
Streufert, Peter Alfred

Working Paper

Dynamic programming for pure-strategy subgame
perfection in an arbitrary game

Research Report, No. 2023-3

Provided in Cooperation with:
Department of Economics, University of Western Ontario

Suggested Citation: Streufert, Peter Alfred (2023) : Dynamic programming for pure-strategy subgame
perfection in an arbitrary game, Research Report, No. 2023-3, The University of Western Ontario,
Department of Economics, London (Ontario)

This Version is available at:
https://hdl.handle.net/10419/297766

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/297766
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Western University Western University

Scholarship@Western Scholarship@Western

Department of Economics Research Reports Economics Working Papers Archive

2023

2023-3 Dynamic Programming for Pure-Strategy Subgame 2023-3 Dynamic Programming for Pure-Strategy Subgame

Perfection in an Arbitrary Game Perfection in an Arbitrary Game

Peter Streufert

Follow this and additional works at: https://ir.lib.uwo.ca/economicsresrpt

 Part of the Economics Commons

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/economicsresrpt
https://ir.lib.uwo.ca/econwpa
https://ir.lib.uwo.ca/economicsresrpt?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F859&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/340?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F859&utm_medium=PDF&utm_campaign=PDFCoverPages

Dynamic Programming for Pure-Strategy
Subgame Perfection in an Arbitrary Game

by

Peter Streufert

Research Report # 2023-3 February 2023

Department of Economics

Research Report Series

Department of Economics
Social Science Centre
Western University

London, Ontario, N6A 5C2
Canada

DYNAMIC PROGRAMMING FOR
PURE-STRATEGY SUBGAME PERFECTION

IN AN ARBITRARY GAME

Peter A. Streufert
Economics Department

Western University

Abstract. This paper uses value functions to characterize the pure-strategy
subgame-perfect equilibria of an arbitrary, possibly infinite-horizon game. It speci-
fies the game’s extensive form as a pentaform (Streufert 2023p, arXiv:2107.10801v4),
which is a set of quintuples formalizing the abstract relationships between nodes,
actions, players, and situations (situations generalize information sets). Because
a pentaform is a set, this paper can explicitly partition the game form into piece
forms, each of which starts at a (Selten) subroot and contains all subsequent nodes
except those that follow a subsequent subroot. Then the set of subroots becomes the
domain of a value function, and the piece-form partition becomes the framework for
a value recursion which generalizes the Bellman equation from dynamic program-
ming. The main results connect the value recursion with the subgame-perfect equi-
libria of the original game, under the assumptions of upper- and lower-convergence.
Finally, a corollary characterizes subgame perfection as the absence of an improving
one-piece deviation.

1. Introduction

1.1. Selten subroots and value functions.1.1. Selten subroots and value functions

This is the first paper to use value functions to characterize the pure-strategy
subgame-perfect equilibria of arbitrary games. As might be expected, a value function
assigns a value profile (that is, a vector of utility-like values indexed by players) to
each Selten subroot (that is, to each root of a nontrivial subgame as defined in Selten
1975). Now by analogy with the Bellman equation from dynamic programming, one
might hope to calculate the value profile at each subroot from the value profiles at
immediately subsequent subroots. This endeavour is relatively simple when there is
perfect information, for then decision nodes and subroots are identical.

However, in general, [1] the path leading from a subroot to an immediately subse-
quent subroot can include one or more intermediate nodes which are not subroots.
Further, [2] there may be a path leading away from a subroot, which never reaches a
subsequent subroot, but instead reaches an endnode of the entire game. Still further,
[3] there may be a path leading away from a subroot, which never reaches a subse-
quent subroot, and which is infinite. Note that all three types of paths can follow a
single subroot.

Date: February 9, 2023. Keywords: Bellman equation, value function, upper-convergence,
lower-convergence, pentaform. Classifications: MSC 90C39, 91A18; JEL C61, C73. Contact in-
formation: pstreuf@uwo.ca, 519-661-2111x85384, Economics Department, University of Western
Ontario, London, Ontario, N6A 5C2, Canada. 1

2 1. Introduction

Such complexity might be called “combinatoric” in the sense that it involves graph
theory and the consideration of special cases. To address the problem, this paper
first specifies a game’s extensive form as a pentaform (Streufert 2023p), which is a set
of quintuples formalizing the abstract relationships between nodes, actions, players,
and situations (“situations” generalize information sets; “form” routinely abbreviates
“pentaform”). Then a result from Streufert 2023p is used to partition the whole
(penta)form into a collection of “piece” (penta)forms. Each piece form starts at
a subroot and includes all subsequent nodes except those that follow a subsequent
subroot. As a consequence, each piece form has runs (that is, “plays” or “maximal
paths”) which start at a subroot and have no intermediate subroots. Such a piece run
can be [1] a finite run going from the subroot to an immediately subsequent subroot,
[2] a finite run going from the subroot to a whole-form endnode, and [3] an infinite
run going from the subroot. As a whole, the piece-form partition is the basis upon
which the value profiles at different subroots will be interconnected. In other words,
it is the basis on which the “piecewise” (intuitively “recursive”) properties of value
functions will be defined.

1.2. Two Theorems.1.2. Two Theorems

The paper culminates in two theorems about value functions. This paragraph
states the two theorems very superficially. Theorem 5.5 assumes two conditions called
“upper-convergence” and “lower-convergence”, and concludes that a value function,
with certain essentially piecewise properties, characterizes the whole-game utilities
generated by a given grand pure strategy (a grand pure strategy is equivalent to a
strategy profile listing a pure strategy for each player). Theorem 5.7 assumes only
“lower-convergence”, and concludes that the existence of a value function, with other
essentially piecewise properties, is equivalent to a given grand pure strategy being a
subgame-perfect equilibrium. Examples suggest that the theorems’ conclusions can
easily fail when their assumptions fail.

1.3. Relation to dynamic programming.1.3. Relation to dynamic programming

This section discusses Theorems 5.5 and 5.7 in somewhat more detail by show-
ing how they generalize fundamental dynamic-programming theorems. A one-player
perfect-information game is equivalent to a nonstationary deterministic dynamic opti-
mization problem. When this paper’s two theorems are applied to one-player perfect-
information games, they collapse to the characterization theorems of nonstationary
deterministic dynamic programming. In this very special case, a subroot in this paper
reduces to a (nonstationary) state in dynamic programming. Similarly, a grand pure
strategy here reduces to a (nonstationary) policy function there, and a profile-valued
value function here reduces to a (nonstationary) scalar-valued value function there.1

From this perspective, it is possible to develop a number of parallels between this
paper and dynamic programming. To begin, in many formulations of dynamic pro-
gramming, the Bellman equation encompasses two separate ideas, namely (i) that
the policy today is optimal given the value tomorrow, and (ii) that the value today
can be derived from the policy today and the value tomorrow. Here, the notion of

1. Introduction 3

a time period is generalized to Section 1.1’s notion of “piece”, (i) is generalized to
the idea of the grand strategy being “piecewise-Nash” for the value function, and
(ii) is generalized to the idea of the value function being “persistent” for the grand
strategy. Note that both piecewise-Nashness and persistence are properties of a grand-
strategy/value-function pair.

Three more parallels remain. (iii) In dynamic programming, the value at a state
may or may not equal the utility level generated by following the policy thereafter.
Similarly here, the value profile at a subroot may or may not equal the utility profile
generated by following the grand strategy thereafter. Exactly when it does, the
value function is said to be “authentic” for the grand strategy. (iv) As in dynamic
programming, a player’s value function is “admissible” iff it satisfies weak upper and
lower bounds. Finally, (v) the concept of a grand strategy being subgame perfect
generalizes the concept of a policy function being optimal from any state.

The conclusions of the two theorems can now be expressed in more detail. The-
orem 5.5 concludes that the combination of admissibility (iv) and persistence (ii) is
equivalent to authenticity (iii). Theorem 5.7 concludes that the combination of au-
thenticity (iii) and piecewise-Nashness (i) is equivalent to subgame perfection (v). In
both theorems, the forward direction of the equivalence is substantial and the reverse
direction is easy. Also, the two theorems can be combined to conclude that the combi-
nation of admissibility, persistence, and piecewise-Nashness is equivalent to subgame
perfection.

To reach its conclusions, Theorem 5.5 assumes both upper- and lower-convergence.
Meanwhile, Theorem 5.7 assumes only lower-convergence. Upper-convergence means
that conceivable utility increments vanish as one proceeds along a run. Symmetrically,
lower-convergence means that conceivable utility decrements vanish as one proceeds
along a run. This pair of assumptions generalizes a similar pair of assumptions from
dynamic programming (footnote 1 part (b)) to the broader context of games.

Later, Section 2 will use example games to develop further intuition for the two
theorems, and to suggest that the theorems’ conclusions can easily fail when their
assumptions fail. Thereafter, Sections 3.1–5.6 will formally develop the two theorems
and their underlying concepts. Additionally, Section 5.7 will develop Corollary 5.9,
which assumes lower-convergence and shows that one-piece unimprovability is equiva-
lent to subgame perfection (as in the two theorems, the forward direction is substantial
and the reverse direction is easy).

1[from page 2] (a) To be clear, dynamic programming characterizes optima and proves their
existence. In contrast, the present paper characterizes equilibria but does not prove their existence
(it is well-known that a game can fail to have a pure-strategy equilibrium). (b) Many economists
understand dynamic programming via contraction mappings, as in Denardo 1967, Stokey and Lucas
1989, Boyd 1990, and Becker and Boyd 1997. A more general approach using convergence appears
in Blackwell 1965, Strauch 1966, Sobel 1975, Kreps 1977, Blair 1984, Ozaki and Streufert 1996,
and Streufert 1998. Streufert 1993 can provide a useful bridge from this convergence literature, via
consistent intergenerational games, to the present paper. (c) This Section 1.3 uses “nonstationary”
in an extremely general sense.

4 1. Introduction

1.4. Relation to game theory.1.4. Relation to game theory

As stated at the outset, this is the first paper to use value functions to characterize
the pure-strategy subgame-perfect equilibria of arbitrary, possibly infinite-horizon
games. This section will explore the generality of the paper’s “arbitrary games”.

First, this paper imposes no informational assumptions, such as perfect informa-
tion, perfect recall, or no-absentmindedness. But to accurately assess the paper’s
generality, one should regard each subroot as a specialized informational assumption.
At one extreme, the root node is the only subroot, Section 1.1’s piece partition has
only one member, and the paper’s results are vacuous. The opposite extreme is per-
fect information, where every decision node is a subroot and the piece partition is as
fine as possible. There the paper’s results are especially powerful, but mostly already
present in the literature (Filar and Vrieze 1997). It is the many intermediate cases to
which this paper is addressed. In this middle ground, the piece partition is nontrivial
in the sense of being neither extremely coarse nor extremely fine. Here there appear
to be no general results concerning value functions, and limited results concerning
one-shot and one-piece unimprovability (Hendon, Jacobsen, and Sloth 1996, Kamin-
ski 2019). Section 4.3 further discusses informational assumptions, and Section 5.7
further discusses unimprovability.

Second, this paper studies arbitrary pentaform games. These are general enough
to encompass all the finite- or infinite-horizon games in which each decision node
has a finite number of predecessors.2 To explore this, recall that a standard game
is specified as a tree decorated with information sets, actions, players, and utility
functions. Streufert 2023p shows that there is an intuitive and constructive bijection
between the collection of standard games3 and the collection of pentaform games
that have information-set situations. Therefore any standard game can be explicitly
transformed into a pentaform game. Some examples include standard games in which
nodes have no special structure (Selten 1975), standard games in which nodes are
sequences of past actions (Osborne and Rubinstein 1994), standard games in which
nodes are sets of past actions (Streufert 2019), and standard games in which nodes
are sets of future outcomes (Alós-Ferrer and Ritzberger 2016, Chapter 6). Note that
there can be (i) decision nodes with uncountably many immediate successors and (ii)
countably infinite runs (that is, an infinite horizon).

1.5. Organization of Paper.1.5. Organization of Paper

Section 2 uses examples to casually introduce the paper’s results. Sections 3 and
4 review and adapt the formal definitions of pentaform game and subgame-perfect
equilibrium. Then Section 5 introduces the concepts of piece form and piece game,
and states the paper’s results. Appendices A, B, and C contain lemmas and proofs.

2This excludes games in continuous time, games with simultaneous moves by infinitely many
players, and the non-discrete games in Alós-Ferrer and Ritzberger 2016, Chapter 5.

3A standard game is called a “Gm game” in Streufert 2023p. Gm stands for the category
of standard extensive-form games (Streufert 2021Gm). A brief introduction to this category is in
Streufert 2023p, Appendix A.

2. Examples 5

2. Examples

This Section 2 uses examples to build intuition, step by step. The section is ca-
sual, and presumes some familiarity with tree diagrams, subgame perfection, and
dynamic programming (if the first example is unfamiliar, a good starting place would
be Osborne 2004 Chapter 5). In contrast, Sections 3–5 will be formal and logically
self-contained.

2.1. A familiar example.2.1. A familiar example

Figure 2.1(a) begins with a well-known game between a potential firm called the
“entrant” and an existing firm called the “incumbent”. If the entrant chooses to
enter (denoted e), the incumbent can choose to fight (f). The utility profiles list the
entrant’s utility first and the incumbent’s utility second. Essentially, a fight is won
by the incumbent and reduces total utility. Nodes are labelled 5, 6, 7, 8, and 9 in
order to avoid confusion with utility numbers.

(a)

e ẽ

f f̃

Incumbent

Entrant

5

6 7

8 9[
-1
3

] [
2
2

]

[
0
4

]

(b)

e ẽ

f f̃

Incumbent

Entrant

5

6 7

8 9[
-1
3′

] [
2
2′

]

[
0′

4

]

[
0
4

]

[
-1′

3

]

Figure 2.1. (a) A game. (b) The same game with its only subgame-perfect
equilibrium (shown by heavy edges) and the associated value function.

The subgame-perfect equilibrium of this game can be found by a well-known al-
gorithm called “backward induction” or “dynamic programming”. This equilibrium
and algorithm are shown in Figure 2.1(b). The algorithm has two steps. (1) Consider
node 6. Here the incumbent would choose to fight because it gives the incumbent
utility 3 from node 8 rather than utility 2 from node 9. This choice is shown by the
heavy edge from node 6 to node 8, and in accord with this choice, the utility profile
from node 8 is copied to node 6. (2) Consider node 5. Here the entrant would choose
to not enter because it gives the entrant utility 0 from node 7 rather than utility −1
from node 6. This choice is shown by the heavy edge from node 5 to node 7, and
in accord with this choice, the utility profile from node 7 is copied to node 5. (The
utilities used in the above comparisons are marked with primes in the figure.)

The two heavy edges together depict a “grand strategy”, and the assignment of
a utility profile to each of the two decision nodes is called a “value function”. The
previous paragraph constructed this grand-strategy/value-function pair in two steps,
the first being at node 6 and the second being back at node 5. At each step, [a] the

6 2. Examples

relevant player chose the better subsequent node on the basis of the utility profiles
of the subsequent nodes, and [b] the utility profile of the better subsequent node was
copied to the current node. Call [a] the “stepwise-optimality” of the grand strategy
given the value function, and call [b] the “persistence” of the value function given
the grand strategy. This [a] and [b] are two-player generalizations of (i) and (ii) in
Section 1.3’s initial discussion of dynamic programming.

It can be shown that the combination of stepwise-optimality and persistence is
equivalent to subgame perfection in any finite game with perfect information (Osborne
2004 Proposition 172.1). The purpose of this paper is to extend this equivalence to
arbitrary games with possibly infinite horizon and possibly imperfect information.
To be somewhat more precise, the equivalence will evolve into Theorems 5.5 and 5.7,
and “stepwise-optimality” will become “piecewise-Nashness”.

2.2. The cry-wolf game.2.2. The cry-wolf game

Figure 2.2 is a single-day version of a well-known fable. Imagine that a wolf en-
dangers a kid who lives in a town. On the one hand, the wolf may attack (a). Then
the kid involuntarily cries “Wolf!” and the town either runs to the rescue (r) or not
(̃r). The former is a big loss for the wolf, while the latter is a big win for the wolf.
This is reflected in the reward profiles beneath nodes 4 and 5, where the wolf’s utility
is listed first, the kid’s second, and the town’s last. On the other hand, the wolf
may not attack (denoted ã). Then the kid chooses whether to cry “Wolf!” (c) or
not (c̃). If the kid (untruthfully) cries out, the town either runs to the rescue (r) or
not (̃r), with the former being a small win for the kid, and the latter being a small
win for the town. If the kid (truthfully) remains quiet, the town enjoys a small win.
Importantly, the town cannot distinguish between an involuntary cry for help and a
deliberate untruthful cry for help. This is reflected by nodes 2 and 3 being in the
same information set in the figure.

a

ã

c

r r̃ r r̃

c̃
Kid

Town

Wolf

{}

2

1

3

4 5 6 7

8



0
.5
.5






.5
0
0






.5
.4
.2






.5
.2
.4






.5
.2
.4




Figure 2.2. A single day with its rewards.

2. Examples 7

a

ã

c

r r̃

r

r̃

c̃
Kid

Town

Wolf

{}

2

1

3

4 5


0
.5̄
.5̄






.5̄
0
0




a

ã

c

r r̃ r

r̃

c̃
Kid

Town

Wolf

6

62

61

63

64 65

.50
.45̄
.25̄





.55̄
.40
.20


 66

Wolf

67

Wolf

68

Wolf

a

ã

c

r r̃ r

r̃

c̃
Kid

Town

Wolf

7

72

71

73

74 75

.50
.25̄
.45̄





.55̄
.20
.40


 76

Wolf

77

Wolf

78

Wolf

a

ã

c

r r̃ r

r̃

c̃
Kid

Town

Wolf

8

82

81

83

84 85

.50
.25̄
.45̄





.55̄
.20
.40


 86

Wolf

87

Wolf

88

Wolf

Figure 2.3. The cry-wolf game. Decision nodes are shaded, and sub-
roots are underlined. Utilities are shown for eight of the finite runs and
none of the infinite runs.

8 2. Examples

Figure 2.3 is a multiple-day extension of Figure 2.2. Notice that the multiple-day
game ends if the wolf attacks. Until that happens (if it ever does), Figure 2.2’s
single-day rewards are accumulated with a discount factor of 0.1 (except that the
positive single-day rewards in the event of wolf attack are changed from .5 to .5̄)4.
For example, consider the run ending at node 65. Its utility profile is calculated as


.5
.4
.2


+ .1



.5̄
0
0


 =



.55̄
.40
.20


 ,

where the first profile is 6’s single-day reward from the first day (when the kid fooled
the town) and the second profile is 5’s single-day reward from the second and final
day (when the kid’s real cry for help was ignored). This (total discounted) utility
appears next to node 65 in Figure 2.3.

Figure 2.3 might be called an “infinitely partially repeated horse game”. In a typical
repeated game, (a) the stage game is simultaneous-move or perfect-information and
(b) the stage game is repeated a predetermined number of times. Here (a) fails
because the stage game is Figure 2.2, which is neither simultaneous-move nor perfect-
information. Rather, Figure 2.2’s stage game visually resembles Selten 1975’s “horse”
game. In addition, (b) fails because the stage game stops repeating if the wolf attacks.
Thus Figure 2.3 is a “partially” repeated game.

Regardless of any comparison to conventional repeated games, Figure 2.3 is “sta-
tionary” in the sense that many nodes strongly resemble one another. Although the
theorems in this paper are especially useful when there is some sort of stationarity,
the theorems themselves do not assume any sort of stationarity. Rather, this paper
will define a “subroot” to be the root of a nontrivial subgame (Selten 1975), and will
use these subroots to partition the game form (that is, the game without utilities)
into “piece” forms, as first discussed in Section 1.1. These pieces can be said to gener-
alize stages. For example, the subroots in Figure 2.3 are underlined. These subroots
divide the figure’s 32 edges into the four 8-edge piece forms that begin at subroots
{}, 6, 7, and 8. Each of these four piece forms is very similar to the single-day form
of Figure 2.2.

2.3. Intuition for the two theorems.2.3. Intuition for the two theorems

This section uses the cry-wolf game to develop intuition for Theorems 5.5 and 5.7.
(These two theorems were discussed with less detail in Sections 1.2, 1.3, and 2.1.)

Figure 2.4 shows a grand strategy for Figure 2.3’s game. Specifically, at each
information set, one or more thick edges show the action chosen by the player in
control at that information set. Such a grand strategy determines a player strategy

4To tell a story, if the wolf attacks, the single-day rewards from Figure 2.2 are enjoyed perma-
nently in Figure 2.3. Accordingly, the positive single-day rewards from nodes 4 and 5 are changed
from .5 in Figure 2.2 to Σ∞`=0(.1)`−1(.5) = .5̄ in Figure 2.3.

2. Examples 9

for each player by means of restriction. For instance, Figure 2.4 shows the kid’s
player strategy by the thick edges leaving the singleton information sets containing
nodes ending in 1 (in particular, the figure shows the kid choosing c at every such
information set). For brevity, “grand strategy” will henceforth be abbreviated as
“strategy”.

How could one prove that Figure 2.4’s (grand) strategy is a Nash equilibrium? If
one used the definition of Nash equilibrium, one would need to be prove that each
of the three players does not have an alternative player strategy which increases
the player’s utility. Unfortunately, this approach seems intractable since each of the
three players has infinitely many alternative player strategies. A different approach is
provided by this paper’s generalized dynamic-programming technique. It can be used
to prove not only Nashness, but also the stronger concept of subgame perfection.

To illustrate this technique, Figure 2.4 places a value profile next to each subroot.
Such a map from subroots to value profiles is called a “value function”. The figure’s
(grand) strategy and value function satisfy properties [1]–[4] below. The paper’s
two theorems concern the logical relationships between these four properties and the
property of subgame perfection. Note that Section 1.3 introduced [1]–[4] in a different
order as (i)–(iv), that the combination of [2] and [4] can be regarded as a generalization
of the Bellman equation from dynamic programming, and that only these two were
discussed in connection with Section 2.1’s simple example.

Property [1] . The value function is “admissible”, which means roughly that the
players’ values are neither overoptimistic nor overpessimistic. Somewhat more pre-
cisely, it means that for each subroot and each player, (a) there is a run through the
subroot generating utility weakly higher than the value, and symmetrically, (b) there
is a (typically different) run through the subroot generating utility weakly lower than
the value. To illustrate this, consider subroot 6 in Figure 2.4. There the kid’s value
is .42̄. This is

below .45̄, which is the kid’s utility from the run ending in 64, and

above .40, which is the kid’s utility from the run ending in 65.

Note that the property of admissibility does not concern the (grand) strategy. In
contrast, properties [2]–[4] will concern both the strategy and the value function.

Property [2]. The value function is “persistent” for the strategy, in the sense that
the value profile at each subroot is equal to (a) the value profile at the next subroot
reached by obeying the strategy, if that subroot exists, or otherwise (b) the utility
profile of the whole-game run that is completed by obeying the strategy. Because of
the example strategy in Figure 2.4, case (b) never occurs in the figure. As a result,
persistence reduces to the property that, if two subroots are connected by thick edges,
then the two share the same value profile. For instance, the profiles at {}, 7, and 77
are equal, the profiles at 6 and 67 are equal, and the profiles at 8 and 87 are equal.

Property [3]. The value function is “authentic” for the strategy, in the sense that
the value profile at each subroot is equal to the utility profile that results from obeying
the strategy after the subroot. For example, in Figure 2.4, the run that results from
obeying the strategy after subroot 6 passes through the nodes {}, 6, 67, 677, and so

10 2. Examples

a

ã

c

r r̃

r

r̃

c̃
Kid

Town

Wolf

{}

2

1

3

4 5



.5̄
.2̄
.4̄






0
.5̄
.5̄






.5̄′

0
0






.55̄
.42̄
.24̄′






.55̄′

.22̄′

.44̄′






.55̄
.22̄′

.44̄




a

ã

c

r r̃ r

r̃

c̃
Kid

Town

Wolf

6

62

61

63

64 65

.50
.45̄
.25̄





.55̄′

.40

.20






.555̄
.442̄
.224̄′






.555̄′

.422̄′

.244̄′






.555̄
.422̄′

.244̄




66

Wolf

67

Wolf

68

Wolf

a

ã

c

r r̃ r

r̃

c̃
Kid

Town

Wolf

7

72

71

73

74 75

.50
.25̄
.45̄





.55̄′

.20

.40






.555̄
.242̄
.424̄′






.555̄′

.222̄′

.444̄′






.555̄
.222̄′

.444̄




76

Wolf

77

Wolf

78

Wolf

a

ã

c

r r̃ r

r̃

c̃
Kid

Town

Wolf

8

82

81

83

84 85

.50
.25̄
.45̄





.55̄′

.20

.40






.555̄
.242̄
.424̄′






.555̄′

.222̄′

.444̄′






.555̄
.222̄′

.444̄




86

Wolf

87

Wolf

88

Wolf

Figure 2.4. A strategy shown by the heavy edges, and a value func-
tion shown by the value profiles at the subroots (subroots are under-
lined).

2. Examples 11

on. Thus the utility profile that results from obeying the strategy after subroot 6 is

.5
.4
.2


+ .1



.5
.2
.4


+ .01



.5
.2
.4


+ ... =



.55̄
.42̄
.24̄


 ,

where the first profile is 6’s single-day reward from the first day (when the kid fooled
the town), the second profile is 7’s single-day reward from the second day (when the
town ignores the kid’s untruthful cry in accord with the strategy), the third profile
is 7’s single-day reward from the third day (when again the town ignores the kid’s
untruthful cry in accord with the strategy), and so on. This (discounted total) utility
profile appears next to node 6 in the figure.5

Property [4]. The strategy is “piecewise-Nash” for the value function, in the sense
that it implies a Nash equilibrium in each piece game. By definition, each piece-
game’s utility function assigns to each piece-run (a) the value profile at the piece-run’s
endnode, if that endnode exists and is a subroot, or otherwise (b) the utility profile
of the whole-game run that is completed by the piece-run. In Figure 2.4, consider the
piece that begins at subroot 6. Here there are five piece-runs culminating in the five
piece-endnodes 64, 65, 66, 67, and 68 (these five form a backwards “L” to the south
and east of 6 in the figure). Within this piece game, the strategy shown by the thick
edges is a Nash equilibrium because

the wolf weakly prefers .555̄ at 67 to .55̄ at 65,

the kid weakly prefers .422̄ at 67 to .422̄ at 68, and

the town strictly prefers .244̄ at 67 to .224̄ at 66.

(the six utility numbers used in these three utility comparisons are marked with
primes in the figure).

This paper’s two theorems concern logical relationships between properties [1]–[4]
and the property of subgame perfection. Two straightforward observations can be
made without any restrictions. First, [1] and [2] are implied by [3]. In other words,
admissibility and persistence are implied by authenticity. Second, [3] and [4] are
implied by subgame perfection. In particular, consider a subgame-perfect equilibrium
(this is a strategy) and derive its associated value function. Then the value function is
authentic for the strategies (by definition), and the strategies are piecewise-Nash for
the value function (by a straightforward argument). [These two observations can be
strung together to show that [1]–[4] are satisfied by any subgame-perfect equilibrium
and its associated value function.]

Theorems 5.5 and 5.7 state these straightforward observations, and much more im-
portantly, provide their converses. Specifically, Theorem 5.5 gives broad conditions
under which admissibility [1] and persistence [2] imply authenticity [3], and Theo-
rem 5.7 gives broad conditions under which authenticity [3] and piecewise-Nashness

5Readers accustomed to stationary dynamic programming might not expect this utility to include
the single-day reward from the first day. It may be helpful to notice that the formulation here treats
the examples of Figures 2.1(b) and 2.4 in a unified way. In both examples, the value function is
authentic for the strategy.

12 2. Examples

[4] imply subgame perfection. [These two results can be strung together to show that
there are broad conditions under which [1], [2], and [4] imply subgame perfection.]

The “broad conditions” in the previous paragraph are the assumptions of “upper-
convergence” and “lower-convergence”.6 More specifically, Theorem 5.5 assumes both
upper- and lower-convergence, and Theorem 5.7 assumes only lower-convergence.

2.4. Intuition for upper- and lower-convergence.2.4. Intuition for upper- and lower-convergence

This section uses examples to develop intuition for the assumptions of upper- and
lower-convergence, and to suggest that the conclusions of Theorems 5.5 and 5.7 can
easily fail when these assumptions fail. [Thus far, these assumptions have been dis-
cussed in just a few sentences, toward the end of Section 1.3.]

Roughly, a player’s utility function is upper-convergent at a run iff conceivable
utility increments eventually vanish while moving along the run. For example, each
player’s utility function is upper-convergent at any run in Figure 2.3. In particular, the
passage of each subroot irrevocably determines another digit in the decimal expansion
of the player’s utility. Hence the conceivable utility increments dwindle to zero while
moving along the run. Symmetrically, a player’s utility function is lower-convergent
at a run iff conceivable utility decrements eventually vanish while moving along the
run. For example, each player’s utility function is lower-convergent at any run in
Figure 2.3. This holds because the preceding decimal-expansion argument applies to
utility decrements just as it did to utility increments.

The remainder of this section explores two example games in which upper- or
lower-convergence is violated. The games themselves appear in Figure 2.5. Each is
a one-player game in which the single player chooses the action 1 or the action 0 an
infinite number of times.

In one game, the player is called Max and his utility is the maximum action he
chooses. Max’s utility function is not upper-convergent at the run {{}, 0, 00, ...}.
In particular, Max gets utility 0 from this run, and yet he could conceivably reach
utility 1 by choosing action 1 at any point in the arbitrarily distant future while
moving along this run. The perpetual plausibility of this utility increment from 0 to
1 violates upper-convergence at the run. (Unimportantly, upper-convergence holds
at all other runs, and lower-convergence holds at all runs.)

In the other game, the player is called Minny and her utility is the minimum action
she chooses. Minny’s utility function is not lower-convergent at the run {{}, 1, 11, ...}.
In particular, Minny gets utility 1 from this run, and yet her utility could conceivably
fall to 0 if she chose action 0 at any point in the arbitrarily distant future while
moving along the run. The perpetual plausibility of this utility decrement from 1 to
0 violates lower-convergence at the run. (Unimportantly, lower-convergence holds at
all other runs, and upper-convergence holds at all runs.)

6Games with only finite runs are relatively easy. There [1] upper- and lower-convergence hold
vacuously (Lemma C.2). Also [2] persistence and authenticity are equivalent, and either implies
admissibility (Lemma C.8). In this sense, Section 2.1’s discussion of its finite example is complete
even though it does not mention upper-convergence, lower-convergence, authenticity, or admissibility.

2. Examples 13

(a)

0

1

Max
{}

0

1 0

1
Max
1

10

1111
Max

10

Max

0

1
Max
0

00

0101
Max

00

Max

all give
utility 1

(b)

0

1

Minny
{}

0

1 0

1
Minny

1

10

1111
Minny

10

Minny

0

1
Minny

0

00

0101
Minny

00

Minny

all give
utility 0

Figure 2.5. Two one-player games. Max’s utility is the maximum of
his actions, while Minny’s utility is the minimum of her actions.

The conclusions of Theorems 5.5 and 5.7 can easily fail when their assumptions
fail.7 The remainder of this section discusses three such instances. In the first two
instances, admissibility and persistence do not imply authenticity, in violation of
Theorem 5.5’s conclusion. The first instance violates the theorem’s assumption of
upper-convergence, and the second instance violates the theorem’s assumption of
lower-convergence. Meanwhile, in the third instance, authenticity and piecewise-
Nashness do not imply subgame perfection, in violation of Theorem 5.7’s conclusion.
This instance violates Theorem 5.7’s assumption of lower-convergence.

First, Figure 2.6(a) depicts a strategy/value-function pair for Max. The strategy
is shown by the thick edges, and the value function is given by the one-player value
profiles next to the nodes (i.e., subroots).8 Admissibility [1] holds by inspection,
and persistence [2] follows immediately from the value function being constant across
nodes. Yet authenticity [3] fails. In particular, Max’s value at {} is 1, and this differs
from the utility 0 that he gets from the run {{}, 0, 00, ...} that is implied by starting
at {} and obeying his strategy. Thus admissibility [1] and persistence [2] do not imply
authenticity [3]. This is closely related to Max’s utility function failing to be upper-
convergent at {{}, 0, 00, ...}. Essentially, the value function can erroneously assign a
value of 1 to this utility-0 run because the utility increment from 0 to 1 is perpetually
conceivable along the run.

Second, Figure 2.6(b) depicts a strategy/value-function pair for Minny. As with
Max, admissibility [1] holds by inspection, and persistence [2] follows immediately
from the value function being constant across nodes. Yet authenticity [3] fails.

7In this context, the last two paragraphs of Section 2.3 suffice for the statements of Theorems
5.5 and 5.7.

8In each of Figure 2.5’s games, there is perfect information and the absence of endnodes. Per-
fection information implies subroots are identical to decision nodes, and the absence of endnodes
implies decision nodes are identical to nodes. Hence subroots are identical to nodes.

14 2. Examples

(a)

0

1

Max
{}

0

1

[
1
]

[
1
]

[
1
]

0

1Max
1

10

11

[
1
]

[
1
]
11

Max

10

Max

0

1Max
0

00

01

[
1
]

[
1
]
01

Max

00

Max

all give
utility 1

(b)

0

1

Minny
{}

0

1

[
0
]

[
0
]

[
0
]

0

1Minny
1

10

11

[
0
]

[
0
]
11

Minny

10

Minny

0

1Minny
0

00

01

[
0
]

[
0
]
01

Minny

00

Minny

all give
utility 0

Figure 2.6. Two instances where admissibility and persistence do not
imply authenticity.

0

1

Minny
{}

0

1

[
0
]

[
0
]

[
0
]

0

1Minny
1

10

11

[
0
]

[
0
]
11

Minny

10

Minny

0

1Minny
0

00

01

[
0
]

[
0
]
01

Minny

00

Minny

all give
utility 0

Figure 2.7. An instance where authenticity and piecewise-Nashness
do not imply subgame perfection.

In particular, Minny’s value at {} is 0, and this differs from the utility 1 that she gets
from the run {{}, 1, 11, ...} that is implied by starting at {} and obeying her strategy.
Thus admissibility [1] and persistence [2] do not imply authenticity [3]. This is closely
related to Minny’s utility function failing to be lower-convergent at {{}, 1, 11, ...}. Es-
sentially, the value function can erroneously assign a value of 0 to this utility-1 run
because the utility decrement from 1 to 0 is perpetually conceivable along the run.

Third, consider Figure 2.7. Here the focus is on optimization rather than authentic-
ity. Authenticity [3] holds because the strategy leads to only 0 actions and the values
are all 0. (As always, admissibility [1] and persistence [2] follow from authenticity [3].)
Further, piecewise-Nashness [4] holds because the value function is constant across all
nodes. Yet the strategy is not Nash (and hence not subgame-perfect) because Minny
can increase her utility from 0 to 1 by choosing the run {{}, 1, 11, ...}. Thus authen-
ticity [3] and piecewise-Nashness [4] do not imply subgame perfection. This is closely
related to Minny’s utility function failing to be lower-convergent at {{}, 1, 11, ...}.

3. Definitions for Pentaform Games 15

As discussed in the previous paragraph, a utility decrement from 1 to 0 is perpetu-
ally conceivable along this run. Essentially, this run can be “wrecked” by choosing
0’s in the arbitrarily distant future. The zero value function embodies choosing 0’s
in the arbitrarily distant future, and thereby conceals from piecewise-Nashness the
benefit of choosing all 1’s. In this fashion, the figure’s strategy of choosing all 0’s is
piecewise-Nash even though it is not Nash.

3. Definitions for Pentaform Games

This Section 3 reviews and slightly extends the definition of pentaform game from
Streufert 2023p. The slight extension is the introduction of stakeholders in Section 3.6.
(Figure 2.3’s example will continue to be used for illustrative purposes. Simpler
examples can be found in Streufert 2023p.)

3.1. Quintuple sets.3.1. Quintuple sets

A arbitrary quintuple will be denoted 〈i,j,w,a,y〉. The first component i is called
the player, the second component j is called the situation, the third component w is
called the decision node, the fourth component a is called the action, and the fifth
component y is called the successor node. These five terms have no formal meaning.
They merely name the five positions in a quintuple. For example, in the quintuple
〈B1,B2,B3,B4,B5〉, the player is B1, the situation is B2, the decision node is B3, the
action is B4, and the successor node is B5. Further, as would be expected, let the
nodes of a quintuple be its decision node and its successor node, so that the nodes of
〈B1,B2,B3,B4,B5〉 are B3 and B5.

A quintuple can specify an edge in the tree diagram of an extensive form. For
example, consider the tree diagram of Figure 2.3. Within that diagram, consider the
edge 〈63, 67〉 from the decision node 63 to the successor node 67. First, the action
r̃ labels this edge, and this data can be encoded in the triple 〈63, r̃, 67〉. Second, the
information set {62,63} contains the decision node 63, and this (self-evident) data
can be encoded in the quadruple 〈{62,63}, 63, r̃, 67〉 (information sets are a special
kind of situation). Finally, the player Town makes the decision at the information set
{62,63}, and this data can be encoded in the quintuple 〈Town, {62,63}, 63, r̃, 67〉.

In this fashion, a set of quintuples can specify an entire tree diagram. For example,
consider the tree diagram of Figure 2.3. Let

Ṫ = ∪∞`=0{6, 7, 8}`(1)

Thus Ṫ is the set consisting of the strings {}, 6, 7, 8, 66, 67, 68, and so on. Each
such string is understood to be a sequence of characters (digits in this case), and {}
stands for the empty string. In Figure 2.3, these strings are the nodes that do not
end in 1, 2, 3, 4, or 5. Then for each t ∈ Ṫ , let

16 3. Definitions for Pentaform Games

Q̇t = { 〈Wolf, {t}, t, ã, t⊕1〉,(2)

〈Wolf, {t}, t, a, t⊕2〉,
〈Kid, {t⊕1}, t⊕1, c, t⊕3〉,
〈Kid, {t⊕1}, t⊕1, c̃, t⊕8〉,

〈Town, {t⊕2,t⊕3}, t⊕2, r, t⊕4〉,
〈Town, {t⊕2,t⊕3}, t⊕2, r̃, t⊕5〉,
〈Town, {t⊕2,t⊕3}, t⊕3, r, t⊕6〉,
〈Town, {t⊕2,t⊕3}, t⊕3, r̃, t⊕7〉 },

where ⊕ is the concatenation operator for strings. Finally, let

Q̇ = ∪t∈Ṫ Q̇t.(3)

The eight edges in Figure 2.2 depict the eight quintuples in Q̇{}. The thirty-two
edges in Figure 2.3 depict the thirty-two quintuples in Q̇{}∪Q̇6∪Q̇7∪Q̇8. Finally, the
quintuple of the previous paragraph appears in (2) as the last quintuple in Q̇6 (set
t = 6).

3.2. Slices.3.2. Slices

A quintuple set will usually be denoted by the letter Q. Relatedly, different quin-
tuple sets will be distinguished from one another by means of markings around the
letter Q. Here are four instances of this notational principle: the example of equation
(3) was denoted Q̇, the next paragraph will define slices Qj, Section 4.1 will define
Selten subforms tQ, and Section 5.1 will define piece-forms Qt.

This paragraph defines the slices Qj ⊆ Q of a quintuple set Q. Specifically, consider
an arbitrary quintuple set Q, and let J denote its set of situations j. In other words,
let J be the projection of Q on its second coordinate. Then for each situation j ∈ J ,
define

Qj = { 〈i∗, j, w∗,a∗,y∗〉∈Q }.(4)

Thus Qj is the set of quintuples in Q that list situation j. Call Qj the slice of Q
for situation j. By inspection 〈Qj〉j∈J is an injectively indexed partition of Q. For

instance, in example Q̇, definitions (2)–(3) imply that the situation set J̇ is equal to
the collection of information sets ∪t∈Ṫ {{t}, {t⊕1}, {t⊕2,t⊕3}}. Thus one example

situation j ∈ J̇ is the information set {62,63} (set t = 6). Then definition (2) (via
the last four rows at t = 6) implies that the slice for {62,63} is

Q̇{62,63} = { 〈Town, {62,63}, 62, r, 64〉,(5)

〈Town, {62,63}, 62, r̃, 65〉,
〈Town, {62,63}, 63, r, 66〉,
〈Town, {62,63}, 63, r̃, 67〉 }.

These four quintuples are illustrated by the four edges at the bottom of Figure 2.3.

3. Definitions for Pentaform Games 17

3.3. Projections.3.3. Projections

Any quintuple set can be projected onto any sequence of the five coordinates. Such
a projection is denoted by the symbol π followed by some sequence of the letters I,
J , W , A, and Y . For example,9

πW (Q) = {w | (∃i∗,j∗,a∗,y∗) 〈i∗,j∗, w, a∗,y∗〉∈Q } and

πJI (Q) = { 〈j,i〉 | (∃w∗,a∗,y∗) 〈 i, j, w∗,a∗,y∗〉∈Q }.
Note that the example πJI (Q) re-orders the coordinates. Also note that projections
of slices are well-defined because slices are quintuple sets (slicing will always come
before projecting). An example is

πW (Qj) = {w | (∃i∗,j∗,a∗,y∗) 〈i∗,j∗, w, a∗,y∗〉∈Qj }
= {w | (∃i∗,a∗,y∗) 〈i∗, j, w, a∗,y∗〉∈Q },

where the second equality holds since every quintuple in Qj has situation j by the
slice definition (4).

The notation for a single-coordinate projection will often be abbreviated by replac-
ing the letter Q with the single subscript. In particular, define the five abbreviations
I, J , W , A, and Y by

I = πI (Q), J = πJ (Q), W = πW (Q), A = πA(Q), and Y = πY (Q).(7)

These abbreviations inherit any markings on the letter Q. For instance, in example
Q̇ from (3), we have that the player set İ = πI (Q̇) is {Wolf,Kid,Town}.

Two important applications of the same notational principle are

Wj = πW (Qj) and Aj = πA(Qj).(8)

The former is called the information set in situation j, and the latter is called the
feasible action set in situation j. For instance in the example, equation (5) implies

Ẇ{62,63} = {62, 63} and Ȧ{62,63} = {r, r̃}.
The former states that the information set in situation {62, 63} is {62, 63} (it is
common but not necessary that a situation be identical to its information set, as
discussed near Streufert 2023p equations (9) and (10)). Meanwhile, the latter states
that the feasible set in situation {62, 63} is {r, r̃} (this is illustrated by the two actions
assigned to the four edges at the bottom of Figure 2.3).

3.4. Pentaforms.3.4. Pentaforms

For a quintuple set Q, let

p = πYW (Q).(9)

Axiom [Pw�y] below assumes that p is a function (footnote 11 explains that this paper
regards a function as a set of pairs). Given this axiom, the statements w = p(y),
and 〈y,w〉 ∈ πYW (Q), and 〈w,y〉 ∈ πWY (Q) are equivalent. Call p the immediate-
predecessor function.

9When speaking aloud, it may be helpful to read πW (Q) as “the W of Q” (abbreviation (7)
shortens this to “W”). Similarly, it may be helpful to read πJI (Q) as “the JI of Q”.

18 3. Definitions for Pentaform Games

Definition 3.1 (Pentaform, Streufert 2023p Definition 3.1). A (penta)form is a
set Q of quintuples 〈i,j,w,a,y〉 such that 10,11

10 πJI (Q) is a function,11[Pi�j]
πWJ (Q) is a function,[Pj�w]

(∀j∈J) πWA(Qj) is a Cartesian product,[Pwa]

πWAY (Q) is a function from its first two coordinates,[�Pwa y]

πYW (Q) is a function,[Pw�y]

πYA(Q) is a function,[Pa�y]

(∀y∈Y)(∃`≥1) p`(y) /∈ Y, and[Py]

WrY is a singleton,[Pr]

(where Q determines J , W , Y , p, and each Qj, as summarized in Table 3.1).

Streufert 2023p Section 3.4 interprets each of the eight pentaform axioms with the
help of finite-horizon examples. Meanwhile, this paper’s Lemma A.6 shows that the
Q̇ from (3) and Figure 2.3 is an example of an infinite-horizon pentaform. Further,
pentaforms in general, and this paper’s theorems in particular, can accommodate
nodes with a continuum of immediate successors (an example is not provided). The
remainder of this Section 3.4 will briefly discuss the eight axioms.

The first three axioms concern situations. Axiom [Pi�j] requires that exactly one
player i is assigned to each situation j. This is the player that controls the move at
the situation. Axiom [Pj�w] requires that exactly one situation j is assigned to each
decision node w. By Streufert 2023p Proposition 3.2, this is equivalent to 〈Wj〉j∈J
being an injectively indexed partition of W . Each Wj is called situation j’s informa-
tion set (definition (8)). By Streufert 2023p Proposition 3.3(a⇔b), axiom [Pwa] is
equivalent to requiring that, for each situation j, and for each decision node w ∈ Wj,
the set of actions paired with w is the set Aj. This Aj is called situation j’s feasible
set (definition (8)), and likewise, it is called the feasible set of each decision node
w ∈ Wj.

Next consider the combination of [�Pwa y], [Pw�y], and [Pa�y]. This combination
is equivalent to requiring that the assignment of a decision-node/action pair 〈w,a〉
to a successor node y is a bijection. Thus a decision node and one of its feasible
actions determine the successor node, and conversely, any successor node determines
its immediate-predecessor node and its immediately previous action.

10The label [Pi�j] can be read “i is a function of j”. The labels [Pj�w], [Pw�y], and [Pa�y] can be
read similarly. Meanwhile, the label [�Pwa y] can be read as “w and a determine y”.

11In this paper, an arbitrary function f is a set of pairs such that (∀x∈π1f)(∃!y∈π2f) 〈x,y〉 ∈ f ,
where π1f and π2f are the projections of f on its first and second coordinates. Call π1f the domain
of f , and call π2f the range of f (in this paper functions do not have codomains). Relatedly, a
surjection from X to Y is a function with domain X and range Y , and a bijection from X to Y is
an injective surjection from X to Y . For example, the set g = {〈x,3x2〉|x∈R} is a surjection from
R to R+. Finally, “f :X→Z” is occasionally used to mean “f is a function such that π1f = X and
π2f ⊆ Z”.

3. Definitions for Pentaform Games 19

Pentaform Q [3.4]

Q set of quintuples 〈i,j,w,a,y〉 [3.1]

I =πI (Q)

�

set of players i [3.1,3.3]

J =πJ (Q)

�

set of situations j [3.1,3.3]

W =πW (Q)

�

set of decision nodes w [3.1,3.3]

A=πA(Q)

�

set of actions a [3.1,3.3]

Y =πY (Q)

�

set of successor nodes y [3.1,3.3]

Qj ⊆Q

�

situation j’s slice of Q [3.2]

Wj =πW (Qj)

�

situation j’s information set [3.3]

Aj =πA(Qj)

�

situation j’s (feasible) action set [3.3]

p=πYW (Q)

�

immediate-predecessor function [3.4]

X =W∪Y �

set of nodes x [3.4]

{r}=WrY

�

root node r [3.4]

≺ �

strict precedence relation [3.5]

4

�

weak precedence relation [3.5]

R

�

weak-predecessor correspondence [3.5]

YrW

�

set of endnodes y [3.5]

Zft

�

collection of finite runs Z [3.5]

Zinft

�

collection of infinite runs Z [3.5]

Z �

collection of runs Z [3.5]

S

�

set of (grand) strategies s [3.7]

Ji
�

set of player i’s situations [3.7]

si = s|Ji

�

player i’s restriction of s∈S [3.7]

n

�

next-node function [3.7]

O

�

outcome function [3.7]

T

�

set of (Selten) subroots t [4.1]

Pentaform game (Q, u) [3.6]

u:Z→R̄K (grand) utility function [3.6]

K

�

set of stakeholders k [3.6]

KrI

�

set of bystanders k [3.6]

Table 3.1. Pentaforms and pentaform games are implicitly accompanied
by their derivatives (

�

). Definitions are in the sections in brackets [].

Finally, Streufert 2023p Proposition 3.4 shows that the combination of [Pw�y],
[Py], and [Pr] is equivalent to (W∪Y, πWY (Q)) being a nontrivial out-tree (that is,
the divergent orientation of a rooted tree with at least one edge, as defined in Streufert
2023p Definition B.4). The proposition also shows that the root of the out-tree is the
sole element of WrY . In accord with these results, define a pentaform’s X and r by

X = W∪Y and(10)

{r} = WrY,(11)

call X the set of nodes, call πWY (Q) the set of edges, and call r the root.

20 3. Definitions for Pentaform Games

3.5. Paths in a pentaform’s out-tree.3.5. Paths in a pentaform’s out-tree

Consider a pentaform Q and its out-tree (X, πWY (Q)). Two types of path will
be defined. First, let a path in (X, πWY (Q)) from x0 to x` be a set of the form
{x0, x1, ... x`} such that distinct i and j satisfy xi 6= xj and12

(∀m∈{1,2,...`}) 〈xm−1,xm〉 ∈ πWY (Q).(12a)

For instance, in example Q̇ of definition (3) and Figure 2.3, the path from x0 = 3 to
x2 = 62 is {3, 6, 62}, and the path from x0 = 3 to x` = 3 is {3}. Second, let an infinite
path in (X, πWY (Q)) from x0 be a set of the form {x0, x1, ...} such that distinct i and
j satisfy xi 6= xj and

(∀m∈{1,2,...}) 〈xm−1,xm〉 ∈ πWY (Q).(12b)

For instance, in the same example, one of many infinite paths from x0 = {} is
{{}, 1, 3, 7, 71, 73, 77, ... }. This particular path happens to be the longest path marked
by heavy edges in Figure 2.4. (Streufert 2023p Lemmas B.10 and B.11 provide some
basic facts: [i] any node is reached by a unique path from the root, [ii] there is no
more than one path from any node to another, and [iii] a path from a first node to a
second distinct node precludes a path from the second to the first.)

Let 4 and ≺ be the binary relations defined by

x∗ 4 x iff there is a path from x∗ to x, and(13)

x∗ ≺ x iff (x∗ 6= x and x∗ 4 x).(14)

Call 4 and ≺ the weak and strict precedence orders, respectively. (Streufert 2023p
Lemma B.12 shows that 4 is a partial order on X, and that ≺ is the asymmetric
part of 4.) Finally, define the correspondence13 R:X⇒X by

R(x) = {x∗|x∗4x}.(15)

Call R the weak-predecessor correspondence. Lemma A.2 shows that R(x) is identical
to the path from r to x (both are sets).

This paragraph defines a run (or play) to be a special kind of path. Runs come
in two flavours: finite and infinite. First, call YrW (which equals XrW) the set of
endnodes, let

Zft = {R(y) | y∈YrW },(16a)

and call Zft the collection of finite runs. Thus a finite run is a path which goes from
the root r to some endnode. For instance, in example Q̇ of (3) and Figure 2.3, we

12Within the context of a fixed out-tree, this definition of path as a set of nodes is equivalent to
the standard graph-theoretic definition of path as a pair listing [1] a set of nodes and [2] a set of edges.
(This equivalence is implied, for both finite and infinite paths, by Streufert 2023p Lemma B.13.)

13In this paper, a correspondence is simply a set of pairs. The expression “F :X⇒Y ” means the
statement “F ⊆ X×Y ”.

3. Definitions for Pentaform Games 21

have that ṙ = {}, that 64 ∈ ẎrẆ , and that {{}, 1, 3, 6, 62, 64} ∈ Żft. Second, let

Zinft = { infinite paths in (X, πWY (Q)) from r },(16b)

and call Zinft the collection of infinite runs. For instance, in the same example, we
have {{}, 1, 3, 7, 71, 73, 77, ... } ∈ Żinft. Finally, let

Z = Zft∪Zinft,(16c)

and call Z the set of runs.
A pentaform Q can have all finite runs, all infinite runs, or a combination of the two

(it has at least one run by Lemma A.1(a)). In the first case, Z = Zft and Zinft = ∅.
This happens if (but not only if) the set Q is finite. For examples, please see the
examples in Streufert 2023p. In the second case, Z = Zinft and Zft = ∅. This occurs
iff there are no endnodes, as in the Max and Minny examples of Figure 2.5. In the
third case, both Zft and Zinft are nonempty, as in example Q̇ from (3) and Figure 2.3.

Finally, the weak-predecessor correspondence R can be used to express the runs
in Z in a more convenient way. To do this, first extend the correspondence R
to accept a set argument in the usual way. In particular, for a set N ⊆ X, let
R(N) = ∪{R(x)|x∈N}. Then Lemma A.3 shows that R(N) ∈ Z iff either (a) maxN
exists and is in YrW or (b) N is an infinite subset of a path. In this fashion, the
extended correspondence R can build an entire run R(N) from certain sets N ⊆ X.
For instance, in example Q̇ from (3) and Figure 2.3,

Ṙ(64) = Ṙ({64}) = {{}, 1, 3, 6, 62, 64} ∈ Żft and

Ṙ({7, 77, ...}) = {{}, 1, 3, 7, 71, 73, 77, ...} ∈ Żinft.

3.6. Pentaform games.3.6. Pentaform games

Consider a pentaform Q with its player set I and run collection Z. Then let K be
a superset of I. Call K the set of stakeholders, and call

KrI(17)

the set of bystanders. Bystanders will play an essential role in this paper’s dynamic-
programming theorems. To provide some initial motivation, consider [1] a game,
with its players, and [2] one of the game’s Selten subgames, with its players. There
may be game players who are not subgame players. Such game players will appear as
bystanders in the subgame. Although these bystanders will have no decisions to make
in the subgame, the utility that the bystanders get from the subgame will play an
essential role in the dynamic-programming theorems about the game itself. A simple
instance of this is a Stackelberg game, where the leader is a bystander in the follower’s
subgame, and at the same time, the leader’s utility in the follower’s subgame is used
to calculate the subgame-perfect equilibria of the entire game. This is illustrated by
Figure 2.1’s example, in which the entrant is the leader, and the incumbent is the
follower.

22 3. Definitions for Pentaform Games

Let a (grand) utility function be a function u:Z→R̄K , where R̄ = R∪{−∞,∞} is
the extended real line.14 Such a function u maps each run Z ∈ Z to a utility profile
u(Z) = 〈uk(Z)〉k∈K , which lists a utility level uk(Z) ∈ R̄ for each stakeholder k ∈ K.

Definition 3.2 (Pentaform game). A (pentaform) game is a pair (Q, u) listing
a (penta)form Q and a function u:Z→R̄K such that I ⊆ K (where Q determines Z
and I, as summarized in Table 3.1).

For example, Figure 2.3 illustrates the cry-wolf game (Q̇, u̇). The form Q̇ is defined
formally in (3), and the utility function u̇ is defined verbally in the second paragraph
of Section 2.2. In this game, the stakeholder set K̇ equals the player set İ, so there
are no bystanders.

3.7. Nash equilibria.3.7. Nash equilibria

Consider a pentaform game (Q, u). Let the set of (grand) strategies be

S = { s is function from J | (∀j∈J) s(j)∈Aj }(18)

Thus a strategy names a feasible action s(j) at each situation j ∈ J . Equivalently,
S = { s is function from J | s⊆πJA(Q) }. Mixed strategies are not considered.

For each player i ∈ I, let

Ji = { j∈J | 〈i,j〉∈πIJ (Q) },(19)

and call Ji the set of player i’s situations. Axiom [Pi�j] and a general fact about
functions15 imply that J is injectively partitioned by 〈Ji〉i∈I . Thus the domain J of a
strategy s ∈ S is partitioned by the players’ situation sets 〈Ji〉i∈I . Relatedly, for each
strategy s ∈ S and each player i ∈ I, let

si = s|Ji and s−i = s|JrJi .(20)

Thus si abbreviates the restriction of s to player i’s situations, and s−i abbreviates
the restriction of s to the situations of player i’s opponents. Let the restriction si be
called player i’s strategy.16 This definition, when applied to the other players, implies
that s−i = ∪i∗∈Ir{i}si∗ is the union of the strategies of the other players (footnote 11
explains functions are sets). In the event I = {i} where there is only one player, the
set s−i is empty. In any event, si∪s−i = s. This union si∪s−i will often be written
(si, s−i) for the sake of readability and familiarity.

For instance, consider example Q̇ from (3). As noted in Section 3.2, the situation set
J̇ is the information-set collection ∪t∈Ṫ{{t}, {t⊕1}, {t⊕2, t⊕3}}. This is partitioned

14Infinite utility numbers are included because, in economics, many popular utility functions
generate −∞ utility when some consumption level is zero. Such utility functions often appear in
consumer dynamic optimization problems, and such problems can be regarded as one-player games.

15Suppose G is a set of pairs 〈x,y〉, let X = π1G, and let Y = π2G, and define 〈Xy〉y∈Y by
(∀y∈Y) Xy = {x|〈x,y〉∈G}. Call Xy the inverse image of y. Then the following are equivalent. (a)
G is a function. (b) Distinct y1 and y2 satisfy Xy1∩Xy2 = ∅. (c) 〈Xy〉y∈Y is an injectively indexed
partition of X.

16At the expense of more notation, one could define Si = { f :Ji→A | (∀j∈Ji) f(j)∈Aj }, and call
Si the set of player-i strategies. Then S = {∪i∈Isi|〈si〉i∈I∈Πi∈ISi}.

3. Definitions for Pentaform Games 23

by the player situation sets

J̇Wolf = {{t}|t∈Ṫ}, J̇Kid = {{t⊕1}|t∈Ṫ}, and J̇Town = {{t⊕2,t⊕3}|t∈Ṫ}.
Further, Figure 2.4’s heavy edges show the (grand) strategy

s = sWolf∪sKid∪sTown where(21)

sWolf = {〈{t},ã〉|t∈Ṫ}, sKid = {〈{t⊕1},c〉|t∈Ṫ}, and sTown = {〈{t⊕2,t⊕3},̃r〉|t∈Ṫ}
(footnote 11 explains functions are sets of pairs). Thus the functions sWolf , sKid,
and sTown are both the components used to construct the strategy s and also the
restrictions derived from s. In terms of Section 2.2’s story, the wolf never attacks (ã),
the kid always cries (c), and the town never rescues (̃r).

This paragraph will show that each grand strategy s ∈ S determines a run Z ∈ Z.
First, let the next-node function be

n = { 〈〈w,a〉,y〉 | 〈w,a,y〉∈πWAY (Q) }.(22)

Thus the function n maps each decision-node/feasible-action pair 〈w,a〉 ∈ πWA(Q) to
a successor node n(w,a) ∈ Y . The well-definition of n is equivalent to axiom [�Pwa y].
Second, note that [a] a decision node w ∈ W determines a situation jw by [Pj�w],
which [b] via a (grand) strategy s ∈ S determines an action s(jw), which [c] via the
next-node function determines a successor node n(w, s(jw)). As a result, a strategy
s ∈ S determines the run consisting of r, and x1=n(r, s(jr)), and x2=n(x1, s(jx1)),
and so on, either indefinitely or until an endnode x`=n(x`−1, s(jx`−1

)) is reached. By
this process, each grand strategy s ∈ S determines a run Z ∈ Z. In other words,
this process defines a function O:S→Z. Call O the outcome function. For instance,
consider the example strategy s ∈ Ṡ from (21). Figure 2.4 illustrates that its outcome
is Ȯ(s) = Ṙ({7,77,...}) ∈ Ż.

A Nash equilibrium is a strategy s ∈ S such that17

(∀i∈I, σ∈S) ui(O(s)) ≥ ui(O(σi, s−i)).(23)

Thus a Nash equilibrium is a (grand) strategy such that, for each player i, the re-
striction si of player i is optimal for player i given the restriction s−i of player i’s
opponents. In other words, each player’s strategy is a best response to the strate-
gies of their opponents. Note that the bystanders in KrI play no role in a Nash
equilibrium.

Although definition (23) is conceptually compelling, it threatens to be intractable.
For instance, consider definition (23) in the example game (Q̇, u̇), for the strategy
s ∈ Ṡ from (21), and for the player i = Kid ∈ İ. In this circumstance, the player’s
alternative strategy σi = σKid is some function from J̇Kid = {{t⊕1}|t∈Ṫ} to {c, c̃}.
Since Ṫ is countably infinite, the number of such alternative strategies is uncountably
infinite.

17Definition (18) implies that the domain of the alternative σ ∈ S is the situation set J , and
definition (20) implies that the domain of σi = s|Ji is player i’s situation set Ji. Thus (23) is
unaffected by the values of the alternative σ over the other players’ situations in JrJi. Accordingly,
at the expense of more notation, one could define player i’s strategy set Si (footnote 16), and then
quantify (23) by (∀i∈I, ρ∈Si) with ρ replacing σi in the inequality.

24 4. Subroots, Subforms, and Subgames

4. Subroots, Subforms, and Subgames

Section 4.1 defines the subroots and subforms of a pentaform. Then Section 4.2
adapts the standard concept of subgame perfection (Selten 1975) to pentaform games.
Finally, Section 4.3 discusses the relationships between the set of subroots and stan-
dard informational assumptions.

4.1. Subroots and subforms.4.1. Subroots and subforms

Consider a form Q. For any w ∈ W , define

wQ = { 〈i∗, j∗, w∗, a∗, y∗〉 |w4w∗ }.(24)

To put this in other words, say that a quintuple is weakly after w iff its decision node
weakly succeeds w. Then wQ is the set of quintuples weakly after w. A (Selten)
subroot is a member of

T = { t∈W | tJ and πJ (QrtQ) are disjoint },(25)

where tJ abbreviates πJ(tQ) by the sentence following (7). In other words, t ∈ W
is a subroot iff each situation listed in a quintuple weakly after t is not listed in a
quintuple anywhere else. Note that the pentaform’s root r is a subroot. In other
words,

r ∈ T.(26)

To see this, note rQ = Q, which implies QrrQ = ∅, which implies rJ = J and
πJ (QrrQ) = ∅ are disjoint.

For instance, recall that equations (1)–(3) defined the example Q̇ by first defining Ṫ
and then defining Q̇ = ∪t∈Ṫ Q̇t. When applied to example Q̇, the previous paragraph’s

definitions imply that Q̇’s set of subroots is equal to the Ṫ used to define Q̇. Thus
the set Ṫ is both the initial step in the definition of Q̇ and the subroot set derived
from Q̇. The elements of Ṫ are underlined in Figure 2.3. In addition, the subroots of
the two examples in Figure 2.5 are also underlined (these subroots are discussed in
footnote 8).

Proposition 4.1 (Streufert 2023p, Proposition 4.3). Suppose Q is a (penta)form
with its T (25). Then (∀t∈T) tQ (24) is a (penta)form with root t.

In accord with the proposition, call tQ the (Selten) subform at t. For instance, in
example Q̇ of (3) and Figure 2.3, the subform at each subroot t ∈ Ṫ is tQ̇ = ∪t∗<tQ̇t∗ .
In the figure, the subroots are the underlined nodes, and each subroot’s subform is
the set of edges that follow the subroot.

Consider an arbitrary form Q and subroot t ∈ T . As with any form, use the general
definitions in Sections 3.3, 3.5, and 3.7 to derive from the subform tQ its player set tI,
its situation set tJ , its decision-node set tW , its action set tA, its successor-node set
tY , its endnode set tYrtW , its run collection tZ = tZ ft∪Zinft, its strategy set tS, its
player situation sets 〈tJ i〉i∈tI , and its outcome function tO:tS→tZ. These derivatives
and the sections defining them are listed in Table 4.1.

4. Subroots, Subforms, and Subgames 25

Subform tQ of a form Q at subroot t∈T
tQ⊆Q set of quintuples 〈i,j,w,a,y〉 [4.1]

tI =πI (tQ)

�

set of players i [3.3,4.1]
tJ =πJ (tQ)

�

set of situations j [3.3,4.1]
tW =πW (tQ)

�

set of decision nodes w [3.3,4.1]
tA=πA(tQ)

�

set of actions a [3.3,4.1]
tY =πY (tQ)

�

set of successor nodes y [3.3,4.1]

{t}= tWrtY

�

root node t [4.1]
tYrtW

�

set of endnodes y [3.5,4.1]
tZ �

collection of runs N (not Z) [3.5,4.1]
tS

�

set of (grand) strategies [3.7,4.1]
tJ i

�

player i’s set of situations j [3.7,4.1]
tO

�

outcome function [3.7,4.1]

ts= s|tJ ∈ tS

�

subform restriction of s∈S [4.2]
tsi = s|tJi

�

player i’s subform restriction of s∈S [4.2]

Subgame (tQ, tu) of a game (Q, u) at subroot t∈T
tu:tZ→RK (grand) utility function derived from u [4.2]

K

�

set of stakeholders k [3.6,4.2]

KrtI

�

set of bystanders k [3.6,4.2]

Table 4.1. (Selten) subforms and subgames are implicitly accompanied
by their derivatives (

�

). Definitions are in the sections in brackets [].

Note tI ⊆ I, and relatedly, an arbitrary member of tI is denoted i. A similar remark
can be made for tJ ⊆ J , for tW ⊆ W , for tA ⊆ A, for tY ⊆ Y , for each tJ i ⊆ Ji, and
less trivially, for tYrtW ⊆ YrW (Lemma A.4(a)). However, tZ is typically not a
subset of Z because a subform run in tZ begins at node t while a whole-form run in
Z begins at node r. Relatedly, an arbitrary subform run in tZ will be denoted by
something other than Z (an example is the N in the following paragraph). Likewise,
tS is typically not a subset of S because a subform strategy in tS has domain tJ while
a whole-form strategy has domain J . Fortunately, the paper seldom needs to denote
an arbitrary subform strategy in tS (instead, (28) will define a suitable restriction of
a whole-form strategy in S).

4.2. Subgames and subgame perfection.4.2. Subgames and subgame perfection

Now consider a game (Q, u) with its stakeholder set K (Definition 3.2) and its sub-
root set T (25). Then consider a particular subroot t ∈ T . The previous paragraphs
have defined the subform tQ with its player set tI and its run collection tZ. Now
assign the whole game’s stakeholder set K to the subform so that [a] there is no need
for the symbol tK and [b] KrtI is the subform’s bystander set by general definition
(17). As suggested in Section 3.6, the subform bystanders will play an essential role
in the dynamic-programming results of Section 5.

26 4. Subroots, Subforms, and Subgames

Further, define the (grand) utility function tu = tZ→R̄K by

(∀N∈tZ) tu(N) = u(R(N)),(27)

where R is the weak-predecessor correspondence (15). This construction is well-
defined because each subform run N ∈ tZ satisfies R(N) ∈ Z (Lemma A.4(b)) and
because the domain of u is Z (Definition 3.2). In this fashion, each subform run
N ∈ tZ is assigned the utility of the whole-form run R(N) ∈ Z that it finishes.

Definition 4.2 (Subgame). Suppose (Q, u) is a game (Definition 3.2) with its
subroot set T (25). Then, at each subroot t ∈ T , the (Selten) subgame at t is the pair
(tQ, tu) listing the subform tQ (24) and the utility function tu (27).

For each whole-form strategy s ∈ S and each subroot t ∈ T , define the restriction
ts = s|tJ .(28)

It is easy to show18 that ts ∈ tS. Hence ts is the subform-tQ strategy within the
whole-form strategy s ∈ S. Further, for each i ∈ I, define

tsi = s|tJi and ts−i = s|tJrtJi .(29)

These restrictions are the player’s subform strategy, and the player’s opponents’ sub-
form strategies, within the whole-form strategy s ∈ S.19

A subgame-perfect equilibrium in a game (Q, u) is a strategy s ∈ S such that, at each
subroot t ∈ T , the restriction ts is a Nash equilibrium (23) in the subgame (tQ, tu).
In other words, a subgame-perfect equilibrium is a strategy s ∈ S such that20

(∀t∈T, i∈I, σ∈S) tui(
tO(ts)) ≥ tui(

tO(tσi,
ts−i)).(30)

Incidentally, a subgame-perfect equilibrium is necessarily a Nash equilibrium because
r ∈ T by (26).

Finally, the end of Section 3.7 observed that the definition of Nash equilibrium
(23) threatens to be intractable in the example (Q̇, u̇). The same remark also applies
in each of the infinitely many subgames of (Q̇, u̇). Hence the definition of subgame
perfection (30) threatens to be intractable in examples like this one.

18S’s general definition (18) and s ∈ S imply that s is a function from J such that (∀j∈J)
s(j) ∈ Aj . Thus tJ ⊆ J and definition (28) imply that the restriction ts is a function from tJ such
that (∀j∈tJ) ts(j) ∈ Aj . Meanwhile, the general definition (18) of strategy set, applied to the
subform tQ, implies tS = { f is a function from tJ | (∀j∈tJ) f(j)∈Aj }. The previous two sentences
imply that the restriction ts belongs to the strategy set tS.

19Definition (29) is consistent with the general definition (20) for player strategies. Specifically,
since ts ∈ tS, general definition (20) would set (ts)i equal to ts|tJi

, which by (28) is (s|tJ)|tJi
which

by tJ i ⊆ tJ reduces to s|tJi
. The argument for (ts)−i is similar.

20At the expense of more notation, definition (30) could be quantified by (∀t∈T, i∈tI, φ∈tS) with
φ|tJi

replacing tσi in the inequality. This is equivalent because the inequality holds vacuously as an
equality for each player i in IrtI, and because the inequality is unaffected by the actions of the alter-
native strategy σ over situations j in JrtJ . Further, at the expense of still more notation, one could
define player i’s strategy set tSi (as in footnote 16), and then quantify (30) by (∀t∈T, i∈tI, λ∈tSi)
with λ replacing tσi in the inequality (this additional construction is like footnote 17).

5. Dynamic-Programming Results 27

4.3. Subroots and informational assumptions.4.3. Subroots and informational assumptions

Section 5 will present this paper’s main results. None of the standard informational
assumptions will be imposed. In particular, imperfect information, imperfect recall,
and even absentmindedness will be allowed.

Nonetheless, each subroot should be regarded as a very specialized informational
assumption. To start exploring this, imagine games with few subroots. In the ex-
treme, the only subroot is the root node r (that is T = {r}). In such games, Nash
equilibrium and subgame perfection are equivalent concepts, and the results of this
paper are vacuous. In brief, no assumptions no results. Note that there are interesting
games with only one subroot. Some examples are poker (Zhang and Sandholm 2021),
repeated games with imperfect monitoring (Abreu, Pearce, and Stachetti 1990), and
an unusual example in footnote 23 below.

Next imagine games with many subroots. In the extreme, every decision node is a
subroot (that is T = W). This extreme contingency is known as perfect information.
Here the concept of subgame perfection is most restrictive, and the results of this
paper are most powerful. In brief, strong assumptions strong results. This extremity is
intimately connected with dynamic programming and is accordingly well-understood
(Filar and Vrieze 1997). In this paper, the Max and Minny examples of Figure 2.5
have perfect information. Such examples are given limited attention here.

This paper’s main contribution is to explore the middle ground between these
two extremes. Some examples which fit within this paper’s theory are Rubinstein’s
bargaining model (Shaked and Sutton 1984), repeated games with observed actions
(Rubinstein and Wolinsky 1995), and the cry-wolf example Q̇ from (3) and Figure 2.3.
Other related examples fall outside this paper’s theory because of chance moves,
mixed strategies, or simultaneous moves with uncountably many players. An example
is block-recursive search equilibria (Menzio and Shi 2010).

5. Dynamic-Programming Results

The concepts and results in this Section 5 are new.

5.1. Piece forms.5.1. Piece forms

Consider a form Q. For each subroot t ∈ T , let21

Qt = tQr∪t≺tO∈T tOQ.(31)

Thus each Qt is the set of quintuples that are weakly after t but not weakly after
a subroot successor of t (this characterization is not quite obvious and is proved
in Lemma B.1(a)). The following proposition uses a general result for subsets of
(penta)forms (Streufert 2023p, Corollary 4.2) to show that each Qt is a (penta)form.
In accord with this result, call each Qt the piece form at t.22

21The subscripts O and M can be read as “high” and “low”, respectively.
22The prominence of Selten 1975 has led the present author and game theorists in general to use

the terms “subtree”, “subform”, and “subgame” more restrictively than graph theorists and category
theorists would (for a full discussion see Streufert 2021Gm, Theorem 3.2). Relatedly, graph theorists

28 5. Dynamic-Programming Results

Piece form Qt of form Q at subroot t

Qt⊆Q set of quintuples 〈i,j,w,a,y〉 [5.1]

It =πI (Qt)

�

set of players i [3.3,5.1]

J t =πJ (Qt)

�

set of situations j [3.3,5.1]

W t =πW (Qt)

�

set of decision nodes w [3.3,5.1]

At =πA(Qt)

�

set of actions a [3.3,5.1]

Y t =πY (Qt)

�

set of successor nodes y [3.3,5.1]

{t}=W trY t �

root node t [5.1]

Y trW t �

set of endnodes y [3.5,5.2]

Zt �

collection of runs N (not Z) [3.5,5.2]

St

�

set of (grand) strategies [3.7,5.3]

J ti

�

player i’s set of situations j [3.7,5.3]

Ot

�

outcome function [3.7,5.3]

st = s|Jt ∈St

�

piece restriction of s∈S [5.3]

sti = s|Jti

�

player i’s piece restriction of s∈S [5.3]

Piece game (Qt, utv) of game (Q, u) at subroot t and value function v

utv:Zt→RK utility function derived from u and v [5.6]

K

�

set of stakeholders k [5.6]

KrIt

�

set of bystanders k [5.6]

Table 5.1. Piece forms and games are implicitly accompanied by their
derivatives (

�

). Definitions are located in the sections in brackets [].

Proposition 5.1. Suppose Q is a (penta)form and t ∈ T . Then Qt is a
(penta)form with root t. (Proof B.3.)

For instance, equations (1)–(3) defined the example Q̇ by first defining Ṫ and then
defining Q̇ = ∪t∈Ṫ Q̇t. Section 4.1 noted that Ṫ is both the initial step in the definition
of Q̇ and the subroot set derived from Q̇. Now notice that the piece form at t is equal
to Q̇t. Thus the indexed collection 〈Q̇t〉t∈Ṫ is both the second step in the definition
of Q̇ and the indexed collection of piece forms derived from Q̇.

Proposition 5.2(a) shows that an arbitrary form Q is partitioned by its piece forms
〈Qt〉t∈T . Further, use the general definitions in Section 3.3 to derive from each Qt its
player set I t, its situation set J t, its decision-node set W t, its action set At, and its
successor-node set Y t. The proposition’s part (b) shows that the situation set J of a
form is partitioned by the situation sets 〈J t〉t∈T of its piece forms. Then part (c) does
the same for decision nodes, and part (d) does the same for successor nodes. Note
that the proposition has no results about players and actions. In fact, piece forms
do not typically partition players and actions. Rather, the same players can move in
several piece forms, and similarly, the same actions can label edges in several piece
forms. This happens frequently in example Q̇ from equation (3).

and category theorists would likely view this paper’s “piece form” as another special kind of their
less-restrictive notion of subform.

5. Dynamic-Programming Results 29

Proposition 5.2. Suppose Q is a form. Then the following hold.
(a) 〈Qt〉t∈T is an injectively indexed partition of Q.
(b) 〈J t〉t∈T is an injectively indexed partition of J .
(c) 〈W t〉t∈T is an injectively indexed partition of W .
(d) 〈Y t〉t∈T is an injectively indexed partition of Y . (Proof B.4.)

5.2. Piece endnodes and piece runs.5.2. Piece endnodes and piece runs

Consider a form Q and its piece forms 〈Qt〉t∈T . For each Qt, the set Y trW t consists
of the piece’s endnodes (this follows from the general definition of endnode near (16a)).
Then, for the whole form Q, call ∪t∈T (Y trW t) the set of piece endnodes, and call
YrW the set of final endnodes. The following proposition relates piece endnodes to
final endnodes.

Proposition 5.3. Suppose Q is a form. Then {{r}}∪{Y trW t 6=∅|t∈T} partitions
T ∪ (YrW). (Proof B.6.)

First, the proposition implies that each piece endnode y in ∪t∈T (Y trW t) is either
a subroot in T or a final endnode in YrW , but not both. Both is impossible because
T ⊆ W by T ’s definition (25).

Conversely, the proposition implies that each final endnode is also a piece endnode
in exactly one piece. To be clear, consider a final endnode y ∈ YrW . The proposition
implies that y is [a] equal to r or [b] equal to a piece endnode in exactly one Y trW t.
Contingency [a] cannot hold because y /∈ W (by assumption) and r ∈ W (by r’s
definition (11)). Hence the final endnode y is a piece endnode in exactly one Y trW t.

Now consider runs instead of endnodes. The new topic is more expansive in the
sense that endnodes concern only finite runs. In preparation for the next proposition,
consider a piece form Qt in a form Q. Then use the general definition of runs (16c)
to derive the piece’s run collection Z t. Typically a piece run is not a whole-form run,
and thus Z t is typically not a subset of Z. In order to reserve Z for a whole-form
run in Z, the symbol N is used for a piece run in Z t.

Proposition 5.4. Suppose Q is a form and t ∈ T . Then, for all N ∈ Z t, exactly
one of the following holds.

(a) R(N) /∈ Z, N is finite, and maxN exists and is in T .
(b) R(N) ∈ Zft, N is finite, and maxN exists and is in YrW .
(c) R(N) ∈ Zinft, N is infinite, and maxN does not exist.

(Proof B.7.)

Proposition 5.4 shows that a piece run N either (a) terminates at a subsequent sub-
root, (b) terminates at a final endnode and completes a finite full run, or (c) completes
an infinite full run. For instance, consider the piece form Q̇6 in example Q̇ of (3) and
Figure 2.3. That piece form has five piece runs. The piece run N = {6, 61, 68} ∈ Z6

terminates at the subsequent subroot maxN = 68 ∈ T , in accord with the propo-
sition’s contingency (a). Similarly, the piece runs {6, 61, 63, 67}, and {6, 61, 63, 66}
terminate at the subsequent subroots 67 and 66, respectively. Meanwhile, the piece
run N = {6, 62, 64} ∈ Z6 terminates at the final endnode 64 ∈ YrW and completes

30 5. Dynamic-Programming Results

the finite full run R(N) = {{}, 1, 3, 6, 62, 64} ∈ Zft, in accord with contingency (b).
Similarly, {6, 62, 65} completes the finite full run {{}, 1, 3, 6, 62, 65}. Lastly, the en-
tire example Q̇ has no infinite piece runs. Thus the example has no piece runs in
contingency (c).23

5.3. Piece strategies.5.3. Piece strategies

Consider a piece form Qt of a form Q. Then use the general definitions of Section 3.7
to derive the piece’s strategy set St [by (18)], the piece’s player situation sets 〈J ti 〉i∈It
[by (19)], and the piece’s outcome function Ot:St→Z t.

Note that the domain of a piece strategy (in St) is J t ⊆ J , and that the domain of
a whole-form strategy (in S) is J . Thus St is typically not a subset of S. Relatedly,
for each whole-form strategy s ∈ S, define the restriction

st = s|Jt .(32)

It is easy to show24 that the restriction st satisfies st ∈ St. Hence st is the piece
strategy from within the whole-form strategy s.

Further, consider a player i ∈ I. Note that J ti ⊆ J t ⊆ J , and define the restrictions

sti = s|Jti and st−i = s|JtrJti .(33)

These restrictions are the player’s piece strategy, and the player’s opponents’ piece
strategies, from within the whole-form strategy s ∈ S.25

5.4. Value functions.5.4. Value functions

Consider a game (Q, u). Let a (grand) value function be a function of the form
v:T→R̄K . Accordingly, a value function maps each subroot t to an extended-real-
valued profile of the form v(t) = 〈vk(t)〉k∈K . Note that a value function may or may
not be meaningful. It is merely a function from T which assumes values in R̄K .

23For an extreme example with infinite piece runs, imagine a one-information-set form in which
the player decides between 0 and 1 an infinite number of times. To be specific, let B = ∪∞`=0{0, 1}`
and Q = ∪b∈B{ 〈Amy, B, b, 0, b⊕0〉, 〈Amy, B, b, 1, b⊕1〉 } (this equals Max’s game, in Figure 2.5(a),
except that the player’s name is Amy, and the only information set is B). In this extreme example,
the only piece form Qr is identical to the whole form Q, all piece runs are infinite, and all whole-form
runs are infinite. Thus there are no piece endnodes, there are no final endnodes, and Proposition 5.3
holds trivially in the sense that [i] T = {r} and [ii] both {Y trW t 6=∅|t∈T} and YrW are empty.

24(The argument here is similar to that of footnote 18, and also plays a role in a later proof.)
S’s general definition (18) and s ∈ S imply that s is a function from J such that (∀j∈J) s(j) ∈ Aj .
Thus J t ⊆ J and definition (32) imply that the restriction st is a function from J t such that (∀j∈J t)
st(j) ∈ Aj . Meanwhile, the general definition (18) of strategy set, applied to the piece form Qt,
implies St = { f is a function from J t | (∀j∈J t) f(j)∈Aj }. The previous two sentences imply that
the restriction st belongs to the piece strategy set St.

25Definition (33) is consistent with the general definition (20) of player strategy sets. Specifically,
since st ∈ St, general definition (20) would set (st)i equal to st|Jt

i
, which by (32) is (s|Jt)|Jt

i
, which

by J ti ⊆ J t reduces to s|Jt
i
. The argument for (st)−i is similar.

5. Dynamic-Programming Results 31

“Admissibility” was informally introduced in Section 2.3 as property [1]. Roughly,26

a value function is admissible iff, for each subroot t and each stakeholder k, [a] the
value vk(t) is weakly higher than the utility from some “lower” run ZM going through
t, and at the same time, [b] the value vk(t) is weakly lower than the utility from
some “higher” run ZO going through t (the runs ZM and ZO are typically different).
Formally, a value function v is admissible iff

(∀t∈T, k∈K) inf{uk(ZM)|t∈ZM∈Z} ≤ vk(t) ≤ sup{uk(ZO)|t∈ZO∈Z}.(34)

In this sense, v is admissible iff at each subroot, each stakeholder is neither overly
pessimistic nor overly optimistic.

“Persistence” was informally introduced in Section 2.3 as property [2]. Informally,
a value function is persistent for a strategy iff, at each subroot, the value is equal to
[a] the value at the next subroot determined by the strategy, if that subroot exists, or
otherwise [b] the utility of the full run determined by the strategy. Formally, a value
function v is persistent for a strategy s iff

(∀t∈T) v(t) =

(
v(maxOt(st)) if maxOt(st) exists and is in T

u(R(Ot(st))) otherwise

)
.(35)

In the first of the two cases, v(maxOt(st)) ∈ R̄K is well-defined because v:T→R̄K .
This v(maxOt(st)) is the value profile at the subsequent subroot determined by t
and st. Meanwhile in the “otherwise” case, Proposition 5.4 implies R(Ot(st)) ∈ Z,
and thus, u(R(Ot(st))) ∈ R̄K is well-defined since u:Z→R̄K . This u(R(Ot(st))) is the
utility profile of the full run determined by t and st.

“Authenticity” was informally introduced in Section 2.3 as property [3]. Informally,
a value function is authentic for a strategy iff, at each subroot, the value is equal to the
utility of the run that results from following the strategy. Formally, a value function
v is authentic for a strategy s iff

(∀t∈T) v(t) = u(R(tO(ts))).(36)

5.5. Upper- and lower-convergence, and Theorem 5.5.5.5. Upper- and lower-convergence, and Theorem 5.5

As suggested in Section 2.3, both admissibility and persistence are easily implied
by authenticity (Lemma C.1). Conversely, this section’s Theorem 5.5 will show broad
conditions under which admissibility and persistence together imply authenticity.
These “broad conditions” are upper- and lower-convergence.27

Consider a game (Q, u). Section 2.4 informally introduced “upper-convergence”
by means of examples. In particular, Figure 2.3’s example (Q̇, u̇) satisfied upper-
convergence, while Figure 2.5(a)’s “Max” example violated upper-convergence. The
surrounding discussion informally suggested that u is upper-convergent iff conceivable
utility increments eventually vanish along any run through the game.

26This paraphrase of admissibility is slightly stronger than the actual concept because the actual
concept uses infimum and supremum.

27In fact, upper- and lower-convergence are slightly stronger than necessary for the results of this
paper. These assumptions will be used only at runs Z ∈ Z for which Z∩T is infinite.

32 5. Dynamic-Programming Results

Formally, u:Z→R̄K is upper-convergent iff

(∀Z∈Z, k∈K) limx∈Z sup{uk(ZO)|x∈ZO∈Z} = uk(Z),(37)

where the limit is taken with respect to the set Z as directed by 4 (Kelley 1955,
Chapter 2; Munkres 2000, page 187, Exercise 3).28 The remainder of this paragraph
discusses (37) in a way which is consistent with Section 2.4’s informal introduction.
To begin, first consider a node x ∈ X, and note that {ZO|x∈ZO∈Z} is the set of runs
that are still conceivable after reaching node x. Second consider a stakeholder k ∈ K,
and note that sup {uk(ZO)|x∈ZO∈Z} is essentially the highest stakeholder-k utility
that is still conceivable after reaching node x. Third consider a run Z ∈ Z such that
x ∈ Z. In other words, consider a specific run Z that actually reaches node x. Since
{ZO|x∈ZO∈Z} contains Z, it must be that sup {uk(ZO)|x∈ZO∈Z} weakly exceeds
uk(Z). The difference between the two can be called the conceivable utility increment
to uk(Z) at x. Upper-convergence at Z for k means that the conceivable utility
increment to uk(Z) at x eventually vanishes as the node x moves away from the root
along the specific run Z. This is consistent with Lemma C.3, which shows that the
limit in (37) always exists, and that upper-convergence fails exactly when

(∃Z∈Z, k∈K) limx∈Z sup{uk(ZO)|x∈ZO∈Z} > uk(Z).

“Lower-convergence” was also introduced informally in Section 2.4, by means of
examples. In particular, Figure 2.3’s example (Q̇, u̇) satisfied lower-convergence,
while Figure 2.5(b)’s “Minny” example violated lower-convergence. The surround-
ing discussion informally suggested that u is lower-convergent iff conceivable utility
decrements eventually vanish along any run through the game.

Formally, u:Z→R̄K is lower-convergent iff

(∀Z∈Z, k∈K) limx∈Z inf{uk(ZM)|x∈ZM∈Z} = uk(Z),(38)

where, as in (37), the limit is taken with respect to the set Z as directed by 4.
The remainder of this paragraph discusses (38) in a way which is consistent with
Section 2.4’s informal introduction. To begin, first consider a node x ∈ X, and note
that {ZM|x∈ZM∈Z} is the set of runs that are still conceivable after reaching node x.
Second consider a stakeholder k ∈ K, and note that inf {uk(ZM)|x∈ZM∈Z} is essen-
tially the lowest stakeholder-k utility that is still conceivable after reaching node x.
Third consider a run Z ∈ Z such that x ∈ Z. In other words, consider a specific
run Z which reaches node x. Since {ZM|x∈ZM∈Z} contains Z, it must be that
inf {uk(ZM)|x∈ZM∈Z} is weakly below uk(Z). The difference between the two can
be called the conceivable utility decrement to uk(Z) at x. Lower-convergence at Z
for k means that the conceivable utility decrement to uk(Z) at x eventually vanishes

28The general definition of convergence over a directed set is more complicated than its appli-
cation here. In particular, if the utility uk(Z) is finite, the equality in equation (37) holds iff,
for all ε > 0, there is a node x ∈ Z, such that for all x+ ∈ Z satisfying x 4 x+, the number
sup {uk(ZO)|x+∈ZO∈Z} belongs to the interval (uk(Z)−ε, uk(Z)+ε). If uk(Z) = −∞, the equality
holds iff, for all b ∈ R, there is x ∈ Z, such that for all x+ ∈ Z satisfying x 4 x+, the number
sup {uk(ZO)|x+∈ZO∈Z} is less than b. The case uk(Z) =∞ is similar.

5. Dynamic-Programming Results 33

as the node x moves away from the root along the specific run Z. This is consis-
tent with Lemma C.4, which shows that the limit in (38) always exists, and that
upper-convergence fails exactly when

(∃Z∈Z, k∈K) limx∈Z inf{uk(ZM)|x∈ZM∈Z} < uk(Z).

Theorem 5.5. Suppose (Q, u) is a game and u is both upper- and lower-convergent.
Consider a strategy s and a value function v. Then [1] v is admissible and persistent
for s if and only if [2] v is authentic for s.29 (Proof C.9.)

This theorem is consistent with Section 2’s examples. Consider the theorem’s for-
ward direction only (the reverse is easy). Figure 2.4 depicts a strategy and value
function for Figure 2.3’s cry-wolf game (Q̇, u̇). There upper- and lower-convergence
hold, and the combination of admissibility and persistence implies authenticity (in
particular, admissibility, persistence, and authenticity all hold). Meanwhile, Fig-
ure 2.6(a) depicts a strategy and value function for Figure 2.5(a)’s “Max” game.
There upper-convergence fails, and the combination of admissibility and persistence
does not imply authenticity. Symmetrically, Figure 2.6(b) depicts a strategy and value
function for Figure 2.5(b)’s “Minny” game. There lower-convergence fails, and once
again the combination of admissibility and persistence does not imply authenticity.

5.6. Piece games, piecewise-Nashness, and Theorem 5.7.5.6. Piece games, piecewise-Nashness, and Theorem 5.7

Consider a game (Q, u) with its stakeholder set K (Definition 3.2) and its subroot
set T (25), as summarized in Table 3.1. Then consider a particular subroot t ∈ T .
Sections 5.1 and 5.2 defined the piece form Qt with its player set I t and run collection
Z t, as summarized in Table 5.1. Now assign the whole game’s stakeholder set K
to the piece so that [a] there is no need for the symbol Kt, and [b] KrI t is the
piece’s bystander set by general definition (17). As suggested in Section 3.6, the
piece’s bystanders play an essential role in the dynamic-programming technique of
Theorem 5.7.

Now consider a value function v:T→R̄K , and define the piece’s (grand) utility
function utv = utv:Z t→R̄K by

(∀N∈Z t) utv(N) =

(
v(maxN) if maxN exists and is in T

u(R(N)) otherwise

)
.(39)

In the first case, v(maxN) ∈ R̄K is well-defined since v:T→R̄K . This v(maxN) is
the value profile at the subsequent subroot reached by the piece run N . Meanwhile in
the “otherwise” case, Proposition 5.4 implies R(N) ∈ Z, and thus, u(R(N)) is well-
defined since u:Z→R̄K . This u(R(N)) is the utility profile of the full run finished by
the piece run N .

29Although the theorem applies in the special case of Z = Zft (via Lemma C.2), this special
case can be more easily addressed in another way. In particular, if Z = Zft, then persistence and
authenticity are equivalent, and either implies admissibility (Lemma C.8).

34 5. Dynamic-Programming Results

Definition 5.6 (Piece game). Suppose that (Q, u) is a game with its stakeholder
set K (Definition 3.2) and subroot set T (25). Further suppose v:T→R̄K. Then, at
each subroot t ∈ T , the piece game at t and v is the pair (Qt, utv) listing the piece
form Qt (31) and the utility function utv (39).

“Piecewise-Nashness” has been informally introduced as “stepwise-optimality” in
Section 2.1, and as “property [4]” in Section 2.3. Formally, a strategy-value pair (s, v)
is said to be piecewise-Nash iff, at each subroot t, the restriction st (from (32)) is a
Nash equilibrium in the piece game (Qt, utv). In other words, (s, v) is piecewise-Nash
iff30

(∀t∈T, i∈I, σ∈S) utv,i(O
t(st)) ≥ utv,i(O

t(σti , s
t
−i)).(40)

Note that piecewise-Nashness is a property of (s, v) rather than s alone because v is
used to construct the utility function utv of each piece game. (Similarly, authenticity
and persistence are properties of (s, v). In contrast, admissibility is a property of v
alone.)

Theorem 5.7. Suppose (Q, u) is a game and u is lower-convergent. Consider
a strategy s. Then [1] there is a value function v such that (s, v) satisfies authen-
ticity and piecewise-Nashness if and only if [2] s is a subgame-perfect equilibrium.
(Proof C.13.)

Corollary 5.8 (combines Theorems 5.5 and 5.7). Suppose (Q, u) is a game
and u is both upper- and lower-convergent. Consider a strategy s. Then [1] there
is an admissible value function v such that (s, v) satisfies persistence and piecewise-
Nashness if and only if [2] s is a subgame-perfect equilibrium.31 (Follows immediately
from Theorems 5.5 and 5.7.)

For example, Figure 2.4 depicts a strategy/value-function pair for Figure 2.3’s
cry-wolf game (Q̇, u̇). As discussed in Sections 2.3 and 2.4, lower-convergence, upper-
convergence, admissibility, persistence, and piecewise-Nashness are all satisfied. Thus
Corollary 5.8 implies subgame perfection (there seems no easier way to reach this
conclusion). In contrast, Figure 2.7 depicts a strategy/value-function pair for Fig-
ure 2.5(b)’s “Minny” game. There lower-convergence fails; and admissibility, persis-
tence, and piecewise-Nashness do not imply subgame perfection. This is consistent
with Corollary 5.8.

30At the expense of more notation, definition (40) could be quantified by (∀t∈T, i∈It, ψ∈St)
with ψ|Jt

i
replacing σti in the inequality. This is equivalent because the inequality holds vacuously

as an equality for each player in IrIt, and because the inequality is unaffected by the actions
of the alternative strategy σ over the situations in JrJ t. Further, at the expense of still more
notation, one could define player i’s piece strategy set Sti (as in footnote 16) and then quantify
(40) by (∀t∈T, i∈It, δ∈Sti) with δ replacing σti in the inequality (this additional construction is like
footnote 17).

31If Z = Zft, then the combination of persistence and piecewise-Nashness is equivalent to subgame
perfection. This follows from Corollary 5.8 because finiteness implies upper- and lower-convergence
(Lemma C.2) and because finiteness and persistence imply admissibility (Lemma C.8).

5. Dynamic-Programming Results 35

5.7. One-piece unimprovability.5.7. One-piece unimprovability

A strategy s ∈ S is said to be one-piece unimprovable iff32

(∀t∈T, i∈I, σ∈S) ui(R(tO(ts))) ≥ ui(R(tO(σti , s|tJrJti))),(41)

Thus a strategy is one-piece unimprovable iff no player has a one-piece deviation σti
which can improve their utility in the event that the piece is reached.

Because of definition (27) for 〈tu〉t∈T , we have that definition (30) for subgame
perfection is equivalent to

(∀t∈T, i∈I, σ∈S) ui(R(tO(ts))) ≥ ui(R(tO(tσi,
ts−i))).(42)

By comparing (41) with (42), it is apparent that one-piece unimprovability differs from
subgame perfection to the extent that one-piece unimprovability considers only one-
piece deviations σti while subgame perfection considers subgame deviations tσi. This
proves the reverse direction of the following corollary. Conversely, the corollary’s proof
shows the forward direction by appealing to the forward direction of Theorem 5.7.

Corollary 5.9. Suppose (Q, u) is a game and u is lower-convergent. Consider a
strategy s. Then s is one-piece unimprovable if and only if it is a subgame-perfect
equilibrium. (Proof C.14.)

This result is related to Kaminski 2019, which studies backward induction. Very
roughly, its Theorem 2(b⇒a) shows that subgame perfection perpetuates backward,
via one-piece unimprovability, toward the root of the tree. As explained on Kaminski
2019, page 12, this result has limited use in infinite-horizon games because there,
subgame perfection at later subroots is typically no easier than subgame perfection
at earlier subroots.

There are also two related papers concerning one-shot unimprovability, which is
the absence of a utility-increasing deviation at any one information set (this is im-
plied by one-piece unimprovability because every information set is in some piece).
First, Hendon, Jacobsen, and Sloth 1996 goes well beyond Corollary 5.9 by deriving
the sequential rationality of a mixed strategy from one-shot unimprovability. How-
ever, their brief discussion of infinite-horizon games relies upon Fudenberg and Tirole
1991’s (page 110) concept of “continuity at infinity”, which is stronger than lower-
convergence since it [a] implies upper-convergence and [b] is a special kind of uni-
form continuity. Second, Alós-Ferrer and Ritzberger 2017 derive subgame perfection
from one-shot unimprovability under an assumption very similar to lower-convergence.
However, it assumes perfect information, which is not assumed here (as discussed in
Section 4.3). Thus Corollary 5.9 provides a new result about unimprovability.

32Footnote 30 applies here as well. In this fashion, definition (41) can be equivalently quantified
by (∀t∈T, i∈It, ψ∈St), or by (∀t∈T, i∈It, δ∈Sti), at the expense of more notation.

36 5. Dynamic-Programming Results

Appendix A. Preliminaries

Lemma A.1.

Appendix A. Preliminaries

Suppose Q is a form. Then the following hold.
(a) Z is nonempty.
(b) (∀Z∈Z) |Z| ≥ 2.

Proof. (a). [Step 0] Note r’s definition (11) implies r ∈ W . Thus there is x1 such
that 〈r,x1〉 ∈ πWY (Q). [Step 1] If x1 /∈ W , then x1 ∈ YrW , so {r, x1} ∈ Zft and the
argument is complete. Otherwise x1 ∈ W , so there is x2 such that 〈x1,x2〉 ∈ πWY (Q).
[Step 2] If x2 /∈ W , then x2 ∈ YrW , so {r, x1, x2} ∈ Zft and the argument is com-
plete. Otherwise x2 ∈ W , so there is x3 such that 〈x2,x3〉 ∈ πWY (Q). By inspection,
similar steps either terminate at some {r, x1, x2, ...x`} ∈ Zft or continue indefinitely.
If they continue indefinitely, {r, x1, x2, ...} ∈ Zinft.

(b). Take a run Z ∈ Z. Since Z’s definition (16c) implies r ∈ Z, it suffices to
show that Z 6= {r}. Toward that end, suppose Z = {r}. Then Zft’s definition (16a)
implies that Z is a path from r to itself and that r ∈ YrW . The latter (doubly)
contradicts r ∈ WrY , which follows from r’s definition (11). 2

Lemma A.2. Suppose Q is a form and x∈X. Then the following hold.
(a) R(x) is equal to the path in (X, πWY (Q)) from r to x.
(b) R(x) is finite and linearly ordered by 4.

Proof. (a). Take a node x ∈ X. Streufert 2023p Lemma B.10 implies the existence
and uniqueness of the path in the out-tree (X, πWY (Q)) from r to x. Call this path
P . Note that the path definition (12a) implies P is a set. Thus by R’s definition (15),
it suffices to show that P = {x∗|x∗4x}.

For the forward direction, consider some x∗ ∈ P . Then since x∗ is on the path from
r to x, there is a path from x∗ to x, which by 4’s definition (13) implies x∗ 4 x. For
the reverse direction, consider some x∗ such that x∗ 4 x. Then 4’s definition (13)
implies there is a path from x∗ to x. Meanwhile a second application of Streufert
2023p Lemma B.10 implies there is a path from r to x∗, which by concatenation
implies there is a path from r to x which contains x∗. This implies x∗ ∈ P because
P is the unique path from r to x.

(b). This follows from part (a), path definition (12a), and 4’s definition (13). 2

Lemma A.3. Suppose Q is a form and N ⊆X. Then the following hold.
(a) R(N) ∈ Zft iff maxN exists and is in YrW .
(b) R(N) ∈ Zinft iff N is an infinite subset of a path in (X, πWY (Q)).

Proof. (a)’s forward direction. Suppose R(N) ∈ Zft. Then Zft’s definition (16a)
implies there is [1] y ∈ YrW such that [2] R(N) = R(y). In steps, [2] implies
R(N) ⊆ R(y), which by R(N)’s definition implies ∪{R(x)|x∈N} ⊆ R(y), which by
inspection implies (∀x∈N) R(x) ⊆ R(y), which by R(x)’s definition (15) implies
(∀x∈N) x ∈ R(y), which by the R(y)’s definition (15) implies [3] (∀x∈N) x 4 y.

Meanwhile, [2] also implies R(N) ⊇ R(y), which by R(N)’s definition implies
∪{R(x)|x∈N} ⊇ R(y), which by R(y)’s definition (15) implies ∪{R(x)|x∈N} 3 y,
which implies there is x∗ ∈ N such that R(x∗) 3 y, which by R(x)’s definition (15)

Appendix A. Preliminaries 37

implies x∗ < y, which by [3] implies x∗ = y, which by x∗ ∈ N implies y ∈ N , which
by [3] again implies maxN = y, which by [1] suffices.

(a)’s reverse direction. Suppose maxN exists and is in YrW . Then Zft’s defi-
nition (16a) implies R(maxN) ∈ Zft. Thus it suffices to show R(maxN) = R(N).
For the forward inclusion, maxN ∈ N implies R(maxN) ⊆ ∪{R(x)|x∈N}, which
by R(N)’s definition implies R(maxN) ⊆ R(N). For the reverse inclusion, R’s def-
inition (15) implies that (∀x∈N) R(x) ⊆ R(maxN), which by inspection implies
∪{R(x)|x∈N} ⊆ R(maxN), which by R(N)’s definition implies R(N) ⊆ R(maxN).

(b)’s forward direction. Suppose R(N) ∈ Zinft. Then Zinft’s definition (16b) implies
[4] R(N) is an infinite path. This and N ⊆ R(N) imply N is a subset of a path.
Thus it remains to show that N is infinite. Toward that end, suppose N were finite.
In steps, [4] and the definition of 4 (13) imply that R(N) is linearly ordered, which
by N ⊆ R(N) implies N is linearly ordered, which by the assumed finiteness of N
implies maxN exists, which by R’s definition (15) implies (∀x∈N) R(x) ⊆ R(maxN),
which by inspection implies ∪{R(x)|x∈N} ⊆ R(maxN), which by R(N)’s definition
implies [5] R(N) ⊆ R(maxN). But, R(maxN) is finite by Lemma A.2(b), which by
[5] implies R(N) is finite, which contradicts [4].

(b)’s reverse direction. Suppose N is an infinite subset of a path. Then 4’s def-
inition (13) implies that [6] N is linearly ordered. Further, Lemma A.2(b) implies
that every node has finitely many predecessors, and thus [6] implies that minN
exists. Therefore, [6] implies there is a bijection {0,1,...} 3 m 7→ xm ∈ N such
that x0 = minN and (∀m≥1) xm−1 ≺ xm. Thus R’s definition (15) implies that
[7] (∀m≥1) R(xm−1) ⊂ R(xm), and that

R(N) = R(x0) ∪ ∪m≥1 (R(xm)rR(xm−1))

= R(x0) ∪ ∪m≥1[(R(xm)rR(xm−1))∪{xm−1}].
Consider the sets on the right-hand side. Lemma A.2(a) implies that R(x0) is
the path from r to x0. Further, Lemma A.2(a) and [7] imply that (∀m≥1)
(R(xm)rR(m−1))∪{xm−1} is the nontrivial path from xm−1 to xm. Thus the equality
implies that R(N) is the concatenation of an infinite collection of nontrivial paths
beginning from r. Hence R(N) is an infinite path from r, which by Zinft’s definition
(16b) implies R(N) ∈ Zinft. 2

Lemma A.4. Suppose Q is a form and t ∈ T . Then the following hold.
(a) tYrtW ⊆ YrW .
(b) (∀N∈tZ) R(N) ∈ Z.

Proof. (a). Take a subform endnode y ∈ tYrtW . Then Streufert 2023p,
Lemma C.8(a,b), implies [a] y ∈ Y , [b] t ≺ y, and [c] not (y ∈ W and t 4 y). By
logical manipulation, [c] implies y 6∈ W or t 64 y, which by [b] implies y 6∈ W . Thus
[a] implies y ∈ YrW .

(b). Take a subform run N ∈ tZ. On the one hand, suppose N ∈ tZ ft. Then the
forward direction of Lemma A.3(a), applied to the subform tQ, implies that maxN
exists and is in tYrtW . Thus part (a) implies that maxN exists and is in YrW .
Hence the reverse direction of Lemma A.3(a) implies R(N) ∈ Zft.

38 Appendix A. Preliminaries

On the other hand, suppose N ∈ tZ inft. Then definition (16b), applied to the sub-
form tQ, implies that N is an infinite path in the subform out-tree (tX, πWY (tQ)).
Thus tQ ⊆ Q implies that N is an infinite subset of a path in the out-tree
(X, πWY (Q)). Hence the reverse direction of Lemma A.3(b) implies R(N) ∈ Zinft.
2

Lemma A.5. Suppose Q is a form. Then the following hold.
(a) (∀t∈T) 〈Qj〉j∈tJ is an injectively indexed partition of tQ.33

(b) (∀t∈T) 〈Wj〉j∈tJ is an injectively indexed partition of tW .
(c) (∀t∈T) 〈Yj〉j∈tJ is an injectively indexed partition of tY .

Proof. (a). Take t ∈ T . In the whole form Q, the definition (4) of 〈Qj〉j∈J implies
that distinct situations j1 and j2 in J have disjoint nonempty slices Qj1 and Qj2 .
Thus tJ ⊆ J implies that distinct situations j1 and j2 in tJ have disjoint nonempty
slices Qj1 and Qj2 , and that the indexing function tJ 3 j 7→ Qj is injective. Thus it
remains to show that ∪j∈tJQj = tQ. This holds by Streufert 2023p Lemma C.8(d).

(b). Take t ∈ T . In the whole form Q, Streufert 2023p Proposition 3.2 implies that
〈Wj〉j∈J is an injectively indexed partition of W . Thus since tJ ⊆ J , it remains to
show that ∪j∈tJWj = tW . This follows by projection from ∪j∈tJQj = tQ, which holds
by part (a).

(c). Take t ∈ T . In the whole form Q, Streufert 2023p Lemma C.3 implies that
〈Yj〉j∈J is an injectively indexed partition of Y . Thus since tY ⊆ Y , it remains to
show that ∪j∈tJYj = tY . This follows by projection from ∪j∈tJQj = tQ, which holds
by part (a). 2

Lemma A.6. Let Q̇ be the cry-wolf example defined in (1)–(3). Then Q̇ is a
(penta)form with root {}.

Proof. The lemma follows from Claim 6.34

Claim 1: (∀t∈Ṫ) Q̇t is a block (Streufert 2023p (17)) whose start- and end-node
sets are {t} and { t⊕b | b∈{4,5,6,7,8} }. Take t ∈ T . Q̇t is a block because its defi-
nition (2) is like the definition of the example pentaform Q̈ in the table of Streufert
2023p Figure 2.2, and because every pentaform is a block by the block definition
(Streufert 2023p (17)). Finally, the same definition (2) implies Ẇ trẎ t = {t} and
Ẏ trẆ t = { t⊕b | b∈{4,5,6,7,8} } .

33 It may be helpful to highlight a critical chain of reasoning. The definition (25) of a subroot t
eventually leads to Lemmas A.5(a) and B.2(a). The first extends Streufert 2023p Lemma C.8(d)’s
result that each tQ = ∪j∈tJQj . The second uses the first to show that each Qt = ∪j∈JtQj . These
parallel equations show that each tQ and each Qt is the union of a subcollection of the slice partition
of the pentaform Q. Streufert 2023p Corollary 4.2 makes it easy to show that such unions are
themselves pentaforms. Thereby each tQ and each Qt is shown to be a pentaform, and these are
the subforms tQ and the piece forms Qt on which this paper is built. Details are in Streufert 2023p
Proposition 4.3 for subforms (repeated as Proposition 4.1 here), and in Proposition 5.1 here for piece
forms.

34This proof builds the pentaform Q̇ via the “layering” technique of Streufert 2023p Section 4.2.
More specifically, ∪t∈{6,7,8}`Q̇t is the union of the “layer” with index ` ≥ 0.

Appendix A. Preliminaries 39

Claim 2: {Q̇t|t∈Ṫ} is weakly separated (Streufert 2023p (18)). Assume t1 ∈ Ṫ and
t2 ∈ Ṫ are such that t1 6= t2. It suffices to show [a] Ẏ t1∩Ẏ t2 6= ∅, [b] Ẇ t1∩Ẇ t2 6= ∅,
and [c] J̇ t1∩J̇ t2 6= ∅. To see [a], suppose y ∈ Ẏ t1∩Ẏ t2 . Then definition (2) implies
there is b ∈ {1,2,3,4,5,6,7,8} such that y equals both t1⊕b and t2⊕b. Hence t1 = t2,
which contradicts the assumption t1 6= t2. For [b], suppose w ∈ Ẇ t1∩Ẇ t2 . If w ends
in 1, 2, or 3, then definition (2) implies there is b ∈ {1, 2, 3} such that w equals
both t1⊕b and t2⊕b, which implies t1 = t2, which contradicts the assumption t1 6= t2.
Otherwise, definition (2) implies that w equals both t1 and t2, which implies t1 = t2,
which again contradicts the assumption t1 6= t2. For [c], note definition (2) implies
J̇ t1 ⊆ P(Ẇ t1) and J̇ t2 ⊆ P(Ẇ t2). Thus [b] implies [c].

Claim 3: (∀`≥0) {Q̇t|t∈{6,7,8}`} is strongly separated (Streufert 2023p (19)).
Take ` ≥ 0, and assume t1 ∈ {6,7,8}` and t2 ∈ {6,7,8}` are such that t1 6= t2. Since
J̇ t1∩J̇ t2 = ∅ by Claim 2, it suffices to show that Ẋ t1∩Ẋ t2 = ∅. Toward that end,
suppose x ∈ Ẋ t1∩Ẋ t2 . By definition (2), x ∈ Ẋ t1 implies

[1a] x = t1 or [1b] x ∈ { t1⊕b | b∈{1,2,3,4,5,6,7,8} }.
Similarly, x ∈ Ẋ t2 implies

[2a] x = t2 or [2b] x ∈ { t2⊕b | b∈{1,2,3,4,5,6,7,8} }.
The case [1a]-[2a] implies x equals both t1 and t2, which implies t1 = t2, which contra-
dicts the assumption t1 6= t2. The case [1b]-[2b] implies there is b ∈ {1,2,3,4,5,6,7,8}
such that x equals both t1⊕b and t2⊕b, which implies t1 = t2, which contradicts the
assumption t1 6= t2. The case [1a]-[2b] implies there is b ∈ {1,2,3,4,5,6,7,8} such that
x is equal to both t1 and t2⊕b, which implies that the length of t1 is one more than the
length of t2, which contradicts the assumption that both belong to {6,7,8}`. Finally,
the case [1b]-[2a] is similar.

Claim 4: (∀`≥0) ∪t∈{6,7,8}` Q̇t is a block whose start- and end-node sets are

{6,7,8}` and { t⊕b | t∈{6,7,8}`, b∈{4,5,6,7,8} }.
Take ` ≥ 0. Claims 1 and 3 imply {Q̇t|t∈{6,7,8}`} is a strongly separated collection of
blocks. Hence Streufert 2023p Proposition 4.4(b) implies that its union is a block with
start-node set ∪t∈{6,7,8}` (Ẇ trẎ t) and end-node set ∪t∈{6,7,8} (Ẏ trẆ t). By Claim 1,

the former is {6,7,8}` and the latter is { t⊕b | t∈{6,7,8}`, {4,5,6,7,8} }
Claim 5: (∀m≥0) ∪0≤`≤m ∪t∈{6,7,8}` Q̇t is a block whose start-node set is {{}} and

whose end-node set includes {6,7,8}m+1. This will be proved by induction on m.
At the initial step (m=0), the double union reduces to Q̇{}, which by Claim 1
at t = {} is a block whose start-node set is {{}}, and whose end-node set is
{ {}⊕b | b∈{4,5,6,7,8} } which by inspection includes {6,7,8}. The inductive step (for
m≥1) will be proved by applying Streufert 2023p Proposition 4.4(a) at

Q1 = ∪0≤`≤m−1 ∪t∈{6,7,8}` Q̇t and Q2 = ∪t∈{6,7,8}m Q̇t.

Note that the indices in these definitions are distinct in the sense that

∪0≤`≤m−1{6,7,8}` and {6,7,8}m are disjoint.(43)

40 Appendix A. Preliminaries

Further, the inductive hypothesis (that is, the claim statement with m−1 replacing
m) implies

Q1 is a block,(44a)

W 1rY 1 = {{}}, and(44b)

Y 1rW 1 ⊇ {6,7,8}m.(44c)

Meanwhile, Claim 4 at `=m implies

Q2 is a block,(45a)

W 2rY 2 = {6,7,8}m, and(45b)

Y 2rW 2 = { t⊕b | t∈{6,7,8}m, b∈{4,5,6,7,8} }.(45c)

Both Q1 and Q2 are blocks by (44a) and (45a). Also, {Q1, Q2} is a weakly separated
by (43) and Claim 2. Also, Q1’s start nodes are distinct from Q2’s end nodes by (44b)
and (45c). Thus Streufert 2023p Proposition 4.4(a) implies Q1∪Q2 is a block whose
start-node set is the union of

W 1rY 1 and (W 2rY 2)r(Y 1rW 1),

and whose end-node set is the union of

(Y 1rW 1)r(W 2rY 2) and Y 2rW 2.

The former is {{}} by (44b), (45b), and (44c). The latter includes {6,7,8}m+1 by
(45c).

Claim 6: Q̇ is a pentaform with root {}. The block definition (Streufert 2023p
(17)) implies that a pentaform is equivalent to a block with exactly one start node.
So Claim 5 implies that

〈 ∪0≤`≤m ∪t∈{6,7,8}` Q̇t 〉m≥0
is an expanding sequence of pentaforms which share the root {}. Thus Streufert 2023p
Proposition 4.5 implies that the union of these pentaforms is a pentaform with root
{}. By inspection, this union is equal to ∪`≥0 ∪t∈{6,7,8}` Q̇t, which by Ṫ ’s definition
(1) is equal to ∪t∈Ṫ Q̇t, which by Q̇’s definition (3) is equal to Q̇. 2

Appendix B. For Piece Forms

Lemma B.1. Suppose Q is a form and t ∈ T . Then the following hold.
(a) Qt = { 〈i,j,w,a,y〉∈Q | t4w, (/∃tO∈T)t≺tO4w }.
(b) πWY (Qt) = { 〈w,y〉∈πWY (Q) | t4w, (/∃tO∈T)t≺tO4w }.
(c) W t = {w∈W | t4w, (/∃tO∈T)t≺tO4w }.
(d) W t∩T = {t}.
(e) Y t = { y∈Y | p(y)∈W t }.
(f) t /∈ Y t.

Appendix B. For Piece Forms 41

Proof. (a). Note

Qt = tQ r ∪t≺tO∈T tOQ

= { 〈i,j,w,a,y〉∈Q | t4w } r ∪t≺tO∈T { 〈i,j,w,a,y〉∈Q | tO4w }
= { 〈i,j,w,a,y〉∈Q |t4w } r { 〈i,j,w,a,y〉∈Q | (∃tO∈T)t≺tO4w }
= { 〈i,j,w,a,y〉∈Q | t4w, (/∃tO∈T)t≺tO4w },

where the first equality holds by the piece-form definition (31), the second equality
holds by several applications of the subform definition (24), and the third and fourth
equalities hold by rearrangement.

(b,c). These follow from part (a) by projection.
(d). For the reverse direction, note that T ’s definition (25) implies t ∈ W , and

that inspection implies t 4 t and (/∃tO∈T) t≺tO4t. Thus part (c)’s characterization
of W t implies t ∈ W t, which by the assumption t ∈ T implies t ∈ W t∩T . For the
forward direction, consider an arbitrary t∗ ∈ W t∩T . Then the assumption t∗ ∈ W t

and part (c)’s characterization of W t imply [1] t 4 t∗ and [2] (/∃tO∈T) t ≺ tO 4 t∗.
Further, the assumption t∗ ∈ T and [2] imply that t ≺ t∗ 4 t∗ is false, which implies
that t ≺ t∗ is false, which by [1] implies that t = t∗.

(e). It suffices to justify the three equalities in

Y t = { y∈Y | (∃w∈W) 〈w,y〉∈πWY (Q), t4w, (/∃tO∈T)t≺tO4w }
= { y∈Y | p(y)∈W, t4p(y), (/∃tO∈T)t≺tO4p(y) }
= { y∈Y | p(y)∈W t }.

The first equality holds by part (a) and projection. The second equality holds because,
for any y ∈ Y , axiom [Pw�y] (Definition 3.1) and p’s definition (9) imply that p(y) is
the only element of W to satisfy 〈w,y〉 ∈ πWY (Q). The third equality holds because
part (c)’s characterization of W t implies that, for any y ∈ Y , that p(y) ∈ W t iff it
satisfies p(y) ∈ W , t 4 p(y), and (/∃tO∈T) t ≺ tO 4 p(y).

(f). Suppose t ∈ Y t. Then part (e)’s characterization of Y t implies p(t) ∈ W t,
which by part (c)’s characterization of W t implies t 4 p(t). This contradicts the
general fact that (∀y∈Y) p(y) ≺ y. 2

Lemma B.2. Suppose Q is a form. Then the following hold.
(a) (∀t∈T) Qt = ∪j∈JtQj. (Footnote 33 on page 38 provides context.)
(b) (∀t∈T) W t = ∪j∈JtWj.
(c) (∀t∈T) Y t = ∪j∈JtYj.
(d) 〈J t〉t∈T is an injectively indexed partition of J .

Proof. The lemma holds by Claims 3, 4, 5, and 9.

Claim 1: (∀t∈T) Qt = ∪{Qj | j∈tJr∪t≺tO∈T tOJ }. To show this, consider a subroot
t ∈ T . Then

42 Appendix B. For Piece Forms

Qt = tQ r ∪t≺tO∈T tOQ

= ∪j∈tJ Qj r ∪t≺tO∈T ∪j∈tOJ Qj

= ∪{Qj | j∈tJ } r ∪{Qj | j∈∪t≺tO∈T tOJ }
= ∪{Qj | j∈tJr∪t≺tO∈T tOJ },

where the first equality is Qt’s definition (31), the second holds by several applications
of Lemma A.5(a), the third holds by rearrangement, and the fourth holds because
〈Qj〉j∈J is an injectively indexed partition by Lemma A.5(a) at its t equal to r.

Claim 2: (∀t∈T) J t = tJr∪t≺tO∈T tOJ . To show this, take a subroot t ∈ T . Then
Claim 1 implies Qt = ∪{Qj | j∈tJr∪t≺tO∈T tOJ }, which by projection implies J t =
∪{ {j} | j∈tJr∪t≺tO∈T tOJ }, which by simplification implies J t = tJr∪t≺tO∈T tOJ .

Claim 3: (∀t∈T) Qt = ∪j∈JtQj. To see this, take a subroot t ∈ T . Then Qt by
Claim 1 equals ∪{Qj | j∈tJr∪t≺tO∈T tOJ }, which by Claim 2 equals ∪{Qj | j∈J t }.

Claim 4: (∀t∈T) W t = ∪j∈JtWj. This follows from Claim 3 by projection.

Claim 5: (∀t∈T) Y t = ∪j∈JtYj. This follows from Claim 3 by projection.

Claim 6: (∀t∈T) J t is nonempty. Take a subroot t ∈ T . Lemma B.1(d) implies W t

is nonempty, which by abbreviation (7) implies πW (Qt) is nonempty, which implies
Qt is nonempty, which implies πJ(Qt) is nonempty, which by abbreviation (7) implies
J t is nonempty.

Claim 7: Suppose t1∈T and t2∈T satisfy t1 64 t2 and t2 64 t1. Then t1J∩t2J = ∅.
Because t1 and t2 are nodes in the out-tree (X, πWY (Q)), the assumptions t1 64 t2
and t2 64 t1 imply there is no decision node w ∈ W such that t1 4 w and t2 4 w.
Thus Streufert 2023p Lemma C.8(a) implies t1W∩t2W = ∅, which implies there is
no j ∈ J whose information set Wj satisfies Wj ⊆ t1W∩t2W , which by the indexed
partition of Lemma A.5(b) implies t1J ∩ t2J = ∅.

Claim 8: (∀t1∈T, t2∈T) t1 6= t2 implies J t1∩J t2 = ∅. To show this, suppose t1
and t2 are distinct subroots. Mechanically, [1] t1 4 t2, [2] t2 4 t1, or [3] t1 64 t2
and t2 64 t1 (it is irrelevant whether the cases are mutually exclusive). First suppose
[3]. Then Claim 7 implies t1J∩t2J = ∅. Meanwhile Claim 2 implies J t1 ⊆ t1J and
J t2 ⊆ t2J . Thus J t1∩J t2 = ∅.

Second suppose [1] or [2]. Without loss of generality, assume [1]. Then
the assumed distinctness of t1 and t2 implies t1 ≺ t2, which mechanically implies
[∗] t2J ⊆ ∪t1≺tO∈T tOJ . Meanwhile, two applications of Claim 2 imply

J t1 = t1Jr∪t1≺tO∈T tOJ and J t2 = t2Jr∪t2≺tO∈T tOJ

The second implies J t2 ⊆ t2J , which by [∗] implies J t2 ⊆ ∪t1≺tO∈T tOJ , which by the
first implies J t1 and J t2 are disjoint.

Claim 9: 〈J t〉t∈T is an injectively indexed partition of J . Claim 6 showed that each
J t is nonempty. Thus Claim 8 implies that distinct t1 and t2 have disjoint nonempty
J t1 and J t2 , which in turn implies that the indexing function T 3 t 7→ J t is injective.
Thus it remains to show that ∪t∈TJ t = J .

Appendix B. For Piece Forms 43

For the forward inclusion, take a subroot t ∈ T . Then Qt ⊆ Q implies J t ⊆ J .
For the reverse inclusion, take any situation j ∈ J . It suffices to show there is a
subroot t∗ ∈ T such that j ∈ J t∗ . To begin, note j ∈ J implies there is 〈i,w,a,y〉
such that 〈i,j,w,a,y〉 ∈ Q. Lemma A.2(b) implies that R(w) = {x|x4w} is finite and
linearly ordered. Thus R(w)∩T = {x∈T |x4w} is finite and linearly ordered. Further,
R(w)∩T is nonempty because it contains r. Thus we may let t∗ be its maximum.
Then t∗ ∈ T , t∗ 4 w, and (/∃tO∈T) t∗ ≺ tO 4 w. Thus Lemma B.1(a) implies that
〈i,j,w,a,y〉 ∈ Qt∗ . Hence j ∈ J t∗ . 2

Proof B.3 (for Proposition 5.1). Take a subroot t ∈ T . The proposition follows
from Claims 3 and 4.

Claim 1: W tr{t} ⊆ Y t. To see this, take w ∈ W tr{t}. Since w ∈ W t,
Lemma B.1(c)’s characterization of W t implies [a] t 4 w and [b] (/∃tO∈T) t ≺ tO 4 w.
Since w 6= t, [a] can be strengthened to [c] t ≺ w, and thus [d] w ∈ Y .

Since the domain and range of p are Y and W , [d] implies that p(w) exists and satis-
fies p(w) ∈ W . Further, [c] implies t 4 p(w), and [b] implies (/∃tO∈T) t ≺ tO 4 p(w).
Thus Lemma B.1(c)’s characterization of W t implies p(w) ∈ W t. Thus [d] and
Lemma B.1(e)’s characterization of Y t imply w ∈ Y t.

Claim 2: W trY t = {t}. The forward inclusion follows from Claim 1. For the
reverse inclusion, Lemma B.1(d) implies t ∈ W t and Lemma B.1(f) implies t /∈ Y t.

Claim 3: Qt is a pentaform. Lemma B.2(a) shows Qt = ∪{Qj|j∈J t}, which by
J t ⊆ J is the union of a subcollection of Q’s slice partition {Qj|j∈J}. Also, Claim 2
implies axiom [Pr]. Thus Streufert 2023p Corollary 4.2(b) implies that Qt is a
(penta)form.

Claim 4: The root of Qt is t. This follows from Claim 2 and the root definition
(11). 2

Proof B.4 (for Proposition 5.2). Part (b) repeats Lemma B.2(d). Thus parts
(a), (c), and (d) remain.

For part (a), note that 〈Qj〉j∈J is an injectively indexed partition of Q by
Lemma A.5(a) at its t equal to r, and that 〈J t〉t∈T is an injectively indexed par-
tition of J by part (b). Thus 〈∪j∈JtQj〉t∈T is an injectively indexed partition of Q.
This suffices since (∀t∈T) ∪j∈JtQj = Qt by Lemma B.2(a).

Part (c) for W follows similarly from Lemma A.5(b) and Lemma B.2(b).
Part (d) for Y follows similarly from Lemma A.5(c) and Lemma B.2(c). 2

Lemma B.5. Suppose Q is a form and t ∈ Tr{r}. Then there is tM ∈ T such
that t ∈ Y tMrW tM.

Proof. In steps, the assumption t ∈ Tr{r}, by T ’s definition (25), implies
t ∈ Wr{r}, which by X’s definition (10) implies t ∈ Xr{r}, which by the iden-
tity Xr{r} = Y (Streufert 2023p Lemma B.8(b)) implies t ∈ Y , which by Proposi-
tion 5.2(d)’s partition implies there is tM ∈ T such that [∗] t ∈ Y tM .

Thus it suffices to show that t /∈ W tM . Toward that end, suppose t ∈ W tM . Then
the assumption t ∈ T and the identity W tM∩T = {tM} (Lemma B.1(d)) imply

44 Appendix B. For Piece Forms

t = tM. Thus [∗] implies t ∈ Y t, which contradicts the general fact that t /∈ Y t

(Lemma B.1(f)). 2

Proof B.6 (for Proposition 5.3). By inspection, each set in the collection
{{r}}∪{Y trW t 6=∅|t∈T} is nonempty. Also, since r /∈ Y by r’s definition (11), and
since 〈Y t〉t∈T is an injectively indexed partition of Y by Proposition 5.2(d), the col-
lection {{r}}∪{Y trW t 6=∅|t∈T} is pairwise disjoint. Thus it remains to show that
the union of the collection is equal to T∪(YrW).

For the reverse inclusion, take x ∈ T∪(YrW), so that x is either a subroot or a
whole-form endnode. First suppose x ∈ YrW . Then x ∈ Y , so Proposition 5.2(d)
implies there is t ∈ T such that x ∈ Y t. Also, x /∈ W , so Proposition 5.2(c) implies
x /∈ W t. Hence x ∈ Y trW t. Second suppose x ∈ T . If x = r, we have x ∈ {r} and
the argument is complete. Otherwise x 6= r, so Lemma B.5 implies there is tM ∈ T
such that t ∈ Y tMrW tM .

For the forward inclusion, take a node x in the union of the collection. Equivalently,
suppose x ∈ {r}∪∪{Y trW t|t∈T}. It must be shown that x ∈ T∪(YrW). If x = r,
the general fact (26) that r ∈ T implies x ∈ T , which completes the argument. So
assume there is t ∈ T such that [a] x ∈ Y trW t. If x /∈ W , then x ∈ Y t implies
x ∈ Y trW , which by Y t ⊆ Y implies x ∈ YrW , which completes the argument. So
assume [b] x ∈ W , that is, that x is a decision node. The sequel will use [a] and [b]
to show that x is a subroot, that is, an element of T .35

Proposition 5.2(c) shows 〈W t∗〉t∗∈T is an injectively indexed partition of W . This
partition is used in each of the following three sentences. First, [b] and the partition
imply there is tO ∈ T such that x ∈ W tO . Second, [a] implies x /∈ W t, which by
x ∈ W tO and the partition’s injective index implies tO 6= t. Third, [a] implies x ∈ Y t,
which by pt:Y t→W t implies p(x) ∈ W t, which by tO 6= t and the injectively indexed
partition implies p(x) /∈ W tO . For the sequel, it suffices to remember from the first
step that [c] tO ∈ T and [d] x ∈ W tO , and from the third step that [e] p(x) /∈ W tO .

This paragraph will show that x /∈ Y tO . Because tO ∈ T by [c], we may con-
sider the piece form QtO . General definition (9) implies QtO ’s immediate-predecessor
function is ptO = πYW (QtO), which by Lemma B.1(b) is a restriction of the whole
form’s immediate-predecessor function p = πYW (Q). Now suppose x ∈ Y tO held.
Then ptO :Y tO→W tO implies ptO(x) ∈ W tO , which by the previous sentence implies
p(x) ∈ W tO , which contradicts [e].

The previous paragraph and [d] imply x ∈ W tOrY tO . Meanwhile, Proposition 5.1
implies that the root of QtO is tO, which by the root definition (11) implies W tOrY tO =
{tO}, which by the previous sentence implies x = tO, which by [c] implies x ∈ T . 2

Proof B.7 (for Proposition 5.4). The definitions (16) of Zft, Zinft, and Z imply
Z = Zft∪Zinft and Zft∩Zinft = ∅. Thus the cases (a) R(N) /∈ Z, (b) R(N) ∈ Zft,
and (c) R(N) ∈ Zinft are exhaustive and mutually exclusive. Hence Claims 2–4 suf-
fice.

35Intuitively, [a] says that x is an endnode of the piece Qt and [b] implies that x is a decision
node of another piece QtO (it could be shown that t ≺ tO). It will be shown that x is the root of
QtO , which implies x = tO, which serves to prove x ∈ T because tO ∈ T .

Appendix B. For Piece Forms 45

Claim 1: N is finite iff maxN exists. This holds since N is a path by assumption,
and since every node has a finite number of predecessors by Lemma A.2(b).

Claim 2: Suppose R(N) /∈ Z. Then N is finite, and maxN exists and is in T . The
assumption R(N) /∈ Z implies R(N) /∈ Zft and R(N) /∈ Zinft. Since R(N) /∈ Zinft,
and since N is a path by assumption, Lemma A.3(b) implies that [a] N is finite.
Thus Claim 1 implies that [b] maxN exists. Thus, since R(N) /∈ Zft, Lemma A.3(a)
implies that [c] maxN /∈ YrW .

Because of [a] and [b], it remains to show that maxN is in T . In other words, it re-
mains to show that maxN is a subroot. Since the proposition assumes N ∈ Z t,
and since N is finite by [a], the general definition of a run (16) implies that
maxN ∈ Y trW t. Thus Proposition 5.3 implies that maxN ∈ T∪(YrW). Thus
[c] implies that maxN ∈ T .

Claim 3: Suppose R(N) ∈ Zft. Then N is finite, and maxN exists and is in YrW .
Lemma A.3(a) implies maxN exists and is in YrW . This suffices by Claim 1.

Claim 4: Suppose R(N) ∈ Zinft. Then N is infinite, and maxN does not exist.
Lemma A.3(b) implies N is infinite. This suffices by Claim 1. 2

Lemma B.8. Suppose Q is a form, s ∈ S, and t ∈ T . Then

R(tO(ts)) =

(
R(maxOt(st)O(maxOt(st)s)) if maxOt(st) exists and is in T

R(Ot(st)) otherwise

)
.

Proof. First consider the case where maxOt(st) exists and is in T . Then the piece
run Ot(st) is immediately succeeded by the subform run maxOt(st)O(maxOt(st)s). Thus,
because both st and maxOt(st)s are restrictions of ts,

tO(ts) = Ot(st) ∪ maxOt(st)O(maxOt(st)s).

This implies

R(tO(ts)) = R(Ot(st) ∪ maxOt(st)O(maxOt(st)s)),

which implies

R(tO(ts)) = R(maxOt(st)O(maxOt(st)s))

by R’s definition (15) and the fact that each node in the piece run Ot(st) weakly
precedes the nodes in the subsequent subform run maxOt(st)O(maxOt(st)s).

Second consider the “otherwise” case. Then Proposition 5.4 at the piece run
N = Ot(st) implies that R(Ot(st)) ∈ Zft∪Zinft = Z. Meanwhile, Lemma A.4(b)
at the subform run N = tO(ts) implies that R(tO(ts)) ∈ Z. Thus both R(Ot(st)) and
R(tO(ts)) are whole-form runs that go through t. Thus since st is a restriction of ts,
R(Ot(st)) = R(tO(ts)).36 2

36Although it can be shown that Ot(st) = tO(ts), it cannot be shown that st = ts. In particular,
it is possible that the domain of the piece strategy st is a proper subset of the domain of the subform
strategy ts because the piece form Qt is a proper subset of the subform tQ. This happens whenever
Qt has an endnode which is a subroot. This is consistent with maxOt(st) being a whole-form
endnode and also with Ot(st) being infinite (bear in mind that Ot(st) is just one of Qt’s piece runs).

46 Appendix B. For Piece Forms

Appendix C. For Games

Lemma C.1.

Appendix C. For Games

Suppose (Q, u) is a game and (s, v) is authentic. Then, v is admis-
sible, and (s, v) is persistent.

Proof. Admissibility. By definition (34), it suffices to show

(∀t∈T, k∈K) inf{uk(ZM)|t∈ZM∈Z} ≤ vk(t) ≤ sup{uk(ZO)|t∈ZO∈Z}.
Take a subroot t ∈ T and a stakeholder k ∈ K. Authenticity’s definition (36) implies
that the value vk(t) equals uk(R(tO(ts))). Thus, since R(tO(ts)) is a run in Z which
contains t, the value vk(t) belongs to {uk(Z∗)|t∈Z∗∈Z}. The inequalities follow.

Persistence. By definition (35), it suffices to show

(∀t∈T) v(t) =

(
v(maxOt(st)) if maxOt(st) exists and is in T

u(R(Ot(st))) otherwise

)
.

Take a subroot t ∈ T . In the first case, the value profile v(t) by authenticity (36) is
equal to u(R(tO(ts))), which by Lemma B.8 is equal to u(R(maxOt(st)O(maxOt(st)s))),
which by authenticity is equal to v(maxOt(st)). In the second case, v(t) by authen-
ticity is equal to u(R(tO(ts))) which by Lemma B.8 is equal to u(R(Ot(st))). 2

Lemma C.2. Suppose (Q, u) is a game and Z ∈ Zft. Then u is both upper- and
lower-convergent at Z.

Proof. The assumption Z ∈ Zft implies maxZ exists. To show that u is lower-
convergent at Z, fix a stakeholder k. It will be argued that

limx∈Z inf{uk(ZM)|x∈ZM∈Z} = inf{uk(ZM)|maxZ∈ZM∈Z}
= inf{uk(Z)} = uk(Z).

The first equality holds by the existence of maxZ. The second holds since Z itself
is the only run ZM ∈ Z which contains maxZ. The third holds because the set is
a singleton. A similar argument implies upper-convergence (replace “lower” with
“upper”, replace “inf” with “sup”, and let “max” remain). 2

Lemma C.3. Consider a game (Q, u). Then (a) (∀Z∈Z, k∈K) the limit in (46)
exists. Further, (b) upper-convergence fails iff

(∃Z∈Z, k∈K) limx∈Z sup{uk(ZO)|x∈ZO∈Z} > uk(Z).(46)

Proof. (a) follows from Claim 1. (b) follows from the two claims and upper-
convergence’s definition (37).

Claim 1: (∀Z∈Z, k∈K) limx∈Z sup{uk(ZO)|x∈ZO∈Z} exists. To see this, take a
run Z ∈ Z and a stakeholder k ∈ K. Next consider two nodes x and x+ in Z such
that x ≺ x+. Then any run ZO ∈ Z through x+ also goes through x. In other
words, {ZO|x∈ZO∈Z} ⊇ {ZO|x+∈ZO∈Z}. This implies sup{uk(ZO)|x∈ZO∈Z} ≥
sup{uk(ZO)|x+∈ZO∈Z}. Therefore sup{uk(ZO)|x∈ZO∈Z} is weakly decreasing in x,
which implies that the limit in (46) exists.

Appendix C. For Games 47

Claim 2: (∀Z∈Z, k∈K) limx∈Z sup{uk(ZO)|x∈ZO∈Z} ≥ uk(Z). To see this, take
a run Z ∈ Z and a stakeholder k ∈ K. By Claim 1, the limit exists. Further, for
any node x ∈ Z, the set {ZO|x∈ZO∈Z} contains Z, which by inspection implies
sup{uk(ZO)|x∈ZO∈Z} is weakly above uk(Z). Therefore the limit is weakly above
uk(Z). 2

Lemma C.4. Consider a game (Q, u). Then (a) (∀Z∈Z, k∈K) the limit in (47)
exists. Further, (b) lower-convergence fails iff

(∃Z∈Z, k∈K) limx∈Z inf{uk(ZM)|x∈ZM∈Z} < uk(Z).(47)

Proof. This is proved as Lemma C.3 was proved. Replace upper-convergence (37)
with lower-convergence (38), sup with inf, ZO with ZM, > and ≥ with < and ≤,
“decreasing” with “increasing”, and “above” with “below”. 2

Definition C.5 (Subroot sequence). Suppose Q is a form, s ∈ S, and t0 ∈ T .
Then the subroot sequence from t0 via s is the sequence 〈tm〉m∈M defined recursively
by the given t0, by t1 = maxOt0(st0), by t2 = maxOt1(st1), and so on, either [a]
indefinitely or [b] until an ` ≥ 0 for which it is not the case that maxOt`(st`) exists
and is in T . (To be clear, M = {0,1,...} in case [a], and M = {0,1,...`} in case [b].)

Lemma C.6. Suppose (Q, u) is a game, s ∈ S, and t0 ∈ T . Let 〈tm〉m∈M be the
subroot sequence from t0 via s (Definition C.5). Then the following hold.

(a) (∀m∈M) Otm(stm) ∈ Z tm.
(b) (∀m∈Mr{0}) tm−1 ≺ tm.
(c) (∀m∈Mr{0}) R(tm−1O(tm−1s)) = R(tmO(tms)).
(d) (∀m∈M) R(t0O(t0s)) = R(tmO(tms)).
(e) R(t0O(t0s)) ⊇ {tm|m∈M}.
(f) Suppose M is infinite and u is upper-convergent. Then

(∀k∈K) limm→∞ sup{uk(ZO)|tm∈ZO∈Z} = uk(R(t0O(t0s))),

(g) Suppose M is infinite and u is lower-convergent. Then

(∀k∈K) limm→∞ inf{uk(ZM)|tm∈ZM∈Z} = uk(R(t0O(t0s))).

Proof. (a). Take an index m ∈ M . The subroot sequence’s Definition C.5 implies
tm ∈ T . Thus the restriction stm is in Stm by footnote 24 (Section 5.3). This suffices
because Otm :Stm→Z tm by the definition of 〈Ot〉t∈T (Section 5.3).

(b). Take an index m ∈ Mr{0}. The subroot sequence’s Definition C.5 implies
[1] maxOtm−1(stm−1) = tm. Part (a) implies Otm−1(stm−1) is a run in Z tm−1 , which by
the general nontriviality of runs (Lemma A.1(b)) implies tm−1 ≺ maxOtm−1(stm−1),
which by [1] implies tm−1 ≺ tm.

(c). Take an index m ∈ Mr{0}. The subroot sequence’s Definition C.5 implies
[1] maxOtm−1(stm−1) exists and is in T , and [2] maxOtm−1(stm−1) = tm. Now consider
this first case of Lemma B.8, with t there equal to tm−1 here. This case is relevant
because of [1], and it implies

R(tm−1O(tm−1s)) = R(maxOtm−1 (stm−1)O(maxOtm−1 (stm−1)s)).

48 Appendix C. For Games

This suffices because of [2].
(d). For m = 0, the result holds vacuously. For m ∈ Mr{0}, apply part (c) m

times.
(e). Take an index m ∈ M . Then tm by inspection belongs to tmO(tms), which by

inspection is included in R(tmO(tms)), which by part (d) equals R(t0O(t0s)).
(f). Since M is infinite by this part’s assumption, Definition C.5 implies M =
{0,1,...}. Thus parts (b) and (e) imply that [∗] 〈tm〉∞m∈0 is an infinite and strictly
monotonic sequence of nodes in the run R(t0O(t0s)). Now take a stakeholder k ∈ K.
Upper-convergence (37) at the run Z = R(t0O(t0s)) implies

limx∈R(t0O(t0s)) sup{uk(ZO)|x∈ZO∈Z} = uk(R(t0O(t0s))),

which by [∗] implies this part’s conclusion (footnote 28 on page 32 can be helpful if
convergence over directed sets is unfamiliar).

(g). This is proved as part (f). More specifically, replace “upper” with “lower”,
and “sup” with “inf”. 2

Lemma C.7. Suppose (Q, u) is a game, s ∈ S, and v is a value function which is
persistent for s. Further, take t0 ∈ T and let 〈tm〉m∈M be the subroot sequence from
t0 via s (Definition C.5). Then if M is finite,37 v(t0) = u(R(t0O(t0s))).

Proof. Since M is finite, there is ` ≥ 0 such that M = {0,1,...`}. It suffices to prove
by induction that (∀m∈M) v(tm) = u(R(tmO(tms))). For the initial step (m=`), note
that the subroot sequence’s Definition C.5 and the above definition of ` together
imply that it is not the case that maxOt`(st`) exists and is in T . Thus v(t`) by the
second case of persistence (35) equals u(R(Ot`(st`))), which by the second case of
Lemma B.8 equals u(R(t`O(t`s))).

For the inductive step (m<`), note that the definition of tm (Definition C.5) implies
that maxOtm(stm) exists and is in T . Thus v(tm) by the first case of persistence (35)
is equal to v(maxOtm(stm)), which by the definition of tm+1 (Definition C.5) is equal
to v(tm+1), which by the inductive hypothesis is equal to u(R(tm+1O(tm+1s))), which
by Lemma C.6(c) [with m there equal to m+1 here] is equal to u(R(tmO(tms))). 2

Lemma C.8. Suppose (Q, u) is a game and Z = Zft. Then persistence and au-
thenticity are equivalent, and either implies admissibility.

Proof. Lemma C.1 implies that authenticity implies admissibility and persistence
(the assumption Z = Zft is not used). Thus it suffices to show that persistence implies
authenticity. Toward that end, assume that (s, v) is persistent. By authenticity’s
definition (36), it suffices to show that (∀t0∈T) v(t0) = u(R(t0O(t0s))).

Take t0 ∈ T and let 〈tm〉m∈M be the subroot sequence from t0 via s (Defini-
tion C.5). The assumption Z = Zft implies that the path t0O(t0s) is finite, which
by Lemma C.6(e) implies that the subroot sequence 〈tm〉m∈M is finite, which by
Lemma C.6(b) implies that M is finite, which by Lemma C.7 implies v(t0) =
u(R(t0O(t0s))). 2

37It is possible that the subroot sequence 〈tm〉m∈M is finite even though the path t0O(t0s) is
infinite. Relatedly, Lemma C.7 is applied to finite paths in the proof of Lemma C.8, and then to
arbitrary paths in Proof C.9, Claim 1.

Appendix C. For Games 49

Proof C.9 (for Theorem 5.5). Lemma C.1 shows authenticity implies admis-
sibility and persistence. To show the converse, suppose v is admissible and (s, v)
is persistent. By authenticity’s definition (36), it suffices to show that (∀t0∈T)
v(t0) = u(R(t0O(t0s))). Toward that end, take t0 ∈ T and let 〈tm〉m∈M be the subroot
sequence from t0 via s (Definition C.5). Then the result follows from Claims 1 and
4.

Claim 1: If M is finite, then v(t0) = u(R(t0O(t0s))). This follows from Lemma C.7
(admissibility and upper- and lower-convergence play no role here).

Claim 2: (∀m∈M) v(t0) = v(tm). To see this, take an index m ∈ M . It suffices
to show by induction that (∀n∈{0,1,...m}) v(tn) = v(tm). The initial step (n=m)
holds vacuously. For the inductive step (n<m), note that the definition of 〈tm〉m∈M
(Definition C.5) implies that maxOtn(stn) exists and is in T . Thus v(tn) by the first
case of persistence (35) is equal to v(maxOtn(stn)), which by the definition of tn+1

(Definition C.5) is equal to vk(tn+1), which by the inductive hypothesis is vk(tm).

Claim 3:

(∀k∈K,m∈M) inf{uk(ZM)|tm∈ZM∈Z} ≤ vk(t0) ≤ sup{uk(ZO)|tm∈ZO∈Z}.
For this, take a stakeholder k ∈ K and an index m ∈ M . Admissibility (34) implies

inf{uk(ZM)|tm∈ZM∈Z} ≤ vk(tm) ≤ sup{uk(ZO|tm∈ZO∈Z}.
Claim 2 implies vk(tm) = vk(t0).

Claim 4: If M is infinite, v(t0) = u(R(t0O(t0s))). Suppose M is infinite. It suf-
fices to show that (∀k∈K) vk(t0) = uk(R(t0O(t0s))). Toward that end, take a stake-
holder k ∈ K. Claim 3 implies that the value vk(t0) is between Claim 3’s lower
and upper bounds. By Lemma C.6(f,g), these bounds both converge to the utility
uk(R(t0O(t0s))). Hence vk(t0) = uk(R(t0O(t0s))). 2

Lemma C.10. Suppose (Q, u) is a game, (s, v) is authentic, and t ∈ T . Then
(∀σ∈S) u(R(tO(σt, s|tJrJt))) = utv(O

t(σt)).38

Proof. Lemma B.8, with its s being (σt, s|JrJt), implies

R(tO(t(σt, s|JrJt))) =(48)
(
R(maxOt(σt)O(maxOt(σt)(σt, s|JrJt))) if maxOt(σt) exists and is in T

R(Ot(σt)) otherwise

)
.

Two simplifications can be made. On the left-hand side, t(σt, s|JrJt) by restriction
definition (28) is (σt, s|JrJt)|tJ , which reduces to (σt, s|tJrJt). On the right-hand
side, maxOt(σt)(σt, s|JrJt) by restriction definition (28) is (σt, s|JrJt)|maxOt(σt)J , which

by restriction definition (32) is (σ|Jt , s|JrJt)|maxOt(σt)J , which by J t ∩maxOt(σt)J = ∅
reduces to s|maxOt(σt)J , which by restriction definition (28) is maxOt(σt)s.

38[a] At the expensive of more notation, this can be quantified by (∀ψ∈St) with ψ replacing
σt in the equality (a similar alternative is discussed in footnote 30 on page 34). [b] Intuitively,
Lemma C.10 shows that the utility from obeying strategy s after piece t can be found by inserting
the value function v after piece t.

50 Appendix C. For Games

By the previous two sentences, and by applying u to both sides of (48), we find
that u(R(tO(σt, s|tJrJt))) is equal to

(
u(R(maxOt(σt)O(maxOt(σt)s))) if maxOt(σt) exists and is in T

u(R(Ot(σt))) otherwise

)
,

which, by authenticity’s definition (36) with its t being maxOt(σt), is equal to
(
v(maxOt(σt)) if maxOt(σt) exists and is in T
u(R(Ot(σt))) otherwise

)
,

which, by utv’s definition (39) with its N being Ot(σt), is equal to utv(O
t(σt)). 2

Lemma C.11. Suppose (Q, u) is a game and (s, v) is authentic. Then the following
hold.

(a) (∀t∈T) u(R(tO(ts))) = utv(O
t(st)).

(b) (∀t∈T, i∈I, σ∈S) u(R(tO(σti ,
ts|tJrJti))) = utv(O

t(σti , s
t
−i)).

Proof. For (a), apply Lemma C.10, with its σ equal to s. For (b), apply Lemma C.10
again, this time with its σ equal to (σti , s|JrJti). 2

Lemma C.12. Suppose (Q, u) is a game and s is a subgame-perfect equilibrium.
Define v by (∀t∈T) v(t) = u(R(tO(ts))). Then (s, v) is authentic and piecewise-Nash.

Proof. Authenticity (36) follows immediately from the lemma’s definition of v. To
show piecewise-Nashness, suppose (s, v) is not piecewise-Nash (40). Then there are
t ∈ T , i ∈ I, and σ ∈ S such that

utv,i(O
t(st)) < utv,i(O

t(σti , s
t
−i)).(49)

Since authenticity has already been shown, the assumptions of Lemma C.11 are met.
Thus (49) and Lemma C.11’s two conclusions imply

ui(R(tO(ts))) < ui(R(tO(σti ,
ts|tJrJti))).

Hence the definition (27) of the subgame utility function tu implies
tui(

tO(ts)) < tui(
tO(σti ,

ts|tJrJti)).
This violates the definition (30) for subgame perfection, in contradiction to the
lemma’s assumptions. 2

Proof C.13 (for Theorem 5.7). Lemma C.12 shows that if s is a subgame-
perfect equilibrium, then there is a value function v such that (s, v) is authentic and
piecewise-Nash. To show the converse, suppose that (s, v) is authentic and piecewise-
Nash. By definition (30) for subgame perfection, it suffices to show

(∀τ0∈T, i∈I, σ∈S) τ0ui(
τ0O(τ0s)) ≥ τ0ui(

τ0O(τ0σi,
τ0s−i)).

By definition (27) for τ0u, this is equivalent to

(∀τ0∈T, i∈I, σ∈S) ui(R(τ0O(τ0s))) ≥ ui(R(τ0O(τ0σi,
τ0s−i))).

To prove this, take a subroot τ0 ∈ T , a player i ∈ I, and an alternative σ ∈ S. The
theorem then follows from Claims 3 and 5 below.

Appendix C. For Games 51

Before entertaining the claims, use general Definition C.5 to let

〈τm〉m∈M be the subroot sequence from τ0 via (σi, s−i).(50)

Note that the subroot sequence 〈τm〉m∈M is derived via the alternative (σi, s−i) rather
than via the original s (the Greek-ness of the notation 〈τm〉m∈M is meant to emphasize
this). Also note that the notation accommodates multiple cases. First, the finiteness
of the original path τ0O(τ0s) is unrelated to the finiteness of the alternative path
τ0O(τ0σi,

τ0s−i). Second, the finiteness of the alternative path τ0O(τ0σi,
τ0s−i) implies

the finiteness of the subroot sequence 〈τm〉m∈M , but not conversely. (The implication
holds because [a] the cardinality of the subroot sequence equals the cardinality of its
image {τm|m∈M} [by Lemma C.6(b)] and [b] this image is a subset of the alternative
path τ0O(τ0σi,

τ0s−i) [by Lemma C.6(e)].)

Claim 1: (∀m∈Mr{0}) ui(R(τm−1O(τm−1s))) ≥ ui(R(τmO(τms))). (For intuition,
note that R(τmO(τms)) is the full run that goes from r to τ0, then from τ0 to τm via
the alternative (σi, s−i), and then obeys the original s thereafter. So roughly, this
claim states that it is weakly better to start obeying s after τm−1 ≺ τm rather than to
wait and start obeying s after τm.)

To show this, take a subroot index m ∈ Mr{0}. Then definition (50) for the
alternative subroot sequence implies

maxOτm−1(σ
τm−1

i , s
τm−1

−i) exists and is in T , and(51)

τm = maxOτm−1(σ
τm−1

i , s
τm−1

−i).(52)

It suffices to show that

ui(R(τm−1O(τm−1s))) = u
τm−1

v,i (Oτm−1(sτm−1))

≥ u
τm−1

v,i (Oτm−1(σ
τm−1

i , s
τm−1

−i))

= vi(maxOτm−1(σ
τm−1

i , s
τm−1

−i))

= vi(τm)

= ui(R(τmO(τms))).

The first equality holds by authenticity and Lemma C.11(a), with t there equal to
τm−1 here. The inequality holds by definition (40) for piecewise-Nashness, with t there
equal to τm−1 here. The second equality holds by (51) and the first case of definition
(39) for 〈utv〉t∈T , with t and N there equal to τm−1 and Otm−1(σ

tm−1

i , s
tm−1

−i) here. The
third equality holds by (52), and finally, the fourth equality holds by definition (36)
for authenticity.

Claim 2: If ` = maxM , ui(R(τ`O(τ`s))) ≥ ui(R(τ`O(τ`σi,
τ`s−i))). (Roughly, if the

alternative subroot sequence terminates at τ`, then it is weakly better to obey s after
τ` than to not obey s after τ`.)

Suppose ` = maxM . Then definition (50) for the alternative subroot sequence
implies

not
(
maxOτ`(στ`i , s

τ`
−i) exists and is in T

)
.(53)

52 Appendix C. For Games

This will be used to argue that

ui(R(τ`O(τ`s))) = uτ`v,i(O
τ`(sτ`))

≥ uτ`v,i(O
τ`(στ`i , s

τ`
−i))

= ui(R(Oτ`(στ`i , s
τ`
−i))

= ui(R(τ`O(τ`σi,
τ`s−i))).

The first equality holds by authenticity and Lemma C.11(a), with t there equal to
τ` here. The inequality holds by definition (40) for piecewise-Nashness, with t there
equal to τ` here. The second equality holds by (53) and the second case of definition
(39) for 〈utm〉t∈T , with t and N there equal to τ` and Oτ`(στ`i , s

τ`
−i). The third equality

holds by (53) and the second case of Lemma B.8, with t and s there equal to τ` and
(σi, s−i) here.

Claim 3: If M is finite, ui(R(τ0O(τ0s))) ≥ ui(R(τ0O(τ0σi,
τ0s−i))). (This completes

the proof if M is finite.)
Assume M is finite, and let ` = maxM . Then

ui(R(τ0O(τ0s))) ≥ ui(R(τ`O(τ`s)))

≥ ui(R(τ`O(τ`σi,
τ`s−i)))

= ui(R(τ0O(τ0σi,
τ0s−i))).

The first inequality holds by ` applications of Claim 1. The second inequality is
Claim 2. Finally, the equality holds by applying Lemma C.6(d) with s, t0, and m
there equal to (σi, s−i), τ0, and ` here (this is a relatively straightforward property of
the alternative subroot sequence).

Claim 4: Suppose M is infinite and ui(R(τ0O(τ0s))) < ui(R(τ0O(τ0σi,
τ0s−i))). Then

there is an m ∈ M such that ui(R(τ0O(τ0s))) < ui(R(τmO(τms))). (Intuitively, if the
alternative is better, there comes a subroot τm in the alternative subroot sequence after
which reverting to the original does not wreck the alternative.) 39

Consider Lemma C.6, with s and 〈tm〉m∈M there equal to (σi, s−i) and 〈τm〉m∈M
here. As assumed by the lemma, 〈τm〉m∈M is the subroot sequence from τ0 via (σi, si).
Then, because of lower-convergence, the lemma’s part (g) at k = i implies

limm∗→∞ inf{ui(ZM)|τm∗∈ZM∈Z} = ui(R(τ0O(τ0σi,
τ0s−i))).(54)

By the claim’s assumption, the original utility ui(R(τ0O(τ0s))) is less than the al-
ternative utility on (54)’s right-hand side. Hence (54) implies there is m ∈ M such

39This claim relies upon the theorem’s assumption of lower-convergence. For example, consider
the Minny example of Figure 2.7, whose utility function is not lower-convergent. Let the original s
be the strategy of always choosing 0, let the alternative σ be the strategy of always choosing 1, and
consider the subroot τ0 = r = {}. Then the alternative subroot sequence is τ0 = {}, τ1 = 1, τ2 = 11,
and so on. The original utility uMinny(R(τ0O(τ0s))) = min{0,0,...} = 0 is lower than the alternative
utility uMinny(R(τ0O(τ0σ))) = min{1,1,...} = 1, as assumed by Claim 4. Yet, there does not come a
subroot τm in the alternative subroot sequence after which reverting to the original does not wreck
the alternative. In other words, it is always possible to wreck the alternative by reverting to the
original. In particular, for any m ∈ M = {0,1,2,...}, we have uMinny(R(τmO(τms))) = 0 because
τmO(τms) has zeroes after τm. In this fashion, the conclusion of Claim 4 is violated.

References 53

that

inf{ui(ZM)|τm∈ZM∈Z} > ui(R(τ0O(τ0s))).

By inspection τm ∈ τmO(τms), which by R’s definition implies τm ∈ R(τmO(τms)),
which by Lemma A.4(b) implies R(τmO(τms)) ∈ {ZM|τm∈ZM∈Z}, which by apply-
ing ui implies ui(R(τmO(τms))) ∈ {ui(ZM)|τm∈ZM∈Z}, which by inspection implies
ui(R(τmO(τms))) ≥ inf {ui(ZM)|τm∈ZM∈Z}. Thus the previous sentence implies the
claim’s conclusion:

ui(R(τmO(τms)) > ui(R(τ0O(τ0s))).

Claim 5: If M is infinite, ui(R(τ0O(τ0s))) ≥ ui(R(τ0O(τ0σi,
τ0s−i))). (This completes

the proof if M is infinite.)
Suppose M is infinite and ui(R(τ0O(τ0s))) < ui(R(τ0O(τ0σi,

τ0s−i))). Then Claim 4
implies there is m ∈ M such that ui(R(τ0O(τ0s))) < ui(R(τmO(τms))). But m applica-
tions of Claim 1 imply that ui(R(τ0O(τ0s))) ≥ ui(R(τmO(τms))). These two inequalities
contradict. 2

Proof C.14 (for Corollary 5.9). The reverse direction is shown in the paragraph
before the corollary statement. For the forward direction, suppose s is one-piece
unimprovable. Then definition (41) implies

(∀t∈T, i∈I, σ∈S) ui(R(tO(ts))) ≥ ui(R(tO(σti , s|tJrJti))).(55)

Define the value function v:T→RK by v(t) = u(R(tO(ts))). Then (s, v) is authentic
(36). Consequently, Lemma C.11(a) implies

(∀t∈T, i∈I) ui(R(tO(ts))) = utv,i(O
t(st)),

and Lemma C.11(b) implies

(∀t∈T, i∈I, σ∈S) ui(R(tO(σti , s|tJrJti))) = utv,i(O
t(σti , s

t
−i)).

These two equalities can be used to replace, respectively, the left- and right-hand
sides of (55). The result is

(∀t∈T, i∈I, σ∈S) utv,i(O
t(st)) ≥ utv,i(O

t(σti , s
t
−i)).

Thus (s, v) is piecewise-Nash (40). Therefore, since (s, v) has been shown to be
authentic, the forward direction of Theorem 5.7 implies that s is subgame-perfect.
2

References

Abreu, D., D. Pearce, and E. Stacchetti (1990): “Toward a Theory of Dis-
counted Repeated Games with Imperfect Monitoring,” Econometrica, 58, 1041–
1063.

Alós-Ferrer, C., and K. Ritzberger (2016): The Theory of Extensive Form
Games. Springer.

(2017): “Does Backwards Induction Imply Subgame Perfection?,” Games
and Economic Behavior, 103, 19–29.

54 References

Becker, R. A., and J. H. Boyd (1997): Capital Theory, Equilibrium Analysis,
and Recursive Utility. Blackwell.

Blackwell, D. (1965): “Discounted Dynamic Programming,” Annals of Mathe-
matics and Statistics, 36, 226–235.

Blair, C. E. (1984): “Axioms and Examples Related to Ordinal Dynamic Program-
ming,” Mathematics of Operations Research, 9, 345–347.

Boyd, III, J. H. (1990): “Recursive Utility and the Ramsey Problem,” Journal of
Economic Theory, 50, 326–345.

Denardo, E. V. (1967): “Contraction Mappings in the Theory Underlying Dynamic
Programming,” SIAM Review, 9, 169–177.

Filar, J. A., and O. J. Vrieze (1997): Competitive Markov Decision Processes.
Springer.

Fudenberg, D., and J. Tirole (1991): Game Theory. MIT Press.
Hendon, E., H. J. Jacobsen, and B. Sloth (1996): “The One-Shot-Deviation

Principle for Sequential Rationality,” Games and Economic Behavior, 12, 274–282.
Kaminski, M. M. (2019): “Generalized Backward Induction: Justification for a Folk

Algorithm,” Games, 10(34), 25 pages.
Kelley, J. L. (1955): General Topology. Springer Verlag, New York.
Kreps, D. M. (1977): “Decision Problems with Expected Utility Criteria, I: Upper

and Lower Convergent Utility,” Mathematics of Operations Research, 2, 45–53.
Menzio, G., and S. Shi (2010): “Block Recursive Equilibria for Stochastic Models

of Search On The Job,” Journal of Economic Theory, 145, 1453–1494.
Munkres, J. R. (2000): Topology (Second Edition). Prentice Hall, Upper Saddle

River, New Jersey.
Osborne, M. J. (2004): An Introduction to Game Theory. Oxford.
Osborne, M. J., and A. Rubinstein (1994): A Course in Game Theory. MIT.
Ozaki, H., and P. A. Streufert (1996): “Dynamic Programming for Nonadditive

Stochastic Objectives,” Journal of Mathematical Economics, 25, 391–442.
Rubinstein, A., and A. Wolinsky (1995): “Remarks on Infinitely Repeated

Extensive-Form Games,” Games and Economic Behavior, 9, 110–115.
Selten, R. (1975): “Reexamination of the Perfectness Concept for Equilibrium

Points in Extensive Games,” International Journal of Game Theory, 4, 25–55.
Shaked, A., and J. Sutton (1984): “Involuntary Unemployment as a Perfect

Equilibrium in a Bargaining Model,” Econometrica, 52, 1351–1364.
Sobel, M. J. (1975): “Ordinal Dynamic Programming,” Management Science, 21,

967–975.
Stokey, N. L., and R. E. J. Lucas (1989): Recursive Methods in Economic

Dynamics. Harvard University Press.
Strauch, R. (1966): “Negative Dynamic Programming,” Annals of Mathematics

and Statistics, 37, 871–890.
Streufert, P. A. (1993): “Markov-perfect equilibria in intergenerational games

with consistent preferences,” Journal of Economic Dynamics and Control, 17, 929–
951.

References 55

(1998): “Recursive Utility and Dynamic Programming,” in Handbook of
Utility Theory, Volume 1, ed. by S. Barberà, P. J. Hammond, and C. Seidl, pp.
93–122. Kluwer.

(2019): “Equivalences among Five Game Specifications, including a New
Specification whose Nodes are Sets of Past Choices,” International Journal of Game
Theory, 48, 1–32.

(2021Gm): “A Category for Extensive-Form Games,” arXiv:2105.11398,
also Western University, Department of Economics Research Report Series 2021-2,
60 pages.

(2023p): “Specifying a Game-Theoretic Extensive Form as an Abstract 5-
ary Relation,” arXiv:2107.10801v4, supercedes earlier versions, including Western
University, Department of Economics Research Report Series 2021-3.

Zhang, B. H., and T. Sandholm (2021): “Subgame Solving without Common
Knowledge,” arXiv:2106.06068v1, 20 pages.

	2023-3 Dynamic Programming for Pure-Strategy Subgame Perfection in an Arbitrary Game
	1. Introduction
	1.1. Selten subroots and value functions
	1.2. Two Theorems
	1.3. Relation to dynamic programming
	1.4. Relation to game theory
	1.5. Organization of Paper

	2. Examples
	2.1. A familiar example
	2.2. The cry-wolf game
	2.3. Intuition for the two theorems
	2.4. Intuition for upper- and lower-convergence

	3. Definitions for Pentaform Games
	3.1. Quintuple sets
	3.2. Slices
	3.3. Projections
	3.4. Pentaforms
	3.5. Paths in a pentaform's out-tree
	3.6. Pentaform games
	3.7. Nash equilibria

	4. Subroots, Subforms, and Subgames
	4.1. Subroots and subforms
	4.2. Subgames and subgame perfection
	4.3. Subroots and informational assumptions

	5. Dynamic-Programming Results
	5.1. Piece forms
	5.2. Piece endnodes and piece runs
	5.3. Piece strategies
	5.4. Value functions
	5.5. Upper- and lower-convergence, and Theorem ??
	5.6. Piece games, piecewise-Nashness, and Theorem ??
	5.7. One-piece unimprovability

	Appendix A. Preliminaries
	Appendix B. For Piece Forms
	Appendix C. For Games
	References

