SCM [...] shall be the sum of (i) that SCM’s
SwapClear Non-Tolerance Contribution Amount [...] and (ii) that SCM’s Tolerance Con-
tribution Amount [...]

From Schedule 6 Rates Service Default Fund Supplement CS2, p.112 ff.:

(b) “The “Non-Tolerance Amount” which shall be the sum of: (1) the Combined Loss Value
- Limb (1); plus (2) an amount equal to 10 per cent of the Combined Loss Value - Limb (1)”

From the general default rules 21 (b) (p.21):

the amount due by a Non-Defaulting Clearing Member in respect of an Excess Loss shall
[...] be the Non-Defaulting Clearing Member’s pro rata share of such loss arising upon the
relevant Default calculated as the proportion of such Non-Defaulting Clearing Member’s
relevant Contribution [...] relative to the aggregate relevant Contributions [...] of all Clear-
ing Members engaged in the Relevant Business other than the relevant Defaulter at the time
of the relevant Default.

From Schedule 6 Rates Service Default Fund Supplement - Part A Rates Service Default Fund
Supplement - Swapclear S1 (a), p.127:
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[...] following a Default, any determinations on a SwapClear Determination Date and any
such SwapClear Determination Date which might otherwise have occurred under this Rule
S1 shall be suspended for the duration of the period (the "SwapClear Default Period") com-
mencing on the date of such Default and terminating on the later to occur of the following
dates:

(i) the date which is the close of business on the day falling 30 calendar days after the Rates
Service Default Management Process Completion Date in relation to such Default [...];
and

(ii) where, prior to the end of the period referred to in sub-paragraph (i) above [...] one
or more subsequent Defaults (each a "Relevant Default") occur, the date which is the
close of business on the day falling 30 calendar days after the Rates Service Default
Management Process Completion Date in relation to a Relevant Default which falls
latest in time [...].
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B Additional Results: Counterparty Risk Exposure

Corollary IA.1. The larger derivatives’ systematic risk exposure, the more beneficial is central clearing
for counterparty risk exposure, ∂∆Ei

∂β < 0.

Central clearing reduces counterparty risk exposure if, and only if, ηi < η̄, i.e., if directionality is
sufficiently low, with η̄ = f (K)− f (K−1)

f (1) ∈ (0, 1). The larger the number of derivative classes K, the lower

is the portfolio directionality required for central clearing to reduce counterparty risk exposure, ∂η̄
∂K < 0.

Figure IA.1 illustrates this result.

Proof. Using Proposition 1 and Lemma IA.2, it is

∂∆Ei

∂β
=

∂

∂β

f (K − 1)
f (K)

+ ηi
∂

∂β

f (1)
f (K)

< 0. (52)

Moreover, it is

∆Ei < 0 ⇔ ηi <
f (K)− f (K − 1)

f (1)
. (53)

Hence, η̄ = f (K)− f (K−1)
f (1) . Since it is f (K)− f (K−1)

f (1) = 1 for K = 1 and f (K)− f (K − 1) is strictly
decreasing with K (see Lemma IA.2), η̄ < 1 for all K > 1. The remaining result follows from

∂η̄

∂K
=

∂

∂K
f (K)− f (K − 1)

f (1)
< 0, (54)

using Lemma IA.2.
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Figure IA.1: Maximum directionality for clearing to reduce counterparty risk exposure.
The figure depicts the function f (K)− f (K−1)

f (1) =
√

K −
√

K − 1 for β = 0. If entity i’s portfolio directionality ηi exceeds
the function, central clearing does not reduce but increases counterparty risk exposure, i.e., is not beneficial. Instead,
if ηi is below the function, central clearing reduces counterparty risk exposure, i.e., is beneficial.
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C Additional Results: Cost of Collateral

In our baseline model, collateral protects counterparties against losses but we abstract from the
cost of posting collateral. In this section, we extent the model by including a cost of collateral.
Specifically, we denote by c > 0 the marginal cost of collateral. Thus, the collateral cost for
entity i is cCK

ij for uncleared positions with j and cCCCP
i for cleared positions with the CCP. For

consistency and without loss of generality, we assume that collateral costs arise only upon an
entity’s survival. Then, the impact of central clearing on expected default losses and collateral
costs is given by

∆DLCi =
E[(1 − Di)(DLK−1

i + c ∑j∈Ni
CK−1

ij + cCCCP
i ) + LSCi]

E[(1 − Di)DLK
i + c ∑j∈Ni

CK
ij ]

. (55)

Whereas in the baseline model (with c = 0) a higher collateral requirement is unambigu-
ously beneficial, with c > 0 it trades off with higher collateral costs, as we show in the following
proposition.

Proposition IA.1 (Costly collateral). Assume that at least two entities have a portfolio that is not
perfectly flat. Then, ∆DLCi is equal to

∆DLCi =
f (K − 1)

f (K)
+

f (1)
f (K)

ξ(αCCP)
wi(δ)

Gi
E [H] + cηiΦ−1(αCCP)

πξ(αuc) + cΦ−1(αuc)
− 1, (56)

where H =
∑N

j=1,j ̸=i DjGjηj

wi(δ)+∑N
j=1,j ̸=i(1−Dj)wj(δ)

.

(1) If entity i has a flat portfolio, ηi = 0, then the impact of central clearing on expected default losses
and collateral costs is decreasing with the CCP’s margin requirement, ∂∆DLCi

∂αCCP
< 0.

(2) If entity i’s portfolio is not flat, ηi > 0, and αCCP > 0, there exists 0 < ĉ < ∞ such that the
impact of central clearing on expected default losses and collateral costs is decreasing with the CCP’s
margin requirement if, and only if, the marginal cost of collateral c is below ĉ,

∂∆DLCi

∂αCCP
< 0 ⇔ c < ĉ. (57)

Proof. Using Lemma 1, the collateral posted by entity i to the CCP is equal to

CCCP
i = σ̄iΦ−1(αCCP) = ηiGi f (1)Φ−1(αCCP). (58)

The total collateral posted by entity i to its bilateral counterparties in uncleared derivative
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classes 1, ..., K is equal to

∑
j∈Ni

CK
ij = ∑

j∈Ni

|vij| f (K)Φ−1(αuc) = Gi f (K)Φ−1(αuc). (59)

Then, ∆DLCi is equal to

∆DLCi =
E[(1 − Di)(DLK−1

i + c ∑j∈Ni
CK−1

ij + cCCCP
i ) + LSCi]

E[(1 − Di)(DLK
i + c ∑j∈Ni

CK
ij )]

(60)

=
E[(1 − Di)(DLK−1

i + cGi( f (K − 1)Φ−1(αuc) + ηi f (1)Φ−1(αCCP))) + LSCi]

E[(1 − Di)(DLK
i + cGi f (K)Φ−1(αuc))]

. (61)

Using Propositions 2 and 4 and following the steps in previous proofs, the impact of central
clearing on the expected default losses and collateral cost of entity i is then given by

∆DLCi =

(1 − π)

(
πGiξ(αuc) f (K − 1) + ξ(αCCP)wi(δ)E

[
∑N

j=1,j ̸=i Dj σ̄j

wi(δ)+∑N
j=1,j ̸=i(1−Dj)wj(δ)

])
(1 − π) [πGiξ(αuc) f (K) + cGi f (K)Φ−1(αuc)]

(62)

+
(1 − π)

(
cGi( f (K − 1)Φ−1(αuc) + ηi f (1)Φ−1(αCCP))

)
(1 − π) [πGiξ(αuc) f (K) + cGi f (K)Φ−1(αuc)]

− 1 (63)

=
f (K − 1)

f (K)
+

ξ(αCCP)
wi(δ)

Gi
E

[
∑N

j=1,j ̸=i DjGjηj f (1)

wi(δ)+∑N
j=1,j ̸=i(1−Dj)wj(δ)

]
+ cηi f (1)Φ−1(αCCP)

πξ(αuc) f (K) + c f (K)Φ−1(αuc)
− 1 (64)

=
f (K − 1)

f (K)
+

f (1)
f (K)

ξ(αCCP)
wi(δ)

Gi
E [H] + cηiΦ−1(αCCP)

πξ(αuc) + cΦ−1(αuc)
− 1, (65)

where H =
∑N

j=1,j ̸=i DjGjηj

wi(δ)+∑N
j=1,j ̸=i(1−Dj)wj(δ)

.

The derivative of ∆DLCi with respect to αCCP is equal to

∂∆DLCi

∂αCCP
=

f (1)
f (K)

ξ ′(αCCP)
wi(δ)

Gi
E [H] + cηi

1
φ(Φ−1(1−αCCP))

πξ(αuc) + cΦ−1(αuc)
(66)

=
f (1)
f (K)

− 1−αCCP
φ(Φ−1(1−αCCP))

wi(δ)
Gi

E [H] + cηi
1

φ(Φ−1(1−αCCP))

πξ(αuc) + cΦ−1(αuc)
(67)

=
f (1)
f (K)

1
φ(Φ−1(1 − αCCP))(πξ(αuc) + cΦ−1(αuc))

(
cηi − (1 − αCCP)

wi(δ)

Gi
E [H]

)
, (68)

using Lemma IA.2 and that the inverse function rule and the properties of the Normal distri-
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bution imply that

∂Φ−1(αCCP)

∂αCCP
=

1
Φ′(Φ−1(αCCP))

(69)

=
1

φ(Φ−1(αCCP))
=

1
φ(−Φ−1(1 − αCCP))

=
1

φ(Φ−1(1 − αCCP))
. (70)

By assumption, αCCP ∈ [0.5, 1) and, using that at least two entities have a non-flat portfolio and
π > 0, E[H] > 0.

(1) Clearly, if ηi = 0, then ∂∆DLCi
∂αCCP

< 0.

(2) If ηi > 0, then

∂∆DLCi

∂αCCP
< 0 ⇔ c < (1 − αCCP)

wi(δ)

Gi
E [H] > 0. (71)

For entities’ with a flat portfolio (ηi = 0), there is no collateral requirement due to zero
net portfolio risk. Instead, for entities with ηi > 0, a higher collateral requirement for cleared
positions, αCCP, increases the benefit of central clearing (i.e., reduces ∆DLCi) only if c is small,
as we show in Proposition IA.1. In this case, the beneficial impact of collateral on default risk
dominates. If, instead, c is sufficiently large, the adverse impact on collateral costs undermines
clearing benefits.

The effect of the marginal cost of collateral c on ∆DLCi is not obvious ex ante because it
affects both cleared and uncleared positions. The following proposition sheds light on the
role of c in core-periphery networks when losses are shared based on net risk and collateral
requirements are the same for cleared and uncleared positions.

Proposition IA.2 (Costly collateral in core-periphery networks). Consider a core-periphery net-
work and loss sharing based on net risk. Assume that αuc = αCCP. Then, for any entity i ∈ {1, ..., N},
the impact of central clearing on expected default losses and collateral costs is decreasing with the
marginal cost of collateral,

∂∆DLCi

∂c
< 0. (72)

Proof. Let g ∈ Nper and δ = 0. Using Proposition 4, the proof of Proposition 8, and that ηg = 1,
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it is

E[LSCg] = (1 − π)ξ(αCCP)σ̄gE

[
∑N

j=1,j ̸=g Djσ̄j

σ̄g + ∑N
j=1,j ̸=g(1 − Dj)σ̄j

]
(73)

= (1 − π)ξ(αCCP)ηgGg f (1)E

[
∑N

j=1,j ̸=g DjηjGj f (1)

ηgGg f (1) + ∑N
j=1,j ̸=g(1 − Dj)ηjGj f (1)

]
(74)

= (1 − π)ξ(αCCP)ηgGg f (1)E

[
∑N

j=1,j ̸=g DjηjGj

ηgGg + ∑N
j=1,j ̸=g(1 − Dj)ηjGj

]
(75)

= (1 − π)ξ(αCCP)ηgGg f (1)
1 − π2N/3 − 1 + π

1 − π
(76)

= Gg(1 − π)ξ(αCCP) f (1)
π − π2N/3

1 − π
(77)

and, therefore,

∆DLCg =
E[(1 − Dg)(DLK−1

g + c ∑j∈Ng CK−1
ij + cCCCP

g ) + LSCg]

E[(1 − Dg)DLK
g + c ∑j∈Ng CK

ij ]
− 1 (78)

=
(1 − π)

(
πGgξ(αuc) f (K − 1) + Ggξ(αCCP) f (1)π−π2N/3

1−π

)
(1 − π)

[
πGgξ(αuc) f (K) + cGg f (K)Φ−1(αuc)

] (79)

+
(1 − π)

(
cGg( f (K − 1)Φ−1(αuc) + f (1)Φ−1(αCCP))

)
(1 − π)

[
πGgξ(αuc) f (K) + cGg f (K)Φ−1(αuc)

] − 1 (80)

=
f (K − 1)

f (K)
+

f (1)
f (K)

πξ(αCCP)
1−π2N/3−1

1−π + cΦ−1(αCCP)

πξ(αuc) + cΦ−1(αuc)
− 1. (81)

The derivative of ∆DLCg with respect to c is equal to

∂∆DLCg

∂c
= π

f (1)
f (K)

Φ−1(αCCP)ξ(αuc)− Φ−1(αuc)ξ(αCCP)
1−π2N/3−1

1−π

(πξ(αuc) + cΦ−1(αuc))2 . (82)

If αuc = αCCP, then ∂∆DLCg
∂c < 0 if, and only if,

1 − π < 1 − π2N/3−1 (83)

⇔ π > π2N/3−1, (84)

which holds since 2N/3 − 1 > 1 ⇔ N > 3 and π < 1, which hold by assumption.

If h ∈ Ncore and for lim δ̃ ↘ 0, using Proposition 4 and (the notation from) the proof of
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Proposition 8 it is

lim
δ̃↘0

δ̃Hh = P(Dper) lim
δ̃→0

A1 + (1 − P(Dper)) lim
δ̃→0

A2 (85)

= π2N/3 6Gper

(N − 3) + 6Gper

1 − πN/3

1 − π
(86)

and

lim
δ̃↘0

E[LSCh] = lim
δ̃↘0

(1 − π)ξ(αCCP)(δ̃Σ̄h + σ̄h)E

[
∑N

j=1,j ̸=h Djσ̄j

δ̃Σ̄h + σ̄h + ∑N
j=1,j ̸=h(1 − Dj)(δ̃Σ̄j + σ̄j)

]
= (1 − π)ξ(αCCP)Σ̄h lim

δ̃↘0
δ̃Hh (87)

= (1 − π)ξ(αCCP)Gh f (1)π2N/3 6Gper

(N − 3) + 6Gper

1 − πN/3

1 − π
, (88)

and, therefore, using that ηh = 0 and for limδ̃↘0,

∆DLCh =
E[(1 − Dh)(DLK−1

h + c ∑j∈Nh
CK−1

ij + cCCCP
h ) + LSCh]

E[(1 − Dh)DLK
h + c ∑j∈Nh

CK
ij ]

− 1 (89)

=

(1 − π)

(
πGhξ(αuc) f (K − 1) + ξ(αCCP)Gh f (1)π2N/3 6Gper

(N−3)+6Gper
1−πN/3

1−π

)
(1 − π) [πGhξ(αuc) f (K) + cGh f (K)Φ−1(αuc)]

(90)

+

(1 − π)

(
cGh( f (K − 1)Φ−1(αuc) + f (1)ηhΦ−1(αCCP))

)
(1 − π) [πGhξ(αuc) f (K) + cGh f (K)Φ−1(αuc)]

− 1 (91)

=
f (K − 1)

f (K)
+

f (1)
f (K)

ξ(αCCP)π
2N/3 6Gper

(N−3)+6Gper
1−πN/3

1−π

ξ(αuc)π + cΦ−1(αuc)
− 1, (92)

which is decreasing with c.

In core-periphery networks, expected loss sharing contributions per unit of cleared risk f (1)
are smaller than expected uncleared default losses per unit of uncleared risk f (K) (see Propo-
sition 8). A larger marginal cost of collateral c amplifies this difference between cleared and
uncleared positions and, thereby, increases relative clearing benefits. This effect is particularly
pronounced for core entities, which do not post collateral to the CCP due to their flat portfo-
lio. In this case, a larger marginal collateral cost increases only the cost of uncleared but not of
cleared positions, amplifying clearing benefits.
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D Additional Statements

In many proofs, we make extensive use of the following property of the Normal distribution:
For Y ∼ N (µ, σ2) the truncated expected value is given by E[Y | Y > 0] = µ + σ

φ(−µ/σ)
Φ(µ/σ)

, and
thus E[max(Y, 0)] = E[Y | Y > 0]Φ(µ/σ) = µΦ(µ/σ) + σφ(−µ/σ), where φ(·) and Φ(·)
denote the probability density function and the cumulative density function of the standard
normal distribution, respectively. From this property, we derive the following lemma:

Lemma IA.1. Let Y ∼ N (0, σ2) and C = σΦ−1(α) with α ∈ (0, 1). Then,

E[max(Y − C, 0)] = σξ(α), (93)

where ξ(α) = (1 − α)Φ−1(1 − α) + φ(Φ−1(α)) with ξ(0.5) = φ(0), ξ ′(α) < 0, 0 < ξ(α) < φ(0)
for all α ∈ (0.5, 1), and ξ(α) → 0 for α → 1.

Proof.

E[max(Y − C, 0)] = (−C)Φ((−C)/σ) + σφ(C/σ) (94)

= (−σΦ−1(α))Φ((−σΦ−1(α))/σ) + σφ(σΦ−1(α)/σ) (95)

= σ
[
(−Φ−1(α))Φ

(
−Φ−1(α)

)
+ φ(Φ−1(α))

]
(96)

= σ
[
(−Φ−1(α))Φ

(
Φ−1(1 − α)

)
+ φ(Φ−1(α))

]
(97)

= σξ(α) (98)

with ξ(α) = (1 − α)Φ−1(1 − α) + φ(Φ−1(α)), where we use that −Φ−1(α) = Φ−1(1 − α). If
α = 0.5, then it is ξ(α) = 0.5Φ−1(0.5) + φ(Φ−1(0.5)) = φ(0). Using that φ′(x) = (−x)φ(x) and
the inverse function rule, the first derivative of ξ is equal to

ξ ′(α) = (−1)Φ−1(1 − α) + (1 − α)
(−1)

Φ′(Φ−1(1 − α))
+ (−Φ−1(α))φ(Φ−1(α))

1
Φ′(Φ−1(α))

= (−1)Φ−1(1 − α) + (1 − α)
(−1)

φ(Φ−1(1 − α))
+ (−Φ−1(α)) (99)

= (−1)Φ−1(1 − α)− 1 − α

φ(Φ−1(1 − α))
+ Φ−1(1 − α) = − 1 − α

φ(Φ−1(1 − α))
< 0. (100)
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Moreover, it is

lim
α→1

(1 − α)Φ−1(1 − α) + lim
α→1

φ(Φ−1(α)︸ ︷︷ ︸
→∞

) (101)

= lim
α→1

1 − α

1/Φ−1(1 − α)
+ 0 (102)

= lim
α→1

−1
(−1)× (Φ−1(1 − α))−2 × 1

Φ′(Φ−1(1−α))
× (−1)

(103)

= lim
α→1

(−1)× (Φ−1(1 − α))2 × φ(Φ−1(1 − α)) (104)

= lim
α→1

(−1)× (Φ−1(1 − α))2

1
φ(Φ−1(1−α))

(105)

= lim
α→1

(−1)×
2 × Φ−1(1 − α)× (−1)

φ(Φ−1(1−α))

(−1)× (φ(Φ−1(1 − α)))−2 × φ′(Φ−1(1 − α))× −1
φ(Φ−1(1−α))

(106)

= lim
α→1

(−1)×
2 × Φ−1(1 − α)× (−1)

φ(Φ−1(1−α))

(−1)× (φ(Φ−1(1 − α)))−2 × (−Φ−1(1 − α))× φ(Φ−1(1 − α))× −1
φ(Φ−1(1−α))

(107)

= lim
α→1

−2 × Φ−1(1 − α)× (φ(Φ−1(1 − α)))2

Φ−1(1 − α)× φ(Φ−1(1 − α))
= lim

α→1
(−2)× φ(Φ−1(1 − α)) = 0, (108)

using L’Hôpital’s rule and the inverse function rule. Together with ξ ′(α) < 0, this implies
0 < ξ(α) < φ(0) for all α ∈ (0.5, 1). From the above, it follows that ξ(α) → 0 for α → 1.

Another result will be useful:

Lemma IA.2. Define f : (0, ∞) → (0, ∞) by f (K) =
√

β2σ2
MK2 + σ2K with σ, β, σM > 0. Then,

f ′(K) > 0, f ′′(K) < 0, and for all K > 1 it is

∂

∂K
[ f (K)− f (K − 1)] < 0. (109)

Moreover, it is ∂ f
∂β =

βσ2
MK2

f (K) , and ∂
∂β

f (K1)
f (K2)

< 0 for all K1, K2 with 0 < K1 < K2 and β > 0.

Proof. Rewrite f (K) =
√

X(K) with X(K) = β2σ2
MK2 + σ2K. It is f ′(K) = 2β2σ2

MK+σ2

2
√

X(K)
> 0 and

f ′′(K) =
2β2σ2

M2
√

X(K)− 2β2σ2
MK+σ2√
X(K)

(2β2σ2
MK + σ2)

4X(K)
, (110)
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which is negative, if and only if,

4β2σ2
MX − (2β2σ2

MK + σ2)(2β2σ2
MK + σ2) < 0 (111)

⇔ 2β2σ2
M(2X − K(2β2σ2

MK + σ2))− σ2(2β2σ2
MK + σ2) < 0 (112)

⇔ 4β2σ2
M(X − (β2σ2

MK2 + σ2K)︸ ︷︷ ︸
=X

)− σ4 < 0 (113)

⇔ − σ4 < 0, (114)

which holds by the assumption that σ > 0. Thus, f ′(K) < f ′(K − 1) and, therefore, ∂
∂K [ f (K)−

f (K − 1)] = f ′(K) − f ′(K − 1) < 0. The derivative with respect to β is straightforward to
calculate. Because f (K) > 0 for all K > 0, for K1, K2 > 0 it is

∂

∂β

f (K1)

f (K2)
< 0 ⇔ ∂

∂β

X(K1)

X(K2)
< 0, (115)

which, if β > 0, is equivalent to

∂

∂β

β2σ2
MK2

1 + σ2K1

β2σ2
MK2

2 + σ2K2
< 0 (116)

⇔ 2βσ2
MK2

1(β2σ2
MK2

2 + σ2K2)− 2βσ2
MK2

2(β2σ2
MK2

1 + σ2K1) < 0 (117)

⇔ σ2(K2
1K2 − K2

2K1) + β2σ2
M(K2

2K2
1 − K2

2K2
1) < 0 (118)

⇔ σ2(K1 − K2) < 0 ⇔ K1 < K2. (119)
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E Proofs for Section 4 (Counterparty Risk Exposure)

Lemma 1 (Portfolio risk). The standard deviation of entity i’s portfolio in a given derivative class is
given by

σ̄i =Giηi

√
β2σ2

M + σ2. (4)

Proof. The standard deviation of the portfolio in derivative class k is given by

σ̄i =

√√√√var

(
∑

j∈Ni

Xk
ij

)
=

√√√√var

(
(βM + εK) ∑

j∈Ni

vk
ij

)
=
√(

β2σ2
M + σ2

) ∣∣∣∣∣ ∑j∈Ni

vk
ij

∣∣∣∣∣ (120)

=Giηi

√
β2σ2

M + σ2. (121)

Proposition 1 (Impact of central clearing on counterparty risk exposure). The impact of central
clearing on entity i’s counterparty risk exposure is equal to

∆Ei =
f (K − 1) + ηi f (1)

f (K)
− 1, (8)

where f (K) =
√

β2σ2
MK2 + σ2K. The larger the portfolio directionality ηi, the less beneficial is central

clearing for counterparty risk exposure, ∂∆Ei
∂ηi

> 0.

Proof. The impact of central clearing is equal to

∆Ei =
Gi f (K − 1) + Giηi f (1)

Gi f (K)
− 1 =

f (K − 1) + ηi f (1)
f (K)

− 1, (122)

where f (K) =
√

β2σ2
MK2 + σ2K. Clearly, ∆Ei increases with ηi.

F Proofs for Section 5 (Default Losses)

Proposition 2. The expected default loss of entity i’s uncleared positions in derivative classes 1 to K is
equal to

E[DLK
i ] = πGiξ(αuc)

√
β2σ2

MK2 + σ2K. (11)
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Proof. Entity i’s expected default loss of uncleared positions in classes 1 to K is given by

E
[

DLK
i

]
= ∑

j∈Ni

E

[
Dj max

(
K

∑
k=1

Xk
ij − CK

ji , 0

)]
(123)

= π ∑
j∈Ni

E

[
max

(
K

∑
k=1

vij(βM + σεk)− CK
ji , 0

)]
(124)

= π ∑
j∈Ni

√
β2σ2

MK2v2
ij + Kσ2v2

ijξ(αuc) (125)

= πGiξ(αuc)
√

β2σ2
MK2 + σ2K, (126)

where we use that defaults Dj are distributed independently of profits Xk
ij, that

CK
ji = VaRαuc

(
K

∑
k=1

Xk
ji

)
(127)

= −

√√√√var

(
K

∑
k=1

Xk
ji

)
Φ−1(1 − αuc) (128)

=

√√√√var

(
−

K

∑
k=1

Xk
ij

)
Φ−1(αuc) (129)

=

√√√√var

(
K

∑
k=1

Xk
ij

)
Φ−1(αuc), (130)

and Lemma IA.1.

Proposition 3 (Impact of central clearing on the aggregate default loss). The expected aggregate
default loss with central clearing is equal to

ADL = π
N

∑
i=1

Gi (ξ(αCCP)ηi f (1) + ξ(αuc) f (K − 1)) , (13)

where f (K) =
√

β2σ2
MK2 + σ2K. The impact of central clearing on the expected aggregate default loss

is equal to

∆ADL =
ADL − ∑N

i=1 DLK
i

∑N
i=1 DLK

i
=

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

ηagg +
f (K − 1)

f (K)
− 1, (14)

where ηagg =
∑N

i=1|∑j∈Ni
vij|

∑N
i=1 Gi

is the average net-to-gross ratio. ∆ADL < 0 holds only if

ηagg <
ξ(αuc)

ξ(αCCP)
. (15)
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Proof. The CCP’s expected total default losses is given by

E
[

DLCCP
]
=

N

∑
j=1

E

Dj max

 ∑
g∈Nj

XK
gj − CCCP

j , 0

 (131)

= π
N

∑
j=1

E

max

 ∑
g∈Nj

vK
gj(βM + σεK)− CCCP

j , 0

 (132)

= π
N

∑
j=1

√
var( ∑

g∈Nj

vK
jg(βM + σεK))ξ(αCCP) (133)

= πξ(αCCP)
N

∑
j=1

σ̄K
j (134)

= πξ(αCCP) f (1)
N

∑
j=1

Gjηj, (135)

with f (K) =
√

β2σ2
MK2 + σ2K, where we use that

CCCP
j = VaRαCCP

(
N

∑
g=1

XK
jg

)
(136)

= −

√√√√var

(
N

∑
g=1

XK
jg

)
Φ−1(1 − αCCP) (137)

=

√√√√var

(
−

K

∑
k=1

Xk
gj

)
Φ−1(αCCP) (138)

=

√√√√var

(
K

∑
k=1

Xk
gj

)
Φ−1(αCCP), (139)

and Lemma IA.1. Together with Proposition 2, the expected aggregate default loss with central
clearing is thus equal to

E

[
DLCCP +

N

∑
i=1

DLK−1
i

]
(140)

= πξ(αCCP) f (1)
N

∑
i=1

Giηi +
N

∑
i=1

πGiξ(αuc) f (K − 1) (141)

= π
N

∑
i=1

Gi (ξ(αCCP)ηi f (1) + ξ(αuc) f (K − 1)) (142)
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and without central clearing it is equal to

E

[
N

∑
i=1

DLK
i

]
= πξ(αuc)

N

∑
i=1

Gi f (K). (143)

The derivation of ∆ADL is straightforward. ∆ADL < 0 is equivalent to

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

ηagg +
f (K − 1)

f (K)
< 1 (144)

⇔ ξ(αCCP)

ξ(αuc)

f (1)
f (K)

ηagg < 1 − f (K − 1)
f (K)

(145)

⇔ ηagg <
ξ(αuc)

ξ(αCCP) f (1)
[ f (K)− f (K − 1)]. (146)

The statement follows from

ξ(αuc)

ξ(αCCP) f (1)
[ f (K)− f (K − 1)] ≤ ξ(αuc)

ξ(αCCP) f (1)
[ f (1)− f (0)] =

ξ(αuc)

ξ(αCCP)
, (147)

using that f (K)− f (K − 1) is strictly decreasing in K for all K > 1 (Lemma IA.2) and f (0) =

0.

Corollary 1. Central clearing reduces the expected aggregate default loss, ∆ADL < 0, only if at least
one of the following conditions holds:

• αuc < αCCP

• ηagg < 1.

The latter condition is equivalent to mini∈{1,...,N} ηi < 1.

Proof. From Lemma IA.1, αuc ≥ αCCP implies that ξ(αuc) ≤ ξ(αCCP) and, thus, ξ(αuc)
ξ(αCCP)

≤ 1.
Together with Proposition 3 the first statement follows. For the second statement, note that the
average net-to-gross ratio is a weighted average of individual entities’ net-to-gross ratio,

ηagg =
∑N

i=1 Giηi

∑N
i=1 Gi

, (148)

and, thus, ηagg < 1 requires that there exists at least one entity with ηi < 1. Vice versa, if there

exists at least one entity j with ηj < 1, then ηagg =
Gjηj+∑N

i=1,i ̸=j Giηi

∑N
i=1 Gi

≤ Giηj+∑N
i=1,i ̸=j Gi

∑N
i=1 Gi

< 1.

Proposition 4 (Expected loss sharing contribution and the impact of central clearing). With the
loss sharing rule w(δ), clearing member i’s expected loss sharing contribution is equal to

E[LSCi(δ)] = (1 − π)ξ(αCCP)wi(δ)E

[
∑N

j=1,j ̸=i Djσ̄j

wi(δ) + ∑N
j=1,j ̸=i(1 − Dj)wj(δ)

]
. (21)
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The impact of central clearing on i’s expected default loss is given by

∆DLi =
f (K − 1)

f (K)
+

wi(δ) f (1)
Gi f (K)

ξ(αCCP)

ξ(αuc)

1
π

E

[
∑N

j=1,j ̸=i DjGjηj

wi(δ) + ∑N
j=1,j ̸=i(1 − Dj)wj(δ)

]
− 1. (22)

Proof. The expected loss sharing contribution of entity i with loss sharing rule w(δ) is given by

E[LSCi] = P(Di = 0)E

[
wi(δ)

∑N
j=1(1 − Dj)wj(δ)

DLCCP | Di = 0

]

=P(Di = 0)E

 wi(δ)

∑N
j=1(1 − Dj)wj(δ)

N

∑
j=1

Dj max

 ∑
g∈Ng

XK
gj − CCCP

j , 0

 | Di = 0


=(1 − π)E

[
E

[
wi(δ)

∑N
j=1(1 − Dj)wj(δ)

N

∑
j=1

Djξ(αCCP)σ̄j | D1, ..., DN

]
| Di = 0

]

=(1 − π)ξ(αCCP)wi(δ)E

[
∑N

j=1 Djσ̄j

∑N
j=1(1 − Dj)wj(δ)

| Di = 0

]

=(1 − π)ξ(αCCP)wi(δ)E

[
∑N

j=1,j ̸=i Djσ̄j

wi(δ) + ∑N
j=1,j ̸=i(1 − Dj)wj(δ)

]
,

using the definition of DLCCP and the law of total expectation.
Using Proposition 2, the impact of central clearing for entity i is then given by

∆DLi =

(1 − π)πGiξ(αuc) f (K − 1) + (1 − π)ξ(αCCP)wi(δ)E

[
∑N

j=1,j ̸=i Djσ̄j

wi(δ)+∑N
j=1,j ̸=i(1−Dj)wj(δ)

]
(1 − π)πGiξ(αuc) f (K)

− 1

=
f (K − 1)

f (K)
+

wi(δ)

Gi

ξ(αCCP)

ξ(αuc)

f (1)
π f (K)

E

[
∑N

j=1,j ̸=i DjGjηj

wi(δ) + ∑N
j=1,j ̸=i(1 − Dj)wj(δ)

]
− 1.

Corollary 2 (Aggregate loss sharing contributions). Conditional on at least one clearing member
surviving, aggregate loss sharing contributions are equal to the CCP’s total default loss.

Unconditionally expected total loss sharing contributions are equal to the CCP’s total expected de-
fault loss scaled by the survival probability of N − 1 clearing members:

E

[
N

∑
i=1

LSCi(δ)

]
= (1 − πN−1)E

[
DLCCP

]
. (23)
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Proof. If ∑N
i=1 Di < N, then

N

∑
i=1

LSCi =
∑N

i=1(1 − Di)wi(δ)

∑N
i=1(1 − Di)wi(δ)

DLCCP = DLCCP. (149)

Analogously to the analysis in the proof of Proposition 3, if all clearing members default, then
the CCP’s default loss is equal to

E

[
DLCCP |

N

∑
i=1

Di = N

]
= E

[
N

∑
i=1

max

(
∑

j∈Ni

XK
ji − CCCP

i , 0

)]
=

N

∑
i=1

Giηiξ(αCCP) f (1). (150)

Finally, by the law of total expectation, it holds that

E[DLCCP] = P

(
N

∑
i=1

Di = N

)
E

[
DLCCP |

N

∑
i=1

Di = N

]

+ P

(
N

∑
i=1

Di < N

)
E

[
DLCCP |

N

∑
i=1

Di < N

]
(151)

⇔P

(
N

∑
i=1

Di < N

)
E

[
DLCCP |

N

∑
i=1

Di < N

]
= E[DLCCP]

− P

(
N

∑
i=1

Di = N

)
E

[
DLCCP |

N

∑
i=1

Di = N

]
. (152)

Hence, one can rewrite the expected aggregate loss sharing contributions as follows (using
Proposition 3 and that LSCi = 0 for all i if ∑N

i=1 Di = N):

E

[
N

∑
i=1

LSCi

]
= P

(
N

∑
i=1

Di < N

)
E

[
N

∑
i=1

LSCi |
N

∑
i=1

Di < N

]
(153)

= P

(
N

∑
i=1

Di < N

)
E

[
DLCCP |

N

∑
i=1

Di < N

]
(154)

= E[DLCCP]− P

(
N

∑
i=1

Di = N

)
E

[
DLCCP |

N

∑
i=1

Di = N

]
(155)

= π
N

∑
i=1

Giηiξ(αCCP) f (1)− πN
N

∑
i=1

Giηiξ(αCCP) f (1) (156)

= (1 − πN−1)π
N

∑
i=1

Giηiξ(αCCP) f (1) (157)

= (1 − πN−1)E
[

DLCCP
]

. (158)

Proposition 5 (Loss sharing based on net risk). The impact of central clearing on the expected default
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loss of entity i is equal to

∆DLi =
f (K − 1)

f (K)
+ (δ̃ + ηi)

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1
π

E

[
∑N

j=1,j ̸=i DjGjηj

(δ̃ + ηi)Gi + ∑N
j=1,j ̸=i(1 − Dj)(δ̃ + ηj)Gj

]
− 1, (24)

where f (K) =
√

β2σ2
MK2 + σ2K. ∆DLi is

(a) decreasing with the collateral requirement for cleared contracts, ∂∆DLi
∂αCCP

< 0, and increasing with the
collateral requirement for uncleared contracts, ∂∆DLi

∂αuc
> 0,

(b) increasing with the number of derivative classes, ∂∆DLi
∂K > 0, if, and only if, αCCP > c, where c > 0

is a constant,

(c) decreasing with the systematic risk exposure, ∂∆DLi
∂β < 0.

Proof. Using Propositions 2 and 4, the impact of central clearing for entity i is given by

∆DLi =

(1 − π)πGiξ(αuc) f (K − 1) + (1 − π)ξ(αCCP)(δ̃Σ̄i + σ̄i)E

[
∑N

j=1,j ̸=i Dj σ̄j

δ̃Σ̄i+σ̄i+∑N
j=1,j ̸=i(1−Dj)(δ̃Σ̄j+σ̄j)

]
(1 − π)πGiξ(αuc) f (K)

− 1

=

(1 − π)πGiξ(αuc) f (K − 1) + (1 − π)ξ(αCCP)(δ̃ + ηi)Gi f (1)E
[

∑N
j=1,j ̸=i DjGjηj f (1)

(δ̃+ηi)Gi f (1)+∑N
j=1,j ̸=i(1−Dj)(δ̃+ηj)Gj f (1)

]
(1 − π)πGiξ(αuc) f (K)

− 1

=
f (K − 1)

f (K)
+ (δ̃ + ηi)

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1
π

E

[
∑N

j=1,j ̸=i DjGjηj

(δ̃ + ηi)Gi + ∑N
j=1,j ̸=i(1 − Dj)(δ̃ + ηj)Gj

]
− 1,

where f (K) =
√

β2σ2
MK2 + σ2K, using that Di and Dj are independently distributed for i ̸= j.

Define

H =
1
π

E

[
∑N

j=1,j ̸=i DjGjηj

Gi(δ̃ + ηi) + ∑N
j=1,j ̸=i(1 − Dj)Gj(δ̃ + ηj)

]
.

It is H > 0.

(a) The derivative of ∆DLi with respect to αCCP is equal to

∂∆DLi

∂αCCP
=

ξ ′(αCCP)

ξ(αuc)
(δ̃ + ηi)

f (1)
f (K)

H < 0 (159)

and the derivative with respect to αuc is equal to

∂∆DLi

∂αuc
= − ξ ′(αuc)ξ(αCCP)

ξ(αuc)2 (δ̃ + ηi)
f (1)
f (K)

H > 0, (160)

using in both cases that ξ ′(α) < 0 from Lemma IA.1.
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(b) The derivative of ∆DLi with respect to K is equal to

∂∆DLi

∂K
=

f ′(K − 1) f (K)− f ′(K) f (K − 1)
f 2(K)

− f ′(K)
f (1)

f 2(K)
(δ̃ + ηi)

ξ(αCCP)

ξ(αuc)
H (161)

=
f ′(K − 1) f (K)− f ′(K)

[
f (K − 1) + f (1)(δ̃ + ηi)

ξ(αCCP)
ξ(αuc)

H
]

f 2(K)
, (162)

which is positive if, and only if,

f ′(K − 1) f (K) > f ′(K)
[

f (K − 1) + f (1)(δ̃ + ηi)
ξ(αCCP)

ξ(αuc)
H
]

(163)

⇔ f ′(K − 1) f (K)− f ′(K) f (K − 1)
f ′(K) f (1)

1
(δ̃ + ηi)H

>
ξ(αCCP)

ξ(αuc)
(164)

⇔ ξ−1
(

f ′(K − 1) f (K)− f ′(K) f (K − 1)
f ′(K) f (1)

1
(δ̃ + ηi)H

ξ(αuc)

)
< αCCP. (165)

(c) The derivative with respect to β is equal to

∂∆DLi

∂β
=

∂

∂β

f (K − 1)
f (K)

+ (δ̃ + ηi)
ξ(αCCP)

ξ(αuc)
H

∂

∂β

f (1)
f (K)

< 0, (166)

using Lemma IA.2.

Proposition 6 (Loss sharing based on net risk: directionality). Assume that at least three entities
have a portfolio that is not perfectly flat. Consider two entities h, g ∈ {1, ..., N}, h ̸= g, with Gh ≥ Gg.
Then there exists ε < 0 such that the following holds: if entity h exhibits a lower portfolio directionality
than g, ηh < ηg, and either ηh = 0 or ηg < ηh + ε, then the impact of central clearing on the expected
default loss is smaller for h than for g,

∆DLh < ∆DLg. (25)

Proof. Consider two different entities h, g ∈ {1, ..., N}, h ̸= g. By assumption, there exists at
least one other entity with positive net risk, w /∈ {h, g} with Gwηw > 0. For i ∈ {h, g}, define

Hi =E

[
∑N

j=1,j ̸=i DjGjηj

(δ̃ + ηi)Gi + ∑N
j=1,j ̸=i(1 − Dj)(δ̃ + ηj)Gj

]
(167)

=E

[
1{i=h}DgGgηg + 1{i=g}DhGhηh + ∑N

j=1,j/∈{h,g} DjGjηj

(1 − 1{i=h}Dg)(δ̃ + ηg)Gg + (1 − 1{i=g}Dh)(δ̃ + ηh)Gh + ∑N
j=1,j/∈{h,g}(1 − Dj)(δ̃ + ηj)Gj

]
(168)

=E

[
D̃(1{i=h}Ggηg + 1{i=g}Ghηh) + A

(1 − 1{i=h}D̃)(δ̃ + ηg)Gg + (1 − 1{i=g}D̃)(δ̃ + ηh)Gh + B

]
, (169)
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where we define by D̃ ∼ Bern(π) a Bernoulli distributed random variable with success prob-
ability π that is independent from Dj for all j ∈ {1, ..., N}\{h, g}, A = ∑N

j=1,j/∈{h,g} DjGjηj, and

B = ∑N
j=1,j/∈{h,g}(1 − Dj)(δ̃ + ηj)Gj. Using Proposition 5, ∆DLh < ∆DLg is equivalent to

f (K − 1)
f (K)

+ (δ̃ + ηh)
ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1
π

Hh − 1 <
f (K − 1)

f (K)
+ (δ̃ + ηg)

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1
π

Hg − 1 (170)

⇔ (δ̃ + ηh)Hh < (δ̃ + ηg)Hg (171)

⇔ (δ̃ + ηh)E

[
D̃Ggηg + A

(δ̃ + ηh)Gh + (1 − D̃)(δ̃ + ηg)Gg + B

]
(172)

< (δ̃ + ηg)E

[
D̃Ghηh + A

(δ̃ + ηg)Gg + (1 − D̃)(δ̃ + ηh)Gh + B

]
(173)

⇔ E

[
(δ̃ + ηh)(D̃Ggηg + A)

(δ̃ + ηh)Gh + (1 − D̃)(δ̃ + ηg)Gg + B
−

(δ̃ + ηg)(D̃Ghηh + A)

(δ̃ + ηg)Gg + (1 − D̃)(δ̃ + ηh)Gh + B

]
< 0 (174)

⇔ E

[ (δ̃+ηh)(D̃Ggηg+A)((δ̃+ηg)Gg+(1−D̃)(δ̃+ηh)Gh+B)
−(δ̃+ηg)(D̃Ghηh+A)((δ̃+ηh)Gh+(1−D̃)(δ̃+ηg)Gg+B)

((δ̃ + ηg)Gg + (1 − D̃)(δ̃ + ηh)Gh + B)((δ̃ + ηh)Gh + (1 − D̃)(δ̃ + ηg)Gg + B)︸ ︷︷ ︸
=C

]
< 0. (175)

The denominator is almost surely strictly positive since δ̃ > 0, ηj ≥ 0, and Gj > 0 for all j.
Assume that ηh < ηg and Gh ≥ Gg. Then, if δ̃ = 0, for the nominator it holds that

ηh(D̃Ggηg + A)(ηgGg + (1 − D̃)ηhGh + B)− ηg(D̃Ghηh + A)(ηhGh + (1 − D̃)ηgGg + B)

=A
[
ηh
(
ηgGg + (1 − D̃)ηhGh + B

)
− ηg

(
ηhGh + (1 − D̃)ηgGg + B

)]
+ D̃

[
ηhGgηg

(
ηgGg + (1 − D̃)ηhGh + B

)
− ηgGhηh

(
ηhGh + (1 − D̃)ηgGg + B

)]
=A

[
ηh
(
ηgGg + (1 − D̃)ηhGh + B

)
− ηg

(
ηhGh + (1 − D̃)ηgGg + B

)]
+ ηhηgD̃

[
B
(
Gg − Gh

)
+ (1 − D̃)GhGg

(
ηh − ηg

)
+ ηgG2

g − ηhG2
h

]
≤A

[
B(ηh − ηg) + ηh

(
ηgGg + (1 − D̃)ηhGh

)
− ηg

(
ηhGh + (1 − D̃)ηgGg

)]
+ ηhηgD̃

[
B
(
Gg − Gh

)
+ G2

h(ηg − ηh)
]

≤A
[
B(ηh − ηg) + ηhηg

(
Gg − Gh

)
+ (1 − D̃)

(
(ηh)

2Gh − (ηg)
2Gg

)]
+ D̃ηhηgG2

h(ηg − ηh)

≤A
[
(ηh)

2Gh + ηhηg
(
Gg − Gh

)
− (ηg)

2Gg
]
+ D̃G2

hηhηg(ηg − ηh), (176)
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using that D̃ ∈ {0, 1} implies that D̃(1 − D̃) = 0. Because for x > 0 it is

x2Gh + xηg
(
Gg − Gh

)
− (ηg)

2Gg < 0 (177)

⇔ x <
−ηg

(
Gg − Gh

)
+
√
(ηg)2

(
Gg − Gh

)2
+ 4Gh(ηg)2Gg

2Gh
(178)

⇔ x < ηg
Gh − Gg +

√(
Gh − Gg

)2
+ 4GhGg

2Gh
(179)

⇔ x < ηg
Gh − Gg +

√(
Gh + Gg

)2

2Gh
(180)

⇔ x < ηg
Gh − Gg + Gh + Gg

2Gh
= ηg, (181)

if A > 0, then it holds that

A
[
(ηh)

2Gh + ηhηg
(
Gg − Gh

)
− (ηg)

2Gg
]
< 0. (182)

Therefore, there exists ε1 > 0 such that Expression (176) is strictly negative if A > 0 and
ηhηg(ηg − ηh) < ε1. Because the nominator of C is continuous in δ̃, there exists δ0 such that the
nominator of C is strictly negative if A > 0, ηhηg(ηg − ηh) < ε1, and δ̃ < δ0. Let δ̃ ∈ (0, δ0).
From the definition of A, π > 0, and the existence of an entity w /∈ {h, g} with Gwηw > 0, it is
P(A > 0) > π > 0 and P(A < 0) = 0. Therefore, there exists 0 < ε such that if either ηh = 0
or ηg − ηh < ε, then it holds that

E[C] = P(A = 0)E[C | A = 0] + P(A > 0)E[C | A > 0] (183)

≤ P(A = 0)πE

[
G2

hηhηg(ηg − ηh)

((δ̃ + ηg)Gg + B)((δ̃ + ηh)Gh + B)

]
+ P(A > 0)︸ ︷︷ ︸

>0

E[C | A > 0]︸ ︷︷ ︸
<0︸ ︷︷ ︸

<0

< 0,

(184)

and, thus, ∆DLh < ∆DLg.

Proposition 7 (Loss sharing based on net risk in homogeneous networks). Consider a homoge-
neous network as in Assumption 1. Then, the impact of central clearing with loss sharing based on net
risk on the expected default loss of entity i with δ̃ = 0 is equal to

∆DLi =
f (K − 1)

f (K)
+ η

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1 − πN−1

1 − π
− 1, (26)

where f (K) =
√

β2σ2
MK2 + σ2K. ∆DLi is

(a) increasing with directionality, ∂∆DLi
∂η > 0,
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(b) increasing with the number of derivative classes, ∂∆DLi
∂K > 0, if, and only if, η < c, where c > 0 is a

constant,

(c) increasing with the probability of default, ∂∆DLi
∂π > 0.

Proof. Under Assumption 1, it is Gi ≡ G > 0 and ηi ≡ η > 0 for all i = 1, ..., N,. Then, the
following identity holds:

E

[
∑N

j=1,j ̸=i DjGjηj

Gi(δ̃ + ηi) + ∑N
j=1,j ̸=i(1 − Dj)Gj(δ̃ + ηj)

]
(185)

=E

[
Gη ∑N

j=1,j ̸=i Dj

G(δ̃ + η) + ∑N
j=1,j ̸=i(1 − Dj)G(δ̃ + η)

]
(186)

=
η

δ̃ + η
E

[
∑N

j=1,j ̸=i Dj − ∑N
j=1,j ̸=i(1 − Dj) + ∑N

j=1,j ̸=i(1 − Dj)

1 + ∑N
j=1,j ̸=i(1 − Dj)

]
(187)

=
η

δ̃ + η
E

[
N − 1 − ∑N

j=1,j ̸=i(1 − Dj)

1 + ∑N
j=1,j ̸=i(1 − Dj)

]
(188)

=
η

δ̃ + η
E

[
N

1 + ∑N
j=1,j ̸=i(1 − Dj)

− 1

]
(189)

=
Nη

δ̃ + η

(
E

[
1

1 + Y

]
− 1

N

)
, (190)

where Y ∼ Bin(N − 1, 1 − π). Using the properties of the Binomial distribution, it is

E

[
1

1 + Y

]
=

1 − πN

N(1 − π)
. (191)

Plugging into the formula in Proposition 5 yields

∆DLi =
f (K − 1)

f (K)
+ (δ̃ + ηi)

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1
π

Nη

δ̃ + η

(
E

[
1

1 + Y

]
− 1

N

)
− 1 (192)

=
f (K − 1)

f (K)
+ (δ̃ + η)

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1
π

Nη

δ̃ + η

(
1 − πN

N(1 − π)
− 1

N

)
− 1 (193)

=
f (K − 1)

f (K)
+ (δ̃ + η)

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1
π

η

δ̃ + η

1 − πN − 1 + π

1 − π
− 1, (194)

=
f (K − 1)

f (K)
+ η

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1 − πN−1

1 − π
− 1. (195)

(a) The derivative with respect to portfolio directionality η is equal to

∂∆DLi

∂η
=

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1 − πN−1

1 − π
> 0. (196)
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(b) The derivative with respect to the number of derivative classes K is:

∂∆DLi

∂K
=

f ′(K − 1) f (K)− f ′(K) f (K − 1)
f (K)2 − η

ξ(αCCP)

ξ(αuc)

f (1) f ′(K)
f (K)2

1 − πN−1

1 − π
, (197)

which is positive if, and only if,

η
ξ(αCCP)

ξ(αuc)

f (1) f ′(K)
f (K)2

1 − πN−1

1 − π
<

f ′(K − 1) f (K)− f ′(K) f (K − 1)
f (K)2 (198)

⇔ η <
f ′(K − 1) f (K)− f ′(K) f (K − 1)

f (1) f ′(K)
ξ(αuc)

ξ(αCCP)

1 − π

1 − πN−1 , (199)

where the right hand side is strictly positive because f ′(·) > 0 and f ′′(·) < 0 (see Lemma
IA.2) imply that f ′(K − 1) f (K) > f ′(K) f (K − 1).

(c) The derivative with respect to π is equal to

∂∆DLi

∂π
= η

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

−(N − 1)πN−2(1 − π)− (−1)(1 − πN−1)

(1 − π)2 (200)

= η
ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1 − πN−1 − πN−2(N − 1) + πN−1(N − 1)
(1 − π)2 (201)

= η
ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1 + ππN−2(N − 2)− πN−2(N − 1)
(1 − π)2 (202)

= η
ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1 + πN−2(π(N − 1)− π − (N − 1))
(1 − π)2 (203)

= η
ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1 − πN−2((N − 1)(1 − π) + π)

(1 − π)2 . (204)

Note that g(N) = 1− πN−2((N − 1)(1− π) + π) equals zero for N = 2, g(2) = 1− π0(1−
π + π) = 1 − 1 = 0, and that

g′(N) = − log(π)πN−2((N − 1)(1 − π) + π)− πN−2(1 − π) (205)

= πN−2(− log(π)((N − 1)(1 − π) + π)− (1 − π)), (206)

which is strictly positive if, and only if,

− log(π)((N − 1)(1 − π) + π)− (1 − π) > 0 (207)

⇔ N − 1 >
1

− log(π)
− π

1 − π
. (208)

It is 1
− log(π)

− π
1−π < 1 ⇔ log(π) < π − 1, which holds for all π ∈ (0, 1). Therefore,

1
− log(π)

− π

1 − π
< 1 ≤ N − 1, (209)
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using that N > 2. Thus, g′(N) > 0, which, together with g(2) = 0, implies that g(N) > 0
for all N ≥ 2. Therefore,

∂∆DLi

∂π
= η

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

g(N)

(1 − π)2 > 0. (210)

Proposition 8 (Loss sharing based on net risk in core-periphery networks). Consider a core-
periphery network as in Assumption 2. Then, the impact of central clearing with loss sharing based on
net risk as δ̃ approaches 0 on the expected default loss of a peripheral entity g ∈ Nper is equal to

∆DLg =
f (K − 1)

f (K)
+

1 − π2N/3−1

1 − π

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

− 1, (28)

and for a core entity h ∈ Ncore it is equal to

∆DLh =
f (K − 1)

f (K)
+ π2N/3−1 6Gper

(N − 3) + 6Gper

1 − πN/3

1 − π

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

− 1, (29)

where f (K) =
√

β2σ2
MK2 + σ2K.

For peripheral entities, central clearing is not beneficial, i.e., ∆DLg > 0, if, and only if,

1 − π2N/3−1

1 − π
− ξ(αuc)

ξ(αCCP)

f (K)− f (K − 1)
f (1)

> 0. (30)

Holding all other parameters fixed,

(a) if αCCP ≤ αuc, there exists N̂ < ∞ such that ∆DLg > 0 for all N > N̂,

(b) there exists K̂ < ∞ such that ∆DLg > 0 for all K > K̂,

(c) there exists α̂uc < 1 such that ∆DLg > 0 for all αuc > α̂uc.

For core entities h ∈ Ncore, central clearing is

• beneficial, i.e., ∆DLh < 0, if N > N̂ for N̂ < ∞,

• and strictly more beneficial than for peripheral entities g ∈ Nper, ∆DLh < ∆DLg.

Proof. In the core-periphery network, the CCP’s expected default loss per loss allocation unit is
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equal to

Hi =E

[
∑N

j=1,j ̸=i DjGjηj

(δ̃ + ηi)Gi + ∑N
j=1,j ̸=i(1 − Dj)(δ̃ + ηj)Gj

]
(211)

=E

[
∑j∈Nper ,j ̸=i DjGjηj + ∑j∈Ncore,j ̸=i DjGjηj

Gi(δ̃ + ηi) + ∑j∈Nper ,j ̸=i(1 − Dj)Gj(δ̃ + ηj) + ∑j∈Ncore,j ̸=i(1 − Dj)Gj(δ̃ + ηj)

]
(212)

=E

[
Gper ∑j∈Nper ,j ̸=i Dj

Gi(δ̃ + ηi) + Gper ∑j∈Nper ,j ̸=i(1 − Dj)(δ̃ + 1) + δ̃Gcore ∑j∈Ncore,j ̸=i(1 − Dj)

]
, (213)

using that ηj = 1 if j ∈ Nper and ηj = 0 if j ∈ Ncore by Assumption 2.
If i ∈ Nper, then

Hi = E

[
Gper ∑j∈Nper ,j ̸=i Dj

Gper(1 + δ̃) + Gper(1 + δ̃)∑j∈Nper ,j ̸=i(1 − Dj) + δ̃Gcore ∑j∈Ncore
(1 − Dj)

]
. (214)

For δ̃ = 0 and i ∈ Nper, Hi is equal to (note that the expectation is well-defined since Gper > 0)

Hi|δ̃=0 =E

[
Gper ∑j∈Nper ,j ̸=i Dj

Gper + Gper ∑j∈Nper ,j ̸=i(1 − Dj)

]
(215)

=E

[
∑j∈Nper ,j ̸=i Dj

1 + ∑j∈Nper ,j ̸=i(1 − Dj)

]
(216)

=E

[
∑j∈Nper ,j ̸=i Dj + 1 + ∑j∈Nper ,j ̸=i(1 − Dj)

1 + ∑j∈Nper ,j ̸=i(1 − Dj)
− 1

]
(217)

=E

[
∑j∈Nper ,j ̸=i 1 + 1

1 + ∑j∈Nper ,j ̸=i(1 − Dj)
− 1

]
(218)

=E

[
|Nper|

1 + ∑j∈Nper ,j ̸=i(1 − Dj)
− 1

]
(219)

=|Nper|E
[

1
1 + ∑j∈Nper ,j ̸=i(1 − Dj)

]
− 1 (220)

=|Nper|
1 − π|Nper |

|Nper|(1 − π)
− 1 =

1 − π|Nper |

1 − π
− 1, (221)

where in the last step we use the properties of the Binomial distribution. Using that |Nper| = 2N
3

is the number of entities in the periphery, applying the dominated convergence theorem, and
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plugging into the formula in Proposition 5 it is thus

lim
δ̃→0

∆DLi =
f (K − 1)

f (K)
+ lim

δ̃→0
(δ̃ + ηi)

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1
π

Hi − 1 (222)

=
f (K − 1)

f (K)
+

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1
π

(
1 − π2N/3

1 − π
− 1
)
− 1 (223)

=
f (K − 1)

f (K)
+

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1
π

1 − π2N/3 − 1 + π

1 − π
− 1 (224)

=
f (K − 1)

f (K)
+

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1 − π2N/3−1

1 − π
− 1. (225)

Moreover,

lim
δ̃→0

∆DLi > 0 (226)

⇔ f (K − 1)
f (K)

+
ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1 − π2N/3−1

1 − π
− 1 > 0 (227)

⇔ ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1 − π2N/3−1

1 − π
− f (K)− f (K − 1)

f (K)
> 0 (228)

⇔ 1 − π2N/3−1

1 − π
− ξ(αuc)

ξ(αCCP)

f (K)− f (K − 1)
f (1)︸ ︷︷ ︸

A

> 0. (229)

(a) A is increasing with N since ∂A
∂N = (− log(π))

2
3 π2N/3−1

1−π > 0, and it is

lim
N→∞

A =
1

1 − π
− ξ(αuc)

ξ(αCCP)

f (K)− f (K − 1)
f (1)

, (230)

which is positive if, and only if,

1
1 − π

>
ξ(αuc)

ξ(αCCP)

f (K)− f (K − 1)
f (1)

(231)

⇔ π > 1 − f (1)
f (K)− f (K − 1)︸ ︷︷ ︸

>1

ξ(αCCP)

ξ(αuc)
. (232)

Note that f (1)
f (K)− f (K−1) = 1 for K = 1 and f (1)

f (K)− f (K−1) > 1 for all K > 1 since f (K)− f (K − 1)
is decreasing with K (see Lemma IA.2). Since ξ(α) is decreasing with α (see Lemma IA.1),
if αCCP ≤ αuc, it is ξ(αCCP)

ξ(αuc)
≥ 1 and 1 − f (1)

f (K)− f (K−1)
ξ(αCCP)
ξ(αuc)

< 0. In this case, limN→∞ A > 0.
Therefore, if αCCP ≤ αuc, there exists N̂ < ∞ such that limδ̃→0 ∆DLi > 0 for all N > N̂.
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(b) A is increasing with K and it is

lim
K→∞

A =
1 − π2N/3−1

1 − π
> 0, (233)

since 2N
3 > 1. Thus, there exists K̂ < ∞ such that limδ̃→0 ∆DLi > 0 for all K > K̂.

(c) Since ξ(α) is decreasing with α and limα→1 ξ(α) = 0 and ξ(0.5) = φ(0), it is

lim
αuc→1

A =
1 − π2N/3−1

1 − π
> 0, (234)

and, thus, there exists α̂uc < 1 such that limδ̃→0 ∆DLi > 0 for all αuc > α̂uc.

If i ∈ Ncore, then

δ̃Hi = E

[
δ̃Gper ∑j∈Nper Dj

Gcore δ̃ + Gper ∑j∈Nper (1 − Dj)(1 + δ̃) + Gcore ∑j∈Ncore ,j ̸=i(1 − Dj)δ̃

]
(235)

=E

[
δ̃Gper ∑j∈Nper Dj

Gcore δ̃ + Gper ∑j∈Nper (1 − Dj)(1 + δ̃) + δ̃Gcore ∑j∈Ncore ,j ̸=i(1 − Dj)

]
(236)

=P(Dper)E

[
δ̃Gper ∑j∈Nper Dj

Gcore δ̃ + Gper ∑j∈Nper (1 − Dj)(1 + δ̃) + δ̃Gcore ∑j∈Ncore ,j ̸=i(1 − Dj)
| Dper

]
(237)

+ (1 − P(Dper))E

[
δ̃Gper ∑j∈Nper Dj

Gcore δ̃ + Gper ∑j∈Nper (1 − Dj)(1 + δ̃) + δ̃Gcore ∑j∈Ncore ,j ̸=i(1 − Dj)
| Dper

]

=P(Dper)E

[
δ̃Gper ∑j∈Nper 1

Gcore δ̃ + δ̃Gcore ∑j∈Ncore ,j ̸=i(1 − Dj)

]
︸ ︷︷ ︸

=A1

(238)

+ (1 − P(Dper))E

[
δ̃Gper ∑j∈Nper Dj

Gcore δ̃ + Gper ∑j∈Nper (1 − Dj)(1 + δ̃) + δ̃Gcore ∑j∈Ncore ,j ̸=i(1 − Dj)
| Dper

]
︸ ︷︷ ︸

=A2

,

using that Dn and Dm are independently distributed for n ̸= m, where Dper = {D ∈ {0, 1}N :
Dj = 1 ∀j ∈ Nper} is the set of states in which all peripheral entities default and Dper its
complement. Since conditional on Dper, there exists j ∈ Nper such that (1 − Dj)(1 + δ̃) =

1 + δ̃ > 0, A2 almost surely has a strictly positive denominator and is, thus, well-defined for
δ̃ = 0, which implies that (using the dominated convergence theorem)

lim
δ̃→0

A2 = 0.
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Moreover, for all δ̃ > 0, it is

A1 =
|Nper|Gper

Gcore
E

[
1

1 + ∑j∈Ncore,j ̸=i(1 − Dj)

]
=

|Nper|Gper

Gcore

1 − π|Ncore|

|Ncore|(1 − π)
(239)

=
2N
3 Gper

N−3
3 + 2Gper

1 − πN/3

N/3(1 − π)
=

6Gper

(N − 3) + 6Gper

1 − πN/3

1 − π
, (240)

using that Ncore =
N−3

3 + 2Gper, |Nper| = 2N
3 , and |Ncore| = N

3 and the properties of the Binomial
distribution. Therefore,

lim
δ̃→0

δ̃Hi = P(Dper) lim
δ̃→0

A1 + (1 − P(Dper)) lim
δ̃→0

A2 (241)

= π2N/3 6Gper

(N − 3) + 6Gper

1 − πN/3

1 − π
(242)

and

lim
δ̃→0

∆DLi =
f (K − 1)

f (K)
+ lim

δ̃→0
δ̃Hi

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1
π
− 1 (243)

=
f (K − 1)

f (K)
+ π2N/3 6Gper

(N − 3) + 6Gper

1 − πN/3

1 − π

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1
π
− 1 (244)

=
f (K − 1)

f (K)
+ π2N/3 6Gper

(N − 3) + 6Gper

1 − πN/3

π(1 − π)

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

− 1. (245)

Consequently, limN→∞ limδ̃→0 ∆DLi = f (K−1)
f (K) − 1 < 0. Therefore, there exists N̂ such that

limδ̃→0 ∆DLi < 0 for all N > N̂, i.e., such that entities in the core benefit from central clearing.

For g ∈ Nper and h ∈ Ncore it is

lim
δ̃→0

∆DLg > lim
δ̃→0

∆DLh (246)

⇔ 1 − π2N/3−1

1 − π

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

> π2N/3−1 6Gper

(N − 3) + 6Gper

1 − πN/3

1 − π

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

(247)

⇔ 1 − π2N/3−1

1 − π
> π2N/3−1 6Gper

(N − 3) + 6Gper

1 − πN/3

1 − π
, (248)

which holds because

π2N/3−1 6Gper

(N − 3) + 6Gper︸ ︷︷ ︸
≤1

1 − πN/3

1 − π
≤ πN/3−1 1 − πN/3

1 − π
(249)

=
πN/3−1 − πN/3−1πN/3

1 − π
<

1 − π2N/3−1

1 − π
. (250)
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Example 1. Consider a core-periphery network. Central clearing with loss sharing based on net risk
reduces the expected default loss in aggregate but not that of peripheral entities for the following param-
eters: Gper = 1, π = 0.05, N = 21, K = 10, αuc = αCCP = 0.99, σ = σM = 1, β = 0.3.

Figure 3 illustrates comparative statics varying either the number of market participants, N, or the
systematic risk exposure, β, while holding all other parameters constant to those above. Figure 3 (a)
shows that larger N reduces ∆ADL. Intuitively, a larger market enables more risk sharing and, thus,
central clearing reduces the expected aggregate default loss by more. In other words, central clearing be-
comes more beneficial overall. However, the impact of central clearing on an individual entity’s expected
default loss is largely unaffected by N. This is intuitive from the closed-form expressions in Proposition
8. A larger expected number of defaulters roughly balances a larger expected number of survivors.

Figure 3 (b) shows that a larger systematic risk exposure β reduces ∆ADL as well as each entity’s
∆DL. This result is in line with Proposition 5, which shows that larger β reduces bilateral netting
efficiency and, thereby, makes central clearing relatively more beneficial. This effect is particularly pro-
nounced for peripheral entities because they make larger loss sharing contributions.

Proof. From Proposition 3, the impact of clearing on the expected aggregate default loss is equal
to

∆ADL =
ξ(αCCP)

ξ(αuc)

f (1)
f (K)

ηagg +
f (K − 1)

f (K)
− 1, (251)

where

ηagg =
∑N

i=1

∣∣∣∑j∈Ni
vij

∣∣∣
∑N

i=1 Gi
=

2N
3 Gper +

N
3 · 0

2N
3 Gper +

N
3

N−3+6Gper
3

(252)

=
6Gper

6Gper + N − 3 + 6Gper
=

6Gper

12Gper + N − 3
(253)

in the case of a core-periphery network. The statement follows from setting the variables equal
to the parameters.

Proposition 9 (Loss sharing based on net and gross risk). Consider loss sharing rules based on
net and gross risk, i.e., with δ ∈ (0, 1).

(a) Assume that ηj = η ∈ [0, 1] for all j = 1, ..., N. Then, for any i ∈ {1, ..., N}, it is ∂∆DLi
∂δ = 0.

(b) Consider an entity with a flat portfolio, ηi = 0. Assume that there exist at least two fellow clearing
members a and b, a ̸= b, with portfolio directionality ηa > 0 and ηb > 0. Then,

∂∆DLi

∂δ
> 0.
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(c) Consider an entity with a fully directional portfolio, ηi = 1. Assume that there exist at least two
fellow clearing members a and b, a ̸= b, with portfolio directionality ηa < 1 and ηb > 0. Then,

∂∆DLi

∂δ
< 0.

Proof. From Definition 4 and Proposition 1, it is

wi(δ) = δGi f (1) + (1 − δ)ηiGi f (1) = (δ + (1 − δ)ηi)Gi f (1). (254)

The derivative of wi(δ) with respect to δ is equal to

∂wi

∂δ
= (1 − ηi)Gi f (1). (255)

Define by H =
∑N

j=1,j ̸=i DjGjηj

wi(δ)+∑N
j=1,j ̸=i(1−Dj)wj(δ)

the CCP’s default losses per unit of loss sharing weight.

The derivative of ∆DLi with respect to δ is equal to

∂∆DLi
∂δ

=
f (1)

Giπ f (K)
ξ(αCCP)

ξ(αuc)

∂

∂δ
wi(δ)E

[
∑N

j=1,j ̸=i DjGjηj

wi(δ) + ∑N
j=1,j ̸=i(1 − Dj)wj(δ)

]
(256)

=
f (1)

Giπ f (K)
ξ(αCCP)

ξ(αuc)

(
(1 − ηi)Gi f (1)E[H] (257)

− wi(δ)E

[
H
(1 − ηi)Gi f (1) + ∑N

j=1,j ̸=i(1 − Dj)(1 − ηj)Gj f (1)

Gi f (1)(δ + (1 − δ)ηi) + ∑N
j=1,j ̸=i(1 − Dj)wj(δ)

])
(258)

=
f (1)

π f (K)
ξ(αCCP)

ξ(αuc)

(
(1 − ηi) f (1)E[H] (259)

− f (1)(δ + (1 − δ)ηi)E

[
H

(1 − ηi)Gi + ∑N
j=1,j ̸=i(1 − Dj)(1 − ηj)Gj

Gi(δ + (1 − δ)ηi) + ∑N
j=1,j ̸=i(1 − Dj)(δ + (1 − δ)ηj)Gj

])
,

(260)
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which is positive if, and only if,

1 − ηi
δ + (1 − δ)ηi

E[H] > E

[
H

(1 − ηi)Gi + ∑N
j=1,j ̸=i(1 − Dj)(1 − ηj)Gj

Gi(δ + (1 − δ)ηi) + ∑N
j=1,j ̸=i(1 − Dj)(δ + (1 − δ)ηj)Gj

]
(261)

⇔ 1 − ηi
δ + (1 − δ)ηi

E[H] > E

[
H

1
δ

(
1 −

wi(0) + ∑N
j=1,j ̸=i(1 − Dj)wj(0)

wi(δ) + ∑N
j=1,j ̸=i(1 − Dj)wj(δ)

)]
(262)

⇔ δ
1 − ηi

δ + (1 − δ)ηi
E[H] > E[H]− E

[
H

wi(0) + ∑N
j=1,j ̸=i(1 − Dj)wj(0)

wi(δ) + ∑N
j=1,j ̸=i(1 − Dj)wj(δ)

]
(263)

⇔ E

[
H

wi(0) + ∑N
j=1,j ̸=i(1 − Dj)wj(0)

wi(δ) + ∑N
j=1,j ̸=i(1 − Dj)wj(δ)

]
> E[H]− δ

1 − ηi
δ + (1 − δ)ηi

E[H] (264)

⇔ E

[
H

wi(0) + ∑N
j=1,j ̸=i(1 − Dj)wj(0)

wi(δ) + ∑N
j=1,j ̸=i(1 − Dj)wj(δ)

]
> E

[
H

wi(0)
wi(δ)

]
(265)

⇔ E

[
H

(
wi(0) + ∑N

j=1,j ̸=i(1 − Dj)wj(0)

wi(δ) + ∑N
j=1,j ̸=i(1 − Dj)wj(δ)

− wi(0)
wi(δ)

)]
> 0 (266)

⇔ E

H
∑N

j=1,j ̸=i(1 − Dj)(wj(0)wi(δ)− wj(δ)wi(0))

wi(δ)
(

wi(δ) + ∑N
j=1,j ̸=i(1 − Dj)wj(δ)

)
 > 0 (267)

⇔ E

[
H̃

N

∑
j=1,j ̸=i

(1 − Dj)(wj(0)wi(δ)− wj(δ)wi(0))

]
> 0, (268)

where we define H̃ = h
wi(δ)(wi(δ)+∑N

j=1,j ̸=i(1−Dj)wj(δ))
, which is nonnegative with probability one.

From Inequality (268) it follows that:

(a) ∂∆DLi
∂δ = 0 if ηj ≡ η ∈ [0, 1] for all j = 1, ..., N, since in this case

E

[
H̃

N

∑
j=1,j ̸=i

(1 − Dj)(wj(0)wi(δ)− wj(δ)wi(0))

]
(269)

= f (1)E

[
H̃

N

∑
j=1,j ̸=i

(1 − Dj)(ηGjwi(δ)− wj(δ)ηGi)

]
(270)

= f (1)ηE

[
H̃

N

∑
j=1,j ̸=i

(1 − Dj)(Gj(δ + (1 − δ)η)Gi f (1)− (δ + (1 − δ)η)Gj f (1)Gi)

]
(271)

= f (1)2η(δ + (1 − δ)η)GiE

[
H̃

N

∑
j=1,j ̸=i

(1 − Dj)(Gj − Gj)

]
= 0. (272)
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(b) ∂∆DLi
∂δ > 0 if ηi = 0 since in this case wi(0) = ηi f (1)Gi = 0 and, thus,

E

[
H̃

N

∑
j=1,j ̸=i

(1 − Dj)(wj(0)wi(δ)− wj(δ)wi(0))

]
(273)

=E

[
H̃

N

∑
j=1,j ̸=i

(1 − Dj)(ηj f (1)Gjwi(δ))

]
(274)

≥wi(δ) f (1)E
[
H̃ ((1 − Da)ηaGa + (1 − Db)ηbGb)

]
> 0, (275)

where we use that by assumption there exist a, b ∈ {1, ..., N}\{i}, a ̸= b, with ηa > 0
and ηb > 0 such that P(Da = 1, Db = 0) + P(Da = 0, Db = 1) > 0 implies that P(h̃ >

0, (1 − Da)ηaGa + (1 − Db)ηbGb > 0) > 0.

(c) ∂∆DLi
∂δ < 0 if ηi = 1 since in this case wi(δ) = (δ + (1 − δ)) f (1)Gi ≡ f (1)Gi and, thus,

E

[
H̃

N

∑
j=1,j ̸=i

(1 − Dj)(wj(0)wi(δ)− wj(δ)wi(0))

]
(276)

= f (1)GiE

[
H̃

N

∑
j=1,j ̸=i

(1 − Dj)(wj(0)− wj(δ))

]
(277)

≤ f (1)GiE
[
H̃(1 − Da)(wa(0)− wa(δ))

]
< 0, (278)

where we use that by assumption there exist a, b ∈ {1, ..., N}\{i}, a ̸= b, with ηa < 1 and
ηb > 0 such that wa(0)− wa(δ) = (ηa − (δ + (1 − δ)ηa)) f (1)Ga = −δ(1 − ηa) f (1)Ga < 0
for all δ > 0 and that P(DbηbGb > 0, Da = 0) > 0, implying that P(h̃ > 0, (1− Da)(wa(0)−
wa(δ)) < 0) > 0 and P(h̃ < 0, (1 − Da)(wa(0)− wa(δ)) < 0) = 0.

Proposition 10 (Loss sharing based on gross risk). Consider two entities g, h, g ̸= h, and assume
that loss sharing is proportional to gross portfolio risk, δ = 1. Then, the difference in the impact of
central clearing between the two entities is equal to

∆DLg − ∆DLh (31)

=
ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1
π

(
E

[
∑N

j=1 DjGjηj

∑N
j=1(1 − Dj)Gj

| Dg = 0

]
− E

[
∑N

j=1 DjGjηj

∑N
j=1(1 − Dj)Gj

| Dh = 0

])
.

(a) Conditional on Dg = Dh, the impact of central clearing is the same across entities:

∆DLg|Dg=Dh
= ∆DLh|Dg=Dh

. (32)
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(b) If ηg = ηh, then

Gh > Gg ⇒ ∆DLh < ∆DLg. (33)

(c) If Gg = Gh, then

ηh > ηg ⇔ ∆DLh < ∆DLg. (34)

(d) If h ∈ Ncore and g ∈ Nper in a core-periphery network, then there exists π̂ > 0 such that for all
π ∈ (0, π̂) it is

∆DLg < ∆DLh. (35)

Proof. When δ = 1, loss sharing weights are equal to wi = Gi f (1). Using Proposition 4, the
impact of central clearing on i’s expected default loss is then given by

∆DLi =
f (K − 1)

f (K)
+

wi(δ)

Gi

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1
π

E

[
∑N

j=1,j ̸=i DjGjηj

wi(δ) + ∑N
j=1,j ̸=i(1 − Dj)wj(δ)

]
− 1 (279)

=
f (K − 1)

f (K)
+

Gi f (1)
Gi

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1
π

E

[
∑N

j=1,j ̸=i DjGjηj

Gi f (1) + ∑N
j=1,j ̸=i(1 − Dj)Gj f (1)

]
− 1 (280)

=
f (K − 1)

f (K)
+

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1
π

E

[
∑N

j=1 DjGjηj

∑N
j=1(1 − Dj)Gj

| Di = 0

]
− 1. (281)

Consider two entities g, h ∈ {1, ..., N}, g ̸= h . Then, the difference in the impact of central
clearing is equal to

∆DLg − ∆DLh (282)

=
ξ(αCCP)

ξ(αuc)

f (1)
f (K)

1
π

(
E

[
∑N

j=1 DjGjηj

∑N
j=1(1 − Dj)Gj

| Dg = 0

]
− E

[
∑N

j=1 DjGjηj

∑N
j=1(1 − Dj)Gj

| Dh = 0

])
.

Define by D̃ a Bernoulli distributed random variable with success probability π such that D̃
and Dj are independently distributed for all j /∈ {g, h}. With A = ∑N

j=1,j/∈{g,h} DjGjηj ≥ 0 and
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B = ∑N
j=1,j/∈{g,h}(1 − Dj)Gj ≥ 0

∆DLg − ∆DLh
ξ(αCCP)
ξ(αuc)

f (1)
f (K)

1
π

(283)

= E

[
D̃Ghηh + A

Gg + (1 − D̃)Gh + B
−

D̃Ggηg + A
Gh + (1 − D̃)Gg + B

]
(284)

= E

[
(D̃Ghηh + A)(Gh + (1 − D̃)Gg + B)− (D̃Ggηg + A)(Gg + (1 − D̃)Gh + B)

(Gg + (1 − D̃)Gh + B)(Gh + (1 − D̃)Gg + B)

]
(285)

= E

AD̃[Gh − Gg] + D̃
[

G2
hηh − G2

gηg + GgGh(1 − D̃)(ηh − ηg) + B(Ghηh − Ggηg)
]

(Gg + (1 − D̃)Gh + B)(Gh + (1 − D̃)Gg + B)

 (286)

= E

[
D̃

A(Gh − Gg) + G2
hηh − G2

gηg + B(Ghηh − Ggηg)

(Gg + (1 − D̃)Gh + B)(Gh + (1 − D̃)Gg + B)

]
(287)

= πE

[
A(Gh − Gg) + G2

hηh − G2
gηg + B(Ghηh − Ggηg)

(Gg + B)(Gh + B)

]
, (288)

using that

D̃(1 − D̃) =

0 × (1 − 0) = 0, if D̃ = 0

1 × (1 − 1) = 0, if D̃ = 1.
(289)

(a) If Dg = 0 and Dh = 0, then Equation (282) implies that the impact of central clearing
is the same for entities h and g. Moreover, if Dg = 1 and Dh = 1, cleared and un-
cleared default losses are zero and the impact of central clearing coincides, as well. There-
fore, conditional on Dg = Dh, the impact of central clearing is the same across entities,
∆DLg|Dg=Dh

= ∆DLh|Dg=Dh
.

(b) If ηg = ηh, then Expression (288) is equal to

πE

A(Gh − Gg) + ηg

[
G2

h − G2
g + B(Gh − Gg)

]
(Gg + B)(Gh + B)

 (290)

=πE

[
(Gh − Gg)(A + ηgB) + ηg(G2

h − G2
g)

(Gg + B)(Gh + B)

]
, (291)

which is positive if Gh > Gg. Thus, ∆DLg − ∆DLh > 0 if Gh > Gg.

(c) If Gg = Gh, then Expression (288) is equal to

πE

[
G2

h(ηh − ηg) + BGh(ηh − ηg)

(Gh + B)(Gh + B)

]
= π(ηh − ηg)GhE

[
Gh + B

(Gh + B)2

]
, (292)

which is positive if, and only if, ηh > ηg. Thus, ∆DLg − ∆DLh > 0 if, and only if, ηh > ηg.
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(d) In a core-periphery network as in Assumption 2 with h ∈ Ncore and g ∈ Nper, it is Gh =
N−3

3 + 2Gper, Gg = Gper, ηh = 0, and ηg = 1, and, thus, Expression (288) is equal to

πE

[
A(N−3

3 + 2Gper − Gper)− G2
per − BGper

(Gper + B)(N−3
3 + 2Gper + B)

]
= πE

[
A N−3+3Gper

3 − (Gper + B)Gper

(Gper + B)(N−3+6Gper
3 + B)

]
.

(293)

Moreover, it is

A =
N

∑
j=1,j/∈{g,h}

DjGjηj = Gper ∑
j∈Nper\{g}

Dj (294)

B =
N

∑
j=1,j/∈{g,h}

(1 − Dj)Gj =
N − 3 + 6Gper

3 ∑
j∈Ncore\{h}

(1 − Dj) + Gper ∑
j∈Nper\{g}

(1 − Dj),

(295)

which implies that the nominator in the expectation in Expression (293) is equal to

Ã =A
N − 3 + 3Gper

3
− (Gper + B)Gper (296)

= Gper
N − 3 + 3Gper

3 ∑
j∈Nper\{g}

Dj − G2
per (297)

− Gper

N − 3 + 6Gper

3 ∑
j∈Ncore\{h}

(1 − Dj) + Gper ∑
j∈Nper\{g}

(1 − Dj)


= Gper

(
∑

j∈Nper\{g}

(
Dj

N − 3 + 3Gper

3
− (1 − Dj)Gper

)
(298)

−
N − 3 + 6Gper

3 ∑
j∈Ncore\{h}

(1 − Dj)− Gper

)

= Gper

 ∑
j∈Nper\{g}

(
Dj

N − 3 + 6Gper

3
− Gper

)
−

N − 3 + 6Gper

3 ∑
j∈Ncore\{h}

(1 − Dj)− Gper


(299)

= Gper

(
∑

j∈Nper\{g}

(
Dj

N − 3 + 6Gper

3

)
− Gper

2N − 3
3

−
N − 3 + 6Gper

3
N − 3

3
(300)

+
N − 3 + 6Gper

3 ∑
j∈Ncore\{h}

Dj − Gper

)

= Gper

N − 3 + 6Gper

3 ∑
j∈{1,...,N}\{g,h}

Dj − Gper
2N − 3

3
−

N − 3 + 6Gper

3
N − 3

3
− Gper


(301)

= âD̂ − b̂, (302)
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with

â = Gper
N − 3 + 6Gper

3
> 0, (303)

b̂ = Gper

(
Gper

2N − 3
3

+
N − 3 + 6Gper

3
N − 3

3
+ Gper

)
> 0, (304)

D̂ = ∑
j∈{1,...,N}\{g,h}

Dj ∼ Bin(N − 2, π). (305)

We define d̂ = b̂/â > 0. Then,

Ã ≥ 0 ⇔ âD̂ − b̂ ≥ 0 ⇔ D̂ ≥ d̂. (306)

We consider the following two cases:
D̂ ≥ d̂: In this case, Ã ≥ 0. Then, using that B ≥ 0, it is

Ã

(Gper + B)(N−3+6Gper
3 + B)

≤ Ã

Gper
N−3+6Gper

3

. (307)

D̂ < d̂: In this case, Ã < 0. Then, using that

B ≤
N − 3 + 6Gper

3
(|Ncore| − 1) + Gper(|Nper| − 1) = b > 0, (308)

it is

Ã

(Gper + B)(N−3+6Gper
3 + B)

≤ Ã

(Gper + b)(N−3+6Gper
3 + b)

. (309)
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Combining both cases, Expression (293) is equal to

πE

[
A N−3+3Gper

3 − (Gper + B)Gper

(Gper + B)(N−3+6Gper
3 + B)

]
(310)

=π

(
P(D̃ ≥ d̂)E

[
Ã

(Gper + B)(N−3+6Gper
3 + B)

| D̃ ≥ d̂

]

+ P(D̃ < d̂)E

[
Ã

(Gper + B)(N−3+6Gper
3 + B)

| D̃ < d̂

])
(311)

≤π

(
P(D̃ ≥ d̂)

E
[

Ã | D̃ ≥ d̂
]

Gper
N−3+6Gper

3

+ P(D̃ < d̂)
E
[

Ã | D̃ < d̂
]

(Gper + b)(N−3+6Gper
3 + b)

)
(312)

=π

(
E
[
Ã
]

(Gper + b)(N−3+6Gper
3 + b)

− P(D̃ ≥ d̂)
E
[

Ã | D̃ ≥ d̂
]

(Gper + b)(N−3+6Gper
3 + b)

+ P(D̃ ≥ d̂)
E
[

Ã | D̃ ≥ d̂
]

Gper
N−3+6Gper

3

)
(313)

=π

(
E
[
Ã
]

(Gper + b)(N−3+6Gper
3 + b)

+ P(D̃ ≥ d̂)E
[

Ã | D̃ ≥ d̂
] ( 1

Gper
N−3+6Gper

3

− 1

(Gper + b)(N−3+6Gper
3 + b)

))
(314)

=π

(
E
[
Ã
]

(Gper + b)(N−3+6Gper
3 + b)

+ P(D̃ ≥ d̂)E
[

Ã | D̃ ≥ d̂
] (Gper + b)(N−3+6Gper

3 + b)− Gper
N−3+6Gper

3

Gper
N−3+6Gper

3 (Gper + b)(N−3+6Gper
3 + b)

)
(315)

=π

(
ã(N − 2)π − b̂

(Gper + b)(N−3+6Gper
3 + b)

+ P(D̃ ≥ d̂)E
[

Ã | D̃ ≥ d̂
]

g̃
)

(316)

with g̃ =
(Gper+b)(

N−3+6Gper
3 +b)−Gper

N−3+6Gper
3

Gper
N−3+6Gper

3 (Gper+b)(
N−3+6Gper

3 +b)
> 0. Using Markov’s inequality (note that d̂ > 0),

it is

P(D̃ ≥ d̂) ≤ E[D̃]

d̂
=

(N − 2)π
d̂

. (317)
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Moreover, it is E
[

Ã | D̃ ≥ d̂
]
≤ â(N − 2)− b̂. Using this in Expression (316) yields that

π

(
â(N − 2)π − b̂

(Gper + b)(N−3+6Gper
3 + b)

+ P(D̃ ≥ d̂)E
[

Ã | D̃ ≥ d̂
]

g̃
)

(318)

≤π

(
â(N − 2)π − b̂

(Gper + b)(N−3+6Gper
3 + b)

+
(N − 2)π

d̂
(â(N − 2)− b̂)g̃︸ ︷︷ ︸

=C̃

)
. (319)

When π approaches zero, the term inside the parentheses becomes negative:

C̃ → − b̂

(Gper + b)(N−3+6Gper
3 + b)

< 0 for π → 0. (320)

Due to continuity, there exists π̂ > 0 such that for all π ∈ (0, π̂) it holds that πC̃ < 0. Using
Equality (288), for π ∈ (0, π̂) it is, thus, ∆DLg − ∆DLh < 0 ⇔ ∆DLg < ∆DLh.

Corollary 3. Consider a core-periphery network and let g ∈ Nper and h ∈ Ncore. If π is sufficiently
small, there exists δ̂ ∈ (0, 1) such that ∆DLg = ∆DLh for the loss sharing rule w(δ̂) and that ∆DLg >

∆DLh if, and only if, δ < δ̂.

Proof. From Proposition 8, it is ∆DLg > ∆DLh if loss sharing is based on net risk, i.e., when δ

approaches zero. From Proposition 10 (d), it is ∆DLg < ∆DLh if loss sharing is based on gross
risk (δ = 1) and π is sufficiently small. From Proposition 4, it is ∂∆DLg

∂δ < 0 and ∂∆DLh
∂δ > 0,

which implies monotonicity of the differential impact of central clearing in δ, i.e.,

∂(∆DLg − ∆DLh)

∂δ
< 0.

Together with continuity, the statement follows.

G Proofs for Section 6 (The CCP’s Objective)

Lemma 2 (Optimal fee). For an optimal clearing rule (F∗, δ∗), defined as the solution to (36) subject
to (37) and (38), the optimal fee is equal to

F∗ = π f (K)ξ(αuc)min
i∈Ω

(−∆DLi(δ
∗, Ω)) , (40)
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where ∆DLi(δ, Ω) is the impact of central clearing on i’s expected default losses considering only the set
Ω of market participants, analogously to Equation (20),

∆DLi(δ, Ω) =
E
[
(1 − Di)∑j∈Ni∩Ω DLK−1

ij + LSCi(δ, Ω)
]

E
[
(1 − Di)∑j∈Ni∩Ω DLK

ij

] − 1. (41)

Proof. The participation constraint (37) is equivalent to

(1 − π)F ∑
j∈Ni∩Ω

∣∣vij
∣∣ ≤ (1 − π)

E

 ∑
j∈Ni

DLK
ij − ∑

j∈Ni∩Ω
DLK−1

ij − ∑
j∈Ni\Ω

DLK
ij

 (321)

− E[LSCi(δ, Ω)]

⇔(1 − π)F ∑
j∈Ni∩Ω

∣∣vij
∣∣ ≤ (1 − π)

(
E

[
∑

j∈Ni∩Ω
DLK

ij − ∑
j∈Ni∩Ω

DLK−1
ij

])
− E[LSCi(δ, Ω)] (322)

⇔(1 − π)FGi(Ω) ≤ (1 − π)
(

E
[

DLK
i (Ω)− DLK−1

i (Ω)
])

− E[LSCi(δ, Ω)] (323)

⇔ (1 − π)FGi(Ω)

(1 − π)E[DLK
i (Ω)]

≤ −
(
(1 − π)E[DLK−1

i (Ω)] + E[LSCi(δ, Ω)]

(1 − π)E[DLK
i (Ω)]

− 1

)
(324)

⇔ FGi(Ω)

E[DLK
i (Ω)]

≤ −∆DLi(δ, Ω) (325)

⇔F ≤ −π f (K)ξ(αuc)∆DLi(δ, Ω), (326)

where Gi(Ω), DLK
i (Ω), and ∆DLi(δ, Ω) are the gross position, uncleared default loss, and im-

pact of central clearing on the default losses of entity i considering only the set Ω of market
participants.

Because the participation constraint must hold for all i ∈ Ω, it is

F∗ ≤ min
i∈Ω

−π f (K)ξ(αuc)∆DLi(δ
∗, Ω) = π f (K)ξ(αuc)min

i∈Ω
(−∆DLi(δ

∗, Ω)). (327)

Since the objective function (36) is increasing in F, the optimal clearing fee maximizes F with
respect to the participation constraints, which implies that

F∗ = π f (K)ξ(αuc)min
i∈Ω

(−∆DLi(δ, Ω)). (328)

Proposition 11 (Optimal clearing rule). Consider a core-periphery network. Assume that π is suffi-
ciently small, such that Corollary 3 applies. Then, the optimal clearing rule is one of the following:

(A) All entities use central clearing, Ω = {1, ..., N}, the loss sharing rule balances the impact of central
clearing across entities, δ∗ = δ̂, and the fee is equal to

F∗
A = −πξ(αuc) f (K)∆DL1(Ω). (42)
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(B) Only core entities use central clearing, Ω = Ncore, the loss sharing rule is indeterminate, and the
fee is equal to

F∗
B = πξ(αuc)( f (K)− f (K − 1)). (43)

Proof. Entities only differ in whether they are in the core or periphery of the network, but oth-
erwise face the same participation constraints. Let g ∈ Nper and h ∈ Ncore. Let δ̂ ∈ (0, 1) such
that ∆DLg(δ̂, {1, ..., N}) = ∆DLh(δ̂, {1, ..., N}) , which exists due to Corollary 3. We rewrite the
objective function (36) as

O = ∑
i∈Ω

E

[
(1 − Di) ∑

j∈Ni∩Ω

∣∣vij
∣∣ F

]
= (1 − π)FG(Ω), (329)

where G(Ω) = ∑i∈Ω ∑j∈Ni∩Ω
∣∣vij
∣∣ is the total gross volume cleared.

Because each peripheral entity trades only with a core entity, it is not feasible that only
peripheral entities use central clearing. Therefore, Ncore ⊆ Ω. Thus, there are two possible sets
of clearing members Ω:IA.2

(A) Assume that Ω = {1, ..., N}. In this case, all entities use central clearing. Assume that
δ∗ ≤ δ̂. Then, using Corollary 3, it is ∆DLh(δ

∗, Ω) ≤ ∆DLg(δ∗, Ω), and, thus, using Lemma
2, the optimal fee is equal to

F∗
A = π f (K)ξ(αuc)min

i∈Ω
(−∆DLi(δ

∗, Ω)) = −π f (K)ξ(αuc)∆DLg(δ
∗, Ω). (330)

From Proposition 4, it is ∂∆DLg
∂δ < 0, and, thus, for all δ∗ < δ̂,

∂O(δ∗)

∂δ
= (1 − π)G(Ω)

∂F∗
A

∂δ
= −(1 − π) G(Ω)π f (K)ξ(αuc)

∂∆DLg(δ∗, Ω)

∂δ
> 0. (331)

Therefore, δ∗ < δ̂ is not optimal.

Assume that δ∗ > δ̂. Then, ∆DLh(δ
∗, Ω) > ∆DLg(δ∗, Ω), and, thus, using Lemma 2 it is

F∗
A = π f (K)ξ(αuc)min

i∈Ω
(−∆DLi(δ

∗, Ω)) = −π f (K)ξ(αuc)∆DLh(δ
∗, Ω). (332)

From Proposition 4, it is ∂∆DLh
∂δ > 0, and, thus, for all δ > δ̂,

∂O(δ∗)

∂δ
= (1 − π)G(Ω)

∂F∗
A

∂δ
= −(1 − π)π f (K)ξ(αuc)G(Ω)

∂∆DLh(δ
∗, Ω)

∂δ
< 0. (333)

Therefore, δ > δ̂ is not optimal, and δ∗ = δ̂ is a maximum. Thus, δ∗ = δ̂ maximizes the
CCP’s profit.

IA.2Ω is nonempty by the assumption in Footnote 24.
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(B) Assume that Ω = Ncore. In this case, only core entities use central clearing. Because core
entities have zero net risk, σ̄j = 0 for all j ∈ Ncore, using Proposition 4, the expected loss
sharing contribution is equal to

E[LSCi] = (1 − π)ξ(αCCP)wi(δ)E

[
∑j∈Ncore,j ̸=i Djσ̄j

wi(δ) + ∑j∈Ncore,j ̸=i(1 − Dj)wj(δ)

]
= 0. (334)

Therefore, for all i ∈ Ncore the impact of central clearing on the expected default losses is
equal to

∆DLi(δ,Ncore) =
f (K − 1)− f (K)

f (K)
, (335)

independently of the loss sharing rule δ. Therefore, using Lemma 2, the optimal fee is
equal to

F∗
B = −π f (K)ξ(αuc)

f (K − 1)− f (K)
f (K)

= πξ(αuc)( f (K)− f (K − 1)). (336)

Assume that the loss sharing rule is δ∗ ∈ [0, 1]. If any peripheral entity g ∈ Nper joins the
CCP, the CCP’s expected default losses become strictly positive. Thus,

∆DLg(δ
∗,Ncore ∪ {g}) > f (K − 1)− f (K)

f (K)
. (337)

From the proof of Lemma 2, entity g prefers not to use central clearing if, and only if,

− π f (K)ξ(αuc)∆DLg(δ
∗,Ncore ∪ {g}) < F∗

B (338)

⇔− π f (K)ξ(αuc)∆DLg(δ
∗,Ncore ∪ {g}) < πξ(αuc)( f (K)− f (K − 1)) (339)

⇔− ∆DLg(δ
∗,Ncore ∪ {g}) < f (K)− f (K − 1)

f (K)
(340)

⇔∆DLg(δ
∗,Ncore ∪ {g}) > f (K − 1)− f (K)

f (K)
. (341)

Therefore, constraint (38) holds for all g ∈ Nper.

Proposition 12 (Curtailing clearing participation). In the setting of Proposition 11, clearing rule
(B) strictly dominates (A) if

( f (K)− f (K − 1)) ξ(αuc) < max

{
2N − 3

4N
,

δ̂

2

}
f (1)ξ(αCCP). (44)

In this case, it is optimal for the CCP to dissuade peripheral entities from using central clearing. There
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exist K̂ < ∞ and α̂uc < 1 such that Inequality (44) holds if K > K̂ or αuc > α̂uc.

Proof. Let k ∈ {1, ..., N}. Clearing rule (B) results in a strictly larger fee income to the CCP than
(A) if, and only if,

F∗
BG(Ncore) > F∗

AG({1, ..., N}) (342)

⇔ πξ(αuc)( f (K)− f (K − 1))G(Ncore) > −πξ(αuc) f (K)∆DLk(δ̂, {1, .., N})G({1, ..., N}) (343)

⇔ f (K)− f (K − 1)
f (K)

G(Ncore) > −∆DLk(δ̂, {1, .., N})G({1, ..., N}) (344)

⇔ f (K)− f (K − 1)
f (K)

G(Ncore) > G({1, ..., N})
[

f (K)− f (K − 1)
f (K)

− wk(δ̂) f (1)
Gk f (K)

ξ(αCCP)

ξ(αuc)

1
π

H

]
(345)

⇔ f (K)− f (K − 1)
f (K)

(G(Ncore)− G({1, ..., N})) > −G({1, ..., N})wk(δ̂) f (1)
Gk f (K)

ξ(αCCP)

ξ(αuc)

1
π

H (346)

⇔ f (K)− f (K − 1)
f (K)

(G({1, ..., N})− G(Ncore)) < G({1, ..., N})wk(δ̂) f (1)
Gk f (K)

ξ(αCCP)

ξ(αuc)

1
π

H (347)

where H = E

[
∑N

j=1,j ̸=k DjGjηj

wk(δ̂)+∑N
j=1,j ̸=k(1−Dj)wj(δ̂)

]
. In the following, we use that

wk(δ̂) = δ̂Gk f (1) + (1 − δ̂)Gkηk f (1) ≤ Gk f (1). (348)

(1) Let k ∈ Ncore. Then, using the properties of core-periphery networks,

H = E

[
∑N

j=1,j ̸=k DjGjηj

wk(δ̂) + ∑N
j=1,j ̸=k(1 − Dj)wj(δ̂)

]
= E

[
∑j∈Nper

DjGper

wk(δ̂) + ∑N
j=1,j ̸=k(1 − Dj)wj(δ̂)

]
(349)

≥ E

[
∑j∈Nper

DjGper

f (1)∑N
j=1 Gj({1, ..., N})

]
=

2N
3 πGper

G({1, ..., N}) f (1)
. (350)

Because k ∈ Ncore, it is wk(δ̂) = δ̂Gcore f (1). Therefore, Inequality (347) holds if

f (K)− f (K − 1)
f (K)

(G({1, ..., N})− G(Ncore)) <
δ̂Gcore f (1) f (1)

Gcore f (K)
ξ(αCCP)

ξ(αuc)

1
π

2N
3 πGperG({1, ..., N})

G({1, ..., N}) f (1)
(351)

⇔ f (K)− f (K − 1)
f (K)

(G({1, ..., N})− G(Ncore)) <
δ̂ f (1)
f (K)

ξ(αCCP)

ξ(αuc)

2N
3

Gper (352)

⇔ f (K)− f (K − 1)
f (K)

(
2N
3

Gper +
N
3

N − 3 + 6Gper

3
− N

3
N − 3

3

)
<

δ̂ f (1)
f (K)

ξ(αCCP)

ξ(αuc)

2N
3

Gper (353)

⇔ f (K)− f (K − 1)
f (K)

4Gper <
δ̂ f (1)
f (K)

ξ(αCCP)

ξ(αuc)
2Gper (354)

⇔ 2
f (K)− f (K − 1)

f (K)
< δ̂

f (1)
f (K)

ξ(αCCP)

ξ(αuc)
(355)

⇔ f (K)− f (K − 1)
f (1)

ξ(αuc)

ξ(αCCP)
<

δ̂

2
. (356)
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(2) Let k ∈ Nper. Then,

H = E

[
∑N

j=1,j ̸=k DjGjηj

wk(δ̂) + ∑N
j=1,j ̸=k(1 − Dj)wj(δ̂)

]
= E

[
∑j∈Nper\{k} DjGper

wk(δ̂) + ∑N
j=1,j ̸=k(1 − Dj)wk(δ̂)

]
(357)

≥ E

[
∑j∈Nper\{k} DjGper

f (1)∑N
j=1 Gj({1, ..., N}

]
=

2N−3
3 πGper

G({1, ..., N}) f (1)
. (358)

Because k ∈ Nper, it is wk(δ̂) = Gper f (1). Therefore, it is sufficient for Inequality (347) to
hold if

f (K)− f (K − 1)
f (K)

(G({1, ..., N})− G(Ncore)) <
Gper f (1) f (1)

Gper f (K)
ξ(αCCP)

ξ(αuc)

1
π

2N−3
3 πGperG({1, ..., N})

G({1, ..., N}) f (1)
(359)

⇔ f (K)− f (K − 1)
f (K)

(G({1, ..., N})− G(Ncore)) <
f (1)
f (K)

ξ(αCCP)

ξ(αuc)

2N − 3
3

Gper (360)

⇔ f (K)− f (K − 1)
f (K)

N
3

12Gper

3
<

f (1)
f (K)

ξ(αCCP)

ξ(αuc)

2N − 3
3

Gper (361)

⇔ f (K)− f (K − 1)
f (1)

4N
2N − 3

<
ξ(αCCP)

ξ(αuc)
(362)

⇔ f (K)− f (K − 1)
f (1)

ξ(αuc)

ξ(αCCP)
<

2N − 3
4N

. (363)

Therefore, the CCP strictly prefers rule (B) over (A) if

( f (K)− f (K − 1)) ξ(αuc) < max

{
2N − 3

4N
,

δ̂

2

}
f (1)ξ(αCCP). (364)

The LHS converges to zero for K → ∞ (using Lemma IA.2) and for αuc → 1 (using Lemma
IA.1). Therefore, there exist K̂ < ∞ and α̂uc < 1 such that the CCP strictly prefers rule (B) over
(A) if either K > K̂ or αuc > α̂uc or both.

Proposition 13 (Robust optimal clearing rule). If clearing rule (B) in Proposition 11 is strictly
preferred over (A), then only net-based loss sharing is robust to small perturbations in the following
sense:

There exists a sequence (nℓ)ℓ∈N that converges to 0 and associates with the following sequence of
core-periphery networks:

• Each peripheral entity has the perturbed position G̃ℓ
per = Gper + nℓ.

• Peripheral entities always centrally clear nℓ, independently of the clearing rule, and centrally clear
Gper if, and only if, the participation constraint is satisfied.

• Core entities use central clearing if, and only if, the participation constraint is satisfied.
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Denote by (F∗,ℓ, δ∗,ℓ) an optimal clearing rule for the ℓ-th perturbation. Then, (F∗, δ∗) is a robust
optimal clearing rule for the original core-periphery network if F∗,ℓ → F∗ and δ∗,ℓ → δ∗ for ℓ → ∞.

Proof. Consider clearing rule (B) associated with clearing members Ω = Ncore and fee F∗
B . The

constraint (38) implies for the original network that peripheral entities strictly prefer not to
become clearing members. By continuity, there exists ℓ̄ > 0 such that constraint (38) holds for
all perturbed networks with ℓ < ℓ̄.

Let ℓ < ℓ̄ and consider the ℓ-th perturbed network. Note that peripheral entities centrally
clear nℓ but not Gper. Lemma 2 implies that the optimal fee is

F∗,ℓ = −π f (K)ξ(αuc)∆DLh(δ
∗,ℓ, Ω∗,ℓ),

where h ∈ Ncore. Proposition 4 (b) implies that the impact of central clearing on a core en-
tity’s expected default loss, ∆DLh, is increasing with δ. Because the CCP’s profit is increasing
with the fee F∗,ℓ, it is optimal to maximize F∗,ℓ by minimizing δ. Thus, δ∗,ℓ = 0 and, using
Proposition 8,

∆DLh(0, Ω∗,ℓ) =
f (K − 1)

f (K)
+ π2N/3−1 6nℓ

(N − 3) + 6nℓ

1 − πN/3

1 − π

ξ(αCCP)

ξ(αuc)

f (1)
f (K)

− 1. (365)

Therefore,

lim
ℓ→∞

F∗,ℓ = −π(1 − π)ξ(αuc) f (K)
[

f (K − 1)
f (K)

− 1
]
= F∗

B .

Therefore, (F∗
B , 0) is the robust optimal clearing rule for the original core-periphery network.
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