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Abstract 
We propose a macroeconomic model with a nonlinear Phillips curve that has a flat slope 
when inflationary pressures are subdued and steepens when inflationary pressures are 
elevated. The nonlinear Phillips curve in our model arises due to a quasi-kinked demand 
schedule for goods produced by firms. Our model can jointly account for the modest decline 
in inflation during the Great Recession and the surge in inflation post-COVID-19. Because our 
model implies a stronger transmission of shocks when inflation is high, it generates 
conditional heteroskedasticity in inflation and inflation risk. Hence, our model can generate 
more sizable inflation surges due to cost-push and demand shocks than a standard linearized 
model. Finally, our model implies that central banks face a more severe trade-off between 
inflation and output stabilization when inflation is high. 

Topics: Business fluctuations and cycles; Central bank research; Coronavirus disease (COVID-
19); Economic models; Inflation and prices; Inflation: costs and benefits; Monetary policy; 
Monetary policy implementation 
JEL codes: E30, E31, E32, E37, E44, E52 

Résumé 
Nous proposons un modèle macroéconomique comportant une courbe de Phillips non 
linéaire qui s’aplatit lorsque les pressions inflationnistes sont modérées et se redresse lorsque 
ces dernières sont élevées. La non-linéarité de la courbe de Phillips dans notre modèle 
découle de la courbe de demande quasi coudée des biens produits par des entreprises. Notre 
modèle peut tenir compte à la fois de la légère baisse de l’inflation durant la Grande 
Récession et de la hausse soudaine de l’inflation après le début de la pandémie de COVID-19. 
Comme notre modèle implique que la transmission des chocs est plus grande lorsque 
l’inflation est élevée, il crée une hétéroscédasticité conditionnelle quant à l’inflation et au 
risque d’inflation. Par conséquent, notre modèle peut générer des augmentations plus 
marquées de l’inflation causées par des hausses imprévues des coûts et des chocs de 
demande qu’un modèle linéaire standard. Enfin, selon notre modèle, les banques centrales 
sont confrontées à un arbitrage plus délicat entre l’inflation et la stabilisation de la production 
en période de forte inflation. 

Sujets : Cycles et fluctuations économiques; Inflation : coûts et avantages; Inflation et prix; 
Maladie à coronavirus (COVID-19); Mise en œuvre de la politique monétaire; Modèles 
économiques; Politique monétaire; Recherches menées par les banques centrales 
Codes JEL : E30, E31, E32, E37, E44, E52 



1 Introduction

After more than two decades of low and stable inflation in advanced economies, inflation rose

sharply after the COVID-19 pandemic hit. In light of the substantial evidence of the flat slope

of the Phillips curve, the recent surge in inflation has caught many macroeconomists off guard.

Hence, an intense debate has unfolded about how to explain the increase in inflation.1 Has the

Phillips curve steepened or are large exogenous demand and supply factors key to understanding

why inflation has risen so much? Our paper contributes to this debate.

Specifically, we propose a macroeconomic model that implies a nonlinear Phillips curve. The

Phillips curve in our model is flat when inflationary pressures are subdued and steepens as infla-

tionary pressures rise. The key feature of our model underpinning this nonlinear relationship stems

from a quasi-kinked demand schedule for goods produced by firms. Harding, Lindé and Trabandt

(2022) use the flat part of the Phillips curve to resolve the missing deflation puzzle during the Great

Recession. In this paper, we argue that the same model is successful in explaining post-COVID

inflation dynamics.

Our explanation rests on the steeper portion of the Phillips curve, which implies that all shocks

in the model transmit stronger to inflation when inflation is surging. For demand and technology

shocks, the relationship between the initial inflation level and how strongly these shocks propagate

to inflation is precise and increases monotonically when we vary these shocks according to their

estimated standard deviations. However, cost-push shocks propagate even stronger to inflation than

demand and technology shocks when inflation is high and rising above its steady-state level. But

these shocks can also transmit less to inflation than demand and technology shocks when inflation

is receding (even if it is well above its steady-state). Hence, cost-push shocks generate conditional

heteroskedasticity in inflation and inflation risk in our nonlinear model, consistent with the seminal

paper by Engle (1982) and the more recent work of López-Salido and Loria (2020). Since these

shocks are key drivers of price inflation in our estimated model and are commonly believed to have

played an important role during the post-COVID period, we argue that our model can account

better for inflation dynamics during this period than a standard linearized macroeconomic model.

Regression analysis supports the view that cost-push-type shocks have a larger impact on inflation

if inflation is high to begin with (see e.g., Gelos and Ustyugova 2017; Forbes, Gagnon and Collins

2021a; Forbes, Gagnon and Collins 2021b; and Ball, Leigh and Mishra 2022).

1See, e.g., Federal Reserve Chair J. Powell’s speech at the 2021 Jackson Hole conference as well as the debate

between L. Summers and P. Krugman that took place in early 2021. See also Gopinath (2022).
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We establish our main results using the nonlinear formulation of the benchmark Smets and

Wouters (2007, SW henceforth) model, which builds on the seminal model of Christiano, Eichen-

baum and Evans (2005). The SW model has been shown to have empirical properties that are

on par with standard Bayesian vector autoregressions prior to the Great Recession, (see e.g., Del

Negro et al. 2007). The only difference relative to the original SW estimated model is that we

follow Harding, Lindé and Trabandt (2022) and use the nonlinear formulation of the SW model,

allowing for a more prominent role for Kimball’s (1995) quasi-kinked demand in goods markets.

The more prominent role for quasi-kinked demand increases the marginal data density, provided

that the average markup aligns with micro- and macroeconomic empirical evidence. Recent work

by Dupraz (2017) and Ilut et al. (2022) provides a microfounded theory of kinked demand.

An important policy implication from our analysis is that the central bank faces a more severe

trade-off between inflation and output stabilization when inflation is high. This finding is driven

by the fact that cost-push shocks propagate more strongly to inflation than monetary policy shocks

when inflation is surging above the central bank’s inflation target. We use the nonlinear model to

filter data up to 2022Q1 and then examine the propagation of positive cost-push and monetary

policy shocks, given the filtered state. As inflation is elevated at this state, the nonlinear model

implies a jump in inflation that is twice as large in response to the cost-push shock compared to

the standard linearized model. The larger transmission to inflation implies that the central bank

endogenously, through its policy rule, tightens the policy rate by twice as much. As a result of the

tighter policy stance and the elevated level of inflation, the output gap falls nearly twice as much

in the nonlinear model compared to the linearized model. If the central bank chooses to fully offset

the pass-through to inflation, the required policy tightening triggers large output costs, despite the

fact that monetary policy is more effective than in normal times in the nonlinear model.

Our results rest on two key model elements. First, we introduce real rigidities in price setting. To

do this, we follow Dotsey and King (2005) and Smets andWouters (2007) and use the Kimball (1995)

aggregator instead of the standard Dixit and Stiglitz (1977) aggregator. The Kimball aggregator

introduces additional strategic complementarities in firms’ price-setting behavior, which lowers the

sensitivity of prices to marginal costs for a given degree of price stickiness. As such, the Kimball

aggregator is commonly used in New Keynesian models (see e.g., Smets and Wouters 2007), as it

allows to simultaneously account for the macroeconomic evidence of a low Phillips curve slope and

the microeconomic evidence of frequent price changes.

Second, we argue that the standard procedure of linearizing all equilibrium equations around
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the steady-state, except for the zero lower bound (ZLB) constraint on the nominal interest rate,

introduces large approximation errors when large shocks hit the economy, as was the case during

the Great Recession and in the later stages of the COVID-19 pandemic. Implicit in the linearization

procedure is the assumption that the linearized solution is accurate even when far away from the

steady-state. Our analysis shows that the linearized solution is very inaccurate when far away

from the steady-state. In particular, we show that cost-push shocks can propagate more than

four times stronger in the nonlinear model relative to the linearized model when inflation is high.

We show that the nonlinearity implied by the Kimball aggregator is a key model feature that

accounts for the differences between the linearized and nonlinear model solutions. The Kimball

aggregator implies that the demand elasticity for intermediate goods is state-dependent, that is,

firms’ demand elasticity is an increasing function of their relative price and the demand curve is

quasi-kinked. Due to the rising demand elasticity, firms’ marginal revenues are a concave function

of their prices. Consequently, the optimal price setting becomes asymmetric since firms equate

marginal revenue to marginal cost. If the latter rise or fall, the resulting optimal price setting

becomes asymmetric in the sense that firms find it optimal to increase prices more than to decrease

them. While the fully nonlinear model takes the state-dependence of the quasi-kinked demand

curve explicitly into account, a linear approximation replaces this key nonlinearity with a linear

function. When the economy is exposed to large shocks, the state-dependence of the quasi-kinked

demand curve becomes quantitatively important and the linear approximation ceases to provide

accurate results.

All told, our key contribution is to provide a structural general equilibrium model that can

jointly account for the small drop in inflation during the Great Recession and the large surge in

inflation during the later stages of the COVID-19 pandemic.

The remainder of the paper is organized as follows. Section 2 presents a stylized static model

of optimal price setting with kinked demand that conveys the key mechanism driving our results.

Section 3 presents the workhorse macroeconomic model with real rigidities in a dynamic stochastic

general equilibrium framework with nominal price and wage stickiness. Section 4 discusses our

results. Finally, Section 5 provides our concluding remarks.

2 Optimal Price Setting with Quasi-kinked Demand

In this section, we provide intuition about firms’ optimal price-setting behavior when the demand

curve is quasi-kinked. We consider a stylized static model to convey the intuition on why firms
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increase their prices by more when marginal costs go up compared to the case where marginal costs

fall.

Firms maximize profits, π:

π = p ∗ y −mc ∗ y,

subject to the following quasi-kinked demand curve:

y = a− pb,

where p denotes the price, y denotes the quantity, mc denotes the marginal costs, and a, b > 0

are parameters of the demand function. The functional form of the demand function follows Kimball

(1995) as has been used by Harding, Lindé and Trabandt (2022), among others. The elasticity of

demand is given by

ε ≡ −dy
dp

p

y
=

b
a
pb

− 1
,

which is increasing in the price, p.

Optimal price setting results in the following first-order condition:

p

[
1− 1

b

(
a

pb
− 1

)]
︸ ︷︷ ︸

marginal revenue

= mc

Note that marginal revenue is a concave function of the price that is due to the increasing

elasticity of demand. As an example, consider the following parameter values, which are broadly in

line with the parameterization of the workhorse model in Section 3: a = 3, b = 100 and mc = 0.9.

Figure 1 shows the demand curve and the elasticity of demand in the top panels. The bot-

tom left-hand panel shows marginal revenue as a function of the price for low, medium, and high

marginal costs. Note that for a given percentage change in marginal costs, firms increase their prices

by more than they cut their prices. This is because firms intend to stabilize their markups. When

marginal costs are low, the markups are high and firms have little incentive to cut their prices,

especially when demand is quasi-kinked; that is, firms cannot crowd in a lot of extra demand by

cutting their prices. When marginal costs are high, markups are low and firms have a large incen-

tive to increase their prices–even when this entails a substantial drop in demand. Note that the

concavity of marginal revenue (which results from the rising elasticity of demand as a function of

the price) is key to the asymmetric pricing behavior. Finally, the bottom right-hand panel shows

the optimal price as a function of the marginal cost, showcasing a convex banana-type optimal

pricing schedule as a function of marginal cost. This nonlinear relationship between marginal costs
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and optimal price setting is the key force that will generate our nonlinear Phillips curve in the

dynamic general equilibrium model that we consider in the next section.

3 The Workhorse Macroeconomic Model

In this section we present the workhorse macroeconomic model that we argue is useful to under-

standing how nonlinearities in real rigidities in price and wage setting affect inflation dynamics in a

quantitatively realistic model environment. Specifically, we use the workhorse Smets and Wouters

(2007) model of the US economy, which is a multi-shock version of the seminal model of Christiano,

Eichenbaum and Evans (2005) with endogenous capital accumulation.

In the following, we first provide a brief overview of the model, with a focus on its pricing block

and how we compute the linearized and nonlinear solutions of the model. Appendix A provides

a detailed description of the model environment, as well as the resulting linearized and nonlinear

equations.
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3.1 Model Overview

The workhorse model of Smets and Wouters (2007) features monopolistic competition in the goods

and labor markets and nominal frictions in the form of sticky prices and wages. However, it allows

non-optimizing firms (households) to index prices (wages) to a composite of the steady-state and

lagged inflation. Households can also save in physical capital, with one period of time to build before

new investments turn into productive capital. The model also features several real rigidities in the

form of habit formation in consumption, investment adjustment costs, variable capital utilization,

and fixed costs in production. The model dynamics are driven by seven structural shocks. Monetary

policy shocks follow an AR(1) process and two additional inefficient cost-push shocks in wage and

price setting follow an ARMA(1,1) process. Four efficient shocks (total factor productivity, risk

premium, investment-specific technology, and government-spending shocks) follow AR(1) processes.

The exact specifications of the nonlinear model and its linearized representation are described in

detail in Appendix A; here we present the linearized and nonlinear pricing equations that are central

for our paper.

The linearized Phillips curve in the SW model is given by

π̂t − ιpπ̂t−1 = β (Etπ̂t+1 − ιpπ̂t) + κm̂ct + ε̂p,t,

κ =
(1− ξpβ)(1− ξp)

ξp(1 + (ϕp − 1)ϵp),
(1)

where 1 − ξp is the probability of each firm being able to reoptimize the price each period, ϵp is

the curvature of the SW aggregator function, ϕp is the steady-state gross price markup, and the

cost-push, or markup shock ε̂p,t has been rescaled with 1/κ to enter the Phillips curve with a unit

coefficient. The corresponding nonlinear recursive pricing equations are given by

1 + ϕpϵp
1 + ϵp

p∗tγ
p
1,t = ϕpγ

p
2,t +

ϵp (ϕp − 1)

1 + ϵp
(p∗t )

ϕp(1+ϵp)
ϕp−1

+1
γp3,t, (2)

γp1,t = (δpt )
ϕp(1+ϵp)

ϕp−1 yt +
(
βγ1−σ

)
ξpEt

ξt+1

ξt

(
π1−ιpπ

ιp
t

πt+1

)− 1+ϕpϵp
ϕp−1

γp1,t+1, (3)

γp2,t = (δpt )
ϕp(1+ϵp)

ϕp−1 mctεp,tyt +
(
βγ1−σ

)
ξpEt

ξt+1

ξt

(
π1−ιpπ

ιp
t

πt+1

)−ϕp(1+ϵp)
ϕp−1

γp2,t+1, (4)

γp3,t = yt +
(
βγ1−σ

)
ξpEt

ξt+1

ξt

(
π1−ιpπ

ιp
t

πt+1

)
γp3,t+1, (5)

where the different endogenous variables are defined in the appendix. Importantly, you can see

from eq. (4) that the markup shock εp,t (which is assumed to have unit mean) in the nonlinear
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pricing system multiplies the marginal costs mct. So in this sense, it represents an exogenous shock

to the desired markup. In the following, we refer to them as markup or cost-push shocks.

3.2 Calibration and Solution

The model is estimated on seven key macroeconomic quarterly US time series as observable vari-

ables: the log-differences of real per capita GDP, consumption and investment, the log-differences

of compensation per hour and the GDP deflator, the log-deviations of hours worked per capita from

their average, as well as the federal funds rate. Further details about the data and the measurement

equations linking the model variables to their data counterparts are provided in the appendix.

SW use full information Bayesian techniques to estimate the model. Bayesian inference starts

from a prior distribution that describes the available information prior to observing the data used in

the estimation. The observed data is subsequently used to update the prior, via Bayes’ theorem, to

a posterior distribution of the model’s parameters, which can be summarized in the usual measures

of location (e.g., the mode or the mean) and spread (e.g., the standard deviation and probability

intervals).2 We adapt the parameters estimated by Smets and Wouters (2007) for data from the

pre-Global Financial Crisis and COVID-19 periods, with the exception of the pricing parameters

ϕp, ξp, and ϵp. In particular, we re-estimate the linearized model for the 1965Q1− 2007Q4 sample,

imposing an alternative prior, ϕp ∼ N(1.2, 0.05), to obtain a lower gross markup than the 61

percent estimated by SW. Harding, Lindé and Trabandt (2022) show a large body of calibrated

or estimated New Keynesian DSGE models that suggest markups that are notably lower than 61

percent. Moreover, we calibrate ξp = 0.667 in line with micro evidence (which is close to the

SW posterior mode of .65) and instead estimate the Kimball curvature parameter using the prior

ϵp ∼ N(75, 25). This results in a posterior mode where ϵp = 64.5 and ϕp = 1.34. In addition, κ in

eq. (1) equals .008, which is somewhat smaller than SW’s estimate of .026.3

To compute the linearized and nonlinear solutions, we use the Fair and Taylor (1983) solution

algorithm. This algorithm is also known as a two-point boundary value solution or time-stacking al-

gorithm. The Fair-Taylor solution algorithm imposes certainty equivalence on the nonlinear model,

just as the linearized model solution does, by definition. In other words, the Fair-Taylor solution

algorithm allows us to trace the implications of not linearizing the equilibrium equations, which is

2 We refer the reader to Smets and Wouters (2003, 2007) for a more detailed description of the estimation
procedure.

3 Our lower value for κ partly reflects the different prior and partly the extended sample period (recalling that
SW’s sample ends in 2004:4). For our sample period ending in 2007:4, we obtain κ = .018 with the SW priors. Note
that the re-estimated model is associated with an improvement in the marginal likelihood compared to the original
SW parameterization by roughly 5 log points.
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exactly our objective. All of the relevant information for solving the nonlinear and linearized model

is captured by the current state of the economy, including the contemporaneous realization of the

exogenous shocks.

An alternative approach to solving the model would have been to compute solutions where

uncertainty about future shock realizations matters for the dynamics of the economy, for exam-

ple, following Aruoba, Cuba-Borda, and Frank Schorfheide (2018), Adam and Billi (2006, 2007),

Fernández-Villaverde et al. (2015), Gust, Herbst, López-Salido and Smith (2017), and Nakata

(2017). These authors have shown that allowing for future shock uncertainty can have potentially

important implications for equilibrium dynamics. Importantly, none of these authors considered

a model with Kimball aggregation. Lindé and Trabandt (2018) solve a simplified version of our

model with sticky prices and Kimball aggregation under shock uncertainty using global methods,

and show that the effects of future shock uncertainty on the global solution of the nonlinear model

are quantitatively negligible, lending support for using the Fair-Taylor solution method for our

baseline results.4

As a practical matter, we feed the equilibrium equations of the nonlinear and linearized model

into Dynare. This is both a pre-processor and a collection of MATLAB routines that can solve

nonlinear and linearized dynamic models that contain forward-looking variables. The details about

the implementation of the algorithm used can be found in Juillard (1996). We use the perfect

foresight/deterministic simulation algorithm implemented in Dynare, using the ‘simul’ command.5

The algorithm can also easily handle the ZLB constraint: one writes the Taylor rule, including

the max operator in the model equations, and the solution algorithm reliably calculates the model

solution in fractions of a second.

4 Results

In this section, we report our main results for the linearized and nonlinear solution of the model

outlined in the previous section. We begin in Section 4.1 by considering the effects of positive cost-

push shocks in long simulations of the model as a function of the output gap when the business cycle

is driven by demand shocks. Next, we proceed in Section 4.2 to characterize how the transmission

4 The introduction of wage stickiness and Kimball aggregation in the labor market in the present paper (in addition
to price stickiness and Kimball aggregation in the goods market as in Lindé and Trabandt (2018) should temper the
effect of shock uncertainty in the nonlinear model even further. To the extent that allowing for shock uncertainty
notably affects the linearized solution, the differences between the linearized and nonlinear solutions we report in this
paper are conservative: they would be even larger if we had allowed for shock uncertainty.

5 The solution algorithm implemented in Dynare’s simul command is the method developed in Fair and Taylor
(1983).
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of markup shocks varies with the initial inflation level for all the shocks in the estimated SW

model. In Section 4.3 we compare the transmission of cost-push and monetary policy shocks in the

linearized and nonlinear model in 2022Q1 by filtering the data with the inversion filter on the seven

observable time series for 1965Q1-2022Q1 used by Smets and Wouters (2007) when estimating the

model. This allows us to characterize monetary policy trade-offs at the current juncture. Finally,

in Section 4.4, we study the role of nonlinearities on forecast distributions.

4.1 The Phillips Curve

To understand the differences in the dynamics implied by the linearized and nonlinear solutions, we

undertake stochastic simulations of the model for monetary policy shocks (εr,t) only. We size the

standard deviations of the monetary policy shocks (σr) to imply variations in the model-consistent

output gap between roughly minus 15 percent and plus 15 percent in the linearized solution. This

implies that the size of the monetary policy shocks we consider are notably larger than estimated in

the model. Nevertheless, we adopt this assumption to demonstrate with a straightforward demand

shock the scope of nonlinearities in the model with kinked demand when the economy is far off the

steady-state. We solve and simulate the linearized and nonlinear model solutions for a long sample

of 10, 000 periods, contingent on exactly the same sequence of shocks {εr,t}10,000t=1 , disregarding any

binding constraints on the policy rates in the linearized model.
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Figure 2: Linearized and Nonlinear Phillips Curve with Cost-Push Shocks
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The blue circles in Figure 2 are the simulated inflation and output gap observations in the

linearized model, with the output gap on the x-axis (inverted scale) and inflation on the y-axis. The

red crosses show the corresponding observations for the nonlinear model solution. The black dotted

horizontal and vertical lines indicate the deterministic steady-states for inflation and the output

gap, respectively. The figure shows a noticeable difference between the linearized and nonlinear

model for the relationship between inflation and the output gap. As expected, the linearized model

implies a constant downward-sloped Phillips curve, whereas the nonlinear solution is associated

with a “banana-shaped” Phillips curve, as in the seminal paper by Phillips (1958). This reflects

that the Kimball aggregator implies that firms are reluctant to change prices much when relative

demand is low. On the other hand, in periods when relative demand is high, firms are more willing

to change their prices. As a result, the nonlinear model produces episodes with more elevated price

inflation than the linearized solution in which households and firms are equally sensitive to changes

in desired price-markups in recessions and booms.

The blue and red solid lines show how the Phillips curves for the linearized and nonlinear
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solutions shift for positive same-sized markup shocks. These lines are generated by selecting all

economic states with an output gap close to −15,−10,−5, ...15. For all of those selected states,

we simulate the contemporaneous effects when adding same-sized one σp positive markup shocks

to the state and then averaging the resulting inflation levels in the blue and red dots. This shows

how the Phillips curve shifts outward in the linearized and nonlinear model solutions for positive

cost-push shocks.

As expected, the transmission of a given-sized markup shock in the linearized model is inde-

pendent of the output gap level, and the Phillips curve simply shifts outward in parallel. In the

nonlinear model, the picture is very different. The nonlinear model implies that a markup shock

shifts out inflation by very little when inflation is subdued. When inflation is high, on the other

hand, the same-sized markup shock shifts the Phillips curve outward substantially more than in

the linearized model. In other words, the transmission of markup shocks are state-dependent and

depends importantly on the economic state, lending support for inflation scares during booms (see

e.g., Goodfriend, 1993).

4.2 Propagation of Cost-Push Shocks

So far, we have established that cost-push shocks propagate notably stronger in a boom than in

a slump, provided that demand shocks are the source of business cycle fluctuations. But what

about the case when cost-push shocks, rather than demand shocks, are the key drivers of inflation

dynamics? After all, the estimated linearized Smets and Wouters model implies that wage- and

price-markup shocks account for the bulk of inflation volatility. Hence, we now use the estimated

model to discuss how the propagation of price cost-push shocks differs for alternative sources of

business cycle fluctuations in the estimated Smets and Wouters model. The analysis will show

that price cost-push shocks do not propagate more strongly in the nonlinear model only when the

economy is experiencing an economic boom with strong demand conditions. Rather, a more reli-

able condition for strong propagation of price cost-push shocks is that inflation is high to begin with.
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Figure 3: State-Dependent Effects of Cost-Push Shocks on Inflation
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To do this analysis, we begin by simulating the linearized and nonlinear solutions for all seven

shocks, with only one shock active at a time in the estimated SW model, using the estimated

standard deviations for each shock, for T = 10, 000 periods. This will provide us with simulated

paths of all endogenous variables in the nonlinear
{
ynonlint

}T
t=1

and linearized
{
ylint
}T
t=1

model.

12



Next, we go back in time and for each state t = 1, ..., 10, 000, add one σp positive price cost-push

shock, and compute its impact on inflation and the output gap. Figures 3 and 4 report the results

of this exercise for inflation and output, respectively. Each panel in the figure shows the results

when inflation dynamics are driven by each of the seven shocks, whereas the lower right-hand panel

shows the results when we assume that all shocks are active. The x-axis shows the initial inflation

level when the price cost-push shock hits, and the y-axis shows the impact this shock has on average

inflation for one year.

The upper left-hand panel in Figure 3 shows the effects of a positive price cost-push shock on

one-year-ahead inflation when stationary technology shocks are the sole drivers of the fluctuations

in inflation (apart from the cost-push shocks we add at each point in time). The vertical dashed

line shows the deterministic steady-state inflation level, while the solid horizontal line shows the

impact of the cost-push shocks on one-year-ahead inflation in the linearized model, which is inde-

pendent on the initial inflation level and the same for all seven shocks. However, in the solution

for the nonlinear model, the impact of a same-size cost-push shock is an upward sloping function

of the initial inflation level. The intuition for the larger inflation response in the nonlinear model

is provided in Section 2, Figure 1, where we discuss the heightened sensitivity of firms’ optimal

prices in response to increases in marginal costs. The next four panels in Figure 3, for the risk

premium, fiscal spending, investment-specific technology, and monetary shocks feature the same

upward sloping line, with dy/dx showing the slope of the regression of the inflation impulse on

the initial inflation level in the nonlinear model. The slope is essentially the same for all shocks.

The only difference is that these shocks induce unequal fluctuations in the initial inflation levels.

The panels for the wage- and price-markup shocks show that these two shocks are most critical for

inflation fluctuations in the model as they generate notably more variation in the initial inflation

levels. For price-markup shocks, we notice that while the regression line has a similar slope as for

the other shocks, there is now considerably larger variation in the transmission of the additional

price cost-push shocks. For instance, with an initial inflation rate of 8 percent, the one-year-ahead

inflation impulse of the same-sized positive price cost-push shock can be roughly 0.5 or above 2

percent.
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Figure 4: State-Dependent Effects of Cost-Push Shocks on the Output Gap
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The bottom right-hand panel shows the results when simulating all shocks at the same time,

which naturally gives rise to even greater variation in the initial inflation levels compared to when

simulating each of the seven shocks separately. With all shocks combined, the dispersion increases
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even further, and for a 10-percent initial inflation level, the impact of a positive price-markup shock

on one-year-ahead inflation can vary from about 0 to over 3 percent. These results imply that the

conditional volatility of inflation is increasing in the inflation level. Hence, there is higher inflation

risk when inflation is high, whereas inflation risk is constant in the linearized model solution.

Figure 4 repeats the experiment but, instead, reports the effects on the output gap.6 As was

the case for inflation, we see that a same-sized markup shock has a more adverse impact on the

output gap when the initial inflation level is high, partly because of the larger transmission of

price-markup shocks on inflation (which effectively works as a tax by lowering the real wage) but

also partly because the elevated transmission precipitates a more vigorous endogenous response of

the federal funds rate in our model. The Taylor rule implies that the central bank that is faced

with this adverse trade-off shock endogenously raises the policy rate more when the initial inflation

level is high because it puts more weight on the increased inflationary pressure despite the fact

that the adverse supply shock causes a larger deterioration in economic activity when the initial

inflation level is high.
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Figure 5: Understanding Inflation Risk:
Pass-through of Cost-Push Shocks in Inflation Surge and Descend Episodes
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The results shown in Figures 3 and 4 raise the important question about what accounts for the

increased inflation risk in the model. Why is the transmission of a positive price cost-push shock

6 Notice that price cost-push shocks do not affect potential output in the SW model, so the response of the output
gap coincides with the response of output.
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so different when the initial inflation level is elevated? To shed light on this issue, Figure 5 reports

the effects of identical price cost-push shocks in inflation surges and when inflation is descending

for inflation (left-hand panel) and the output gap (right-hand panel). The black line shows the

distribution for all shocks in Figure 3, while the red- and blue-dash dotted lines show the effects

when inflation is increasing and decreasing, respectively. We separate the impulses in Figure 3 by

simply looking at the one-period change in inflation (from t − 1 to t) before a markup shock hits

in period t, and then we separate the responses to a markup shock across the two states: when the

change in inflation is positive (inflation is surging) and when it is negative (inflation is descending).

We then compute the distribution of the responses in each state. The left-hand panel in Figure 5

shows that inflation risk is substantially higher when inflation is increasing before the shock hits.

The right-hand panel shows that output is at greater risk when inflation is on the rise, explaining

the trumpet-like shape for the output gap responses shown in Figure 4.

4.3 Monetary Policy Trade-offs During the Post-COVID Period

We now turn to make an assessment of the transmission of price cost-push shocks during the post-

COVID period and the trade-offs for monetary policy to stabilize these shocks. To do so, we filter

the shocks in the linearized and nonlinear solutions with the inversion filter described in Fair and

Taylor (1983) for the period 1965Q1 to 2022Q1, using US data. Since we have the same number of

observables as shocks, the inversion filter provides us with a unique sequence of filtered innovations,{
εt|t
}T
t=1

, that maximizes the likelihood for a given parameterization of the linearized and nonlinear

model.7 Given the filtered state in 2022Q1, we study the transmission of price-cost and monetary

policy shocks in this quarter. We believe it is particularly interesting to examine this period in

order to spot differences between the nonlinear and linearized solutions because, by the end of 2021,

inflation had surged well above the steady-state and the Fed’s target. The results would be similar

if we started in the second half of 2021 or later.

Conditional on period t information, let Xt|t denote all variables in the model, except for the

innovations to the shock processes εt|t. The solution of the model is a nonlinear function f such

that

Xt|t = f(Xt−1|t−1, εt|t), (6)

and let yt be a vector of observables and S a selection matrix that matches the observed variables

7 A potential drawback of using the inversion filter is that it does not allow us to compute the two-sided innovation
(i.e., εt|T ) and, hence, relies on the one-sided filtered shocks, εt|t, in the analysis. That said, in the linearized solution,
the one- and two-sided shocks (the latter being based on a standard Kalman filter) are very similar, suggesting that
using the one-sided shocks has a limited impact on the findings.
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to their model counterparts. Then, in each period, t, we obtain the filtered structural innovations,

εt|t, given the data, yt, and state of the model, Xt−1|t−1, as the solution to the nonlinear system,

yt = Sf(Xt−1|t−1, εt|t). (7)

We initialize the filter by running the Kalman smoother on the linearized solution and using

the implied Kalman smoothed estimates as the initial values for the endogenous variables in the

nonlinear filter. However, the nonlinear model contains some additional endogenous state variables

(i.e., price and wage dispersion terms), and we initialize these endogenous variables together with

the shock innovations, εt|t, so that the nonlinear model matches the observed variables in yt.
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Figure 6: IRFs to a 1  Cost-Push Shock in Linearized and Nonlinear Model in 2022Q1
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Importantly, we impose the ELB for the federal funds rate when filtering the shocks in the

nonlinear model. In the linearized model, we do not impose an effective lower bound through

a nonlinear policy rule, so the linearized solution will only prevent the current policy rate from

falling below the effective lower bound (ELB) through unanticipated policy innovations. Since
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the quarterly average for the periods 2009Q1–2014Q2 and 2020Q2–2022Q1 is not exactly zero and

fluctuates a couple of basis points, we adjust the federal funds rate to exactly 10 (annualized) basis

points for those quarters. Accordingly, the monetary policy rule in the model is constrained by

an ELB of 10 (annualized) basis points. One important caveat of using this filtering approach is

that, since monetary policy shocks become inconsequential in the model when the ELB is binding,

it is not possible to filter these shocks during the ELB period. Following Guerrieri and Iacoviello

(2017), we assume these shocks to be zero when the ELB is binding except when the model-implied

interest rate is predicted to be above the ELB and a monetary policy shock is necessary to obtain

an exact match between the observed data and the model counterparts.

Given the filtered states in 2022Q1 in the linearized and nonlinear model, we then add a one

σp price cost-push and σr monetary policy shocks to the linearized and nonlinear model, respec-

tively. Figure 6 shows the resulting impulse response functions for the price-markup shocks in the

linearized and nonlinear model solutions for 2022Q1. Of course, the results in the linearized model

are invariant to the filtered state and the average of the first four quarters in the figure equals 0.55

(the black horizontal line in Figure 2). For the nonlinear model, we see that the shock’s effect

is more than twice as large over the first year on inflation and the output gap, despite a twofold

increase in the policy rate relative to the linearized model.
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Figure 7: IRFs to a 1  Monetary Shock in Linearized and Nonlinear Model in 2022Q1
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In Figure 7, we show the corresponding effects of a monetary policy shock. The figure shows

that a monetary policy shock has the same effects on the output gap and output growth but the

impact on inflation is about twice as high initially relative to the linearized model. Even so, the

model implies a rather unfavorable monetary policy inflation-output gap trade-off. To reduce in-

flation by 0.1 percentage points, the policy maker needs to accept a decline of more than 1% in the

output gap over one year. Figure 6 implies this trade-off is further exacerbated in the nonlinear

model in the current situation of high inflation risk, as, according to our estimated model, it takes

even tighter monetary policy than is shown in the figure to maintain a pass-through of the price

cost-push shocks to inflation at normal levels.
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Figure 8: Trade-offs for Interest Rate Policy:
Tightening and Output Cost to Provide Full Inflation Stabilization
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To demonstrate the more unfavorable monetary policy trade-off when inflation is elevated,

Figure 8 reports the required policy tightening, in addition to that prescribed by the endogenous

reaction according to the estimated rule, during the first year, to fully stabilize any impulses to

one-year-ahead inflation from price cost-push shocks as a function of the initial inflation level.

For the linearized model, the tightening needed is invariant to the initial inflation level and is a

little more than two percent, on average, to stabilize inflation during the first year following a

price-markup shock. This magnitude can be derived by combining the impulses in the linearized

model for inflation and the policy rate in Figures 6 and 7 (i.e., how big a policy rate movement is

required, according to Figure 7, to remove the 0.55 average increase in inflation shown in Figure 6

in the linearized model). The output cost of such an inflation-nutter policy is fairly large, a little

above 6 percent in the linearized model. The blue line with crosses plots the corresponding interest

rate tightening and output cost in the nonlinear model. As in Figure 2, we compute this trade-off

curve as averages for states clustered around certain initial inflation levels. As is evident from

the model, the nonlinear formulation of the model implies increasing adverse trade-offs to stabilize

inflation, even though the nonlinear model implies that monetary policy has a stronger effect on

inflation when inflation is high. This adverse trade-off is driven by the fact that even though both

monetary policy and price-markup shocks become equally more potent as functions of the initial

inflation rate, on average, the price-markup shocks have much larger absolute effects and, hence,
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increasingly more policy tightening is needed to keep inflation in check as the initial inflation level

increases.

4.4 Conditional Forecast Distributions

As a final exercise, we study the impact of the nonlinear solution on the conditional forecast

distributions. To do this, we follow the filtering procedure outlined in Section 4.3 and obtain

filtered states for T = {2020Q4, 2021Q2, 2021Q4, 2022Q1}. Given the filtered state in T (based on

data up to period T ), we then construct conditional forecast distributions for periods T+1, ..., T+h

by computing 1,000 dynamic forecasts in which economic shocks hit as surprises during the forecast

horizon. In Figure 9, we report the results for both the nonlinear and linearized solutions, but in

order to tease out the impact of the nonlinearities in the solution and to consider an identical initial

state, we base the projections on the filtered state in the linear model.8 An additional technical

difference is that the nonlinear model imposes the ELB on the policy rate, whereas the linearized

model allows the policy rate to become negative.9

As can be seen from Figure 9, the median forecast in the linearized and nonlinear model differs

very little in 2020Q4. This is because inflation is close to the steady-state at the initial state in

this quarter. Even so, the lower uncertainty bands differ notably as inflation can generally become

persistently negative in the linearized model, although not for the 5th percentile, given this initial

state. The nonlinear model, on the other hand, implies that shocks have less impact on inflation

when inflation becomes lower and, hence, there is a noticeable reduction in the deflation probability

in this variant of the model. At this point, both model solutions underpredict the subsequent uptick

in inflation but, in this regard, it should be noted that the model forecasts are contingent on a

quick and sharp normalization of the policy rate. Had we instead imposed a constant interest rate

path (in line with the data), the gap between predicted and actual inflation outcomes would have

been narrowed.

Moving onto the later quarters, we see that as the initial inflation level rises, the differences

between the nonlinear and linearized model increase. In particular, the nonlinear model implies

notably higher near-term inflation risk and, hence, a notably higher median inflation forecast, espe-

cially in the second-half of 2021 and the beginning of 2022. The higher near-term inflation risk also

8 Alternatively, we could have based the initial state on the nonlinear model, but this would have required setting
all nonlinear state variables in period T in the linearized model to nil when doing the forecasts. Of course, we could
also have conditioned the forecasts on the filtered state in each of the models, but doing so would not allow us parse
out the role of the nonlinearities per se, because the initial state would differ.

9 However, as indicated by the uncertainty bands for the linearized model in Figure 9, the probability of a binding
ELB is low. Hence, this alternate assumption plays a minor role for any differences between the conditional forecast
distributions for the linearized and nonlinear model.
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translates into higher median policy rate projections as well as an elevated risk of a notably tighter

policy rate stance in the nonlinear model. As a result, the nonlinear model implies somewhat more

downside risk to output growth in the conditional distributions, as in Adrian et al. (2019).
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Figure 9: Conditional Forecast Distributions Given Filtered State in Linearized Model

2020 2021 2022 2023 2024 2025

-10

0

10

A
P

R

GDP growth
 Forecast conditional on 2022Q1

Note: Blue and black solid lines are median forecasts, while the blue are black dotted lines represent 90 percent uncertainty bands. The conditional distributions are based 
on the filtered state in the linearized model. Finally, the projections does not impose the ELB on the policy rate in the linearized model.

Inflation Policy rate GDP growth

Finally, an overall impression from Figure 9 is that inflation risk in the nonlinear model is

mostly a near-term phenomenon. After two years, most of the differences between the nonlinear

and linearized conditional distributions have dissipated. Two key reasons for this finding is the

ARMA(1,1) feature of the price and wage cost-push shocks and the modest role for the intrinsic

persistence in the estimated wage- and price-setting curves in the SW model. Both of these features

of the estimated model imply that the price and wage cost-push shocks have transient effects on

the economy. Alternative assumptions about these parameters could give rise to more persistent

differences in conditional forecast distributions.
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5 Conclusions

We propose a macroeconomic model with a nonlinear Phillips curve that is flat when inflationary

pressure is subdued and steep when inflationary pressure is elevated. The nonlinear Phillips curve

in our model arises due to a quasi-kinked demand schedule for goods produced by firms. Our model

can jointly account for the modest decline in inflation during the Great Recession and the surge in

inflation during the latter part of the COVID-19 pandemic. Because our model implies a stronger

transmission of shocks when inflation is high, it generates conditional heteroskedasticity in inflation

and inflation risk. Hence, our model can generate more sizeable inflation surges due to cost-push

and demand shocks compared to a standard linearized model. Finally, our model implies that the

central bank faces a more severe trade-off between inflation and output stabilization when inflation

is high.

We leave several important issues for future work. For instance, it would be of interest to

study the role of nonlinearities to understand the great inflation of the 1970s and to explore kinked

demand in terms of its implications for optimal monetary policy. Moreover, it would be impor-

tant to extend the model to allow for endogeneity between inflation drivers and policy responses.

We retained the conventional assumption that all variation in price and wage cost-push shocks is

exogenous with respect to policy conduct, but it would be of interest in future work to consider

an environment where monetary policy can influence the drivers of inflation (i.e., when a strong

tightening can lower energy prices). Finally, our analysis imposed the conventional rational ex-

pectations assumption, and it would be interesting to explore how non-rational expectations or a

de-anchoring of inflation expectations, as proposed by Beaudry et al. (2022), may affect inflation

dynamics under quasi-kinked demand.
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Appendix A The Smets and Wouters (2007) Model

This appendix contains the linearized and nonlinear equilibrium model equations of Smets and

Wouters (2007). We describe the firms and households’ problem in the model and state the market

clearing conditions.A.1

A.1 Firms and Price Setting

Final Goods Production The single final output good Yt is produced using a continuum of differen-

tiated intermediate goods Yt(f). Following Kimball (1995), the technology for transforming these

intermediate goods into the final output good is∫ 1

0
GY

(
Yt (f)

Yt

)
df = 1. (A.1)

Following Dotsey and King (2005) and Levin, López-Salido and Yun (2007), we assume that GY (.)

is given by a strictly concave and increasing function; its particular parameterization follows SW:

GY

(
Yt(f)
Yt

)
=

(
ϕp

1−(ϕp−1)ϵp

[(
ϕp+(1−ϕp)ϵp

ϕp

)
Yt(f)
Yt

+
(ϕp−1)ϵp

ϕp

] 1−(ϕp−1)ϵp
ϕp−(ϕp−1)ϵp +

[
1− ϕp

1−(ϕp−1)ϵp

])
, (A.2)

where ϕp ≥ 1 denotes the gross markup of the intermediate firms. The parameter ϵp governs the

degree of curvature of the intermediate firm’s demand curve. When ϵp = 0, the demand curve

exhibits constant elasticity as with the standard Dixit-Stiglitz aggregator. When ϵp is positive—as

in SW—this introduces more strategic complementarity in price setting, which causes intermediate

firms to adjust prices less to a given change in marginal cost.

Firms that produce the final output good Yt are perfectly competitive in both the product and

the factor markets and take as given the price Pt (f) of each intermediate good Yt(f). They sell

units of the final output good at a price Pt; hence they solve the following problem:

max
{Yt,Yt(f)}

PtYt −
∫ 1

0
Pt (f)Yt (f) df, (A.3)

subject to the constraint (A.1).

Intermediate Goods Production A continuum of intermediate goods Yt(f) for f ∈ [0, 1] is pro-

duced by monopolistically competitive firms, which utilize capital services Kt (f) and a labor index

Lt (f) (defined below) to produce their respective output good. The form of the production function

is Cobb-Douglas:

Yt (f) = εatKt(f)
α
[
γtLt(f)

]1−α − γtΦ, (A.4)

A.1 For a description of the model that derives the log-linearized equations, we refer the reader to the appendix of the
Smets and Wouters paper, which is available online at http://www.aeaweb.org/aer/data/june07/20041254 app.pdf.
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where γt represents the labor-augmenting deterministic growth rate in the economy, Φ denotes the

fixed cost (which is related to the gross markup ϕp so that profits are zero in the steady-state), and

εat is total factor productivity, which follows the process

ln εat = (1− ρa) ln ε
a + ρa ln ε

a
t−1 + ηat , η

a
t ∼ N (0, σa) . (A.5)

Firms face perfectly competitive factor markets for renting capital at price RKt and hiring labor

at a price given by the aggregate wage index Wt (defined below). As firms can costlessly adjust

either factor of production, the standard static first-order conditions for cost minimization imply

that all firms have identical marginal costs per unit of output.

The prices of the intermediate goods are determined by Calvo (1983)-Yun (1996)-style staggered

nominal contracts. The probability 1− ξp that any firm, f , receives a signal to reoptimize its price,

Pt(f), is assumed to be independent of the time that it last reset its price. If a firm is not allowed

to optimize its price, it adjusts its price by a weighted combination of the lagged and steady-state

rate of inflation, that is, Pt(f) = (1 + πt−1)
ιp (1 + π)1−ιp Pt−1(f), where 0 ≤ ιp ≤ 1 and πt−1

denote net inflation in period t − 1, and π is the steady-state net inflation rate. A positive value

of ιp introduces structural inertia into the inflation process. All told, this leads to the following

optimization problem for the intermediate firms

max
P̃t(f)

Et

∞∑
j=0

(βξp)
j Ξt+jPt

ΞtPt+j

[
P̃t (f)

(
Πj

s=1 (1 + πt+s−1)
ιp (1 + π)1−ιp

)
−MCt+j

]
Yt+j (f) , (A.6)

where P̃t (f) is the newly set price. Notice that with our assumptions, all firms that reoptimize

their prices actually set the same price.

It would be ideal if the markup in (A.2) could be made stochastic and the model could be

written in a recursive form. However, such an expression is not available and we, instead, directly

introduce a shock, εpt , in the first-order condition to the problem in (A.6). And following SW, we

assume the shock is given by an exogenous ARMA(1,1) process:

ln εpt = (1− ρp) ln ε
p + ρp ln ε

p
t−1 + ηpt − µpη

p
t−1, η

p
t ∼ N (0, σp) . (A.7)

When this shock is introduced in the non-linear model, we put a scaling factor on it so that it

enters a log-linearized representation of the model exactly the same way as the price-markup shock

does in the SW model.
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A.2 Households and Wage Setting

We assume a continuum of monopolistically competitive households (indexed on the unit inter-

val), each of which supplies a differentiated labor service to the production sector; that is, goods-

producing firms regard each household’s labor services, Lt (h), h ∈ [0, 1], as imperfect substitutes

for the labor services of other households. It is convenient to assume that a representative labor

aggregator combines households’ labor hours in the same proportions as firms would choose. Thus,

the aggregator’s demand for each household’s labor is equal to the sum of the firms’ labor demand.

The aggregated labor index Lt has the following Kimball (1995) form:

Lt =

∫ 1

0
GL

(
Lt (h)

Lt

)
dh = 1, (A.8)

where the function GL (.) has the same functional form as (A.2) but is characterized by the cor-

responding parameters ϵw (governing convexity of labor demand by the aggregator) and ϕw (gross

wage markup). The aggregator minimizes the cost of producing a given amount of the aggregate

labor index, Lt, taking each household’s wage rate, Wt (h), as given, and then sells units of the

labor index to the intermediate goods sector at unit cost Wt, which can naturally be interpreted

as the aggregate wage rate.

The utility function of a typical member of household h is

Et

∞∑
j=0

βj
[

1

1− σc
(Ct+j (h)− κCt+j−1)

]1−σc

exp

(
σc − 1

1 + σl
Lt+j (h)

1+σl

)
, (A.9)

where the discount factor β satisfies 0 < β < 1. The period utility function depends on household

h’s current consumption, Ct (h), as well as the lagged aggregate per capita consumption, to allow

for external habit persistence through the parameter 0 ≤ κ ≤ 1. The period utility function also

depends inversely on hours worked, Lt (h) .

Household h’s budget constraint in period t states that its expenditure on goods and its net

purchases of financial assets must equal its disposable income:

PtCt (h) + PtIt (h) +
Bt+1 (h)

εbtRt
+

∫
s
ξt,t+1BD,t+1(h)−BD,t(h) (A.10)

= Bt (h) +Wt (h)Lt (h) +Rk
tZt (h)K

p
t (h)− a (Zt (h))K

p
t (h) + Γt (h)− Tt(h).

Thus, the household purchases part of the final output good (at price Pt), which it chooses either

to consume Ct (h) or to invest It (h) in physical capital. Following Christiano, Eichenbaum, and

Evans (2005), investment augments the household’s (end-of-period) physical capital stock, Kp
t+1(h),
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according to

Kp
t+1 (h) = (1− δ)Kp

t (h) + εit

[
1− S

(
It (h)

It−1 (h)

)]
It(h). (A.11)

The extent to which investment by each household h turns into physical capital is assumed to

depend on an exogenous shock, εit, and how rapidly the household changes its rate of investment

according to the function S
(

It(h)
It−1(h)

)
, which we specify as

S(xt) =
φ
2 (xt − γ)2 . (A.12)

Notice that this function satisfies S (γ) = 0, S′ (γ) = 0 and S′′ (γ) = φ. The stationary

investment-specific shock εit follows

ln εit = ρi ln ε
i
t−1 + ηit, η

i
t ∼ N (0, σi) . (A.13)

In addition to accumulating physical capital, households may augment their financial assets through

increasing their government nominal bond holdings, (Bt+1), from which they earn an interest rate

of Rt. The return on these bonds is also subject to a risk shock, εbt , which follows

ln εbt = ρb ln ε
b
t−1 + ηbt , η

b
t ∼ N (0, σb) . (A.14)

Agents can engage in frictionless trading of a complete set of contingent claims to diversify away

idiosyncratic risk. The term
∫
s ξt,t+1BD,t+1(h) − BD,t(h) represents net purchases of these state-

contingent domestic bonds, with ξt,t+1 denoting the state-dependent price, and BD,t+1 (h) the

quantity of such claims purchased at time t.

On the income side, each member of household h earns after-tax labor income of Wt (h)Lt (h)

and after-tax capital rental income of Rk
tZt (h)K

p
t (h) and pays a utilization cost of the physical

capital equal to a (Zt (h))K
p
t (h), where Zt (h) is the capital utilization rate, so that the capital

services provided by household h, Kt (h), equal Zt (h)K
p
t (h). The capital utilization adjustment

function, a (Zt (h)), is assumed to be given by

a (Zt (h)) =
rk

z̃1
[exp (z̃1 (Zt (h)− 1))− 1] , (A.15)

where rk is the steady-state net real interest rate (R̄K
t /P̄t). Notice that the adjustment function

satisfies a(1) = 0, a′(1) = rk, and a′′(1) ≡ rkz̃1. Following SW, we want to write a′′(1) = z1 =

ψ/ (1− ψ) > 0, where ψ ∈ [0, 1) and a higher value of ψ implies a higher cost of changing the

utilization rate. Our parameterization of the adjustment cost function then implies that we need to

set z̃1 ≡ z1/r
k. Finally, each member also receives an aliquot share amount to Γt (h) of the profits

of all firms and pays a lump-sum tax of Tt (h) (regarded as taxes net of any transfers).
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In every period t, each member of household h maximizes the utility function (A.9) with respect

to its consumption, investment, (end-of-period) physical capital stock, capital utilization rate, bond

holdings, and holdings of contingent claims, subject to its labor demand function, budget constraint

(A.10), and transition equation for capital (A.11).

Households also set nominal wages in Calvo (1983)-style staggered contracts that are generally

similar to the price contracts described previously. Thus, the probability that a household receives a

signal to reoptimize its wage contract in a given period is denoted by 1−ξw. In addition, SW specify

the following dynamic indexation scheme for the adjustment of the wages of those households that

do not receive a signal to reoptimize: Wt(h) = γ (1 + πt−1)
ιw (1 + π)1−ιw Wt−1(h). All told, this

leads to the following optimization problem for the households:

max
W̃t(h)

Et

∞∑
j=0

(βξw)
j Ξt+jPt

ΞtPt+j

[
W̃t (h)

(
Πj

s=1γ (1 + πt+s−1)
ιw (1 + π)1−ιw

)
−Wt+j

]
Lt+j (h) , (A.16)

where W̃t (h) is the newly set wage. Notice that with our assumptions all households that reoptimize

their wages will actually set the same wage.

Following the same approach as with the intermediate-goods firms, we introduce a shock, εwt ,

in the resulting first-order condition. This shock, following SW, is assumed to be given by an

exogenous ARMA(1,1) process:

ln εwt = (1− ρw) ln ε
w + ρw ln εwt−1 + ηwt − µwη

w
t−1, η

w
t ∼ N (0, σw) . (A.17)

As discussed previously, we use a scaling factor for this shock so that it enters into the log-linearized

representation of the model in exactly the same way as the wage-markup shock in SW.

A.3 Monetary Policy

The monetary authority follows a Taylor rule in adjusting the interest rate in response to changes

in inflation and the output gap. An important difference with respect to the standard SW model

is that we consider a nonlinear policy rule to explicitly take the ZLB into account:

Rt = max

1 + b̄, RρR
t−1R̄

(1−ρR)
(πt
π̄

)(rπ)(1−ρR)
(

yt

ypott

)(ry)(1−ρR)(
yt/y

pot
t

yt−1/y
pot
t−1

)r∆y

εr,t

 , (A.18)

where b̄ > 0 is a constant reflecting the level of the effective lower bound (ELB). Since the federal

funds rate never reached exactly zero but oscillated around 10 (annualized) basis points throughout

the ELB period, we set b̄ equal to 10 (annualized) basis points. ypott is the output prevailing in
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the flexible price and wage economy in absence of the inefficient monetary policy, and price- and

wage-markup shocks.

A.4 Market Clearing Conditions

Government purchases, Gt, are exogenous, and the process for government spending relative to

trend output, that is, gt = Gt/
(
γtY

)
, is given by the following exogenous AR(1) process:

ln gt = (1− ρg) ln g + ρg
(
ln gt−1 − ρga ln ε

a
t−1

)
+ εgt , ε

g
t ∼ N (0, σg) . (A.19)

Government purchases have no effect on the marginal utility of private consumption, nor do they

serve as an input into goods production. Moreover, the government is assumed to balance its budget

through lump-sum taxes (which are irrelevant, since Ricardian equivalence holds in the model).

Total output of the final goods sector is used as follows:

Yt = Ct + It +Gt + a (Zt) K̄t, (A.20)

where a (Zt) K̄t is the capital utilization adjustment cost.

Finally, one can derive an aggregate production constraint, which depends on aggregate tech-

nology, capital, labor, and fixed costs, as well as the price and wage dispersion terms.A.2

Table A.1: Parameter values in Smets and Wouters (2007).

A.2 We refer the interested reader to Adjemian, Paries and Moyen (2008) for further details.
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Panel A: Calibrated
Parameter Description Value Parameter Description Value

δ Depreciation rate 0.025 ϵp Kimball Elast. GM 10
ϕw Gross wage markup 1.50 ϵw Kimball Elast. LM 10
gy Gov’t G/Y ss-ratio 0.18

Panel B: Estimated

Parameter Description Value Parameter Description Value

φ Investment adj. cost 5.48 ϕp Gross price markup 1.61
σc Inv. subs. elast. of cons. 1.39 γ Steady-state gross growth 1.0043

κ Degree of ext. habit 0.71 l Steady-state hours worked 0.25
ξw Calvo prob. wages 0.73 π Steady-state net infl. rate 0.0081
σl Labor supply elas. 1.92 β Discount factor 0.9984
ξp Calvo prob. prices 0.65 ρR Taylor rule, int. rate smooth. 0.81
ιw Ind. for non-opt. wages 0.59 r∆y Taylor rule, coef. ∆ out. gap 0.22
ιp Ind. for non-opt. prices 0.22 ry Taylor rule, coef. out. gap 0.08
α Capital production share 0.19 rπ Taylor rule, coef. inflation 2.03
ψ Capital utilization cost 0.54

Panel C: Shock Processes

Shock Persistence MA(1) Std. of Innovation (%)

Neutral technology ρa 0.95 - σa 0.45
Risk premium ρb 0.18 - σb 0.24
Gov’t spending ρg 0.97 ρga 0.52 σg 0.52
Inv. specific tech. ρi 0.71 σi 0.45
Price markup ρp 0.90 µp 0.74 σp 0.14
Wage markup ρw 0.97 µw 0.88 σw 0.24

Monetary policy ρr 0.2 - σr 0.24

A.5 Model Parameterization

When solving the model, we consider two alternative parameterizations. First, we adopt the pa-

rameter estimates (posterior mode) in Table A.1 of SW. Second, we re-estimate the SW model

setting a lower mean and standard deviation for the steady-state price-markup (ϕp) prior and a

higher value for the curvature of the intermediate firm’s demand curve (ϵp). Specifically, we con-

sider a prior ϕp ∼ N(1.2, 0.05), compared to the SW prior of ϕp ∼ N(1.25, 0.125), and we estimate

ϵp = 64.5 instead of it being set to 10 as in SW. In both cases we use the same values as SW for

the calibrated parameters. Table A.1. provides the values of SW’s baseline estimation and Table

A.2. provides the parameter values with prior ϕp ∼ N(1.2, 0.05) and ϵp = 64.5.

Table A.2: Parameter Values with prior ϕp ∼ N(1.2, 0.05) and estimated ϵp.
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Panel A: Calibrated
Parameter Description Value Parameter Description Value

δ Depreciation rate 0.025 ξp Calvo prob. prices 0.67
ϕw Gross wage markup 1.50 ϵw Kimball Elast. LM 10
gy Gov’t G/Y ss-ratio 0.18

Panel B: Estimated

Parameter Description Value Parameter Description Value

φ Investment adj. cost 5.58 ϕp Gross price markup 1.34
σc Inv. subs. elast. of cons. 1.41 γ Steady-state gross growth 1.0044

κ Degree of ext. habit 0.68 l Steady-state hours worked −
ξw Calvo prob. wages 0.80 π Steady-state net infl. rate 0.0087
σl Labor supply elas. 2.20 β Discount factor 0.9987
ϵp Kimball elast. GM 64.5 ρR Taylor rule, int. rate smooth. 0.82
ιw Ind. for non-opt. wages 0.56 r∆y Taylor rule, coef. ∆ out. gap 0.25
ιp Ind. for non-opt. prices 0.24 ry Taylor rule, coef. out. gap 0.097
α Capital production share 0.18 rπ Taylor rule, coef. inflation 1.93
ψ Capital utilization cost 0.49

Panel C: Shock Processes

Shock Persistence MA(1) Std. of Innovation (%)

Neutral technology ρa 0.95 - σa 0.48
Risk premium ρb 0.22 - σb 0.23
Gov’t spending ρg 0.97 ρga 0.53 σg 0.47
Inv. specific tech. ρi 0.70 σi 0.40
Price markup ρp 0.83 µp 0.69 σp 0.13
Wage markup ρw 0.97 µw 0.93 σw 0.28

Monetary policy ρr 0.11 - σr 0.23

Note that we adapt and rescale the processes of the price- and wage-markup shocks so that

when our model is log-linearized it exactly matches the original SW model.

A.6 Summary of Nonlinear Model Equations

We detrend the variables with a deterministic trend, γ, and the nominal variables are replaced by

their real counterparts. For instance, we use the following definitions:
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kt =
Kt

γt
;wt =

Wt

Ptγt
;w∗

t =
W ∗

t

Ptγt

rkt =
Rk

t

Pt
;mct =

MCt

Pt
; p∗t =

P ∗
t

Pt
; δwt =

Λw
t

Ptγt
, δpt =

Λp
t

Pt

ξt ≡ Ξtγ
σct

γp1,t =
Γp
1,t

γt
, γp2,t =

Γp
2,t

γt
, γp3,t =

Γp
3t

γt
,

γw1,t =
Γw
1,t

(γt)
ϕw(1+ϵw)

ϕw−1

, γw2,t =
Γw
2,t

(γt)
1+

ϕw(1+ϵw)
ϕw−1

,

Also, we define gt ≡ Gt/Yt and re-define the fixed cost Φ ≡ (ϕp − 1) y, where y is the steady-

state level of output.

Market clearing

ct + it + gty + a (Ut)
kht−1

γ
= yt (A.1)

yt
ϵp + spt
1 + ϵp

=
(
εat (k

s
t )

α L1−α
t − (ϕp − 1) y

)
(A.2)

kst =
1

γ
Utk

h
t−1 (A.3)

kht =
1− δ

γ
kht−1 + εit

[
1− S

(
itγ

it−1

)]
it (A.4)

spt = (1− ξp)

(
p∗t
δpt

)−ϕp(1+ϵp)
ϕp−1

+ ξp

(
π1−ιpπ

ιp
t−1

πt

δpt−1

δpt

)−ϕp(1+ϵp)
ϕp−1

spt−1 (A.5)

swt = (1− ξw)

(
w∗
t

δwt

)−ϕw(1+ϵw)
ϕw−1

+ ξw

(
π1−ιwπιwt−1

πt

δwt−1

δwt

)−ϕw(1+ϵw)
ϕw−1

swt−1 (A.6)

1 = (1− ξp)

(
p∗t
δpt

)− 1+ϕpϵp
ϕp−1

+ ξp

(
π1−ιpπ

ιp
t−1

πt

δpt−1

δpt

)− 1+ϕpϵp
ϕp−1

(A.7)

1 = (1− ξw)

(
w∗
t

δwt

)− 1+ϕwϵw
ϕw−1

+ ξw

(
π1−ιwπιwt−1

πt

δwt−1

δwt

)− 1+ϕwϵw
ϕw−1

(A.8)

(1 + ϵw)wt =
(
1 + ϵws

wl
t

)
δwt (A.9)

(1 + ϵp) =
(
1 + ϵps

pl
t

)
δpt (A.10)

splt = (1− ξp)

(
p∗t
δt

)
+ ξp

(
π1−ιpπ

ιp
t−1

πt

δpt−1

δpt

)
splt−1 (A.11)

swl
t = (1− ξw)

(
w∗
t

δwt

)
+ ξw

(
π1−ιwπιwt−1

πt

δwt−1

δwt

)
swl
t−1 (A.12)
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Firms

kst
Lt

=
α

1− α

wt

rkt
(A.13)

mct =

(
α

1− α

wt

rkt

)−α wt

(1− α) εat
(A.14)

Households

ξt ≡ Ξtγ
σct = εdt

(
ct −

κ
γ
ct−1

)−σc

exp

(
(σc − 1)

(
Lh
t

)1+σl

1 + σl

)
; Lh

t ≡ Lt
ϵw + swt
1 + ϵw

(A.15)

1 = Qtε
i
t

[
1− S

(
itγ

it−1

)
− S′

(
itγ

it−1

)
itγ

it−1

]
+ βγ−σEt

ξt+1

ξt
Qt+1ε

i
t+1S

′
(
it+1γ

it

)(
it+1γ

it

)2

(A.16)

R−1
t = εbtβγ

−σEt
ξt+1

ξt
Π−1

t+1 (A.17)

Qt = βγ−σEt
ξt+1

ξt

[
(1− δ)Qt+1 +

(
rkt+1Ut+1 − a (Ut+1)

)]
(A.18)

rkt ≡ Rk
t

Pt
= a′ (Ut) (A.19)

Wage Setting

1 + ϕwϵw
1 + ϵw

w∗
t γ

w
1,t = ϕwγ

w
2,t +

ϵw (ϕw − 1)

1 + ϵw
(w∗

t )
ϕw(1+ϵw)

ϕw−1
+1
γw3,t (A.20)

γw1,t = (δwt )
ϕw(1+ϵw)

ϕw−1 Lt +
(
βγ1−σ

)
ξwEt

ξt+1

ξt

(
π1−ιwπιwt
πt+1

)− 1+ϕwϵw
ϕw−1

γw1,t+1 (A.21)

γw2,t = (δwt )
ϕw(1+ϵw)

ϕw−1 wh
t ε

w
t Lt +

(
βγ1−σ

)
ξwEt

ξt+1

ξt

(
π1−ιwπιwt
πt+1

)−ϕw(1+ϵw)
ϕw−1

γw2,t+1 (A.22)

γw3,t = Lt +
(
βγ1−σ

)
ξwEt

ξt+1

ξt

(
π1−ιwπιwt
πt+1

)
γw3,t+1 (A.23)

Price Setting

1 + ϕpϵp
1 + ϵp

p∗tγ
p
1,t = ϕpγ

p
2,t +

ϵp (ϕp − 1)

1 + ϵp
(p∗t )

ϕp(1+ϵp)
ϕp−1

+1
γp3,t, (A.24)

γp1,t = (δpt )
ϕp(1+ϵp)

ϕp−1 yt +
(
βγ1−σ

)
ξpEt

ξt+1

ξt

(
π1−ιpπ

ιp
t

πt+1

)− 1+ϕpϵp
ϕp−1

γp1,t+1, (A.25)

γp2,t = (δpt )
ϕp(1+ϵp)

ϕp−1 mctεp,tyt +
(
βγ1−σ

)
ξpEt

ξt+1

ξt

(
π1−ιpπ

ιp
t

πt+1

)−ϕp(1+ϵp)
ϕp−1

γp2,t+1, (A.26)

γp3,t = yt +
(
βγ1−σ

)
ξpEt

ξt+1

ξt

(
π1−ιpπ

ιp
t

πt+1

)
γp3,t+1, (A.27)

Monetary Policy

Rt = max

1 + b̄, RρR
t−1R̄

(1−ρR)
(πt
π

)rπ(1−ρR)
(

yt

ypott

)ry(1−ρR)(
yt/y

pot
t

yt−1/y
pot
t−1

)r∆y

εr,t

 (A.28)
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Together, this constitutes an equation system with 28 equations and the following 28 endogenous

variables: ct, yt, Lt, it, k
s
t , k

h
t , Ut, p

∗
t , w

∗
t , πt, s

p
t , s

w
t , δ

p
t , δ

w
t , s

pl
t , s

wl
t , rkt , wt, mct, ξt, Rt, Qt, γ

p
1,t,

γp2,t, γ
p
3,t, γ

w
1,t, γ

w
2,t, γ

w
3,t.

The flexible price and wage allocations are obtained by setting ξp = ξw = 0 which defines ypott .

Only four shocks affect the flex price-wage allocations; εat , ε
b
t , ε

i
t, and gt.

A.7 Summary of Linearized Model Equations

In this section, we summarize the log-linear equations of the SW model. The complete model also

includes the seven exogenous shocks εat , ε
b
t , ε

i
t, ε

p
t , ε

w
t , ε

r
t , and gt, but their processes are not stated

here as they were presented earlier. Consistent with the notation of the log-linearized endogenous

variables x̂t = dxt/x, the exogenous shocks are denoted with a ‘hat’, i.e., ε̂t = ln εt.

First, we have the consumption Euler equation:

ĉt =
1

(1+κ/γ)Etĉt+1 +
κ/γ

(1+κ/γ) ĉt−1− 1−κ/γ
σc(1+κ/γ)(R̂t−Etπ̂t+1+ε̂

b
t) −

(σc−1)(wh
∗L/c∗)

σc(1+κ/γ) (EtL̂t+1−L̂t), (A.29)

where κ is the external habit parameter, σc is the reciprocal of the intertemporal substitution

elasticity, and wh
∗L/c∗ is the steady-state nominal labor earnings to consumption ratio.

Next, we have the investment Euler equation:

ît =
1

(1+βγ)

(̂
it−1 + βγEt̂it+1 +

1
γ2φ

Q̂k
t

)
+ ε̂qt , (A.30)

where β̄ = βγ−σc , φ is the investment adjustment cost, and the investment-specific technology shock

ε̂qt has been rescaled so that it enters linearly with a unit coefficient. Additionally i1 = 1/(1 + β)

and i2 = i1/ψ, where β is the discount factor and ψ is the elasticity of the capital adjustment cost

function.

The price of capital is determined by

Q̂k
t = −( ̂̃Rt − Etπ̂t+1 + ε̂bt) + q1Etr

k
t+1 + (1− q1)EtQ

k
t+1, (A.31)

where q1 ≡ rk∗/(r
k
∗ + (1 − δ)), in which rk∗ is the steady-state rental rate to capital and δ is the

depreciation rate.

Fourth, we have the optimal condition for the capital utilization rate ût:

ût = (1− ψ)/ψr̂kt , (A.32)

where ψ is the elasticity of the capital utilization cost function and the capital services used in

production (k̂t) is defined as

k̂t = ût + ̂̄kt−1, (A.33)
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where ̂̄kt−1 is the physical capital stock, which evolves according to the following capital accumu-

lation equation: ̂̄kt = κ1
̂̄kt−1 + (1− κ1)̂it + κ2ε̂

q
t (A.34)

with κ1 = 1− (i∗/k∗) and κ2 = (i∗/k∗)γ
2φ(1 + β̄γ).

The following optimal capital/labor input condition also holds:

k̂t = ŵt − r̂kt + L̂t, (A.35)

where ŵt is the real wage.

The log-linearized production function is given by

ŷt = ϕp ( αk̂t + (1− α)L̂t + ε̂at ), (A.36)

in which ϕp is the fixed cost of production corresponding to the gross price markup in the steady-

state, and ε̂at is the exogenous TFP process.

Aggregate demand must equal aggregate supply:

ŷt =
c∗
y∗
ĉt +

i∗
y∗
ît + gt +

rk∗k∗
y∗

ût, (A.37)

where gt represents the exogenous demand component.

Next, we have the following log-linearized price-setting equation with dynamic indexation ιp:

π̂t − ιpπ̂t−1 = π1 (Etπ̂t+1 − ιpπ̂t)− π2µ̂
p
t + ε̂pt , (A.38)

where π1 = β, π2 = (1− ξpβ)(1− ξp)/[ξp(1+(ϕp−1)ϵp)], 1− ξp is the probability of each firm being

able to reoptimize the price each period, ϵp is the curvature of the aggregator function (eq. (A.1)),

and the markup shock ε̂pt has been rescaled to enter with a unit coefficient. The price markup, µ̂pt ,

equals the inverse of the real marginal cost, µ̂pt = − m̂ct, which in turn is given by

m̂ct = (1− α) ŵreal
t + α r̂kt − ε̂at . (A.39)

We also have the following wage-setting equation, allowing for dynamic indexation of wages for

non-optimizing households:

(1 + βγ)ŵreal
t − ŵreal

t−1 − βγEtŵ
real
t+1 = (A.40)

(1−ξwβγ)(1−ξw)
[ξw(1+(ϕw−1)ϵw)]

(
1

1−κ/γ ĉt −
κ/γ

1−κ/γ ĉt−1 + σlL̂t − ŵt

)
− (1 + βγιw)π̂t + ιwπ̂t−1 + βγEtπ̂t+1 + ε̂wt ,
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where ϕw is the gross wage markup, 1 − ξp is the probability of each household being able to

reoptimize its wage each period, ϵw is the curvature of the aggregator function (eq, A.8), and σl

determines the elasticity of labor supply, given σc (see equation (A.9)). The exogenous wage-markup

shock ε̂wt has been rescaled to enter linearly with a unit coefficient.

Finally, we have the following monetary policy rule:

R̂t = ρRR̂t−1 + (1− ρR) (rππ̂t + ryŷ
gap
t ) + r∆y∆ŷ

gap
t + ε̂rt , (A.41)

where ŷgapt = ŷt − ŷpott , or in other words, the difference between the actual output and the output

prevailing in the flexible price and wage economy in absence of the inefficient price- and wage-

markup shocks. We solve for ŷpott by setting ξp = ξw = 0 (or arbitrarily close to nil) and removing

ε̂wt and ε̂pt from the system of equations given by (A.29)− (A.41). When linearizing the model, we

do not take the ZLB into account and the policy rate equals the shadow rate implied by the Taylor

rule in equation (A.41) at all times.

A.8 Observer Equations and Data

We have the following observer equations in the nonlinear model:

πobst = 100 lnπt

∆wobs
t = 100 lnwt/wt−1 + γ

Robs
t = 100 (Rt − 1)

∆yobst = 100 ln yt/yt−1 + γ

∆cobst = 100 ln ct/ct−1 + γ

∆iobst = 100 ln it/it−1 + γ

lobst = 100 ln lt/l

We use the same data as Smets and Wouters (2007), except that we update their dataset

through 2014Q2.
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