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Abstract 
Hurricanes disrupt oil production in the Gulf of Mexico because producers shut in oil platforms 
to safeguard lives and prevent damage. We examine the effects of these temporary oil supply 
shocks on real economic activity in the United States. We find no evidence that temporary oil 
supply shocks affect state-level employment or indirectly affect industrial production in sectors 
not immediately related to oil production. We find that the temporary oil supply shocks have 
local, temporary price effects—mainly on gasoline prices—and that broader consumer price 
index inflation is also temporarily affected. In addition, we find no effect on imports, exports, 
exchange rates or the import price of oil. Our results suggest that oil reserves held by US 
refineries are largely sufficient to absorb any temporary disruptions to production. 

Topics: Business fluctuations and cycles; Inflation and prices  
JEL codes: E31, E32, Q31, Q41, Q43 

Résumé 
Les ouragans perturbent la production de pétrole dans le golfe du Mexique, car les producteurs 
ferment les plateformes pétrolières pour protéger des vies et éviter les dommages. Nous 
examinons les effets de ces chocs temporaires d’approvisionnement en pétrole sur l’activité 
économique réelle aux États-Unis. D’après notre étude, rien n’indique que ces chocs influent 
sur l’emploi au niveau des États ou se répercutent indirectement sur la production industrielle 
de secteurs qui ne sont pas étroitement liés à la production pétrolière. Nous constatons qu’ils 
ont des effets locaux et passagers sur les prix – principalement ceux de l’essence – ainsi qu’une 
incidence temporaire sur l’inflation mesurée par l’indice des prix à la consommation global. De 
plus, nous n’observons aucun effet sur les importations, les exportations, les taux de change 
ou les prix à l’importation du pétrole. Nos résultats donnent à penser que les réserves de 
pétrole détenues par les raffineries américaines sont largement suffisantes pour absorber toute 
perturbation temporaire de la production. 

Sujets : Cycles et fluctuations économiques; Inflation et prix  
Codes JEL : E31, E32, Q31, Q41, Q43 



1 Introduction

Conventional wisdom suggests that oil supply shocks affect economic activity because of the widespread use

of oil in transportation and manufacturing. Episodes such as the stagflation in the US during the 1970s,

which coincided with the creation of the Organization of the Petroleum Exporting Countries (OPEC),

and the shale oil boom in Texas and the US Midwest during the 2010s support this narrative. However,

differentiating between contemporaneous correlation and causation of oil production and economic activity

is difficult because exogenous variation for the former is typically hard to find. In this paper, we investigate

the effect of temporary oil supply shocks on US economic activity using exogenous variation in US oil supply

that results from hurricane activity in the Gulf of Mexico. We find no evidence that temporary oil supply

shocks have real effects on US economic activity.

Hurricanes disrupt oil production on offshore platforms in the Gulf because they are potentially both

deadly and extremely costly in terms of physical damage to oil rigs and the environment. Oil rigs that are

within the forecast path of a hurricane shut in production when hurricanes in the Gulf are imminent.1 We

use detailed monthly production data from the Bureau of Ocean Energy Management (BOEM) to create a

time series of oil production for leases granted to producers that are located on the Gulf of Mexico Outer

Continental Shelf (OCS). Then, similar to Brannlund, Dunbar, Ellwanger, and Krutkiewicz (2022), we

construct an indicator of hurricane activity in the Gulf and interact this indicator with the monthly change

in oil production in the Gulf to measure production changes that result from rigs shutting in production in

advance of anticipated hurricanes. Underlying our identification is an assumption that, at least in the short

run, economic activity does not cause hurricanes in the Gulf. Consequently, production changes in advance

of and during the hurricane are exogenous shocks.2

We investigate how hurricane-induced production changes affect different measures of (disaggregated)

US economic activity: the real and nominal imported prices of oil reported by the US Energy Information

Administration (EIA); city-level gasoline prices for 8 US cities; state-level employment for 44 US states;

total and sub-indices of US industrial production; total and sub-indices of Consumer Price Index (CPI)

inflation; and Canadian energy exports and the US/CAD exchange rate. For the spatially disaggregated

data on gasoline prices and state-level employment, we select only cities and states that do not border the

Gulf and are unlikely to have been directly affected by the hurricanes. We do not have access to spatially

1”Shut in production” refers to the temporary cessation of oil production and the removal of personnel from rigs. Typically,
well heads are also secured to prevent leakage and environmental damage. The US Bureau of Safety and Environmental
Enforcement (BSEE) publishes daily updates on the percentage of platforms that shut in production. See, for example, this press
release for Hurricane Ida in 2021: https://www.bsee.gov/newsroom/latest-news/statements-and-releases/press-releases/
bsee-monitors-gulf-of-mexico-oil-and-48.

2In contrast, production losses from hurricane damages are not exogenous sources of identifying information for production
disruptions because the timing of the assessments and repairs (and even the decision to repair at all) likely depends on economic
conditions such as oil prices. It is also the case that hurricanes disrupt shipping, so refiners in the Gulf are not able to replace
lower local production with oil imported by tankers during the period of the hurricane (Dunbar, Steingress, and Tomlin, 2022).

1
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disaggregated industrial production data, so we instead trace out how oil supply shocks affect different

aspects of production. Finally, we focus on energy exports from Canada because it is already a large energy

exporter to the US with pipeline access to US refineries. Thus, it would seem plausible that a demand

response for oil to replace lost production in the Gulf might affect energy exports from Canada.

To determine the impact of oil supply shocks, we follow Jordá (2005) and Montiel Olea and Plagborg-

Møller (2021) and estimate local-projection regressions.3 Using local projections instead of VARs is advanta-

geous in our setting: local projections are easily adaptable to different target variables, and we can estimate

spillovers across regions and sub-indices without imposing structural assumptions. Overall, we find little

statistically significant evidence that temporary oil supply shocks affect any broad measure of US economic

activity. We do find that temporary oil supply shocks affect contemporaneous industrial production indices

that directly measure oil production. We also find that temporary oil supply shocks affect gasoline prices

in our sample of US cities one month after the hurricane and that these increases also affect CPI inflation.

However, there is no evidence that temporary oil supply shocks affect employment, imported oil prices, other

sub-indices of industrial production or CPI inflation, Canadian energy exports or the CAD/US exchange

rate. Our results suggest that temporary oil supply shocks are localized to the oil industry and do not

broadly or indirectly affect US economic activity.

Our results pertain to temporary supply shocks and do not imply that persistent shocks, including

unanticipated oil discoveries, are neutral for economic activity. The oil supply shocks identified in this

paper also differ from news shocks about oil markets, such as those studied in Känzig (2021). Indeed, one

contribution of our paper is to highlight differences between temporary oil supply shocks and information

that changes the expected present value of future oil supply. As we document, the former have only modest

transitory effects on gasoline prices whereas Känzig (2021) shows the latter affects real activity. These

contrasting effects are easily rationalized if the temporary shocks we identify are at least partly insurable.

We provide evidence that the oil supply shocks we identify are typically accompanied by drawdowns of crude

oil inventories of similar magnitude. This response is consistent with the role of inventories for smoothing

production disruptions highlighted in the theory of storage (Working, 1949 and Pindyck, 1994).

Our paper contributes to the literature on the effects of oil shocks on economic activity. One common

approach in this literature is to identify oil supply shocks empirically using oil price data. Identification

of supply (or demand) shocks using prices, absent exogenous variation, requires restrictions on supply and

demand elasticities (see, e.g., Kilian and Zhou, 2020b). The use of structural models, primarily structural

vector autoregressions (SVARs), to estimate the effects of oil supply shocks for economic activity is largely

due to Kilian (2009). Kilian (2009) and Kilian and Murphy (2014) argue, using a SVAR that disentangles

3Recently, Plagborg-Møller and Wolf (2021) have demonstrated that local projections and vector autoregressions (VARs)
estimate the same object, at least in the population, so our results should not be sensitive to our methodological choice to use
local projections.
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supply and demand shocks, that demand shocks were the main drivers of oil price changes. However,

Baumeister and Hamilton (2019) and Caldara, Cavallo, and Iacoviello (2019) argue that structural VARs

impose cross-equation restrictions on the estimates of supply and demand elasticities, which can affect, in

turn, the interpretation of the importance of each shock. Baumeister and Hamilton (2019) show that relaxing

identifying assumptions about the short-run response of oil supply to price changes implies a greater role for

oil supply shocks. Similarly, Caldara, Cavallo, and Iacoviello (2019) use a narrative approach to estimate

supply and demand elasticities that implies that oil supply shocks are the main drivers of oil price movements.

Herrera and Rangaraju (2020) examine a suite of recent structural VAR models proposed in the literature

and show that the estimated differences for the importance of oil supply shocks across the models depend

largely on the Bayesian prior for the short-run supply elasticity and/or model specification. They argue

that conditioning on a short-run supply elasticity that is close to microeconometric estimates in Anderson,

Kellogg, and Salant (2018), Newell and Prest (2017) or Bjørnland, Nordvik, and Rohrer (2021), leads to

similar conclusions across models that are largely consistent with Kilian (2009).

One lesson from our paper for this literature is that temporary supply shocks may not be identified

using VAR-based decomposition strategies based on oil prices because crude oil prices do not respond to

these shocks. The identification challenge is stark and basic: if temporary oil supply shocks do not affect

crude oil prices, then crude oil prices cannot identify temporary oil supply shocks. The shocks we identify

are, however, still oil supply shocks, and we find that they do affect some nominal series such as gasoline

prices and the CPI and some real indices such as industrial production.4 An implication of our study is

that the effects of temporary supply shocks are likely to be reflected in the implied counterfactuals for VAR-

based decompositions, which suggests that the estimated coefficients for the effects of oil shocks should be

interpreted with caution in these settings.5

2 Empirical approach

Oil production in the Gulf shuts down in advance of hurricanes because of the anticipated risks to personnel,

the environment and structures posed by the high winds and dangerous sea-state conditions that are caused

by these violent storms.6 To estimate the magnitude of these effects, we use lease-level data on oil rig locations

4The fact that we do not find a significant effect on crude oil prices might raise the question of why gasoline prices are
affected at all by these shocks. One plausible explanation is that inventory management induces additional costs, which are
passed on to retail prices.

5The direction of bias is, however, difficult to determine as the recent event study literature has shown. See, for example,
de Chaisemartin and D’Haultfœuille (2020).

6That this occurs is well known, and the BSEE reports some production shut-in data in advance of known storms; see
https://www.bsee.gov/resources-tools/planning-preparedness/hurricane/activity-statistics-update. Unfortunately,
these data have several limitations, making it unsuitable for our analysis. First, the production shut-in reports provide only
estimates of the number of barrels of oil not produced and not any possible production increases by unaffected rigs, and thus
does not provide a measure of the overall supply effect. Also, the production shut-in data historically were typically reported
only on weekdays, at least until the mid 2000s, which implies uncertainty over production losses on weekends. Finally, the
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in the Gulf of Mexico, production data for the OCS from the US Bureau of Ocean and Energy Management

(BOEM) and hurricane track data from the National Oceanic and Atmospheric Administration’s (NOAA)

National Center for Environmental Information; see Knapp, Kruk, Levinson, Diamond, and Neumann (2010)

and Knapp, Diamond, Kossin, Kruk, and Schreck (2018).7 Similar to Brannlund, Dunbar, Ellwanger, and

Krutkiewicz (2022), we use the NOAA hurricane data to construct a hurricane indicator equal to 1 if a

hurricane of any category greater than or equal to 1 on the Saffir-Simpson scale passes within 500km of a

structure for any oil-producing lease in our sample in the Gulf of Mexico for which we have location data.8

For our sample period of January 1980 to December 2019, our indicator equals 1 for a total of 43 months,

which is roughly 9 percent of our sample. We interact this indicator with the monthly change in total offshore

oil production calculated from the lease-level production data for each lease reported in the full BOEM data.

The BOEM production data are based on monthly reporting for the lease holders for the purposes of royalty

payments and cover the universe of oil leases administered by the BOEM in the OCS. We scale our interacted

indicator by the EIA’s total production for the US, lagged one month, so that our measure of the oil supply

shock is easier to interpret. Our measure of the oil supply shock at time t is, therefore:

Ψt =
It(hurricane <= 500km)×∆OCSt

TotalUSOilProductiont−1
× 100, (1)

where It(hurricane <= 500km) is our hurricane indicator for period t, ∆OCSt is the change in the monthly

oil production (in barrels) for the OCS administered by the US BOEM and TotalUSOilProductiont−1 is the

total oil production of the US (in barrels) at time t− 1. We scale the shock by 100 so that Ψt is measured

in percentage points.

Figure 1 (a) plots the time series of our oil supply shock measure. The largest decline in production,

roughly 20 percent of total US production, occurred in September 2008 during hurricanes Gustav and Ike,

although the decline during Hurricane Katrina in 2005 was of a similar magnitude. Interestingly, there

are also periods during which our oil supply shock measures are positive. These episodes appear to reflect

production increases by producers far from the hurricane eye (though still within the 500km distance)

during relatively less powerful hurricanes, or production increases after relatively milder hurricanes that

passed quickly through the producing areas of the Gulf. One explanation is that these producers increase

production in anticipation of other producers’ production decreases that do not fully materialize.9 These oil

BSEE reports production shut-in data only for storms that it deems to have had a significant impact on production and does
not appear to define its threshold of significance.

7The BOEM data were obtained from https://www.data.boem.gov/Main/Platform.aspx and https://www.data.boem.gov/

Main/RawData.aspx.
8The choice of 500km is arbitrary and reflects two considerations. First, the largest hurricanes can have diameters of roughly

300km; second, hurricane paths are uncertain and this uncertainty grows over projected distances. 500km appears a reasonable
balance between these considerations; however, our results do not change significantly if we reduce this distance to 250km.

9There appear to be two plausible scenarios that explain why production may increase. (1) Producers overestimate the
damage to their competitors, or (2) producers overestimate how long their competitors will take to restart production. Either
case can rationalize the modest supply increases we observe in our data.

4
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supply increases are still shocks in the sense that the additional production is in response to the hurricanes.

Figure 1 (b) plots the distribution of affected leases in our sample. Higher values represent storms that

affected a greater proportion of rigs in our data. Almost 100 percent of oil leases are within 500km of the

modal hurricane. Hurricane Ingrid in 2013 affected the least proportion of leases (approximately 60 percent,

by our measure). Hurricane Ingrid is also an example of a production increase which did not generate a

production shut-in report from the BSEE but nevertheless led to a change in oil supply.

One might be concerned that our shock measure does not accurately capture unanticipated oil supply

disruptions. There are two possible issues of concern. First, it is possible that our measure misses some

hurricanes that disrupt production. Unfortunately, the US BOEM data do not include platform location data

for roughly 1/3 of the sample of oil-producing leases, so we cannot directly measure hurricane disruption at

the lease level (the BOEM data do include oil production for all leases, however). The subsample of known

lease locations do, however, cover the common production areas of the Gulf, including deeper-water oil-

producing areas such Green Canyon and Mississipi Canyon and the Garden Banks. Because we use the total

oil production recorded by the BOEM to construct our oil supply shock, we can miss a supply disturbance

only if a hurricane passes within 500km of an actual oil-producing rig that is not in our location data subset

and this hurricane is at least 500km from a location that is in our data. Such an outcome appears very

unlikely, since our location data cover most of the known oil-producing regions in the Gulf and the 500km

radius from the known lease locations covers virtually the entire OCS region administered by the US.

The second concern is that we attribute oil supply disruptions to hurricane activity when other factors

may also be responsible for the oil supply disturbance. This would suggest that we may overestimate the

effect of the oil supply disturbance caused by the hurricane, since we attribute the entire disturbance to the

hurricane shock. Any measurement error for our oil supply shock must be multiplicative because the modal

value of the shock is zero (when there are no hurricanes). If measurement error was additive, it would imply

an unrealistic restriction on the distribution of the error (it would also need to be zero precisely when no

hurricanes were observed). Multiplicative measurement error implies Ψt = λtΨ̈t, where λt is measurement

error and Ψ̈t is the true value of the oil supply shock (which is unobserved). It appears most plausible that

we may over-attribute the production disruption to the hurricane, which implies 1 ≥ λt > 0 and, following

arguments in Hwang (1986), our estimates of the effect of the oil supply shock may be biased upward.10

A final comment regarding the oil supply shock is that its sign is not normalized to represent supply

shortfalls, as we consider both positive and negative shocks. Thus, for the regression specifications that we

present in the subsections below, positive (negative) coefficient estimates imply an increase (decrease) in the

dependent variable in response to higher oil production.

10Because we assume that hurricanes are (conditionally) random events, this measurement error is, however, uncorrelated
with the production shock itself and does not imply correlation between the regression residuals and our shock series.

5



Figure 1: Hurricanes and oil supply shocks in the Gulf of Mexico

1980 1990 2000 2010 2020

−20

−15

−10

−5

0

P
er

ce
n
ta

ge
p

o
in

ts

(a) Oil supply shocks Ψt

1980 1990 2000 2010 2020

0

20

40

60

80

100

P
er

ce
n
ta

ge
p

oi
n
ts

(b) Proportion of affected rigs

Notes: Oil supply shocks are expressed as a percentage of total US crude oil production. Monthly data, 1980-2019.

2.1 Oil supply shocks versus price shocks

We begin by examining the price responses to oil supply shocks for the US. Figure 1 (a) illustrates that the

production losses from hurricane disruptions can be large as a proportion of total US oil production. The

largest monthly fall in production–almost 17 million barrels of oil–occurred in 2008 because of hurricanes

Gustav and Ike. This accounted for almost 20 percent of the prior month’s total US oil production. It

is plausible that these production losses increased US demand for imported oil, which should, in theory,

have increased imported oil prices. Increased import demand would seem perhaps even more plausible since

Brannlund, Dunbar, Ellwanger, and Krutkiewicz (2022) find that production losses for leases that are directly

impacted by hurricanes can be persistent.

We first consider whether the oil supply disruptions are reflected in the imported crude oil prices reported

by the EIA for the US for the years 1980-2019.11 We assess this conjecture using the local projections method

of Jordá (2005). Recently, Plagborg-Møller and Wolf (2021) have demonstrated that local projections and

VARs estimate the same impulse response functions. Since we do not require structural methods to identify

our supply shock, we choose to estimate the impulse responses using local projections. We follow Montiel Olea

and Plagborg-Møller (2021) and include lags of the oil price to account for serial correlation. Our estimating

equation for horizon h is:

11Imported oil prices were obtained from www.eia.gov/oil_gas/petroleum/data_publications/petroleum_marketing_

monthly/pmm.html on August 10, 2021.
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yt+h =

k∑
i=1

ρi,hyt−i +Xtβ
h + µhψt + et (2)

where yt+h is the natural logarithm of the imported oil price (we consider both real and nominal); Xt is a

vector of month and year dummy variables to account for residual seasonal and business cycle variation, and

ψt = ln(Ψt +
√

1 + Ψ2
t ) is the inverse hyperbolic sine of Ψt. We transform Ψt using the inverse hyperbolic

sine so that we can roughly interpret the coefficient estimates of µh as the price elasticities of oil supply

shocks (see Bellemare and Wichman, 2020) and to reduce the influence of outliers.12 Unlike logarithmic

transformations, the inverse hyperbolic sine transformation is defined when Ψt ≤ 0 as is the case in our

data. We choose h = {0, 1, ...8} and k = 12 for our estimation, but alternative choices of k greater than

the maximum of h do not materially affect our results.13 For both the real and nominal oil price series,

our regressions have 468 observations, so we report Eicker-Huber-White standard errors as recommended by

Montiel Olea and Plagborg-Møller (2021) rather than using a bootstrap method that might provide better

finite sample performance. The results of Herbst and Johannsen (2020) suggest that any bias from serial

correlation is unlikely to be severe for our application, given our numbers of observations.

We present our results in Figure 2 (a). The impulse responses for both the real and nominal price series

are effectively identical. The whisker bars report the symmetric 95 percent confidence intervals for the point

estimates. None of the point estimates are significantly different from zero at any of the horizons up to eight

months from the oil supply shock. In level terms, our estimates show that the peak elasticity response is at

three months and is roughly 0.04 for both real and nominal oil prices. Generally, the modest response of

crude oil prices to supply shocks is more compatible with evidence obtained from SVAR models that impose

a lower short-run supply elasticity (Herrera and Rangaraju, 2020).

The shape of the impulse response that we plot in Figure 2 (a) is, itself, counter-intuitive because it

suggests that import prices decrease several months after a negative oil supply shock, which is inconsistent

with the textbook response to a negative supply shock that is uncorrelated with a demand shock. Crude

oil prices are largely determined by refinery demand, and it is possible that our impulse responses for

h > 0 confound damage to refineries or pipelines with the impact of the hurricane shut-in production shock.

Kilian (2010) and Kilian and Zhou (2020a) argue that US refinery demand is an important factor in the

determination of crude oil prices, particularly with respect to the impact of Hurricane Katrina on Gulf Coast

refineries.

12The interpretation of µh is as the percent change in imported oil prices to a percent change in Ψt, as long as the shocks

are sufficiently large such that
√

1 + Ψ2
t ≈ Ψt. Thus, a 100 percent increase in the shock would be equivalent to doubling Ψt

and would imply a 2µh change in imported oil prices.
13In general for all the results we present, alternative choices of k that are greater than the maximum of h do not materially

affect our results. Our choices for h are largely data-driven in that we choose h such that any observed impulse response has
largely reverted to zero by the maximum choice of h. We also generally set the maximum of h to be less than or equal to 8
months so that we do not confound a following year’s hurricane season in our estimates.

7



Figure 2: Response of price of imported oil to oil supply shock ψt

0 1 2 3 4 5 6 7 8

−0.1

0

0.1

Horizon h (months)

µ̂
h

(a) Full sample

Real
Nominal

0 1 2 3 4 5 6 7 8

−0.1

0

0.1

Horizon h (months)

(b) Excluding Katrina/Rita and Gustav/Ike

Real
Nominal

Notes: ψt is the inverse hyperbolic sine transform of the percent oil supply shock Ψt. Whiskers indicate 95 percent confidence
bands.

In our sample, there are two periods where hurricanes caused substantial disruption to refineries or

pipelines: hurricanes Katrina and Rita in September 2005, and hurricanes Gustav and Ike in September

2008. To assess the impact of refinery or pipeline disruptions for the estimated impulse responses of imported

crude prices, we re-estimate Equation (2) excluding those hurricanes from our sample period. Figure 2 (b)

presents the estimated impulse responses. Figure 2 (b) suggests that the slope of the impulse response for

h ≤ 4 in Figure 2 (a) is largely influenced by hurricanes Katrina, Rita, Gustav and Ike. We find little

evidence of any short-run impact from an oil supply shock on imported crude oil prices, even in level terms

absent these hurricane episodes.

Our estimates suggest that there is no contemporaneous response of the price of imported oil to a

transitory oil supply shock. This lack of response implies that identifying temporary oil supply shocks from

oil prices is, at best, extremely difficult, at least for shocks localized to the US. For such shocks, even imposing

a sign restriction on the short-run elasticity would seem to have little identifying power to differentiate the

impulse responses at any horizon we consider. Another implication of the estimates is that there is little

short-run change in US demand for imported oil in response to a temporary oil supply disruption.

2.2 Refineries and oil inventories

One reason that there might be no demand response for imported crude from transitory oil supply shocks is

that refineries smooth such shocks using crude oil inventories. The stock of US crude inventories in October

8



2021 was, for example, equivalent to roughly 1 billion barrels of crude with approximately 40 percent held

commercially (mainly by refineries) and 60 percent held in the strategic petroleum reserve (SPR). We next

assess the impact of the oil supply shock for the oil inventories held by refineries and inventories held in

the SPR. We use weekly data on oil inventories reported by the EIA that we convert to monthly frequency

by taking the minimum reported stock in a given month.14 We re-estimate our baseline local projection,

Equation (2), using either the stock of crude reserves held by refineries or by the SPR as our dependent

variable and replacing ψt by

Ψ̃t = It(hurricane <= 500km)×∆OCSt.

Ψ̃t is simply the level shock in Gulf production. We note that the recent monthly production of crude oil in

the Gulf is around 30 million barrels, so the inventory reserves are an order of 30 times larger.

Figure 3 (a) presents the estimated impulse responses for total US refinery inventories and SPR invento-

ries. The estimated coefficient on Ψ̃t, µ̂, can be interpreted as the portion of the oil supply shock smoothed

by releases from inventories. There is a statistically significant drawdown of oil inventories in response to

an oil supply shock both contemporaneously and one month after the shock. The point estimates are ap-

proximately 0.6 and 0.5, respectively, which suggests that the cumulative response is roughly identical to

the level of the shock. There is some evidence that inventories are restocked five to seven months after the

shock; however, these point estimates are not statistically different from zero at a 5 percent level of signif-

icance. There is evidence of a contemporaneous response of inventories held in the SPR, with the impulse

response point estimates being significantly different from zero at a 5 percent level of significance until h = 7.

However, the point estimates are relatively smaller, with the maximum point estimate roughly half of the

contemporaneous response of commercial crude oil inventories.

Figure 3 (b) presents the estimated impulse responses for US refinery inventories and SPR inventories

excluding hurricanes Katrina, Rita, Gustav and Ike. Somewhat interestingly, the inventory drawdowns by

US refiners appear to be larger than the actual production losses incurred as a result of the oil supply

shock on impact and also one month after the shock. However, there is little evidence of a long-term

effect as the remaining point estimates are not significantly different from zero at the 5 percent level of

significance. In terms of SPR inventory responses, none of the point estimates are significantly different from

zero. These estimates are generally consistent with a rather sporadic use of the SPR in the aftermath of

selected hurricanes.15

14The data were obtained from https://www.eia.gov/dnav/pet/pet_stoc_wstk_dcu_nus_w.htm on November 12, 2021.
15SPR releases under exchange agreements occurred after Hurricane Lili in 2002, after Hurricane Ivan in 2004, after Hurricane

Isaac in 2012 and after Hurricane Harvey in 2017, see https://www.energy.gov/fecm/strategic-petroleum-reserve-0.
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Figure 3: Response of crude oil inventories to oil supply shock Ψ̃t
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Notes: Estimated effect on log inventories. Ψ̃t is the total oil supply shock in percent of previous month production. µ̂h

represents the change in inventories relative to the size of the supply shock. Whiskers indicate 95 percent confidence bands.

2.3 City gasoline prices

The impulse response estimates presented in section 2.1 suggest that the oil supply shocks Ψt lower the

quantity of oil in the US economy, but that inventory drawdowns likely mitigate the supply shock. Thus,

goods (or services) that use oil as an input may experience only a muted supply shock to their production.

Roughly 40 percent of US oil production is refined into gasoline, so a quantity shock in US crude oil should

impact gasoline production.

We obtain monthly gasoline prices for 10 large US metropolitan areas from the EIA: Boston, Chicago,

Cleveland, Denver, Houston, Los Angeles, Miami, New York City, San Francisco and Seattle.16 The gasoline

price data are monthly, starting in June 2000 for all cities except Boston, Cleveland, Miami and Seattle,

which start in June 2003. We follow the same specification as Equation (2) and estimate local projections

for each city in our sample individually. We set k = 6 and consider h = {0, 1, 2, 3} and again report Eicker-

Huber-White standard errors because our sample lengths are near the upper bound of the sample lengths

discussed in Herbst and Johannsen (2020) as potentially being biased by serial correlation. We continue

to include month and year dummy variables to account for seasonal and trend changes in gasoline prices.

Hurricanes in our sample occur only between June and November and the monthly dummy variables account

for this seasonal variation.

16Data were downloaded from: http://www.eia.gov/dnav/pet/ on June 17, 2021. We use the ”all grades, all formulations”
prices.
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We present the impulse response estimates for the city gasoline prices in Figures 4 (a) and (b). For ease

of exposition, we split our sample of eight cities into two groups. The first group of cities includes Boston,

New York City, Chicago and Cleveland. These cities form a natural group because they are located in the

Petroleum Administration for Defence Districts (PADD), zones 1 and 2, which are the zones most closely

linked via pipeline distribution to PADD 3, which encompasses the Gulf according to the EIA.17 Thus, these

cities would be most likely to experience a direct effect from a quantity supply shock in the Gulf. The second

group of cities includes Denver, Los Angeles, San Francisco and Seattle. These cities are located in PADD

zones 4 and 5 and are generally not closely linked to oil production in the Gulf. We do not include Houston

or Miami in either group because it is plausible that these cities are directly affected by the hurricanes

themselves. Conceptually, we want to separate the oil supply shock from the hurricane shock itself and thus

we exclude Houston and Miami from our sample.

In the first group of cities plotted in Figure 4 (a), the impulse responses are roughly identical both in

terms of the point estimates and the 95 percent confidence intervals indicated by the whisker lines. There

is a price response in the current month and one month after the oil supply shock of roughly µ̂ = −0.02

and µ̂ = −0.03, respectively, which largely disappears by the second month after the shock. These point

estimates are generally significantly different from zero. In contrast, the second group of cities plotted

in Figure 4 (b) does not have a similar contemporaneous response although they do, in general, have a

statistically significant response of roughly the same magnitude as the first group one month after the oil

supply shock. The only exception is Denver, which does not have a significant impact at any horizon we

examine. These impulse responses suggest that the impact of the oil supply shock is (mildly) heterogeneous

for the cities we examine, and that the differences across cities may be due to infrastructure links. Assuming

that oil prices are competitively priced, these results also suggest that either drawing down inventories is

more costly for refiners than relying on flow production, or that gasoline price increases lead to greater

inventory drawdowns. Our results are compatible with both mechanisms and do not further identify the

causal channel.

2.4 State employment

We next turn to the question of whether oil supply shocks affect the broader US economy. Our interest is

not whether hurricanes affect economic activity (see for instance, Stobl, 2011, and Deryugina, 2017), but

whether disruptions to oil supply caused by hurricanes affect economic activity. To isolate the effect of the

latter, we drop the PADD 3 states and the states directly bordering the Gulf (Florida, Alabama, Arkansas,

Mississippi, Louisiana, Texas and New Mexico) from our estimation sample. For each of the remaining

17The PADD zones were established during WWII to administer the allocation of petroleum and other fuels during the war.
These zones continue to exist today, and oil supply infrastructure such as pipelines is often organized by zone.
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Figure 4: Response of city-level gasoline prices to oil supply shock ψt
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Notes: ψt is the inverse hyperbolic sine transform of the percent oil supply shock Ψt. Whiskers indicate 95 percent confidence
bands.

states in our sample, we estimate the effect of the oil supply shock on the natural logarithm of the state’s

employment. We do so separately by state, because it does not appear plausible to believe that (i) the effect

of the oil supply shock is constant across states (especially given Figures 4 (a) and (b) and the fact that

not all PADD districts are directly linked for oil distribution) or (ii) the stable unit treatment assumption is

valid, since it would seem plausible that the effect in one state may affect the treatment in a neighbouring

state. Moreover, the advantage in estimating a panel regression would be primarily, in this case, to increase

the sample size, which does not appear necessary in our context, since we have roughly 360 observations by

state.

We obtain employment data for the US states for the years 1991-2019 and estimate for each state n in

our remaining sample of N = 44 states:18

yn,t+h =

k∑
i=1

ρi,hn yn,t−i +Xtβ
h
n + µh

nψn,t + en,t+h, ∀n ∈ N, (3)

where yn,t+h is the logarithm of employment at time t+ h with the coefficients and variables indexed by n

but otherwise identical to those described in Equation (2). We set k = 13 and h = {0, 1, ..., 5}. Our interest

is in the distribution of µh
n. We are primarily interested in two features of the distribution: the levels of µ̂h

n

and the statistical significance of the estimates in terms of being different from zero. Given that we have

264 separate estimates of µ̂h
n, we were initially concerned with how to present the estimates in a clear and

effective manner. Fortunately, the empirical estimates rendered such concerns moot. Of the 264 estimates

18The state employment data were obtained from Haver (BLS) on June 11, 2021.
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µ̂h
n, only a single estimate is statistically significantly different from zero at the 5 percent significance level:

Pennsylvania, at a horizon of three months. We are mindful that simply by random chance some of these

estimates could satisfy statistical significance. Applying the Bonferroni correction renders this estimate not

statistically significantly different from zero. Thus, there appears to be little statistical evidence that our

measure of oil supply shocks affect employment at any horizon up to 5 months for any state.

Although the point estimates may not be statistically significant, it is possible that their estimated

magnitudes may still be of interest. As an example, if the point estimates were large but had high variance,

this might suggest that our log-linear specification was not a reasonable specification for the data. Or, if the

estimates were all close to zero, then this could be viewed as evidence that the effect of oil supply shocks on

employment was actually likely zero and not simply difficult to estimate. Figure 5 plots the estimates of µh
n

for h = {0, 1, ..., 5} and each of the 44 states in our sample. The states are ordered by the value of their FIPS

number (this is simply for convenience; any ordering is arbitrary). For all horizons, the estimates µ̂h
n are

small in magnitude and in all cases less than 0.005 and typically less than 0.001. These are small elasticities

and suggest that the employment response to an oil supply shock is negligible even in level terms. For h = 0

and h = 1, the estimates are generally almost exactly zero. The dispersion in the estimates does increase

for higher values of h, but there is no evidence of a trend increase in the employment elasticity. We do note

that there is one outlier in terms of the estimates at all horizons: the state of Georgia, which we include

in our estimation sample, but it may also be directly affected by the hurricane paths themselves (perhaps

via temporary migration from the predicted path of the storm). Only one conclusion from Figure 5 appears

tenable: employment is unaffected by temporary oil supply shocks.

2.5 Production and oil supply shocks

We next examine the effect of oil supply shocks on production in the US using disaggregated industrial

production data. We obtain non-seasonally adjusted industrial production indices by major industry for the

period 1980-2019 from Table G17 published by the Federal Reserve Board.19 We focus on both total industrial

production and a subset of industries to provide a picture of how oil supply shocks may or may not be

transmitted across sectors. While the industrial production data are disaggregated by industry, they are not

disaggregated by geography, so we cannot ensure that the hurricane shocks do not directly impact production,

rather than operating through their effect on oil supply. For example, Hurricane Katrina overwhelmed the

levees protecting New Orleans and devastated the city, so to the extent that particular industries in New

Orleans were significant producers of oil-based products, then Katrina likely had a direct effect on those

indices. We discuss below how we trace out evidence both for and against a causal interpretation of oil

supply shocks.

19The data were obtained from https://www.federalreserve.gov/datadownload/Build.aspx?rel=g17 on October 15, 2021.
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Figure 5: Response of state-level employment to oil supply shock ψt
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We begin by examining industries that are likely to have been directly impacted by the oil supply shock:

mining and mineral extraction (North American Industry Classification System (NAICS) 21), petroleum and

coal production (NAICS 324), chemicals (NAICS 325) and plastics and rubber products (NAICS 326). These

industries either produce oil (mining and mineral extraction) or use refined oil as an input for production.20

Thus, hurricanes that directly affect oil production or refinement should affect these measures of industrial

production if our oil supply shocks are, in fact, shocks. We note that apart from mining and mineral extrac-

tion, these indices are part of the non-durable manufacturing sub-component of manufacturing industrial

production. Next, we examine industries that are not directly affected by oil production but which conceiv-

ably may be affected either because oil products are complements or substitutes: electric and gas utilities

(NAICS 2211), non-metallic mineral products (NAICS 327), machinery (NAICS 333) and motor vehicles

and parts (NAICS 33613). We note that apart from electric and gas utilities, these indices are part of the

durable manufacturing sub-component of manufacturing industrial production.21 Finally, we examine how

oil supply shocks affect the total, manufacturing, durable manufacturing and non-durable manufacturing

indices of industrial production. These indices include all the remaining sub-indices to assuage concerns that

the data series chosen above were cherry-picked. These indices are also informative about possible indirect

effects that may, perhaps, operate through consumer or final demand in addition to direct production input

effects.

We estimate for each industrial production series s in our sample :

ys,t+h =

k∑
i=1

ρi,hn yn,t−i +Xtβ
h
n + µh

nψn,t + en,t+h, ∀n ∈ N, (4)

where the coefficients and variables are indexed by s but otherwise identical to those described in Equation

(2). We set k = 8 but our estimates are unaffected by choices of higher values for k. We set h = {0, 1, ..., 5}

which implies that the number of observations for each regression range from 472 to 466. Figure 6 presents

the impulse response estimates for the series described above.

Figure 6 (a) illustrates that the hurricane shocks directly affect oil production and refining as the mining

and petroleum sub-indices are both statistically different from zero at the 95 percent level. Indeed, both

series are nearly identical in terms of their impulse response functions until h = 4. Chemicals and plastics

20To map how oil is used in the US, we follow https://www.eia.gov/energyexplained/oil-and-petroleum-products/

use-of-oil.php. While the vast majority of oil in the US is used as fuel, the seventh largest usage is petrochemical feed-
stock which is an input to chemicals and plastics. An alternative would be to follow Alquist, Bhattarai, and Coibion (2020) and
use US input-output tables to link oil production to related industries. We choose not to follow this approach here for three
reasons. The first reason is simply parsimony as the input output tables reported detailed data for 405 NAICS classifications.
The second reason is that roughly 85 percent of oil extraction goes to refineries according to the latest I-O tables, and 75 percent
of refinery output is final consumption by consumers (with a further almost 14 percent to commercial trucking). Since Alquist,
Bhattarai, and Coibion (2020) consider commodities writ large and not just oil, this high network concentration is less relevant
for their study. Finally, our interest is not just whether there is a direct effect on production but also an indirect effect via less
consumer demand if price changes affect household budgets.

21Non-metallic mineral products include cement, glass and ceramics and are energy intensive to produce.
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appear much less affected, although the point estimate for chemical production is statistically significant for

h = 0, indicating a contemporaneous effect. It is not necessarily surprising that chemical manufacturing is

affected by hurricanes in the Gulf, as the Gulf coast from Texas to the Florida panhandle is the location

of many chemical producers in the US. There is no apparent effect from the hurricane shock on plastics

and rubber product production in the US at any h we consider. Figure 6 (b) presents the impulse response

estimates for products that might appear to be either complements or substitutes for oil production. For

example, one might expect motor vehicle and parts production to slow if increasing gasoline prices were

expected to lower the demand for motors or their usage. One might also suspect, since machinery and

non-metallic mineral products are energy intensive, that an oil supply shock would lower their production.

One might also expect electricity and gas demand to be affected to the extent that an energy shortfall from

lost oil production could be offset by other energy sources. The impulse responses in Figure 6 (b) are not

statistically different from zero at the 95 percent level of significance and, perhaps more relevantly, are flat,

which suggests that the oil supply shock does not propagate across the broader set of US industries. The

impulse responses in Figures 6 (a) and (b) suggest that oil supply shocks are localized to their own industry

and do not spill over into the broader economy. This result is consistent with Lee and Ni (2002) and Jo,

Karnizova, and Reza (2019), who find that only a small set of oil-related sectors experience oil price shocks

as supply shocks.

To gauge the overall effect of the supply shocks on industrial production, Figure 6 (c) shows the impulse

responses for the total, durable and non-durable manufacturing industrial production indices. The impulse

responses for the total and non-durable indices are statistically significant for h = 0, 1 and almost identical

in terms of their point estimates because mining and petroleum production are elements of both indices.

However, these effects are short-lived and the point estimates are roughly 1/3 of the point estimates for

either mining or petroleum production, which suggests that the effects are not broadly similar over the

remaining component sub-indices. Moreover, the manufacturing sub-index, which includes both durable and

non-durable production, is not statistically different from zero and is essentially flat. This suggests that the

remaining non-durable and durable sub-indices are not significantly affected by the oil supply shock.22 The

impulse responses in Figure 6 imply that oil supply shocks are localized to their industry and do not broadly

affect US aggregate production. This conclusion is consistent with our estimates for state employment.

2.6 Inflation

The short-run industrial production responses to the oil supply shocks suggest that there may be some

reduction in supply of goods produced in the US economy. Although there is little evidence that these shocks

22The difference between the total index and the manufacturing index is largely due to the mining and mineral extraction
index.
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Figure 6: Response of industrial production to oil supply shock ψt
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propagate to sectors of the economy not directly affected, one might expect that a reduction in industrial

production would increase prices. Indeed, our previous exercises provided evidence that temporary oil supply

shocks affect gasoline prices. We now turn to the question of whether these shocks also affect the broader

price level.

We use monthly data on the consumer price index from the US Bureau of Labor Statistics (BLS) for

the US and the four main regions reported by the BLS: the Northeast, the Midwest, the South and the

West.23 We focus on three price level measures: the total CPI, the energy sub-index of the CPI, and the

non-energy sub-index of the CPI. We use the logarithm of each index as our dependent variable and estimate

our baseline specification, Equation (2), with k = 12 and h = {0, 1, ..., 8}.

Figure 7 plots the impulse responses for the logarithms of the three price level series for each of the five

geographies. The impulse responses for the CPI and the energy sub-index of the CPI are similar to those of

the city-level gasoline prices we report above. The point estimates are significant at the 5 percent level for

the US and the South for the CPI for h = 0 and for the South for the energy sub-index. The remaining point

estimates for the CPI and energy sub-index are not statistically significant at any horizon. Interestingly,

we find no evidence of statistically significant point estimates for the non-energy sub-index for any region

for horizons up to h = 3. However, we do find statistically significant point estimates at the 5 percent

level for the Northeast region for h = 4. We are reluctant to conclude that this is strong evidence of price

pass-through, given that there is no evidence of a similar pattern in the total CPI impulse response.

The evidence from the impulse responses plotted in Figure 7 appears to support a conclusion that oil

supply shocks are transitory and localized to a narrow subset of industries directly involved in oil production.

Broader effects for the US economy are effectively nominal shocks to prices and, even here, appear to be

both muted and transitory.

2.7 Export and imports

Our final consideration is to examine the effect of oil supply shocks on international trade and finance. One

plausible reason why we might find no effect from oil supply shocks in the Gulf is that lost oil production is

replaced by oil imports, so that there is, in fact, no change in the quantity of oil available to the US economy.

Since Canada is an oil-producing neighbour to the US, it is perhaps possible that oil shocks in the Gulf lead

to increased oil supply by Canadian producers. Although this might seem unlikely since our measure of oil

supply shocks in the Gulf did not appear to affect the EIA measures of imported oil prices, it is plausible

that fixed-price contracts denominated in USD might mitigate against price impacts. To analyze whether

the oil supply shock in the Gulf transmits as a positive oil supply shock to Canadian producers, we use

23The data were obtained from https://data.bls.gov/cgi-bin/dsrv on November 10, 2021.
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Figure 7: Response of consumer price index to oil supply shock ψt
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Figure 8: Response of Canadian energy exports and exchange rate to oil supply shock ψt
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Canadian real energy exports for the years 1997-2019 and the Canadian dollar exchange rate for the years

1980-2019.24

We estimate using our baseline specification, Equation (2), with k = 12 and h = {0, 1, ..., 8}. Figure 8

presents the impulse response estimates for the natural logarithms of the Canadian real energy exports and

the exchange rate. The impulse response estimates are not significantly different from zero at any horizon

we consider. Taken together, Figures 2, 4 and 8 suggest that oil supply shocks in the Gulf may increase

gasoline prices over the very short (up to one month) horizon, which is not offset by changes in imported

oil demand. Finally, there is little evidence that the oil supply shock in the Gulf affected the Canada-US

exchange rate at any horizon.

3 Conclusion

We have used a quasi-random weather event, hurricanes, which lead to production shut-ins at offshore oil

platforms in the Gulf to investigate the effect of oil supply shocks. We show that these hurricane events

are associated with lower oil production in the Gulf and that the magnitude of these production changes

can account for up to 20 percent of US production. We analyze the effects of these oil supply shocks for

oil prices, gasoline prices, employment, industrial production and international trade and finance. We find

24The data were obtained from Statistics Canada, series V7T83955, and the Bank of Canada, series V37426, respectively on
3/9/2021.
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little evidence that temporary oil supply shocks transmit to the broader US economy or to its international

trading partner Canada.
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4 Appendix: Detailed regression results

Table 1: Imported oil prices

(a) Dependent variable: ln(real oil prices)

Horizon (h) (0) (1) (2) (3) (4) (5) (6) (7) (8)
ψ -0.001 0.008 0.027 0.042 0.019 0.001 -0.016 -0.032 -0.022

[0.007] [0.013] [0.020] [0.029] [0.030] [0.030] [0.023] [0.020] [0.018]

Lags 12 12 12 12 12 12 12 12 12
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 468 468 468 468 468 468 468 468 468
R2 0.99 0.96 0.94 0.93 0.91 0.91 0.91 0.92 0.92

(b) Dependent variable: ln(nominal oil prices)

Horizon (h) (0) (1) (2) (3) (4) (5) (6) (7) (8)
ψ -0.002 0.008 0.028 0.043 0.020 0.001 -0.015 -0.031 -0.021

[0.007] [0.014] [0.021] [0.030] [0.031] [0.031] [0.023] [0.020] [0.018]

Lags 12 12 12 12 12 12 12 12 12
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 468 468 468 468 468 468 468 468 468
R2 0.99 0.98 0.96 0.95 0.94 0.94 0.94 0.95 0.95

Notes: Robust standard errors in parentheses: ***, **, * indicate the statistically significant difference from zero at the 0.1,
1 and 5 percent levels respectively.
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Table 2: Imported oil prices, excluding hurricanes Katrina, Rita, Gustav and Ike

(a) Dependent variable: ln(real oil prices)

Horizon (h) (0) (1) (2) (3) (4) (5) (6) (7) (8)
ψ -0.005 -0.009 -0.002 0.009 -0.011 -0.036 -0.037 -0.042 -0.019

[0.009] [0.011] [0.014] [0.022] [0.029] [0.030] [0.025] [0.022] [0.024]

Lags 12 12 12 12 12 12 12 12 12
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 466 466 466 466 466 466 466 466 466
R2 0.99 0.96 0.95 0.93 0.91 0.91 0.91 0.92 0.92

(b) Dependent variable: ln(nominal oil prices)

Horizon (h) (0) (1) (2) (3) (4) (5) (6) (7) (8)
ψ -0.005 -0.009 -0.002 0.009 -0.011 -0.036 -0.037 -0.043 -0.019

[0.009] [0.011] [0.014] [0.023] [0.030] [0.031] [0.026] [0.022] [0.025]

Lags 12 12 12 12 12 12 12 12 12
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 466 466 466 466 466 466 466 466 466
R2 0.99 0.98 0.97 0.96 0.94 0.94 0.95 0.95 0.95

Notes: Robust standard errors in parentheses: ***, **, * indicate the statistically significant difference from zero at the 0.1,
1 and 5 percent levels respectively.
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Table 3: Inventory responses

(a) Dependent variable: US refinery inventories

Horizon (h) (0) (1) (2) (3) (4) (5) (6) (7) (8)

Ψ̃ 0.612** 0.506* 0.304 0.003 -0.163 -0.285 -0.247 -0.249 0.002
[0.195] [0.235] [0.211] [0.236] [0.245] [0.377] [0.270] [0.262] [0.277]

Observations 437 437 437 437 437 437 437 437 437
R2 0.99 0.97 0.96 0.95 0.95 0.94 0.94 0.95 0.95
Lags 12 12 12 12 12 12 12 12 12
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

(b) Dependent variable: SPR inventories

Horizon (h) (0) (1) (2) (3) (4) (5) (6) (7) (8)

Ψ̃ 0.120* 0.294** 0.288** 0.286** 0.298** 0.257* 0.220* 0.096 -0.013
[0.047] [0.102] [0.105] [0.096] [0.099] [0.101] [0.091] [0.108] [0.119]

Observations 437 437 437 437 437 437 437 437 437
R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Lags 12 12 12 12 12 12 12 12 12
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Robust standard errors in parentheses: ***, **, * indicate the statistically significant difference from zero at the 0.1, 1
and 5 percent levels respectively.
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Table 4: Inventory responses, excluding hurricanes Katrina, Rita, Gustav and Ike

(a) Dependent variable: US refinery inventories

Horizon (h) (0) (1) (2) (3) (4) (5) (6) (7) (8)

Ψ̃ 1.391*** 1.289*** 0.789 0.629 0.415 0.422 0.321 0.234 0.536
[0.272] [0.373] [0.545] [0.575] [0.468] [0.542] [0.614] [0.592] [0.627]

Observations 435 435 435 435 435 435 435 435 435
R2 0.99 0.97 0.96 0.95 0.95 0.94 0.94 0.95 0.95
Lags 12 12 12 12 12 12 12 12 12
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

(b) Dependent variable: SPR inventories

Horizon (h) (0) (1) (2) (3) (4) (5) (6) (7) (8)

Ψ̃ -0.003 0.121 0.170 0.208 0.169 0.092 0.113 0.123 0.061
[0.041] [0.086] [0.125] [0.130] [0.149] [0.161] [0.167] [0.176] [0.179]

Observations 435 435 435 435 435 435 435 435 435
R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Lags 12 12 12 12 12 12 12 12 12
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Robust standard errors in parentheses: ***, **, * indicate the statistically significant difference from zero at the 0.1,
1 and 5 percent levels respectively.
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Table 5: City gasoline prices

Horizon (h) (0) (1) (2) (3)

ψ Boston -0.024* -0.029* -0.001 0.028
[0.011] [0.013] [0.022] [0.027]

Observations 193 193 193 193
R2 0.96 0.88 0.80 0.77

ψ Chicago -0.025** -0.031* -0.004 0.017
[0.009] [0.013] [0.022] [0.028]

Observations 229 229 229 229
R2 0.97 0.92 0.90 0.89

ψ Cleveland -0.030** -0.029 0.011 0.027
[0.010] [0.015] [0.028] [0.029]

Observations 193 193 193 193
R2 0.93 0.84 0.79 0.75

ψ New York -0.020 -0.024* -0.005 0.019
[0.011] [0.012] [0.019] [0.024]

Observations 229 229 229 229
R2 0.98 0.94 0.90 0.89

ψ Denver -0.016 -0.023 -0.004 0.017
[0.010] [0.014] [0.024] [0.028]

Observations 229 229 229 229
R2 0.97 0.92 0.89 0.87

ψ LA -0.009 -0.028* -0.022 0.010
[0.008] [0.012] [0.019] [0.026]

Observations 229 229 229 229
R2 0.97 0.94 0.91 0.90

ψ San Francisco -0.013 -0.027* -0.014 0.019
[0.008] [0.011] [0.021] [0.027]

Observations 229 229 229 229
R2 0.97 0.93 0.91 0.89

ψ Seattle -0.021** -0.030* -0.009 0.022
[0.007] [0.012] [0.023] [0.026]

Observations 193 193 193 193
R2 0.96 0.89 0.83 0.79

Lags 6 6 6 6
Month FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Notes: Robust standard errors in parentheses: ***, **, * indicate the statistically signif-
icant difference from zero at the 0.1, 1 and 5 percent levels respectively.
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Table 6: State employment

Horizon (h) (0) (1) (2) (3) (4) (5)

ψ Alaska -0.000 0.000 0.001 0.000 0.000 -0.000
[0.000] [0.001] [0.001] [0.000] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 0.99 0.99

ψ Arizona 0.000 -0.000 0.001 0.001 0.000 0.001
[0.000] [0.000] [0.001] [0.001] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 1.00 1.00

ψ California -0.000 -0.000 0.000 0.001 0.000 -0.000
[0.000] [0.000] [0.001] [0.001] [0.001] [0.002]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 0.99 0.98

ψ Colorado 0.000 0.000 0.000 0.000 -0.000 -0.000
[0.000] [0.000] [0.000] [0.001] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 1.00 0.99

ψ Delaware -0.000 0.000 0.001 0.001 0.000 0.000
[0.000] [0.001] [0.001] [0.001] [0.001] [0.002]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 0.99 0.98

ψ District of Columbia 0.000 0.001 0.001 0.002 -0.001 -0.001
[0.001] [0.001] [0.001] [0.001] [0.001] [0.002]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 0.99 0.99

ψ Georgia 0.002 0.003 0.002 0.003 0.002 0.001
[0.001] [0.002] [0.002] [0.002] [0.002] [0.002]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 0.99 0.99

ψ Hawaii 0.000 0.000 0.001 0.001 -0.000 -0.001
[0.000] [0.001] [0.001] [0.001] [0.002] [0.003]

Observations 347 347 347 347 347 347
R2 1.00 1.00 0.99 0.99 0.94 0.90

ψ Idaho 0.000 0.000 0.000 0.001 0.000 0.001
[0.000] [0.000] [0.001] [0.001] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 1.00 1.00

ψ Illinois -0.000 -0.000 -0.000 -0.000 -0.001 -0.001
[0.000] [0.000] [0.000] [0.001] [0.001] [0.002]

Observations 347 347 347 347 347 347
Continued on next page
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Table 6 – continued from previous page
Horizon (h) (0) (1) (2) (3) (4) (5)

R2 0.99 0.99 0.98 0.98 0.89 0.85

ψ Indiana -0.000 -0.000 -0.000 0.001 0.000 -0.000
[0.000] [0.001] [0.001] [0.001] [0.001] [0.002]

Observations 347 347 347 347 347 347
R2 1.00 0.99 0.99 0.99 0.94 0.92

ψ Iowa -0.000 -0.000 -0.000 0.000 0.000 -0.000
[0.000] [0.001] [0.000] [0.001] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 0.99 0.99 0.99 0.99 0.96 0.94

ψ Kansas 0.000 0.000 0.000 0.000 0.000 0.000
[0.000] [0.000] [0.000] [0.000] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 0.99 0.98 0.97

ψ Kentucky 0.000 0.000 0.000 0.001 0.000 0.000
[0.000] [0.001] [0.001] [0.001] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 0.99 0.99 0.99 0.97 0.96

ψ Maine 0.000 0.000 -0.000 0.000 -0.000 -0.000
[0.000] [0.000] [0.001] [0.001] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 0.99 0.99 0.99 0.97 0.96

ψ Maryland 0.001 0.001 0.001 0.001 0.000 -0.000
[0.000] [0.000] [0.001] [0.001] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 0.99 0.98

ψ Massachusetts 0.000 0.000 0.000 0.001 0.000 0.000
[0.000] [0.000] [0.000] [0.001] [0.001] [0.002]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 0.99 0.94 0.92

ψ Michigan -0.000 -0.000 0.000 0.001 0.000 -0.000
[0.000] [0.000] [0.001] [0.001] [0.001] [0.002]

Observations 347 347 347 347 347 347
R2 1.00 1.00 0.99 0.99 0.90 0.86

ψ Minnesota 0.000 0.000 0.000 0.001 0.000 0.000
[0.000] [0.000] [0.001] [0.000] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 0.99 0.98

ψ Missouri 0.000 0.000 0.000 0.001 0.000 -0.000
[0.000] [0.000] [0.000] [0.000] [0.001] [0.001]

Observations 347 347 347 347 347 347
Continued on next page
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Table 6 – continued from previous page
Horizon (h) (0) (1) (2) (3) (4) (5)

R2 1.00 1.00 1.00 1.00 0.97 0.95

ψ Montana -0.000 -0.000 -0.000 0.000 0.001 0.001
[0.000] [0.000] [0.001] [0.001] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 0.99 0.99

ψ Nebraska 0.000 0.000 -0.000 0.000 0.001 0.001
[0.000] [0.000] [0.000] [0.000] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 0.99 0.99

ψ Nevada 0.000 -0.000 0.000 0.000 -0.001 -0.002
[0.000] [0.000] [0.001] [0.001] [0.002] [0.003]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 0.99 0.99

ψ New Hampshire -0.000 0.000 0.000 0.000 -0.000 0.000
[0.000] [0.000] [0.001] [0.001] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 0.98 0.97

ψ New Jersey 0.000 0.000 0.000 0.001 0.000 0.000
[0.000] [0.000] [0.001] [0.001] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 0.99 0.99 0.99 0.95 0.92

ψ New York -0.000 -0.000 0.000 0.000 -0.000 -0.001
[0.000] [0.000] [0.001] [0.000] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 0.99 0.99 0.99 0.93 0.89

ψ North Carolina -0.000 0.000 0.000 0.000 -0.001 -0.000
[0.000] [0.001] [0.001] [0.001] [0.001] [0.002]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 0.99 0.98

ψ North Dakota 0.000 0.000 0.000 0.001 0.000 -0.000
[0.000] [0.000] [0.001] [0.001] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 0.99 0.99

ψ Ohio -0.000 -0.000 0.000 0.001 0.001 -0.000
[0.000] [0.000] [0.001] [0.001] [0.001] [0.002]

Observations 347 347 347 347 347 347
R2 0.99 0.99 0.98 0.98 0.88 0.85

ψ Oklahoma -0.000 -0.000 -0.000 0.000 -0.000 0.000
[0.000] [0.001] [0.000] [0.000] [0.001] [0.001]

Observations 347 347 347 347 347 347
Continued on next page
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Table 6 – continued from previous page
Horizon (h) (0) (1) (2) (3) (4) (5)

R2 1.00 1.00 1.00 1.00 0.99 0.98

ψ Oregon 0.000 0.000 0.001 0.001 0.001 0.001
[0.000] [0.001] [0.001] [0.001] [0.001] [0.002]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 0.99 0.99

ψ Pennsylvania -0.000 -0.000 0.000 0.001* 0.001 0.000
[0.000] [0.000] [0.000] [0.000] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 0.99 0.99 0.99 0.99 0.94 0.92

ψ Rhode Island -0.000 -0.000 -0.001 -0.000 -0.001 -0.001
[0.000] [0.000] [0.001] [0.001] [0.001] [0.002]

Observations 347 347 347 347 347 347
R2 1.00 0.99 0.99 0.99 0.93 0.88

ψ South Carolina -0.000 -0.000 -0.000 -0.000 -0.000 0.000
[0.000] [0.001] [0.001] [0.001] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 0.99 0.99

ψ South Dakota -0.000 -0.000 0.000 0.000 0.000 0.000
[0.000] [0.000] [0.000] [0.000] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 1.00 1.00

ψ Tennessee -0.000 -0.000 -0.000 0.000 0.001 0.001
[0.000] [0.001] [0.001] [0.001] [0.001] [0.002]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 0.99 0.98 0.97

ψ Utah 0.000 -0.000 0.000 0.001 0.000 0.000
[0.000] [0.000] [0.001] [0.001] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 1.00 1.00

ψ Vermont 0.000 -0.000 -0.000 -0.000 -0.001 -0.001
[0.000] [0.001] [0.000] [0.000] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 1.00 0.99 0.99 0.98 0.97

ψ Virginia -0.000 0.000 0.000 0.001 0.000 0.000
[0.000] [0.000] [0.001] [0.001] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 0.99 0.99

ψ Washington 0.000 0.001 0.001 0.000 0.000 0.000
[0.000] [0.000] [0.000] [0.001] [0.001] [0.001]

Observations 347 347 347 347 347 347
Continued on next page
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Table 6 – continued from previous page
Horizon (h) (0) (1) (2) (3) (4) (5)

R2 1.00 1.00 1.00 1.00 0.99 0.99

ψ West Virginia 0.000 0.000 0.000 0.001 -0.000 -0.000
[0.000] [0.000] [0.000] [0.000] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 0.99 0.98 0.98 0.98 0.89 0.86

ψ Wisconsin -0.000 0.000 0.000 0.000 0.000 0.000
[0.000] [0.000] [0.000] [0.000] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 0.99 0.99 0.99 0.96 0.95

ψ Wyoming 0.000 -0.000 -0.000 0.000 -0.000 -0.000
[0.000] [0.000] [0.000] [0.001] [0.001] [0.001]

Observations 347 347 347 347 347 347
R2 1.00 1.00 1.00 1.00 1.00 1.00

Lags 13 13 13 13 13 13
Month FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Notes: Robust standard errors in parentheses: ***, **, * indicate the statistically significant difference

from zero at the 0.1, 1 and 5 percent levels respectively.

Table 7: Industrial production

Horizon (h) (0) (1) (2) (3) (4) (5) (6)
Mining

ψ 0.016*** 0.010** 0.002 0.003 0.002 0.001 -0.001
[0.004] [0.003] [0.004] [0.003] [0.003] [0.003] [0.003]

Observations 472 471 470 469 468 467 466
R2 0.98 0.97 0.96 0.96 0.95 0.95 0.95

Petroleum

ψ 0.014** 0.009* 0.001 0.003 -0.000 -0.004* -0.002
[0.004] [0.004] [0.004] [0.002] [0.002] [0.002] [0.002]

Observations 472 471 470 469 468 467 466
R2 0.98 0.98 0.98 0.98 0.98 0.98 0.98

Chemical

ψ 0.007* 0.004 0.001 0.002 0.001 -0.000 0.000
[0.003] [0.003] [0.003] [0.003] [0.003] [0.003] [0.002]

Observations 472 471 470 469 468 467 466
R2 1.00 0.99 0.99 0.99 0.99 0.99 0.99

Plastics

Continued on next page
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Table 7 – continued from previous page
Horizon (h) (0) (1) (2) (3) (4) (5) (6)

ψ 0.002 0.002 0.001 0.002 0.002 0.001 0.005
[0.002] [0.002] [0.003] [0.004] [0.004] [0.004] [0.005]

Observations 472 471 470 469 468 467 466
R2 1.00 1.00 1.00 1.00 0.99 0.99 0.99

Electric and gas

ψ 0.000 -0.003 -0.001 -0.006 0.004 0.010*** -0.001
[0.003] [0.002] [0.003] [0.003] [0.004] [0.003] [0.003]

Observations 472 471 470 469 468 467 466
R2 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Non metals

ψ 0.001 0.001 -0.002 -0.000 -0.003 -0.003 0.001
[0.002] [0.002] [0.003] [0.004] [0.005] [0.006] [0.006]

Observations 472 471 470 469 468 467 466
R2 0.99 0.99 0.98 0.98 0.98 0.97 0.97

Machinery

ψ 0.002 0.000 0.003 0.008* 0.006 0.004 0.004
[0.002] [0.003] [0.003] [0.004] [0.005] [0.005] [0.006]

Observations 472 471 470 469 468 467 466
R2 0.99 0.98 0.98 0.97 0.97 0.97 0.96

Motor vehicles

ψ -0.002 -0.005 0.004 0.005 0.015 0.019 -0.000
[0.007] [0.007] [0.008] [0.008] [0.019] [0.012] [0.012]

Observations 472 471 470 469 468 467 466
R2 0.97 0.96 0.96 0.96 0.96 0.96 0.97

Total

ψ 0.005** 0.003 0.003 0.003 0.004 0.004 0.003
[0.002] [0.002] [0.002] [0.002] [0.003] [0.003] [0.003]

Observations 472 471 470 469 468 467 466
R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Manufacturing

ψ 0.003 0.002 0.002 0.003 0.003 0.003 0.003
[0.001] [0.002] [0.002] [0.002] [0.004] [0.003] [0.004]

Observations 472 471 470 469 468 467 466
R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Durable

ψ 0.001 0.001 0.004 0.003 0.004 0.005 0.004
[0.002] [0.003] [0.003] [0.004] [0.006] [0.005] [0.005]

Observations 472 471 470 469 468 467 466
Continued on next page
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Table 7 – continued from previous page
Horizon (h) (0) (1) (2) (3) (4) (5) (6)

R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Non-durable

ψ 0.005** 0.003* 0.001 0.003 0.001 -0.001 -0.000
[0.002] [0.001] [0.001] [0.002] [0.002] [0.002] [0.002]

Observations 472 471 470 469 468 467 466
R2 1.00 0.99 0.99 0.99 0.99 0.99 0.99
Lags 8 8 8 8 8 8 8
Month FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes

Notes: Robust standard errors in parentheses: ***, **, * indicate the statistically significant difference

from zero at the 0.1, 1 and 5 percent levels respectively.

Table 8: Consumer Price Index

Horizon (h) (0) (1) (2) (3) (4) (5) (6) (7) (8)
ψ Midwest -0.0011 -0.0012 0.000077 0.00069 -0.000011 0.00048 0.0011 0.00067 0.00067

[0.00058] [0.00089] [0.0014] [0.0015] [0.0013] [0.0012] [0.00098] [0.00087] [0.00067]

Observations 385 384 383 382 381 380 379 378 377
R2 1.000 1.000 0.999 0.999 0.999 0.999 0.999 0.999 0.999

ψ Northeast -0.00062 -0.0012 -0.00028 0.00036 0.00017 0.00014 0.00014 0.000061 0.00016
[0.00048] [0.00072] [0.0010] [0.0011] [0.0012] [0.0010] [0.0010] [0.00086] [0.00078]

Observations 385 384 383 382 381 380 379 378 377
R2 1.000 1.000 1.000 1.000 0.999 0.999 0.999 1.000 1.000

ψ South -0.0012* -0.0013 -0.000020 0.00062 0.000013 0.00023 0.00087 0.00057 0.00050
[0.00054] [0.00077] [0.0012] [0.0013] [0.0013] [0.0012] [0.00099] [0.00090] [0.00075]

Observations 385 384 383 382 381 380 379 378 377
R2 1.000 1.000 1.000 0.999 0.999 0.999 0.999 0.999 0.999

ψ US -0.00085* -0.00099 0.000064 0.00091 0.00052 0.00049 0.00058 0.00017 0.00034
[0.00040] [0.00062] [0.0011] [0.0012] [0.0012] [0.0011] [0.00090] [0.00082] [0.00072]

Observations 468 467 466 465 464 463 462 461 460
R2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ψ West -0.00045 -0.00090 -0.00044 0.00066 0.00039 0.00023 0.00060 0.00022 0.000092
[0.00035] [0.00057] [0.0010] [0.0011] [0.0011] [0.00098] [0.00087] [0.00078] [0.00078]

Observations 385 384 383 382 381 380 379 378 377
R2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Lags 12 12 12 12 12 12 12 12 12
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Robust standard errors in parentheses: ***, **, * indicate the statistically significant difference from zero at the 0.1, 1 and 5
percent levels respectively.
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Table 9: Consumer Price Index – Energy

Horizon (h) (0) (1) (2) (3) (4) (5) (6) (7) (8)
ψ Midwest -0.0090 -0.0092 0.0027 0.0086 0.0020 0.0039 0.0063 0.0020 0.0021

[0.0049] [0.0067] [0.011] [0.012] [0.011] [0.0098] [0.0085] [0.0085] [0.0063]

Observations 468 467 466 465 464 463 462 461 460
R2 0.995 0.988 0.985 0.982 0.980 0.979 0.981 0.983 0.985

ψ Northeast -0.0073 -0.0059 0.0012 0.0076 0.0045 0.0041 0.0056 0.0015 0.00039
[0.0058] [0.0064] [0.0089] [0.010] [0.011] [0.0093] [0.0083] [0.0076] [0.0066]

Observations 468 467 466 465 464 463 462 461 460
R2 0.997 0.993 0.989 0.987 0.985 0.984 0.985 0.986 0.988

ψ South -0.010* -0.0100 0.0015 0.010 0.0049 0.0048 0.0058 -0.000050 -0.00022
[0.0047] [0.0061] [0.0095] [0.010] [0.011] [0.0093] [0.0084] [0.0081] [0.0065]

Observations 468 467 466 465 464 463 462 461 460
R2 0.996 0.990 0.986 0.984 0.981 0.980 0.982 0.984 0.986

ψ US -0.0084 -0.0082 0.00096 0.0093 0.0043 0.0041 0.0050 -0.00043 -0.00043
[0.0044] [0.0059] [0.0096] [0.011] [0.011] [0.0097] [0.0085] [0.0079] [0.0065]

Observations 468 467 466 465 464 463 462 461 460
R2 0.997 0.992 0.988 0.986 0.983 0.983 0.984 0.986 0.988

ψ West -0.0061 -0.0083 -0.0031 0.011 0.0056 0.0025 0.0016 -0.0049 -0.0033
[0.0038] [0.0055] [0.010] [0.012] [0.011] [0.010] [0.0089] [0.0078] [0.0070]

Observations 468 467 466 465 464 463 462 461 460
R2 0.997 0.992 0.989 0.988 0.986 0.985 0.986 0.988 0.990
Lags 12 12 12 12 12 12 12 12 12
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Robust standard errors in parentheses: ***, **, * indicate the statistically significant difference from zero at the 0.1, 1 and 5
percent levels respectively.
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Table 10: Consumer Price Index – Excluding energy

Horizon (h) (0) (1) (2) (3) (4) (5) (6) (7) (8)
ψ Midwest -0.000098 0.00012 0.00039 0.00052 0.00038 0.00038 0.00038 0.00031 0.00044

[0.00013] [0.00022] [0.00024] [0.00029] [0.00031] [0.00030] [0.00030] [0.00029] [0.00025]

Observations 385 384 383 382 381 380 379 378 377
R2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ψ Northeast 0.00017 -0.00016 0.00020 0.00038 0.00049* 0.00042 -0.000011 -0.00011 0.00017
[0.00029] [0.00022] [0.00022] [0.00024] [0.00024] [0.00023] [0.00035] [0.00028] [0.00031]

Observations 385 384 383 382 381 380 379 378 377
R2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ψ South 0.000038 0.00017 0.00025 0.00011 0.000083 0.000076 0.00022 0.00018 0.00025
[0.00012] [0.00015] [0.00016] [0.00025] [0.00026] [0.00032] [0.00031] [0.00028] [0.00032]

Observations 385 384 383 382 381 380 379 378 377
R2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ψ US 0.00015 0.00012 0.00038 0.00049 0.00049 0.00032 0.00025 0.00026 0.00031
[0.00012] [0.00016] [0.00020] [0.00025] [0.00029] [0.00030] [0.00029] [0.00025] [0.00026]

Observations 468 467 466 465 464 463 462 461 460
R2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ψ West 0.00018 0.000069 0.00011 0.00024 0.00031 0.00021 0.00030 0.00022 0.000058
[0.00014] [0.00018] [0.00022] [0.00025] [0.00030] [0.00031] [0.00033] [0.00031] [0.00031]

Observations 385 384 383 382 381 380 379 378 377
R2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Lags 12 12 12 12 12 12 12 12 12
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Robust standard errors in parentheses: ***, **, * indicate the statistically significant difference from zero at the 0.1, 1 and 5
percent levels respectively.
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Table 11: Canadian exports and exchange rate

(a) Dependent variable: ln(energy exports)

Horizon (h) (0) (1) (2) (3) (4) (5) (6) (7) (8)

ψ -0.001 -0.003 0.004 0.006 0.005 0.006 -0.002 -0.002 0.005
[0.004] [0.003] [0.005] [0.005] [0.004] [0.005] [0.005] [0.005] [0.008]

Observations 264 264 264 264 264 264 264 264 264
R2 0.98 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.97
Lags 12 12 12 12 12 12 12 12 12
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

(b) Dependent variable: ln(CAD)

Horizon (h) (0) (1) (2) (3) (4) (5) (6) (7) (8)

ψ 0.002 -0.003 -0.004 -0.001 0.002 0.003 0.001 0.002 0.005
[0.002] [0.005] [0.006] [0.005] [0.005] [0.005] [0.005] [0.004] [0.003]

Observations 468 468 468 468 468 468 468 468 468
R2 0.99 0.98 0.97 0.96 0.96 0.96 0.96 0.96 0.96
Lags 12 12 12 12 12 12 12 12 12
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Robust standard errors in parentheses: ***, **, * indicate the statistically significant difference from zero at the 0.1,
1 and 5 percent levels respectively.
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