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Abstract 
Using data from patents, citations, inter-sectoral sales and customs, we examine the 
international diffusion of technology through imports of sectoral knowledge and production 
inputs. We construct measures of the flow of technology embodied in imports. These measures 
are weighted by inter-sectoral knowledge and production input-output linkages that capture 
the relevance of this technology for generating new innovations in different sectors in 
importing countries. We develop an instrumental variable strategy to identify the causal effects 
of technology embodied in imports on innovation and diffusion outcomes. For sectors in 
importing countries, increases in both knowledge- and production-weighted embodied 
technology imports lead to technology diffusion (measured using backward citations in new 
patent applications) and increases in the rate of new innovations (measured using the forward 
citations those patents receive). Effects are substantially larger for knowledge-weighted 
imports of embodied technology, which also lead to improvements in the average quality of 
new innovations. 

Topics: Trade integration; International topics; Productivity; Development economics 
JEL codes: O33, F14, O31, O19, F61 

Résumé 
À l’aide de données tirées des brevets, des citations de brevets, des ventes intersectorielles et 
des services douaniers, nous examinons la diffusion internationale de la technologie par 
l’intermédiaire des importations d’intrants sectoriels de connaissances et de production. Nous 
construisons des mesures du flux de la technologie incorporée aux importations. Ces mesures 
sont pondérées par les liens entre les intrants et les extrants de connaissances et de production 
intersectoriels, deux éléments qui servent à comprendre la pertinence de la technologie 
incorporée pour la création de nouvelles innovations dans différents secteurs dans les pays 
importateurs. Nous élaborons une stratégie de variables instrumentales pour identifier les 
effets causals de la technologie incorporée aux importations sur l’innovation et la diffusion. 
Pour certains secteurs dans les pays importateurs, les hausses des importations des 
technologies pondérées à la fois par les connaissances et par la production entraînent une 
diffusion de la technologie (mesurée au moyen des citations antérieures dans les nouvelles 
demandes de brevets) et des accélérations du rythme des innovations (mesurées à l’aide des 
citations postérieures reçues par ces brevets). Les effets sont substantiellement plus larges pour 
les importations de technologie incorporée pondérées par les connaissances, ce qui se traduit 
aussi par des améliorations dans la qualité moyenne des innovations. 

Sujets : Intégration des échanges; Questions internationales; Productivité; Économie du 
développement 
Codes JEL : O33, F14, O31, O19, F61 



1 Introduction

Innovation and R&D activity are concentrated in a relatively small number of advanced
economies. Recent work demonstrates the quantitative importance of international technology
diffusion for the gains from trade and aggregate growth (see, for example, Buera and Oberfield,
2020; Sampson, 2020; Cai et al., 2022). However, little direct empirical evidence exists on the
significance of specific channels through which ideas spread across borders. In this paper, we
examine the diffusion of technology across countries and sectors through technology embodied
in imports of goods from the US using evidence from patents and citations data.

We focus on this channel for three reasons.1 First, new innovations often manifest them-
selves as new products or enhancements to existing products, and many of these new or
enhanced products are then traded between countries. These product flows potentially convey
information about the innovations embodied within them to the users of the products. Second,
the foundational knowledge on which new innovations are based originates from many distinct
sectors; these sources vary across sectors and need not be related to sectors’ sources of pro-
duction inputs. Since countries’ patterns of trade depend in part on patterns of comparative
advantage, their imports of technology embodied in trade flows affect innovation in different
sectors in those countries in different ways. Incorporating variation in sectors’ sources of
knowledge and production inputs is necessary to assess the impacts of a given amount of
technology embodied in a set of trade flows on different sectors.2 Third, the effects of trade
policies go beyond the well-studied impacts of tariffs on, for example, static intermediate and
final goods prices, since they can also affect the flow of information and technology across
countries and sectors. Because new innovations often build on existing knowledge, changes
in technology flows due to changes in trade policy can have effects on innovation activities
not accounted for by the policy-induced responses of innovation to import competition and
market access.3

The first contribution of our paper is to estimate the extent to which trade is a channel
of international technology diffusion by investigating the effects of technology embodied in

1Other channels include technology licensing, foreign direct investment, knowledge transfers within
multinational firms, immigration, trade in services, and cross-border scientific or technical collaborations (see
Keller (2004, 2010, 2021) for surveys of empirical evidence of different channels).

2Knowledge inputs are the ideas and technologies that are built upon to generate new innovations while
production inputs are the products that are used up in the production of goods and services.

3Shu and Steinwender (2019) survey the empirical literature examining evidence of the effects of import
competition and market access on innovation. Existing work that, like us, focuses on effects that are present in
patents data includes Bloom et al. (2016), Bombardini et al. (2018), Autor et al. (2020) for import competition,
and Coelli et al. (2020) and Aghion et al. (2021b) for market access.
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imports on innovation and diffusion outcomes. This channel underlies many theoretical and
quantitative models of international technology spillovers (e.g., Grossman and Helpman,
1991; Alvarez et al., 2013; Buera and Oberfield, 2020). We start by developing a conceptual
framework to guide our empirical analysis. In this framework, the rate at which firms in
each sector innovate depends on investment in R&D, domestic technology spillovers, and
international spillovers from the technological frontier. International spillovers depend on
embodied technology imports—the import-weighted stock of frontier technology in a sector—
and the relevance of technology in input sectors for generating new innovations in a sector.

We use patents and citations data to measure innovation and diffusion outcomes. Patents
document innovations that result in new products, new components of existing products, or
new methods of producing products. Moreover, patent citations provide an explicit account of
the sources of technologies upon which new patentable technologies are built that can be used
to measure technology diffusion. The second contribution of our paper is to construct a novel
dataset on country-sector level innovation activity and technology diffusion. We leverage the
Google Patents database to construct detailed patent and citations outcomes for a wide range
of countries. The database contains information on the locations of inventors that allows us
to construct measures of patenting activity and cross-country citation flows. We also use
imports from the Centre d’Études Prospectives et d’Informations Internationales (CEPII)
database of international trade flows and cross-sector sales from the Bureau of Economic
Analysis (BEA) in our analysis. Finally, we map data into a consistent classification of sectors
using a series of concordances.

The third contribution of our paper is to construct measures of cross-sector inputs in
embodied technology imports. As a first step, we construct measures of the inter-sectoral
relevance of technology inputs. We use inter-sectoral citations and sales data to construct
knowledge and production input-output (IO) tables. We construct knowledge IO linkages for
a country using the share of citations from each sectors’ patents assigned to that country to
each other sectors’ patents. We similarly construct production IO linkages using the share
of sales between sectors in total input purchases. Unlike with patents, data to construct
the production IO table at the level of sectoral aggregation we use is only available for the
US, which we use as the frontier economy in our analysis. Since knowledge and production
IO linkages could, in principle, be similar for many sectors, we demonstrate that the US
knowledge and production IO tables are distinct.4 In particular, we document that knowledge

4Though not the focus of our paper, we are among the first to provide a descriptive comparison of the
knowledge and production IO tables of an economy. Concurrent work in Hötte (2021) constructs similar
knowledge and production IO tables and compares them.
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and production IO linkages are not highly correlated on average, that knowledge IO linkages
are less concentrated than production IO linkages for the average sector, and that the sectors
that are key economy-wide sources of inputs differ between the knowledge and production IO
tables.

We combine the knowledge and production IO linkages with data on imports from the US
and sector-level US technology stocks that are constructed using quality-adjusted flows of new
patents to develop two measures of inputs in embodied technology imports. We refer to these
measures as the knowledge-weighted and production-weighted embodied technology imports.
Specifically, we aggregate import-weighted US technology stocks using a Cobb-Douglas
function where inter-sectoral weights are taken from the knowledge and production IO tables.
We exclude own-sector embodied technology imports from these measures in our empirical
specifications both to avoid potential endogeneity concerns arising from within-country-sector
demand shocks and because own-sector imports can affect innovation activity due to import
competition effects. The knowledge-weighted measure is directly related to our channel of
interest since it is based on knowledge flows across sectors that are derived from inter-sectoral
citations. The production-weighted measure is also included as potentially important transfers
of technology can occur through production interactions between sectors. A key outcome of
our analysis is to compare the strength of spillovers from knowledge- and production-weighted
embodied technology imports.

Our main empirical specification involves regressing measures of innovation and diffusion
outcomes on knowledge-weighted and production-weighted embodied technology imports.
The main innovation outcomes are patents, forward citations, and forward citations per
patent while our main diffusion outcomes are US backward citations, US backward citations
per patent, and the share of US backward citations in total backward citations of foreign
patents.5 We also include controls for a measure of the stock of domestic technology inputs
for each sector, which uses country-specific knowledge IO linkages, and own-sector imports.
Additionally, our long panel of data, spanning from 1995 through 2015, allows us to control
for high-dimensional fixed effects. We include country-sector fixed effects to account for
persistent differences across sectors in different countries in their patenting outcomes, and
country-year fixed effects and aggregate sector-year fixed effects to control for common trends
within countries and groups of sectors.

A potential concern with estimating the effects of the trade channel of technology diffusion
5Forward citations are measured over the five-year period following the initial filing year of a patent

application. US (foreign) backward citations are measured as the cross-sector citations of US (foreign) patents
by all patents applied for in a given country-sector-year.
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on domestic patenting outcomes is that domestic shocks that affect the outcomes may also
lead to changes in demand for US imports. For instance, if domestic R&D and embodied
technology in cross-sector imports are substitutes in the production of new innovations, then
shocks to domestic R&D productivity in a sector will reduce demand for embodied technology
imports and ordinary least squares (OLS) estimates of the effects would suffer from a negative
bias. On the other hand, if imported embodied technology and R&D are complements in
the production of new innovations, there would be a positive bias in the OLS estimates.6 To
address this concern, we use an instrumental variable (IV) strategy to isolate the effects of
embodied technology imports on innovation and diffusion outcomes. For each country, we
construct a cluster of related countries that fall into the same quintiles of the distributions of
the total trade (exports plus imports) to GDP ratio and GDP per capita. We then construct
instruments that replace US imports in a given sector for each country with US exports in
the sector to all countries outside of the country’s cluster. The IV strategy isolates US supply
shocks by excluding countries that are likely to experience correlated demand shocks.

Using our IV strategy, we find that embodied technology imports have positive effects on all
three main innovation outcomes. A 1% increase in knowledge-weighted embodied technology
imports leads to statistically significant increases of 0.041% for the count of patents, 0.059%
for forward citations, and 0.024% for the per-patent rate of forward citations. Estimates of
the effects of production-weighted embodied technology imports are smaller: a 1% increase
leads to a 0.006% increase in both the count of patents and forward citations, but has no
statistically significant effect on the per-patent rate of forward citations. To quantify the
magnitude of the impacts, we compute the effects on each outcome variable of a one standard
deviation increase in the residual variation of the embodied technology measures that remains
after removing the variation explained by the empirical model’s other controls and fixed effects.
For patent counts, forward citations, and per-patent forward citations, respectively, the effects
of knowledge-weighted (production-weighted) embodied technology imports account for 8.1%
(1.1%), 6.8% (0.7%), and 1.8% (0%) of one standard deviation of the residual variation in
the outcome variable remaining after removing the variation in the outcome explained by the
fixed effects. The considerably larger effects of the knowledge-weighted measure is consistent
with our expectation that the knowledge IO table better captures the relevance of technology
in cross-sector inputs for generating new innovations.

For diffusion outcomes, we find that a 1% increase in knowledge-weighted embodied
6Data on R&D spending at the level of industry disaggregation used in our analysis is unavailable for

most countries in our sample.
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technology imports leads to a 0.081% increase in the flow of backward citations to US patents,
while a 1% increase in the production-weighted measure leads to a 0.011% increase. In
terms of the effects of a one residual standard deviation increase in these measures, the
former effect accounts for 7.0% and the latter effect accounts for 0.9% of a residual standard
deviation of the outcome variable. Despite estimating larger elasticities for US backward
citations compared to those for the count of patents, we do not find consistent evidence that
either measure of embodied technology imports increases the per-patent rate of US backward
citations. Similarly, effects on the share of US backward citations in total backward citations
of foreign patents are statistically insignificant.7

The magnitudes and statistical significance of the coefficient estimates are robust to a
variety of alternative specifications. These include specifications with different lags of the
explanatory variables relative to the outcome variables; alternative IV strategies, including
the traditional leave-one-out approach; alternative transformations of the outcome variables
to address observations for which outcomes are zero in level; variations in the data included
in the construction of the outcome variables; and different measures of technology stocks.
We also find effects that are larger in magnitude when we restrict the sample to the 40
countries with the most patenting activity over our sample period. The robustness of the
results reinforces our conclusion that trade is an important channel through which technology
diffuses across countries and that this primarily operates through imports of knowledge inputs
rather than production inputs.

Related Literature. Our work contributes to the literature on the channels of international
technology diffusion (most recently surveyed by Keller, 2021), particularly those papers that
examine the trade channel. This includes the pioneering work by Coe and Helpman (1995)
and the within-sector analysis of R&D diffusion across borders through both trade and
non-trade channels in Acharya and Keller (2009). Our focus on direct evidence for diffusion
using citations in new patents is closely related to MacGarvie (2006) and the concurrent and
complementary study in Aghion et al. (2021a), both of which use French firm-level data on
the extensive margins of trade participation to show that citations to firms’ patents increase
in foreign markets with which firms interact through trade. We add to this body of evidence
by showing with a sector-level analysis that technology embodied in imports of knowledge

7Although we find that embodied technology imports from the US lead to increased rates of innovation,
this does not necessitate a shift in the cross-country composition of knowledge inputs that are used in the
generation of the new innovations. For example, domestic innovators may learn about technologies developed
in other foreign countries that are embodied in US imports.
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inputs is a source of technology diffusion through the trade of goods.
In doing so, our paper provides evidence for the international technology diffusion that

underlies recent growth models with trade, diffusion, and innovation (Buera and Oberfield,
2020; Sampson, 2020; Cai et al., 2022). Most closely related among these is Cai et al. (2022),
which allows for inter-sector technology diffusion (both within and across borders). Unlike
this work, we provide evidence that imports of embodied technology are a specific channel
through which technology diffuses across countries.

The empirical approach we take to evaluate the effects of diffusion of technology across
countries is complementary to recent work that uses patents data to measure international
technology diffusion through inter-sectoral networks, including Fons-Rosen et al. (2019),
Berkes et al. (2022), and Liu and Ma (2022). To the best of our knowledge, ours is the first
paper to include inter-sectoral knowledge IO measures based on these data to estimate the
trade channel of technology diffusion. Fons-Rosen et al. (2019) use patents-based sector-pair
measures of technological similarity adapted from Bloom et al. (2013), which are distinct
from our citations-based IO measures, to investigate the foreign direct investment channel
of technology diffusion. Berkes et al. (2022) show that there has been a large increase in
international knowledge spillovers since the 1990s as measured by cross-country patent
citations and that the innovations induced by this increase in diffusion lead to an increase in
the growth rates of sectoral output per worker and total factor productivity. Closely related
is the empirical exercise in Liu and Ma (2022) that documents that global spillovers from
past patenting activity that depend on the network of patent citations across countries and
sectors lead to increases in innovation.

Our paper is also related to the branch of the trade literature examining the effects of
changes in access to intermediate production inputs due to trade policy on many dimensions
of firm performance. This line of research includes work that shows that increased openness
to trade of production inputs leads to increases in productivity (Amiti and Konings, 2007;
Topalova and Khandelwal, 2011), product scope and new product introduction (Goldberg
et al., 2010), and reductions in marginal costs (De Loecker et al., 2016).8 Though our analysis
is conducted at the sector level rather than the firm level and does not focus on the effects
of trade policy, our results speak directly to the mechanisms through which trade in inputs
leads to improvements in performance and suggest that technology diffusion and increases
in the generation of new patented technology follow from increases in embodied technology
imports, and particularly so for trade in knowledge inputs.

8See also the other relevant works surveyed in Shu and Steinwender (2019).
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We also build on work that examines the inter-sectoral patterns of knowledge flows and
the implications of these flows in single country settings. Acemoglu et al. (2016) document
the patterns of citations across technology classes in US patents and use them to construct
innovation IO networks to show how inventions developed in one class spill over to other
classes and characterize the degree of localization in the innovation network. Cai and Li
(2019) also develop a citations-based IO network and use it to describe patterns in how
the direction of firms’ innovations evolves along knowledge IO linkages and the aggregate
growth implications of these patterns. Our work contributes to this literature by showing how
inter-sectoral knowledge IO linkages are important mediators of the diffusion of technology
across countries through the trade of goods.

Outline. The remainder of this paper proceeds as follows. Section 2 describes the data
used in our analysis. Section 3 presents the conceptual framework used to guide our empirical
analysis. Section 4 describes the constructions of the knowledge and production IO tables.
Section 5 describes our empirical strategy and baseline specification. Section 6 discusses the
estimation results and robustness checks. Section 7 concludes.

2 Data

In this section, we provide an overview of the data used for the main analysis. We use data
on patent applications and citations, inter-sectoral purchases of inputs by US sectors, and
bilateral product-level trade flows from the US into other countries. These data come from a
variety of sources and are provided in a range of distinct classifications that compel us to use
concordance tables to translate all the data into a consistent classification system. We briefly
describe the data and concordances we use below and leave the remaining details of the data
collection and variable construction to Appendix B.

Patents and citations data. We draw on data collected by Google Patents from a wide
range of patent offices around the world. For each distinct patent family, which comprises the
set of patent applications for a given innovation filed at one or more patent offices, we identify
the earliest date a patent was applied for at any patent office and treat this as the filing date
for the patent family. Each application in a patent family contains the following information
that we use in our analysis: the technology categories to which the innovation is relevant,
which are represented by International Patent Classification (IPC) codes; the set of inventors
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of the patent application and their countries of residence; and citations to other patents
listed in the patent application.9 Throughout our analysis, we focus on patent applications
rather than patent grants as grant dates are unavailable in the Google Patents database for
patents applied for at many national patent offices, whereas application dates are available.10

Furthermore, as we examine technology diffusion and its effects, patent application events
better reflect the timing of diffusion than do patent grant events.

We calculate the number of initial applications of patent families filed in each year between
1995 and 2015 in each country and technology subclass (a 4-character IPC code) and refer
to these as patent counts.11 Patents are assigned to countries using fractional counts by
computing the share of inventors of each patent from each country.12 For a subset of patent
families, applications are submitted to the three patent offices that throughout our sample
period are of global significance, including the European Patent Office (EPO), the Japan
Patent Office (JPO), and the United States Patent and Trademark Office (USPTO). We
count the number of such triadic patent applications.13

In addition to counts of patent families, we use information on citations between patents.
To measure the quality of patents filed in each year and each country and technology subclass,
we compute the number of citations received by these patents across citing patents applied
for each year from 1995 to 2021 in all countries and technology classes and define these as
the forward citations of the patents in each year. Backward citations data are used for two
purposes. First, as described in Section 4.1, we use backward citations to measure knowledge
linkages between sectors. Second, for patents filed each year and in each non-US country and
technology subclass, we calculate the number of backward citations to US patents, domestic
patents, and other foreign patents filed in any technology subclass in each year.

Inter-sectoral input purchases. To measure production input-output relationships, we
employ the Bureau of Economic Analysis (BEA) Supplementary Use Tables. These tables
are available at five-year intervals and provide the value of purchases by input sector made

9We focus our analysis on those patent families with non-missing data for each of these three sets of
information. Appendix B explains how we select information on these attributes from among the patent
applications in a family.

10For instance, there are no grant dates available for patents filed at the Israel Patent Office.
11For families with multiple IPC codes, we count these patents once for each technology subclass.
12Using information on the countries of the inventors rather than the patent office of the initial application

of a patent family allows us to account for innovations developed in one country for which patent protection
is first sought in another country. The sample used in our baseline analysis includes data from 82 countries.

13We also include patents applied for at the JPO, the USPTO, and the patent offices of France, Germany,
and the United Kingdom. These definitions of a triadic patent family are consistent with the methodology
described by Dernis (2003).
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by US output sectors based on the most up-to-date US industrial classification in use at
the time. We use tables that span from 1992 to 2007. Sector classifications are based on US
Standard Industrial Classification (SIC) codes for the 1992 Use table, while in more recent
vintages they are based on the North American Industry Classification System (NAICS). We
describe how we convert the data based on the various SIC and NAICS classifications into a
consistent classification in Appendix B. The BEA Use tables not only cover a long period
of time, they are available at a high level of disaggregation compared to alternative sources
of inter-sectoral sales data. Moreover, using US data enables us to examine how sectors in
importing countries are affected by the technology embodied in imports of production inputs
from the US based on the patterns of how those inputs are used in the US.

Bilateral trade data. Import data from CEPII’s Base pour L’Analyse du Commerce
International (BACI) database provide the value of imports of different goods from the
US into each country. Our analysis uses annual data from 1995 to 2015. Import values are
denominated in current US dollars that we convert to constant 2010 US dollars using CPI
deflators taken from the OECD. Goods are classified using 1992 Harmonized System (HS)
codes at the 6-digit level of disaggregation.

Concordances between classifications. Because the raw data underlying our analysis are
categorized using different classification systems, we employ multiple concordances between
these classifications to provide a coherent framework for analysis. We choose the most
disaggregated sectors in the 2002 BEA data as our endpoint classification system. This
classification, in which sectors are defined similarly to those in the 2002 US 6-digit NAICS
classification, allows us to retain a high degree of disaggregation in our analysis while avoiding
the potential problems that would arise in a crosswalk of our inter-sectoral input purchase
data from the BEA sectors into the more numerous HS goods categories.14

We implement a concordance methodology that enables us to first construct measures
of technology embodied in goods at the same level of disaggregation as the imports data
and second to measure the flow of technology embodied in goods imported from different US
sectors. The data downloaded from the Google Patents database are classified into different
IPC version 8 4-character technology subclasses.

For the first stage, we convert the data on patent counts, forward citations, stocks of
technology (the measurement of which we describe in Section 5.1.3), and backward citations

14There are no publicly available sources of data on input-output relationships across goods categorized by
disaggregated HS codes. The analysis sample used in our baseline specification includes 292 sectors.
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between technology subclasses into categories of goods.15 To do this, we use the concordance
developed by Lybbert and Zolas (2014) between technology subclasses and 2002 6-digit HS
codes and then crosswalk this data to 1992 6-digit HS codes. This first concordance is based
on an algorithm that uses keywords extracted from the 1992 HS code descriptions that are
matched with the text of patent titles and abstracts to construct probabilistic links between
the IPC technology subclasses of the matched patents and the HS goods categories.16

In the second stage, a series of crosswalks between 1992 HS codes and our endpoint 2002
BEA classification that provide us with weights used to map goods into sectors is overlaid
on the technology stocks, patents, citations, and trade data. The crosswalks used are the
following: first from 1992 6-digit HS codes to 1987 4-digit Standard Industrial Classification
(SIC) codes, second from 1987 4-digit SIC codes to 2002 6-digit NAICS codes, and third
from these NAICS codes into the 2002 BEA classification. In applying the first two of these
crosswalks, mappings from 1992 HS codes to 2002 NAICS codes use weights derived from
the earliest available breakdown of employment by 2002 6-digit NAICS sector from County
Business Patterns (CBP) data.17 Similar procedures that leverage CBP-based employment
weights are used to crosswalk the data underlying the different vintages of the BEA Use
tables into the 2002 BEA sector categories.

3 Conceptual Framework

Before turning to our empirical analysis, we describe a stylized conceptual framework to
guide our analysis. Time is discrete and indexed by t. The economy is populated by a mass
of identical firms within each sector of each country. Because firms are identical, we refer
to them by their country-sector-year (i, h, t) to simplify notation. We define three levels
of sectoral aggregation that align with our data and the empirical approach described in
Section 5: denote n as a summary sector (the highest aggregation), h as a sector (the focus

15See Appendix B for the procedure we use to calculate citations between technology categories.
16Related papers that use the concordances introduced by Lybbert and Zolas (2014) and extended to

other classifications in Goldschlag et al. (2020) include Kukharskyy (2020) and Hötte (2021), among others.
Kukharskyy (2020) uses the concordances with citations data to construct inter-sectoral knowledge linkages
but applies these linkages to investigating how the applicability of multinational parent firms’ knowledge
capital for a foreign affiliate affects the ownership stake (the degree of integration) of the parent firm in its
affiliate. Hötte (2021) also constructs inter-sectoral knowledge linkages and combines them with production
linkages to explore how different network characteristics of the knowledge and production IO tables are
associated with the level and growth of US sector-level output and patenting.

17The details of this procedure and links to the sources of all concordances used in this paper are provided
in Appendix B.
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of our analysis), and p as a subsector (or product). We also define Ph as the set of subsectors
p in sector h and n(h) as the summary sector n that contains sector h.

Firms in each country produce innovations by investing in R&D, denoted by Rh
i,t, to earn

future profits πh
i,t+1 per innovation in the following period. Expected profits in period t+ 1 are

given by Et[πh
i,t+1] = πi,t ×π

n(h)
t ×πh

i ×euh
i,t , where uh

i,t is the realization of an independent and
identically distributed random variable that is known to firms in period t.18 To be consistent
with our empirical analysis, expected profits depend on a country-year term common to all
sectors within a country, πi,t, a factor that is common to all countries and to all sectors within
a summary sector, πn(h)

t , and a time-invariant country-sector-specific component, πh
i . A firm

(i, h, t) that invests Rh
i,t into R&D produces innovations in the next period at rate

Xh
i,t+1 =

(
Rh

i,t

ψh
i,t

) 1
ζ (
Zh

i,tS
h
i,t

)1− 1
ζ ,

where ψh
i,t governs the relative cost of R&D across country-sector-years, Zh

i,t is the amount of
domestic technology that is relevant for sector h, and Sh

i,t is a spillover from the technology
frontier (described below). We assume that the R&D cost parameter is ψh

i,t = ψi,t × ψ
n(h)
t ×

ψh
i × evh

i,t , where vh
i,t is the realization of an independent and identically distributed random

variable that, like uh
i,t, is known to firms in period t.19 While we refer to Xh

i,t+1 as the rate of
innovations, this variable could be relabeled and interpreted as the quality of a given rate of
innovations or the quality-adjusted rate of innovations. We explore all three interpretations
in the empirical analysis.

Domestic technology input Zh
i,t depends on the stocks of technology in different sectors of

the domestic economy and the relevance of those technology stocks as inputs into innovation
for firms in the innovating sector h. Domestic technology is given by

Zh
i,t =

∏
l

(
GZ

(∑
p∈Pl

Kp
i,t

))αl,h
i,t

,

where GZ(·) is a monotonic function that dictates the strength of spillovers from domestic
technology stocks in an input sector. We set this function to GZ(x) = (1 + x)ηZ .20 Domestic

18We simplify the environment by assuming that firms only earn profits in the next period, but the
qualitative predictions of the model that we test would be equivalent if firms earned a stream of profits where
the expected value was proportional to expected profits.

19We assume that both uh
i,t and vh

i,t are unobserved by the econometrician in our empirical application.
20This specification of GZ(x) is consistent with our treatment of zeros for technology stocks in the empirical

analysis.
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technology spillovers from input sector l to sector h depend on the total stock of technology
in country-sector-year (i, l, t), ∑p∈Pl Kp

i,t, where the sum is taken over the subsectors within
sector l, and a measure of the relevance of technology from sector l for producing innovations
in sector h in country i in year t denoted by αl,h

i,t .
Spillovers from the frontier economy depend on the stocks of technology embodied in goods

imported from there. The flow of technology coming into sector h depends on a Cobb-Douglas
aggregator of spillovers from input sectors l given by

Sh
i,t =

∏
l

(
GS

(∑
p∈Pl

mp
F,i,t ×Kp

F,t

))γl,h
F,t

,

where GS(·) is a monotonic function that dictates the strength of spillovers from the technology
embodied in imports of goods from the frontier economy in a sector. We set this function to
GS(x) = (1 + x)ηS . The parameter γl,h

F,t captures the relevance of technology from sector l for
innovating in sector h in the frontier economy in period t.

The flow of technology embodied in imports of sector l goods from the frontier depends on
the stocks of technology Kp

F,t in subsectors p ∈ P l and a measure of the relative abundance
of imported goods that embody those technology stocks in country-year (i, t), mp

F,i,t. The
relative abundance of imported goods is mp

F,i,t = Mp
F,i,t/Y

p
i,t, or the imports of subsector p

goods from the frontier economy to the domestic economy Mp
F,i,t divided by the subsector’s

domestic absorption Y p
i,t (output minus net exports). Unlike with spillovers from domestic

technology, we scale frontier technology stocks by the relative abundance of frontier goods in
the domestic economy so that frontier technology spillovers depend on the extent to which
goods that embody frontier technology are available in the domestic economy. Our measure
of embodied technology can be thought of as capturing the probability that a domestic
innovator encounters a frontier good in sector l and, given the encounter, the technology
embodied in that good can be used as an input into producing new innovations in sector
h (as in, for example, Bloom et al. (2013), Lucas Jr. and Moll (2014), Perla and Tonetti
(2014), and Buera and Oberfield (2020)). Whenever γl,h

F,t > 0 and ηS > 0, increased domestic
abundance of frontier goods in subsectors p ∈ P l (higher mp

F,i,t) and increased technology
embodied in those goods (higher Kp

F,t) both increase domestic innovation in sector h.
We allow both αl,h

i,t and γl,h
F,t to be time dependent to account for changes in the sourcing

of sector l inputs into innovation by sector h over time. Moreover, we assume that the former
parameter is specific to the domestic economy while the latter is specific to the frontier
economy.
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The problem of a firm is to maximize expected profits net of R&D expenditures. The
optimal innovation rate for firms in country-sector-year (i, h, t) is determined by

Xh
i,t+1 = arg max

X
Xπh

i,t+1 − ψh
i,tX

ζ
(
Zh

i,tS
h
i,t

)1−ζ
,

where the second term is the R&D cost paid by the firm for a given innovation rate. Solving
the problem implies that firms innovate at rate

Xh
i,t+1 = ζ̃ × Sh

i,t × Zh
i,t ×

πi,t

ψi,t

× π
n(h)
t

ψ
n(h)
t

× πh
i

ψh
i

× euh
i,t−vh

i,t

 1
ζ−1

, (1)

where ζ̃ = ζ−1/(ζ−1). Taking the log of (1) and grouping variables implies that the log of the
innovation rate is

lnXh
i,t+1 = lnSh

i,t + lnZh
i,t + fi,t + f

n(h)
t + fh

i + ϵh
i,t,

where fi,t = (ln πi,t − lnψi,t)/(ζ−1), fn(h)
t = (ln πn(h)

t − lnψn(h)
t )/(ζ−1), fh

i = (ln πh
i − lnψh

i )/
(ζ−1), and ϵh

i,t = (uh
i,t −vh

i,t)/(ζ−1). Substituting in the spillovers from domestic and imported
frontier technology using the assumed functional forms for GZ(·) and GS(·) implies that

lnXh
i,t+1 = ηS lnEmbTechh

i,t + ηZ lnOwnTechh
i,t + fi,t + f

n(h)
t + fh

i + ϵh
i,t, (2)

where

EmbTechh
i,t =

∏
l

(
1 +

∑
p∈Pl

mp
F,i,t ×Kp

F,t

)γl,h
F,t

and

OwnTechh
i,t =

∏
l

(
1 +

∑
p∈Pl

Kp
F,t

)αl,h
F,t

.

The expression in (2) provides the foundation for our empirical strategy, which seeks to
identify and estimate the technology spillover elasticity parameters ηS and ηZ . In the next two
sections, we describe the construction of the variables underlying EmbTechh

i,t and OwnTechh
i,t,

which are shorthand labels for frontier and domestic technology spillovers, respectively.
The conceptual framework highlights the relationship between technology embodied in
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imported goods and innovation outcomes. The assumptions on the nature of expected profits
and R&D investment costs are flexible and capture many macroeconomic differences across
countries and sectors that may otherwise be of concern in estimating the relationship implied
by (2). These include, for example, country-specific business cycles, trends that are common to
all countries and to all sectors within a summary sector, and time-invariant differences in the
patterns of comparative advantage of countries across different sectors. However, difficulties
in estimating the relationship may arise if there are persistent country-sector-specific shocks
that drive both an increase in imports from the frontier and domestic innovation. To address
these issues, we separate the own-sector and cross-sector effects of imports of embodied
technology from the frontier, since we expect these issues to be most prevalent within sectors,
and we develop an instrumental variable estimation strategy. These remedies are discussed in
detail in Section 5.

4 Inter-Sectoral Technology Relevance

Motivated by the conceptual framework, we begin our empirical analysis by developing
measures of the inter-sectoral relevance of technology inputs. For αl,h

i,t , which parameterizes
domestic technology spillovers in country i and year t from sector l to sector h, we base this
on patent citation relationships between those sectors. Spillovers from technology embodied
in imports from the frontier may depend on both the inter-sectoral knowledge flows captured
by these citations as well as patterns of inter-sectoral input purchases, which we measure
using production relationships between sectors, so we allow γl,h

F,t to depend on both types
of relationships. We also highlight key differences between the knowledge and production
IO tables that are constructed using these relationships to shed light on how we separately
identify the effects of imported embodied technology that operate through these two channels.

4.1 Knowledge and Production Input-Output Linkages

Our analysis estimates the effects of technology embodied in imported goods on patenting
outcomes. We focus on two natural candidates to describe the relevance of technology in
each sector for generating innovations in other sectors. The first is knowledge input-output
linkages, which describe the relative flow of patent citations across sectors. This measure
is tightly linked with our focus on innovation outcomes since patent citations represent a
direct report of the flows of technology that underlie the generation of new innovations for
which the protection of rents conferred by patent rights are sought. The second is production
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input-output linkages, which describe the relative flow of intermediate inputs across sectors.
While less directly linked to innovation outcomes, the use of intermediate inputs captures
another channel through which technology can diffuse around the economy. We collect these
measures of technology relevance into separate knowledge and production IO tables of the
economy and document patterns of inter-sectoral technology flows.

Denote the number of citations of country-sector-year (j, l, s) patents by country-sector-
year (i, h, t) patents as Citesl,h

j,i,s,t. This variable captures the reported flow of technology,
or knowledge, from (j, l, s) to (i, h, t).21 We denote the set of sectors by H and the set of
countries by I.

Knowledge IO linkages, which measure the relevance of knowledge produced in each input
(cited) sector for each output (citing) sector, are constructed using the backward citations
made by patents. More specifically, let αl,h

i,t denote the knowledge IO linkage between sectors
l and h for patents filed in country i in year t. We allow for this measure to change over time
and base the relationship in year t on patents filed between years t− τ̄ and t for some chosen
lag τ̄ . The knowledge IO linkage is given by

αl,h
i,t =

∑
j∈I

∑τ̄
τ=0

∑
s≤t−τ Cites

l,h
j,i,s,t−τ∑

k∈H
∑

j∈I
∑τ̄

τ=0
∑

s≤t−τ Cites
k,h
j,i,s,t−τ

. (3)

In our analysis, we set the maximum lag used in the construction of the knowledge IO linkages
to a ten-year window (τ̄ = 9) to account for slow-moving technological transitions.22 The
knowledge IO linkages capture the country-sector (i, h) citations made by patents filed over
a ten-year window to all prior sector l patents from all countries as a share of total citations
made by country-sector (i, h) patents filed over the ten-year window.

Similarly, we measure production IO linkages as the importance of goods produced in
each input sector as intermediate inputs into production in each output sector. Because the
availability of highly disaggregated data on inter-sectoral sales is comparatively limited, we
focus on within-country transactions in the US. We define βl,h

i,t as the analog to αl,h
i,t for the

21Similarly to the allocation of patents to countries, we weight each citation by the product of the cited
and citing patents’ fractional country weights based on their respective inventor country compositions. In
this notation, each year refers to the filing year of the relevant patent families.

22For example, Berkes et al. (2022) find relatively gradual structural transformation in key patenting
sectors over a 100-year period. Similarly, Baslandze (2018) and Ayerst (2022) find that ICT diffusion affected
patterns of patent citations over this period, which highlights the need for dynamic knowledge IO linkages.
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production IO table. The production IO linkage is given by

βl,h
i,t =

Salesl,h
i,t∑

k∈H Sales
k,h
i,t

, (4)

where Salesl,h
i,t is the total value of sector l goods sold to sector h in country i and year t.

Production IO linkages measure, for year t, the share of sales from sector l to sector h in the
total sales from all sectors to sector h.

In our analysis, the production IO linkages are based on the US data from the BEA
Use tables that was described in Section 2. Since the BEA Use tables are only available at
five-year intervals, we use the linkages constructed from the data in each table for multiple
years. For consistency with the measurement of production IO linkages, we also use only
knowledge IO linkages from the same years for which there is a BEA Use table. In addition,
to allow sectoral variation in exposure to domestic and imported frontier technology inputs
to be determined in advance of exposure in a given year, we use IO linkages that are lagged
relative to the years in which exposure is measured. This lag in exposure variation is applied
to both knowledge and production IO linkages.23

4.2 Description of Knowledge and Production IO Tables

The construction of the knowledge and production IO tables relies on different data. However,
there is little point in examining the effects of imports of embodied technology in knowledge
and production inputs separately if the two IO tables are identical. We now turn to illustrating
some stylized observations regarding the two IO tables to demonstrate that they are different
potential measures of inter-sectoral technology relevance.

Both knowledge and production IO linkages take on values between zero and one. Values
closer to one indicate stronger relationships between sectors whereas values closer to zero
indicate weaker relationships. In Figure 1, we depict the knowledge and production IO tables
for the US economy in 2002, with values of αl,h

US,2002 represented in the left panel and βl,h
US,2002

in the right panel. In each table, rows correspond to input sector l and columns correspond
to output sector h. The color of each cell depends on the size of the IO linkage between the
input and output sectors. We plot only those IO linkages for which the input sector accounts
for at least 1% of the inputs used by the output sector. We also sort sectors in the IO tables

23To be more precise, we use αl,h
i,1992 and βl,h

i,1992 for exposure measured between 1995 and 2000, αl,h
i,1997 and

βl,h
i,1997 between 2001 and 2005, αl,h

i,2002 and βl,h
i,2002 between 2006 and 2010, and αl,h

i,2007 and βl,h
i,2007 between

2011 and 2015.
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Figure 1: Input-Output Tables

Notes: Figure displays the knowledge and production IO tables where each point represents an IO linkage. The row position
of each output sector and column position of each input sector are held constant across both IO tables to facilitate visual
comparisons across tables. Sectors are sorted based on their economy-wide importance as suppliers of production inputs by
summing up the production IO linkages of each input sector over off-diagonal output sectors. The plots include the 291 2002
BEA sectors in agriculture, forestry, fishing and hunting, manufacturing, and mining with a non-zero sum of knowledge IO
linkages across input sectors. Knowledge (production) IO linkages are defined in Equation (3) (Equation (4)). Knowledge IO
linkages are based on backward citations of patents assigned to the US filed between 1993–2002 while production IO linkages are
based on the 2002 BEA Use table. Both plots only display IO linkages that account for at least 1% of the inputs used by an
output sector while all other IO linkages are visually suppressed.

based on their relative importance as sources of production inputs across output sectors to
visually highlight the differences in the IO tables.

An immediate insight one can draw from Figure 1 is that there are clear differences in the
patterns of knowledge and production IO linkages for many sectors. We formalize this visual
intuition through three observations that highlight the differences between the knowledge
and production IO tables.24

Observation 1: The sources of knowledge and production inputs are not highly correlated
for the average sector.

Observation 2: The sources of production inputs are more highly concentrated than the
sources of knowledge inputs for the average sector.

24One can also clearly see that own-sector IO linkages along the diagonal are, in general, large relative
to off-diagonal IO linkages in both the knowledge and production IO tables. We discuss the importance
of own-sector versus cross-sector (off-diagonal) linkages both for the presentation of these observations in
Appendix A and for our empirical results in Section 6.
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Observation 3: The key input-supplying sectors are distinct in the knowledge and produc-
tion IO tables.

We relegate the documentation and further discussion of these observations to Appendix A
as a comparison of the IO tables is tangential to our main objectives. That said, a key
implication of the observations is that the knowledge and production IO structures of the
economy capture different relationships between sectors and, consequently, may capture
different potential sources of technology spillovers. Given this, in our baseline analysis we
explore the diffusion of technology through imports of embodied technology weighted in two
ways: using knowledge IO linkages and using production IO linkages.

5 Empirical Specification

In this section, we describe the main empirical specification used in our analysis and the
construction of its key variables. We start by specifying our main outcome variables and then
use the knowledge and production IO tables described in the previous section to develop the
main explanatory variables. Finally, we outline the empirical counterpart of Equation (2) and
an instrumental variable (IV) approach that we use to identify the effects of spillovers from
technology embodied in imports.

5.1 Variable Construction

We now describe the main outcome and input variables in our analysis. Throughout the
analysis, we focus on the effects of imports from the US. We make this assumption for two
main reasons. First, the US is both the most innovative country and the largest originator of
cross-country citations over the time period we analyze (see Berkes et al. (2022) for evidence).
In this regard, the US best captures what we think of as the frontier economy. Second,
because the US has data available to construct our measures of inter-sectoral knowledge and
production IO linkages that are consistently defined across time, choosing the US to be the
frontier economy ensures these two measures are comparable with each other.25

25Measuring production IO linkages for other countries at the level of sectoral disaggregation available for
the US and across our sample period is not possible due to data limitations.
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5.1.1 Sample

The unit of observation in the analysis is a country-sector-year. We limit our final panel of
data to the years 1995 to 2015. We restrict ourselves to this time span because in earlier
years there is a lack of detailed trade data for many countries and including later years would
cause truncation issues for patents and forward citations, which are the main data used to
measure innovation outcomes.

We also limit the set of countries in our final sample based on the following criteria. First,
we drop countries if they have no triadic patents in any sector in any of the 21 years of
the panel. Second, we drop those that had a population of less than one million in 1995 to
avoid the inclusion of countries where patenting outcomes may be too noisy. Third, we drop
those countries that have exports to GDP or imports to GDP ratios in 2015 above the 98th
percentile or below the 2nd percentile of those statistics among the remaining set of countries.
Fourth, we drop countries that have imports to GDP or exports to GDP ratios in 2015 that are
larger than one. These previous two conditions exclude from our sample countries that trade
for reasons unrelated to production or consumption, such as countries that primarily act as
trade intermediaries. Finally, we keep only those countries that are above the 25th percentile
of total triadic patents across all years among the remaining countries, which corresponds to
a cutoff of just under ten triadic patents over the sample. This restriction excludes countries
where patented innovations are either infrequent or of relatively low quality from a global
perspective. We restrict based on triadic patents because it is a measure of quality that is
unrelated to citations, which may be influenced by country-specific factors. Additionally,
while the 25th percentile is a restrictive cutoff, many countries report zero or near zero triadic
patents. Including these countries would tend to bias our estimates downwards, since it would
increase instances of zero or near-zero patenting in a country-sector-year, and would generate
noise in our outcomes.26

5.1.2 Outcome Variables

We divide our outcome variables into innovation outcomes and diffusion outcomes. For both
groups, our baseline results include three sets of outcome variables.

Innovation Outcomes. The conceptual framework highlights the relationship between
frontier technology spillovers and innovation outcomes. There, the focus is on the rate of

26Consistent with this expectation, we find substantially larger coefficient estimates for our main specification
when we restrict our sample to the top 40 countries in terms of total patents across all sample years.
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innovation as the main outcome variable, which we measure in the data using both the rate
of patenting (Patents) and the citation-weighted rate of patenting (FwdCites). We also
use the average quality of patents, measured by the number of forward citations per patent
(FwdRate), to compare the intensive and extensive margin effects of frontier technology
spillovers on innovation outcomes. We discuss the construction of each variable below.

1. Patent Counts (P atents). Our first variable, Patentsh
i,t, is the count of patent

applications in country-sector-year (i, h, t). We take this measure from the Google
Patents database following the allocation rules described in Section 2.

2. Forward Citations (F wdCites). For patents filed by country-sector-year (i, h, t),
the number of forward citations received from patents applied for in the five years
following the filing year of the cited patents can be computed as

FwdCitesh
i,t =

∑
l∈H

∑
j∈I

∑t+5
s=t

Citesh,l
i,j,t,s. (5)

We focus on forward citations received in the first five years of a patent’s life to mitigate
truncation issues that would arise in later periods of the sample if citations received in
any year were used instead.27 We interpret forward citation-weighted patent counts as a
measure of quality-adjusted patenting activity. We do not take a stance on whether the
expected effect of technology embodied in imports on quality-adjusted patenting should
be larger or smaller than the effect on the count of patents. The effect may be larger
for quality-adjusted patenting if high-quality innovators benefit more from technology
spillovers and push low-quality innovators out of the market. Conversely, it may be
smaller if domestic producers use frivolous patent filings to protect their market share
or to extract rents from foreign entrants.

3. Forward Citation Rate (F wdRate). For patents filed by country-sector-year (i, h, t),
the rate of forward citations received per patent application is

FwdRateh
i,t =

FwdCitesh
i,t

Patentsh
i,t

. (6)

27To simplify the construction of our data, we focus on the five-year period measured using the calendar
year in which a patent is applied for. For example, for a patent filed in June 2000 we include forward citations
received up to December 31, 2005, in measuring FwdCites for the year 2000 for the pertinent country-sector.
We do not expect this choice to affect our results since our unit of measurement is a year.
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The forward citation rate is a measure of the average quality of patent applications
and is used to capture the intensive margin response to a shock to imported frontier
technology. As the denominator of this measure will be zero for (i, h, t) observations
with no patent applications, we must take a stance on the treatment of such zeros. We
exclude these observations from the estimation sample.

Diffusion Outcomes. Patents and citations data also provide direct evidence on the
extent to which trade of embodied technology is a source of technology diffusion and leads
to higher flows of knowledge from the US. We use the backward citation information under-
lying the knowledge IO table as a measure of cross-country knowledge flows. We construct
three outcome variables that measure the cross-sector flow of backward citations to US
patents (USBackCites), the per-patent rate of cross-sector backward citations to US patents
(USBackRate), and the share of backward citations to US patents in the total cross-sector
backward citations to foreign patents (USBackShare). The measures are defined below.

1. US Backward Citations (USBackCites). The number of backward citations made
by patents in country-sector-year (i, h, t) to US patents filed in any year up to and
including year t in sectors other than sector h is

USBackCitesh
i,t =

∑
l ̸=h

∑
s≤t

Citesl,h
US,i,s,t. (7)

We exclude the own-sector backward citations from this outcome variable to be consistent
with our focus on cross-sector imports of embodied technology as described below.28

That is, since our main explanatory variable of interest is spillovers from cross-sector
imports of embodied technology, we do not want to include own-sector citations in
measuring diffusion directly.

2. US Backward Citations Rate (USBackRate). For patents filed by country-sector-
year (i, h, t), the average number of cross-sector backward citations to US patents per
patent application is

USBackRateh
i,t =

USBackCitesh
i,t

Patentsh
i,t

.

28We look at the entire history of backward citations since backward citations do not suffer from the
truncation issues in more recent years, as is the case with forward citations.
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Similarly to the forward citation rate, we think of the backward citation rate as a
measure of the intensive margin of technology diffusion. Whereas the first diffusion
outcome measures the total number of cross-sector knowledge inputs that flow from the
US to sector h in country i, the second measures the intensity with which the typical
sector h patent uses those cross-sector US knowledge inputs.

3. Backward Citation Share (USBackShare). Our final outcome variable is the
share of cross-sector foreign backward citations that are made to US patents by patents
filed in (i, h, t). Specifically, we construct the US backward citation share as

USBackShareh
i,t =

USBackCitesh
i,t∑

l ̸=h

∑
j ̸=i

∑
s≤t Cites

l,h
i,j,s,t

.

Relative to the other two outcomes, the backward citation share informs us on whether
knowledge inputs are substituted towards technology patented in the US in response
to larger embodied technology flows from the US. It is also possible that sectors in
importing countries cite more non-US foreign patents in response to those flows as
they learn from those patents as well as the US patents underlying our measure of
imported embodied technology. This would lead to estimates of the effects of imports
of embodied technology on this outcome to be small relative to the estimates of effects
on USBackCites.

Summary Statistics. In our baseline specification described below, we measure outcome
variables using the average of each variable over the three-year window between year t
and t+ 2. Table 1 presents summary statistics of the main outcome variables used in that
specification. The counts of observations for FwdRate, USBackRate, and USBackShare are
smaller than for the other outcomes. For FwdRate and USBackRate, the denominators of
these rates (Patents) are zero for some country-sector-years, while for USBackShare, some
country-sector-years have no cross-sector citations to foreign patents. The distributions of
Patents, FwdCites, and USBackCites are highly skewed, with the median country-sector-
year having values of these variables close to zero. By contrast, the distributions of FwdRate,
USBackRate, and USBackShare show little skewness.
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Table 1: Summary Statistics for Outcome Variables

N Median Mean SD

Patentsh
i,t 478,880 0.066 0.742 1.345

FwdCitesh
i,t 478,880 0.140 1.159 1.832

FwdRateh
i,t 361,290 1.430 1.434 0.746

USBackCitesh
i,t 478,880 0.295 1.478 2.089

USBackRateh
i,t 361,290 2.128 2.065 0.990

USBackShareh
i,t 356,457 0.498 0.486 0.197

Notes: All outcome variables are averaged over the three-year window t to t + 2. Except for
USBackShare, all statistics are calculated on the log of one plus the outcome variable. SD is the
standard deviation.

5.1.3 Embodied Technology Imports and Other Controls

Our main variable of interest is the spillovers from imported embodied frontier technology (Sh
i,t

in the conceptual framework). Here, we also describe the construction of country-subsector-
level technology stocks (Kp

i,t), which are important determinants of technology spillovers, and
the domestic stock of technology (Zh

i,t), which is used as a control in our main specification.

Technology Stocks (Kp
i,t). Before turning to our main variables of interest, we discuss

the construction of technology stocks Kp
i,t since this is used as an input for the main variables.

We measure the technological content of a subsector’s goods using patents data and, following
Hall et al. (2001), use citation weights to adjust for the relative quality of patents. Specifically,
we use forward citations in the first five years after a patent’s application as our preferred
measure of patent quality since this avoids issues with truncation of citations in later periods
of the data and imposes minimal structure in constructing a comparable measure of quality
across countries, subsectors, and years. Technology stocks are given by

Kp
i,t = (1 − δ)Kp

i,t−1 + FwdCitesp
i,t, (8)

where FwdCitesp
i,t is the count of five-year forwards citations received by patents filed in

country-subsector-year (i, p, t) and δ is the depreciation rate of technology that we set to 5%
to be consistent with commonly used values. For each country and subsector, we initialize
the stock of technology in 1940 with the value Kp

i,1940 = FwdCitesp
i,1940/δ. The initial value

has little influence on the technology stocks used in the period of our analysis since it is
measured over 50 years prior to the start of this period.
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Domestic Technology Stock (OwnT ech). The stock of domestic technology that is
relevant as an input into innovation in sector h, Zh

i,t, enters into the expression for innovation
in Equation (2) because it captures domestic spillovers.29 The empirical counterpart of the
domestic technology input is

OwnTechh
i,t =

∏
l

(
1 +

∑
p∈Pl

wl(p)Kp
i,t

)αl,h
i,t

, (9)

where wl(p) is the concordance weight of subsector (product) p in sector l discussed in
Section 2. Higher values of OwnTech reflect higher capability in country-sector-year (i, h, t)
in generating new technologies based on past domestic innovation activity in sectors that
its patents have a tendency to cite. We use the domestic knowledge IO linkage αl,h

i,t in the
construction of domestic technology inputs because it provides the best available measure of
the relevance of sector l technology for innovation in sector h in country i and year t.30

Embodied Technology (EmbT ech). Our main variable of interest reflects the amount
of technology embodied in imported goods that is relevant as an input into innovation in
importing country-sectors. We do not impose structure on whether technology flows between
sectors are better captured by the knowledge or production IO linkages, so we set the linkages
γl,h

i,t in the conceptual framework to be a combination of knowledge (αl,h
i,t ) and production (βl,h

i,t )
IO linkages. In doing so, our analysis is informative of the relative importance of knowledge
and production linkages for innovation and diffusion outcomes.

Following the conceptual framework, we measure the frontier technology spillover in two
steps. We first construct the imported embodied technology flow in each subsector-year (p, t)
as the product of the US technology stock Kp

US,t and US imports Mp
US,i,t. Then, we aggregate

across subsectors using concordance weights and use the upstream knowledge and production
IO linkages to weight the resulting imported embodied technology flows in each sector-year.

For each country-sector-year (i, h, t), our measure of knowledge-weighted embodied tech-
nology imports is given by

EmbTechKh
i,t =

∏
l ̸=h

(
1 +

∑
p∈Pl

wl(p)Kp
US,tM

p
US,i,t

)αl,h
US,t

(10)

29This variable can also be thought of as capturing past spillovers from technology imported from the
frontier to the extent that they were built upon by domestic innovators in the past and thus enter into the
domestic technology stocks measured in year t.

30We do not have consistent measures of production IO linkages for most countries and years, which
prevents us from constructing a comparable production IO linkage βl,h

i,t .
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Table 2: Summary Statistics for Embodied Technology Imports

N Median Mean SD

ln(EmbTechKh
i,t) 478,880 16.057 15.718 3.243

ln(EmbTechP h
i,t) 478,880 13.129 12.604 4.088

Note: SD is the standard deviation.

and production-weighted embodied technology imports is given by

EmbTechP h
i,t =

∏
l ̸=h

(
1 +

∑
p∈Pl

wl(p)Kp
US,tM

p
US,i,t

)βl,h
US,t

. (11)

The amount of imported embodied technology depends on the flow of technology into country
i from the US in every sector l. This flow is increasing in the volume of imports and the stocks
of technology in subsectors within sector l. Countries that spend more on sector l goods from
the United States have a higher flow of technology into them from that sector. For example,
a larger volume of imports could reflect more varieties of a sector’s goods being imported.
Our measure reflects the idea that as a country imports more, ideas upon which domestic
innovators can build become more abundant and readily available. The effect of a flow of
technology from a given sector l is weighted by the tendency of that sector’s technology to
be used in sector h in the US. Table 2 provides summary statistics of the knowledge- and
production-weighted measures of embodied technology imports.

We construct the measures of embodied technology from the value of US imports (Mp
US,i,t),

rather than imports scaled by absorption as in the conceptual framework (mp
US,i,t = Mp

US,i,t/Y
p

i,t),
due to limitations on the availability of output data at the level of aggregation we examine.
A potential issue with this approach is that higher imports could simply reflect that the
importing country has a larger population or economy.31 We include granular fixed effects as
a best attempt to deal with this. An alternative would be to use US import shares (i.e., US
imports to country i over all imports to country i for each subsector). However, this could
lead to misleading conclusions because trends in trade patterns during the period of our
analysis (i.e., all countries have increased trade flows over this period) have led to declining
US import shares for many subsectors and countries.

We omit the own-sector component in the embodied technology spillover terms as within-
sector imports and innovation outcomes can potentially be related to each other for multiple

31This is not a concern for the US technology stocks Kp
US,t since they are common to all importers and

capture the abundance of technology embodied within imports, meaning their levels are important for the
interpretation of our results.
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reasons. Within-sector demand shocks can lead to countries importing more foreign products
to satiate demand while at the same time investing more in innovation activities in the sector
due to increased returns to innovation. Moreover, own-sector imports can also affect innovation
outcomes in a country through import competition effects, since firms may invest more in
innovation in order to escape foreign competition. Finally, R&D productivity shocks and
profitability shocks to a country-sector can lead to comovements of imports and innovations
in the country-sector. We discuss endogeneity concerns further in Section 5.3.

Identifying and estimating the separate effects of knowledge- and production-weighted
imports of embodied technology requires that there is sufficient variation across observations
in our sample in these two measures. To assess this, we regress the logs of both EmbTechK

and EmbTechP on the set of fixed effects included in the baseline specification discussed in
Section 5.2. In Figure 2, we plot the fitted residuals from these regressions on top of which
we overlay a line of best fit from a regression of one set of residuals on the other. This figure
demonstrates that for much of the support of either of the residualized input measures, there
is considerable variation in the other residualized measure. The R-squared of the overlayed
regression is 0.0039, while the correlation of the two residualized input measures is 0.062. The
substantial amount of variation in our embodied knowledge and production input measures
gives us confidence that our results provide a comparison of the importance of imported
knowledge and production inputs from a frontier economy on our patenting outcomes.

Own-Sector Embodied Technology (EmbT echDiag). The Input-Output tables
developed in Section 4 show that own-sector inputs (the diagonals of the IO tables) tend
to be important in both the knowledge and production IO tables. Given that imports of
own-sector embodied technology inputs are a likely source of technology diffusion, we also
include them as a control in our empirical specification. Specifically, we construct own-sector
embodied technology as

EmbTechDiagh
i,t = 1 +

∑
p∈Ph

wh(p)Kp
US,tM

p
US,i,t. (12)

We do not scale these technology inputs by the IO weights αh,h
US,t or βh,h

US,t since, as mentioned
above, we expect that this variable captures factors not directly related to the effects of
technology diffusion, such as import competition. For example, Bloom et al. (2016) find that
increased trade with China between 2000 and 2005 led to an increase in patenting activity in
European firms that were more exposed to that competition (which was also the case for
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Figure 2: Residualized Embodied Technology in Imports

Notes: Figure plots residuals of log(EmbT echP ) and log(EmbT echK) and the line
of best fit from the regression of the latter measure on the former. Residuals are
computed by regressing each measure on the set of fixed effects included in the
baseline specification discussed in Section 5.

increased exposure to trade from other low-wage countries).32

5.2 Estimation Equation

We now present the empirical counterpart of Equation (2) in terms of our constructed variables
that serves as our baseline specification:

ln(1 +Outcomeh
i,t) = θ1 lnEmbTechKh

i,t−τ + θ2 lnEmbTechP h
i,t−τ

+ θ3 lnOwnTechh
i,t−τ + θ4 lnEmbTechDiagh

i,t−τ

+ V h
i,tρ+ fi,t + f

n(h)
t + fh

i + ϵh
i,t, (13)

where V h
i,t is a vector of controls that includes own-sector imports from the world and exports

to the world and fi,t, fn(h)
t , and fh

i are country-year, (summary) sector-year, and country-
sector fixed effects. In the baseline regressions we average outcomes over a three-year window

32However, they find that changes in import penetration of high-wage countries like the US had no effect
on patenting. In contrast to Bloom et al. (2016), Autor et al. (2020) find that import competition due to
increased trade with China decreased patenting activity in publicly listed US firms and technology classes
more exposed to that competition. We do not estimate effects of import competition from low-wage countries
such as China in this paper.
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from t to t+ 2 to reduce year-to-year noise in the outcome variables and to allow for a more
gradual diffusion of technology. With the exception of USBackShare, we also transform
each outcome variable as ln(1 +Outcomeh

i,t) to retain observations that have innovation or
diffusion outcomes that are zero in level in our sample. We show that our results are robust to
other transformations in Appendix C. Our baseline estimates use a lag of τ = 1 years for the
explanatory variables. We also present results for the model where outcomes are for period t
only and the input variables are measured at lags τ ∈ {1, 2, . . . , 5} to examine the dynamic
response of each outcome to changes in exposure to technology embodied in imported goods.

In all regressions, we allow for the possibility that the residuals are correlated across years
within a country-sector pair (due to serial correlation) and across countries in each year
within a sector (since much of the variation in our variables of interest is at the sector-year
level). To do so, we estimate multi-way clustered standard errors at the country-sector and
sector-year levels (Cameron et al. (2011)).

The conceptual framework in Section 3 offers some predictions on the expected sign of the
coefficients in Equation (13). Our hypothesis is that ηS > 0 and ηZ > 0 such that higher levels
of relevant technology inputs that are either embodied in imported goods from the US or
present in domestic technology stocks due to past domestic innovations lead to higher levels
of innovation outcomes. Consequently, we expect that θ1, θ2, and θ3 are positive for Patents
and FwdCites. Although imported own-sector inputs captured in EmbTechDiag should
have a positive effect on innovation rates, this measure also incorporates import competition
effects that may reduce innovation activity, so the expected sign of θ4 for these innovation
outcomes is ambiguous. The stylized model provides less guidance on the anticipated effects
of our variables of interest on the average quality of new innovations captured by FwdRate
or on the diffusion outcomes. As discussed above, effects of each variable on FwdRate could
be positive or negative. Furthermore, although we expect that the signs of the coefficients are
the same for Patents and USBackCites, since we evaluate the responses of innovation and
diffusion to shocks to embodied technology imported from the US, the framework is silent on
how the per-patent rate of backward citations to US patents, USBackRate, and the share of
citations of foreign patents that go to US patents, USBackShare, should respond.

5.3 Endogeneity Concerns

The fixed effects in Equation (13) control for time-invariant characteristics of country-sector
pairs, factors that vary at the country level over time, and sector-year shocks that are common
to sectors within a summary sector. Despite the inclusion of these fixed effects, there remain
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potential endogeneity concerns with our regressors of interest.
One possibility is that variation across country-sector-years in the amount of relevant

technology inputs embodied in a country’s imports in prior years could reflect demand
shocks for those inputs that also directly affect patenting outcomes. For example, shocks to
expected profits, captured by uh

i,t in the conceptual framework, would both increase R&D
investment but also the imports of intermediate inputs used in the production of goods in
(i, h, t).33 If these shocks were serially correlated, there would be a spurious positive correlation
between innovation output and imports of embodied technology in past years arising from
the profitability shocks. Since there is no data available on R&D expenditures at the level of
sectoral disaggregation used in our analysis, we cannot control for these innovation inputs
which may cause an omitted variable bias to affect our estimates.

To address these concerns, we use an instrumental variable strategy that focuses on variation
in US imports that is a function of supply shocks to US exports. For each country-sector-year,
we instrument each regressor that includes US imports with a variable that uses US exports
to all countries outside of a cluster of similar countries to which that country is assigned
(discussed below). For example, we instrument the knowledge- and production-weighted
imports of embodied technology as

IV EmbTechKh
i,t =

∏
l ̸=h

(
1 +

∑
p∈Pl

wl(p)Kp
US,t

(∑
j ̸∈Gi

Mp
US,j,t

))αl,h
US,t

(14)

and

IV EmbTechP h
i,t =

∏
l ̸=h

(
1 +

∑
p∈Pl

wl(p)Kp
US,t

(∑
j ̸∈Gi

Mp
US,j,t

))βl,h
US,t

, (15)

respectively, where Gi is a cluster of countries with similar characteristics to country i.34

For each country i, the cluster Gi is the set of countries that fall into the same quintiles of
both GDP per capita and the ratio of total trade (imports plus exports) to GDP as country
i.35 We group countries based on GDP per capita to capture similarities in technological
development across countries and the ratio of total trade to GDP to capture similarities in
trade patterns across countries.

Our instrumental variable strategy isolates variation in subsector-level trade flows to each
33We do not explicitly model demand for production inputs from different sectors and instead implicitly

subsume them into the expected profit function.
34The instrument for own-sector imports of embodied technology is IV EmbTechDiagh

i,t = 1 +∑
p∈Ph wh(p)Kp

US,t(
∑

j ̸∈Gi
Mp

US,j,t).
35These quintiles are computed over all countries included in the BACI database using data for 1995.
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country that stems from shocks to US export supply in a subsector. A standard leave-one-out
instrument would exclude only the domestic economy to discount changes in trade that result
from domestic demand shocks in the subsector. We extend this intuition by not only excluding
the domestic economy but also countries that share similar characteristics and, consequently,
may face demand shocks that are correlated with those facing the domestic country.

6 Results

In this section, we discuss the results from estimating the effects of knowledge- and production-
weighted imports of embodied technology on the innovation and diffusion outcomes. We begin
by discussing estimates using the baseline specification described in Equation (13). Then, we
show that our main conclusions hold using different lags of the explanatory variables. We
also use the empirical model to provide a quantification of the magnitude of the estimated
effects. This section closes with a discussion of the robustness of the results.

6.1 Baseline Results

Table 3 presents the estimates for the innovation outcomes using ordinary least squares (OLS)
in columns (1) to (3) and two-stage least squares (2SLS), where the IV approach described
in Section 5.3 is applied, in columns (4) to (6).

The OLS results suggest that knowledge-weighted imports of embodied technology
EmbTechK have a positive impact on the innovation rate as measured by both Patents and
FwdCites. Despite there being a larger point estimate for FwdCites than for Patents and a
positive point estimate for FwdRate, the OLS results do not point to a statistically significant
effect of EmbTechK on FwdRate. Qualitatively, production-weighted embodied technology
imports EmbTechP have similar effects on the innovation rate measures as EmbTechK.
However, the estimated elasticities are substantially smaller, which suggests that spillovers
from technology embodied in imports from the US primarily operate through knowledge IO
linkages rather than production IO linkages. We show in Section 6.3 that these differences
are quantitatively important for our innovation outcomes after accounting for differences in
the variation in EmbTechK and EmbTechP in our sample.

The 2SLS estimates of the effects of EmbTechK are larger than the OLS results and
statistically significant for each innovation rate measure. For Patents and FwdCites, the 2SLS
coefficient estimates are around twice as large as the OLS estimates for the knowledge-weighted
embodied technology imports. The coefficient estimates are also larger for production-weighted
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Table 3: Innovation Outcomes

OLS 2SLS

(1) (2) (3) (4) (5) (6)
P atents F wdCites F wdRate P atents F wdCites F wdRate

ln(EmbT echK) 0.018*** 0.027*** 0.007 0.041*** 0.059*** 0.024***
(0.003) (0.004) (0.005) (0.008) (0.011) (0.009)

ln(EmbT echP ) 0.004*** 0.004*** 0.000 0.006*** 0.006*** -0.000
(0.001) (0.001) (0.001) (0.001) (0.002) (0.001)

ln(OwnT ech) 0.011*** 0.031*** -0.011*** 0.011*** 0.030*** -0.011***
(0.001) (0.002) (0.002) (0.001) (0.002) (0.002)

ln(EmbT echDiag) 0.000 -0.000 0.002 0.061*** 0.078*** 0.009
(0.000) (0.001) (0.001) (0.010) (0.014) (0.011)

Observations 478,880 478,880 361,290 478,880 478,880 361,290

F-Stats
EmbT echK 4,468 4,468 10,890
EmbT echP 15,030 15,030 20,754
EmbT echDiag 397 397 484

Notes: Table reports coefficient estimates for innovation outcomes using Equation (13). All dependent variables are first averaged
over a three-year window and then transformed using ln(1 + Outcome), where Outcome is the variable specified in the column
title. All explanatory variables are lagged by one year. Other controls include the log of total exports to the world and log of
total imports to the world. All regressions include country-sector, summary-sector-year, and country-year fixed effects. Standard
errors clustered at both the country-sector and sector-year level are in parentheses. The F-Stats in columns (4) to (6) are the
Sanderson and Windmeijer (2016) F statistics for the test of the joint significance of the excluded instruments for each of the
first-stage regressions of the endogenous variables that include imports in their construction. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% levels, respectively.

embodied technology imports. Comparing the effects of EmbTechK and EmbTechP , the
coefficient estimates remain larger for EmbTechK, which is consistent with our expectation
that patent citations better reflect the patterns of inter-sectoral relevance of technology
inputs for generating new innovations. That being said, the estimated effects of EmbTechP
are positive and statistically significant for Patents and FwdCites, which indicates that
technology diffusion also operates through inter-sectoral production relationships.

The remaining 2SLS estimates are in line with our expectations. The coefficients on
OwnTech are positive and significant for Patents and FwdCites, which suggests that
domestic technology in input sectors (which reflects past domestic innovation activity)
contributes positively to the generation of new innovations. The effects of EmbTechDiag
are also positive and statistically significant for these two outcomes, and relatively large
compared to those of the other explanatory variables. Although we do not focus on the
own-sector effects of technology embodied in imports due to the aforementioned difficulties
with interpreting the mechanisms underlying these effects, the estimates imply that this
channel has large impacts on innovation rates and suggest that the spillover effects captured
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Table 4: Diffusion Outcomes

OLS 2SLS

(1) (2) (3) (4) (5) (6)
USBackCites USBackRate USBackShare USBackCites USBackRate USBackShare

ln(EmbT echK) 0.034*** 0.006 0.000 0.081*** 0.013 -0.000
(0.006) (0.006) (0.001) (0.016) (0.010) (0.002)

ln(EmbT echP ) 0.007*** 0.002** 0.001* 0.011*** 0.001 0.000
(0.002) (0.001) (0.000) (0.003) (0.001) (0.000)

ln(OwnT ech) 0.045*** -0.014*** -0.000 0.044*** -0.014*** -0.000
(0.003) (0.003) (0.001) (0.003) (0.003) (0.001)

ln(EmbT echDiag) 0.000 0.003** 0.001** 0.127*** 0.037*** 0.008***
(0.001) (0.001) (0.000) (0.021) (0.013) (0.003)

Observations 478,880 361,290 356,457 478,880 361,290 356,457

F-Stats
EmbT echK 4,468 10,890 11,433
EmbT echP 15,030 20,754 21,441
EmbT echDiag 397 484 473

Notes: Table reports coefficient estimates for diffusion outcomes using Equation (13). All dependent variables are averaged over
a three-year window and then, except for USBackShare, transformed using ln(1 + Outcome), where Outcome is the variable
specified in the column title. All explanatory variables are lagged by one year. Other controls include the log of total exports to
the world and log of total imports to the world. All regressions include country-sector, summary-sector-year, and country-year
fixed effects. Standard errors clustered at both the country-sector and sector-year level are in parentheses. The F-Stats in
columns (4) to (6) are the Sanderson and Windmeijer (2016) F statistics for the test of the joint significance of the excluded
instruments for each of the first-stage regressions of the endogenous variables that include imports in their construction. ***, **,
and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

in the estimated coefficients on EmbTechK and EmbTechP may understate the total effects
of diffusion of technology arising from imports of goods.

Table 4 presents the main results for the diffusion outcomes for both the OLS and 2SLS
estimates. Since the signs of the 2SLS estimates are the same as those of the OLS estimates,
we discuss the two sets of results together. The coefficient estimates for USBackCites are
positive for both knowledge- and production-weighted embodied technology imports. This
may reflect in part the results in column (4) of Table 3, since higher imports of embodied
technology from the US lead to higher rates of new patent applications and, holding fixed the
inventor country and sectoral composition of the backward citations in those new applications,
this would lead to higher rates of cross-sector backward citations to patents with US inventors.
Moreover, the estimates in column (4) of both Tables 3 and 4 suggest that increased imports
of embodied technology from the US lead to an increased intensity of cross-sector citations
to US patents.

However, when the sample is restricted to country-sector-year observations with strictly
positive Patents over the three-year period between t and t+ 2, as is the case in column (5)
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of Table 4 for USBackRate as an outcome variable, we find statistically insignificant 2SLS
estimates of the effects of both knowledge- and production-weighted imports of embodied
technology on this measure of the intensity with which cross-sector US knowledge inputs are
used in the generation of new innovations. Similarly, we find little evidence of an impact of
either measure of embodied technology inputs in imports on USBackShare in column (6).
While the framework in Section 3 has no implications for how these two outcomes should
respond, these results suggest that although diffusion of embodied technology from the US
leads to an increase in the rate of innovation, it has little to no impact on the intensity
with which that technology is used in new innovations to the extent that this is captured
by patent citations as we measure them.36 One possible reason for this is that our measure
of backward citations includes citations to patents filed in any past year. While per-patent
citations to more recently generated innovations may increase in response to higher imports of
embodied technology, citations to older technology may decrease and this composition effect
may lead to an overall estimate that is zero on average. Another possibility, particularly for
the effects on USBackShare, is that domestic innovators learn from and cite both technology
developed by US-based inventors as well as innovations embodied in imported products that
were developed in non-US foreign countries.

6.2 Alternative Lagged Effects

The results in Tables 3 and 4 average the outcome variables over a three-year window, in part
to allow for the gradual diffusion of technology. Technology diffusion is a gradual process,
and it may take several years before spillovers from imports of embodied technology are
reflected in patentable innovations. To examine these diffusion dynamics, we separately
estimate Equation (13) using 2SLS with the outcome variable measured at period t (rather
than a three-year window) and the explanatory variables entering with lags τ ∈ {1, 2, . . . , 5}.
Figure 3 summarizes the coefficient estimates for the knowledge- and production-weighted
measures of embodied technology imports. In all regressions the set of controls are the same
as in the baseline regressions. We present the results for FwdCites and USBackCites here
and display estimates for the remaining outcomes in Appendix Figure C.1.

The results at different lags are similar in magnitude to the baseline results. At longer lags,
the effects of EmbTechK are stronger while they are relatively stable across all five models

36As discussed in Section 6.4, the estimated effect of knowledge-weighted imports of embodied technology
inputs on USBackRate is positive and statistically significant at conventional levels in some alternative
specifications, which is consistent with the relative size of the effects in column (4) of both Tables 3 and 4.
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Figure 3: Main Outcomes Estimated at Different Lags

Notes: Figure plots 2SLS coefficient estimates of the effects of EmbT echK and EmbT echP on F wdCites (left panel) and
USBackCites (right panel) for five separate models using Equation (13) with the outcome variable measured in period t. The
five models include the explanatory variables lagged by τ years relative to year t for each of τ ∈ {1, 2, . . . , 5}. The dashed lines are
the 95% confidence intervals of the effects. All models include the same controls and fixed effects as in the baseline specification.

for EmbTechP . The comparisons between the baseline results and the alternative lagged
effects for both the magnitudes of the effects and their statistical significance take on similar
patterns for the other innovation and diffusion outcomes. We view this as supportive evidence
for averaging the outcome variables over a three-year window in the baseline results since
these alternative results point to diffusion of imported embodied technology having gradual
impacts on the outcomes. Consistent with this view, we find larger, albeit quantitatively
similar, point estimates for the effects of EmbTechK and EmbTechP if instead the outcomes
are averaged over a five-year window (see Appendix Table C.1).

6.3 Quantitative Significance

To characterize the quantitative magnitude of the results, we compare the relative amount of
variation in the outcome variables and the implied variation of the outcomes attributable to
the key model variables. We focus on the residualized standard deviation of the explanatory
variables, RSDE, which is calculated as the standard deviation of each variable after removing
the estimated effect of all other regressors as well as the fixed effects used in the baseline
specification. The residual variation in the outcome variables, RSDO, is the standard deviation
of each outcome variable after removing the estimated fixed effects. We net out the estimated
fixed effects from both types of variables to remove variable trends as well as cross-country
and cross-summary-sector variation in the variables. These differences are important for

34



Table 5: Quantitative Significance

Coefficient Estimate Relative Implied RSD (%)

EmbT echK EmbT echP EmbT echK EmbT echP

Outcome RSDO (RSDE = 0.368) (RSDE = 1.201)

P atents 0.187 0.041 0.006 8.1 1.1
F wdCites 0.317 0.059 0.006 6.8 0.7
F wdRate 0.481 0.024 0 1.8 0
USBackCites 0.425 0.081 0.011 7.0 0.9
USBackRate 0.606 0.013 0.002 0.7 0.1
USBackShare 0.142 -0.001 0 -0.2 0

Notes: RSDO is calculated as the standard deviation of the outcome variable after controlling for the fixed effects used in the
baseline specification (Equation (13)). RSDE is calculated as the standard deviation of the explanatory variable after controlling
for the other regressors and fixed effects used in that specification. For each of EmbT echK and EmbT echP , relative implied
RSD refers to the product of the coefficient estimate and the the RSDE divided by the RSDO. Coefficient estimates are taken
from Tables 3 and 4.

both the outcomes (e.g., increases in patenting over time) and embodied technology imports
(e.g., increases in trade flows over time). However, the fixed effects are not important for
understanding the economic significance of the key variables.37 We estimate the effect of the
RSDE of the explanatory variables implied by the model and scale them by the RSDO of the
outcome variables. The results are summarized in Table 5.

The table shows that a one RSDE increase of EmbTechK would generate an increase
measured as a percentage of one RSDO of 8.1% for Patents, 6.8% for FwdCites, 1.8% for
FwdRate, and 7.0% for USBackCites. Consistent with the earlier discussion of the measures
of embodied technology imports, there is more residualized variation in EmbTechP , which
increases its relative quantitative importance, but this gap is not large enough to offset
the differences in coefficient estimates found in Table 3 and Table 4. Therefore, the overall
impact of production-weighted embodied technology imports is marginal compared with
knowledge-weighted embodied technology imports.

6.4 Robustness of Results

We conclude this section with a discussion of the robustness of the main results to alternative
specifications. Throughout, we focus on estimates of the effects of knowledge- and production-
weighted embodied technology imports EmbTechK and EmbTechP . Overall, estimates are
similar to those found using the baseline specification. Results are provided in Appendix C.

37For example, the inability of the empirical model to explain a secular trend in patenting over time is not
informative for understanding the importance of embodied technology imports.
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Alternative Instruments. Our baseline 2SLS results use instrumental variables that
isolate US supply shocks by using variation in US exports to all countries outside of a
country’s cluster of similar countries. We also construct alternative instruments using both
the traditional leave-one-out instrument, which can be viewed as having a single country in
each cluster, and an instrument using US exports to all other countries within a country’s
cluster of similar countries (Appendix Tables C.2 and C.3, respectively). In both cases, the
results are similar in sign, magnitude, and statistical significance to the baseline results. In the
latter case, the coefficient on EmbTechK for USBackRate is also positive and statistically
significant.

Transformation of Outcome Variables. In the baseline specification, we transform
the outcome variables using ln(1 + Outcomeh

i,t) to avoid excluding observations for which
Outcomeh

i,t = 0. We find similar results using both the ln(Outcomeh
i,t), which excludes zeros,

and arsinh(Outcomeh
i,t) transformations (see Appendix Tables C.4 and C.5, respectively).38

In the former case, we also find that the coefficient estimate for USBackRate is positive and
statistically significant. As an additional check, we estimate Equation (13) using the baseline
transformation but drop the observations for which Patentsh

i,t = 0 for all years between t and
t+ 2 (Appendix Table C.6). Estimates of the effects of EmbTechK on Patents, FwdCites,
and USBackCites are larger in magnitude than in the baseline, but the effects of EmbTechP
are essentially unchanged.

Technology Stocks. The country-subsector-year-level technology stocks Kp
i,t defined in

Equation (8) use the flow of five-year forward citations received by new patent applications,
and these serve as the basis for our measures of domestic technology stocks and technology
embodied in imports from the US. This approach controls for the relative quality of different
patents in the measurement of technology stocks. We show in Appendix Table C.7 that the
results are robust to an alternative approach that uses the flow of new patent applications
(unadjusted for quality) to measure technology stocks.

Country Sample. We also consider an alternative specification wherein we restrict the
sample to observations from the top 40 countries based on the total number of patents
applied for across 1995–2015. The point estimates of the effects of EmbTechK on Patents,
FwdCites, FwdRate, and USBackCites are larger with the more restricted sample, while

38The second transformation is arsinh(Outcome) = ln(Outcome +
√

Outcome2 + 1).
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the effects of EmbTechP are more or less unchanged. That the effects of EmbTechK are
larger could suggest that technology diffusion from imports of knowledge inputs generates
more innovations in countries that are already relatively innovative in the sense that inventors
located there file more and higher-quality patents. Alternatively, the effects of imports of
embodied technology in less innovative countries may be smaller because the innovative
activity that is generated by those embodied technology imports is not well captured by
patent applications.

Other Results and Controls. We find similar results when we examine effects of embodied
technology imports on various alternative outcomes (see Appendix Tables C.9 and C.10). For
example, when we restrict the sample of patents used to construct the outcome variables
to triadic patents (though still including forward citations received from any patent and
cross-sector backwards citations made to any patent) we estimate effects of EmbTechK on
Patents, FwdCites, and USBackCites that are about half the size of the baseline estimates,
though effects on FwdRate are essentially unchanged. The effects of EmbTechP on these first
three outcomes are also smaller but remain statistically significant. These estimates reinforce
the finding that diffusion of technology through imports leads to increases in the rate and
average quality of new innovations. As an alternative measure of patent quality, we examine
effects on the forward citations received from patents assigned to foreign countries and find
results that are unchanged from those in the baseline. Lastly, we include both cross-sector
as well as own-sector backward citations in our diffusion outcome variables. When these
additional citations are included, increased technology embodied in imports of knowledge
inputs EmbTechK, which remains constructed using only cross-sector knowledge inputs,
leads to a statistically significant increase in the total per-patent rate of backward citations
to US patents.

7 Conclusion

Innovation activities are highly concentrated in a small number of countries, but new tech-
nology eventually diffuses to other countries. One potentially important channel through
which technology diffuses across borders is international trade of goods, since importers can
learn about the technology embodied in those goods. This paper assesses the extent to which
knowledge and production inputs in traded goods contribute to the diffusion of technology
and to the amount and quality of innovations developed in importing country-sector pairs.
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To do this, knowledge and production IO tables are constructed using data on inter-sectoral
patent citations and sales. These measures of the relevance of goods from different input sectors
as inputs into the creation of new innovations and the production of goods in different output
sectors are combined with measures of the stocks of technology embodied within sectors’
products and data on product-level trade flows between countries to construct measures of
knowledge- and production-weighted technology embodied in cross-sector imports. We show
that increases in both measures of technology embodied in imported goods lead to higher
rates of innovation in an importing country-sector pair and that effects of knowledge-weighted
embodied technology imports are substantially larger than those of production-weighted
embodied technology imports.

Our results point to important directions for future research. For example, the estimated
elasticities in this paper could be used to discipline a quantitative model of cross-country
and cross-sector technology diffusion through trade. This would allow for an evaluation of
the aggregate growth and welfare implications of accounting for this channel of diffusion and
adding it to the potential effects of trade policy on innovation.
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Appendix A Comparison of IO Tables

In this appendix, we provide a descriptive comparison of the knowledge and production IO
tables of the US economy and highlight three observations that emerge from the exercise.
Throughout this analysis, we focus on the knowledge IO table constructed using the 1993–2002
window of US patent applications and the production IO table constructed using the 2002
BEA Use table as in Section 4.1.39

Appendix A.1 Correlations of IO Linkages

Our empirical analysis, which compares the effects of imports of technology embodied in
knowledge and production inputs on patenting outcomes, depends to a large extent on there
being distinct variation in the sources of those inputs for the average sector in order to draw
the inferences that we do. That this is the case may seem immediate from visual inspection
of Figure 1, but here we formalize this underpinning of our analysis. At a high level, the
correlation of αl,h

US,2002 and βl,h
US,2002 across all 84,681 sector-pair IO linkages (for the 291

sectors) is 0.211, while for the off-diagonal IO linkages it is 0.169.
While this is reassuring, we are primarily concerned with the potential that knowledge and

production input sources are highly correlated on average within output sectors. To address
this, we compute the linear (Pearson) and rank (Kendall adjusted for ties) correlations of
αl,h

US,2002 and βl,h
US,2002 across all input sectors l for each output sector h. The former of these

measures evaluates the covariance between knowledge and production inputs and hence their
cardinal relationship while the latter evaluates the similarity of the rankings of knowledge
and production input sources and hence their ordinal relationship. In Appendix Figure A.1,
we plot the distributions of these correlations. One can see that while there are some sectors
for which knowledge and production input sources are highly correlated, this is not the case
for the vast majority of sectors.

More formally, we display summary statistics of these distributions in Appendix Table A.1.
We also include statistics for the distributions of correlation coefficients computed using
only off-diagonal IO linkages to show that differences in the intensity of use of own-sector
knowledge and production inputs are not driving these low average correlations. We now
state our first observation regarding the comparison of the knowledge and production IO
tables.

39Although we make use of dynamic knowledge IO tables as inputs into our regression analysis, the purpose
of this appendix is not to describe the evolution of IO tables over time but instead to demonstrate that the
sources of knowledge and production inputs are distinct for the average sector.
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Appendix Figure A.1: Distributions of Correlation Coefficients of IO Linkages
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Notes: Figure plots the distributions of correlation coefficients of IO Linkages. Coefficients are computed as the
correlation of knowledge and production IO linkages across all input sectors for each output sector. The left panel
displays the distribution of the Pearson’s linear correlation coefficients while the right panel displays the distribution
of the Kendall’s rank correlation coefficients (adjusted for ties). IO linkages are defined in Section 4.1.

Appendix Table A.1: Summary Statistics of IO Linkage Correlation Coefficients

Min Max Median Mean Std. Dev.

All Inputs
Pearson -0.022 0.861 0.171 0.236 0.212
Kendall 0.030 0.334 0.202 0.199 0.055

Off-Diagonal Inputs
Pearson -0.027 0.861 0.133 0.186 0.195
Kendall 0.021 0.329 0.195 0.193 0.056

Notes: Table reports summary statistics of the distributions of correlation coefficients of IO linkages for the 291 output sectors
plotted in Figure 1. Pearson is the linear correlation between knowledge and production IO linkages. Kendall is the rank correla-
tion (adjusted for ties) of the knowledge and production IO linkages. Coefficients for off-diagonal sectors omit the own-sector IO
linkage in the calculation. Std. Dev. is the standard deviation. IO linkages are defined in Section 4.1.

Observation 1: The sources of knowledge and production inputs are not highly correlated
for the average sector.

Appendix A.2 Concentration and Sparsity of IO Linkages

Next, we investigate another major difference between the knowledge and production IO tables:
knowledge inputs tend to be drawn from a wider range of sectors and are less concentrated
across input sectors than are production inputs.
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Appendix Figure A.2: Distributions of Concentration and Sparsity of IO Linkages

Notes: Figure plots the distributions of the concentration and conditional indegree measures of knowledge and
production IO linkages across output sectors. The left panel displays the distributions of concentration measured by
the HHI. The right panel displays the distributions of conditional indegrees for the condition c = 1%. The HHI and
conditional indegrees are defined in text. IO linkages are defined in Section 4.1.

To demonstrate this, we compute two measures of the concentration or sparsity of input
sources for each output sector using the knowledge and production IO linkages. First, we
calculate the Herfindahl-Hirschman Index (HHI) of knowledge and production IO linkages
for each output sector. For output sector h, these indices are defined as HHI-Kh

US,2002 =∑
l∈H(αl,h

US,2002)2 for knowledge IO linkages and HHI-Ph
US,2002 = ∑

l∈H(βl,h
US,2002)2 for production

IO linkages. Second, we construct conditional indegrees (CID) for both IO tables that measure
the number of input sectors that have an IO linkage with an output sector that is larger
than some threshold level c.40 For output sector h, the conditional indegree for knowledge
IO linkages is CID-Kh

US,2002(c) = ∑
i∈H 1(αl,h

US,2002 ≥ c) and for production IO linkages is
CID-Ph

US,2002(c) = ∑
i∈H 1(βl,h

US,2002 ≥ c), where 1(·) is the indicator function.
In Appendix Figure A.2, we depict the distributions of the HHI and CID measures for both

knowledge and production IO linkages. These graphs show that the mass of the distribution
of the concentration of knowledge IO linkages lies to the left of that of the distribution of

40As a matter of terminology, we align the meaning of indegree with that of an input sector. However, other
authors such as Cai and Li (2019) refer to what we call indegrees as outdegrees in the context of knowledge IO
linkages because citations, the data that underlie these measures, flow from an output sector (or technology
subclass) to an input sector (technology subclass).
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Appendix Table A.2: Summary Statistics of IO Linkage Concentration Measures

Min Max Median Mean Std. Dev.

All Inputs
HHI-Kh

US,2002 0.014 0.303 0.039 0.051 0.038
HHI-Ph

US,2002 0.035 0.823 0.141 0.186 0.142
CID-Kh

US,2002(1%) 9 34 22 21.550 4.591
CID-Ph

US,2002(1%) 3 30 15 14.509 5.474

Off-Diagonal Inputs
HHI-Kh

US,2002 0.013 0.297 0.035 0.043 0.030
HHI-Ph

US,2002 0.037 0.888 0.142 0.197 0.168
CID-Kh

US,2002(1%) 11 34 24 23.533 4.770
CID-Ph

US,2002(1%) 3 30 15 15.447 5.597

Notes: Table reports summary statistics of the distributions of the Herfindahl-Hirschman Index (HHI) and conditional indegree
(CID) of IO linkages for the 291 output sectors plotted in Figure 1 and for both knowledge and production inputs. For measures
computed using off-diagonal sectors, own-sector IO linkages are omitted from the denominators of the IO linkages defined in
Section 4.1. The HHI and CID measures are defined in text. The CID measures count IO linkages that are at least 1%. Std. Dev.
is the standard deviation.

the concentration of production IO linkages while the reverse is true for the distributions of
conditional indegree measures.

Appendix Table A.2 lists summary statistics of these distributions as well as the distri-
butions of the HHI and CID statistics computed using only off-diagonal input sectors. For
this latter group of distributions, we modify the definitions of the knowledge and production
IO linkages such that, for output sector h, the denominators of Equation (3) and Equa-
tion (4) only sum over input sectors l ̸= h.41 Knowledge IO linkages are less concentrated
than production IO linkages, in part because for the average output sector there are fewer
significant knowledge input sectors than production input sectors (where significant means
larger than 1% here). We interpret this contrast between the two IO tables as implying that
the production IO table is more sparsely connected than the knowledge IO table. This figure
and table lead us to our second observation on the differences between the knowledge and
production IO tables.

Observation 2: The sources of production inputs are more highly concentrated than the
sources of knowledge inputs for the average sector.

Appendix A.3 Key Input Sectors

The last major distinction between the knowledge and production IO tables that we explore
is the difference between the input sectors that are important suppliers of inputs throughout

41This ensures that the shares used to compute the HHI sum to one.
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the economy across the two tables. To do this, we consider alternative measures of the
economy-wide importance of input sectors and show using each of these measures that the
ranking of input sector importance varies across the knowledge and production IO tables.

In particular, we consider three network centrality measures that characterize input sec-
tor importance. First, we compute the conditional outdegree (COD) of each input sector
analogously to the CID measures discussed in Appendix A.2. For input sector l, these
outdegrees are COD-Kl

US,2002(c) = ∑
h∈H 1(αl,h

US,2002 ≥ c) for knowledge IO linkages and
COD-Pl

US,2002(c) = ∑
h∈H 1(βl,h

US,2002 ≥ c) for production IO linkages. Second, we use the (un-
conditional) weighted outdegree (WOD) of input sectors with WOD-Kl

US,2002 = ∑
h∈H α

l,h
US,2002

for knowledge IO linkages and WOD-Pl
US,2002 = ∑

h∈H β
l,h
US,2002 for production IO linkages.

Finally, we calculate the authority weight centrality (AWC) developed by Kleinberg (1999)
that represents the contribution of each input sector to the entire knowledge or production IO
table and is determined simultaneously with the hub weight centrality (HWC) that represents
the absorption of inputs of each output sector from the knowledge or production IO table.42

In our context, these measures are defined by

AWC-Kl
US,2002 = λK

∑
h∈H

αl,h
US,2002HWC-Kh

US,2002,

HWC-Kl
US,2002 = µK

∑
h∈H

αh,l
US,2002AWC-Kh

US,2002,

AWC-Pl
US,2002 = λP

∑
h∈H

βl,h
US,2002HWC-Ph

US,2002,

HWC-Pl
US,2002 = µP

∑
h∈H

βh,l
US,2002AWC-Ph

US,2002,

where λK (λP ) and µK (µP ) are the Euclidean norms of the vectors of {AWC-Kl
US,2002}l∈H

({AWC-Pl
US,2002}l∈H) and {HWC-Kl

US,2002}l∈H ({HWC-Pl
US,2002}l∈H), respectively.

To illustrate that the key input sectors are different across the IO tables, we reproduce
versions of Figure 1 in which we reorder sectors according to the ranking of sectors by these
three centrality measures. In Appendix Figure A.3, we order sectors in each panel by the
rank of sectors of the corresponding centrality measure in the knowledge IO table. Sectors
follow the same order in the plot of both the knowledge and production IO tables.

It is clear from Appendix Figure A.3 that the importance of a sector as a supplier of inputs
in the knowledge IO table is not highly related to the importance of the sector as a supplier

42Cai and Li (2019) document that the authority weight centralities of sectors and patent technology classes
are important determinants of sector-level and firm-level innovation activity.
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Appendix Figure A.3: Key Input Sectors in the Knowledge IO Table

Notes: Figure plots the knowledge and production IO tables with sectors ordered by the rank of the centrality measures
constructed using knowledge IO linkages. Within each panel, the row position of each output sector and column position of each
input sector is held constant across both IO tables. Panel A ranks sectors by the conditional outdegrees for the condition c = 1%.
Panel B ranks sectors by the weighted outdegree. Panel C ranks sectors by the authority weight centrality. Each centrality
measure is defind in text. IO linkages are defined in Section 4.1. Knowledge IO linkages are based on backward citations of US
patents filed between 1993–2002 while production IO linkages are based on the 2002 BEA Use table. All plots only display IO
linkages that account for at least 1% of the inputs used by an output sector.
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of inputs in the production IO table.43 We close this section by stating our third observation
from comparing the US knowledge and production IO tables.

Observation 3: The key input-supplying sectors are distinct in the knowledge and produc-
tion IO tables.

Appendix B Data Appendix

Google Patents Data. Our knowledge IO linkages, stocks of technology, and diffusion
and innovation outcomes are constructed using data from the Google Patents Public Data
available from IFI CLAIMS Patent Services and Google (2022). This paper uses the November
2021 version of the database, which includes patents applied for at 105 different national and
regional patent offices between 1782 and 2021 with patent inventors located in 242 different
countries and regions.44 Each patent used in our analysis is linked to the patents it cites
(from any year since 1782) and the patents that cite it (through 2021).

We draw data from Google Patents at the patent family level, where a patent family is the
collection of all applications for a given innovation. A patent application to a patent office
potentially comprises multiple patent documents submitted to that office or that are produced
in the examination and granting process. Some of these documents include original and
revised primary documents and some represent supplementary documents, such as non-patent
literature and search reports.45

We begin by determining the focal set of patent families that are the object of our
analysis. These families have non-missing data for IPC version 8 codes, filing dates, and
inventor countries listed in their primary series documents as defined in point 11 of WIPO
(2016) (i.e., those with letter groups 1–3).46 We refer to these primary series documents as
primary publications and to all other documents as supplementary publications. All of our
analysis examines effects on the focal set of patent families for which data are collected solely
from primary publications. For patent families that are linked to this focal set of patent
families through forward and backward citations, we prioritize recording data from primary

43When sectors are instead ordered by the rankings of the centrality measures constructed using production
IO linkages, the reverse implication is visually apparent. These graphs are available on request.

44The large number of locations is accounted for by the inclusion of sub-national regions, such as Hong
Kong, which we keep as separate regions whenever trade data is also available for the sub-national region.

45The Google Patents database contains a total of 136.1 million different patent documents.
4692% of patent publications are primary series documents, and 98% of patent families have at least one

primary series document filed.
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publications but make use of information in supplementary publications if the relevant
information (e.g., the IPC codes) is missing from all available primary publications of the
linked families.

Out of a total of 74.8 million patent families in the Google Patents database, 67.9 million
of them have at least one 4-character IPC code, which is a minimum requirement in order for
them to be included in the data underlying the knowledge IO tables we construct. Meanwhile,
71.8 million patent families have filing dates, while only 20.9 million have inventor country
information.47 In total, 18.9 million patent families have all three sets of information. The
focal set of patent families is the subset of 18.0 million patent families which derive all of this
information from primary publications.

As there are potentially multiple sets of filing dates, inventor countries, and IPC codes
coming from the different publications within a patent family, we aggregate all of this
information up to the patent-family level using the following rules. The filing date is the
earliest of the filing dates found in the family’s primary publications. The list of inventor
countries are those in the longest vector of inventor countries found in the family’s primary
publications.48 The set of IPC codes for a patent family corresponds to the superset of all
distinct 4-character IPC codes contained in the family’s primary publications. For patent
families that are linked to focal patent families, data for any of these fields that are missing
from primary publications are then taken from supplementary publications to fill in data
gaps.49 We record whether or not a patent family is triadic using information on the patent
offices to which the patent family’s applications are submitted. In the rest of this section and
throughout the paper, patent refers to the data associated with a patent family as measured
according to this procedure.

Our knowledge IO table is constructed from the backward citations of focal patent families.
To identify these citations, for each focal patent we record the list of distinct linked cited
patents that appear in any of the primary publications of the citing focal patent.50 In total,

47The number of patent families with assignee country information is only slightly higher at 23.1 million
patent families covered. We do not use assignee country information to allocate patent families to countries as
described below since the location of a patent assignee may not correspond to the location where innovation
activity takes place, particularly for assignees that are multinational businesses.

48Note that the list of inventor countries may, by design, contain multiple instances of the same country, as
different inventors can reside in the same country.

49By construction, this does not occur for our focal set of patent families.
50To compute the innovation outcome variables based on counts of forward citations received by focal

patents from the linked patents that cite them, we additionally record the list of distinct cited (focal) patents
that appear in the supplementary publications of the citing patents whenever a citing patent family has
no citations in its primary publications. We do this to maximize the coverage of forward citations of focal
patents in our data.
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there are 10.8 million focal patent families with at least one such backward citation. Almost
all of these have at least one backward citation in a primary publication that cites a patent
that has a 4-character IPC code and are therefore included in the set of patents whose data
underlie the technology subclass-to-technology subclass knowledge IO table.51

Using this data, we allocate focal patents to countries and technology categories to construct
variables at the level of aggregation used in our analysis. We assign shares of each patent
to countries in proportion to the share of inventors from each country listed in the patent
application documents.

To produce a pre-concordance dataset at the country-technology subclass-filing year level
for our innovation outcome variables, we treat each distinct technology subclass listed on a
focal patent family as a separate patent. We add up the (fractional) count of each outcome for
focal patents listing each technology class in each filing year and each country after applying
the inventor-country weights to those patents. In particular, for a given country-technology
subclass-year grouping of patents, we count the amounts of the following variables: total
patents, total forward citations and five-year forward citations received by those patents, and
total and five-year foreign forward citations (i.e., those citations received by the grouping of
patents from patents in other countries, where we use inventor-country weights for both cited
and citing patents).

For technology subclass-to-technology subclass backward citations, which are the data
underlying our measurement of knowledge IO linkages, we additionally treat each distinct
technology subclass listed on a linked cited patent as a separate patent. We calculate the
number of backward citations of a given country-output technology subclass-filing year
grouping to each input technology subclass of the patents cited by the grouping using
inventor-country shares as weights and treating both input and output patents with multiple
technology subclasses as multiple patents.52 We use the counts contained in the cells of
the resulting technology subclass-to-technology subclass input-output matrix to measure
backward citations for our diffusion outcome variables.

Concordance Details and Sources. We use many concordances between data classifica-
tion systems in this paper. Below, we describe the processes used to apply the concordances
in more detail and provide the locations at which the concordance files can be accessed.

51Only around 17 thousand focal patents cite patents that do not have IPC code data.
52These counts are also computed for backward citations to each input technology subclass for cited US,

domestic, and foreign patents by citing country-technology subclass-year patents (using inventor-country
weights for both cited and citing patents).
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We first crosswalk the Google Patents data on technology stocks, defined in Section 5.1.3,
patent counts, and forward and backward citations, all of which are measured at the 4-
character IPC version 8 level, to the 2002 BEA sector categories in two stages. The first
stage uses the concordance weights between IPC technology subclasses and 2002 6-digit HS
codes developed by Lybbert and Zolas (2014) and then takes these data from 2002 6-digit
HS codes into 1992 6-digit HS codes.53 This second concordance uses equal weights for each
1992 6-digit HS code into which a given 2002 6-digit HS code maps.54

The second stage, which is also applied to the BACI trade data that are categorized by
1992 6-digit HS codes, applies three distinct concordances to convert the data to the endpoint
2002 BEA classification. The first concordance identifies the 1987 4-digit SIC codes associated
with each 1992 6-digit HS code using an unweighted mapping between the two classification
systems.55 The second concordance converts 1987 4-digit SIC codes into 2002 6-digit NAICS
codes, again using an unweighted mapping between the classifications.56 Combining these two
concordances provides the set of 2002 6-digit NAICS codes associated with each 1992 6-digit
HS code. We construct concordance weights to map the latter into the former using the share
of employment of each NAICS code into which an HS code maps in the total employment
of the NAICS codes associated with each HS code. Data on employment by 2002 NAICS
code are taken from the 2003 County Business Patterns (CBP) dataset, which is the earliest
available disaggregated source of employment data by NAICS code using the 2002 version of
the NAICS codes.57 The third concordance applies the mapping of 2002 6-digit NAICS codes
into the endpoint 2002 BEA sector codes.58 The composite weights between 1992 6-digit
HS codes and our endpoint classification implied by combining the three concordances of

53There is no concordance between IPC technology subclasses and 1992 6-digit HS codes available.
The first set of concordance weights can be accessed at https://sites.google.com/site/nikolaszolas/
PatentCrosswalk (last accessed on August 3, 2022).

54These equal concordance weights are constructed from the unweighted crosswalk available from the
World Bank’s World Integrated Trade Solution (WITS) database accessible after creating an account at
https://wits.worldbank.org/product_concordance.html (using the WITS classification labelling, this
is the H2 to H0 concordance file; last accessed on August 5, 2022).

55This is taken from WITS at https://wits.worldbank.org/product_concordance.html (the H0 to
SIC concordance file).

56This file is available from the US Census Bureau at https://www.census.gov/naics/?68967 (last
accessed on August 3, 2022).

57Using employment weights improves upon the alternative of using equal weights that arises due to the
lack of weights in the files used in the first and second concordances of this stage. These data come from the
US Census Bureau and are available at https://www.census.gov/programs-surveys/cbp/data/datasets.
html (last accessed on August 3, 2022).

58The concordance file can be found in Appendix A of the BEA 2002 Standard Make and Use Tables
available at https://www.bea.gov/industry/benchmark-input-output-data (last accessed on August 3,
2022).
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this second stage are precisely the weights mapping subsectors into sectors referred to in
Section 5.1.3.

For the backward citations data used to measure knowledge IO linkages, we apply these
two crosswalk stages to both the cited and citing technology subclasses.

To measure production IO linkages in different years consistently in terms of our endpoint
2002 BEA classification, we apply concordances that are similar in nature to the second stage
of the crosswalk of technology categories just described. We convert the inter-sectoral sales
data in the 1992, 1997, and 2007 BEA Use tables.

For 1992, sector categories are based on the 1987 BEA classification system. We map
categories from this system into the 1987 4-digit SIC sectors using a concordance provided
by the BEA.59 We then use the concordance between 1987 4-digit SIC sectors and 2002
6-digit NAICS sectors mentioned earlier to identify the 2002 NAICS sectors associated with
each 1987 BEA sector. Using the same procedure as the second stage above, we compute as
concordance weights the share of employment of each 2002 NAICS code into which a 1987
BEA sector maps in the total employment of those mapped-into 2002 NAICS codes with the
2003 CBP employment data. We combine these weights with the mapping of 2002 6-digit
NAICS codes into the 2002 BEA classification to conduct the crosswalk.

In the 1997 table, the 1997 BEA classification of sectors is based on 1997 6-digit NAICS
sectors. We use the BEA concordance between these classifications and the concordance
between the 1997 6-digit NAICS sectors and 2002 6-digit NAICS sectors to identify the
2002 NAICS sectors associated with each 1997 BEA sector.60 We proceed as before and
construct weights for mapping 1997 BEA sectors into 2002 NAICS sectors using the 2003
CBP employment data and combine these weights with the mapping of 2002 6-digit NAICS
codes into the 2002 BEA classification to conduct the crosswalk.

The data for the 2007 table are available only in terms of the 2012 BEA classification
of sectors, which are themselves based on the 2012 6-digit NAICS sectors. In this case, we
use three separate concordances to identify the 2002 NAICS sectors associated with each
2012 BEA sector. First, we use the crosswalk between the 2012 BEA classification and
the 2012 NAICS sectors provided by the BEA.61 The second and third concordances map

59This can be found at https://www.bea.gov/industry/benchmark-input-output-data using the 1987
Use table appendices.

60The first of these concordances is available at https://www.bea.gov/industry/
benchmark-input-output-data using the appendices of the 1997 Use table (after redefinitions)
while the second concordance is available at https://www.census.gov/naics/?68967.

61This is available in the appendix of the 2007 Use table found at https://www.bea.gov/industry/
input-output-accounts-data (last accessed on August 3, 2022).
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2012 NAICS sectors into 2007 NAICS sectors and 2007 NAICS sectors into 2002 NAICS
sectors, respectively.62 Employment-based concordance weights for mapping between 2012
BEA sectors and 2002 NAICS sectors are constructed using the 2003 CBP employment data.
We combine these weights with the mapping of 2002 NAICS sectors into the 2002 BEA
sectors to complete the crosswalk.

62Both concordance files are available at https://www.census.gov/naics/?68967.
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Appendix C Additional Figures and Tables

Appendix Figure C.1: Additional Outcomes Estimated at Different Lags

Notes: Figure plots coefficient estimates of the effects of EmbT echK and EmbT echP on P atents (top left panel), F wdRate
(top right panel), USBackRate (bottom left panel), and USBackShare (bottom right panel) for five separate models using
Equation (13) with the outcome variable measured in period t. The five models include the explanatory variables lagged by τ
years relative to year t for each of τ ∈ {1, 2, . . . , 5}. The dashed lines are the 95% confidence intervals of the effects. All models
include the same controls and fixed effects as in the baseline specification.
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Appendix Table C.1: Five-Year Average for Outcome Variables

(1) (2) (3) (4) (5) (6)
P atents F wdCites F wdRate USBackCites USBackRate USBackShare

ln(EmbT echK) 0.041*** 0.062*** 0.029*** 0.084*** 0.018* 0.001
(0.008) (0.011) (0.010) (0.017) (0.011) (0.003)

ln(EmbT echP ) 0.006*** 0.007*** -0.000 0.011*** 0.002 0.000
(0.001) (0.002) (0.001) (0.003) (0.002) (0.000)

Observations 478,880 478,880 377,096 478,880 377,096 372,451

F-Stats
EmbT echK 4,468 4,468 8,225 4,468 8,225 8,673
EmbT echP 15,030 15,030 19,520 15,030 19,520 20,248
EmbT echDiag 397 397 469 397 469 464

Notes: Table reports 2SLS coefficient estimates using Equation (13). All dependent variables are averaged over a five-year window
and then, except for USBackShare, transformed using ln(1 + Outcome), where Outcome is the variable specified in the column
title. All explanatory variables are lagged by one year. Other controls include the logs of OwnT ech, EmbT echDiag, total exports
to the world, and total imports to the world. All regressions include country-sector, summary-sector-year, and country-year
fixed effects. Standard errors clustered at both the country-sector and sector-year level are in parentheses. The F-Stats are the
Sanderson and Windmeijer (2016) F statistics for the test of the joint significance of the excluded instruments for each of the
first-stage regressions of the endogenous variables that include imports in their construction. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% levels, respectively.

Appendix Table C.2: Leave-One-Out Instrument for Imports

(1) (2) (3) (4) (5) (6)
P atents F wdCites F wdRate USBackCites USBackRate USBackShare

ln(EmbT echK) 0.041*** 0.059*** 0.024*** 0.080*** 0.013 -0.000
(0.008) (0.011) (0.009) (0.016) (0.010) (0.002)

ln(EmbT echP ) 0.006*** 0.006*** -0.000 0.011*** 0.001 0.000
(0.001) (0.002) (0.001) (0.003) (0.001) (0.000)

Observations 478,880 478,880 361,290 478,880 361,290 356,457

F-Stats
EmbT echK 4,477 4,477 10,924 4,477 10,924 11,473
EmbT echP 15,031 15,031 20,787 15,031 20,787 21,476
EmbT echDiag 396 396 483 396 483 472

Notes: Table reports 2SLS coefficient estimates using Equation (13). All dependent variables are averaged over a three-year
window and then, except for USBackShare, transformed using ln(1 + Outcome), where Outcome is the variable specified in the
column title. All explanatory variables are lagged by one year. Other controls include the logs of OwnT ech, EmbT echDiag,
total exports to the world, and total imports to the world. All regressions include country-sector, summary-sector-year, and
country-year fixed effects. Standard errors clustered at both the country-sector and sector-year level are in parentheses. The
F-Stats are the Sanderson and Windmeijer (2016) F statistics for the test of the joint significance of the excluded instruments for
each of the first-stage regressions of the endogenous variables that include imports in their construction. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.
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Appendix Table C.3: Leave-One-Out Within-Cluster Instrument for Imports

(1) (2) (3) (4) (5) (6)
P atents F wdCites F wdRate USBackCites USBackRate USBackShare

ln(EmbT echK) 0.029*** 0.044*** 0.023*** 0.062*** 0.024** 0.002
(0.006) (0.008) (0.009) (0.013) (0.011) (0.002)

ln(EmbT echP ) 0.005*** 0.006*** -0.000 0.010*** 0.002 0.000
(0.001) (0.002) (0.001) (0.002) (0.002) (0.000)

Observations 478,880 478,880 361,290 478,880 361,290 356,457

F-Stats
EmbT echK 1,195 1,195 1,106 1,195 1,106 1,111
EmbT echP 1,217 1,217 2,051 1,217 2,051 2,255
EmbT echDiag 101 101 78 101 78 78

Notes: Table reports 2SLS coefficient estimates using Equation (13). All dependent variables are averaged over a three-year
window and then, except for USBackShare, transformed using ln(1 + Outcome), where Outcome is the variable specified in the
column title. All explanatory variables are lagged by one year. Other controls include the logs of OwnT ech, EmbT echDiag,
total exports to the world, and total imports to the world. All regressions include country-sector, summary-sector-year, and
country-year fixed effects. Standard errors clustered at both the country-sector and sector-year level are in parentheses. The
F-Stats are the Sanderson and Windmeijer (2016) F statistics for the test of the joint significance of the excluded instruments for
each of the first-stage regressions of the endogenous variables that include imports in their construction. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.

Appendix Table C.4: ln(Outcome) Transformation of Outcome Variables

(1) (2) (3) (4) (5) (6)
P atents F wdCites F wdRate USBackCites USBackRate USBackShare

ln(EmbT echK) 0.073*** 0.099*** 0.034*** 0.103*** 0.029** -0.000
(0.018) (0.021) (0.013) (0.022) (0.013) (0.002)

ln(EmbT echP ) -0.002 -0.004 -0.001 -0.001 0.000 0.000
(0.002) (0.003) (0.002) (0.003) (0.002) (0.000)

Observations 361,290 342,782 342,782 344,145 344,145 356,457

F-Stats
EmbT echK 10,890 11,853 11,853 11,759 11,759 11,433
EmbT echP 20,754 23,814 23,814 23,654 23,654 21,441
EmbT echDiag 484 470 470 466 466 473

Notes: Table reports 2SLS coefficient estimates using Equation (13) but with an alternative transformation of the outcome
variable. All dependent variables are averaged over a three-year window and then, except for USBackShare, transformed using
ln(Outcome), where Outcome is the variable specified in the column title. All explanatory variables are lagged by one year.
Other controls include the logs of OwnT ech, EmbT echDiag, total exports to the world, and total imports to the world. All
regressions include country-sector, summary-sector-year, and country-year fixed effects. Standard errors clustered at both the
country-sector and sector-year level are in parentheses. The F-Stats are the Sanderson and Windmeijer (2016) F statistics for the
test of the joint significance of the excluded instruments for each of the first-stage regressions of the endogenous variables that
include imports in their construction. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Appendix Table C.5: arsinh(Outcome) Transformation of Outcome Variables

(1) (2) (3) (4) (5) (6)
P atents F wdCites F wdRate USBackCites USBackRate USBackShare

ln(EmbT echK) 0.048*** 0.067*** 0.030*** 0.088*** 0.015 -0.000
(0.009) (0.012) (0.011) (0.017) (0.012) (0.002)

ln(EmbT echP ) 0.007*** 0.007*** -0.000 0.011*** 0.001 0.000
(0.001) (0.002) (0.001) (0.003) (0.002) (0.000)

Observations 478,880 478,880 361,290 478,880 361,290 356,457

F-Stats
EmbT echK 4,468 4,468 10,890 4,468 10,890 11,433
EmbT echP 15,030 15,030 20,754 15,030 20,754 21,441
EmbT echDiag 397 397 484 397 484 473

Notes: Table reports 2SLS coefficient estimates using Equation (13) but with an alternative transformation of the outcome
variable. All dependent variables are averaged over a three-year window and then, except for USBackShare, transformed using
arsinh(Outcome), where Outcome is the variable specified in the column title. All explanatory variables are lagged by one year.
Other controls include the logs of OwnT ech, EmbT echDiag, total exports to the world, and total imports to the world. All
regressions include country-sector, summary-sector-year, and country-year fixed effects. Standard errors clustered at both the
country-sector and sector-year level are in parentheses. The F-Stats are the Sanderson and Windmeijer (2016) F statistics for the
test of the joint significance of the excluded instruments for each of the first-stage regressions of the endogenous variables that
include imports in their construction. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Appendix Table C.6: Non-Zero Patent Counts Sample

(1) (2) (3) (4) (5) (6)
P atents F wdCites F wdRate USBackCites USBackRate USBackShare

ln(EmbT echK) 0.158*** 0.198*** 0.024*** 0.281*** 0.013 -0.000
(0.013) (0.016) (0.009) (0.022) (0.010) (0.002)

ln(EmbT echP ) 0.007*** 0.006*** -0.000 0.011*** 0.001 0.000
(0.001) (0.002) (0.001) (0.003) (0.001) (0.000)

Observations 361,290 361,290 361,290 361,290 361,290 356,457

F-Stats
EmbT echK 10,890 10,890 10,890 10,890 10,890 11,433
EmbT echP 20,754 20,754 20,754 20,754 20,754 21,441
EmbT echDiag 484 484 484 484 484 473

Notes: Table reports 2SLS coefficient estimates using Equation (13). All dependent variables are averaged over a three-year
window and then, except for USBackShare, transformed using ln(1 + Outcome), where Outcome is the variable specified in the
column title. All explanatory variables are lagged by one year. Other controls include the logs of OwnT ech, EmbT echDiag,
total exports to the world, and total imports to the world. All regressions include country-sector, summary-sector-year, and
country-year fixed effects. Standard errors clustered at both the country-sector and sector-year level are in parentheses. The
F-Stats are the Sanderson and Windmeijer (2016) F statistics for the test of the joint significance of the excluded instruments for
each of the first-stage regressions of the endogenous variables that include imports in their construction. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.
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Appendix Table C.7: Technology Stocks Based on Patent Counts

(1) (2) (3) (4) (5) (6)
P atents F wdCites F wdRate USBackCites USBackRate USBackShare

ln(EmbT echK) 0.050*** 0.069*** 0.022** 0.097*** 0.011 -0.001
(0.010) (0.013) (0.010) (0.019) (0.011) (0.003)

ln(EmbT echP ) 0.007*** 0.007*** -0.001 0.013*** 0.001 0.000
(0.001) (0.002) (0.001) (0.003) (0.002) (0.000)

Observations 478,880 478,880 361,290 478,880 361,290 356,457

F-Stats
EmbT echK 3,576 3,576 7,895 3,576 7,895 8,132
EmbT echP 11,514 11,514 16,367 11,514 16,367 16,736
EmbT echDiag 383 383 537 383 537 528

Notes: Table reports 2SLS coefficient estimates using Equation (13). All dependent variables are averaged over a three-year
window and then, except for USBackShare, transformed using ln(1 + Outcome), where Outcome is the variable specified in the
column title. All explanatory variables are lagged by one year. Other controls include the logs of OwnT ech, EmbT echDiag,
total exports to the world, and total imports to the world. All regressions include country-sector, summary-sector-year, and
country-year fixed effects. Standard errors clustered at both the country-sector and sector-year level are in parentheses. The
F-Stats are the Sanderson and Windmeijer (2016) F statistics for the test of the joint significance of the excluded instruments for
each of the first-stage regressions of the endogenous variables that include imports in their construction. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.

Appendix Table C.8: Top 40 Countries by Total Patents

(1) (2) (3) (4) (5) (6)
P atents F wdCites F wdRate USBackCites USBackRate USBackShare

ln(EmbT echK) 0.061*** 0.082*** 0.031*** 0.097*** 0.012 -0.001
(0.012) (0.015) (0.009) (0.020) (0.010) (0.002)

ln(EmbT echP ) 0.007*** 0.006** -0.002* 0.011*** -0.000 -0.000
(0.002) (0.002) (0.001) (0.003) (0.001) (0.000)

Observations 233,600 233,600 223,624 233,600 223,624 222,510

F-Stats
EmbT echK 5,753 5,753 14,377 5,753 14,377 15,861
EmbT echP 22,156 22,156 27,404 22,156 27,404 28,349
EmbT echDiag 366 366 418 366 418 416

Notes: Table reports 2SLS coefficient estimates using Equation (13). All dependent variables are averaged over a three-year
window and then, except for USBackShare, transformed using ln(1 + Outcome), where Outcome is the variable specified in the
column title. All explanatory variables are lagged by one year. Other controls include the logs of OwnT ech, EmbT echDiag,
total exports to the world, and total imports to the world. All regressions include country-sector, summary-sector-year, and
country-year fixed effects. Standard errors clustered at both the country-sector and sector-year level are in parentheses. The
F-Stats are the Sanderson and Windmeijer (2016) F statistics for the test of the joint significance of the excluded instruments for
each of the first-stage regressions of the endogenous variables that include imports in their construction. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.
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Appendix Table C.9: Other Innovation Outcomes

Triadic Patents Foreign Citations

(1) (2) (3) (4) (5)
P atents F wdCites F wdRate F wdCites F wdRate

ln(EmbT echK) 0.018*** 0.033*** 0.023** 0.058*** 0.026***
(0.004) (0.006) (0.010) (0.010) (0.009)

ln(EmbT echP ) 0.003*** 0.004*** -0.002 0.006*** -0.000
(0.001) (0.001) (0.001) (0.002) (0.001)

Observations 478,880 478,880 259,847 478,880 361,290

F-Stats
EmbT echK 4,468 4,468 13,556 4,468 10,890
EmbT echP 15,030 15,030 34,681 15,030 20,754
EmbT echDiag 397 397 398 397 484

Notes: Table reports 2SLS coefficient estimates using Equation (13). All dependent variables are averaged over a three-year
window and then transformed using ln(1 + Outcome), where Outcome is the variable specified in the column title. In columns
(1) to (3), outcome variables are constructed using information from triadic patent applications, though forward citations from
any patent to a triadic patent are included. In columns (4) and (5), the forward citations measures exclude citations where
the citing patent is assigned to the domestic country and thus only include foreign citations (based on the inventor-country
weights described in Section 2). All explanatory variables are lagged by one year. Other controls include the logs of OwnT ech,
EmbT echDiag, total exports to the world, and total imports to the world. All regressions include country-sector, summary-
sector-year, and country-year fixed effects. Standard errors clustered at both the country-sector and sector-year level are in
parentheses. The F-Stats are the Sanderson and Windmeijer (2016) F statistics for the test of the joint significance of the
excluded instruments for each of the first-stage regressions of the endogenous variables that include imports in their construction.
***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Appendix Table C.10: Other Diffusion Outcomes

Triadic Patents Including Own-Sector Citations

(1) (2) (3) (4) (5) (6)
USBackCites USBackRate USBackShare USBackCites USBackRate USBackShare

ln(EmbT echK) 0.041*** 0.016* 0.001 0.071*** 0.018** -0.002
(0.008) (0.010) (0.002) (0.013) (0.008) (0.002)

ln(EmbT echP ) 0.006*** -0.000 0.000 0.009*** 0.000 0.000
(0.001) (0.001) (0.000) (0.002) (0.001) (0.000)

Observations 478,880 259,847 259,662 478,880 361,290 359,483

F-Stats
EmbT echK 4,468 13,556 13,622 4,468 10,890 10,865
EmbT echP 15,030 34,681 34,783 15,030 20,754 20,936
EmbT echDiag 397 398 397 397 484 478

Notes: Table reports 2SLS coefficient estimates using Equation (13). All dependent variables are averaged over a three-year
window and then, except for USBackShare, transformed using ln(1 + Outcome), where Outcome is the variable specified in the
column title. In columns (1) to (3), outcome variables are constructed using information from triadic patent applications, though
cross-sector backward citations to any patent by a triadic patent are included. In columns (4) to (6), the backward citations
measures include both cross-sector and own-sector citations. All explanatory variables are lagged by one year. Other controls
include the logs of OwnT ech, EmbT echDiag, total exports to the world, and total imports to the world. All regressions include
country-sector, summary-sector-year, and country-year fixed effects. Standard errors clustered at both the country-sector and
sector-year level are in parentheses. The F-Stats are the Sanderson and Windmeijer (2016) F statistics for the test of the joint
significance of the excluded instruments for each of the first-stage regressions of the endogenous variables that include imports in
their construction. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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